

MIT Open Access Articles

Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

Citation: Choi, Seon-Jin, Chattopadhyay, Saptarshi, Kim, Jae Jin, Kim, Sang-Joon, Tuller, Harry L., Rutledge, Gregory C., and Kim, Il-Doo. "Coaxial Electrospinning of WO3nanotubes Functionalized with Bio-Inspired Pd Catalysts and Their Superior Hydrogen Sensing Performance." Nanoscale 8, no. 17 (2016): 9159–9166. © 2015 Royal Society of Chemistry

As Published: http://dx.doi.org/10.1039/c5nr06611e

Publisher: Royal Society of Chemistry

Persistent URL: http://hdl.handle.net/1721.1/108045

Version: Author's final manuscript: final author's manuscript post peer review, without publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

Nanoscale

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Coaxial electrospinning of WO₃ nanotubes functionalized with bio-inspired Pd catalyst and their superior hydrogen sensing performance

Seon-Jin Choi,^a Saptarshi Chattopadhyay,^b Jae Jin Kim,^c Sang-Joon Kim,^a Harry L. Tuller,^c Gregory C. Rutledge,^{b,*} and Il-Doo Kim^{a,*}

Macroporous WO₃ nanotubes (NTs) functionalized with nanoscale catalysts were fabricated using coaxial electrospinning combined with sacrificial templating and protein-encapsulated catalyst. The macroporous thin-walled nanotubular structures were obtained by introducing colloidal polystyrene (PS) particles to a shell solution of W precursor and poly(vinylpyrrolidone). After coaxial electrospinning with a core liquid of mineral oil and subsequent calcination, open pores with an average diameter of 173 nm were formed on the surface of WO₃ NTs due to decomposition of the PS colloids. In addition, catalytic Pd nanoparticles (NPs) were synthesized using bio-inspired protein cages, *i.e.*, apoferritin, and uniformly dispersed within the shell solution and subsequently on the WO₃ NTs. The resulting Pd-functionalized macroporous WO₃ NTs exhibited a very high H₂ response (R_{air}/R_{gas}) of 17.6 at 500 ppm with short response time. Furthermore, the NTs were shown to be highly selective for H₂ compared to other gases such as carbon monoxide (CO), ammonia (NH₃), and methane (CH₄). The results demonstrate a new synthetic method to prepare highly porous nanotubular structure with well-dispersed nanoscale catalysts, which can provide improved microstructures for chemical sensing.

19

1 Introduction

Hydrogen (H_2) has been regarded as a next generation fuel 2 energy considering its abundance and high heat of combustion 3 $(142 \text{ kJ/g})^{.1, 2}$ In addition, burning of hydrogen produces only 4 water, without harmful by-products, enabling environmentally 5 friendly energy generation.^{3, 4} However, there are several 6 potential risks to be addressed prior to commercial use, such as 7 the wide range of flammable concentration (4–75%), 10-78 ignition energy (0.02 mJ), high diffusion coefficient (0.5i)9 cm²/s), and large flame propagation velocity.⁵⁻⁷ Moreover 10 hydrogen gas is colourless, odourless, and tasteless, which 11 leads to difficulty in detection.⁸ For these reasons, a highly 12 sensitive hydrogen detector is required for safe storage and 13 14 monitoring of hydrogen leakage. 33 Semiconductor metal oxides (SMOs) have been studied as 15 promising gas sensors, considering their low cost, fast responses 16

stability, and high reactivity toward analyte gases.⁹ Recently 35

18 advances in nanostructure synthetic methods have promoted $t\tilde{b}_{7}$

development of highly sensitive and selective gas sensors having large surface area and porosity.^{10, 11} Among the various approaches, electrospinning is a facile and versatile method to obtain one-dimensional (1D) SMO nanostructures with large surface-to-volume ratio and high porosity, adequate for high performance hydrogen sensors.^{12, 13} A templating route combined with electrospinning has been suggested as a powerful strategy to obtain porous nanostructures.¹⁴ For example, hollow nanotubular structures were demonstrated using electrospun polymeric composite nanofibers (NFs) by coating a thin inorganic layer, such as Al₂O₃,¹⁵ NiO,¹⁶ WO₃^{17, 18} and ZnO,¹⁹ and subsequent high-temperature calcination to decompose the inner polymeric component and crystallize the outer inorganic layer. In addition, polymeric colloids were introduced into the electrospinning solution to form pores on SMO NFs.²⁰⁻²² It was shown that pore diameter and distribution on the SMO surface can be controlled by introducing different sizes of the colloid templates.

Coaxial (or two-fluid) electrospinning has been proposed as an effective method to fabricate hollow nanotubular structure that eliminates the additional synthesis processes such as coating of inorganic layer on the sacrificial templates.^{13, 23-26} A variety of inorganic nanotubes (NTs) were obtained using coaxial electrospinning, including TiO₂,^{27, 28} α -Fe₂O₃,²⁹ and SnO₂³⁰ for specific applications. However, to the best of our knowledge, coaxial electrospinning combined with sacrificial templating to synthesize macroporous SMO NTs has not yet been demonstrated. The macroporous SMO NTs are advantageous, considering that gas molecules can more

38

^{a.} Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305–701, Republic of Korea. E-mail: idkim@kaist.ac.kr; Fax: +82-42-350-5329; Tel: +82-42-350-3329

^b Department of Chemical Engineering, Massachusetts Institute of Technology, 741 Massachusetts Avenue, Cambridge, MA 02139, USA. E-mail: rutledge@mit.edu;42 Fax: +1-617-324-3127; Tel: +1-617-253-0171 C Department of Materials Science and Engineering, Massachusetts Institute of 43

 ^c Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
 44
 Electronic Supplementary Information (ESI) available: Coaxial electrospinning wighs different feeding rates, additional TEM analysis for pore size analysis, TEM and EDS analysis of Rh-loaded macroporous WO₃ NTs, and dynamic response transition poperties of sensors. See DOI: 10.1039/x0xx00000x

ARTICLE

6 effectively diffuse into the core of the SMO NTs, thereby7 promoting gas reactions on the inner surface.61

8 Catalytic functionalization of SMO-based materials enhances 9 sensitivity and selectivity of gas sensors. Noble metal 63 nanoparticles (NPs) such as Pt,³¹ Pd,³² and Rh^{33, 34} are known 64 10 be the most effective catalysts for high performance gas senso 11 12 To have maximum catalytic effect, the diameters of the 13 catalytic NPs should be on the order of a few nanometers 6714 Moreover, uniform dispersion of the NPs is desirables otherwise, the sensing performance degrades rapidly due to the 15 agglomeration of catalytic NPs.^{36, 37} 16 70

17 In this work, we propose a method to fabricate nanocatalyst1 18 loaded macroporous WO₃ NTs using coaxial electrospinning 19 combined with sacrificial templating and bio-inspired catalyze 20 functionalization. Multiple pores were formed on the think 21 walled WO3 NTs after subsequent calcination at highs 22 temperature. In addition, well-dispersed cataly36 23 functionalization was achieved by introducing protein7 24 encapsulated metallic NPs to the shell solution during coaxias 25 electrospinning. The main focus of this research was 79 26 examine a new synthetic method to obtain macroporo80 27 nanotubular SMO structures with functionalization by we81 28 distributed nanocatalysts, and to demonstrate the remarkab 29 improved hydrogen sensing performances resulting therefrom83

30 Experimental section

31 Materials

32 Ammonium metatungstate hydrate $[(NH_4)_6H_2W_{12}O_{40} \cdot xH_2O_7]$ 33 polyvinylpyrrolidone (PVP, M_w=1,300,000 g/mol), potassiu 34 borohydri**8**9 tetrachloropalladate(II) $(K_2PdCl_4),$ sodium 35 (NaBH₄), heavy mineral oil, and 0.2 µm filtered apoferrit 36 from equine spleen were purchased from Sigma-Aldrich (\$1 37 Louis, USA). Polystyrene (PS) latex microspheres with the 38 average diameter of 200 nm dispersed at 2.5 wt% in water were 39 purchased from Alfa Aesar (Ward Hill, USA). All chemicals 94 40 were used without further purification. 95

41 Synthesis of nanocatalyst particles encapsulated by protection 42 cages 97

To synthesize well-dispersed and nanoscale catalyst particles we employed bio-inspired protein cages, *i.e.*, apoferritin, that consisted of a 24-subunit protein complex that exhibit hollow spherical structure (Fig. 1a). These protein cages apoferritin solution was mixed with 0.1 M NaOH solution apoferritin solution control pH of the solution around 8.6. Then, 1.8 wt % of Pd precursor (K_2PdCl_4) aqueous solution was added to the apoferritin solution and gently stirred at 100 rpm using a magnetic bar to penetrate Pd²⁺ ions into the inner cavity of apoferritin. After stirring for 1 h, a reducing agent of NaBH₄ (1 M) was rapidly injected into the solution to form metallic Pd NPs encapsulated by apoferritin (hereafter, apoferritin-encapsulated Pd NPs are referred as AF-Pd NPs). Finally, the prepared AF-Pd NPs were centrifuged at 12,000 rpm for 10 min to remove the remaining Pd²⁺, and subsequently re-dispersed in DI water.

Synthesis of Pd-loaded macroporous WO₃ NTs

Hollow WO₃ nanotubular structure was synthesized by the coaxial electrospinning approach as illustrated in Fig. 2a. Different electrospinning solutions were emitted through the coaxial nozzle (SKU BCN-0802, InovensoTM) having different diameters, *i.e.*, core diameter of 0.8 mm and shell diameter of 1.6 mm, with concentric configuration. Mineral oil was utilized as a core electrospinning solution due to its easy vaporization at high-temperature. For the shell solution, 0.2 g of ammonium metatungstate hydrate and 0.25 g of PVP were dissolved in 1.5 g of DI water containing 2.5 wt% PS colloids and continuously stirred at room temperature for 3 h. For catalyst functionalization, the prepared AF-Pd NPs were separately introduced in the shell electrospinning solution with the concentrations of 0.1 wt%.

The resulting solutions were electrospun at feeding rates of 10 μ L/min of mineral oil for the core and 30–100 μ L/min of composite solution for the shell, using syringe pumps. A constant DC voltage of 30 kV was applied between the coaxial nozzle and aluminum foil, employed as collector. The distance between the nozzle and the collector was 15 cm. The as-spun core/shell composite NFs were obtained after coaxial electrospinning (Fig. 2b). The shell layer comprised apoferritinencapsulated catalytic NPs and W precursor/PVP composite decorated with PS colloids. For the core fluid, mineral oil was used. The as-spun core/shell composite NFs were calcined at 600 °C for 1 h in ambient air to obtain catalyst-loaded macroporous WO3 NTs having multiple, approximately circular pores on the thin wall of NTs (Fig. 2c). Dense WO₃ NTs without PS colloid templates and pristine macroporous WO₃ NTs without catalyst functionalization were synthesized as well, for comparison.

Characterization of H₂ sensing performances

All of the sensors were stabilized in air for 24 h as baseline before the measurement. The sensors were exposed to different analytes (hydrogen, carbon monoxide, ammonia, and methane) with concentrations ranging from 10 ppm to 500 ppm. Each analyte was exposed for 10 min, followed by 10 min of exposure to air to recover the initial baseline values. The resistance changes were measured using a data acquisition system (34970A, Hewlett-Packard), and the sensors were characterized by their relative response (R_{air}/R_{gas}), where R_{air} is the baseline resistance of the sensor upon exposure to air and R_{gas} is the resistance measured upon exposure to a particular

84

85

86

analyte. The operating temperatures of the sensors were
 controlled to be 450 °C in a furnace tube.

3 Results and discussion

4 Morphological and structural evaluation

5 The microstructures of the protein-encapsulated catalytic Pd 6 NPs were examined using TEM (Fig. 1b and c). It was clearly 7 observed that well-dispersed NPs were synthesized within the 8 protein cages. The good dispersion can be explained by 9 electrostatic repulsion between the protein templates due to 10 surface charge, which prevented agglomeration between the 11 NPs. In addition, the overall size of the protein cage was 12-13 nm, whereas the inner cavity size was 7-8 nm.³⁹ The inner 12 cavity size limited the size of the nanoscale particles to 13 14 diameters less than 8 nm. As confirmed by TEM analysis, the synthesized AF-Pd NPs showed average diameters of 2 nm (Fig. 15 16 1b). Moreover, the Pd NPs were observed to be crystalline2 17 with the crystal planes of Pd (111), corresponding to the 18 interplanar distances of 2.26, in evidence (Fig. 1c).

19 The AF-Pd NPs were dispersed in the shell electrospinning 20 solutions for the catalytic functionalization. Core/sheld 21 composite NFs decorated with PS colloid templates a59 apoferritin-encapsulated catalytic NPs were achieved after 22 electrospinning (Fig. 2b). Polymeric components, mineral $o\tilde{b}_2^+$ 23 and protein cages were decomposed during subsequents 24 25 calcination of the as-spun core/shell composite NFs, whi forming WO₃ NTs by oxidation of the W precursor (Fig. $2\hat{\Theta}_5$ 26 SEM observation revealed the rugged surface morphology eff 27 the as-spun core/shell composite NFs due to the decoration gf 28 PS colloids on the surface (Fig. 2d). Different microstructures 29 were obtained after calcination at 600 °C, depending on the 6930 feeding rate of shell solution (f_s) with the fixed core solution 31 feeding rate ($f_c=10 \mu L/min$) (Supporting Information, Fig. S1) 32 When the shell feeding rate was slow, *i.e.*, $f_s=30 \mu L/min$, and 33 open tubular structure was formed due to the limited coating $\frac{1}{25}$ 34 shell composite solution on mineral oil. On the other hand 35 perfect tubular structures were achieved when f_s was 80 μ L/min 36 or 100 μ L/min. Fig. 2e shows the macroporous WO₃ NTs with 37 multiple pores on the surface when f_s and f_c were 100 μ L/min 38 and 10 $\mu L/min,$ respectively. The pore sizes were evaluated by 39 TEM, and the average diameter was 173 nm (Supporting 40 Information, Fig. S2). The decreased average pore diameter as 41 comparing with the original diameter (i.e., 200 nm) of the \bar{PS} 42 colloid was mainly attributed to the shrinkage of the spherica 43 PS colloids during the thermal decomposition and the migrati $\bar{\alpha}$ 44 45 of W precursor in the early stage of heat treatment.²⁰

The microstructures of the catalytic Pd-loaded macroporous
WO₃ NTs were investigated (Fig. 2f). The surface
morphologies of the Pd-loaded macroporous WO₃ NTs were
maintained, with only minor differences when compared to the
pristine macroporous WO₃ NTs. In addition, close observation

ARTICLE

_{o ii} (b)

p recursor /PVP / colloids/catalys

(a)

Fig. 2 Schematic illustrations of (a) coaxial electrospinning using mineral oil in the core and composite solution in the shell, (b) as-spun W precursor/PVP composite nanotubes (NTs) decorated with PS colloid templates and apoferritin-encapsulated nanocatalysts, and (c) catalyst-loaded macroporous WO₃ NTs with multiple pores after calcination at 600 °C for 1 h. SEM images of (d) as-spun W precursor/PVP composite NTs decorated with PS colloid templates, (e) macroporous WO₃ NTs, (f) Pd-loaded macroporous WO₃ NTs, (add macroporous WO₃ NTs, (f) after calcination. (h) HR-TEM image with selected area electron diffraction (SAED) pattern in the inset and (i) scanning TEM image with energy dispersive X-ray spectroscopy (EDS) mapping images of Pd-loaded macroporous WO₃ NTs.

of Pd-loaded macroporous WO3 NTs exhibited approximately circular pores on the surface (Fig. 2g). High-resolution TEM (HR-TEM) observation of Pd-loaded macroporous WO₃ NTs revealed the polycrystalline WO3 structures with crystal planes of (020) and (202), which corresponds to inter-planar distances of 3.77 Å and 2.23 Å (Fig. 2h). Selected area electron diffraction (SAED) patterns of Pd-loaded macroporous WO₃ NTs presented WO₃(020), WO₃(112), and WO₃(202) crystal planes, with inter-planar distances of 3.77 Å, 3.12 Å, and 2.62 Å, respectively, which are partially investigated in HR-TEM analysis (in the inset of Fig. 2h). However, crystal planes and SAED pattern of Pd NPs were not clearly observed due to the low content of Pd in WO3 NTs. To confirm the Pd component and the distribution, energy dispersive X-ray spectroscopy (EDS) analysis was carried out. The result clearly revealed uniform distribution of Pd over the WO₃ NTs (Fig. 2i). In addition, a scanning TEM image also showed the hollow structure of Pd-loaded macroporous WO₃ NTs (Fig. 2i). To further confirm the chemical state of Pd, X-ray photoelectron spectroscopy (XPS) analysis was performed (Fig. S3). Even though the intensities of Pd peaks were very weak due to the low concentration of Pd in the WO3 NTs, high-resolution XPS peaks at the vicinity of Pd 3d are mainly originated by the oxidized state of Pd, i.e., Pd2+(PdO) with binding energies of 336.9 eV and 342.2 eV for $3d_{5/2}$ and $3d_{3/2}$, respectively.⁴⁰

ARTICLE

2

Fig. 3 (a) Dynamic response transition and (b) response time property of dense WO₃ NTs, porous WO₃ NTs, and Pd-Porous WO₃ NTs in the gas concentration range of 10–500 ppm at 450 °C. (c) Selective H₂ sensing property of Pd-Porous WO₃ NTs against other analytes with the gas concentration of 500 ppm at 450 °C. (d) Cyclic resistance transition of Pd-Porous WO₃ NTs toward H₂ with the gas concentration of 500 ppm at 450 °C. (e) Dynamic response transition of porous WO₃ NTs and Pd-Porous WO₃ NTs in the gas concentration range of 5–20 ppm in air at high relative humidity (90% RH) at 450 °C. (f) Dynamic response and resistance transition properties of Pd-Porous WO₃ NTs to 10 ppm of H₂ in dry and humid air at 450 °C.

33

1 Hydrogen molecule sensing characterization

2 To demonstrate the superior H₂ sensing performance of the P34 3 loaded macroporous WO3 NTs, gas sensing characteristics we35 4 evaluated using dense WO₃ NTs, macroporous WO₃ NB6 5 (Porous WO₃ NTs), and Pd-loaded macroporous WO₃ NTs (Pg7 6 Porous WO₃ NTs) in the gas concentration range of 10-5998 7 ppm at 450 °C (Fig. 3). Dynamic response measuremer39 8 showed that an approximately 1.6-fold improvement in 40 9 response was observed with the porous WO₃ NZIS 10 $(R_{air}/R_{gas}=4.9)$ compared to the response of dense WO₃ NZ42 11 $(R_{air}/R_{gas}=3)$. In addition, a dramatically improved H₂ responded 12 of 17.6 was obtained with Pd-Porous WO3 NTs at 500 pprover 13 which was 5.9- and 3.6-fold better than that observed wials 14 dense WO₃ NTs and porous WO₃ NTs, respectivel/46 15 Furthermore, Pd-Porous WO3 NTs exhibited outstanding 16 response (R_{air}/R_{gas}=2.6) at a very low concentration of 10 pp48 17 (Supporting Information, Fig. S4). 49

Response time characteristic of the sensors were investigat50 18 19 at different concentrations (Fig. 3b). The response time 54 20 defined as the elapsed time to reach 90% saturation 52 maximum response. The Pd-loaded macroporous WO3 N53 21 22 showed fast response due to the catalytic effect inducing active 23 surface reactions. Very fast response within 25 sec w55 24 achieved with Pd-Porous WO3 NTs at 500 ppm of H2. Howev§6 25 relatively slow response times with dense WO₃ NTs (35 sec) 26 and porous WO3 NTs (50 sec) were observed at the same 27 concentration. Particularly, the porous WO₃ NTs showed much 28 longer response times than the dense WO₃ NTs. This can be 29 attributed to the fact that the porous WO3 NTs had more 30 available surface reaction sites as a result of the formation of 31 open pores, which accounted for the longer response time as 32 well as the slightly improved response compared to the dense

WO₃ NTs. In addition, it should be noted that all the sensors showed longer response times at low H₂ concentration. The observation of longer response times with decreasing gas concentrations has been reported previously.⁴¹⁻⁴³ The reaction is basically diffusion-limited at low H₂ concentration. Based on the theoretical study, the response time transition can be explained by a non-linear diffusion reaction model.⁴⁴ In that study, the diffusion time (τ) was defined by

$$=k \cdot x_0^2 \cdot C_0^{r-1}/D \tag{1}$$

where, k, x_{0} , C_{0} , and D are the reaction rate constant, film thickness, gas concentration, and diffusion coefficient, respectively. The constant r was found to be in the range of 0.3–1. In the present study, our sensor exhibited the constant rin the range of 0.7–0.8 as indicated by fitting of eqn (1) to the data in Fig. 3b. The model is based on the dependence of response time on gas concentration. Specifically, the response time is determined by a non-linear adsorption isotherm, which leads to a concentration-dependent response time.

Selectivity of H₂ detection with respect to other, potentially interfering gases such as carbon monoxide (CO), ammonia (NH₃), and methane (CH₄) at 500 ppm was investigated using Pd-Porous WO₃ NTs (Fig. 3c). The results revealed that Pd-Porous WO₃ NTs showed remarkably high H₂ response (R_{air}/R_{gas} =16.3±1.1) with minor responses (R_{air}/R_{gas} <1.6) Journal Name

1234567

8

9

10

11

12

Fig. 4 (a) Dynamic resistance changes of dense WO₃ NTs, porous WO₃ NTs, and Pd-Porous WO₃ NTs toward H₂ within the concentration range of 10–500 pproduct 450 °C. (b) Schematic illustration of H₂ sensing mechanism of Pd-Porous WP₄ NTs. 41

toward the other gases, which confirms the high H₂ selectivity of these materials. Stable H₂ sensing property of Pd-Poro**43** WO₃ NTs was evaluated as well by cyclic exposure of H₂ (Fig. 3d). The sensor showed stable resistance changes over $\frac{25}{45}$ cycles toward 500 ppm of H₂.

Table 1. Comparison of important parameters for H_2 sensors

The effect of moisture on the H₂ sensing property was investigated using the porous WO₃ NTs and Pd-Porous WO₃ NTs in the concentration range of 5-20 ppm in air with high relative humidity (90% RH) at 450 °C (Fig. 3e). Under these conditions, the Pd-Porous WO3 NTs exhibited a response of 1.26 at 20 ppm, which is a 20% improvement in response compared to that of pristine porous WO3 NTs. However, dramatically decreased response characteristics were observed in both Pd-Porous WO3 NTs and pristine porous WO3 NTs under the high humidity conditions. A reduction in response of approximately 90% was observed for Pd-Porous WO₃ NTs at 10 ppm of H₂ in humid air (Fig. 3f). The relatively insensitive H₂ response of Pd-Porous WO₃ NTs in humid air is mainly attributed to the formation of hydroxyl groups (-OH) on the surface of WO₃ NTs.⁵⁵ As a result, decreased baseline resistance was also observed with Pd-Porous WO3 NTs in humid air (Fig. 3f).

Hydrogen sensing mechanism

The mechanism responsible for the improved H₂ sensing performance of the Pd-Porous WO₃ NTs was investigated (Fig. 4). Changes in the dynamic resistance of the sensors with respect to changes in H₂ concentrations were evaluated by comparing the baseline resistances and resistance changes (Fig. 4a). All the sensors exhibited decreasing resistance when the sensors were exposed to H₂ gas. A well-known explanation for the decreasing resistance attributes the decrease to the elimination of chemisorbed oxygen species, *i.e.*, O⁻, O²⁻, and O₂⁻, by the reaction with H₂ on the surface of WO₃. When ntype WO₃ is stabilized in ambient air, oxygen species are chemisorbed on the surface of WO₃, withdrawing electrons from the conduction band to provide the baseline resistance. Then, upon exposure to H₂ gas, the resistance decreases as H₂ reacts with the chemisorbed oxygen species, thereby donating

Composites	Sensing type	Response definition	Sensitivity (Response)	Detection limit	Selectivity	Response / recovery time	Operating Temp.	Ref.
Pd-WO ₃ nanotubes	Resistivity	R _{air} /R _{gas}	17.6 @ 500 ppm	10 ppm	CH_4, CO, NH_3	25 sec/-	450 °C	This work
Pd-WO ₃ nanoplates	Resistivity	R _{air} /R _{gas}	843 @ 0.3 vol%	0.1 vol%	$CH_{4}, C_{3}H_{6}O, \\ C_{2}H_{6}, C_{3}H_{8}O, \\ NH_{3}$	~50 sec/ ~25 sec	80 °C	45
Pd-WO ₃ nanoplates	Conductivity	R_{air}/R_{gas}	34 @ 0.1 vol%	0.05 %	-	24 sec/-	Room Temp.	46
Pd-WO ₃ nanolamellae	Resistivity	R_{air}/R_{gas}	$\sim 6 \times 10^{3}$ @ 400 ppm	200 ppm	-	-/-	250 °C	47
Pd/WO ₃ film	Resistivity	$(R_{0}^{}-R_{H2}^{})/R_{H2}^{}$	4.77×10^{4} @ 2%	500 ppm	-	-/ 47 sec	80 °C	48
Pd-WO ₃ thick film	Resistivity	$(R_{air} - R_{gas})/R_{gas}$	69 @ 200 ppm	50 ppm	-	<5 min/-	180 °C	49
Pd-WO ₃ nanowire	Resistivity	R_{air}/R_{gas}	3.1 @ 1000 ppm	1000 ppm	C ₃ H ₆ O, CH ₄ O, C ₃ H ₈ O	76 sec/ 2491 sec	300 °C	50
Pd-WO ₃ film (Pd/W=10%)	Voltage change	$(V_{gas} - V_{air})/V_{air}$	2.5×10^4 @ 1300 ppm	1300 ppm	-	~100 sec/ ~4000 sec	Room Temp.	51
Pd-WO ₃ film	Conductivity	(I_{gas}/I_{air}) –1	400 @ 2300 ppm	2300 ppm	CH ₄	102 sec/ 7 sec	350 °C	52
Pd-WO ₃ film	Resistivity	$(R_0^{} - R_{_{\rm H2}}^{})/R_{_{\rm H2}}^{}$	1200 @ 3000 ppm	4 ppm	CH ₄ O, C ₂ H ₆ O, C ₃ H ₆ O, C ₃ H ₈ O, CH ₂ O	1400 sec/-	Room Temp.	<mark>53</mark>
Pd-WO ₃ nanowire	Conductivity	$(G - G_0)/(G_0 \cdot c) \times 100\%$	~1000 @ 1000 ppm	10 ppm	NO, H_2S, CO	-/ <900 sec	130 °C	<mark>54</mark>

This journal is C The Royal Society of Chemistry 20xx

1 electrons back to the conduction band.

2 Comparing the baseline resistances, pristine porous WO₃ N'**5**7 3 exhibited slightly higher resistance (31.5 M Ω) than that **58** 4 dense WO₃ NTs (16.7 M Ω), which was mainly attributed to t**5** Θ 5 macroporous structure of the former. In the case of Pd-Poro60 6 WO₃ NTs, there was huge increase in baseline resistance (11969 7 M Ω) compared to the other sensors. The increased baselife2 8 resistance can be explained by the formation of a Schottk 63 9 barrier between Pd and WO3 (Fig. 4b). The different wo64 functions of Pd (ϕ =5 eV)⁵⁶ and WO₃ (ϕ =4.56 eV)²⁰ can for**65** 10 an electron depletion layer at the interface, which results in the 11 12 increase in baseline resistance. In addition, formation of a p67 13 junction can increase the baseline resistance. In other words, 168 14 can be slightly oxidized to form p-type PdO on the surface 69 15 Pd due to the high-temperature calcination in ambient air.³² T**FO** 16 formation of a p-n junction can also expand the electron1 17 depletion layer at the interface, thereby increasing baseline 18 resistance. 73

19 The reaction mechanisms responsible for the large resistan74 20 changes of Pd-Porous WO₃ NTs toward H₂ are discussed nex75 21 As shown in the schematic illustration in Fig. 4b, two reactions 22 are mainly affected by the catalytic Pd. Generally, Pd can 23 dissociate H_2 molecules into H atoms (H_{ads}) on the surface δP 24 Pd NP. These H atoms are distributed onto the WO₃ surface? 25 which is known as the 'spill-over effect', to react with chemisorbed oxygen species (i.e., O^{2-} and O^{-}), resulting in the 26 27 production of H₂O molecules as expressed in the following reactions.57,58 81 28

$$2H_{ads} + O^{2-} \rightarrow H_2O + 2e^-$$
(2) 82

$$2H_{ads} + O^{-} \rightarrow H_2O + e^{-}$$
(3) 83

The other reaction path is the formation of hydrogen tungsten bronzes (H_xWO₃) on the surface of WO₃ NTs by the partial reduction of WO₃, as described below.⁴⁵ $xH_{ads} + WO_3 \rightarrow H_zWO_3$ (4) as

(4) 87 $xH_{ads} + WO_3 \rightarrow H_xWO_3$ 35 The hydrogen atoms serve as electron donors, there was increasing the free carriers in WO₃ and decreasing the over 36 resistance of Pd-Porous WO3 NTs.46 Therefore, these two 37 reaction paths are believed to be responsible for the large 38 39 decrease in resistance from the baseline, and for the strong 94 40 response of Pd-Porous WO₃ NTs toward H₂. 95

It has been demonstrated that Pd-WO3 composites and 41 42 outstanding sensing materials for H₂ detection. Table 97 43 summarizes recent publications on Pd-WO₃ composite sensing layers for H2 detection. A majority of the previous studies were 44 45 performed in the form of a thin film structure, whereas a flow 46 works demonstrate the superior H_2 sensing properties using nanostructures. Regardless, the present work shows a relatively 47 48 strong response $(R_{air}/R_{gas}=17.6)$ at a relatively low 105 49 concentrations, compared to the previous studies. In addition we demonstrated the lowest limit of detection (10 ppm) with 50 very fast responding speed (25 sec). 51 109

52 **Conclusions**

29 30

In this work, we have demonstrated the use of coating
 electrospinning combined with sacrificial templating to produce
 macroporous semiconductor metal oxide (SMO) nanostructures.

During the coaxial electrospinning, PS colloids were introduced to the electrospinning solution to serve as templates for macropores on the surface of the WO₃ NTs. Circular-shaped pores with an average diameter of 173 nm were achieved on the WO₃ NTs after subsequent calcination. The apoferrtin protein cage is shown to be a powerful agent for distributing nanocatalyst uniformly on SMO sensing layers. The noble metallic Pd NPs were synthesized using apoferritin protein cages and thus distributed on the macroporous WO3 NTs during coaxial electrospinning. The Pd-loaded macroporous WO₃ NTs exhibited very fast response times, which is mainly attributed to the catalytic effect of Pd. Particularly, Pd-loaded macroporous WO₃ NTs showed high sensitivity and selectivity toward H₂. Very high response (Rair/Rgas) of 17.6 was achieved at 500 ppm of H₂. In addition, Pd-loaded macroporous WO₃ NTs revealed high H₂ selectivity with minor responses toward potential interfering gases such as CO, NH₃, and CH₄. This work provides a novel synthetic method using two-fluid electrospinning for macroporous WO3 NTs with bio-inspired nanocatalyst for high performance chemical sensors.

Acknowledgements

56

This work was supported by the Center for Integrated Smart Sensors funded by the Ministry of Science, ICT & Future Planning as Global Frontier Project (CISS-2011-0031870) and partially funded by Intel's University Research Office (URO). We also would like to acknowledge the Institute for Soldier Nanotechnology at MIT for use of facilities

Notes and references

- P. A. Russo, N. Donato, S. G. Leonardi, S. Baek, D. E. Conte, G. Neri and N. Pinna, *Angew. Chem. Int. Edit.*, 2012, **51**, 11053-11057.
- T. Hubert, L. Boon-Brett, G. Black and U. Banach, Sens. Actuators B, 2011, 157, 329-352.
- M. Z. Ahmad, V. B. Golovko, R. H. Adnan, F. Abu Bakar, J. Y. Ruzicka, D. P. Anderson, G. G. Andersson and W. Wlodarski, *Int. J. Hydrogen Energ.*, 2013, 38, 12865-12877.
- S. K. Arya, S. Krishnan, H. Silva, S. Jean and S. Bhansali, *Analyst*, 2012, 137, 2743-2756.
- N. H. Al-Hardan, M. J. Abdullah and A. A. Aziz, *Int. J. Hydrogen* Energ., 2010, 35, 4428-4434.
- E. Sennik, Z. Colak, N. Kilinc and Z. Z. Ozturk, Int. J. Hydrogen Energ., 2010, 35, 4420-4427.
- S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama and T. Hasegawa, Sens. Actuators B, 2005, 108, 508-514.
- T. Samerjai, N. Tamaekong, C. Liewhiran, A. Wisitsoraat, A. Tuantranont and S. Phanichphant, *Sens. Actuators B*, 2011, **157**, 290-297.
- 9. I. D. Kim, A. Rothschild and H. L. Tuller, *Acta Mater.*, 2013, **61**, 974-1000.
- T. Wagner, S. Haffer, C. Weinberger, D. Klaus and M. Tiemann, *Chem. Soc. Rev.*, 2013, 42, 4036-4053.
- D. J. Wales, J. Grand, V. P. Ting, R. D. Burke, K. J. Edler, C. R. Bowen, S. Mintova and A. D. Burrows, *Chem. Soc. Rev.*, 2015, 44, 4290-4321.
- B. Ding, M. R. Wang, X. F. Wang, J. Y. Yu and G. Sun, *Mater. Today*, 2010, 13, 16-27.
- A. Greiner and J. H. Wendorff, Angew. Chem. Int. Edit., 2007, 46, 5670-5703.
- H. Y. Chen, J. C. Di, N. Wang, H. Dong, J. Wu, Y. Zhao, J. H. Yu and L. Jiang, Small, 2011, 7, 1779-1783.

6 | Nanoscale., 2015, 00, 1-3

110

111

112

113

- 15. Q. Peng, X. Y. Sun, J. C. Spagnola, G. K. Hyde, R. J. Spontak and G. 🕅 Parsons, Nano Lett., 2007, 7, 719-722. 74
- N. G. Cho, H. S. Woo, J. H. Lee and I. D. Kim, Chem. Commun., 20175 16. 76 47.11300-11302.
- 17. S. J. Choi, F. Fuchs, R. Demadrille, B. Grevin, B. H. Jang, S. J. Lee, 717 H. Lee, H. L. Tuller and I. D. Kim, ACS Appl. Mater. & Interfac7s8 2014, 6, 9061-9070.
- S. J. Choi, I. Lee, B. H. Jang, D. Y. Youn, W. H. Ryu, C. O. Park and 18. D. Kim, Anal. Chem., 2013, 85, 1792-1796. 81
- S. H. Choi, G. Ankonina, D. Y. Youn, S. G. Oh, J. M. Hong, 82 83 Rothschild and I. D. Kim, ACS Nano, 2009, 3, 2623-2631.
- S. J. Choi, C. Choi, S. J. Kim, H. J. Cho, M. Hakim, S. Jeon and I. 84 20. Kim, Sci. Rep., 2015, 5, 8067. 85
- S. J. Choi, S. J. Kim, W. T. Koo, H. J. Cho and I. D. Kim, Che86 21. Commun., 2015, 51, 2609-2612. 87
- 22 S. J. Choi, C. Choi, S. J. Kim, H. J. Cho, S. Jeon and I. D. Kim, R& Adv., 2015, 5, 7584-7588. 89
- H. L. Qu, S. Y. Wei and Z. H. Guo, J. Mater. Chem. A, 2013, 1, 115190 91 11528. 92
- D. Li and Y. N. Xia, Nano Lett., 2004, 4, 933-938.
- J. H. Yu, S. V. Fridrikh and G. C. Rutledge, Adv. Mater., 2004, B3 25. 1562-1566
- 26. Z. C. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff and A. Greiner, Add Mater., 2003, 15, 1929-1932.
- X. Zhang, V. Aravindan, P. S. Kumar, H. Liu, J. Sundaramurthy, S. 27. Ramakrishna and S. Madhavi, Nanoscale, 2013, 5, 5973-5980.
- X. Zhang, V. Thavasi, S. G. Mhaisalkar and S. Ramakrishna, 28 Nanoscale, 2012, 4, 1707-1716.
- S. Chaudhari and M. Srinivasan, J Mater Chem, 2012, 22, 23049-23056.
- 30. J. Cao, T. Zhang, F. Li, H. Yang and S. Liu, New. J. Chem., 2013, 37, 2031-2036.
- J. Shin, S. J. Choi, I. Lee, D. Y. Youn, C. O. Park, J. H. Lee, H. L. Tuller and I. D. Kim, Adv. Funct. Mater., 2013, 23, 2357-2367.
- D. J. Yang, I. Kamienchick, D. Y. Youn, A. Rothschild and I. D. Kim, Adv. Funct. Mater., 2010, 20, 4258-4264.
- 33. K. I. Choi, S. J. Hwang, Z. F. Dai, Y. C. Kang and J. H. Lee, RSC Adv., 2014, 4, 53130-53136.
- S. J. Kim, I. S. Hwang, C. W. Na, I. D. Kim, Y. C. Kang and J. H. Lee, J. Mater. Chem., 2011, 21, 18560-18567.
- 35. N. Ma, K. Suematsu, M. Yuasa and K. Shimanoe, ACS Appl. Mater. & Interfaces, 2015, 7, 15618-15625.
- S. Vallejos, T. Stoycheva, P. Umek, C. Navio, R. Snyders, C. Bittencourt, E. Llobet, C. Blackman, S. Moniz and X. Correig, Chem. Commun., 2011, 47, 565-567
- I. S. Hwang, J. K. Choi, H. S. Woo, S. J. Kim, S. Y. Jung, T. Y. Seong, I. D. Kim and J. H. Lee, ACS Appl. Mater. & Interfaces, 2011, 3, 3140-3145.
- J. Jang, S. Kim, S.-J. Choi, N.-H. Kim, H. Meggie, A. Rothschild and I.-38. D. Kim, Nanoscale, 2015, 7, 16417.
- Z. Heger, S. Skalickova, O. Zitka, V. Adam and R. Kizek, Nanomedicine, 2014, 9, 2233-2245.
- N. H. Kim, S. J. Choi, D. J. Yang, J. Bae, J. Park and I. D. Kim, Sens. Actuators B, 2014, 193, 574-581.
- V. N. Mishra and R. P. Agarwal, Microelectr. J., 1998, 29, 861-874.
- H. R. Kim, K. I. Choi, J. H. Lee and S. A. Akbar, Sens. Actuators B, 42. 2009, 136, 138-143.
- E. Rossinvol, A. Prim, E. Pellicer, J. Arbiol, F. Hernandez -Ramirez, F. Peiro, A. Cornet, J. R. Morante, L. A. Solovyov, B. Z. Tian, T. Bo and D. Y. Zhao, Adv. Funct. Mater., 2007, 17, 1801-1806.
- 44. J. W. Gardner, Sens. Actuators B, 1990, 1, 166-170.
- Y. R. Wang, B. Liu, S. H. Xiao, H. Li, L. L. Wang, D. P. Cai, D. D. 45. Wang, Y. Liu, Q. H. Li and T. H. Wang, J. Mater. Chem. A, 2015, 3, 1317-1324.
- B. Liu, D. P. Cai, Y. Liu, D. D. Wang, L. L. Wang, Y. R. Wang, H. Li, Q. H. Li and T. H. Wang, Sens. Actuators B, 2014, 193, 28-34.
- 47. Z. Q. Hua, M. Yuasa, T. Kida, N. Yamazoe and K. Shimanoe, Thin Solid Films, 2013, 548, 677-682.
- M. Zhao, J. Huang and C.-W. Ong, Int. J. Hydrogen. Energ., 2013, 38, 15559-15566
- A. Boudiba, C. Zhang, P. Umek, C. Bittencourt, R. Snyders, M. G. 49 Olivier and M. Debliquy, Int. J. Hydrogen. Energ., 2013, 38, 2565-2577.
- 50. F. Chavez, G. F. Perez-Sanchez, O. Goiz, P. Zaca-Moran, R. Pena-Sierra, A. Morales-Acevedo, C. Felipe and M. Soledad-Priego, Appl. Surf. Sci., 2013, 275, 28-35.

not aujust margin

- S. Fardindoost, A. I. Zad, F. Rahimi and R. Ghasempour, Int. J. 51. Hydrogen Energ., 2010, 35, 854-860.
- 52. E. Ghadiri, A. Iraji zad and F. Razi, Synth. React. Inorg. M, 2007, 37, 453-456.
- 53. M. Zhao, J. X. Huang and C. W. Ong, Nanotechnology, 2012, 23, 315503
- 54. J. Kukkola, M. Mohl, A. R. Leino, J. Maklin, N. Halonen, A. Shchukarev, Z. Konya, H. Jantunen and K. Kordas, Sens. Actuators B, 2013. 186. 90-95
- 55. H. Li, B. Liu, D. P. Cai, Y. R. Wang, Y. Liu, L. Mei, L. L. Wang, D. D. Wang, Q. H. Li and T. H. Wang, J. Mater. Chem. A, 2014, 2, 6854-6862
- 56. J. H. Ahn, J. Yun, Y. K. Choi and I. Park, Appl. Phys. Lett., 2014, 104, 013508
- 57. Z. Y. Zhang, X. M. Zou, L. Xu, L. Liao, W. Liu, J. Ho, X. H. Xiao, C. Z. Jiang and J. C. Li, Nanoscale, 2015, 7, 10078-10084.
- 58. X. W. Li, Y. Liu, J. C. Hemminger and R. M. Penner, ACS Nano, 2015, 9, 3215-3225.