
MIT Open Access Articles

The Execution Migration Machine:
Directoryless Shared-Memory Architecture

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Shim, Keun Sup; Lis, Mieszko; Khan, Omer and Devadas, Srinivas “The Execution
Migration Machine: Directoryless Shared-Memory Architecture.” Computer 48, no. 9 (September
2015): 50–59. © 2015 Institute of Electrical and Electronics Engineers (IEEE)

As Published: http://dx.doi.org/10.1109/MC.2015.263

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/108136

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/108136
http://creativecommons.org/licenses/by-nc-sa/4.0/

1

The Execution Migration Machine:

Directoryless Shared-Memory Architecture

Keun Sup Shim∗, Mieszko Lis∗, Omer Khan‡ and Srinivas Devadas∗

∗Massachusetts Institute of Technology, Cambridge, MA
‡University of Connecticut, Storrs, CT

Abstract

Distributed directory cache coherence protocols for current many-core CMPs are not only difficult

and error-prone to implement and verify, but also provide suboptimal performance when a thread requires

access to large amounts of data distributed across the chip: the data must be brought to the core where

the thread is running, incurring delays and energy costs. In this paper, we propose an approach based

on the combination of partial-context thread migration and a directory-free remote access protocol: for

these kinds of applications, our architecture can outperform directory-based cache coherence. In addition,

unlike with distributed cache coherence protocols, the verification complexity of our architecture does

not grow with the number of cores.

Keywords

Parallel Architectures, Distributed Caches, Shared Memory, Data Locality

I. INTRODUCTION

As transistor density has continued to grow, Chip Multiprocessors (CMPs) have become common;

for scalability reasons, large-scale CMPs (≥ 16 cores) tend towards a tiled architecture where arrays of

replicated tiles are connected over an on-chip interconnect. Each tile contains a processor with its own

L1 cache and a slice of the L2 cache: to maximize effective on-chip cache capacity, physically distributed

L2 cache slices form one large logically shared cache, known as Non-Uniform Cache Access (NUCA)

architecture [9]. Under this Shared-L2 organization, the address space is divided among the cores in such

a way that each address is assigned to a unique home core where the data corresponding to the address

can be cached at the L2 level. At the L1 level, data can be replicated across any requesting core since

current CMPs use Private-L1 caches. To provide a unified shared-memory abstraction, many-core systems

commonly maintain cache coherence of such private caches using a coherence protocol and distributed

directories.

2

L1 L1 L1 L1L1

L2

L1

L2

L1

L2

L1

L2

Chunk 1 Chunk 2 Chunk 1 Chunk 2Chunk 1 Chunk 2 Chunk 1 Chunk 2
thread

L1 L1 L1 L1
migrations

L1

L2

L1

L2

L1

L2

L1

L2

Chunk 3 Chunk 4 Chunk 3 Chunk 4

Directory‐based : round‐trip for each cache line
R t l d t i f h d

By migrating a thread to the locus of
th d t d t b l lRemote‐access‐only : round‐trip for each word the data, data accesses become local.

Fig. 1. When applications exhibit data access locality, efficient thread migration can turn many round-trips to retrieve data into
a series of migrations followed by long stretches of accesses to locally cached data.

In such a conventional tiled architecture, data are typically distributed across multiple shared cache

slices to minimize expensive off-chip accesses, especially when large data structures that do not fit in a

single cache are shared by multiple threads or iteratively accessed even by a single thread. This raises

the need for a thread to access data mapped to remote caches, often with high spatio-temporal locality,

and results in large amounts of on-chip network traffic. For example, a database request might result in

a series of phases, each consisting of many accesses to contiguous stretches of data. Each request will

typically run in a separate thread, pinned to a single core throughout its execution; because this thread

might access data cached in remote last-level cache slices, however, the data must be brought to the core

where the thread is running. As shown in Figure 1, in a directory-based architecture, the data would

be brought to the core’s private cache, only to be replaced when the next phase of the request accesses

a different segment of data. An alternative we leverage here is to move the thread itself to follow the

data instead of transferring the data itself: if the thread context is small compared to the data that would

otherwise be transferred, moving the thread can significantly reduce on-chip interconnect traffic.

Another barrier to distributed directory coherence protocols is that they are extremely difficult to

implement and verify. The design of even a simple coherence protocol is not trivial; under a coherence

protocol, the response to a given request is determined by the state of all actors in the system, transient

states due to indirections (e.g., cache line invalidation), and transient states due to the nondeterminism

inherent in the relative timing of events. Since the state space explodes exponentially as the distributed

directories and the number of cores grow, it is virtually impossible to cover all scenarios during verification

either by simulation or by formal methods [18]. Unfortunately, verifying small subsystems does not

guarantee the correctness of the entire system [3]. In modern CMPs, errors in cache coherence are one

of the leading bug sources in the post-silicon debugging phase [6].

3

A straightforward approach to removing directories while maintaining cache coherence is to disallow

cache line replication across on-chip caches (even L1 caches) and use remote word-level access to load

and store remotely cached data [7]: in this scheme, every access to an address cached on a remote core

becomes a two-message round trip. Since only one copy is ever cached, however, coherence is trivially

ensured. While such a remote-access-only architecture is still susceptible to data access patterns shown

in Figure 1 in terms of performance and network traffic, data locality under a directory-free architecture

can be better exploited by using fine-grained hardware-level thread migration to complement remote

accesses [5, 10]. In this approach, accesses to data cached at a remote core can also cause the thread

to migrate to that core and continue execution there. When several consecutive accesses are made to

data at the same core, thread migration allows those accesses to become local, potentially improving

performance over a remote-access regimen. Migration costs, however, make it crucial to migrate only

when multiple remote accesses would be replaced to make the cost “worth it.” Moreover, since only a

few registers are typically used between the time the thread migrates out and returns, transfer costs can

be reduced by not migrating the unused registers.

In this paper, we propose a novel migration prediction scheme that addresses these questions: it decides

at instruction granularity whether to perform a remote access or a thread migration, and which part of

the thread context (i.e., which registers) to migrate in each migration to further reduce the migration cost.

Our results show that the hybrid architecture with our predictor improves performance and significantly

reduces network traffic compared to a remote-access-only architecture. We also compare with a state-

of-the-art directory-based architecture and show that our hybrid design can perform better for a certain

class of applications, and is competitive overall. Since it requires no directories or coherence protocols,

we argue that our architecture provides an interesting design point on the hardware coherence spectrum.

II. ARCHITECTURE OVERVIEW

In what follows, we describe the remote access protocol, as well as a protocol based on hardware-level

thread migration. We then present a framework that combines both.

A. Remote Cache Access

Under the remote-access framework of standard NUCA designs [7,9], all non-local memory accesses

cause a request to be transmitted over the interconnect, the access to be performed in the remote core,

and the data (for loads) or acknowledgement (for writes) to be sent back to the requesting core. When

a core C executes a memory access for address A, it must first find the home core H for A (e.g., by

consulting a mapping table or masking some address bits). If H = C (a core hit), the request is served

4

locally at C. If H 6= C (a core miss), on the other hand, a remote access request needs to be forwarded

to core H, which will send a response back to C upon its completion. Note that, unlike a private cache

organization where a coherence protocol takes advantage of spatial and temporal locality by making a

copy of the block containing the data in the local cache, this protocol incurs round-trip costs for every

remote word access.

B. Thread Migration

Fine-grained, hardware-level thread migration has been proposed to exploit data locality for NUCA

architectures [10]. This mechanism brings the thread to the data instead of the other way around. When

a core C running thread T executes a memory access for address A, it must first find the home core H

for A. If H = C (a core hit), the request is served locally at C. If H 6= C (a core miss), the hardware

interrupts the execution of the thread on C, packs the thread’s execution context (microarchitectural state)

into a network packet, and sends it to H via the on-chip interconnect where the packet is loaded to the

context and an execution of T is resumed (cf. Figure 2.C). This provides faster migrations than other

approaches that require OS intervention or memory accesses since it migrates threads directly over the

interconnect. A register mask is used to allow partial context migration (i.e., selective loading/unloading

of the register file).

If another thread is already executing at the destination core, it must be evicted and moved to a core

where it can continue running. To reduce the need for evictions, cores duplicate the architectural context

(register file, etc.) and allow a core to multiplex execution among two concurrent threads. To prevent

deadlock, one context is marked as the native context and the other as the guest context: a core’s native

context may only hold the thread that started execution there (called the thread’s native core), and evicted

threads must return to their native cores to ensure deadlock freedom [5].

C. Performance Overhead of Thread Migration

The migration overhead is directly affected by the context size. The relevant architectural state that

must be migrated in a 64-bit x86 processor amounts to about 3.1Kbits (sixteen 64-bit general-purpose

registers, sixteen 128-bit floating-point registers and special purpose registers) [2], which is what we use

in this paper. This introduces a serialization latency since the full context needs to be loaded (unloaded)

into (from) the network: with 128-bit flit network and 3.1Kbits context size, the thread context consists of⌈
pkt size
flit size

⌉
= 26 flits, incurring the serialization overhead of 26 cycles. The context size will vary depending

on the architecture; in the TILEPro64 [14], for example, it amounts to about 2.2Kbits (64 32-bit registers

and a few special registers).

5

Hybrid memory access architecture A
Core originating memory access Core where address can be cached

PC2PC1 RegFile1g
RegFile2

Fetch Decode Execute Memory Write
b k

y
back

Migrate another

Local Access
Address

C h bl ?
Yes thread back to

its native coreYLocal Access
(Core hit)

(Core miss)

Cacheable?

No

its native coreYes
(Core miss)

P di t Yes

No

threads Access memory &NoMigration Predictor
Hit?

Yes # threads
exceeded?

Access memory &
continue execution

NoMigration
Predictor

Migrate thread

No Access memorySend remote request

Return data (read) or ack (write) to

q

C ti ti Return data (read) or ack (write) to
the requesting core C

Continue execution

PC‐based migration predictor Hardware‐level thread migrationB C
PC
PC based migration predictor Hardware level thread migrationB C
PC

Program Reg MaskReg Mask
Tag Useful Register MaskValid Counter

rdi rsi ∙∙∙ r15 xmm0 ∙∙∙ xmm15

0 0 0 1 0
PacketizerRegister Depacketizer

rdi rsi r15 xmm0 xmm15

0 0 ∙∙∙ 0 1 ∙∙∙ 0 File
Registers with 1’s 32

= Hit = Migrate
are sent.

Interconnect NetworkHit = Migrate Interconnect Network

Fig. 2. Hybrid memory access architecture that supports thread migration and remote access. Each core has a PC-based
migration predictor, where each entry contains a {PC, register mask} pair.

Another overhead is the pipeline insertion latency. Since a memory address is computed in the middle

of the pipeline, if a thread ends up migrating to another core and re-executes, it needs to refill the pipeline.

We assume an overhead of ten cycles to refill the pipeline upon migrations.

D. Hybrid Memory Access Framework

Figure 2.A illustrates a hybrid directoryless architecture: each access to data cached on a remote core

may either perform the access via a remote access or migrate the current execution thread. Our migration

predictor makes this decision on a per-instruction granularity. It is worthwhile to mention that we allow

replication for instructions since they are read-only; threads need not perform a remote access nor migrate

to fetch instructions.

III. THREAD MIGRATION PREDICTOR

With a large thread context size, thread migration costs exceed the cost required by remote-access-only

designs on a per-access basis. On the other hand, multiple contiguous memory accesses to the same core

6

make migration beneficial because after migrating on the first access, the remaining accesses become

local. Therefore, our migration predictor focuses on detecting those. Compared to the predictor presented

in [16], which only supports full-context migration, we further reduce migration costs by sending only a

part of the register file when a thread migrates (usually, only some of the registers are used between the

time the thread migrates out of its native core and the time it returns). With the deadlock-free migration

framework of [5], the native-core register file remains intact even if a thread migrates away, because its

context it is not used by any other guest threads. This allows us to carry only the registers that will be

read “during the trip” and bring back only the registers written while away.

Since the migration/remote-access decision and the partial context prediction must be made on every

memory access, they must be implementable as efficient hardware. To this end, we present a per-core

migration predictor—a PC-indexed direct-mapped data structure shown in Figure 2.B. Our predictor is

based on the observation that sequences of consecutive memory accesses to the same home core and

register usage patterns within those sequences are highly correlated with the program (instruction) flow,

and, moreover, that these patterns are fairly consistent and repetitive across program execution. Our

baseline configuration uses a 128-entry predictor, each of which consists of a 64-bit PC and a 32-bit

useful register mask, about 1.5KB in total. An N-bit mask is required for an architecture with N general

registers: each bit indicates whether the corresponding register is sent during migrations.

If the home core for an address is not where the thread is currently running (a core miss), the predictor

decides between a remote access and a migration: if the PC hits in the predictor, it instructs a thread

to migrate; otherwise, a remote access is performed. If the thread is migrating from its native core to

another core, it transfers only those registers whose bits in the register mask are set.

In the next section, we first describe how instructions are detected as “migratory” and inserted into

the migration predictor; then, we extend the predictor to track used-registers information for migratory

instructions.

A. Detecting Migratory Instructions: WHEN to migrate

The detection of migratory instructions is done by tracking how many consecutive accesses to the same

core have been made. If this count exceeds a threshold, we insert the PC into the predictor; otherwise, we

classify the instruction as remote-access (the default state). Each thread tracks (1) Home, which maintains

the home core ID for the most recently requested memory address, (2) Depth, which indicates how many

times thus far a thread has contiguously accessed the recent home location (i.e., the Home field), and (3)

Start PC, which tracks the PC of the very first instruction among memory sequences that accessed the

7

home location in the Home field. We separately define the depth threshold θ, which indicates the depth

at which we determine the instruction as migratory.

The detection mechanism is as follows: when a thread T executes a memory instruction for address A

whose PC = P and the home core for A is H, it must

1) if Home = H (i.e., memory access to the same home core as that of the previous memory access),

a) if Depth < θ, increment Depth by one;

2) if Home 6= H (i.e., a new sequence starts with a new home core),

a) if Depth = θ, StartPC is considered a migratory instruction and thus inserted into the predictor;

b) if Depth < θ, StartPC is considered a remote-access instruction;

c) reset the entry (i.e., Home← H, StartPC← P, Depth← 1).

B. Detection of Useful Registers: WHAT to migrate

We now extend our migration predictor to support partial context migrations. In addition to (1) Home,

(2) Depth, and (3) Start PC, each thread now also tracks (4) Used Registers, a 32-bit vector where

each bit indicates whether the corresponding register has been used or not within a sequence of memory

instructions accessing the same home core. Every instruction (both memory and non-memory) updates

this Used Registers field by setting the bit when the corresponding register is being read or written. When

the PC is detected as a migratory instruction and inserted into the predictor, the Used Registers field is

inserted together with Start PC (see Figure 2.B).

Figure 3.A shows an example of the detection mechanism when θ = 2. Suppose a thread executes

a sequence of instructions, I1 ∼ I5. I1, I3 and I5 are memory instructions, I2 and I4 are non-memory

instructions, and rn denotes the nth register. When I1 is first executed, the entry {Home, Depth, Start PC,

Used Registers} will hold the value of {C, 1, PC1, r1}. Then, when I2, a non-memory instruction using

r2 and r3, is executed, the Used Registers bit-vector is updated to set the bits for r2 and r3. When I3 is

executed, it accesses the same home core C and thus the Depth field is incremented by one. I4 simply

adds r4 to the register bit-vector. Lastly, when I5 (which starts a new memory sequence for the home

core A) is executed, since the Depth to core C has reached the threshold, PC1 in the Start PC field, which

represents the first memory instruction (I1) that accessed the home core C, is classified as a migratory

instruction and thus is added to the predictor with the register mask bits.

The partial context migration policy is as follows: when a thread T executes a memory instruction

whose PC hits in the migration predictor and thus needs to migrate,

8

A DetectionA. Detection

Present State Next StateInstruction Present State Next StateInstruction
Start PCHome Depth Start PCHome DepthPC Home Used Regs Used RegsRegs Start PCHome Depth Start PCHome DepthPC Home Used Regs Used RegsRegs

C C 1 PCPC 1 1I ‐ ‐ ‐C C 1 PC1PC1 ‐r1 r1I1 : 111

C 1 PC1‐PC2 C 1 PC1r2 r3 r1 r2, r3r1I2 : C 1 PC1PC2 C 1 PC1r2, r3 r1, r2, r3r1I2 :

C 1 PCCPC C 2 PCr2 r1 r2 r3 r1 r2 r3I : C 1 PC1CPC3 C 2 PC1r2 r1, r2, r3 r1, r2, r3I3 :

C 2 PC1‐PC4 C 2 PC1r4 r1, r2, r3 r1, r2, r3, r4I4 : 14 1, , , , ,4

C 2 PCAPC A 1 PCr1 r1r1 r2 r3 r4I : C 2 PC1APC5 A 1 PC5r1 r1r1, r2, r3, r4I5 :

Inserted into the migration predictor
B L k

Inserted into the migration predictor
B. Lookupp

PC 1 2 3(1) (2)PC1 r1, r2, r3(1) (2)
PC ∙∙∙ PC ∙∙∙

A B
PC3 ∙∙∙

A B
PC1 ∙∙∙

A B A BPC3 r1, r4
Migrates with

3 ,

DC
Migrates with

r1 r2 r3 DCDCr1, r2, r3 DC
V : { r1, r2, r3}

Migrates with r1, r2, r3
V : { r1, r2, r3}
W: { r1} g , ,W: { r1}

() ()Migrates with r1(3) Migrates with r1(4)Migrates with r1
A B

() Migrates with r1
A B

()
A B A B

add r1 r3 r4
DC PC r1 r4

add r1, r3, r4
CDC PC3 r1, r4 register miss (r4)DC

{ }
PC7 ∙∙∙

register miss (r4)
V : { r1, r2, r3}

PC7 V : { r1, r2, r3}{ , , }
W: { r1}

{ , , }
W: { r1}W: { r1} W: { r1}

Fig. 3. (A) An example of how a specific instruction (or PC) is detected as a migratory instruction and is inserted into the
migration predictor with the information of used-registers. (B) An example of a partial context migration.

1) if T is migrating from its native core to a non-native core, it takes the registers specified in the

Useful Register Mask of the migration predictor (cf. Figure 3.B.1);

2) if T is migrating from a non-native core to another non-native core, it takes all the registers that

T brought when T first migrated out from its native core (cf. Figure 3.B.2);

3) if T is migrating back to its native core from a non-native core, it takes only the registers that are

written while T was outside from its native core (cf. Figure 3.B.3).

4) Special purpose registers required for the thread execution (e.g., rip, rflags and mxcsr for a 64-bit

x86 architecture) are always transferred.

In order to implement these policies, a thread carries around two 32-bit masks: V-mask and W-mask.

V-mask identifies the registers that the thread may access while outside of its native core (looked up in

9

the predictor when the thread first migrated out from its native core). W-mask keeps track of the registers

that have been written while outside the native core, and is used to implement policy (3). Since a register

file remains intact in the native context, a thread returning to its native core needs to carry only the

registers that have been modified. During migrations, these two masks and {Home, Depth, Start PC,

Used Registers} must be transferred together with the context. With 64 cores (6 bits for the home core

ID), a maximum depth threshold of 8 (3 bits), a 64-bit Start PC and a 32-bit used-register mask, a total

of 169 bits have to be transferred in addition to the context.

Unlike the decision on whether to perform a remote access or a thread migration, the useful register

information in the predictor is only consulted by a thread when at its native core; this is because the

native context is the only place where all the register values are maintained for the thread, and once it

leaves the native core, the thread cannot use any registers other than the ones it initially brought from

its native core (i.e., registers in V-mask). If a thread encounters an instruction which requires the read

or write of a register rn which has not been brought from its native core while outside its native core

(i.e., rn /∈ V-mask, called a register miss), the thread stops its execution and returns to its native core (cf.

Figure 3.B.4).

Our migration predictor tries to minimize such register-miss migrations; we update the useful register

mask in the predictor by adding the register that caused the register miss when the thread migrates back.

With this learning mechanism, the useful register mask for a particular PC, PC1, will eventually converge

to a superset of registers that are used after the thread migrates at PC1 until it migrates back to its native

core.

IV. METHODOLOGY

A. Simulation Framework

We use Graphite [13] to model the hybrid architecture that supports both remote-access and thread

migration. We simulate 64 in-order, single-issue cores with 2-way fine-grain multithreading in an 8×8

mesh (XY routing, 128-bit flits); each core has a 32KB L1 data cache (2-way), 32KB L1 read-only

instruction cache (4-way) and a 128KB, 4-way L2 cache (64B cache block). A 2-cycle fixed per-hop

latency with extra delays due to contention is modeled. For data placement, we use the first-touch after

initialization policy which allocates each page (4KB) to the core that first accesses it after parallel

processing has started.

10

B. Evaluated Systems

We compare our hybrid directoryless architecture with migration predictor (NoDirPred) against the

remote-access-only directoryless baseline (NoDirRA). To see how well the predictor itself works, we

also compare with a simple DISTANCE decision scheme (NoDirDist) previously proposed by [10]: the

intuition here is that over short distances the round-trip remote-access overhead is low, so threads migrate

only if the distance to the home core exceeds some threshold d. We use d = 6, the average hop count for

an 8×8 mesh, and transfer the full context during migrations. We also present the result for a directory-

based cache-coherence architecture (DirCC) to provide a sense of how directoryless designs perform

compared to conventional designs. DirCC uses MSI with distributed full-map directories in a Private-L1

Shared-L2 configuration, and Reactive-NUCA [8] data placement. Since all schemes use the shared-L2

configuration and our benchmark data sets fit on chip, off-chip access rate differences are negligible

across all the systems we evaluate; the main difference stems from the performance of on-chip cache

accesses.

C. Application Benchmarks

Our benchmarks include a parallel perceptron cross-validation (prcn+cv), a distributed hash table

benchmark (dht) and a set of Splash-2 [17] benchmarks (cross-validation is a popular machine learning

technique for optimizing model accuracy). Each application ran to completion, and we measured the

parallel completion time. Migration overheads (cf. Section II-C) for our hybrid architecture are taken

into account.

The directoryless design, used for both the remote-access-only baseline and our hybrid architecture,

does not allow replication for any kinds of data at the hardware level. Read-only data, however, can

actually be replicated without breaking cache coherence even without directories and a coherence protocol;

along with the fact that the primary type of data which necessitates that directories maintain cache

coherence is shared read-write data, the performance of directoryless architectures with read-only data

replication is a more realistic indicator of the cost of removing directory coherence. To this end, we achieve

read-only data replication for Splash-2 benchmarks by making source-level modifications described in

[15] (automating by a compiler is out of the scope of this work); our modifications did not alter the

algorithm used and were only a few tens of lines of code changes for each benchmark. Both the remote-

access-only baseline and our hybrid architecture benefit from this replication almost equally, and thus,

the comparison between directoryless designs is not affected.

11

L1 i (ll l l f N Di P d)DirCC NoDirRA DirCC NoDirRA NoDirPred
L1 miss (all local for NoDirPred)
L1 i t l l L2 (Di CC)NoDirDist NoDirPred

DirCC NoDirRA NoDirPred L1 miss to local L2 (DirCC)
L1 i t t L2 (Di CC)4e 6 12
L1 miss to remote L2 (DirCC)

im
e

5
6

ff
ic

10
12

%
)

3el

n
T

4
5

Tr
af

8
10

es
 (%

2ra
lle

tio
n

3
4

rk
 T

6
8

at
e

2

Pa
r

pl
et

2
3

ow
r

4
6

ss
 r

1om
p

1
2

et
o

2
4

m
is

0

Co

0
1N

e

0
2

L1
 m

0 0 0L

() N li d ll l l i i (b) N li d k ffi () B kd f L1 i(a) Normalized parallel completion time (b) Normalized network traffic (c) Breakdown of L1 miss rate
(DirCC = 1) (DirCC = 1)

U d R i t U d R i t
Reg‐miss Migration Back Migration

Unused Registers Used Registers

ns Out Migration Remote AccessNoDirRA NoDirDist NoDirPred

20f s1 2ow
n g

87.3 20

s o
f

te
rs

1
1.2

kd
o50%
)

15w
ns

gi
st1

ea
k

40es
 (

15

do
w

Re
g0.8Br
e

30ra
te

10

ea
kd

ed
 R

0.6ff
ic

20
30

ss
 r

5Br
e

ra
te0.4Tr
af20m
is

5

he
 B

M
ig
r

0 2
0.4

rk
 T10

or
e

0Th M

0
0.2

w
or0Co 0

cv ht ff
t lu an ix ce er G
.0

NoDirRA NoDirPred Full NoDirPredet
w0

n+
c dh f l

ce
a

ra
d

tr
ac

w
at
e

AV
GNoDirRA NoDirPred‐Full NoDirPred N

pr
cn oc r

ay
t w A

() ()

p ra

(d) (e) Network traffic breakdown (f) Breakdown of migrated context (d) Core miss rate
into used and unused registers

DirCC NoDirRA NoDirPredDirCC NoDirRA NoDirPred

1.8
1.6

CC 1.4

D
irC

1.2o
D

1d
to

0.8liz
e

0.6m
al

0.4or
m

0.2N
o

0
0.
0

3‐cycle hop 64‐bit flit 3‐cycle hop 64‐bit flit3 cycle hop 64 bit flit 3 cycle hop 64 bit flit

Parallel Completion Time Network Traffic NoDirPred DirCC 100% DirCC 50%p

(g) The effect of network latency and bandwidth (h) Relative area and leakage power costs of(g) y
on performance and network traffic

(h) Relative area and leakage power costs of
NoDirPred vs. DirCC with the directory sized to 100%p

(DirCC = 1 for each configuration)
NoDirPred vs. DirCC with the directory sized to 100%
and 50% of the D$ entries (IBM 45nm SOI library)(DirCC 1 for each configuration) and 50% of the D$ entries (IBM 45nm SOI library)

Fig. 4. Evaluation of our proposed architecture

V. EVALUATION

A. Performance and network traffic

Overall performance of DirCC, NoDirRA, NoDirDist, and NoDirPred is compared in Figure 4.(a); for

NoDirPred, the depth threshold θ is set to 3. When compared to DirCC, NoDirRA performs worse by 49%

on average, while our hybrid architecture (NoDirPred) performs worse by 13% on average. NoDirDist

performs the worst, indicating that migration decisions must be made judiciously. Since I-cache content is

12

not transferred during migrations, NoDirPred shows 7% more I-cache misses than NoDirRA on average;

I-cache miss rates, however, are still very low (mostly < 0.1%) and have negligible effect on performance.

We also compare on-chip network traffic in each system, measured as the number of flits sent times the

number of hops traveled. Figure 4.(b) shows that NoDirPred reduces network traffic by 28% on average

compared to DirCC, and by 50% when compared to NoDirRA; while not shown in the figure, the network

traffic for NoDirDist is prohibitive, 5× more traffic on average compared to DirCC.

Although the average performance of NoDirPred is less than that of DirCC, it is important to note

that most of our benchmarks were originally developed with directory coherence in mind. Parallel

cross-validation with the perceptron learning algorithm (prcn+cv) is an example where directory-based

coherence does not work well; the computation requires each thread to traverse through a dataset spread

across the cores, resulting in many accesses to remote caches and high network overhead for DirCC. As

a result, NoDirPred outperforms DirCC by 34% with 42× less traffic for prcn+cv, demonstrating that

such overhead can be eliminated by migrating threads to the data.

To better understand the overall performance, we measured L1 cache miss rates for DirCC and

NoDirPred; the results are shown in Figure 4.(c). Since cache lines are not replicated across L1 caches

in the directoryless design (NoDirPred), the effective L1 cache capacity increases, always resulting in

lower L1 miss rates than DirCC; more importantly, while all L1 misses under NoDirPred are forwarded

to local L2 caches, a large fraction of L1 misses for DirCC result in memory requests to remote L2

caches, a major factor in performance degradation and network traffic for directory-based architecture.

On the other hand, directoryless designs can suffer when the core miss rate is high, i.e., when frequently

accessing data cached in remote cores; the core miss rate of DirCC is always zero. Figure 4.(d) shows

that on average, 18.4% of total memory accesses result in core misses for NoDirRA, which drops to only

6% for NoDirPred. While not shown, this improvement is achieved with the average migration rate of

1%, indicating that the predictor works well. Raytrace and water are examples where NoDirPred suffers

in terms of both performance and network traffic due to high core miss rates.

In order to track how traffic is reduced by partial context migration, we compare our design with the

full context migration variant, which always sends the full thread context during migrations (NoDirPred-

Full). The results are shown in Figure 4.(e); NoDirPred reduces out migration traffic (migrations to

non-native cores) by 58% and back migration traffic (migrations back to native cores) by 72% compared

to NoDirPred-Full. The reduction in out migration traffic is achieved by our predictor (the useful register

field) and the reduction in back migration traffic is achieved by the W-mask, which keeps track of the

written registers. While using partial context migration occasionally induces unnecessary migrations due

13

to register misses, we observe almost no overhead from this because our predictor learns from each

miss by adding the missing register to the useful register mask for the appropriate PC. With this union

mechanism, however, the register mask will only grow and never shrink back; this makes our context

prediction conservative and thus, some of the registers that are migrated may not be actually used. Across

all benchmarks, around 75% of migrated registers are actually used on average (see Figure 4.(f)), showing

that our predictor is reasonably efficient.

We further demonstrate that the relative performance and network traffic of our hybrid architecture

(NoDirPred) are maintained over different network parameters. Figure 4.(g) shows that NoDirPred

outperforms NoDirRA by 29% with 3-cycle per-hop latency (originally, 24% with 2-cycle per-hop latency);

this is because the round-trip nature of remote accesses suffers more from increased per-hop latency. With

a 64-bit flit network instead of 128-bit, on the other hand, the network traffic reduction rate of NoDirPred

over NoDirRA decreases from 50% to 43%; this is because a large fraction of remote access messages

(i.e., those that do not carry a data word) fit into 64 bits, and do not need additional flits to make up for

the halved bandwidth. Performance improvements also drop slightly, but not significantly.

B. Area costs

Our hybrid architecture requires an extra architectural context (for the guest thread) and a learning

migration predictor. It also requires four independent on-chip networks for migrations and evictions as

well as remote access requests and responses, while a deadlock-free implementation of directory-based

coherence requires three networks (for coherence requests, replies, and invalidations).

To give an idea of how these costs compare against that of a directory-based architecture, we estimated

the area required for a MESI implementation with a full-map directory sized to 100% and 50% of the

total L1 data cache entries, and compared the area and leakage power to that of NoDirPred. We assumed

8KB L1-I cache and 32KB L1-D cache per core and did not include the (identical) L2 caches in either

NoDirPred or DirCC area results. Area and power estimates were obtained by synthesizing RTL using

Synopsys Design Compiler with a 45nm ARM ASIC library and IBM SRAM blocks; synthesis targeted

an 800MHz clock.

Figure 4.(h) shows how the silicon area and leakage power compare. Not surprisingly, SRAM blocks

(instruction and data caches, as well as the directory for DirCC) were responsible for most of the area

in all variants. Overall, the extra thread context and extra router present in NoDirPred were outweighed

by the area required for the directory in both the 50% and 100% versions of MESI, indicating that

NoDirPred can reduce area costs.

14

C. Verification Complexity

Distributed cache coherence protocols are notoriously complex and difficult to design, as well as hard

to verify due to the state space explosion as the number of cores grows. Even relatively simple protocols

(e.g., MSI, MESI) introduce many transient states that are not explicit in the higher-level protocol [3],

and writing testbenches that exercise all the reachable transient states is an arduous task. Significant

modeling simplifications must be made to make exploring the state space tractable [1], and even formally

verifying a given protocol on a few cores gives no confidence that it will work on 100.

While design and verification complexity is difficult to quantify and compare, directory-free designs

(NoDirRA and NoDirPred) have a significant advantage over directory-based designs. Since a given

memory address may only be cached in a single place, a memory request will depend only on the

validity of a given line in a single cache, and no indirections or transient states are required. Unlike

caches and directory entries in DirCC, directoryless caches keep no information about more than the

local core; the VALID and DIRTY flags that together determine the state of a given cache line are local to

the tile. Further, the thread migration framework does not introduce additional complications, since the

data cache does not care whether local memory requests come from native or migrated threads: the same

local data cache access interface is used. All of the logic required for the migration framework—deciding

whether to migrate, computing the destination core, serializing and deserializing network packets from/to

the execution context, evicting a running thread if necessary, etc.—is also local to the tile.

As a result, the overall correctness can be cleanly separated into (a) the remote access framework,

(b) the thread migration framework, (c) the cache that serves the memory request, and (d) the underlying

on-chip interconnect, all of which can be reasoned about separately. Furthermore, the entire state space

can be exercised in the 4-tile system, meaning that the system could be scaled to an arbitrary number of

cores without incurring an additional verification burden.

VI. RELATED WORK

Recent many-core CMPs have organized physically distributed L2 cache slices to form one logically

shared L2 cache, leading to a Non-Uniform Cache Access (NUCA) architecture [8,9]. Our baseline also

uses shared L2 cache; the main difference between previously-proposed NUCA designs and our baseline

architecture is that while they still rely on private L1 caches and allow replication at the L1, which requires

directories and a coherence protocol to maintain coherence, our baseline allows no replication across L1

caches, completely obviating the need for directories and a coherence protocol. Our work focuses on

proposing a directoryless shared-memory architecture that outperforms the remote-access-only baseline

15

by complementing remote accesses with judicious thread migrations.

Migrating computation to the locus of the data is not itself a novel idea. Michaud showed that execution

migration can improve the overall on-chip cache capacity and selectively migrated sequential programs

to improve cache performance [12]. Computation spreading [4] splits thread code into segments and

assigns cores to different segments, migrating execution to improve code locality. Thread migration has

also been used to provide memory coherence among per-core caches [10] using a deadlock-free fine-

grained thread migration protocol [5]; we adopt the same protocol for our hybrid framework. Although a

migration predictor that decides between migrations and remote accesses is introduced in [16], it does not

address the overhead of high network traffic for thread migration. This paper proposes a novel migration

predictor that supports partial context migration, improving both performance and network traffic. As a

silicon prototype, we have built a 110-core CMP in a 45nm ASIC which supports hardware-level thread

migration on a stack-based core architecture; its physical implementation details and evaluation results

are presented in [11].

VII. CONCLUSIONS

We have demonstrated that, for certain applications, a directoryless architecture with fine-grained

partial-context thread migration can outperform or match directory-based coherence with less on-chip

traffic and reduced verification complexity.

The lack of data replication, however, can limit its performance benefits; we believe more ways to

avoid this limitation, such as implementing thread migration on top of simplified hardware coherence or

software coherence, can be explored.

REFERENCES

[1] D. Abts, S. Scott, and D. J. Lilja, “So many states, so little time: Verifying memory coherence in the cray x1,” in PDP,

2003.

[2] AMD, “AMD64 Architecture Programmer’s Manual,” in AMD64 Technology, May 2013. [Online]. Available:

http://support.amd.com/us/Processor TechDocs/24592 APM v1.pdf

[3] Arvind, N. Dave, and M. Katelman, “Getting formal verification into design flow,” in FM2008, 2008.

[4] K. Chakraborty, P. M. Wells, and G. S. Sohi, “Computation spreading: employing hardware migration to specialize CMP

cores on-the-fly,” in ASPLOS, 2006.

[5] M. H. Cho, K. S. Shim, M. Lis, O. Khan, and S. Devadas, “Deadlock-free fine-grained thread migration,” in NOCS, 2011.

[6] A. DeOrio, A. Bauserman, and V. Bertacco, “Post-silicon verification for cache coherence,” in ICCD, 2008.

[7] C. Fensch and M. Cintra, “An OS-based alternative to full hardware coherence on tiled CMPs,” in HPCA, 2008.

[8] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive NUCA: near-optimal block placement and replication

in distributed caches,” in ISCA, 2009.

16

[9] C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-Uniform Cache Structure for Wire-Delay Dominated On-Chip

Caches,” in ASPLOS, 2002.

[10] M. Lis, K. S. Shim, M. H. Cho, O. Khan, and S. Devadas, “Directoryless shared memory coherence using execution

migration,” in PDCS, 2011.

[11] M. Lis, K. S. Shim, M. H. Cho, I. Lebedev, and S. Devadas, “Hardware-level Thread Migration in a 110-core

Shared-memory Multiprocessor,” in MIT CSAIL CSG Technical Memo 512, November 2013. [Online]. Available:

http://csg.csail.mit.edu/pubs/memos/Memo-512/memo512.pdf

[12] P. Michaud, “Exploiting the cache capacity of a single-chip multi-core processor with execution migration,” in HPCA, 2004.

[13] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, J. Eastep, and A. Agarwal, “Graphite: A

distributed parallel simulator for multicores,” in HPCA, 2010.

[14] S. Bell et al, “TILE64 - processor: A 64-Core SoC with mesh interconnect,” in ISSCC, 2008.

[15] K. S. Shim, M. Lis, M. H. Cho, O. Khan, and S. Devadas, “System-level Optimizations for Memory Access in the Execution

Migration Machine (EM2),” in CAOS, 2011.

[16] K. S. Shim, M. Lis, O. Khan, and S. Devadas, “Thread migration prediction for distributed shared caches,” Computer

Architecture Letters, Sep 2012.

[17] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 programs: characterization and methodological

considerations,” in ISCA, 1995.

[18] M. Zhang, A. R. Lebeck, and D. J. Sorin, “Fractal coherence: Scalably verifiable cache coherence,” in MICRO, 2010.

VIII. AUTHOR BIOGRAPHIES

Keun Sup Shim is a Ph.D. candidate in the Department of Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology. His research focuses on many-core computer architecture
and energy-efficient parallel computing, including shared-memory coherence, design scalability, and on-
chip networks. Before coming to MIT, he received the Bachelors in electrical engineering from KAIST,
South Korea, and the Masters in electrical engineering and computer science from MIT.

Mieszko Lis is a Ph.D. candidate at the Massachusetts Institute of Technology, where he focuses on
massive-scale multicore processors and various architectural techniques required to build them. He is
committed to raising the level of abstraction across the computing landscape – an interest he has also
explored as co-designer of the high-level hardware design language Bluespec and designer of a high-level
language for immunology research. Before coming to MIT for his doctoral studies, Mieszko accumulated
extensive industry experience as a co-founder of two start-up companies.

Omer Khan is an assistant professor in the Department of Electrical and Computer Engineering at the
University of Connecticut. His research focuses on architecture methods to improve the performance,
power, resiliency, and security of future microprocessors, including shared-memory multicores. Khan
received a PhD in electrical and computer engineering from the University of Massachusetts Amherst
and was a postdoctoral research scientist at Massachusetts Institute of Technology. He is a member of
IEEE and ACM. Contact him at khan@uconn.edu.

Srinivas Devadas is the Webster Professor of Electrical Engineering and Computer Science at the
Massachusetts Institute of Technology (MIT). He received his MS and PhD from the University of
California, Berkeley in 1986 and 1988, respectively. He joined MIT in 1988 and served as Associate
Head of the Department of Electrical Engineering and Computer Science, with responsibility for Computer
Science, from 2005 to 2011. His research interests include Computer-Aided Design, computer architecture
and computer security. He is a Fellow of the IEEE.

