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How Retroactivity Impacts the Robustness of Genetic Networks

Shaoshuai Mou Domitilla Del Vecchio

Abstract— This paper studies how retroactivity impacts the
robustness of gene transcription networks against parameter
perturbations. By employing the linearization technique and the
real stability radius, we provide comparisons of the robustness
between gene transcription networks with retroactivity and
ones without retroactivity. Both numerical and analytical results
show that retroactivity tends to decrease such robustness. This
finding in turn implies that modular genetic networks tend to
be more robust against parameter perturbations.

I. INTRODUCTION

Regulation of gene expression is a major component of
the molecular activities in cells. The pathway from gene to
protein includes many steps such as transcription, mRNA
degradation, translation, and protein decay, all of which can
in principle be regulated [1]. For most genes, the regulation
of transcription is of primary importance since only transcrip-
tional regulation can ensure that no unnecessary intermedi-
ates are synthesized. Regulation of transcription is usually
controlled by the reversible binding of transcription factors
(TF) to promoter sites of genes, which leads to complex
networks of interactions between multiple genes and TFs.
A collection of genes and interactions among them through
regulation by TFs constitute a gene transcription network
(GTN). Each node represents a transcriptional component,
which takes several TFs as input and outputs a single TF.
Each directed edge between two nodes from the parent node
to the child node indicates that the output of the parent node
regulates the transcription of the child node.

Similar to electrical networks, transmitting a signal to
a downstream system affects the dynamics of the sending
component arises in gene transcription networks. This effect
is called retroactivity [2]. Because of retroactivity, the dy-
namics of a node in in GTNs changes dramatically when
it regulates the transcription of a child node. It has been
shown experimentally that such dramatic changes include
response time [3], and the steady state input-output char-
acteristics [4]. Thus, much attention has recently been given
to obtain ordinary differential equation (ODE) models for
genetic networks with retroactivity [5]–[7]. In particular, the
authors of [7] have made progress in explicitly quantify the
retroactivity for a large class of GTNs.

Robustness as a key system property of genetic networks
has been investigated for a long time in both fields of
control, and synthetic biology [8]–[14]. By robustness in this
paper is meant the ability to maintain a certain property,
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such as stability or response time, in the face of parame-
ter perturbations, which may result from genetic mutations
[9], changes of interactions among genes [10], or physical
changes in the environment [11]. Robustness enables gene
regulatory networks to continue to function despite noisy
expression of their constituent genes or even when facing
substantial environment variation. Many factors have been
found to contribute to robustness of genetic networks, such as
integral feedback [12] and network structures [13]. Sufficient
conditions in terms of LMIs have been given in [14] to
check whether a gene transcription network has a globally
asymptotically stable equilibrium by assuming all parameter
perturbations are constrained in a polytope. Although the
LMI feasibility test in [14] involves solving several optimiza-
tion problems, the result has provided a sufficient condition
to guarantee that a gene transcription network has no multiple
equilibria or limit cycles when facing a specific type of
parameter perturbations.

The aim of this paper is to study how retroactivity im-
pacts the robustness of gene transcription networks against
parameter perturbations. The dynamics of gene transcription
networks with and without retroactivity will be modeled by
two systems of ODEs. A robustness index called stability
radius [15] will be introduced to compare the robustness
of these two systems close to their equilibria. The system
linearized at its equilibrium with larger real stability radius
is said to be more robust in the sense that it maintains
the stability of its equilibrium when facing larger param-
eter perturbations in the 2-norm sense. Both simulations
and analytical results will be given for such comparisons,
which indicate that retroactivity generally decreases GTNs’
robustness against parameter perturbations. On the one hand,
this finding suggests that natural systems, being inherently
robust, may have evolved ways to attenuate retroactivity
and thus enforce modularity [16]–[18]. On the other hand,
our finding implies that methods to mitigate or avoid the
retroactivity [19], [20] when building complex multi-module
circuits may lead to more robust systems. This is another
advantage of modularity in addition to already being crucial
for bottom-up design approaches [21], [22].

This paper is organized as follows: Section II gives a set of
ODEs that model the dynamics of GTNs with retroactivity.
In Section III, robustness comparisons between GTNs with-
out retroactivity and GTNs with retroactivity are provided.
Simulations on a multi-module system, the event detector,
are given in Section IV. We conclude in Section V and all
the proofs are provided in Section VI.



II. MODEL AND PROBLEM FORMULATION

Consider an n-node gene transcription network as in Fig.1,
in which each node represents a gene or transcriptional com-
ponent, whose inputs are the output transcription factors from
other nodes. Each directed edge from node i to j indicated by
i→ j in Fig.1 means that the output of node i regulates the
transcription of node j. In short, gene transcription networks
of interest here are composed of “nodes” representing genes
and “directed edges” representing regulatory interactions
among genes.
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Fig. 1. A five-node gene transcription network

Let xi denote output protein of node i and let xi denote the
concentration of xi. For simplicity of notation we suppose
each node has at most two parents. Then, the dynamics of a
gene transcription network without considering retroactivity
can be described by the following ODE :

Σ1 : ẋ = f(x, u) (1)

where x =
[
x1 x2 · · · xn

]′ ∈ Rn, u =[
u1 u2 · · · un

]′
with ui representing external input

to node i, and the ith element of f(x, u) is

fi(x, u) = ui − δixi +Hi(x) (2)

with δi denoting the protein decay rate of xi. The hi(x) in
(2) is the Hill function which models the production rate of
xi with respect to its two parents xp and xq given by

Hi(x) = ηi
πi + πip
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where ηi denotes the total concentration of the promoters of
i; the binding of a parent to the free promoter of a child
node as an m-multimer forms a complex with dissociation
constant denoted by k; π denotes the production rate from
the corresponding complexes.

The hill function Hi(x) in (3) is related to the number of
xi’s parents. If node i has no parent, we let 1

kip
= 1

kiq
=

1
kipq

= 0 in (3); if node i has a single parent node xp, we
let 1

kiq
= 1

kipq
= 0 in (3). When node i has two or more

parents, Hi(x) is also affect by the type of their bindings to
xi, which usually include the following three types:
• Competitive binding: xp and xq bind exclusively to the

promoters of their common child;
• Independent binding: xp and xq do not affect each other

in their bindings to a common child. That is, even if a

node’s promoter is bound with one parent, it is still
available to be bound with its other parents.

• Cooperative binding: xp must be bound to its child’s
promoters before xq can bind.

In the case of independent binding, Hi(x) is as defined in
(3); if node i’s two parents’ bindings are competitive, we
have 1

kipq
= 0 in (3); if node i’s two parents’ bindings are

cooperative with node xq bound after xp, one has 1
kiq

= 0
in (3).

When retroactivity is considered, the dynamics of a gene
transcription network modifies to [7]:

Σ2 : ẋ = [I +R(x)]
−1
f(x, u) (4)

where R(x) ∈ Rn×n is called the retroactivity matrix. Note
that R(x) = 0 when retroactivity is not considered and (4)
becomes (1). When retroactivity is considered, R(x) 6= 0
and (4) is significantly different from (1). Please refer to [7]
for the derivation of R(x) with respect to different types of
bindings. Here, we will use that when all the bindings are
independent, R(x) is a diagonal matrix with the ith diagonal
entry given by

rii =
∑
j∈Ci

m2
jiηj

x
mji−1

i

kji

(1 +
x
mji
i

kji
)2

(5)

where Ci denotes the set of node i’s children. For other types
of bindings, R(x) is not a diagonal matrix. Refer to the
Appendix for the expression of R(x) when all bindings are
competitive and the number of each node’s parents is not
limited to two.

Note that the retroactivity matrix R(x) leads to significant
changes in the dynamics of a gene transcription network.
These changes have been studied on oscillators, toggle
switches, and other motifs [7]. The aim of the rest of
this paper is to explore how such changes resulting from
retroactivity affect the robustness of a gene transcription
network against parameter perturbations, namely we will
compare the robustness of systems Σ1 and system Σ2.

III. EFFECT OF RETROACTIVITY ON ROBUSTNESS

In this section, we will compare the robustness of the
system without retroactivity Σ1 given in (1) to that of the
system with retroactivity Σ2 given in (4) against parameter
perturbations. In order to do so, we focus on the behavior of
these two systems around a common equilibrium x∗, where
x∗ is such that f(x∗, u) = 0 for a fixed u. Linearization
of Σ1 and Σ2 about x∗ leads to the following two linear
systems under abusing the notations for simplicity:

Σ̄1 : ẋ = Ax

and
Σ̄2 : ẋ = (I +R)−1Ax

where

A =

(
∂f(x, u)

∂x

)
x=x∗

, R = R(x)x=x∗



are constant matrices. To mathematically compare the ro-
bustness of Σ̄1 and Σ̄2 close to x∗ against parameter per-
turbations, we introduce the following stability radius [15],
[23].

A. Robustness Index: Stability Radius
Let Λ(M) denote the spectrum of a square matrix M ∈

Kn×n, where K = C or R. Let C− denote the open left-
half complex plane and let C+ denote the closed right-half
complex plane. Define the stability radius of M as

rK(M) , inf{|∆| : ∆ ∈ Kn×n,Λ(M + ∆)∩C+ 6= ∅} (6)

where | · | denotes the 2-norm. Then rK(M) is the 2-norm
of the smallest perturbation forcing M + ∆ to be unstable.
The stability radius defined in (6) is a natural measure of
a system’s ability to maintain stability of an equilibrium
point under perturbations to elements of the system matrix.
A system with larger stability radius is able to maintain its
stability under larger perturbations to the system’s matrix in
the 2-norm sense. If Λ(M) ∩ C+ 6= ∅, one has rK(M) = 0.
In the following, we only consider the non-trivial case:
Λ(M) ∩ C+ = ∅, that is, M is a Hurwtiz stable matrix.

By the continuity of eigenvalues of a matrix with respect
to its entries, the eigenvalue leaving C− towards C+ must lie
on ∂C−, which is the boundary of C−. Thus we can write

rK(M) = inf
s∈∂C−

(
inf

∆∈Kn×n
{|∆| : det(sI −M −∆) = 0}

)
(7)

According to [15], one has the following relationship for
the complex stability radius for ∆ ∈ Cn×n:

rC(M) = inf
s∈∂C−

|(sI −M)−1|−1 = ||M ||−1
H∞

(8)

where
||M ||H∞ = sup

ω∈R
σ1

(
(jω −M)−1

)
(9)

with σ1(·) the largest singular value of a matrix. This makes
the computation of rC(M) possible. By [23] one has that the
real stability radius for ∆ ∈ Rn×n is given by

rR(M) = min
ω∈R

sup
γ∈(0,1]

σ2n−1

[
M γωI

−γ−1ωI M

]
(10)

The real stability radius can be computed from (10), or
by algorithms proposed in [24]. However, the computation
of rR(M) involves the minimization of unimodal functions
[23], which is a challenging problem [25]. To avoid complex
computations, we determine lower and upper bounds of
rR(M) which can be easily computed.

Lemma 1: Suppose M,∆ ∈ Rn×n. Then

||M ||−1
H∞
≤ rR(M) ≤ σn(M) (11)

where σn(M) denotes the smallest singular value of M .

The bounds obtained in Lemma 1 are tight in the sense that
they can be reached under certain conditions as indicated by
the following lemma:

Lemma 2: If the H∞ norm of M is achieved at ω = 0,
one has

σn(M)||M ||H∞ = 1. (12)

B. Robustness Comparison

For genetic networks in practice, parameter perturbations
are usually real. If the real stability radius of Σ̄1 is larger
than that of Σ̄2, we say Σ1 is more robust than Σ2 at
their equilibrium. By definition of real stability radius, this
means that for all real parameter perturbations with a certain
upper bound in its 2-norm, the system Σ1 is stable at x∗

while Σ2 in practice may become unstable and converge
to a different equilibrium. This will lead the system Σ2 to
exhibit a different phenotype, which may be associated with
malfunction.

In this subsection we will compare the robustness of
the two linearized systems Σ̄1 without retroactivity and Σ̄2

with retroactivity under real perturbations to elements of
their system matrices A and (I + R)−1A, respectively, by
comparing their real stability radiuses. Since the real stability
radius of an unstable matrix is 0, we only consider the case
when A and (I +R)−1A are both Hurwitz stable.

Based on Lemma 1, one can immediately conclude that
Σ1 is more robust than Σ2 if

||A||−1
H∞

> σn((I +R)−1A) (13)

and Σ2 is more robust than Σ1 if

||(I +R)−1A||−1
H∞

> σn(A) (14)

These two inequalities (13) and (14) give sufficient con-
ditions to determine whether retroactivity increases or de-
creases the robustness of the gene transcription network
against parameter perturbations. To find out which of the
conditions (13) and (14) holds in general, we first perform
numerical experiments as follows.

Experiment 1: First, we randomly generate a Hurwitz
stable matrix A and compute ||A||−1

H∞
and σn(A). Sec-

ond, we randomly generate an n × n square matrix R
such that (I + R)−1A is also Hurwitz stable and compute
||(I + R)−1A||−1

H∞
and σn((I + R)−1A). Third, we check

conditions (13) and (14). We repeat the above three-step
computation 10000 times and summarize our findings in
Table I.

TABLE I
NUMBER OF EXPERIMENTS FOR WHICH (13) AND (14) HOLDS

n (13) holds (14) holds No answer
1 10000 0 0
2 9603 4 393
3 9622 2 376
4 9594 0 406
5 9593 0 407
6 9590 0 410
7 9610 0 390
8 9585 0 415
9 9614 0 386

10 9569 0 431

Table I has the following implications:
• (13) holds, which means Σ1 is more robust than Σ2,

in more than 95.5% of 10000 repeated computations.



This implies that retroactivity usually decreases a gene
transcription network’s robustness against parameter
perturbations;

• Several extreme examples (less than 0.04%) have been
found such that (14) holds, which means Σ2 is more
robust than Σ1, and thus retroactivity increases the ro-
bustness against parameter perturbations. One artificial
instance of this case will be illustrated in Example 1;

• There are a few cases (less than 4.5%) in which neither
(13) nor (14) holds, from which we can not draw any
conclusion about the robustness of Σ1 and Σ2. This is
because the conditions given in (13) or (14) are only
sufficient.

Example 1: Here we give an artificial example where
retroactivity increases the robustness of a gene transcription
network against parameter perturbations. Consider a three-
node network in Fig. 2 in which node 1 regulates node 2
and 3, node 2 regulates 1 and 3.

1 2

3

Fig. 2. A three-node gene transcription network

Suppose x1 and x2 bind competitively to x3. Without
losing any generality, we assume all mij = 1 and all kij = 1.
The dynamics of node 1 and 2 for this example are[

ẋ1

ẋ2

]
= [I +R(x1, x2)]−1

[
f1(x1, x2, u1)
f2(x1, x2, u2)

]
(15)

where

f1(x1, x2, u1) = u1 − δ1x1 + η1
π1 + π12x2

1 + x2

f2(x1, x2, u2) = u2 − δ1x2 + η2
π2 + π21x1

1 + x1

with

R(x1, x2) =

[
η2

(1+x1)2
+ η3(1+x2)

(1+x1+x2)2
− η2x1

(1+x1+x2)2

− η1x2
(1+x1+x2)2

η1
(1+x2)2

+ η3(1+x1)

(1+x1+x2)2

]
Let u1 = −2.6631, u2 = −6.1849, η1 = 36.9, η2 =
9.356, η3 = 0.186, π1 = 0.0014, π12 = 0.14, π2 =
0.0009, π21 = 1.181, δ1 = 0.6994, δ2 = 0.3110. One has
the system matrix A and the retroactivity matrix R of the
system (15) at x1 = 2.4, x2 = 5.2 are:

A =

[
−0.6994 0.1330
0.9511 −0.3110

]
, R =

[
0.8168 −0.3036
−2.5974 0.9685

]
which leads to

(I +R)−1 =

[
0.7061 0.1089
0.9317 0.6517

]
Then

||(I +R)−1A||−1
H∞

= 0.0826, σn(A) = 0.0743

It follows that the stability radius of Σ̄2 is larger than that
of Σ̄1, which in turn implies that retroactivity increases the
robustness. Note however that this example is an artificial
example since negative values of u1 and u2 are not realizable
in practice. Actually we have not found a set of physically
realizable parameters such that Σ2 is more robust than Σ1

even for this simple three-node network.

When the bindings are competitive or cooperative, the
retroactivity matrix R has no special structure, for which one
can only check conditions (13) and (14) numerically in order
to conclude whether retroactivity increases or decreases the
robustness against parameter perturbations. Computations in
Table I show that retroactivity generally decreases robustness
for these cases. When it comes to independent bindings, the
retroactivity matrix R is diagonal, which allows us to obtain
further analytical results as follows.

C. Independent Bindings: R is diagonal

Suppose all the bindings are independent. Then R is a
diagonal matrix with non-negative diagonal entries given in
[7]. Let r and r denote the smallest and largest diagonal
entry of R. Then

σn(I +R) = 1 + r

We further suppose that each node has at least one children.
Then r > 0 and thus

σn(I +R) > 1

from which and (24) one has

||(I+R)−1A||−1
H∞
≤ σn((I+R)−1A) ≤ σn(A)

σn(I +R)
< σn(A)

which implies that the condition (14) can not be satisfied in
the case of independent bindings. Numerical computations
suggest that (13) holds in general, the proof of which is
quite challenging. We first look at two extreme cases:

Case 1: Retroactivities corresponding to all TF/promoter
bindings in a gene transcription network are balanced in the
sense that r

r ≈ 1. Let

R̄ = (I +R)−1 − 1

1 + r
I

By (7), one has

rR
(
(I +R)−1A

)
(16)

= inf
s∈∂C−

(
inf

∆∈Rn×n
{|∆| : det(sI −

1

1 + r
A−∆− R̄A) = 0}

)
= inf

s̄∈∂C−

(
inf

∆̄∈Rn×n
{|

∆

1 + r
− R̄A| : det

(
s̄I −A− ∆̄)

)
= 0}

)
≤ inf

s̄∈∂C−

(
inf

∆̄∈Rn×n
{
|∆|

1 + r
+ |R̄||A| : det

(
s̄I −A− ∆̄)

)
= 0}

)
=

rR(A)

1 + r
+ (

1

1 + r
−

1

1 + r
)σ1(A) (17)

Since α(R) ≈ 1, then

1− r

r
<
||A||−1

H∞

σ1(A)



It follows that

(
1

1 + r
− 1

1 + r
)σ1(A) < (1− 1

1 + r
)||A||−1

H∞

from which, ||A||−1
H∞
≤ rR(A) and (17), one has

rR
(
(I +R)−1A

)
< rR(A).

Then Σ1 is more robust than Σ2.
Case 2: There exists one TF/promoter binding which leads

to extremely large retroactivity, or in other words, r̄ → ∞.
Note that

lim
r̄→∞

σn
(
(I +R)−1A

)
= 0

By the continuity of eigenvalues of a matrix with respect to
its entries, there must exist a finite real number µ such that
for all r ∈ [µ,∞), σn

(
(I +R)−1A

)
< ||A||−1

H∞
. Then Σ1

is more robust than Σ2.

To include more cases in which Σ1 is more robust than
Σ2, we introduce the following lemma.

Lemma 3: If

σn(I +R) > σn(A)||A||H∞ (18)

one has that Σ1 is more robust than Σ2.
The proof of Lemma 3 is given in the Appendix. It is

worth mentioning that the condition in Lemma 3 separates
the retroactivity matrix R and the system matrix A. This
enables us to conclude the followings:

Case 3: The retroactivity corresponding to each
TF/promoter binding in a gene transcription network is suf-
ficiently large. Since A is Hurwtitz stable, one has ||A||H∞
and σn(A) are bounded. Then when r is large enough, one
has (18).

Case 4: The H∞ norm of the matrix A is achieved at
ω = 0. By Lemma 2 on has ||A||H∞σn(A) = 1. Note
that σn(I + R) = 1 + r > 1. Then (18) holds, which
implies Σ1 is more robust than Σ2. In practice this case
suggests that Σ1 has a “low-pass filter” behavior. Because
of its benefit to ignore rapid variations and only respond to
longer-lasting changes, this low-pass filtering capacity is a
common feature of regulation of transcription, as suggested
in E. coli theoretically [26], verified experimentally [27] and
recently observed in eukaryotes [28]. This suggests that in
practice Σ1 is more robust than Σ2.

As a summary of the above findings, we have the following
theorem

Theorem 1: In the case of independent bindings, let r
and r denote the largest and the smallest diagonal entry of
R, respectively. Σ1 is more robust than Σ2 if any of the
followings holds:
• retroactivities corresponding to all TF/promoter bind-

ings in a gene transcription network are balanced in
the sense that r

r ≈ 1;
• there exists one TF/promoter binding which leads to

extremely large retroactivity in the sense that r ≈ ∞;

• the retroactivity corresponding to each TF/promoter
binding in a gene transcription network is sufficiently
large in the sense that r is large;

• the H∞ norm of the matrix A is achieved at ω = 0.

IV. NUMERICAL EXPERIMENTS ON AN EVENT
DETECTOR

In this section, we perform simulations on an event
detector circuit and illustrate how retroactivity affects the
robustness of such a multi-module system against parameter
perturbations. The event detector consisting of six nodes
is shown in Fig. 3, in which i → j and i a j represent
that i is an activator and a repressor of j, respectively. The
mechanism for the event detector to work is as follows: In
the presence of a low input u, the cascade consisting of
nodes 1, 2, 3 propagates the signal to remove repression on
the inverter 4, eventually resulting in a switch in the state of
the toggle module, which leads to that the output of node 7
is changed and maintained to be low.

1 2 3

46 57

output

Cascade

Toggle Switch Inverter

Fig. 3. An Event Detector

The dynamics of the event detector without considering
retroactivity is

Σ1 : ẋ = f(x, u) (19)

where the ith element of f(x, u) are:

f1(x, u) = −δ1x1 + u

f2(x) = −δ2x2 + η2π21

x1

k21

1 + x1

k21

f3(x) = −δ3x3 + η3π32

x2

k32

1 + x2

k32

f4(x) = −δ4x4 + η4π4
1

1 + x3

k43

f5(x) = −δ5x5 + η5π5
1

1 + x4

k54
+

x2
6

k56

f6(x) = −δ6x6 + η6π6
1

1 +
x2
5

k65

f7(x) = −δ7x7 + η7π7
1

1 +
x2
6

k76



Suppose 4 and 6 bind to 5 competitively. By considering
retroactivity, one has

Σ2 : ẋ = [I +R(x)]−1f(x, u) (20)

where R(x) = [rij ]7×7 only have the following non-zero
entries:

r11 =

η2
k21

(1 + x1

k21
)2
, r22 =

η3
k32

(1 + x2

k32
)2
, r33 =

η4
k43

(1 + x3

k43
)2

r44 =

η5
k54

(1 +
x2
6

k56
)

(1 + x4

k54
+

x2
6

k56
)2
, r46 = −

2η5x4

k54
x6

k56
(1 +

x2
6

k56
)

(1 + x4

k54
+

x2
6

k56
)2

and

r55 =

4η6x5

k65

(1 +
x2
5

k65
)2
, r66 =

4η5x6

k56
(1 +

x2
4

k54
)

(1 + x4

k54
+

x2
6

k56
)2

+

4η7x6

k76

(1 +
x2
6

k76
)2

Please refer to [7] and Lemma 4 in the Appendix for the
derivation of the above equations (19) and (20).

Let x∗ be such that f(x∗, u) = 0 with a fixed u = 1.
Without losing generality, we suppose ηi = 1. By lineariza-
tion of the system Σ1 in (19) and the system Σ2 in (20)
about x∗, one has two linearized systems Σ̄1 and Σ̄2 with
system matrices A and (I +R)−1A, respectively, where

A =

(
∂f(x, u)

∂x

)
x=x∗

, R = R(x)|x=x∗ .

To compare the robustness of Σ1 and Σ2, we perform the
following numerical experiments. First we randomly choose
each δi from the interval [0.01, 0.1] hr−1, each kij from
the interval [1, 10] nM or nM2 and each πij , πi from the
interval [1, 10]hr−1. All these chosen intervals are realizable
in practical gene transcription networks [7]. Then one has
two constant matrices A and (I+R)−1A. Second, we check
the conditions (13) and (14). Third, we repeat the above steps
for 10000 times. Results are summarized in Table II.

TABLE II
NUMBER OF EXPERIMENTS FOR WHICH (13) AND (14) HOLDS

(13) holds (14) holds No answer Total Experiments
8439 0 1561 10000

Table II suggests that the system Σ1 without retroactivity
is more robust than the system Σ2 with retroactivity against
parameter perturbations for more than 85% of the total 10000
cases. By considering the definition of stability radius, there
exists certain parameter perturbations under which Σ1 is
stable at x∗ while Σ2 becomes unstable at x∗ and may con-
verge to a different equilibrium. Under these perturbations
the output of toggle switch may not switch, which ultimately
leads to no change of the output of node 7 from high to low
and the event detector fails to work correctly.

V. CONCLUSIONS

In this paper we have employed the stability radius to
determine the effect of retroactivity on networks’ robust-
ness. It has been shown both analytically and numerically
that retroactivity usually decreases the robustness of gene
transcription networks against parameter perturbations in
the sense that the stability radius of the linearized system
with retroactivity is smaller than that of the system without
retroactivity. This, in turn, implies that modularity may lead
to more robust biological systems in addition to its known
evolutionary advantages.

VI. APPENDIX

Proof of Lemma 1: By the definition of the stability radius in
(6), one immediately has rC(M) ≤ rR(M), which together
with (8) implies the following lower bound

rR(M) ≥ ||M ||−1
H∞

(21)

On the other hand, (7) implies

rR(M) ≤ inf
s=0

(
inf

∆∈Rn×n
{|∆| : det(sI −M −∆) = 0}

)
= inf

∆∈Rn×n
{|∆| : det(M + ∆) = 0}

≤ inf
∆∈Rn×n,det ∆=0

{|∆| : det(M + ∆) = 0}

which is equal to σn(M) by the Schmidt-Mirsky Theorem
[29]. Then one has the following upper bound

rR(M) ≤ σn(M) (22)

We complete the proof. �

Proof of Lemma 2: Since the H∞ norm of M is achieved
at ω,

||M ||H∞ = σ1

(
(jω −M)−1

)
= σ−1

n (jω −M).

Then

||M ||H∞σn(M) = σn(M)σ−1
n (jω −M)

which is equal to 1 at ω = 0. We complete the proof. �

Proof of Lemma 3: Let q̄ = (I+R′)q
|(I+R′)q| , where q is the unit

vector such that q′AA′q = λmin(AA′). Then

σn
(
(I +R)−1A

)
(23)

= min
v∈Rn,|v|=1

√
v′(I +R)−1AA′(I +R′)−1v

≤
√
q̄′(I +R)−1AA′(I +R′)−1q̄

=

√
qAA′q

q′(I +R)(I +R′)q

=

√
λmin(AA′)

q′(I +R)(I +R′)q

≤ σn(A)

σn(I +R)
(24)



which and (18) imply

σn
(
(I +R)−1A

)
< ||A||−1

H∞

Then by Lemma 1 one has rR((I + R)−1A) < rR(A). We
complete the proof. �

In the following, we will generalize the equations (1) and
(4) in the case of competitive bindings by removing the
assumption that each node has at most two parents.

Lemma 4: Suppose all the bindings are competitive. Let
Ni and Ci denote the set of node i’s parents and children,
respectively. The system without considering retroactivity is

Σ1 : ẋ = f(x) (25)

where the ith element of f(x) is

fi(x) = ui − δixi + hi(x) (26)

with

hi(x) = ηi
πi +

∑
j∈Ni

πij
x
mij
j

kij

1 +
∑
j∈Ni

x
mij
j

kij

.

By considering the retroactivity one has:

Σ2 : ẋ = [I +R(x)]−1f(x) (27)

where R(x) = [rij ]n×n with

rij =



∑
q∈Ci

ηqm
2
qi

x
mqi−1

i
kqi

(
1+
∑

l∈Nq/{i}
x
mql
l
kql

)
(

1+
∑

l∈Nq

x
mql
l
kql

)2 , i = j;

0, i 6= j and Ci ∩ Cj = ∅;

−
∑
q∈Ci∩Cj

ηqmqi
x
mqi
i
kqi

mqj

x
mqj−1

j
kqj(

1+
∑

l∈Nq

x
mql
l
kql

)2 , otherwise.

(28)
Proof of Lemma 4: We assume that reactions in gene
transcription networks can be divided into two time-separable
steps: the reversible binding reactions, and protein produc-
tion/decay process. The reactions in a gene transcription
network include the followings
• Competitive binding reactions:

mijxj + ci
k+ij


k−ij

cij , j ∈ Ni, i ∈ n

• Protein production/decay reactions:

ci
πi→ xi, cij

πij→ xi, j ∈ Ni, i ∈ n

and
xi

δi


ζi
∅, i ∈ n

where n = {1, 2, ..., n}.
The ODEs for these reactions are

ċij = k+
ijx

mij

j ci − k−ijcij , j ∈ Ni (29)

and

ẋi = ui − δixi + πici +
∑
j∈Ni

πijcij −Ri(x) (30)

where

Ri(x) =
∑
q∈Ci

mqi(k
+
qix

mqi

i cq − k−qicqi). (31)

Note that Ri(x) results from that xi is bind to its children
and regulates their transcriptions. When retroactivity is not
considered, Ri(x) = 0.

Note that the equation in (30) contains both protein
production/decay reactions, which are very slow, and re-
versible bindings, which are very fast. To extract a pure slow
dynamics, we let

wi = xi + si, i ∈ n (32)

where
si =

∑
q∈Ci

mqicqi (33)

By (29), one has
ṡi = Ri(x)

It follows that

ẇi = ui − δixi + πici +
∑
j∈Ni

πijcij i ∈ n (34)

which is much slower than the reversible binding process
(29). By applying singular perturbation theory [30] to the
system consisting of equations (29) and (34), one could set
the left hand side of (29) to be 0, which leads to

cij =
x
mij

j

kij
ci, j ∈ Ni, i ∈ n (35)

Since the total concentration of the promoters of i is a
constant ηi, then ∑

j∈Ni

cij + ci = ηi

which and (35) imply

ci =
ηi

1 +
∑
j∈Ni

x
mij
j

kij

, i ∈ n (36)

From (34), (35) and (36), one has

ẇi = fi(x), i ∈ n (37)

where fi is as in (26). When retroactivity is not considered,
one has si(x) = 0 and Ri(x) = 0 and then wi = xi. Thus
when retroactivity is not considered, one has ẋ = f(x) with
the ith element equal to fi in (26).

When retroactivity is considered, one needs to find the
relation between ẇi and ẋi in order to get the expression of
ẋ. Note that the total concentration of the promoters of q is
a constant ηq , one has for each q ∈ Ci, i ∈ n,∑

l∈Nq

cql + cq = ηj



from which and (35), one has

cq =
ηq

1 +
∑
l∈Nq

x
mql
l

kql

Then

cqi =
ηq
x
mqi
i

kqi

1 +
∑
l∈Nq

x
mql
l

kql

, q ∈ Ci, i ∈ n (38)

by which and (33) one has

si(x) =
∑
q∈Ci

ηqmqi
x
mqi
i

kqi

1 +
∑
l∈Nq

x
mql
l

kql

(39)

Let w =
[
w1 w2 · · · wn

]′
. From wi = xi + si(x)

and (39), one has
ẇ = (I +R)ẋ

where R = [rij ]n×n is such that

rij =
∂si(x)

∂xj
.

Then one has rij is as defined in (28). We complete the
proof. �
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