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Abstract

In the past decade, major airlines in the U.S. have moved from banked hub-and-spoke operations to de-banked hub-and-spoke
operations to lower operating costs. In [1], it is shown that dynamic airline scheduling, an approach that makes minor adjustments
to flight schedules in the booking period by re-fleeting and re-timing flight legs, can significantly improve utilization of capacity
and hence increase profit. In this paper, we develop robust schedule design models and algorithms to generate schedules that
facilitate the application of dynamic scheduling in de-banked hub-and-spoke operations. Such schedule design approaches are
robust in the sense that the schedules produced can more easily be manipulated in response to demand variability when embedded
in a dynamic scheduling environment. In our robust schedule design model, we maximize the number of potentially connecting
itineraries weighted by their respective revenues. We provide two equivalent formulations of the robust schedule design model
and develop a decomposition-based solution approach involving a variable reduction technique and a variant of column generation.
We demonstrate, through experiments using data from a major U.S. airline, that the schedule generated can improve profitability
when dynamic scheduling is applied. It is also observed that the greater the demand variability, the more profit our robust schedules
achieve when compared to existing ones.
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1. Introduction

Since 2001, the airline industry in the U.S. has been neg-
atively impacted by terrorist attacks, soaring fuel cost, stiff
competition, and a weak economy. In order to reduce oper-
ating costs, major airlines have decided to de-bank their banked
schedules in their hub-and-spoke networks. A hub-and-spoke
network is one in which, one or more, typically large, stations
(or airports) are designated as hub stations and flights are sched-
uled between hub stations and the other stations, namely, spoke
stations. A banked schedule refers to the practice where a set
of aircraft arrive at the hub station from spoke stations in a rela-
tively short period of time, park at the gates to allow passengers
to deplane and connect to the next flights in their itineraries,
and finally depart the hub station in a relatively short period
of time. The set of inbound flights and outbound flights oper-
ated by these aircraft form a bank at the hub station. Airlines
often schedule a series of banks at the hub station to capture
time-of-day demand. Because flight arrivals and departures oc-
cur in a relatively short period to allow shorter passenger con-
nection times, banked schedules generate negative, sometimes
serious, economic impacts including demand peaks for various
resources and increased schedule vulnerability in bad weather.
In contrast, in de-banked operations, flight arrivals and depar-
tures at the hub are smoothed, eliminating the demand peaks for
resources and reducing operating costs dramatically. American
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Airlines de-banked operations at its Chicago hub in April 2002,
its Dallas/Fort Worth hub in November, 2002, and its Miami
hub in May 2004 ([2, 3]). Continental Airlines de-banked its
Newark hub ([3]); United Airlines de-banked its Chicago hub
in 2004, its Los Angeles hub in 2005 ([4]); and Delta Airlines
de-banked its Atlanta hub in January, 2005. This de-banking
trend is not restricted to U.S. airlines. In 2004, Lufthansa Air-
lines de-banked Frankfurt, its biggest hub, as part of the effort
to cut costs by EUR 300 million in two years ([5]).

[1] has shown that in a de-banked hub-and spoke network,
dynamic scheduling, an approach that alters the flight sched-
ule slightly according to observed actual demand and updated
forecasts for future demand in the booking period, that is, the
time from schedule publication until flight departure, can dra-
matically improve airline profitability. To date, two types of dy-
namic scheduling mechanisms (or schedule adjustment mecha-
nisms) are studied in the literature: one is flight leg re-fleeting
and the other is flight leg re-timing. Flight leg re-fleeting
changes the fleet type assigned to a flight leg with higher than
planned demand to a larger aircraft type, and the fleet type
assigned to a flight leg with lower than planned demand to a
smaller aircraft type while still maintaining aircraft flow bal-
ance. Representative literature describing flight leg re-fleeting
can be found in [6], [7], and [8]. In flight leg re-timing, flight
departure and arrival times of a flight leg are altered to cre-
ate new connecting itineraries through the hub to serve markets
with higher than expected demands. Later, [9, 10] present fur-
ther experiments with dynamic scheduling under different sce-
narios, using data from a major European airline.
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The success of dynamic scheduling not only relies on im-
proved demand forecast quality, but also depends on the amount
of re-optimization flexibility in the original schedule. One cer-
tainly can design a schedule where there is little or no room
for dynamic scheduling. Hence, an important and challenging
research question is how to design the flight schedule to maxi-
mize future dynamic scheduling impacts. In this paper, we ad-
dress this question by designing robust schedule design models
to produce schedules with improved capability to respond to
demand uncertainty through dynamic scheduling. The result is
that the schedules produced can better utilize the capacity and
hence, capture more revenue.

Research aimed at improving schedule robustness in light of
demand variability in a dynamic environment is rather limited.
Focusing on models and solution approaches for the dynamic
re-fleeting problem, [8] proposes to study the interaction be-
tween an original schedule and subsequent dynamic re-fleeting
decisions. To our knowledge, the results of this study have not
been reported to date. In a loosely related paper, [11] argues
that suitably distributed aircraft capacity is critical to the suc-
cessful implementation of dynamic re-fleeting procedures, and
propose a scenario aggregation-based approach to determine an
optimal fleet composition that facilitates dynamic re-fleeting.

Expanding on the observations of [6] that flight re-fleeting
opportunities can be abundant in hub-and-spoke networks, we
identify metrics to measure opportunities for flight re-timing.
We focus on the magnitude of “infeasibility” for infeasible
connecting itineraries, defined as connecting itineraries whose
connection times are either less than the minimum required or
more than the maximum allowed. When flights are re-timed
in a dynamic scheduling environment to alter connecting times
for itineraries, an infeasible connecting itinerary that violates
the minimum (or maximum) connection time requirement by
5 minutes is easier to transform into a feasible itinerary than
one that violates the minimum (or maximum) connection time
requirement by 30 minutes.

In our schedule design model, we modify an existing de-
banked schedule and generate a flight schedule in which the
number of feasible and slightly infeasible connecting itineraries
weighted by their respective revenues is maximized, while
meeting two major conditions: 1) there is no banking (or peak-
ing) in aircraft departures and arrivals at the hub, and 2) key
connecting itineraries through hubs are not disrupted in the
modified de-banked schedule. We present two alternate formu-
lations of the robust model, each with different computational
properties. To solve our models, we develop a decomposition-
based approach involving a variable reduction technique and a
variant of column generation. The schedule generated by the
robust model is then simulated in a dynamic scheduling envi-
ronment to evaluate its performance relative to the existing de-
banked schedule.

The contributions of this paper include the following:

• We develop a novel approach to build flexibility into the
original schedule to facilitate the application of dynamic
scheduling;

• We present a mathematical model and two equivalent re-

formulations to achieve robust schedules. We explore their
computational properties and devise new solution algo-
rithms; and

• We demonstrate with data from a major U.S. airline that
our approach is capable of generating schedules that when
combined with dynamic scheduling outperform the exist-
ing schedules.

We organize the remainder of this paper as follows. In Sec-
tion 2, we present two alternative formulations of our robust
schedule design model. We detail our solution algorithm in
Section 3. In Section 4, we report the computational and dy-
namic scheduling results for our case study. Finally, In Section
5, we conclude our discussion and outline possible future re-
search directions.

2. Robust Schedule Design

In order to increase the options and impacts of dynamic
scheduling for a de-banked schedule, we consider the two dy-
namic airline scheduling elements, namely, flight leg re-fleeting
and flight leg re-timing. Because a de-banked schedule main-
tains the hub-and-spoke network structure, numerous aircraft
swapping opportunities at the hub are possible ([6]). Given
this, we focus our efforts on creating flight leg re-timing op-
portunities that potentially can be executed during the dynamic
scheduling stage.

In a hub-and-spoke network, an inbound flight leg f arriv-
ing at the hub at time t can connect to any outbound flight leg
departing between t + MinCT and t + MaxCT to form a fea-
sible connecting itinerary, where MinCT represents the mini-
mum passenger connection time and MaxCT denotes the max-
imum passenger connection time at the hub. Any outbound
flight departing earlier than t+MinCT or later than t+MaxCT
forms an infeasible connecting itinerary with inbound flight
leg f and contributes nothing toward revenue. In fact, virtu-
ally all schedule planning models in the literature, for exam-
ple, [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], have
the objective to determine the optimal set of nonstop and fea-
sible connecting itineraries to include in the schedule. For in-
feasible connecting itineraries, these models are indifferent to
the extent of the infeasibility, that is, the amount of time these
infeasible connecting itineraries violate the connection time re-
quirements. We define slightly infeasible connecting itineraries
as those connecting itineraries whose connection times violate
the minimum or maximum connection time requirements by a
small margin, such as 15 minutes or less. Slightly infeasible
connecting itineraries have the property that they can be trans-
formed into feasible connecting itineraries when flights are re-
timed in the dynamic scheduling process. Motivated by this
observation, our robust schedule design model works to maxi-
mize the number of feasible and slightly infeasible connecting
itineraries weighted by their respective revenues in the modified
de-banked schedule. In doing so, we enhance the potential for
dynamic scheduling (that is, flight leg re-timing) to increase ca-
pacity in markets experiencing greater than expected demand.
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Note that maximizing the number of feasible and slightly in-
feasible connecting itineraries weighted by their respective rev-
enues is equivalent to maximizing the total revenue of feasible
and slightly infeasible connecting itineraries.

While achieving the goal mentioned above, our robust sched-
ule design model has to satisfy many other constraints, includ-
ing flight cover constraints, aircraft balance constraints, aircraft
count constraints, de-banking constraints, and key connecting
itinerary constraints. The latter two are uncommon and are
explained in the following text. The de-banking constraints
limit the number of departure and arrival activities at the hub
to make sure that the new schedule is still de-banked. The
key connecting itinerary constraints ensure that key connect-
ing itineraries identified in the existing de-banked schedule are
still feasible in the new schedule, that is, the connection times
of those itineraries stay between the minimum connection time
and the maximum connection time required at the hub. In our
research, we classify connecting itineraries in the original de-
banked schedule having at least five average daily passengers
as key connecting itineraries. The idea is to ensure that our
schedule design model does not disrupt important connecting
itineraries while maximizing the total revenue of feasible and
slightly infeasible connecting itineraries.

2.1. Terminology and Network Representations
To facilitate our discussion, we define the following terms.

A flight leg is a nonstop trip of an aircraft from an origin air-
port to a destination airport (one take-off and one landing). An
itinerary consists of a specific sequence of scheduled flight legs
in which the first leg originates from the origin airport at a par-
ticular time and the final leg terminates at the final destination
airport at a later time. The number of intermediate cities tra-
versed is called the number of stops in this itinerary. A non-
stop itinerary consists of only one flight leg, which originates
from the origin and terminates at the destination. A connecting
itinerary is an itinerary that has one or more stops. Although
there do exist connecting itineraries with more than one inter-
mediate stop, it is very rare. In the scope of our research, we
assume all connecting itineraries have exactly one stop at the
hub.

The aircraft flow network is used to model the flow of aircraft
over a flight schedule, with a different flow network created for
each fleet type. Each node in fleet π’s network corresponds ei-
ther to the departure time of a flight leg f , or its arrival time plus
the minimum amount of time needed to turn a type π aircraft at
the arrival station of leg f . Each arc in fleet π’s network is clas-
sified as either a flight arc or a ground arc. Flight arcs represent
scheduled flight legs, while ground arcs represent an aircraft’s
ability to remain on the ground at the same place over time. A
wrap-around arc is a ground arc that connects the first and last
node at an airport station. The count line is an arbitrarily chosen
point of time that is used to count the number of aircraft needed
to operate a given flight schedule.

The passenger flow network is used to model the flow of pas-
sengers over a flight schedule. Each node in the passenger flow
network corresponds to either the departure time, or the arrival
time of a flight leg. Each arc is classified as either a flight arc

or a connection arc. Flight arcs represent scheduled flight legs,
but connection arcs represent a passenger’s ability to connect
between two flight legs. In our robust schedule design model,
connection arcs are also created for slightly infeasible connect-
ing itineraries.

2.2. Model Statement

Input to the robust schedule design model includes the set
of flight legs in an already de-banked schedule, each of which
must be assigned to exactly one aircraft type. The departure
time of the flight leg in the new schedule can differ from that of
the original schedule, and these sets of decisions are modeled
by creating a copy of each flight leg for every allowable depar-
ture time, and a set of constraints ensuring that exactly one copy
is assigned one aircraft type.

We begin by enumerating all potentially connecting
itineraries, that is, all itineraries whose connection times are
feasible if allowable flight leg re-timings can be applied. Note
that this set includes the set of connecting itineraries that are
feasible without any re-timing as well as those slightly infea-
sible itineraries. The set of potentially connecting itineraries
can thus be defined as all itineraries with connection times be-
tween T1 and T2, where T1 < MinCT and T2 > MaxCT , and
the precise values of T1 and T2 are a function of the maximum
allowable amount of time that flight legs can be shifted in the
dynamic scheduling process. For example, if MinCT = 25
minutes, MaxCT = 180 minutes, and the maximum amount
of re-timing is 15 minutes, we then have T1 = 25 − 15 = 10
minutes and T2 = 180 + 15 = 195 minutes. Let PC be the
set of all potentially connecting itineraries. We assign a bi-
nary connection variable hp with weight wp to each potentially
connecting itinerary p ∈ PC, where wp is the revenue associ-
ated with the connecting itinerary corresponding to p, assum-
ing that p is a valid connecting itinerary. Note that for poten-
tially connecting itineraries created between copies of the same
flight leg pair, their wp values are the same. Mathematically,
let w(l1,l2) be the revenue associated with connecting itinerary
formed by l1 and l2, then for p1, p2 formed by copies of l1 and
l2, wp1 = wp2 = w(l1,l2). The exactly value of wl1,l2) is esti-
mated using historical demand data. Binary variable hp takes
value one if both flight leg copies forming potentially connect-
ing itinerary p are selected in the solution; otherwise, hp = 0.
The objective, then, is to maximize the number of potentially
connecting itineraries weighted by their respective revenues,
that is, to maximize the total revenue associated with these vari-
ables representing potentially connecting itineraries:

maximize
∑
p∈PC

wphp.

Before detailing our robust schedule design model, we intro-
duce the following notations:
Additional Data and Parameters
L : set of flight legs in the flight schedule indexed by l.
C(l) : set of flight copies for flight leg l ∈ L.
a : the number of flight copies created before and after the
original flight leg.
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lk: copy k ∈ C(l) of flight leg l ∈ L.
Π : set of fleet types indexed by π.
Gπ : set of ground arcs in fleet π ∈ Π ’s network.
Nπ : set of nodes in flight network of fleet type π ∈ Π.
nπ : number of aircraft available of fleet type π ∈ Π.
T : set of time intervals at the hub, indexed by t.
MAXat: maximum number of aircraft arrivals at the hub in
interval t ∈ T .
MAXdt: maximum number of aircraft departures from the hub
in interval t ∈ T .

αi
lkπ=


1, if lk in fleet π’s network originates from node

i ∈ Nπ, ∀k ∈ C(l), l ∈ L, π ∈ Π;
−1, if lk in fleet π’s network terminates at node

i ∈ Nπ, ∀k ∈ C(l), l ∈ L, π ∈ Π;
0, otherwise.

α̂i
gπ=


1, if ground arc g ∈ Gπ originates from node i ∈ Nπ,

∀π ∈ Π;
−1, if ground arc g ∈ Gπ terminates at node i ∈ Nπ,

∀π ∈ Π;
0, otherwise.

βlkπ=


1, if lk in fleet π’s network crosses the count line,
∀k ∈ C(l), l ∈ L, π ∈ Π;

0, otherwise.

β̂gπ=

{
1, if ground arc g ∈ Gπ crosses the count line, ∀π ∈ Π;
0, otherwise.

γat
lk=


1, if lk in the passenger flow network arrives at the hub

during interval t ∈ T , ∀k ∈ C(l), l ∈ L;
0, otherwise.

γdt
lk=


1, if lk in the passenger flow network departs from the

hub during interval t ∈ T , ∀k ∈ C(l), l ∈ L;
0, otherwise.

(l1, l2) : ordered pair of inbound flight leg l1 ∈ L and outbound
flight leg l2 ∈ L at the hub.
C : set of all flight leg pairs (l1, l2).
(lk1

1 , l
k2
2 ) : a potentially connecting itinerary formed by lk1

1 and
lk2
2 .

C(l1, l2) : the set of potentially connecting itineraries formed
between copies of flight leg l1 and copies of flight leg l2.
PC:the set of all potentially connecting itineraries, indexed by
p.

ζ lk
p =

{
1, if p ∈ PC traverses lk;
0, otherwise.

Q: the set of key connecting itineraries identified in the original
de-banked schedule that must be feasible in the schedule
generated by our robust schedule design model. It contains a
collection of flight leg pairs (l1, l2) through the hub. We need
to ensure that in the new schedule, l1 can connect to l2 for all
(l1, l2) ∈ Q.
CT (lk1

1 , l
k2
2 ) : the connection time between lk1

1 and lk2
2 , that is, the

connection time between copy k1 of flight leg l1 and copy k2 of
flight leg l2.
Additional Decision Variables

flkπ =


1, fleet π ∈ Π is used to fly flight copy lk, ∀k ∈ C(l),

l ∈ L;
0, otherwise.

ygπ : number of aircraft of fleet type π traversing ground arc
g ∈ Gπ, ∀π ∈ Π.

2.3. Formulation 1

Now we develop the constraints for the robust schedule de-
sign model. In Figure 1 we show an inbound flight leg l1 and an
outbound flight leg l2, each with three copies in the passenger
flow network. Three connection arc variables are illustrated,
that is, (la1, l

d
2), (la1, l

e
2), (la1, l

f
2 ) and are indexed as h1, h2, and h3.

For each flight leg copy lk, if the term
∑
π∈Π flkπ equals one, this

flight leg copy is assigned an aircraft type, or in other words,
selected, in the solution; otherwise, it is not.

a b c

d e f

∑

π∈Π

fl1aπ

∑

π∈Π

fl1bπ

∑

π∈Π

fl1cπ

∑

π∈Π

fl2dπ

∑

π∈Π

fl2eπ

∑

π∈Π

fl2fπ

h1

h2

h3

Figure 1: Illustration of connection variables

Take the example shown in Figure 1, Formulation 1 generates
three constraints for the three connection variables involving la1,
specifically,

h1 ≤
∑
π∈Π

fl1aπ,

h2 ≤
∑
π∈Π

fl1aπ,

h3 ≤
∑
π∈Π

fl1aπ.

Recognizing the fact that at most one of h1, h2, and h3 can
be non-zero in any feasible integer solution, the following con-
straint must hold:

h1 + h2 + h3 ≤
∑
π∈Π

fl1aπ.

Hence, for all p ∈ C(l1, l2) ((l1, l2) ∈ C), the following con-
straints must be satisfied:∑

p∈C(l1,l2)

ζ
lk1
p hp ≤

∑
π∈Π

fl1kπ,∀k ∈ C(l1) (1)

and ∑
p∈C(l1,l2)

ζ
lk2
p hp ≤

∑
π∈Π

fl2kπ,∀k ∈ C(l2) (2)

Constraints (1) require that for flight leg copy lk1, if any of
the hp variables that traverses lk1 takes value 1, one aircraft is
assigned to fly lk1. Constraints (2) ensure that for flight leg copy
lk2, if any of the hp variables that traverses lk2 takes value 1, one
aircraft is assigned to fly lk2. The remaining constraints for the
robust schedule design model are as follows:∑

k∈C(l)

∑
π∈Π

flkπ = 1,∀l ∈ L (3)
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∑
l∈L

∑
k∈C(l)

αi
lkπ flkπ +

∑
g∈Gπ
α̂i

gπygπ = 0,

∀i ∈ Nπ, π ∈ Π (4)∑
l∈L

∑
k∈C(l)

flkπβlkπ +
∑
g∈Gπ

ygπβ̂gπ ≤ nπ,∀π ∈ Π (5)

∑
l∈L

∑
k∈C(l)

γat
lk

∑
π∈Π

flkπ ≤ MAXat,∀t ∈ T (6)

∑
l∈L

∑
k∈C(l)

γdt
lk

∑
π∈Π

flkπ ≤ MAXdt,∀t ∈ T (7)∑
π∈Π

fl1k1π +
∑
π∈Π

fl2k2π ≤ 1,

∀(l1, l2) ∈ Q,CT (lk1
1 , l

k2
2 ) < [MinCT,MaxCT ] (8)

flkπ ∈ {0, 1},∀l ∈ L, k ∈ C(l), π ∈ Π (9)

ygπ ≥ 0,∀g ∈ G, π ∈ Π (10)

hp ∈ {0, 1},∀p ∈ PC (11)

Constraints (3) ensure that each flight leg is covered exactly
once, while Constraints (4) enforce conservation of flow for
each type of aircraft. Constraints (5) count and limit the num-
ber of aircraft of each fleet used to the number available. Con-
straints (6) and (7), the de-banking constraints, limit the number
of flight departures and arrivals per unit time at the hub. Con-
straints (8) guarantee that key connecting itineraries identified
in the original de-banked schedule remain feasible in the new
schedule. For all key connecting itineraries, we forbid the se-
lection of flight copy pairs that do not meet the connection time
requirements. Constraints (9) through (11) specify the possible
values of the decision variables. We refer to this formulation as
Formulation 1.

2.4. Formulation 2

In this section, we present an equivalent formulation whose
LP relaxation is weaker than that of Formulation 1, but which
exhibits better computational performance using branch-and-
bound in our solution approach.

The connection variable hp can take value zero or one, thus
we can think of sending one unit of flow on potentially con-
necting itinerary p and have a pseudo-capacity (Mlk) for each
flight copy lk. Take the example in Figure 2. Depicted are one
inbound flight leg l1, two outbound flight legs l2 and l3, each
with three copies, and six connection variables h1, h2, · · · , and

a b c

d e f

∑

π∈Π

fl1aπ
∑

π∈Π

fl1bπ
∑

π∈Π

fl1cπ

∑

π∈Π

fl2dπ
∑

π∈Π

fl2eπ
∑

π∈Π

fl2fπ

r s t

∑

π∈Π

fl3dπ
∑

π∈Π

fl3eπ
∑

π∈Π

fl3fπ

h1

h2

h3

h4

h5

h6

Figure 2: Illustration of Formulation 4

h6. The six connection variables all traverse la1. If any of the
six connection variables take value one in a feasible integer so-
lution,

∑
π fl1aπ must take value one. Alternatively, if

∑
π fl1aπ

takes value zero, none of the six connection variables can take
value one. Such a relationship can be captured by the following
constraint:

h1 + h2 + · · · + h6 ≤ Ml1a

∑
π∈Π

fl1aπ. (12)

Ml1a represents a sufficiently large number (the pseudo capacity
of la1), which guarantees that if

∑
π∈Π fl1aπ = 1, Constraint (12)

is not binding. Following similar logic, we replace Constraints
(1) and (2) in Formulation 1 with Constraints (13) to model the
relationship between hp variables and flkπ variables in Formu-
lation 2. The left hand side sums over all potential connecting
itineraries that traverse lk. If any of the hp takes value 1, we
must assign an aircraft type to lk:∑

p∈PC

ζ lk
p hp ≤ Mlk

∑
π∈Π

flkπ,∀l ∈ L, k ∈ C(l). (13)

3. Solution Approach

The solution approach to the robust schedule design model
is outlined in Figure 5. For reasons stated in Section 4.1, For-
mulation 2 is used to find good integer solutions, while the LP
relaxation of Formulation 1 is solved to obtain a bound (ZL) on
the optimal integer solution value and to gauge the optimality
of the integer solutions obtained from Formulation 2.

To solve Formulation 2, a decomposition-based approach is
taken in which a Restricted Master Problem (RMP) containing
only a subset of all possible hp variables is solved repeatedly
until a near-optimal solution to the model is obtained. The ra-
tionale underlying the selection of the variables included in the
RMP is as follows. We first classify flight leg pairs (l1, l2) ∈ C
as follows. Recall that we have defined C(l1, l2) as the set of
potentially connecting itineraries formed between the flight leg
copies of l1 and l2. We classify all such flight leg pairs (l1, l2) ac-
cording to the size of C(l1, l2), that is, the number of potentially
connecting itineraries formed between flight leg copies of l1 and
l2. Let Cb be the set of flight leg pairs (l1, l2), where |C(l1, l2)| =
b (b ∈ N), that is, Cb = {(l1, l2) | |C(l1, l2)| = b, (l1, l2) ∈ C}.
Since a is the number of flight leg copies created before and
after the original flight leg copy, respectively, we know that b
must stay between 1 and (2a + 1)2.

For any flight leg pair (l1, l2) ∈ C(2a+1)2 , regardless of which
copies of flight leg l1 and l2 are selected in an integer solu-
tion, they form a valid connection with the same contribution
wp = w(l1,l2) toward the objective function value. The removal
of all columns corresponding to hp, p ∈ P(C(2a+1)2 ) thus have
the effect of reducing the objective function value for any solu-
tion by a constant amount. The result is that an optimal solution
to the RMP is also optimal to the original model containing all
decision variables. This idea is further illustrated in Figure 3.
There are three flight leg copies of l1 and three flight leg copies
of l2. Altogether they create (2×1+1)2 = 9 potentially connect-
ing itineraries and their coefficients in the objective function are
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the same, that is, w(l1,l2). Hence, in any feasible integer solution,
independent of which of the three flight leg copies of l1 is se-
lected, and which of the three flight leg copies of l2 is selected,
there is exactly one hp variable that takes value 1 and the col-
lective contribution of all hp variables created between copies
of l1 and l2 is w(l1,l2), which is a constant. The removal of all hp

variables created between copies of l1 and l2 thus will not affect
the values of schedule decision variables, that is, flkπ variables,
in our optimal solution.

a b c

d e f

l1

l2

Figure 3: When (l1, l2) ∈ C(2a+1)2 , that is, all pairs of flight leg copies between
l1 and l2 form potentially connecting itineraries, we can remove all of these hp
variables without affecting the values of flkπ in the optimal solution. In this
example, a = 1, that is, the number of flight leg copies created before and after
the original flight leg is 1.

Extending this approach, we can remove all columns cor-
responding to hp with p ∈ P(C(2a+1)2−1), however, we can no
longer guarantee that an optimal solution to RMP is optimal
for the original problem because the solution to the RMP might
select, from all (2a + 1)2 potential connections, the only pair
of flight leg copies that does not create a potentially connect-
ing itinerary. The risk of doing so is minimal but increases as
the subscript b in Cb decreases. This is illustrated in Figure 4,
where all pairs of flight leg copies between l1 and l2 form poten-
tially connecting itineraries, except for the pair between la1 and
l f
2 . If we drop all hp variables corresponding to l1 and l2 in RMP,

the optimal solution will be affected if la1 and l f
2 are selected in

the optimal solution to the full problem of our robust schedule
design model. We therefore proceed as follows: in the begin-
ning, we exclude these hp variables from the model and form
our RMP. Once we find the optimal solution to RMP, however,
we check whether potentially connecting itinerary p ∈ C(l1, l2)
is enabled or not in the solution. If it is, we set hp to 1; other-
wise, we set hp to 0. Now, we check whether

∑
p∈C(l1,l2) hp = 1.

If the answer is yes, this optimal solution to RMP is also an
optimal solution to the full problem. If not, for example, when
la1 and l f

2 are selected in the optimal solution and the eight hp

variables all take value zero, we do not have
∑

p∈C(li,l j) hp = 1.
Thus, we then add the hp variables formed between copies of l1
and l2 to the RMP and resolve RMP.

To generalize the above idea, we let C̃ =C(2a+1)2
∪

C(2a+1)2−1∪ · · · ∪ Cb and P(C̃) be the set of potentially connecting
itineraries associated with (l1, l2) ∈ C̃. We first eliminate all
hp variables with p ∈ P(C̃) in Formulation 2 to create RMP.
The branch-and-bound algorithm is used to find integer solu-
tions to RMP. Once an integer solution is found, we denote the

a b c

d e f

l1

l2

Figure 4: When (l1, l2) ∈ C(2a+1)2−1, that is, all but one pair of flight leg copies
between l1 and l2 are potentially connecting itineraries, we can remove all of
these hp variables with some risk. In this example, flight copies la1 and l f

2 do not
form a potentially connecting itinerary.

Build RMP

Initialize C̃

Run Branch & Bound

until the next integer

solution is found

Solve LP

relaxation of

Formulation 1

For current f
′

lkπ

Compute hp, p ∈ P (C̃)

ZI ← ZR +
∑

p∈P (C̃)

wphp

gap← (ZL − ZI)/ZI

Check if∑
p∈C(l1,l2)

hp = 1

holds for all

(l1, l2) ∈ C̃

Is gap

acceptable?

Add hp

variables?

Formulation 2

START

f
′

lkπ and ZR

No

No

Yes

ZL

Formulation 2

STOP

Yes

Update RMP and C̃

Continue Branch & Bound
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Figure 5: Solution algorithm for the robust schedule design model

objective function value of RMP as ZR and let its solution for
flkπ variables be denoted by f ′lkπ. If connection p ∈ P(C̃) is en-
abled in this current integer solution, we set hp to 1; otherwise,
we set hp to 0, for each p ∈ P(C̃). The objective function value
of the current feasible solution for Formulation 2, denoted ZI

is then equal to ZR +
∑

p∈P(C̃) wphp. We compute the optimality
gap as gap = (ZL − ZI)/ZI . If the optimality gap is acceptable,
that is, within our defined threshold value, the algorithm ter-
minates; otherwise, we compute the value of

∑
p∈C(l1,l2) hp, for

each (l1, l2) ∈ C̃. For each (l1, l2) ∈ C̃ for which h(l1,l2) , 1, all
columns corresponding to hp, p ∈ C(l1, l2) are added to RMP
and C̃ is updated as follows: C̃ ← C̃ \ (l1, l2). Next, RMP is re-
solved. If h(l1,l2) = 1 holds true for all (l1, l2) ∈ C̃, we continue
the branch-and-bound algorithm to identify another feasible so-
lution to Formulation 2.

This approach is different from conventional column genera-
tion in that the columns excluded from the RMP include those
that appear in the basic feasible solution, that is, we exclude
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columns whose corresponding decision variables are nonzero
in the optimal solution. The consequence is that although the
optimal solution to our RMP is the same as that to the original
problem, the optimal objective function value of our RMP can
be different. In conventional column generation, the columns
excluded are those that do not appear in the basic feasible so-
lution; hence, not only is the optimal solution to the restricted
problem the same as that to the original problem, but also the
optimal objective function value of the restricted problem is the
same.

4. Case Study

In this section, using data obtained from a major U.S. airline,
we compare the performance of the robust de-banked schedule
to that of an existing de-banked schedule in a dynamic schedul-
ing environment. The airline providing us data operates a hub-
and-spoke network with approximately 1000 flight legs serving
about 100 cities daily, and about 300 flight legs departing from
and 300 flight legs arriving at the major hub each day. The num-
ber of departures and the number of arrivals are each limited to
5 per 10-minute interval, respectively.

In the robust schedule design model, seven copies of each
flight leg l are created (that is, a = 3), placing one each at -
30, -20, -10, 0, +10, +20, and +30 minutes offset from leg l’s
scheduled departure time in the original schedule.According to
rules from the airline, MinCT is set to 25 minutes and MaxCT
is set to 180 minutes.

In our experiments with the robust schedule design model,
we consider as potentially connecting itineraries those that vio-
late the minimum or maximum connection time requirement
by 15 minutes. That is, T1 = MinCT − 15 minutes and
T2 = MaxCT + 15 minutes. In dynamic airline scheduling,
those slightly infeasible itineraries with connection times be-
tween T1 and MinCT can be made feasible, that is, their con-
nection times can become slightly longer than MinCT , if flight
legs are re-timed. Similarly, those slightly infeasible itineraries
with connection times between MaxCT and T2 can be made
feasible, that is, their connection times can become slightly
shorter than MaxCT , if flight legs are re-timed.

4.1. Computational Results
The robust schedule design model is implemented in C using

ILOG CPLEX 9.0. Computational experiments are conducted
on a workstation equipped with one Intel Pentium 4 2.8 GHz
processor and 1 GB RAM.

In Table 1, we report, for Formulations 1 and 2, the sizes of
the models after CPLEX preprocessing [see 25, p. 322-324],
and the optimal objective function values of the corresponding
LP relaxations. Formulation 1 provides tighter bound than For-
mulation 2, and hence, we use it to generate bounds with which
to measure the optimality gap of integer solutions.

Table 2 summarizes the computational performance of For-
mulations 1 and 2 during branch-and-bound. We can see that
the number of rows, columns, and non-zeros of the RMP are
significantly reduced when compared to those reported in Ta-
ble 1. The fourth row reports the number of fractional variables

Formulation 1 Formulation 2
Num. of Rows 221,858 36,408
Num. of Cols. 514,834 514,921
Num. of NZ. 1,200,925 1,469,236
ZL 129,142 142,739

Table 1: Comparison of LP relaxations for Formulations 1 and 2 for the full
problem after CPLEX preprocessing

Fm. 1 Fm. 2
Statistics of the Initial RMP
Num. of rows 98,363 24,431
Num. of columns 193,741 193,803
Num. of non-zeros 436,733 504,118
Num. of fractionl var. at root node 3,225 3,572
Num. of node searched until first integer so-
lution

Not found 760

Total num. of nodes searched in 10 hrs. 127 9, 037
Total number of hp variables 872,193
Number of hp variables included in final
RMP

139,051

ZL from Formulation 1 129,142
ZI from Formulation 2 126,217
Optimality Gap (ZL − ZI )/ZI 2.32%

Table 2: Branch-and-bound results for Formulations 1 and 2. Problem sizes are
reported after CPLEX preprocessing

at the root node. The fifth row reports the number of nodes
searched in the branch-and-bound tree until the first integer so-
lution is found. Formulation 1 fails to find integer solutions in
10 hours, the maximum allowable solution time. The sixth row
reports the total number of nodes searched in 10 hours. Clearly,
when exploring the branch-and-bound tree, Formulation 2 per-
forms much better than Formulation 1. The next section of the
table reports the total number of hp variables in the full problem
of Formulation 2 and the number of such variables included in
the final RMP. About 15.9% of them are included in final RMP.
When the algorithm terminates, the objective function value of
Formulation 2 is 126,217 with an optimality gap of 2.32%.

4.2. Dynamic Scheduling Results

For the existing de-banked schedule and the robust sched-
ule generated by our robust schedule design model, we conduct
the dynamic scheduling experiments detailed in [1] for oper-
ations spanning one week. The process is illustrated in Fig-
ure 6. The booking period is divided into two periods by the
one-time schedule re-optimization point. We first flow uncon-
strained passenger demands in Period 1 through both the origi-
nal schedule and the robust schedule. Then, using the schedule
re-optimization model (which is part of the dynamic scheduling
process), we re-optimize the original schedule and the robust
schedule separately using the same updated demand forecast.
Next, we flow unconstrained passenger demands in Period 2
through the modified schedules and obtain the final passenger
profit at departure date for both schedules. Finally, we compare
passenger profits for each schedule to gauge the benefit of our
robust schedule design model.

According to results reported in [1, 10], we set the dy-
namic airline scheduling parameters as follows: a one-time re-
optimization point is set 21-days prior to departure; the number
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Figure 6: Illustration of the dynamic scheduling experiment

of re-timed flight legs is limited to 100 per day; and the number
of re-fleeted flight legs is unconstrained. When we re-optimize
the flight schedule in the dynamic scheduling process, we use
historical demand averages as the forecasts for future demand.
Because airlines typically utilize more sophisticated, and hence
more accurate, forecasting engines, the schedule’s performance
under this scenario provide an estimate of a lower bound on the
expected impacts.

The unconstrained demand in a given market for Period i
(i = 1, 2) is sampled from a normal distribution with param-
eters estimated from historical data. In a given market, we
model the unconstrained demand for market m as a normal dis-
tribution with mean Di

m and variance σi
m, where Di

m and σi
m

are estimated from historical data. We then generate the sim-
ulated demand for market m in period i, Dis

m by drawing from
the following normal distribution N(Di

m, σ
i
m). In Table 3, we

show the daily profits for the original schedule and the robust
schedule in a week’s operation. For each individual day in this
week, we generate 20 instances of demand and report the av-
erage profit for the original schedule (Column 2), the average
profit for the robust schedule (Column 3), the absolute change
in profitability (Column 4), and the percentage change in prof-
itability (Column 5). In the last row, we average the numbers
across all seven days. On average, the daily profit generated
in the robust schedule is $57,917 or 2.81% higher than that in
the original de-banked schedule. These results show that our
de-banking model successfully generates a more robust sched-
ule that better handles demand uncertainty, that is, generates
higher profit, in a dynamic scheduling environment.

Day Original Robust Profit Incr. Pct. Incr.
1 2,871,652 2,920,183 48,531 1.69%
2 2,183,397 2,260,034 76,637 3.51%
3 1,089,048 1,117,908 28,860 2.65%
4 1,475,938 1,523,315 47,378 3.21%
5 2,271,185 2,326,829 55,644 2.45%
6 2,837,982 2,935,609 97,627 3.44%
7 1,297,725 1,348,466 50,741 3.91%

Average 2,003,847 2,061,764 57,917 2.81%

Table 3: Comparisons of schedule profitability between the original schedule
and the robust schedule for each individual day in a week’s operation (in dol-
lars).

Because the goal of our robust scheduling model is to cre-
ate more potentially connecting itineraries to facilitate the han-

dling of demand variability in a dynamic scheduling context,
we further test the performance of our robust schedule when
demand variability changes. Thus, instead of sampling from
N(Di

m, σ
i
m), we sample from N(Di

m, µσ
i
m), where µ > 0 controls

the variability of the simulated demand. For the one week’s op-
eration, we first reduce demand variability by setting µ = 0.8
and later increase demand variability by setting µ = 1.2. Ta-
ble 4 summaries the results when µ = 0.8. We observe that
the average daily profitability increased by $28,067 or 1.44%.
This indicates that although our robust schedule still outper-
forms the original schedule, the amount of improvement gets
smaller because of less demand variability. In Table 5, we re-
port the results when µ takes value 1.2. The robust schedule de-
livers much greater lift in profitability: the average daily profit
increase is $90,772 or 4.20%. This indicates that the greater the
demand variability, the more our robust schedule outperforms
the existing schedule.

Day Original Robust Profit Incr. Pct. Incr.
1 3,181,886 3,235,342 53,456 1.68%
2 2,161,779 2,198,313 36,534 1.69%
3 939,341 947,513 8,172 0.87%
4 1,408,421 1,430,814 22,394 1.59%
5 2,106,008 2,140,968 34,960 1.66%
6 2,603,654 2,628,909 25,255 0.97%
7 1,245,816 1,261,513 15,697 1.26%

Average 1,949,558 1,977,625 28,067 1.44%

Table 4: Comparisons of schedule profitability between the original schedule
and the robust schedule for each individual day in a week’s operation (in dol-
lars). µ = 0.8

Day Original Robust Profit Incr. Pct. Incr.
1 3,570,874 3,764,059 193,184 5.41%
2 2,199,913 2,303,748 103,836 4.72%
3 965,793 1,012,634 46,841 4.85%
4 1,556,112 1,594,703 38,592 2.48%
5 2,475,592 2,537,234 61,642 2.49%
6 2,425,415 2,541,107 115,692 4.77%
7 1,297,076 1,372,696 75,620 5.83%

Average 2,070,111 2,160,883 90,772 4.20%

Table 5: Comparisons of schedule profitability between the original schedule
and the robust schedule for each individual day in a week’s operation (in dol-
lars). µ = 1.2

5. Conclusion and Future Research Directions

In this paper, we develop a robust schedule design model to
achieve maximal impact in a dynamic scheduling environment.
To the best of our knowledge, it is the first approach of this
type. We design a robust schedule design model to maximize
the number of potentially connecting itineraries weighted by
their associated revenues. Two equivalent formulations of this
model are presented and studied. We show through experiments
using data from a major U.S. airline, that the schedule gener-
ated by the robust schedule design model can achieve profit
improvement. Results also show that the greater the demand
variability, the greater the increase in profitability our robust
schedule design approach achieves.

Potential future research directions include:
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• Define additional metrics to measure schedule robustness.
In this paper, we use the number of potentially connect-
ing itineraries weighted by their respective revenues as
the metric defining schedule robustness. An important re-
search topic is to specify other metrics, especially those
that integrate re-timing and re-fleeting impacts, and mea-
sure their effectiveness in creating robust schedules from
which realized profits can be maximized.

• Build a feedback loop between robust planning models
and dynamic scheduling models. The original schedule
largely defines the set of feasible dynamic scheduling deci-
sions; but dynamic scheduling decisions provide valuable
information about the quality of the original schedule. If
profits improve by frequently and consistently re-timing
or re-fleeting particular flight legs, it might be possible to
modify the original schedule to reduce the need to re-time
and re-fleet those flight legs. A challenging research ques-
tion is to assess the potential for improving the original
schedule, using a feedback loop and simulations with our
dynamic and robust scheduling approaches.
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