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Abstract

The thermoelectric figure of merit (Z) is a measure of the usefulness of 2 material for
thermoelectric cooling applications. Presently, the materials with the highest Z are
Bi,Te; alloys, with a ZT of 1.0 at T = 300 K. Since the 1960s, only slow progress
has been made in enhancing Z, either in Bi;Te; alloys or in other thermoelectric
materials. So far, all the materials used in applications have been in bulk form. In
this thesis, I propose that it may be possible to increase Z in certain materials by
preparing them in the form of two-dimensional (2D) quantum-well superlattices. I
have done calculations to investigate the potential for such an approach. The calcula-
tions show that layering has the potential to increase significantly the Z of a material
over its bulk value, and values of Z much higher than the bulk Bi,Te; alloys should
be achievable. In addition to improving the Z of good bulk thermoelectric materials,
layering may also result in a high Z for some two-band or mixed conduction materials
which kave a very low Z in bulk form because the electron and hole contributions
to the Seebeck coefficient have opposite signs. This result allows the possibility of
using a new class of materials as thermoelectric refrigeration elements. Calculations
were also done for one-dimensional (1D) materials and they show that 1D materi-
als such as quantum wires may also achieve a high Z, higher than 2D quantum-well
superlattices. In order to verify my theoretical predictions experimentally, I did an ex-
perimental investigation using PbTe/Pb;_.Eu,Te quantum-well superlattices grown
by molecular beam epitaxy. Thermoelectric and other transport measurements were
done as a function of quantum-well thickness and doping. The results were found to
be consistent with the theoretical predictions and indicate a significant enhancement
of Z within the quantum wells over bulk 3D values. The experimental results further
indicate that an increase in Z over the best bulk values may be possible through
quantum confinement eftccts using quantum-well superlattices.

Thesis Supervisor: Mildred S. Dresselhaus
Title: Institute Professor
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Chapter 1

Introduction to Thermoelectricity

1.1 Thermoelectric Effects

1.i.1 The Seebeck Effect

When a temperature gradient is maintained in a material and no electric current is
allowed to flow, there will be a steady-state electrostatic potential difference between
the high- and low-temperature regions of the specimen. The potential difference AV
arises from the diffusion of charge carriers from the high- to low-temperature regions,

and is directly proporticnal to the temperature difference AT.
AV = —SAT. (1.1)

The constant of proportionality S is known as the Seebeck coeflicient or thermoelectric

power of the material. This effect was discovered by Thomas Seebeck in 1821.

1.1.2 The Peltier Effect

If an electric current is driven in a circuit of two dissimilar materials that is maintained
at a uniform temperature, then heat will be evolved at one junction and absorbed at

the other (Fig. 1-1). This is because an isothermal electric current (/) in a material

13
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Figure 1-1: The Peltier Effect. A current I flows in a circuit of two dissimilar materials
at uniform temperature T. Thermal current gu; is evolved at one junction and
supplied at the other.

is accompanied by a thermal current,

q =11, (1.2)

where II is known as the Peltier coefficient. Because the electric current is uniform
in the closed circuit and the Peltier coefficient differs from material to material, the
thermal current in the two materials will not be equal, and the difference in thermal
current gqirs must be evolved at one junction and supplied to the other (as shown in
Fig. 1-1) if the uniform temperature is to be maintained. This effect was discovered
by Jean Peltier in 1834. One of the most common applications of the Peltier effect is
the thermocouple, which is used tc measure temperature differences.

The application cf the theory of thermodynamics [1] leads to the following relation

between the Seebeck and Peltier coeflicients:

II = ST, (1.3)

where T is the absolute temperature.

14



Heat Source TC

Heat Sink TH

Figure 1-2: Simple thermoelectric refrigerator.
1.2 Theory of Thermoelectric Refrigeration

This section is summarized from chapter 1 of Ref. [2], an excellent book on ther-
moelectricity. Figure 1-2 shows a simple thermoelectric refrigerator, which consists
of a thermocouple with branches having the parameters S;, o1, k; and S, o3, ks,
respectively, where S is the Seebeck coefficient, o is the electrical conductivity and «
is the thermal conductivity. The branches have constant cross-sectional areas A, and
A, and are of length [; and [,. They are joined by 2 link of zero electrical resistance at
the heat source and by a source of emf, which produces a current I at the heat sink.
The temperatures of the source and sink are 7¢ and Ty, respectively. It is assumed
that there is no heat transfer to or from the surroundings other than at the source or
the sink.

We wish to calculate the coefficient of performance for a given temperature differ-
ence between the hot and cold junctions. The coefficient of performance is defined as
the ratio of the rate of cocling of the heat source to the rate of expenditure of electri-
cal energy. Another quantity of interest is the maximum temperature difference ihat
can be achieved when no heat has to be extracted from the source.

The rate of heat flow ¢; within one of the conductors i(z = 1 or 2) at a distance

15
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z from the heat source is given by

daT
¢ =FSIT - KA (1.4)

where T is the absolute temperature at = and the Peltier heat flow II/ has been
expressed as S;IT using Eq. (1.3). The F sigr occurs because the electric current I
is taken to flow in the -z direction in branch 1, and in the +z direction in branch 2.

The rate of heat generation per unit length due to Joule heating is given by

I? 27
oid; = A (1)

It is noted that the thermoelectric effects are not involved in this equation since the
rate of change of Peltier heat flow along the conductor is just equal to the rate of
working against the Seebeck emf.

Equation (1.5) must be solved with the boundary conditions (T' = T¢)-=0 and
(T = Tq)z=i, where [ is the length of a branch. Thus it is found that

_ Iz[z — (1/2)] A'.,'A,'(T — T(,v)
g = Y - ;’ . (1.6)

The cooling power gc at the heat source is the sum of the contributions ¢, and q.
at £ = 0. Remembering that the current flow is in opposite directions in the two
branches (it is assumed that it is in the correct sense to give cooling rather than
heating of the source and that S; > S;)

I*R
qc = (52 - Sl)ITC - T - K(TH - Tc), (17)

where
l1 lz

- Ald'l Azd’z

R (1.8)

is the total electrical resistance of the branches in series and

A1 K1 Azry

K L + I (1.9)

16



is the total thermal conductance of the branches in parallel.

The overall rate of expenditure of electrical energy in one branch is given by

I
o A’

w; = :i:/ SIdT+/ —d:n- (1.10)

Thus for both branches
w= (S - S)I(Tg — Tc) + I’R (1.11)

Here we have assumed that S; and o; are temperature-independent for the range T¢
to Tg. This is sufficient for the purpose of obtaining criteria for the selection of good
thermoelectric materials [2].

The coeflicient of performance ¢ equal to gc/w is found from Egs. (1.7) and (1.11):

(S2 — S)ITc — I*R/2 — K(Tg — Tc)

(Sz — $1)I(Tg — Tc) + I*R (1.12)

¢=

The electric current I, for maximum cooling power is obtained by making dqc/dI

in Eq. (1.7) equel to zero. It is then found that

(S2 — 51)Tc

I, = R (1.13)
and the corresponding coefficient of performance is
1ZTE - (Ty — T¢)
_ 244c H c
o= ZTaTo , (1.14)
where
(82 — 51)°
Z = -———"—. .
KR (1.15)

If the heat source is removed, the coefficient of performance falls to zero and the

temperature difference rises until

ZT}. (1.16)

BN | =

(TH - TC)maa =

17



Since the quantity Z controls both the maximum temperature difference according

to Eq. (1.16) and the coefficient of performance according to Eq. (1.14), it is called

the figure of merit of the device.

For a given pair of branch materials, there is a maximum value of Z when the

dimensions of the branches are optimized. It can be easily shown that this occurs

(Al/’l) _ [7Re (1.17)
A2/l opt o1K1 .

When the dimensions are optimized using Eq. (1.17), the figure of merit becomes

when

(52— 51)?

2= (o)t (mefony

(1.18)

Although the overall Z of a cooling device depends on the properties of the ma-
terials in both branches, it is useful to have a measure of the usefulness of a given
material for one branch. In practice, in the region of room temperature, advances in
positive and negative thermoelectric materials have been made at more or less the
same rate, i.e. the values of S, and —S, and of o,/x; and o,/k, have been almost
equal to each other. Under these conditions, it is iegitimate to use figures of merit

Z, and Z, for the two branches, where

5-20','
= it 1.1
Zi=L (1.19)
since
z~4 -;-zz (1.20)

Equation (1.19) is the definition of the thermoelectric figure of merit of a material.
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1.3 The Thermecelectric Figure of Merit

For a material to be good thermoelectric cooler, it must have a high thermoelectric

figure of merit
S?o

K

Z= (1.21)

where S is the thermoelectric power (Seebeck coefficient), o is the electrical conduc-
tivity, and k is the thermal conductivity.

For a material to have a high Z, one requires a high thermoelectric power, S, a high
electrical conductivity, o, and a low thermal conductivity, . It is difficult to improve
Z in actual systems for the following reasons. Increasing the thermoelectric power S
for simple materials also leads to a simultaneous decrease in the electrical conductivity,
as will be shown later. Also, an increase in the electrical conductivity leads to a
comparable increase in the electronic contribution to the thermal conductivity because
of the Wiedemann-Franz law. So with known conventional solids, a limit is rapidly
obtained where a modification to any one of these parameters adversely affects the
other transport coeflicients so that the resulting Z for a given material at a given
temperature does not vary significantly. Presently, the materials with the highest
Z are isoelectronic Bi,Te; alloys such as BigsSby.sTes, with ZT ~ 1.0 at 300 K [2].
Only a small increase (10%) (3] in Z has been achieved in the last three decades, so
it is now felt that the Bi;Te; compounds may be nearing the limit of their potential
performance.

In this thesis, I propose that it may be possible to increase Z of some materials
significantly by preparing them in the form of quantum-well superlattices. These
structures may significantly alter Z since the electrons are now confined to move
in 2 dimensions, changing the band structure and the electronic density of states
(see Fig. 1-3). In addition to the density of states effect, the layering may reduce
the phonon thermal conductivity and therefore increase Z as phonons can now be
scattered by the interfaces between layers.

In the next chapter, general expressions for o, S, x are derived using the relaxation-

time approximation. Chapters 3 onward describe the results of original theoretical

19
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9(E)

—
E E E

Figure 1-3: The density of states g(E) for 3D, 2D and 1D systems.

and experimental work. The figure of merit is initially calculated for single-band,
anisotropic 3D bulk materials. These expressions are then extended to transport in
2D quantum-well superlattices, 1D quantum wire systems, and to mixed conduction
2D systems including both electron and hoie carriers. These transport results are then
used to calculate values for Z in low-dimensional materials. The calculations show
that reduced dimensionality has the potential to increase significantly (by factors of
several) the figure of merit. The main reason for this increase is that in 2D, unlike in
3D, one is able to increase o significantly without changing S. The Seebeck coefficient
S is sensitive only to the position of the Fermi level, as described in Ref. [2] and as
shown later. In 3D, one can increase the carrier density (and hence o) only by
increasing the Fermi level. This will reduce S as shown in Chapter 3. However, in
2D, because the electrons exist only in two dimensions, one can decrease the quantum
well thickness (the 3rd dimension) and cause an increase in carrier density per unit
volume without changing the Fermi level. Thus by decreasing the well width, one
can increase o while keeping S constant. In good thermoelectric materials such as
semiconductors, since x is dominated by the phonon contribution and is not affected
significantly by the change in electron density, this increase in o with constant S
results in an increase in Z.! A similar effect occurs in 1D. This is just a largely

hand-waving explanation for the increase in Z in 2D and is not intended to be deeply

'In practice, because of the finite electrenic thermal conductivity, the Fermi level will need to be
adjusted slightly as a function of well width to get the maximum Z; however, this does not change
the basic effect just described.

20



analytical - one needs to read and follow the calculations in the next few chapters for
a more rigorous understanding of the increase in Z in reduced dimensions.

The last chapter of the thesis describes an experimental investigation of a specific
quantum-well superlattice system to test the theoretical predictions. The experimen-
tal results are found to be consistent with theory and indicate that quantum-well

superlattices may indeed be used increase the thermoelectric figure of merit.

21



Chapter 2

General expressions for the

thermoelectric coefficients

General expressions for S, o, x are derived using the relaxation-time approximation.
Although the expressions shown are for 3D transport, they are derived in a form

which will enable extension to 2D and 1D transport.

2.1 The Relaxation-Time Approximation

The relaxation-time approximation has been used to describe successfully the trans-
port behavior of most metals and semiconductors in the region of room temperature.
A detailed treatment can be found in Ref. {4]; a brief summary of that account is
given here. The relaxation-time approximation assumes that given a nonequilibrium
electron distribution function g(r,k,t), such that g,(r, k,t)drdk/47n® is the number of
electrons in the nth band at time ¢ in the phase space volume drdk, the distribution

of those electrons that emerge from collisions into band n at r,k, is given by

dt
dgn(r,k,t) = Tk)g?‘(r’k)’ (2.1)
n\Fy

22



where 7,(r, k) is defined as the relaxation time and

1
0 _ —
9n(r, k) = f(€) = @ maT® 1 1

(2.2)

is the equilibrium distribution Fermi function and ( is the chemical potential. With
this assumption, we can compute the nonequilibrium distribution furction in the

presence of external electric fields and temperature gradients.

2.2 Calculation of the nonequilibrium distribution
function

Consider collisions at time ' < t. Using the relaxation-time approximation, it is
possibie to calculate the nonequilibrium function g,(r, k,t) at time ¢ by an appropriate
integration of Eq. (2.1) over . Only a fraction P,(r,k,t;t') (calculated below) of
particles which suffer collisions at time t' survive until time ¢. Multiplying the right
hand side of Eq. (2.1) by P,(r,k,t;t') and integrating over ¢’ gives'

o0 = [ Lowree) (2.3)

The fraction of electrons that survive from t’' to ¢ is less than the fraction that
survive from t' + ¢ by the factor [1 — dt'/r], which is the probability of an electron
colliding between ¢’ and ¢' + ¢t from Eq. (2.1). Thus

P(t,t") = P(t,t' + dt') [1 - g] . (2.4)

In the limit as dt' — 0, this gives the differential equation

A ()
Pt t) = =2, (2.5)

1The r,k and n dependence of g(t),  and P(t,1') are temporarily left implicit.
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which can be solved to give

P(t,t") = et~V (2.6)
We may use Eq. (2.5) to integrate Eq. (2.3) by parts, giving
t d
g(t) = g°(t) - / dt'P(t,t') =g (t'). (2.7)

To evaluate the time derivative of ¢°, note that g° in Eq. (2.2) depends on time
only through e,(kn(2')), T(rn(t')), and {(r,(t')), so that

dg’(t') _ 9¢° 36,. dk, 09¢°0T _dr, aq" 8¢ dr,

&' 9,0k dv 9T or dv T acor d (2:8)
If we use the semiclassical equations of motion
. _ 10en(k)
r, = vu(k)= P TR (2.9)
hk, = —eB(r,t'), (2.10)

in Eq. (2.8), where E is an external electric field, then Eq. (2.7) becomes

9(t) = ¢ + /_; dt'P(t,t) [(_g—ﬁ) v- (—eE — V(- (E ;C) VT)] ,  (211)

where f is the Fermi function (Eq. (2.2)).

If we assume a time-independent, spacially-uniform electric field and temperature
gradient,? then the only ' dependence in the integrand in Eq. (2.11) is in P(¢,t') =
e~t-t)/7 Thus Eq. (2.11) can be integrated to give

3000 =) +70) (-3 v(9) - [ (B4 L) + B=Evm), e

Equation (2.12) is the nonequilibrium distribution function which will be used to
calculate all the thermoelectric quantities. Note that in this general form, it can be

2All the thermoelectric measurements done in this investigation were d.c. measurements in zero
magnetic field, so these assumptions are valid.
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applied to transport in any number of spacial dimensions. It will first be used to

calculate thermoelectric quantities in 3D bulk transport.

2.3 D.C. Electrical Conductivity

The number of electrons per unit volume in the volume element dk is g(k)dk/4n3, so

the current density in a band is

Jj=—e¢ :%v(k)g(k). (2.13)

Each partially filled band makes a contribution to the the current density. The
total current density is the sum of these contributions over all bands. At uniform
temperature, j = o0 E, where the conductivity tensor o is a sum of contributions from

each band. So from Eq. (2.12) and Eq. (2.13),}
o=Y o", (2.14)

o = [ ;k?‘rﬂ(k)vn(k)vn(k) (-g—i) R (2.15)

Note that since no current flows in equilibrium, g° makes no contribution to j.

2.4 Seebeck Coefficient

From Eq. (2.12) and Eq. (2.13), when there is an electric field E and a temperature
gradient VT in a material, there will in general be an electric current density in a
band of

: 11 V¢ 12

i=L%(E+ 7) + L'*(-VT), (2.16)

8Since T is constant, the local electronic density will be constant and hence V¢ = 0.
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where the tensors L'’ are

/ 41r3( )T(k)V(k)V(k), (2.17)

1= (- ) [ o (-5 roviovaaemo 0. ag

From Eq. (1.1), the Seebeck coefficient (S) is defined as
AV = —SAT. (2.19)

when no electric current is allowed to flow. This can also be written as

V¢

V=—(E+=2)=S(-VT). (2.20)

Since there is no electric current, Eq. (2.16) gives

le
$=1n (2.21)

For simplicity, we have taken VV and VT to be along a principal axis direction
z, so that L'! and L!? are actually the zz components of the tensors L'! and L'?,

respectively. In general, S will be a tensor

S = (L)L (2.22)

2.5 Electronic Thermal Conductivity

The electronic thermal current density is analogous to the electrical current density,
with thermal energy being carried rather than electric charge.

Consider a small fixed region of the solid within which the temperature is effec-
tively constant. The rate at which heat appears in the region is just T' times the rate

at which the entropy of the electrons within the region changes (d@ = TdS). Thus
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the thermal current density

7 =T%,

(2.23)

where j* is the entropy current density. Since the volume of the region is fixed, changes

in the entropy in the region are related to changes in the internal energy and number

of electrons by the thermodynamic identity
TdS =dU — (dN,
or, in terms of current densities,
Tj* = § - (5"

where the energy and number current densities are given by*

¥ o= %[ fenkvakian(k),

e M p T r )
Substituting for j* and j” in Eq. (2.25), we find a thermal current density
1= 3 [ £rslen) = (va(10a (0.
Using Eq. (2.12) in Eq. (2.28), we get
¥ =L"E+ -VC—C) + L*#(-V7T),
where the tensors L'/ are

1= (L) [ B (_g_i‘) r(k)v(k)v(k)(e(k) ~ C),

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

*Do not confuse the superscript n, indicating that j is the number current density, with the band

index n.
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L2 = (%) ¢? ] % (—‘;—’;) r(k)v(k)v(k)(e(k) - ¢)2 (2.31)

Note that L?! = TL'?
To deduce the electronic thermal conductivity K from these results, we note that
K relates the thermal current io the temperature gradient under conditions in which

no electric current flows. Under these conditions, Eq. (2.16) gives
E+ % = —(L)'L*¥(-V7T). (2.32)
Substituting this into Eq. (2.29) gives
¥ =K(-VT), (2.33)

where K, the electronic thermal conductivity tensor, is given by

K = L? — L*(L)" 'L, (2.34)
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Chapter 3

One-band transport in 3D bulk

materials

The expressions for o, S and & of a one-band material were derived in the previous
chapter and can be summerized below. In general all three are tensors, and are

denoted by o, S and K, respectively.

o = LO, (3.1)
S = _(é) (LO)-1L), (3:2)
K = (55) @ - LOEO)LO), (3.3)
where
L@ - e [ % (_g) r(k)v(k)v(k)(e(k) — )° (3.4)

For multi-band materials, each L{*) must be replaced by the sum of all the L’s
for all the partially filled bands.
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3.1 7 for a 3D bulk material

In this chapter the figure of merit, Z, is calculated for a 3D bulk material. The
calculations assume a one-band material.! This is because one-band materials (such
as heavily-doped semiconductors) give the best Z for bulk materials. The reason for

this is as follows. For a two-band material, the Seebeck coefficient tensor is (using

Eq. (3.2)) 1
s = — (5) O + L)LY + 1Y), (3.5)

where the subscripts 1 and 2 denote the contributions from bands 1 and 2, respectively.

Using Eq. (3.1), this can be rewritten as

_ 0’151 + 0‘232
o+ 02

S (3.6)

for an isotropic material. For anistropic materials, the measurement is assumed to be
along a principal axis so that each tensor quantity can be replaced by its respective
principal component. For §; and S, of opposite sign, S and Z are greatly reduced
from either of their one-band values. This is the case for an intrinsic semiconductor,
where the two bands are the conduction and velence bands containing electron and
hole carriers, respectively. If S; and S, are of the same sign, then S is still reduced
from the better of the one-band values.

The calculations are for a general, anisotropic, one-band material (assumed to be
the conduction band). The only other assumptions are that of a constant relaxation
time, 7, and that of parabolic bands. These assumptions are widely used in the
relaxation-time approximation [4] and lead to results which are in good agreement
with experiment, as shown later.

Note that the calculations are not restricted to semiconductors. The material
can be a metal, semiconductor or semimetal, as long as it is effectively a one-band

material.

'The calculation can be generalized for more than one carrier as shown in Chapter 6, where it is
applied to a semiconductor with multiple carrier types.
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Since parabolic bands are assumed, the electronic dispersion relation used is:

n=k= AN
+

me 2m,, 2m,

e(kay kyy ks) =

?

(3.7)

where m,, my, m, are the effective mass components. Consider transport along a

principal axis, taken to be the z-direction. From Eq. (3.4),

d’k O_f\
(d) - ~ e - tl. .
L&) = 2 ey ( o) TVV.(€ — () (3.8)
Using v, = k’k,, this gives
(a) e fﬁ 2 ¢ —()/ksT «
I = oot [[[ #idkod,dr. G - R Ec -0 (39)
Let ¢? = h?k2/2m;, where i = z,y, z, then
dk,dk,dk, = M“)’ dg.dq,dq., (3.10)
e=q¢:+q,+4d, (3.11)
2 (e=¢)/ kBT
(@) _ __© 2rh (Sm,m,,m,)z 2m, e _ a
Lz "~ 4r3m2kgT /f/ q,dqquydq,( (e=O)/ksT 4 1)? (e = ¢)%
(3.12)
Going to spherical polar coordinates
gz = rsinfcos, (3.13)
gy = rsinfsing, (3.14)
q: = rcosd, (3.15)
and doing the integral over all ¢, 4,
252 : oo (r2=¢)/ksT
@ _ _ €Th (8m.m,m.)7 2m, 4r 4 e e .
ez 41r"mf,kBT ﬁa hz 3 Jo T d"'(e("—C)/kaT + ])2 (1' C) . (3.10)
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Using the substitution =z = 72 /kgT (z is dimensionless),

1 =

e2r(kpT)i*® (8momym, )t /0“ zi(z — ¢*)7ele¢") (3.17)

3rim, K® (et==¢) 4+ 1)2 °

where (* = (/kgT is the reduced chemical potential. Integration by parts gives:

o = c [;F%], (3.18)
IV = C.(ksT) [gF%—ch%], (3.19)
L?) = C.(kgT)? [;F%—SC‘F%+2£"F%], (3.20)
where !
= 55 () (memymh (3.21)

e i8 the mobility er /m., and the Fermi-Dirac function F; is given by

F.-=F.-((')=/w z'dr

—_— 22
o e==¢) 41 (3.22)

Equations (3.1)-(3.3) can now be used to calculate the electrical conductivity o,

the Seebeck coefficient S, and the electronic contribution to the thermal conductivity

Ke:
e 2kBT % 1 3
T = 3?(7) (mamym.) pe (‘2'F1/2), (3.23)
kp (5F'3/z
= -—\sm. ¢ 2
d e \3F1/2 C ! (3 4)
3
k3T (2kpT\? A 25F3,
Ke = 31r’e( 52 ) (memym, )T, (EFE/Z_ 6F,)2 )" (3.25)

Note that o and k. are quadratic in charge e, but S is linear so it changes sign
as +e — —e. Equation (3.24) shows that the Seebeck coefficient is proportional to
the difference between the average electronic energy and the chemical potential (.
This means that for the conduction band, the Seebeck coefficient increases as ( is

lowered. If ¢ lies significantly below the band edge, the material will have a very
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high S. This is confirmed by the fact that intrinsic semiconductors have a high §.
Metals, which have ¢ in the conduction band at a level comparable to the average
electronic energy have a very low §. However, if one lowers ¢ to increase S, the
carrier density will decrease, reducing o, so that the overall Z does not increase. So
intrinsic semiconductors have a high S, but low o. Metals have a high o, but low S,
Both have a relatively low Z. The materials with the highest Z are extrinsic (doped)
semiconductors, in which ¢ is within ksT of the band edge) [2]. The reduction in o
which results from an increase in S is one of the main reasons why it is difficult to
increase Z3p T significantly and so it is not surprising that the best Z has not changed
for three decades. The other reason is the Wiedermann-Franz law; an increase in o
will be accompanied by a corresponding increase in x, such that the resulting Z does

not change significantly.

So, using
S?
z=-27_ (3.26)
K. + Kph
where &y, is the phonon thermal conductivity gives
5F, 2
Co(kp/e?) (02 — ) 3,
= A 3.27)
3D = 2 2 25F’1 2 ) ( ¢
or ,
F .
B (322 - ) 1R,
Z3pT = e ) (3.28)
Bsp (%Fs/z Fl’f) +1
where the dimensionless quantity Bsp is given by
3
1 (2kgT\? k3T,
B3D = Er-z- ("‘"—hz‘") (mzmymz): eRon . (329)

These equations can be solved numerically. For a given value of B3p, the reduced
chemical potential ¢* = (/kgT may be varied to change the value of Z3pT. The
maximum value of Z5pT occurs when (* is equal to its optimal value, Copt- See inset

of Fig. 3-1) which shows a graph of (7, against B;p. A negative value for (opt Means
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Figure 3-1: Plot of (J,, vs Bsp. The inset shows the variation of Z3pT with (* at
fixed Bsp.

that the optimum Fermi level is below the band edge.

In 3D bulk materials, B3p is determined largely by the intrinsic properties of the
material, but ¢* may be varied by doping. To maximize Z3pT for a material, one first
calculates Bjp for the intrinsic material, then uses Fig. 3-1 to determine the value of
(>, for this value of Byp. The next step is to adjust (* so that {* = (;,: this mey
be achieved by doping with suitable impurities. The maximum Z;pT attainable for
this value of Bsp can be found from Fig. 3-2. Note that although doping changes (*
significantly, the corresponding change in Bjp is negligible unless the material is very
heavily doped, resulting in significant changes in the band structure or mobility.

From the graph of Z;pT against Bsp in Fig. 3-2, it is clear that increasing Bsp
increases Z3pT. Therefore to obtain a high Z;pT, one needs to find a material with
a high Bsp. For a given anisotropic crystal in 3D, Z;pT varies with current direction
and it is possible to increase Bsp and therefore to maximize Z;pT by choosing the

current to flow along the direction z of highest mobility pu.. One can often increase

Bsp for a particular material by isoelectronic alloying to increase phonon scattering
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Figure 3-2: Plot of Z3pT((;,,) vs Bap-

and therefore to decrease x,,. However, too many impurities will reduce the mobility

itz and decrease Bjp.

3.2 Calculated Z for 3D bulk Bi,Te;

One of the best materials for thermoelectric refrigeration is Bi,Tes, with a Z;pT =
0.67 at 300K [2]. The expressions derived previously are now used to calculate Z3pT
for bulk Bi;Te;.

The equations for ZT derived so far assumed a single constant energy ellipsoid
in the Brillouin Zone. For multiple ellipsoids, the value oi B;p derived needs to
be multiplied by a number of the order of the number of ellipsoids. Bi,Te; has 6
ellipsoids [2], and multiplying Bsp by a factor of 6 gives a value of Z;pT in good
agreement with experiment, as shown below. The exact multiplicative factor will be
slightly different from 6 because not all ellipsoids are oriented in the same direction.

However, since we will later compare similar calculations for 3D and 2D Bi,Tes, this
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factor should not significantly affect the comparison between Z;pT and Z;pT'.

Bi,Te; has a trigonal structure, which can be expressed in terms of a hexagonal
unit cell of lattice parameters ap = 4.3 A and ¢, = 305 A [2]. The compound
has a highly anisotropic effective mass tensor, with effective mass compenents m, =
0.021mg, m, = 0.081mg and m, = 0.32mo [5]. The phonon thermal conductivity is
Kpn = 1.5 Wm™K~! and the direction of highest mobility is the along the ao-axis,
with pg, = 1200 cm?V~1s71 [2].

Substituting these values into Eq. (3.29), one obtains Bsp = 0.076 at 300K (after
multiplying by 6). This gives a maximum ZapT of Z3pT = 0.52. This value is very
close to the experimental result of Z3pT = 0.67 [2]; it is slightly different because
firstly the relaxation time r may have a slight energy dependence, and secondly not
all carrier pockets contribute equally, as mentioned previously. The maximum Z;pT
occurs at (,, = 0.6, a carrier density of about 10'® cm™3, so the chemical potential is
just above the conduction band edge and the material is a partially-degenerate n-type
semiconductor.

Although the Z;pT of pure Bi;Te; is 0.67 at 300 K, a higher Z3pT can be ob-
tained by isoelectronic alloying with Sb,Tes. This alloying does leaves the electrical
properties of BizTes virtually unchanged, but leads to a significant decrease in the
lattice thermal conductivity s, due to point-defect scattering of phonons caused by
the difference in masses of the Bi and Sb atoms. The lattice thermal conductivity of
Big sSby sTes is 1.0 Wm™'K™! [2], down from 1.5 Wm~K™! for pure Bi;Te;. Thus
BigsSb1.5Tes has a Z3pT of 1.0 at 300 K, and has been the material with the highest
ZapT for over 30 years.

In the next chapter, similar techniques will be used to calculate Z for a quantum-

well superlattice structure, and the expressions derived will be used to calculate Z;pT

for Bi,Tes.
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material ZT at 300 K maximum ZT

Bio,;Sbl,sTes 1.0 1.0 at 300 K
PbTe 0.4 0.8 at 600 K
Big.s8Sbo.12 0.3 0.4 at 80 K

Sig.7Geo.3 0.1 0.9 at 1200 K

Table 3.1: ZT values for materials commonly used in thermoelectric applications.

3.3 Other high Z materials

Although Bi;Te; alloys have the highest ZT at 300 K, other materials are also used for
thermoelectric applications, depending on the temperature range of interest. Table 3.1
shows the ZT of other commonly used thermcelectric materials (2], both at 300 K
and at the temperature which gives the maximum Z7T.

Recently, a ZT of 1.2 at 400 K [6] has been measured in a skutterudite compound,
most likely IrSbs or CoSb; alloys. However the work is still at an early stage, and
details have yet to be published.
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Chapter 4

Two-dimensional quantum-well

superlattices

A 2D quantum-well superlattice consists of alternating layers of a narrow-gap and
a wide-gap semiconductor as shown in Fig. 4-1. The band offsets between the two
materials are large enough so that electrons are confined to the narrow-gap material
which is therefore the quantum well (Fig. 4-2). Because of the large potential barriers
perpendicular to the layers, the electrons in the well form bound states (subbands)
in the z-direction (Fig. 4-2) and are confined to 2D motion parallel to the layers in

the z-y plane.

4.1 7 for a 2D quantum well

Expressions for S, o, k. and Z are derived for transport in such quantum wells. In
this section I present a general treatment for the thermoelectric figure of merit for
quantum wells, while in Chapter 7 these results are applied to a specific quantum-
well system PbTe/Pb,_,Eu.Te which was studied experimentally. The calculations
assume that the electrons occupy only the lowest (n=1) conduction band subband of
the quantum well (this is consistent with the optimization of Z arising from a one-
band model), and also that there is no tunnelling through the wide-gap semiconductor

(the quanium barrier).

38



conduction
band offset

valence
band offset

narrow gap material
(quantum well)

wide gap material
(quantum barrier)

substrate
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Let the multilayers be parallel to the z-y plane and the currents flow in the z-
direction. The general expressions Eqs. (3.1)-(3.3) can be applied to the 2D system.
Since the system has a 2D density of states, the density of states per unit volume of
a quantum well is now dk/2w2a, where a is the thickness of the quantum well. So

now L(%) (Eq. (3.4)) becomes

1) = & [ 7 (- 3F) rtv(ome) - ¢, (41)

where now dk = dk.dk,. The electronic dispersion relation used is

AL
2m, 2m,’ (4.2)

e(kl, kﬂ)

indicating free electron-like motion in the z-y plane. Note that here ¢ is measured
relative to the band edge of the lowest subband, which for an infinite potential well
is at energy A?r?/2m a?

Using v, = kk./2m., Eq. (4.1) gives

L&) = ﬁ;ﬁ [ Kadk,d, (e(:(:);:l/:': (e = 0" (4.3)
Let ¢? = A%k?/2m;, where i = z,v, then
dk,dk, = (4"‘;’,"”)% dg.daq,, (4.4)
£=4q.+4; (4.5)
@ = o () 2 [ g, (f(:),:l/:i -0 (46)

== " 2n2am2kpT

Going to polar coordinates

qz

qy

rcosf,

r8ind,
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and doing the integral over all #, we obtain

2 o e(r?=)/ksT
@) = e’rh (4m,mv)= 2m, 3 _ ha
L 2’2am2kBT hz hz ﬂ"/ d (e(f’—c)/kbr + 1)2 (1' C) (4.9)
Using the substitution z = r?/kgT,
“)agla—¢*)
(@) _ €'T(ksT)**" (4m=mu)’ — (")
le 21l'am3 / d e(z-—( )+ 1)3 ) (4.10)

where (* = (/kpT is the reduced chemical potential. Integration by parts gives:

LY = D.[F), (4.11)
LY = D.(ksT)[2F, - (*Fo], (4.12)
I® = D.(ksT) [3F, —4C"Fi+(Fy] , (4.13)

(4.14)

where
e [2kgT L .
D. = — (T) (mamy)3 e (4.15)
(the mobility g, = er/m.), and the Fermi-Dirac function F: is given by

oo "d
F=R = [ o (4.16)

Equations (3.1)-(3.3) can now be used to calculate the electrical conductivity o,

the Seebeck coefficient S, and the electronic contribution to the thermal conductivity

Ke:
€ ZkBT 1
o = oo (28T (mama)bie (), (4.17)
kg
s = -2 (2—1?‘-() (4.18)
KT (2ksT . 4F?
Ke = 21rae( 72 )(m,m,) Mz (3F “TF ) (4.19)
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Using Eq. (3.26) gives

2 102} (2R _
Y (B -¢) R (420)

D.(k3T/e?) (3F: - *) + n,,h’

or
Byp (25 ¢
ZopT = —2 (% C ) (4.21)
B:p (3Fz - ) +1
where the dimensionless quantity B,p is given by
_ 1 2kgT L kBTﬂz '
Bap = 5~ (_hz_) (mamy)? - (4.22)

These expressions are evaluated numerically. For a given value of B;p, {* may be
varied to change the value of Z,pT. The variation of Z,pT with (* at fixed B,p is
shown as in inset in Fig. 4-3. The maximum value of Z,pT occurs when (* = (..
Figure 4-3 shows a graph of (;,, against B;p, and Fig. 4-4 a graph of Z,pT((;,.)
against B,p.

To maximize Z,pT for a given quantum well structure (and hence a fixed B;p),
one proceeds in a menner similar to the 3D case. B,p iz calculated from Eq. (4.22)
and (g, is determined from Fig. 4-3. (* = (J,, is achieved by doping.

Now as with the 3D case, Z,pT increases with increasing B;p. In 3D, the only
means available to increase B3p in an anisotropic crystal is to choose the current
direction to be the direction of highest mobility. For 2D quantum wells, the situation
is more complex. There are more degrees of freedom available to increase B,p and
hence optimize Z,pT. A higher mobility current direction will still give a higher B,p,
but significantly sc will a narrower layer thickness a for the quantum well. It may
alsc be possible to increase B;p by a judicious choice of the crystallographic plane in
which to make the layers. If the layers are made in the z-y plane and the currents flow
along the z-direction, then B,p will be the expression in Eq. (4.22). If the layers are
made in the z-z plane and the currents still flow along the z-direction, then m, will

replace m, in the expression for B,p. In this orientation, B;p and therefore Z,pT
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Figure 4-3: Plot of (,, vs B;p for a 2D quantum well. The inset shows the variation

of ZypT with (* at fixed B;p.

Figure 4-4: Plot of Z,pT((;,.) vs Bap for a 2D quantum well.
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will be higher than the previous case if m, > m,. So one can increase Z,pT not only

by choosing the optimum current direction, but also by using narrower layers and by

choosing the best orientation in which to make the layers.

4.2 Calculated Z for BiyTe3 layers in a quantum
well superlattice structure

The expressions for Z,pT are now used to estimate what the figure of merit would
be for a Bi,Te; quantum well at 300 K.

In a quantum well structure, since the electrons are confined to 2D motion parallel
to the layers, there is no scattering off the interface between layers, so the carrier
mobility in a direction parallel to the layers is unchanged.! So if the ao-axis is parailel
to the layers, then p,, = 1200 cm?s~'V~! as before. However, phonons are not
confined to move in 2D, so they can scatter off the interfaces. In thin layers this may

reduce the phonon thermal conductivity «,,. Now
1
kph = 30l (4.23)

where [ is the phonon mean free path, C, is the lattice heat capacity and v is the
velocity of sound in the material. For Bi;Te;, C, = 1.2x10® JK"'m~2 and v = 3 x 103
ms™! [5], giving a value of I = 10 A. If the layer thickness a is greater than 10 A,
then layering does not seriously affect the mean free path ! and ., should then be
the same as its bulk value. This is a conservative assumption used to make numerical
estimates for Z,pT, as interface scattering will still occur for a > 10 A; this will cause
a slight decrease in x5 and an increase in Z,pT. However, if a is less than 10 A, then
l and &, are limited by phonon scattering off the interfaces and a good estimate for

Kph is obtained by setting | = a and using Eq. (4.23). Again, this is a conservative

1This an approximation for an ideal quantum well system. In a real system, some electrons will
move at an angle to the inferface, so some interface scattering can be expected to occur. However,
as described in Chapter 7, the mobilities in some quantum well systems are comparable to bulk
mobilities.
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estimate because the surface roughness and imperfections are expected to reduce
further.

From the expression for B,p in Eq. (4.22), decreasing the layer thickness a in-
creases Byp and therefore increases Z,pT. Also, if a < 10 A, then «, is reduced
from its bulk value, resulting in an even greater increase in Z;p7T. So to achieve the
best Z,pT, it is necessary to make the layers as thin as possible.

When calculating (J,, for a material, one must check to make sure that it does

not lie above the energy E,_ of the next to lowest subband of the quantum well.

If {;

oot does lie above E,,_,, then both the n=1 and n=2 subbands would contribute

significantly to Z,pT': this is inconsistent with the assumption of a one-band system
and one would need to extend the model in order to get meaningful results. In
practice, this is not a problem for the fellowing reasons. In order to obtain a high
Z,pT, one requires a low a. This raises the energy of the n=2 subband because
E._. = 2%’:’%. At the same time, a lower a results in a higher B,p and from Fig. 4-3
this means a lower (;,,, moving it further away from the n=2 subband. So decreasing
a moves E,_; up in energy and ( down in energy. This means that for values of a
below a certain characteristic thickness, { will always lie below E,_, and the model
will be self-consistent. This characteristic thickness will usually be above the values
of a which are of interest, as shown in the calculations for Bi;Te; below.

Z2pT((;,,) was calculated as a function of a for superlattice layers of Bi,Te; in
2 distinct orientations: (1) Layers parallel to the z-y plane (ao-bo plane), (2) Layers
parallel to the z-z plane (ag-co plane). The current was assumed to flow along the
high mobility ap-axis. The effective masses, mobility and lattice thermal conductivity
used in the calculation of Z3;pT in Chapter 3 were used in this calculation of Z,pT.

If the layers are made parallel to the z-y plane, the minimum possible layer
thickness is 10.2 A, as this is the length of the smallest repeating distance in the
z-direction [2]. Since this thickness is greater than 10 A, we assume that k,, = 1.5
Wm~'K™! as in 3D. If the layers are parallel to the z-z (ao-¢o) plane, the minimum
possible layer thickness is 3.8 A. This is because the shape of the hexagonal unit cell
is a parallelepiped, and the height of the cell perpendicular to the ao-co plane (i.e., in
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Figure 4-5: Plot of Z,pT((;,,) vs layer thickness a for (1) ao-bo plane layers and
(2) ag-co plane layers of Bi;Te;. The dashed line indicates the best ZT for 3D bulk
BizTea.

the y-direction) is agsin 60° = 3.8 A. So for @ > 10 A, ,, = 1.5 Wm~1K~!, while for
e < 10 A, kpn = 1C,vl where | = a. Fig. 4-4 was used to calculate Z,pT/((,,), after
multiplying B,p by a factor of 6 for the 6 electron carrier pockets of Bi;Te;. Note
that layering lowers the symmetry of the material, so the effective number of carrier
pockets contributing to Z;pT may be less than that for Z;pT. Since there is no reli-
able way to estimate the actual number, the 3D value of 6 was assumed. The results
are shown in Fig. 4-5, together with a line indicating the best 3D figure of merit of
Z3pT = 0.52 estimated by calculation in Chapter 3. Experimentally Z3pT = 0.67 for
pure bulk Bi;Te; [2], so agreement with theory for the bulk material is good.

Before any conclusions cen be drawn, it is necessary to check the validity of the
results by making sure that { does indeed lie below E,,_, for the values of a in Fig. 4-5,
i.e., for @ < 90 A. For the ao-by plane orientation, B,p = 0.085 at a = 90 A, giving

oot = 0.2 from Fig. 4-3. This gives { = 0.2k%n?/m,a?, which is significantly less than
the energy gap 3%%*r2/2m a? beiween the first and second subbands, so the results

46



for < 90 A are valid. Similarly, an ao-co plane layer of thickness a = 90 A gives
Bip = 0.17 and (;,, = —0.05. As (g, is negative, ( must be even lower tban the n=1
subband, so the one-band model results are valid.

The results for both orientations show a significant increase in Z;pT as the quen-
tum well thickness is lowered. This increase is due mainly to the enhancement of the
density of electronic states per unit volume that occurs for small well widths. For
a given valve of a, Z,pT for the ao-cy plane orientation is higher than for the ao-bo
plane. This is because the factor (m,m,)‘/ % in Byp (proportional to the density of
states) for the ao-co plane is higher than the factor (m,m,)!/? for the ao-bo plane.

For layers parallel to the ao-bo plane, Z3pT ie higher than Z3pT for layers thinner
than about 40 A, The maximum Z,pT that can be obtained for this layer orientation
is 1.5, which is about 3 times higher than the bulk value of 0.52. This value of Z,pT
occurs at @ = 10.2 A, which is the minimum possible layer thickness.

For layers parallel to the ao-co plane, Z,pT is higher than Z;pT for layers thinner
than 85 A. As the layers are made even thinner, the increase in Z,pT becomes more
significant, increasing sharply when a < 10 A at which point phonon scattering off the
interfaces becomes important. To estimate a maximum Z,pT that can be cbtained
for this layer orientation, we assume a = 3.8 A, a single layer thick quantum well, for
which Z,pT = 6.9, a 14-fold increase over the bulk value.

Note that the assumptions for calculation depend on the use of effective mass
theory which perhaps requires a few atomic layers to yield bulk values for the masses
that I used in my calculations. However, the experimental results described in Chapter
7 show that effective mass theory appears to be valid for wells as narrow as 15 Ain
some systems. Also, although the calculation is for electrons, the same approach also
follows for holes. Chapter 6 shows calculations for a system which includes both holes
and electrons.

So, in principle, a huge increase in ZT' can be achieved by using superlattices of
Bi,Tes, provided the Bi,Te; layers are oriented in the ag-co plane. Even if the layers
are prepared in the a¢-by plane, a factor of 3 increase over Z3pT is still possible,

provided that very thin layers are used. To realize these increases, a number of
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experimental difficulties must be overcome. It may be difficult to produce ao-cg plane
layers, since thin films of Bi,Te; grow predominantly in the ao-bp plane [7]. It may also
be difficult prepare layers of uniform thickness if they are only a few unit cells thick.
However, if these potential problems can be overcome, then a suitable lattice-matched
wide-gap semiconductor must be found which will act as the quantum barrier in the
superlattice. The band gap of the barrier material and the band offsets must be such

that the electrons are confined to 2D motion in the Bi;Te; layers.
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Chapter 5

One-dimensional conductors

In the previous chapter, we considered the effect on ZT of using materials in two-
dimensional structures such as 2D quantum well superlattices. We showed that this
approach could yield a significant increase in ZT'. Recently, new fabrication tecnnol-
ogy has made it possible to confine an electron gas to one dimension [8], thus making
it possible to produce a one-dimensional conductor. Within the last few months,
one-dimensional conductors were obtained by a different method: the encapsulation
of metal filaments in carbon nanotubes [9, 10]. Some of these tubes are 1.5 nm in
diameter [10], so it is now possible to fabricate very narrow quantum wires. In this
paper, we investigate theoretically the effect on ZT of using materials in the form of
1D conductors or quantum wires. These structures will significantly alter ZT since
the electrons are now confined to move in a single dimension. In addition, there will
be increased phonon scattering from the surfaces of the wires. This will lead to a

reduction in the lattice thermal conductivity and hence a further increase in ZT.

5.1 Z for a quantum wire

Expressions for S, o and k. are derived for transport in a 1D quantum wire. The
calculations are for a general one-band material (assumed again to be the lowest
subband in the conduction band). Let the conductor be square in cross-section, with

a side of length a. Let the current flow in the z-direction. The general expressions
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Egs. (3.1)-(3.3) can be applied to the 1D system. Since the system has a 1D density
of states, the density of states per unit volume of a quantum wire is now dk/ma?. So

now L(®) (Eq. (3.4)) becomes

1= ¢t [ 2 (=98] rviaovtioge - o, (51)

Ta
where now dk = dk.. The electronic dispersion relation used is

e(kz) = ’zizk: (5.2)

Mg

indicating free electron-like motion in the z-direction. Here ¢ is measured relative
to the band edge of the subband, which for a quantum wire with infinite potential
barriers is at energy %*x2/2m,a? + h%x?/2m a?

Using v, = kk./2m., Eq. (5.1) gives

e*rh? 2 e(e=€)/knT _
wa’mszT/ kzd (e(c O)/kaT 1 1)2(3 - (). (5.3)

Let ¢2 = h?k?/2m,, then

L@ =

dk, = (2";')—' o (5.4)
£=4gi, (5.5)
’rh? (e=C)/k8T
(@) _ __ € th (2""8)’ 2mz e e
Using the substitution z = ¢2/kpT, we obtain
2e T(kBT)3+a (2m=)3 o0 T’(Z —_— c‘)ae('—(‘)
(@) —
Lzz 1ra2mc / (e("‘(.) + 1)2 L] (5-7)

where (* = (/kgT is the reduced chemical potential. Integration by parts gives:

I® = E, [2 ] (5.8)
1) = EksT)[5F - 50y, (5.9)
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5 . 1.,
Li(,zz) = Ez(kBT)z [EF% -3 F% + EC zF_%] , (5.10)
where .
= 2e (2kgT J i
Ez = Ta? (_ﬁT) mz e (5.11)
(the mobility g, = er/m.), and the Fermi-Dirac function F; is given by

o  zidr

-Fi = E(c.) = -/0 e(z—¢") ﬁ

Equations (3.1)-(3.3) can now be used to calculate the electrical conductivity o,

(5.12)

the Seebeck coefficient S, and the clectronic contribution to the thermal conductivity

Ke:
2e 2kBT !.
o = ﬁ( ﬁ,’ ) mzp, (2F_1/2) (513)
kg (3F1,, )
§ = = —¢*), 5.14
2 (72— (5.14)
Ke = 1ra,’ ( h: )mz (2F3/2— 2F_1/2 (515)

Using Eq. (3.26) gives

SFya
E.(ky/e") (B - ) 4 |
Z1D = F’ 3 (5.16)
E.(kpT/e?) ( 2Fsp2 — ;F—f/—,) + Kph
or
Bip (_/_;'F; . ) 5F
_ 2
Z,pT = k o (5.17)
Bip (gF,,, W{—,;) +1
where the dimensionless quantity B;p is given by
1
_ 2 2kBT 2 ' k2 .F[L,
Bip = —; ( = ) mi=t (5.18)

These expressions were evaluated numerically. For a given value of B;p, the
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Figure 5-1: Plot of {;, vs B;p for a 1D quantum wire. The inset shows the variation
of leT with C. at fixed BlD-

reduced chemical potential (* = {/kpT may be varied to change the value of Z;pT.
The maximum value of Z,pT occurs when (* is equal to its optimnal value, opt 88
shown in the inset of Fig. 5-1. B;p is determined largely by the intrinsic properties
of the material, but {* may be varied by doping. To maximize Z;pT for a material,
one first calculates B;p for the intrinsic material, then determines the value of opt
which maximizes Z,pT for this value of B;p from Fig. 5-1. The next step is to
adjust (* so that {* = (J ,: this may be achieved by doping. It may be necessary to
keep the dopant ions spatially removed from the conduction path to avoid impurity
scatiering. This form of doping (modulation doping) has been used in 2D quantum
well heterostructures. ZwT((:p;) rises monotonically with increasing B;p as shown
in Fig. 5-2, so it is necessary to maximize B;p in order to achieve the maximum
Z,pT.

Note that the factor B;p varies as (1/e?). This means that Z,pT increases as the
wire width is narrowed. Recall that for a quantum well, the corresponding factor B,p

varies as (1/a), so the figure of merit for a 1D wire will increase more rapidly with
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Figure 5-2: Plot of Z,pT((;,,) vs Bip for a 1D quantum wire.

decreasing width than a quantum well.

5.2 Calculated Z for a quantum wire of Bi;Te;

The expressions derived previously are now used to calculate Z;pT for Bi,Te; in a
1D quantum wire structure at 300 K.

Bi;Te; has a trigonal structure, which can be expressed in terms of a hexagonal
unit cell of lattice parameters ao = 4.3 A and ¢ = 30.5 A [2]. The compound has an
anisotropic effective mass tensor, with components m, = 0.02mo, m, = 0.08m, and
m, = 0.32mo [5]. The lattice thermal conductivity is x,, = 1.5 Wm™'K~! and the
mobility along the ao or z axis is y, = 1200 cm®*V~1s7! [2].

The equation for Z,pT derived so far assumed a single carrier pocket in the Bril-
louin zone of the bulk material. For multiple pockets, the value of B;p in Eq. (5.18)
needs to be multiplied by a number of the order of the number of pockets. Bi,Te; has
six carrier pockets, each with a slightly different orientation in the Brillouin zone [35).
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In Chapters 3 and 4, in order to make simple numerical estimates of Z7T for both
bulk and superlattice Bi;Tes, we assumed that all six pockets have the same orienta-
tion. This assumption in fact gave a value for bulk Z;pT in good agreement with the
experimental value. In order to make numerical estimates of ZT for one-dimensjonal
Bi,Te;, we made the same assumption. This consistent approach enabled us to make
direct comparisons between the calculated values of ZT for 3D, 2D and 1D Bi,Te,.
The exact values of the parameters of Bi,Te; are not of crucial importance since the
material is used mainly as an illustration of the effect on ZT of going to lower dimen-
sions. Since six carrier pockets are assumed for 1D Bi,;Tes, the expression for B,p

becomes

BTy

h? eKph
If the wire is fabricated for conduction along the y or z axes, then the variable mi Mz
is replaced by m,;: Hy OF m,% Kz, respectively.

When calculating (opt for a material, one must check that it does not lie above
the energy of the next to lowest subband of the quantum wire. If (opt does indeed lie
above the energy of the next subband, then more than one subband will contribute
significantly to Z;,pT': this is inconsistent with the assumption of a one-band system
and one would need to extend the model in order to get meaningful results.

Z210(C5pe) was calculated as a function of width @ for quantum wires of Bi,Te,
fabricated along the z, y and z directions. The mobilitjes #y and p, were estimated
using the assumption that Mzftz = Mypy = m,pu,." The results of the calculations are
shown in Fig. 5-3, with the corresponding values of Copt in Fig. 5-4. The calculations
were done for values of g starting from 5 A, since it is unlikely that much narrower
wires can be made for Bi,Tes since the ao dimension of the unit cell is 4.3 A (2]. For

values of a < 10 A, phonon scattering off the surface will reduce kph from the bulk

value, 80 x4 was estimated using Eq. (4.23) with | = a as with the 2D case.

'The bulk value of #z was used. This is actually a conservative estimate since it is likely that
the 1D mobility will be higher than the 3D mobility due tc the reduction in the range of phonon
wave vectors that can participate in electron-phonon scattering. A higher g, will give a higher B
and therefore a higher Z7" than we have calculated.
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Figure 5-3: Plot of Z,pT((;,.) vs wire width a for 1D wires of Bi,Te; fabricated along
the z, y and z directions.
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Figure 5-4: Plot of {;, vs wire width a for 1D wires of Bi,Te; fabricated along the
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z, y and z directions.
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Figure 5-5: Comparison of the calculated ZT values for 1D quantum wire, 2D quan-
tum well, and 3D bulk Bi,Te;. The 1D plot is for the highest ZT z-direction and the
2D plot is for the highest ZT' ao-co orientation.

Before any conclusions can be drawn, it is necessary to check the validity of
the results by making sure that (,, does indeed lie below the energy of the second
subband. From Fig. 5-4, (5, is always negative, so it lies even lower than the lowest
subband, so the results calculated using a one-band model are valid.

From Fig. 5-3, for a given value of a, Z,pT for the wire in the z directicn is always
higher than for the other two directions. This is expected since the highest mobility
direction is along the z axis. For all three orientations, Z;pT increases significantly
with decreasing a. A value of Z;p ~ 14 was calculated for a wire of width 5A oriented
in the z direction. Figure 5-5 shows a comparison of the calculated ZT values for 1D,
2D and 3D Bi;Tes. So the maximum ZT for a 1D wire is considerably greater than
the maximum ZT for both the 3D bulk material and a 2D quantum well.

These results indicate that a significant increase in ZT can be achieved by going
to lower dimensions, with the highest ZT occurring in 1D. This increase is due mainly

to the change in the density of states, but an additional factor is the reduced lattice
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thermal conductivity due to increased phonon surface scattering. It may not be casy,
however, to fabricate one-dimensional wires of Bi,Te; of the required thickness. One
possibility may be to encapsulate the thermoelectric material in a carbon nanotube
type system, but one with a low thermal conductivity. In order to get sufficient
cooling capacity from the use of quantum wires, one will need to use arrays of 1D

quantum wires.

5.3 Zero-dimensional systems

Recently there has been much interest in the study of zero-dimensional (0D) systems,
such as nanoparticles and quantum dots [11]. Although an increase in Z over bulk
materials may be achieved by going to 2D and 1D structures, one is unlikely to find
any increase in Z on going to 0D systems. This is because, by definition, there can
be no transport in a perfect 0D system and so the Z is zero. In actual quantum-
dot arrays, however, transport does occur by hopping or tunneling from one dot to
the next [12]. When this transport occurs, the system is no longer a 0D system for
transport, and it can be treated a 1D, 2D or 3D system, depending on the number
of dimensions in which this transport occurs. However, the hopping and tunneling
mechanisms result in a much lower mobility than the band transport I have considered
in the last 3 chapters. This will result in a much lower Z for quantum dots than for

the best 1D, 2D and 3D materials, which all have high mobility band transport.
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Chapter 6

Superlattices of nonconventional

thermeoelectric materials

In Chapter 4, I considered the effect on ZT of using 2 one-band thermoelectric mate-
rial such as Bi;Te; in a two-dimensional (2D) quantum-well superlattice. My calcu-
lations showed that this approach could yield a significant increase in ZT within the
quantum wells. In those earlier calculations, I assumed a one-band model since one-
carrier systems give the best ZT for bulk materials. For two-band (mixed-conduction)
materials such as semimetals, both electrons and holes contribute to the conduction.
As described in Chapter 3, the contributions of equal numbers of electrons and holes
to the Seebeck coefficient tend to cancel each other out (because they are of opposite
sign), resulting in a low overall ZT. The positions of the conduction and valence
bands for a semimetal are shown in Fig. 6-1. Note the overlap of the conduction and
valence bands, with the Fermi level at a position resulting in approximately equal
contributions of both electrons and holes to the conduction.

Although the overall ZT of mired-conduction materials is low, the contribution
of the conduction band or valence band individually to the ZT may be high. In fact,
Gallo et al. [13] have shown that bismuth, a semimetal with a low ZT, could have
a ZT of nearly 2 if it were somehow possible to remove the holes from the system.
Quantum-weil superlattices provide a mechanism to effectively remove the holes from

the system, as described below.
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Figure 6-1: Conductior and valence bands in a semimetal.

When a material i8 prepared in a quantum well, the confinement effects result in

electronic bound states in the confinement direction with energies

242,02
E. n*h’r” (6.1)

2m,a?’

for infinite potential barriers along the s-direction. As the quantum well width a is
reduced, the electrons energies E,, increase. For holes, the same effect occurs, except
since holes can be thought of as negative energy electrons, this meens that the hole
energies become more negative as the quantum well width is reduced. This means
that electron energies are pushed upwerd and hole energies are pushed downwards,
as shown in Fig. 6-2 which shows the positions of the En—; bound states of both the
electrons and holes. Below a critical well width, the En=y energy for the electrons
will be higher than the hole E,—1 energy. Since the E,-; state is the lowest electron
energy and the highest hole energy, this means that the two bands have been separated
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Figure 6-2: Semimetal-semiconductor transition occurs when E,_; for electrons
crosses E,—; for holes.

and the material has undergone a semimetal-semiconductor transition. If the well is
narrowed further, the electron and hole bands can be separated further and the Fermi
level can be positioned by doping to lie closer to either the conduction or valence band
to create an effectively one-band material. This semimetal-semiconductor transition
has been demonstrated experimentally with HgTe/CdTe superlattices [14].

For Bi and other semimetals, this is a method to eliminate the contribution of
the holes to the transport and take advantage of the especially good thermoelectric
propertiee of the conduction band. Thus, scme mixed conduction materials, which
do not have a high bulk ZT', may be good thermoelectric materials in the form of 2D
quantum-well superlattices.

In this chapter, calculations have been performed to investigate the effect on ZT

of preparing a two-band material in the form of a 2D quantum well.
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6.1 Z for a two-band material in a quantum-well

Equations (3.1)-(3.3) are now used to derive expressions for S, o and «. for two-band
material, taken to be the lowest subbands of the conduction band and valence band
in a 2D quantum well. The layers are in the z-y plane and conduction is along the
z-direction. Since this is a multiband system, each of the L(*)s in Egs. (3.1)-(3.3)
must be replaced by the sum of a contribution from the conduction band and one
from the valence band. Equations (4.11)-(4.13) give the contribution of one band in
a 2D quantum well to the total L(®). So for both bands, the total L(®)’s are given by

L®) = (kpT)(Deel2Ff — 5] + Di[2F} — GiFY)) (6.3)

LY = (kaT)* (Dea[3F; — 4G F; + (P F5) + Dia[3FF — 4G F} + G2FY]), (6.4)

where the subscripts e and h are used to denote the contributions of the electrons

and holes, respectively, and

e (2kgT 1

D., = —21ra( 52 )(mczmey) Hezs (65)
—e (2kgT 1

Dy, = ﬁ'( X )(mhzmhy)’l'l’hzy (6'6)

where we note that D,, and Dy, have opposite signs. The Fermi-Dirac functions F;

are given by

P =F‘_(C_)=/°° 'dr

| e (6.7)

In the above expressions, Ff = F;((’) and F! = F;((}) where ¢’ and (; are the
reduced chemical potentials of the electrons and holes. (! and (} are related by the
expression  +(; = €,/kpT, where ¢, is the energy overlap of the lowest electron and
lowest hole bound states (Fig. 6-2). The energy overlap ¢, is positive for a semimetal

and negative for a semiconductor and is related to the band overlap in the bulk
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material 2"* by

h2x? h*x?
_ _bulk _ -
€ =6 2m¢zaz 2mhza'2. (6.8)
Since
Sia
Z = PR (69)
e ph
Egs. (3.1)-(3.3) give
(1/e*T?) (L2/LO)’ 1O (6.10)
(1)) (12 - 18P/1D) + 5 |
or
LY’
2T = (6.11)

(T8 T 1) 19— 12
Dividing numerator and denominator by k3T2D,, gives the following expression for

the figure of merit within the quantum well, assuming total carrier confinement within

the quantum well:

ZooT = — M (6.12)
05" MM, — M?' '
where
M, = F{+CF}, (6.13)
M, = (2Ff - F;) - C(2F} — GiFy), (6.14)
M, = (3F; -4+ (PFS)+ C3Fy — 4G R + G Fg) + B™!,  (6.15)
and
_ 1 2kpT 1 k%Tp,,
B = 21a ( hz ) (mezmw)’ eRph L] (6'16)
1
c = (m"*"‘"v)' (”’*) , (6.17)
MezMey Hez

a is the layer thickness, m.., m.,, m., and my,, Mpy, My, are the principal effective
mass tensor components for the electrons and holes, respectively, p.. and pp, are the

electron and hole mobilities, respectively, in the direction of conduction, and xp is
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the lattice thermal conductivity.

The expression for B in Eq. (6.16) is identical to that of Bap in Eq. (4.22) of
Chapter 4, but that there is an extra parameter C in the expression for Z;pT related
to the hole properties. For given values of B and C, the reduced electron and hole
chemical potentials { and (; may be varied to change the value of Z,pT. The
maximum value of Z,pT occurs when ( = () and (i = (pope)- B and C are
determined largely by the intrinsic properties of the material, but {; and {; may be
varied by doping. To maximize Z,pT for a material, one first calculates B and C
for the intrinsic material, then determines the values of (; and (; which maximize
7.pT for these values of B and C. The next step is to adjust (¢ and {; by doping
go that (7 = (o) 21d (i = (fopr): Note that ( and (j are not independent since

e(opt)

¢* +(; = €./kBT. So one needs to optimize only one of {; or {; to optimize Z,pT.

6.2 Calculated Z for a quantum well superlattice
of semimetal Bi

As mentioned earlier, Bi would be a good thermoelectric material if it were not for
the overlap of the conduction and valence bands, resulting in a relatively low ZT
of about 0.1 [13]. Equations (6.12)-(6.17), suitably modified to take into account
the anisotropic Fermi surface of Bi, are now used to calculate Z,pT for Bi in a 2D
quantum well.

Bi has a thombohedral lattice, which can be expressed in terms of a hexagonal umnit
cell of lattice parameters ap = 4.5 A and ¢o = 11.9 A [15]. Electrons are distributed
in 3 equivalent ellipsoids at the L points of the Brillouin zone and the holes in a single
ellipsoid at the T point [16]. The overlap energy of the electron and hole bands in
bulk Bi is 2" = 0.038 eV [17]. The principal effective mass tensor components are
mez = 0.00651mo, m,, = 1.362mo, m., = 0.00993m, for the electrons located at
the three L point pockets, and my, = 0.0644mo, mp, = 0.0644mq, my, = 0.696 for
the holes [17) located at a single T point in the Brillouin zone (see Fig. 6-3). The

63



electron pockets

Figure 6-3: Bismuth carrier pockets.

principal mobility components (in m*V~1s-1) at 300 K are Kez = 3.5, po, = 0.034,
He: = 1.4 for the electrons and pp, = 0.58, pp, = 0.58, pnz = 0.45 for the holes [18].
The lattice thermal conductivity is x,, = 0.9 Wm~1K-! [13].

The equation for Z;pT derived so far assumed a single electron pocket and a
single hole pocket in the Brillouin zone. Bi has a single hole pocket, but has 3
electron pockets, each oriented at 120° to the other 2 pockets in the z-y (ao-b9) plane
(Fig. 6-3). This will result in a slight change in the coefficients B and C [Eqgs. (6.16)
and (6.17)]. If we assume that the superlattice layers are made in the Bj z-y plane (the
reasons for this are explained below), then after taking into account all 3 electrons
pockets and solving for transport in the z-direction, (m.,m.,)? becomes 3(Meeme, )
and p. becomes (.. + p.,)/2 in Eqgs. (6.16) and (6.17).

Since Zsz(C:(opt)’CI:(opt)) increases monotonically with B (Chapter 4), the orien-
tation which will give the best Z,pT has the highest value for u(m,lm,-;)%, where
the subscripts 1 and 2 denote the z, y or z axes. The highest electron effective mass

component for Bi is m,, and the highest electron mobility component is y.., so that
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Figure 6-4: Plot of Z,pT vs layer thickness a for a quantum well of Bi fabricated in
the z-y plane.

the best layer orientation is the one which contains both the £ and y directions, the
z-y plane. Fortunately, this orientation is also the preferred growth direction for Bi
films [19].

The optimum figure of merit Z,pT was calculated numerically at 300 K as a
function of layer thickness a for quantum wells of Bi fabricated in the z-y plane.
The results for Z,pT for a Bi quantum well at 300 K are shown in Fig. 6-4. The
calculations were done for values of a down to 10 A, which is just less than the length
of the co-axis lattice parameter. Bi layers of about this thickness have been deposited
in a Bi/PbTe modulated structure [20]. However, the films were polycrystalline and
disordered so work needs to be done to obtain high mobility 2D transport in Bi films.

From Fig. 6-4, Z,pT increases with decreasing a. Z,pT starts to increase when
the electron and hole bands uncross at about 300 A, reaching a value of over 8 for
quantum wells of thickness 10 A. Thus it may be possible to obtain a large increase
in Z3pT within the quantum well over the bulk value. For Bi layers less than 100 A
thick, the optimum Z,pT is almost identical to that calculated by assuming transport
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by the electrons alone. This is not surprising since the partial ZT for the electrons is
higher than that for the holes [13] and at these layer thicknesses the band gap is large
enough to create an effectively one-carrier material. Note that there are now two
different factors responsible for the large increase in Z,pT over the bulk value. The
first is the separation of the two bands and the transformation of the material to an
effectively one-band system. The second is the increase in Z;pT due to the 2D nature
of the density of states. This density of states factor is responsible for the increase in
Z,pT in one-band materials (Chapter 4). In Chapter 4, I calculated a Z,pT ~ 5 for
a 10-A-thick quantum well of Bi,Tes, the material with the best current bulk Z7. So
even though Bi has a much lower bulk ZT than Bi,Te;, it has 'a higher Z,pT when
both materials are used in quantum-well superlattices of equal well widths.

Another significant point to note from Fig. 6-4 is that Bi quantum wells exhibit a
Z>pT > 1 at relative wide quantum well thicknesses of 200 A. From Fig. 4-5, Bi,Te;
quantum wells do not give a Z,pT above unity until they are narrower than 50 A.
Therefore it may be more experimentally feasible to grow and use Bi quantum wells
for high ZT applications than Bi;Te; quantum wells.

These results elucidate an important additional use of superlattices to obtain a
high ZT. I have shown that to obtain a high Z,pT, it may not be necessary to use
materials which already have a high bulk ZT. This opens the possibility of using
a new class of thermoelectric materials as refrigeration elements, and one does not

necessarily have to be restricted to materials which already show a high bulk ZT.

6.3 Bi;_.Sb, alloys

Although Bi has poor thermoelectric properties, the addition of some Sb to form
Bi,_.Sb, alloys improves ZT considerably [2]. This is because the addition of a small
amount of Sb reduces the overlap of the cenduction and valence bands. For a range
of compositions the bands are uncrossed and there is a positive energy gap. This
means that even though Bi is a semimetal, Bi;_.Sb, is a semiconductor for a range

of z. The band structure of Bi;_.Sb, alloys is shown in Fig. 6-5 [21].
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Figure 6-5: Variation of the energy spectrum of Bi,_.Sb, alloys in the range 0 < z <
0.25.
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Figure 6-5 shows that the band edge of the overlapping hole band T is lowered
on addition of Sb to Bi until at about z = 0.065, it moves below the L-point con-
duction band edge, making the material a semiconductor. Further addition of Sb
causes the Ty hole band to rise until at about = = 0.22, it rises above the L-point
conduction band edge and the material is once again a semimetal. The material re-
mains a semimetal for z > 0.22. The L-point electron and hole bands also move with
increasing z. As Sb is added to Bi, the L-point band gap decreases until is reaches
zero at z = 0.05. At this point, the bands invert and move apart again as shown in
Fig. 6-5.

In the semiconducting region 0.065 < z < 0.22, the thermoelectric properties are
much more favorable since the electrons and holes no longer cancel each other out in
their contribution to S, so ZT is higher than for pure Bi. The highest ZT obtained
is 0.3 at 300 K [2] in BiggsSbo.;2. This corresponds to the point where the T-point
hole bands are furthest away from the L-point conduction band. ZT is even higher
at low temperatures (0.4 at 80 K [2]), so Bi;_,Sb, alloys with 0.U65 < = < 0.22 are
commonly used in applications, especially at low temperature.

Another reason why the addition of Sb causes an increase in ZT is the reduction
in thermal conductivity due to point-defect scattering caused by the difference in
masses of the Bi and Sb atoms. The addition of 12% Sb to Bi reduces the thermal
conductivity by 20% [22].

Since Bi,_.Sb, alloys have similar physical properties to pure Bi, but have a
higher band gap and lower thermal conductivity, they would likely have a higher
ZT in a 2D quantum-well superlattice than pure Bi in a similar superlattice. ZT
was calculated for a BiggsSbo;2 quantum well at 300 K and the results are shown
in Fig. 6-6 together with the results for pure Bi. BiggsSbg.12, with a band gap of 14
meV [2], is the best alloy in bulk form and is also likely to be the best 2D material
since it is the composition where the T-point holes are furthest away from the L-point
conduction band. Although the effective masses of Big.ggSbo.12 are slightly different
from those for Bi, this does not affect the ZT since the change is canceled by the
corresponding change in the mobility as shown in Eq. 6.17. Figure 6-6 shows that
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Figure 6-6: Calculated ZT for both BiggsSbo.12 and pure Bi.

the calculated ZT for BigggSho.12 is higher than for Bi at all thicknesses. There are
two reasons for this increase. Since the quantum well enhancement of ZT in Bi relies
on using quantum-confinement effects to separate the bands, a Bi;_.Sb, alloy well
will have a higher Z7 than a Bi well of equal thickness because for Bi;_.Sb; alloys
with 0.065 < z < 0.22 the bands are already separated. In addition, the thermal
conductivity for Bi;_.Sb, alloys is less than for pure Bi, resulting in a higher ZT.
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Chapter 7

Experimental Investigation

In the preceding chapters, I have shown theoretically that it may be possible to
increase Z of certain materials by preparing them in the form of 2D quantum-well su-
perlattices. I have also conducted an experimental investigation to test my theoretical

predictions.

7.1 Choice of system

Since Bi; Te; is the best thermoelectric bulk material, it would appear to be a natural
candidate for use in a thermoelectric quantum-well system. However, I have shown
in Chapter 6 that Bi or Bi;_.Sb, would be a better 2D thermoelectric material than
Bi;Te3 due to the band separation that occurs in quantum-confined systems, so a Bi
quantum well would seem to be the ideal system. However, no one has yet succeeded in
growing 2D quantum wells of Bi, Bi;_.Sb, or Bi,Tes, and significant materials science
and growth problems remain to be overcome. The main problem is the appropriate
choice of barrier material. A good barrier material for thermoelectric superlattices is

one which satisfies the following criteria:

o Lattice-matching with the well material and a similar thermal expansion coef-
ficient to the well material. These are needed to provide sharp interfaces which

do not degrade the well mobility.
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o A sufficiently large band gap and thickness to confine electrons in the quantum

well.
e Does not degrade the electronic properties of the quantum well material.

e Low thermal conductivity to minimize barrier heat conduction which would

decrease the overall Z compared to the Z of the well alone.

In collaboration with Dr. Ted Harman of M.I.T. Lincoln Laboratory, we tried using
PbTe and PbTe;_.Se, as the barrier material in Bi/PbTe and Bi,_,Sb./PbTe,_.Se,
structures grown by molecular beam epitaxy. PbTe is closely lattice-matched with Bi
and has a very low thermal conductivity. Unfortunately, we were unable to obtain any
degree of carrier control in the system since it appeared that the PbTe would dope the
Bi and vice versa. This lack of control of carrier density meant that we were unable
to obtain the optimum doping needed to test the thermoelectric theories. Therefore,

we decided to use the PbTe/Pb;_,Eu,Te system for the experimental investigation.

7.2 PbTe/Pb;_,Eu.Te superlattices

The multiple-quantum-well (MQW) superlattice system used for the investigation is
the PbTe/Pb;_.Eu,Te system. This system was chosen for our thermoelectric in-
vestigation for the following reasons. Firstly, the fabrication technology is relatively
well-developed, making it possible to grow samples with high mobility, 2D transport
and to have precise control over the carrier density. Secondly, bulk PbTe is a rela-
tively good thermoelectric material with a ZT of 0.4 at 300 K, so that a reasonable
increase in Z due to 2D effects could perhaps result in a Z higher than the best bulk
Bi;Te; alloys. In the PbTe/Pb;._.Eu,Te system, the PbTe is the quantum well and
Pb,_.Eu_.Te is the barrier material. Such structures have a type I band alignment
and a nearly symmetric offset between valence and conduction bands (23] as shown
in Fig. 7-1. The energy gap of the Pb;_.Eu,Te barrier increases strongly with z, the

Eu content as shown in Fig. 7-2 [24], so only about 5% Eu can give large confinement
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Figure 7-1: Conduction and valence bands in a PbTe/Pbg.g27Euo.073Te superlattice.
The band gaps for the quantum well and for the barrier are given, as well as the band
offsets (using results from Ref. [23]) for the valence and conduction bands. The dashed
lines schematically indicate bound states for the valence and conduction bands.

energies and yield 2D transport for electrons in the PbTe quantum wells [25]. The
mobility of Pb,_.Eu,Te also decreases rapidly with increasing Eu content [25].

7.3 Sample preparation

My proposed increase in Z in MQW structures occurs in the quantum wells alone.
In order to extract easily the well transport properties from the MQW results, we
needed to grow samples for which transport is dominated by 2D conduction in the
wells, with negligible tunneling through the barriers or parallel barrier conduction.
Two factors control the extent of electron confinement in the quantum well. The first
is the band gap of the barrier. A wide band gap leads to large potential barriers
and increased confinement for the well electrons. The second factor is the barrier
thickness. As the barrier thickness is increased, the overlap of wavefunctions between

adjacent wells is reduced, leading to predominantly 2D transport in the well with

72

= g .



800 ——

600 | e

400 | -

Energy gap (meV)

200 —_—
0.00 0.02 0.04 0.06 0.08
Eu content (x)

Figure 7-2: Bandgap of Pb;_.Eu.Te at 300 K as a function of Eu content z. The
point at z = 0.073 was obtained by infrared transmission measurements, and the
other points were obtained from Ref. [24].

and minimal tunnelling through the barriers. Since the barriers do not contribute
to the electronic transport, but reduce the overall Z by contributing to the lattice
thermal conductivity, it is desirable to find the minimum barrier thickness which will
result in predominantly 2D conduction. Clearly this minimum thickness will decrease
as the barrier band gap increases so we would want as large a barrier bandgap as
possible. The band gap of Pb;_,Eu,Te can be increased by increasing Eu content
z [24] (see Fig. 7-2). However, we found experimentally that above about z = 7.3 %,
the increased lattice mismatch between the barrier and PbTe well results in interfacial
dislocations and reduced mobilities for MQW samples {26]. For an z = 0.073 barrier,
we measured the mobilities of samples with a constant well thickness of 20 A and
a gradually increasing barrier thickness from 70 A to 560 A. We found that the
mobility of the MQW samples increased as the barrier thickness was increased up
to about 400 A, after which the mobility remained unchanged as shown in Fig. 7-
3. Since the mobility of our bulk PbTe samples (1600 cm?V~'s~1) is much greater
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Figure 7-3: Mobilities of carriers in PbTe/Pb,_.Eu,Te superlattices with 20 A wells
and different barrier widths.

than that of our bulk Pb,_,Eu,Te (45 cm?V~1s71), these results show that at lower
barrier thicknesses, there is still tunneling and transport in the barrier material, which
results in a significantly lower overall MQW mobility than bulk PbTe. However as
the barrier thickness is increased, there is less tunneling and the mobility increases
until it is comparable to bulk PbTe at a barrier thickness of about 400 A. Above 400
A thickness, there is no further increase showing that all the electronic transport is
now in the well alone and that the barrier thickness has no influence on the overall
MQW mobility. So for all our samples used for thermoelectric measurements, we used
a barrier composition of Pbgg;7Eugo73Te and a barrier thickness of at least 400 A.
Samples of PbTe/Pb,_.Eu,Te MQW superlattices were grown by Dr. Harman of
M.LT. Lincoln Laboratory using molecular beam epitaxy (MBE) in a modified Varian
360 MBE system. Details of the sample preparation and characterization are given
elsewhere [27]. Briefly, first a Pbg gssEug.04Te buffer of about 2000 A was deposited
on a freshly cleaved BaF,(111) substrate to ensure complete strain relaxation and

high structural perfection of the layer. Next, samples with periods of 100 to 150 of
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Figure 7-4: A 106-period 20A/430A PbTe/Pby g27Eug,073Te superlattice grown on a
BaF, substrate and a relatively thin PbggssEug 042 Te layer.

PbTe/Pbg.g27Eug.073Te MQW structures were grown, with PbTe well widths varying
between 17 A and 55 A, separated by wide Pbg.gz7Eug 973Te barriers of about 450 A.
Each layer was a single crystal with the (111) plane parallel to the layers. The carrier
density was varied by using Bi donor atoms in the barrier material. This resulted
in an n-type material so that all the electrical conduction is in the conduction band

quantum well. A typical sample is shown in Fig. 7-4.
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7.4 'Transport measurements

According to the model, the increase in Z due to 2D effects arises mainly from an
increase in the power factor S%o, while the lattice thermal conductivity is assumed
to be unchanged from the bulk value except for well widths less than about 10 A.
However, even with well widths above than 10 A, boundary scattering at the quantum
well interfaces is expected to decrease the thermal conductivity, so that our estimate
of the enhancement of Z is expected to be conservative. I also assumed in my cal-
culations that the mobility of the quantum well would be the same as the best bulk
value - an assumption which we confirmed experimentally as described above - 50 any
increase in Z would‘(a,rise through the factor $?n (recall that o = nep), where n is the
carrier density in thé Quantum well. Therefore, according to the model, we should be
able to observe an increase in S%n as the well width is narrowed.

The electrical conductivity, Seebeck coeflicient and Hall coefficient of the MQW
samples were measured at 300 K. The experimental setup for the conductivity and
Seebeck measurements is shown in Fig. 7-5. This setup was designed to enable mea-
surement of both & and S on the same sample in the same orientation. It was used
to measure temperature dependence (described later) from 300 K down to 4 K. The
sample is soldered (using indium) between the heater and the copper heat sink. The
heater is a copper block with 100 £ of twisted pair resistance wire coiled tightly around
it. The heater is supported by two low thermal conductivity ceramic rods. Wires A
and F are gold wires used to carry the curreni for conductivity measurements. The
wire pair B and C is a thermocouple: B is a chromel wire and C is a AuFe(0.07%) alloy
wire. Wires D {chromel) and E (AuFe(0.07%)) are a second chromel-AuFe(0.07%)
thermocouple. All wires are attached to the sample with indium, which results in
excellent ohmic contacts. The other ends of the wires are connected to a copper
plate to provide a commeon temperature reference. Care was taken to ensure that the
wires attached to the copper plate are in good thermal contact but have no electrical
contact with the copper plate. Copper wires are then used to connect the wires at-

tached to the plate with the measuring devices (e.g. voltmeters). The diode is used
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to measure the temperature of the copper plate reference.

Conductivity measurements employed the four-probe technique: with the heater
off, a d.c. current was passed though wires A and F and the voltage measured using
wires C and E. The potential drop was measured for both forward and reverse cur-
rents to eliminate any thermoelectric effects. For Seebeck measurements, the heater
was used to apply a temperature difference of several degrees to the sample and the
specimen enclosure was evacuted to minimize heat loss. The two thermocouples were
used to measure both the temperature difference (AT) between the two junctions on
the sample, and the resulting Seebeck voltage (AV) between the junctions. The tem-
perature difference was varied, the corresponding Seebeck voltage measured, and the
Seebeck coefficient found from the slope of the line (after subtracting the contribu-
tion of the thermocouple wires). The setup for Hall measurements (used to determine
carrier density and mobility) is shown in Fig. 7-6. The potentiometer was adjusted
so as to give zero voltage V across the sample in the absence of the magnetic field.
The Hall coefficient Ry was found from Rg = E,/j.B, whete E, is the transverse
field (found from the potential difference V') induced across the sample by current j,
in field B. The field direction was reversed and E, measured again to eliminate any
errors due to longitudinal magnetoresistance.

Since we had already established that virtually all the conduction in our MQW
samples is in the PbTe well and that barrier clectronic conduction can be neglected,
we were able to focus our attention on the transport properties of the quantum well
alone. Thus the carrier density in the quantum wells could be calculated directly
from the Hall coefficient and the well width. Also, the Seebeck coefficient of the wells
was equal to the measured S of the MQW sample. For each sample, the value of the
well S?n was obtained and the results are shown as full circles in Fig. 7-7.. Fig. 7-7(a)
shows the results as a function of well thickness, and Fig. 7-7(b) shows S?n as a
function of carrier density. This shows that the optimum doping for the superlattices
is about 10’ ¢cm™3; the optimum increases slightly with decreasing well thickness.
The corresponding results for bulk single crystal PbTe obtained from Ref. [27] are

also shown on these plots. The data points in Fig. 7-7(a) show an increase in S%n as
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Figure 7-5: Experimental setup for measuring o and S of superlattice samples.
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Figure 7-6: Arrangement of current and potential leads to the sample for Hall coeffi-
cient measurements.

the well width is narrowed, and the well S?n may reach as much as four times the
bulk value for small well widths. This result is predicted by the theoretical model
and therefore gives qualitative support to the idea that MQW structures may be
used to improve Z over bulk values. To obtain a quantitative comparison between
experiment and theory, I used my model to calculate values of S?r vs a and vs n for
the Pbg.g27Eug.073Te MQW system as described below.

In the original model (Chapter 4), I considered a quantum well in which only a
single subband contributes to the transport and to Z. However, in a PbTe quantum
well there are two sets of subbands which may contribute to the transport, arising
from the four degenerate carrier pockets at the L points of the Brillouin zone in bulk
cubic PbTe which have their main axes along the <111> directions as shown in Fig. 7-
8. Since growth occurs along the [111] direction, one set of subbands is associated
with the pocket along the [111] axis and has a circle as a surface of constant energy in
the (kz,k,) plane. These are the longitudinal subbands. The other three pockets, with
their main axis oriented obliquely to the [111] growth direction, yield three ellipses
as surfaces of constant energy in the two-dimensional case {23]. Even though the
Fermi level may lie just above the lowest energy conduction band subband, which

is a longitudinal one, the oblique subbands may still contribute significantly te S*n
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Figure 7-8: Carrier pockets in PbTe.

even though they are further from the Fermi level since they have a much higher
density of states. Thus, to do a realistic calculation of the transport properties of
PbTe quantum wells, it is necessary to know the relative energies of all four subband

extrema and then to include all subbands in calculating the overall S and n.

7.5 Envelope Function Approximation

The Envelope Function Approximation (EFA) was used to calculate the positions of
the energy levels in the MQW structures. The EFA calculation involves solving for
the bulk electron eigenstates in both the well and barrier materials separately, then
matching the wavefunctions at the interface with appropriate boundary conditions

to find the energy levels and dispersion relations in the quantum well [28]. Yuan et

al. [23] applied the EFA method to the PbTe/Pb;_.Eu,Te MQW system with great
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success and used it to reproduce their experimental optical dsia, without any fitting

parameters.
The effective mass Hamiltonian for bulk PbTe or bulk Pbggz7Eugg73Te ! is given
by (23]:
hcc hc‘u
H = (7.1)
hoe Py
where ] )
h2 k2 k2 hz k: 1 O
hcc =1qE. + ( ! -I: 2) + 3 ’ (7.2)
Rk +k2) m2%2Y[1 0]
hw = Eu - ( ! t_ 2) - .::. ’ (7'3)
2mt 2m, 01 J
Pk Pk, — ik
hey = hye = s (ks — ika) (7.4)
Pi(ky + ik,) —Piks
with k; = —23/0r;, where r; is in the pocket coordinate system. E. and E, denote

the conduction and valence band edges, and P, and P, denote the longitudinal and
transverse momentum matrix elements.

The Schrodinger equation
Zbelfbl = Efb, (7-5)
bl

with 5,0’ = 1,2,3,4, is a set of couple differential equations. By extending the EFA
to an MQW superlattice, the material parameters become position dependent. At
the interfaces, they will change abruptly. The solutions of Eq. (7.5) in each layer have
to be joined at the interfaces.

The appropriate conditions are obtained by integrating Eq. (7.5) along the z-

direction (superlattice growth direction) across an interface,

/‘ " du(H - B)fy =0, (1.6)

1The bandstructures of PbTe and Pb;_,Eu,Te are similar for small z [23)].
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yields the foar conditions
fi(z7) = fi(z"), (1.7)

where b = 1,2,3,4 and z~, z* are the coordinates at opposite sides of the interface.
Since Eq. (7.5) contains second-order derivatives, conditions for joining the derivatives
of f, are necessary for specifying the solution to Eq. (7.5) uniquely. However, it turns
out that the conditions for joining the derivatives are of negligible influence [29]. The

periodicity in the z-direction, D, implies

fo(z + D) = exp(iK D) fs(2), (7.8)

with a superlattice Bloch vector K, —w/D < K < n/D, which defines a superlattice
Brillouin zone.

In IV-VI materials, the effects of charge transfer (mobile carriers) across the inter-
faces do not cause substantial electric potentials due to the enormously high dielectric
constants [28]. In this case, i.e., piecewise constant material parameters, the solutions
to Eq. (7.5) in each layer are planec waves with wave vectors k. Due to the continuity
conditions Eq. (7.7), the components of k vectors in the z-y plane have to be the
same in each layer of the MQW superlattice. Thus, we obtain the quantum numbers
k., k,, and K characterizing the solution of the Schrodinger equation an a MQW
superlattice. In each layer, the energy dependence on arbitrary k., k, and k; is ob-
tained from Eq. (7.3). Solving this equation for k, gives a polynomial of degree 4,
the coefficients of which will depend on k., k, and E. Of the four possible solutions
for k., only the smallest two are reasonable within the framework of the EFA [28].
Thus, in each layer, we have two evanescent or propagating waves in the z-direction.
The general sclution to Eq. (7.5) in each layer is a linear combination of the two spin
orientations and the two k. values, defining four amplitudes for each layer. The super-
lattice dispersion relation E(K,k.,k,) is determined as follows. The four continuity
[Eq. (7.7)] and periodicity [Eq. (7.8)] conditions yield the eight conditions for the four
amplitudes in both layers defining an 8 x 8 system of homogeneous equations. In

order to have a nontrivial solution, the ccefficient determinant has to vanish. From
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Eq. (7.5), we obtain

[ Js ] = ~(hu — E) 'hey [ h ] (7.9)
fa 2

where according to the spin state either f; or f; is chosen to be zero. The wave vectors
are transformed from the superlattice coordinate system (z, ¥, z) to the pocket axis

system (1, 2, 3) via the orthogonal transformation

LI

k; k.

kg =M kyl,l] . (710)
ks AB k.aB

A and B denote the two constituents and I and II denote the two sclutions for k, to
a given k., k, and E. Using Eq. (7.9) and taking the interfaces al z = 0, z = d4 with

the individual layer thicknesses d4, dp, the determinant reads

I T I I
al b I dI
= 0. (7.11)
R § T U
aR bS cT dU
Iis the 2 x 2 unit matrix,
a = exp(ikl,dy), (7.12)
b = exp(ikLdy), (7.13)
¢ = exp(—ikigdp + iK D), (7.14)
d = exp(—iklydp +iKD), (7.15)
Pkl Pk, — ikl
R = (H¥' -E)? e H{kia ~ tkaa) , (7.16)
Py(kia +iky4) ~Piki,
Pk“ P I'II _ 'kII
S = (HE" - E)™! e ks = ek | (7.17)
Pu(ki4 + ikyy,) — Pik3y
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Pik;p P,(kip — ikip)
P(kip +ikzp)  —Pikgp

Pk3p Py(kip — ikyp)
Py(kyp + ik3p) —Pik3p

T = (Hy'- E)™! ] (7.18)

(B - B)™!

)
Il

] , (7.19)

where Hjs denotes the corresponding element of the Hamiltonian matrix of Eq. (7.5).
The zeros of this determinant define the solutions E(K,k,,k,). The superlattice
still has a center of inversion, and so the solutions obtained are doubly degenerate.

For k. and k, equal to zero, one obtains
kEA.B = —kl 4,35 (7.20)

so that the superlattice dispersion is obtained from

cos(K D) = (g S) sin(k,ad4)sin(k.pdp) + cos(k,ad4) cos(k.pds) (7.21)
with

P= -5 k"" 5y’ (7.22)

Q= (H—é:“f;m (7.23)

The superlattice energy levels satisfy dispersion relation Eq. (7.21). Within each
layer, the electrons also satisfy Eq. (7.5). For Eq. (7.5) to have a nontrivial solution,

the coefficient determinant |H — E| must vanish. This leads to

2m; 2m; omt 2m} - E
= P}(k; + k) + P?k2. (7.24)

(o MR P8 ) (R )k )

To find the allowed superlattice energy levels, one proceeds in the following man-
ner. Let k; = k, = 0 in Eq. (7.24) and find k,(E). Substitute this k,(E) in Eq. (7.21)
to eliminate k,. Now the right hand side of Eq. (7.21) is a function only of energy
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E. On the left hand side —1 < cos(K D) < 1, so this restricts the possible value of E
and leads to the discrete energy levels of the superlattice.
For the longitudinal levels, the longitudinal axis of the carrier pocket is parallel

to the z-axis of the superlattice, so one can choose

kl = k:, (7.25)
k2 = ky, (7'26)
ks = ki, (7.27)

for use in Eq. (7.24). For the oblique levels, one can use Eq. (7.10) with

1 0 0
M=]o0 -1/3 -2v2/3 (7.28)
0 2v2/3 1/3

to get
kl = k:, (729)
By = —%k,,—¥k,, (7.30)
ky = %ik,_%k,, (7.31)

for one oblique pocket, and similarly for the other two oblique pockets.

To use the EFA method for the PbTe/Pb;_.Eu,Te system, the band gaps, band
offsets, interband momentum matrix elements and far band parameters for both bulk
PbTe and bulk Pb;_,Eu,Te must be known. The band gap of PbTe is 319 meV at
300 K [24]. I determined the band gap for our Pbggs7Eug 073 Te barrier me crial to be
630 eV from infrared transmission measurements of thick film samples (Fig. 7-9).
The band offsets were estimated by assuming the relation determined experimentally
by Yuan et al. [23]: AE./AE, = 0.55, where AE, is the conduction band offset

and AE, is the difference in band gap between the well and barrier materials, giving
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Eg 2P,2/mo
(meV) (eV) PB/P m;/me m{/mg m}/mo m/mo
PbTe 319 6.02 3.42  0.060 0.505 0.102 6.920
Pbg.gz7Eug.073Te 630 8.23 3.86 0.060 0.505 0.102 0.520

Table 7.1: Band parameters used for bulk PbTe and bulk Pbgg27Euge73Te. The
effective masses were obtained from Ref. [23].

the offsets shown in Fig. 7-1. Finally, the momentum matrix elements and far band
parameters were obtained from Ref. [23]; these values are shown in Table 7.1. The
positions of the quantum well energy levels in the conduction and valence bands were
thus obtained for several of our samples, and the results for a sample with a 53 A well
and a sample with a 20 A well are shown as insets in Fig. 7-10(a) and Fig. 7-10(b),

respectively.

7.6 Infrared transmission measurements

For an experimental check of my calculations, I did infrared transmission measure-
ments (using a UV-vis machine) on the same 53 A well and 20 A samples and the
results are shown in Fig. 7-10. Transmission was measured relative to the BaF, sub-
strate. Yuan et al. [23] showed that for the PbTe/Pb,_.Eu,Te MQW system, there
is a significant decrease in transmission when the incident energy equals the energy
for the interband transition from the lowest oblique subband in the valence band to
the lowest oblique subband in the conduction band, the (1-1)° transition. For the
two samples shown in Fig. 7-10, the lowest oblique subband is the second subband
in both the conduction and valence bands. Figure 7-10 shows that for both sam-
ples, there is a steplike decrease in transmission at an energy almost exactly at that
calculated for the (1-1)° transition (see inset). The transition occurs at about 470
meV for the 53 A well sample and at about 580 meV for the 20 A well sample. For
both samples, the transmission goes to zero (over an energy range kpT) at about

630 meV, which corresponds to the band gap of the barrier. It is very difficult to
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observe the (1-1)! transition between the first longitudinal subbands in the valence
and conduction bands because the longitudinal subbands have a very low density of
states, much lower than that for the oblique subbands [23]. The very good agreement
between the infrared transmission results and the EFA calculations confirm that EFA
calculations can be used to determine the positions of the subband energy levels in
our samples. The calculations also show very little dispersion in the direction nermal

to the layers, which is expected for 2D transport.

7.7 Comparison of transport results with theory

Once I had calculated the positions of the energy levels in the quantum wells, the
next step was to calculate values for the Seebeck coefficient and carrier density within
the framework of the theoretical model, using expressions for the Seebeck coefficient

S; and carrier density n; of the i-th subband (Eqs. (4.18) and (4.17) given by:

= e (28T ) (e R (1.32)
ke (2R
5= -2 (e -a) (25

where the Fermi-Dirac function Fj is given by

. ©  zidg
F;(¢) = /; E) 11 (7.34)

a is the width of the quantum well, m, and m, are the principal effective mass
components parallel to the layers, {§ = (( — E;)/kpT is the reduced Fermi level
measured relative to E;, the minimum energy of each subband (calculated using
the EFA method), and ¢ is the Fermi level. For multiple subbands, we use the
expressions (3.1) and (3.2) with each L(*) replaced by the sum of contributions from
each subband. This leads to the following expressions for the total carrier density (n)

and Seebeck coeflicient (S), assuming all subbands to have the same mobility as a
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first approximation and for lack of better experimental knowledge.

n = Zn,-, (7.35)
_ E‘isin-‘
S = o (7.36)

For the S and n calculations, a constant barrier thickness of 460 A was used, which
is the average thickness of all our samples shown in F ig. 7-7. Calculations were done
for different well thicknesses varying from 15 A to 50 A. Since parabolic bands were
assumed for the transport calculations, the effective masses were extracted from the

two-band momentum matrix elements P, and P, in Table 7.1 23] using the relations

m Em

;EE = 203 = (7.37)
my E my

— = 2'R2 . (7.38)

For PbTe, this gave a bulk longitudinal effective mass m) = 0.620m, and a bulk
transverse effective mass m, = 0.053mq. For the 2D quantum well, this gives m; =
mz = m, for the longitudinal subbands, and my = m,, my = 0.283m, for the oblique
subbands. For each well thickness, the EFA calculation was used to get the positions
of the energy levels, E;. S and n were then calculated as a function of Fermi level ¢ and
thus § and $?n were found as a function of n. The calculated results of S2n vs 1 for
different well widths are shown as solid lines in Fig. 7-7(b). The calculated maximum
S*n for each well width (the peak of each curve in Fig. 7-7(b)) is shown vs well
width as a solid line in Fig. 7-7(a), while Fig. 7-7(b) shows that the optimum doping
increases as the quantum well width is decreased. As can be seen from Figs. 7-7(a)
and 7-7(b), there is very good agreement between experiment and theory, especially
considering that no adjustable parameters were used in the calculation. The theory
predicts the observed variation of $%n with carrier density n» and also the variation
of the optimum $2n with well width a. Therefore the experimental results appear to
confirm the predictions of my theoretical model, showing that MQW structures may

indeed be used to obtain a high Z.
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So far, I have considered only S and = since it is through these properties that the
theory predicts an increase in Z. However, Z depends also on the thermal conductiv-
ity, k. If we ivisume that the quantum well « is the same as bulk «, the experimental
results in Fig. 7-7 imply that the quantum well Z may be up to 5 times greater than
the bulk, giving a value of ZT = 2.0 at 300 K, twice the value of the best bulk
thermoelectric materials. However, this value is for the quantum well alone, and even
though all of the electronic transport is in the quantum well, the barrier layers do
contribute to the total lattice thermal conductivity. Due to t' thick barriers, this
will make the overall Z of the MQW structures about a factor of 20 less than the
well values alone if we assume that the Pbg g;7Eug.973Te has the same « as bulk PbTe.
It is likely, however, that due to alloy [30] and interface scattering, the barrier & is
significantly less than the bulk value, in which case the overall Z may be close to
a useful value, even with thick barriers. Recent experimental (31, 32] and theoreti-
cal results [33] appear to confirm a reduction in % in superlattices compared to the
constituent bulk materials. Work is underway to measure x of our MQW samples
to determine the overall Z. In general, it is difficult to measure s for thermoelectric
thin films since x is very low, leading to significant errors due to heat loss. Also, x of
the substrate is often much greater than that of the film, leading to another source
of difficulty. Although we have needed wide barriers to ensure 2D well transport, it
may be possible to increase the barrier Eu content to give a higher band gap so that
thinner barriers can be used to confine the electrons in the wells. Graded barrier
layers, with high values of z in the middle of the layer and lower values of = close to

the interface, may have to be used to avoid lattice mismatch problems.

7.8 Temperature dependence

All the measurements and calculations so far have been for 300 K. For thermoelectric
cooling applications, it may be interesting to see how our superlattice samples behave
in the temperature range from 300 K down to 4 K. By placing the specimen enclosure

in a cryostat, I have done several temperature-dependent measurements of o and S
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from 300 K down to 4 K. Two superlattice samples and a single 13 pym layer of
bulk PbTe were measured and the results are shown in Figs. 7-11 and 7-12. The
resulting power factor temperature dependence is shown in Fig. 7-13. The theory
derived in this thesis makes no predictions about temperature dependence since it
assumed a constant relaxation time 7. Also, at lower temperatures the relaxation
time approximation is no longer valid [4]. However, some general points may be
noted. As T is decreased, both the superlattice and bulk samples show an increase
in o and a decrease in S typical of doped semiconductors [2]. ¢ for the thick film
sample is lower than o for both the superlattices samples at 300 K, but increases
much more rapidly than the superlattice samples as the temperature is decreased,
becoming higher than o for both the superlattice samples at about 110 K. This can
be explained by the presence of interface dislocations in the superlattice samples
causing their mobility and hence o at low temperatures to be much lower the thick
film sample, which has many fewer defects. At higher temperatures, the mobility and
o of the superlattices is comparable to bulk since the mobility no longer limited by
defects but by phonon scattering as PbTe has a Debye temperature of 136 K [34].
There is not as much difference in the between the bulk and superlattice samples in
the temperature dependence of S. This is because as shown in Eqs. (3.24) and (4.18),
there is no mobility dependence in S, so it is less affected by changes in the scattering
mechanism.? The results in Fig. 7-13 also suggest that PbTe superlattices may be

more useful at temperatures higher than 300 K than at room temperature.

7.9 Conclusions

The experimental results presented in this chapter are in good agreement with my
calculations, confirming my theoretical model which predicts an increase in Z in
MQW superlattices. This thesis shows that superlattices may indeed be used to

attain an enhanced thermoelectric figure of merit.

3Significant changes in the scattering mechanism will, however, invalidate the relaxation-time
approximation used to derive Eqs. (3.24) and (4.18).
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Figure 7-13: Power factor (S20) temperature dependence for PbTe/Pb,_.Eu_Te su-
perlattice samples and a 13 pm bulk PbTe film.

7.10 Future directions

In tlis thesis I have predicted an increase in Z in MQW superlattices and exper-
imentally verified my theory. However, some work still needs to be done before

superlattices can be used in thermoelectric applications.

e A method must be developed for an accurate measurement of the thermal con-

ductivity.

e The contribution of the barrier material in PbTe/Pb;_,Eu,Te superlattices may
need to be reduced to increase the overall Z. This may be done by increasing
the Eu content z which will increase the barrier height allowing thinner barrier
layers to be used which will still confine electrons in the quantum well. In order
to avoid lattice mismatch problems caused by the increased z, graded barrier
layers will have to be used, with a high z value in the middle region of the

barrier and lower z values in the barrier region clcse to the interface.
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o Although PbTe/Pb,_.Eu.Te superlattices proved to be a good system to test
the theory, Bi or Bi;_,Sb, superlattice are still the ideal system for obtaining a
high Z for applications. A suitable barrier material, however, needs to be found

for the Bi;_.Sb, system.
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