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Abstract 

The wetted area fraction in subcooled pool boiling of water at atmospheric pressure is measured 

using the DEPIcT (DEtection of Phase by Infrared Thermography) technique.  DEPIcT exploits 

the contrast in infrared (IR) light emissions between wet and dry areas on the surface of an IR-

transparent heater to visualize the instantaneous distribution of the liquid and gas phases in 

contact with the heater surface.  In this paper time-averaged wetted area fraction data in 

nucleate boiling are reported as functions of heat flux (from 30% up to 100% of the Critical Heat 

Flux) and subcooling (Tsub = 0, 5, 10, 30 and 50C).  The results show that the wetted area 

fraction monotonically decreases with increasing heat flux and increases with increasing 

subcooling: both trends are expected.  The range of time-averaged wetted area fractions is from 

90%, at low heat flux and high subcooling, to 50% at high heat flux (right before CHF) and low 

subcooling.  It is also shown that the dry areas are periodically rewetted by liquid sloshing on 

the surface at any subcooling and heat flux; however, the dry areas expand irreversibly at CHF. 
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1. Introduction 

Complex two-phase heat transfer phenomena such as nucleate boiling, critical heat flux, 

quenching and condensation govern the thermal performance of Light Water Reactors (LWRs) 

under normal operation and during transients/accidents.  These phenomena are typically 

characterized by the presence of a liquid-vapor-solid contact line on the surface from/to which 

the heat is transferred.  For example, in nucleate boiling, a significant fraction of the energy 

needed for bubble growth comes from evaporation of a liquid meniscus, or microlayer, 

underneath the bubble itself.  As the liquid-vapor-solid line at the edge of the meniscus retreats, 

a circular dry patch in the middle of the bubble is exposed; the speed of the triple line retreat is 

one measure of the ability of the surface to transfer heat to the bubble.  At very high heat fluxes, 

near the upper limit of the nucleate boiling regime, also known as Critical Heat Flux (CHF), the 

situation is characterized by larger dry areas on the surface, dispersed within an interconnected 

network of liquid menisci.  In quenching heat transfer, which refers to the rapid cooling of a 

very hot object by immersion in a cooler liquid, the process is initially dominated by film boiling.  

In film boiling a continuous vapor film completely separates the liquid phase from the solid 

surface; however, as the temperature gets closer to the Leidenfrost point, intermittent and short-

lived liquid-solid contacts occur at discrete locations on the surface, thus creating liquid-vapor-

solid interfaces once again.  Ultimately, if bubble nucleation ensues at such contact points, the 

vapor film is disrupted and the heat transfer regime transitions from film boiling to transition 

boiling.  Finally, in dropwise condensation, the phase transition from vapor to liquid occurs via 

formation of discrete droplets on the surface, and the resulting liquid-vapor-solid triple line is 

where heat transfer is most intense. 
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In all these phenomena, the triple contact line separates regions of the surface in which heat 

transfer is relatively poor (dry regions) from regions in which heat transfer is effective (wet 

regions).  Any mechanistic model of the above phenomena must take into account the presence 

of such dry and wet regions.  The specific objective of the present study is to measure the 

wetted area fraction (i.e. ratio of wet area to the total surface area of the heater) in pool boiling of 

water at atmospheric pressure, as a function of applied heat flux and liquid subcooling.  

Knowledge of this parameter, combined with models of other boiling parameters (such as bubble 

departure diameter and frequency), is key to developing a physically accurate understanding of 

nucleate boiling heat transfer. 

 

2. Literature Review 

Two-phase flow and heat transfer diagnostics is a rich field, which has produced several tools for 

probing certain aspects of the afore-mentioned phenomena.  We will focus here on instruments 

that detect phases.  For the purpose of this study, phase detectors can be divided into two broad 

categories: ‘bulk phase detectors’ and ‘surface phase detectors’.  The bulk phase detectors 

detect phases within the bulk of the flow, away from the solid surface; they include conductivity 

and optical probes [Kim et al. 2000, Barrau et al. 1999] and wire-mesh probes [Prasser et al. 

1998].  They are intrusive instruments and generally have low (discrete) spatial resolution.  On 

the other hand, X-ray and -ray tomography is non-intrusive, but rather costly/cumbersome as the 

radiation source has to be rotated at high speed around the test section, which also may limit the 

time and/or space resolution of the technique; ultra-fast approaches have been developed to 

increase the time and space resolution in recent years [Hori et al. 2000, Bieberle et al. 2009].  

More suitable for detection of the triple contact line are the surface phase detectors.  These 

include high-speed video, whose usefulness typically is limited by poor optical access to the 
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surface due to the interference from rising bubbles, and total reflection, which is rather simple 

and effective, but requires a heater that is completely transparent to visible light, e.g., an indium-

tin-oxide film on sapphire or borosilicate glass substrate [Nishio and Tanaka 2004]. 

 

In this paper we demonstrate a recently-developed experimental technique, named DEPIcT or 

DEtection of Phase by Infrared Thermography [Kim and Buongiorno 2011], which is suitable for 

non-intrusive, high-resolution detection of the triple contact line and wet and dry areas on a 

boiling surface.  The technique is briefly described in Section 3. 

 

3. Description of the DEPIcT technique 

DEPIcT exploits temperature differences to detect the liquid-vapor-solid triple contact line.  An 

IR camera is used to detect the phases present on a heated surface.  The key feature of this 

technique is to use a heater material that is IR transparent (e.g. optical grade silicon wafer), and a 

fluid that has a very high IR absorptivity (e.g. water).  The IR camera is placed below the heater, 

while the fluid lies on top (Fig. 1(a)).  Where the heater surface is wet, the IR camera measures 

the temperature of the hot water in contact with the heater.  On the other hand, where vapor 

(whose IR absorptivity is very low) is in contact with the heater, the IR light comes from the 

cooler water beyond the vapor.  The resulting IR image appears dark (cold) in dry spots and 

bright (hot) in wetted area, as illustrated in Fig. 1(b).  Using the contrast between the dark and 

bright areas, we can visualize the distribution of the liquid and gas phases in contact with the 

heater surface, and thus identify the liquid-vapor-solid contact line.  In other words, we measure 

temperature beyond the surface to detect phases on the surface.  This approach distinguishes 

DEPIcT from the now-established IR thermometry technique with IR-opaque heaters 
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[Theofanous et al. 2002, Wagner and Stephan 2009, Gerardi et al. 2010, Kim et al. 2012], where 

the temperature measured is the temperature of the surface, which makes it hard to identify 

phases on the surface conclusively. 

 

 

Figure 1.  Experimental apparatus (a) and measurement principle (b) for the DEPIcT 

technique. 

 

A complete description of DEPIcT, including an assessment of its uncertainties is reported in 

[Kim and Buongiorno 2011]; however, it is useful to repeat some key results here.  Since 

DEPIcT uses a temperature measurement to detect the triple contact line, the uncertainties and 

sensitivities involved in the IR temperature measurement per se and the subsequent identification 

of the triple contact line from the IR image have to be carefully quantified.  First, the IR camera 

used in this study (SC6000, FLIR Systems Inc., with an IR wavelength range of 3-5 m) has a 

temperature resolution of 0.025C, a maximum frame rate of 125 fps at full spatial resolution of 

640512 pixels and higher frame rates at a subset of the total image, i.e. 1000 fps at 144144 
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pixels.  The actual spatial resolution depends obviously on the physical size of the object being 

imaged.  For example, if we are interested in imaging an area of 1 cm
2
 and use 100100 pixels, 

the spatial resolution is 100 m.  To quantify the uncertainties and sensitivities of the triple-

contact-line detection, a series of tests was conducted with static droplets at various temperatures 

in front of background water at fixed temperature.  The background water was kept at room 

temperature (24.3C), while the temperature of the wafer and the droplet on it were varied from 

25.6 to 30C.  Figure 2 shows the measured IR intensity (counts) of the dry and wet regions of 

the wafer surface for different temperatures of the droplet-wafer system.  It can be seen that, 

although the wafer and droplet are at the same temperature, their signals are very different; this is 

due to the differences in the temperature of the droplet over the wafer and the background water, 

and makes it possible to distinguish dry surface from wet surface quite clearly.  Figure 3 shows 

the IR intensity profile near the edge of droplets at various temperatures.  If we assume the 

inflection point in the curves to be the nominal location of the triple contact line, the range over 

which the IR intensity changes significantly (50%) is about 100 m.  Therefore, the triple 

contact line on the surface can be identified within 100 m.  Finally, note that the IR intensity 

change across the contact line is rather sharp even when the temperature difference between the 

wafer-droplet system and the background becomes as low as 1.3C (=25.6-24.3). 
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Figure 2.  IR intensity emitted by a droplet and wafer at various temperatures in the 

uncertainty quantification tests for DEPIcT. 
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Figure 3.  1D IR intensity profile at the droplet contact line for various droplet-wafer 

temperatures (Troom=24.3
o
C for all cases) in the uncertainty quantification tests for 

DEPIcT. 
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Optical grade silicon wafer with the following properties was used as the heater: <100> 

orientation, P/Boron-doped, electrical resistivity 5-25 -cm, thickness 380±25 m, and double 

side polished.  The relatively high electrical conductivity of this doped silicon made it possible 

to use direct (Joule) heating in boiling experiments.  The silicon wafer heater is completely 

opaque to visible light, but transparent to IR, with a transmissivity of 55% in the wavelength 

range of interest. 

 

A simple experiment with a sliding droplet was conducted first, to verify the optical properties of 

the wafer and demonstrate the technique (Fig. 4).  The liquid was pre-heated to ~30C, while 

the wafer and background were at room temperature (~24C); as a result, in the IR video the 

sliding droplet appears brighter than the background, and thus easily distinguishable.  

Comparison of high-speed video taken from above the wafer with IR video taken through the 

wafer clearly shows that the DEPIcT technique precisely and sharply captures the dynamics of 

liquid flow on the surface of the wafer, including the triple contact line. 

 

 

0.0 sec 0.3 sec 0.6 sec 0.9 sec 1.2 sec 1.5 sec

10 mm

 
Figure 4.  Droplet sliding on a vertical silicon wafer.  Comparison of the high-speed video 

(left) and IR (right) images taken from the front and back of the wafer, respectively.  The 

sharpness of the IR image through the wafer confirms that the wafer is essentially 

transparent to IR. 
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4. Wetted Area Fraction in Nucleate Boiling 

For the nucleate boiling experiments with water at atmospheric pressure, the doped silicon wafer 

was accommodated into a 5050 mm
2
 square silicon substrate with Au/Cr metal pads for 

electrical connection to a 250-V 30-A DC power supply.  The substrate had a 149 mm
2
 

opening at the center to allow for imaging by the IR camera underneath.  Boiling occurred on 

the top face of the heater (Fig. 1).  The boiling chamber was a glass cylinder of 50-mm outer 

diameter and 50-mm length, attached and sealed to the top face of the wafer.  The water 

subcooling in the chamber was controlled by varying the flow rate and temperature of chilled 

water flowing through the subcooler tube. 

 

The experimental procedure consisted in loading the apparatus with water, degassing it by pre-

boiling the working fluid for approximately two hours using the preheater, establish the desired 

subcooling, and then increase the applied heat flux in small steps, with sufficient time in between 

steps (>1 minute) to allow for achieving a new steady state.  At each heat flux step, DEPIcT was 

used to visualize the phase distribution on the surface at a frame rate of 500 fps.  The heat flux 

was increased, for fixed subcooling, until the eventual occurrence of CHF destroyed the heater 

and terminated the test.  The values of the experimentally determined CHF ranged from 1100 

kW/m
2
 at saturated conditions (i.e. zero subcooling) to 5000 kW/m

2
 at high subcooling (i.e. 

Tsub=50C).  The CHF data, normalized to the saturated CHF value, are shown in Fig. 5.  The 

CHF increases with increasing subcooling, as expected from theory and various correlations, also 

shown in Fig. 5. 
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Figure 5.  CHF vs subcooling for water at atmospheric pressure, boiling on horizontal 

silicon wafers.  Error bars representing the measurement uncertainty are included, albeit 

small. 

 

Of greater interest here are the DEPIcT data.  It has been recently proposed that nucleate boiling 

heat transfer at relatively high heat flux is characterized by large dry patches dispersed within an 

interconnected network of liquid menisci [Theofanous and Dinh 2006].  The geometry of the 

liquid-vapor-solid triple contact line is highly irregular and dynamic; that is, the liquid menisci 

advance into and retreat from the dry patches as a function of time, due to the effects of bubble 

nucleation, liquid inertia (sloshing), capillary forces (surface tension) and recoil forces 

(evaporation).  Theofanous and Dinh [2006] refer to this physical situation as the ‘micro-

hydrodynamics’ of boiling.  DEPIcT captures the micro-hydrodynamics very clearly, as shown 
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by the snapshot sequence in Fig. 6 for heat flux 1000 kW/m
2
 and 0C subcooling. Note that large 

areas of the heater surface appear dry (black) and stay dry for long periods of time (order of 30 

ms), though at this heat flux we are still well below CHF, which occurred at ~1100 kW/m
2
 in this 

particular run.  All dry areas are eventually rewetted at heat fluxes below CHF.  In their boiling 

experiments with ethanol and refrigerants, Nishio and Tanaka [2004] and Chung and No [2003] 

also observed large dry areas similar to ours. 

 

A series of representative snapshots from tests at various heat fluxes and subcoolings is shown in 

Fig. 7.  Post-processing of the DEPIcT images allows quantification of the wetted area fraction 

(again defined as the ratio of the wet area to the total surface area), as shown in Fig. 8.  Note 

that relatively large instantaneous fluctuations (up to 30% in amplitude in some cases) occur, 

but they do so about a stable average value, which of course depends on the heat flux and 

subcooling.  The time-averaged wetted area fraction values are plotted in Fig. 9.  It can be seen 

that the wetted area fraction decreases with increasing heat flux and decreasing subcooling; both 

trends are expected, as the ability of the liquid to stay in contact with the surface is obviously 

higher at lower heat flux and higher subcooling. 
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Figure 6.  Time sequence of DEPIcT snapshots for water boiling at 1000 kW/m
2
, 0C 

subcooling and atmospheric pressure. 
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Figure 7.  DEPIcT images of the boiling surface at various values of heat flux (normalized 

to CHF) and subcoolings.  Black represents dry regions, grey and white represent wet 

regions.  Note that the subscript ‘CHF(-)’ indicates the last heat flux step before CHF 

occurs. 
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Figure 8.  Instantaneous values of the wetted area fraction as a function of heat flux and subcooling.  Note that the magnitude of 

the fluctuations decreases with increasing subcooling, for a given (normalized) heat flux.  The subscript ‘CHF(-)’ indicates the last 

heat flux step before the occurrence of CHF.



(15/23) 

 

 

Figure 9.  Time-averaged wetted fraction as a function of normalized heat flux and 

subcooling for water boiling over horizontal silicon heaters at atmospheric pressure.  

 

Post-processing of the DEPIcT images also allows quantification of the triple contact line 

density, i.e. the length of triple contact line per unit surface area of the heater.  This parameter is 

important because for a given value of the wetted area fraction, a higher contact line density 

indicates (i) a smaller average size of the dry areas (thus easier to rewet), and (ii) a higher heat 

transfer coefficient on average, since the triple contact line is where the local heat flux would be 

highest.  The measured contact line density is shown in Figures 10a and 10b.  It can be seen 

that the triple contact line density increases with heat flux for all values of the subcooling.  This 

trend is expected, as more dry patches (and thus more contact line) appear when the heat flux 

increases.  However, the observed relation between contact line density and subcooling is not 

monotonic, as can be seen in Fig. 10a and especially in Fig. 10b, where the heat flux has been 

normalized to the CHF.  For a given value of the heat flux, there are two conflicting effects: (i) 

the higher subcooling cases have higher wetted area fraction, this would tend to give a lower 
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contact line density; but (ii) they also have individual dry patches that are on average of smaller 

size, which tends to give a higher contact line density.  .  The latter effect implies that, for a 

given wetted area fraction, the higher subcooling cases have a higher contact line density, which 

is confirmed by the plot in Figure 11. 

 

 

    (a)        (b)  

Figure 10.  Time-averaged contact line density as a function of heat flux (a) and 

normalized heat flux (b) for various subcoolings. 

 

Figure 11.  Contact line density vs. dry (or wetted) area fraction as a function of 
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subcooling for water boiling over horizontal silicon heaters at atmospheric pressure.  

 

5. Discussion 

The dynamics of the dry patches is quite interesting.  Due to liquid sloshing, no point on the 

surface is permanently dry at any heat flux lower than CHF.  Using the IR images, we estimated 

that at q=1.0qCHF(-) and Tsub=0C the average dry time for any given point on the surface is 30 

ms, with peaks as long as 60 ms.  Then the localized temperature rise of the silicon wafer 

during a dry period can be estimated as Tq tdry/(  c), where tdry is the dry time, and , c and  

are the silicon wafer density, specific heat and thickness, respectively.  T ranges from 40 to 

70C.  The resulting surface temperatures are well below the Leidenfrost point of the silicon 

wafer (>200C), so it makes sense that the liquid can rewet the surface after a dry period.  

Clearly, little liquid may go a long way in keeping the surface from burning out.  The data of 

Chung and No [9] are qualitatively similar to ours, in spite of the differences in fluid and heater 

materials. 

 

At CHF the dry patches become irreversible.  Fig. 12 shows that all liquid is basically gone 

between 4.6 s and 5.3 s after the last heat flux step increase for the Tsub=0C test.  Before CHF 

occurs, the wetted fraction has large instantaneous fluctuations, but is basically stable at around 

0.5.  When CHF occurs, the wetted area fraction drops to 0.01 in less than a second.  

Similarly, the contact line density decreases rapidly at CHF, as shown in Fig. 13.  Finally, Table 

1 reports the duration of the wetted area fraction transient at CHF: the surface becomes 

completely dry in less than a second at all values of subcoolings; however, the duration is shorter 

at higher subcooling.  This is due to the much higher value of the CHF at higher subcooling (see 
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Fig. 5), i.e. when CHF finally occurs, it is a more rapid and violent phenomenon than at low 

subcooling.  We expect these trends to hold qualitatively regardless of the surface material and 

fluids; however, the actual duration of the CHF transition will depend on the fluid, its pressure, 

the physical-chemical characteristics of the surface (in particular its wettability) and also the 

thermal diffusivity and thickness of the heater. 

 

 

Figure 12.  Time history of the wetted area fraction at CHF (~1100 kW/m
2
) at Tsub=0C 

emphasizes the transition from nucleate boiling to film boiling as the wetted area fraction 

drops to essentially zero. . 
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Figure 13.  Time history of the contact line density during CHF (~1100 kW/m
2
) at 

Tsub=0C. 

 

Table 1.  Time required for the transition from nucleate boiling to film boiling. 

Tsub 0C 5C 10C 30C 50C 

t ~0.7 sec ~0.7 sec ~0.6 sec ~0.4 sec ~0.3 sec 

 

6. Conclusions and Future Work 

DEPIcT, a new high-speed phase detection technique uniquely suitable for two-phase heat 

transfer studies, was applied to measurement of the wetted area fraction in pool nucleate boiling 

of water at atmospheric pressure over smooth silicon wafers.  The data can be summarized as 

follows: 

- CHF increases with increasing subcooling. 
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- The wetted area fraction monotonically decreases with increasing heat flux and 

decreasing subcooling. 

- At any given heat flux and subcooling there is a significant fraction of the boiling surface 

that is dry, albeit reversibly.  That is, each point on the surface is periodically rewetted 

by liquid sloshing over the surface. 

- The dry patches become irreversible at CHF, when the wetted area fraction drops to 

essentially zero over a period of <1 second.   

- The duration of the CHF transient is lower for higher subcooling. 

- The contact line density (i.e. triple contact line length per unit area of the boiling surface) 

was also measured and found to increase with increasing heat flux (for a given 

subcooling) and increasing subcooling (for given wetted area fraction). 

 

Future work that would be relevant to nuclear reactor applications includes studying how the 

wetted area fraction and contact line density depends on water pressure, velocity (effect of flow 

boiling) and surface characteristics, in particular surface wettability (contact angle), surface 

roughness and the presence of interconnected porosity on the surface, such as CRUD deposits.  

Also, it would be interesting to correlate the wetted area fraction and contact line density data to 

the overall and local heat transfer coefficient on the surface; it is expected that higher wetted area 

fraction and contact line density would result in higher values of the heat transfer coefficient. 

Unfortunately DEPIcT only detects surface phase, but not surface temperature simultaneously, so 

measurement of the heat transfer coefficient was not possible in this study.  Work in our group 

is underway to extend DEPIcT to simultaneous measurement of surface temperature and surface 

phase. 
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