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ABSTRACT

The minimal order Wiener filter is constructively derived for a linear,

time invariant, detectable system some of whose measurements are noiseless,
and a separation principle is derived for the general, singular LQG

problem.
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I. Introduction

Here we consider the system represented by

x(t) = Ax(t) + Bw(t), (1.1)

y(t) = Cx(t) + v(t), t>0 (1.2)

where w(-) and v(.) are sample vector valued functions of zero mean un-

correlated Gaussian white noise processes and the initial state x(O) is a

zero mean Gaussian random variable which is uncorrelated from w(t) and

v(t) for all t>O. The vector x(t) belongs to R7, m<n, w(t) belongs to

RP , p<n, the real matrices A,B,C have appropriate dimensions, C has full

rank, (C,A) is a detectable pair, w(-) and v(-) have intensities I and

R respectively, where I is the identity matrix in RP and R is real and

positive semidefinite. Let rank R = r<m. Then there is a nonsingular

transformation To = (Us, Wa)' in the space of measurement variables such

that,

ToRT IR1 O
0o 0

where R1 = UoRU' has full rank, and primes denote matrix transposition.

The transformed measurement vector T0 y(t) consists of two components,

one of which has associated noise with intensity R1 and the other of which

contains no noise. We write,

Y1 =UO = UOCX + UoV, (1.3)

Y 2 W0 y = W0 Cx (1.4)

In this paper, we show that under certain hypothesis on the matrices

A,B,C, there is an n-m+rth order steady-state unbiased optimal state estimator,
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th
which is the Wiener filter for an n-m+r-- order dynamical system. The

state of the filter is a linear functional of the measurements y(-) and

a finite number of time derivatives of the exact, or noiseless, measure-(

ments. Our hypothesis is precisely the dual of the strengthened,

generalized, Legendre-Clebsch condition for the dual optimal singular

regulator. The strengthened generalized Legendre-Clebsch condition

guarantees that all optimal controls are either regular or have finite

order of singularity. For a definition of order of singularity, see

Krener [1].

Our results will apply, not only to systems with some exact

measurements, but also to systems whose measurements contain colored

noise (signals whose correlation times are not short when compared

with times of interest in the system). Colored noise may be simulated

by a "shaping filter", whose system equations combine with the original

system equations in such a way that the augmented system appears as

though it has some noiseless measurements. Bryson and Johansen [2] in

1965 were the first to derive a Kalman filter for such singular systems,

but they did not carry their development beyond the case of a "singularity

or order one", that is the case when a regular (nonsingular) Kalman filter

results from replacing the exact measurements by their first time derivatives.

They thought there would always be only a finite number of differentiations

and replacements of exact meaurements needed to reduce the problem to a

nonsingular one, an assumption that is erroneous. A number of authors

have attempted to extend the Bryson-Johansen results for both continuous

and discrete systems, but none of them understood how to obtain the
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optimal state estimator in case replacement of the noiseless meaurements

by their first derivatives (or differences) did not result in a full rank

measurement noise intensity matrix. See, for example, [3]-[5].

In [6] we considered the singular, finite horizon, optimal state

estimation problem. There we showed that if the measurement noise

intensity matrix is singular then there is no optimal state estimator

(Kalman filter) whose state is a linear functional of only the original

measurements. We also showed that if when a finite number of time

derivatives of exact measurements replace the exact measurements in the

system representation and yield a new measurement noise intensity

matrix with full rank then there is an optimal state estimator which can

be described by the (m-r) exact measurement equations (1.4) together with

a dynamical system of order n-m+r. The optimal estimate is a linear

functional of the original measurements and a finite number of time

derivatives of the exact measurements. In [7] we considered steady-state

optimal state estimators and showed that when some of the dynamical

state equations are not affected by noise, i.e., when some states are

undisturbed by input noise, and when a finite number of time differentiations

and replacements of exact measurements result in a full rank new measure-

ment noise intensity matrix then the order of the optimal state estimator

may be reduced by the codimension of the "disturbable subspace". However,

we did not show how to reduce the order further by using the exact measure-

ments as new states. The difficulty was that detectability may be destroyed

by the needed coordinate transformations and reduction of the state space.

Detectability is of no concern for estimation over a finite time horizon,

but is crucial in the steady state. Lemma 2.2 shows that detectability can
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be preserved if we choose our state coordinate transformation wisely.

II. Some Preliminary Lemmas

Lemma 2.1. Let A be a homomorphism of Rn into itself and let C:Rn Rm

be epic. Then there exists a map V such that the map defined by

(C', V')' is an isomorphism and if (G,H)' = (C',V') then all eigen-

values of VAH are eigenvalues of A.

Proof. First let us suppose that A has n linearly independent eigenvectors.

Then there are (n-m) linearly independent eigenvectors vii = 1,2,...,

(n-m) of A* (the complex conjugate transpose of A) for which the matrix

,th
V, whose i-- row is v* satisfies

rank (C*, V*) = n

Define the (mutually orthogonal) unit vectors wi, i=l,...,n-m, by

v* = wV. (2.1)
i i

Then since VH = I we have
n-m

w*= vH . (2.2)
1 1

For each i there is an eigenvalue, Xi, of A satisfying

v*A = X.v* . (2.3)

Postmultiplying (2.3) by H yields

v*AH = X.wi (2.4)
1 11

and for all i these equations may be written as

VAH = diag (X1 .n-m (2.5)1'"'' n-in~~~~~~~~(.5
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Thus, the eigenvalues of VAH are precisely Xl'... ,X . If V and H are
n-m

complex-valued then there is a nonsingular transformation L so that LV

-1
and HL are real. We may then substitute LV for V in the construction

described above.

Now suppose that A* has fewer than n linearly independent

eigenvectors. Then we can augment an appropriate set of linearly in-

dependent eigenvectors with enough generalized eigenvectors to yield a

total of (n-m) linearily independent vectors which we can stack to-

gether in rows to form the matrix V in such a way that (C',V') is an

isomorphism. If v. is an eigenvector then (2.3) holds. If v. is a

generalized eigenvector then either we can choose vl,.. ,v so that

v*A = X.v* + v* (2.6)

for some Z = 1,..., (n-m), or

v*A = X.v* + c* (2.7)

where c* is a linear combination of the rows of C. In the latter case

we have c*H = 0, so that if we again define w., i=1,2,..., n-m as in

(2.1), then from (2.7) we obtain,

v*AH = w* . (2.8)
J i 3

If an equation like (2.7) holds for each j = 1,..., n-m, then again VAH

is diagonal with its diagonal entries all eigenvalues of A. Now

suppose that exactly one row of V is a generalized eigenvector of A*

and that (2.6) holds. Without loss of generality we may suppose that '

j = n-m and Q=n-m-l. In this case we find that
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0 . . . O 0
1

VAH 0 X, . . 0 0 ,

\O O . . . 1 X
n-m

and again the eigenvalues of VAH are eigenvalues of A. It is now clear

that if more than one row of V is a generalized eigenvector of A* and

if the vectors wi are defined by (2.1) then VAH is in Jordan normal form

and all its diagonal entries are eigenvalues of A.

The matrix pair (C,A) is said to be detectable if there is a matrix

F such that A-FC is a stable matrix. A square matrix is stable if all its

eigenvalues have negative real parts.

Lemma 2.2. Suppose A and C satisfy the hypothesis of the previous lemma

and suppose that (C,A) is a detectable pair. Let O<r<m and write

C = (C, C')' where C 1 has r rows. Then there exists a map V so that

-1
(C', V') is an isomorphism, and if (C', V') = (G,H)' then (C1H, VAH)

is a detectable pair.

Proof. Choose F = (F1, F2 ) so that A-FC = A-F1C1 - F2C 2 is stable and

let V be a matrix whose existence relative to the pair (A-FC,C2) is asserted

in Lemma 3.1. Let (C>,V')-l = (G,H)'. Then the eigenvalues.of V(A-FC)H are

all in the open left half plane and

V(A-FC)H = V(A-F1C1 ) H = VAH - VF1C1H.

Thus (C1H, VAH) is a detectable pair.
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III. The Optimal Filter in Case of a First Order Singularity

Consider the system described by (1.1) and (1.3)-(1.4) where (C,A)

is detectable. Differentiate (1.4) with respect to time noting (1.1) to

obtain

Y2 = W0 CAx + WoCBw (3.1)

If WOCBB'C'W' has full rank define D = W0 C. Let z1 = Yl and z2 = Y2

be the new set of measurement variables. Our system is now equivalently

represented by (1.1) and

i = UOCx + U0v (3.2)

z2 = WCX + W0 CBw (3.3)

Define C C1 = W C and let (V,H) be the matrix pair whose existence

is asserted in Lemma 2.2. Define a nonsingular coordinate transformation

in the state space by (1.4) and

= Vx, (3.4)

-1
and let (C'W6, V') = (G,H)'. Then

x = Gy2 + Hi . (3.5)

Pre-multiplying (1.1) by V and substituting (1.4) and (3.5) into the

result and also into (3.2)-(3.3), we obtain

= VAHE + VAGy2 + VBw (3.6)

1 z1 - UoCGy UoCHG + U v (3.7)

A
~2= z2 - W0CGy2 = DoAHE + Do0 Bw (3.8)
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We must now uncorrelate the state and measurement noise in such a

way that the property of detectability is not destroyed. To this end let

k=0, let Q = BB' and define

Mk = QD;IDkQD -l

Add zero to the right hand side of (3.6) in the form

Vt (n2-DkAHD-D kBw) . (3.9)

We obtain,

= V(I-MkDk)AHS + VAGy2 + VMk2

+ V(I-MkDk)Bw, (3.10)

the matrix pair,

((H'C'U', H'A'D')', V(I-MkDk)AH) (3.11)

is detectable and the noise signal V(I-MkDk)Bw is uncorrelated from the

measurement noise, (v'U , w'B'D')'. Hence, by earlier results [7]

the system represented by (3.10), (3.7) and (3.8) has a Wiener filter

whose state 5 is described by,

=VAH + VAGy2 + K1 (nl-U0CHt)

+ K2 (n2 -DkAHS ) (3.12)

where,

K1 = PHC'(UoRU6) , K2 = (PH'A' + VQV')D'(DkQD~) (3.13)K PH'C'U I K2 k 
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P is the maximal positive semidefinite solution of the algebraic Riccati

equation,

VAHP + PH'A'V' + VQV' = K UoRU'K' + K2DkQD'K' (3.14)

and the restriction of the map

(VA - K1U0C - K2DkA)H (3.15)

to the disturbable (i.e., controllable) subspace of the pair

(V (i-MDk)AH, V (I-MkDk)B) (3.16)

is stable.

We have found that if D BB'D0 is nonsingular, then there is a linear

state estimator for the system described by (1.1)-(1.2) which minimizes

lim tr E[(x(t) - x(t)) (x(t) - x(t))']. This estimator is described by

t-co
(1.4), (3.4) and (3.12) - (3.14) and the estimator dynamics are stable

on the disturbable subspace of the (n-m+r) - dimensional state space.

The initial condition §(0+ ) may be updated from V x(O) = 0 by use of

the exact measurement vector Y2 (0
+ ). However, as we shall see in.the

next section, the best choice of U(0 + ) may indeed by null.
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IV. Further Order Reduction of the Filter

Since the map (3.14) may not be stable it is desirable, for computational

purposes, to remove from consideration those states which lie in the un-

disturbable subspace. To this end, with k=O define maps Ak and Bk by

Ak = V(I-MkDk)AH, Bk = V(I-MkDk)B. (4.1)

With these substitutions (3.10) becomes

-= Ak + VAGy 2 + + Bkw (4.2)

Let N = n-m+r and define

N-l k-l
Nk = r) Ker(B'(A') . (4.3)

i=l

Let <AkBk> denote the orthogonal complement of Nk in RN . Then Nk is the

undisturbable subspace of the pair (Ak,Bk) and <AkIBk> is the disturbable

(controllable) subspace of the pair. In a coordinate system compatible

with the decomposition

R = Nk <IABk>k (4.4)

we have t' = (E1' ,)

A 2k ) Bk ) V = H = (H1 ,H2) .

1 = A2k + VAGY + V

Then,

1= A lkl + V1 AGy 2
+ VlMkT2



~2 = A~2 + A2 k%1 + V2AGY2
+ V2Mk2 +kW (4.6)

= 1 1- UoCHE1 l = UoCH2E 2 + U0v (4.7)

2 = '2 - DkAHiI = DkAH2D2 + (4.8)

Note that (4.5) has no additive noise. The measurements Y2 and n2 are

known functions and so may be considered as inputs. Hence, the best

estimate of E1 must be given by

E1 = Alk E + V1AGy 2 + VlMkTn2 ' E0) 0. (4.9)

Then if we define E(t) = E(t) - i(t), we have,

1 = Alk1

and since E[1 (0)] = 0 we must have 1l(t) - 0. Thus, we may suppose

that l (-) is a known function. With this in mind C1 and 2 may be

considered as new measurement variables. Since the pair (Ak, Bk) is

controllable and the pair ((:HC'U;, H{A'D~), Ak) is detectable (see

[81) then by standard theory [91 the Wiener filter for the system

described by (4.6)-(4.8) is represented by

n2= Aki2 + A2 kE 1 + V 2AGY2 + V 2MkF2

+ Ki (i-U CH2E2) + K2 (+ 2- D k A H 2 E 2
) , (4.10)

where

K = PHC'U;O(UoRU)- , K2 = (PHIA' + BkB)Dk (D Q D k (4.11)
k 2 kk

P is the unique, symmetric, positive definite solution of the algebraic

Riccati equation,
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AkP + PA + BkB] = K1 (UoRU%)K{ + K2 (DkQDk)KF, (4.12)

and the matrix

Ak - (K1UoC + K2DkA)H2 (4.13)

is stable. The initial condition on 52 may be chosen to satisfy,

2 (0+) = °, (4.14)

for since the matrix (4.13) is stable, the steady state value of 52 is un-

affected by the initial condition. The best steady-state estimate x(t) of the

original state x(t) is given by

A

x(t) = Gy2(t) + H (t) . (4.15)

Contrary to popular belief, there is no information to help us update

the estimate i(0) once Y2(0) is known. In references [2 1 and [101 it is

suggested that the initial condition x(0) be updated by means of a formula

that involves the expression

(R+CPC') )

We note here that the kernel of R must be contained in the kernel of PC' since

PC'W8 must vanish - there can be no estimation error for those (transformed)

state variables which are components of the exact measurement W0 y. Thus,

if R is singular then so is (R+CPC').
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5. Higher Order Conditions for Optimality: k>l.

Suppose DoQD% does not have full rank. Then there exists a sequence

{Ti}, i=l,...,k of transformations,

T! = (U!, W), (5.1)

such that for i = 1,2,..., k-l,

i-i
B' (A') C'W'W' ... W! _U i has full rank (5.2)

B'(A') c'w'w' ... W! = 0 (5.3)

and

k-i
B'(A') C'W' ... W'_ 1 has full rank (5.4)

For k>l let Uk be an identity map and define Dk by,

D'k= (C' k-i
Dk = (C'WcUiI A'C'W6WiU,...,(A') C'W'W. .. W U') (5.5)

If D 0OD does not have full rank, then k>l, and from (3.1) we

find

U1y2 = UiWoCAx + U1WoCBw,

W1Y 2 = W1WOCAX

and

WlY2 = W1 WCA 
2 x + W1 WoCABw (5.6)

If now W1 WoCAB has maximal rank then the sequence (5.1) stops with k=l and

D; = (C'W'UT, A'C'W'W'). If D1QD{ has full rank, we define zl as before,

and we define z2 = U1y2 and z3 = W1 Y 2 as new measurement vectors. The measure-

ment noise now has a full rank intensity matrix. We define V, G, H, 1l and

as before, and define new measurements n21, n22 by
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21 2 U1 WCAG 2 = U1WCAH + U1WCBw (5.7)

An 22 A 3 - two 2G2= W1W0CA2HE + W1WOCABw . (5.8)

A
Let = ( n 1 ' ,2) Then with k=l we have,

=2 
= DkAH~ + DkBw (5.9)

Then exactly as before, the system described by (3.10), (3.7) and (5.9) has an

optimal steady-state estimator which is described by (1.4), (3.5), (4.9) - (4.12)

and (4.14), and the matrix (4.13) is stable. Note that DkQDk > 0 implies (5.4).

It can easily be shown by induction that if (5.2) - (5.3) hold for

i=l,...,k-l, and if DkQDk > 0 then the steady state, optimal state estimator

is given by (1.4), (3.5), (4.9)-(4.12) and (4.14) and the matrix (4.13) is

stable. Note that by the Cayley-Hamilton Theorem, D +j has the same number

of linearly independent rows as D for j>0. We have thus proved the following

theorem.

Theorem 5.1. Let A; Rn + Rn, C:R + Rm, : RP ÷ R , and consider the uncertain

system described by (1.1) and (1.3)-(1.4). Suppose the pair (C,A) is de-

tectable and rank R=r. Let {Ti}, i=1,2,...,k-1 denote a sequence of isomorphisms

satisfying (5.1)-(5.3). If DkQDk has full rank then k<n, and in a coordinate

system compatible with the decomposition (4.4) there exists a Wiener filter

with state i(t) satisfying (4.9)-(4.12) and (4.14) and the matrix (4.13) is

stable. The best estimate x(t) of the original state x(t) is a linear combina-

tion of the exact measurements, W0 y(t) and of i(t) and E is described by an

(n-m+r) th order dynamical system. The error vector j(t) lives in the dis-

turbable subspace of the pair (Ak,Bk ) where Ak and Bk are defined by (4.1).
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When DkQDk has full rank, we shall say that our optimal estimator has

order of singularity k+l. The condition DkQDk > 0 is precisely the dual of

the condition guaranteeing that each component of the optimal control of a dual

singular regulator have order of singularity k or less. This latter condition

was derived in earlier work [11].

It may happen that there is no nonnegative integer k for which DkQD' has

full rank. In this event the steady-state, optimal state estimator cannot be

derived by our .methods and we shall say that this estimator has infinite order

of singularity.
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VI. The Singular Separation Principle

Here we consider the optimal stochastic control problem defined by

x = Ax + Bu + w, (6.1)

y = Cx + v, t > 0. (6.2)

We seek a control function u*(.) to minimize the cost functional,

J(u) = lim - E (x'Xx +2x'Su + uUu)dt] (6.3)
T-~o 

where w, v and x(0) are described as before, except that now the semi-

definite intensity Q of the process w(') is not BB'. The weighting matrix U

is symmetric and nonnegative definite. When U is not strictly positive

definite and the analogous deterministic control problem has finite order

of singularity then there is a finite sequence of nonsingular transformations

of the control and state variables which will put the problem into a similar

form but with a strictly positive definite control weighting matrix. So with-

out loss of generality we may suppose that U is strictly positive definite

and that the solution of the deterministic optimal control problem exists.

We suppose further that the pair (C,A) is detectable and the pair (A,B) is

stabilizable.

Define the transformation To = (U', W')' as before and by Lemma 3.2 we

can find a matrix V such that (C'WN, V') has full rank and if (C'W;V') 1

(G, H)', then the pair ((C'u 0, A'C'W')', VAH), is detectable. We further

suppose that the estimation problem has finite order of singularity and that

there exists a nonnegative integer k such that DkQDk is nonsingular. By

standard arguments [12] we obtain a separation principle. The optimal

control u* is given by,
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u* = -U (B'P + S')x, (6.4)

^ ^ (6.5)
x = GWOY + HE

= AH + V AGW 0 y + VBu

+ K1(T -UOCHC) + K2 ( 2 -DkAHE), (6.6)

where P is the maximal symmetric positive semidefinite solution of the

algebraic Riccati equation,

(A-BU 1S' ) 'P + P(A-BU -1S') + (X-SU- S') = PBU-1B'P, (6.7)

K! and K2 satisfy

Kl = TH'C'U(UORU') (6.8)
1 000

K2 = (TH'A' + VQV')Dk(DkQD) -1 (6.9)

T is the maximal symmetric positive semidefinite solution of the algebraic

Riccati equation,

VAHT + TH'A'V' + VOV' = K (UoRU')K' + K2( D k QDI)K , (6.10)1001 2 k k 2(610)

and T1 and X2 are observation variables defined by

n1 = UoCHE + UOv, (6,11)

~2 = DkAHE + Dkw (6.12)

Note from equations (6.4)-(6.5) that the necessary condition for

optimality derived in [13], namely that if the optimal control is given by

u* = ZlE + Z2y then trace (Z UZ2R) = 0, is automatically satisfied since

-1
Z2R = -U (B'P+S')GW R = 0.2 0
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VII. Conclusion.

We have seen that in case there is a nonnegative integer k for which the

matrix DkQDk has full rank then a steady-state optimal state estimator of

reduced order can be designed for the uncertain system described by (1.1)-(1.2).

In this case the order of the optimal estimator is reduced by the number of

noise-free measurements, and the error vector lives in an even lower

dimensional space when not all states are disturbable by input noise. Further-

more the solution of this singular estimation problem is the dual of the

solution of the dual optimal regulator problem if all optimal controls have

finite order of singularity. We have also combined the results

of the deterministic optimal regulator problem with the singular state estimation

problem to solve the general singular LQG problem and state a singular

separation principle.
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