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Abstract 

Spray layer-by-layer assembled thin films containing laponite (LAP) clay exhibit 

effective salt barrier and water permeability properties when applied as selective layers in 

reverse osmosis (RO) membranes.  Negatively-charged LAP platelets were layered with 

poly(diallyldimethylammonium) (PDAC), poly(allylamine) (PAH), and poly(acrylic acid) (PAA) 

in bilayer and tetralayer film architectures to generate uniform films on the order of 100 nm thick 

that bridge a porous polyethersulfone support to form novel RO membranes.  Nanostructures 

were formed of clay layers intercalated in a polymeric matrix that introduced size-exclusion 

transport mechanisms into the selective layer.  Thermal cross-linking of the polymeric matrix can 
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be used to increase the mechanical stability of the films and improve salt rejection by 

constraining swelling during operation.  Maximum salt rejection of 89% was observed for the 

tetralayer film architecture, with an order of magnitude increase in water permeability compared 

to commercially available TFC-HR membranes.  These clay composite thin films could serve as 

a high-flux alternative to current polymeric RO membranes for wastewater and brackish water 

treatment as well as potentially for forward osmosis applications.  In general, we illustrate that 

by investigating the composite systems accessed using alternating layer-by-layer assembly in 

conjunction with complementary covalent crosslinking, it is possible to design thin film 

membranes with tunable transport properties for water purification applications. 

Introduction 

The Earth’s surface is dominated by oceans, seas, and glaciers, but geological surveys 

indicate only 0.8% of these water resources meet the minimum standard for freshwater adequate 

for human consumption
1
.  Additionally, agriculture and poor irrigation practices

2-3
, mining 

operations
4-6

, industrial production
7-8

, and other human activity
9
 can produce significant amounts 

of wastewater that must be treated before it can be reused or discharged to the environment 

without a significant ecological impact.  Efficient water desalination is already is vital and will 

continue to be to sustain the quality of life for societies living without sufficient access to 

freshwater. 

Membrane processes, the most commonly implemented being reverse osmosis (RO)
10

, 

are playing a larger role in desalination because the energy costs per volume of freshwater 

produced are an order of magnitude lower than the costs associated with thermal desalting 

processes
11-12

.  In RO, water is desalted via pressurized flow past a salt-selective membrane 
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which produces two product streams: a desalted permeate stream and a retentate stream of 

concentrated brine.  Although RO has been proven to be a robust process, challenges remain to 

fully optimize RO membranes to increase throughput and lower power consumption.  These 

challenges may be addressed by manipulating the structure and composition of the RO 

membrane
10, 13

.  Currently, state-of-the-art thin film composite RO membranes are comprised of 

two or more layers: 1) a dense polyamide selective layer deposited through interfacial 

polymerization that accomplishes the separation, 2) a polysulfone or polyethersulfone support 

layer to provide a mechanically robust, porous support for the selective layer, and optionally 3) 

polyester or other backing materials for mounting the RO membrane into an appropriate 

module
14

. 

While a number of transport mechanisms can partially describe the flux of solvated ions 

and water through the selective layer, the exact mechanism is the subject of debate.  It is 

generally accepted that solvated ions diffuse at a slower rate than water molecules through the 

polymer matrix
15

.  The rate of diffusion through a dense polymer layer is a function of several 

factors, including the hydrodynamic radius of the molecule, the charge or lack thereof on the 

molecule, and environmental factors such as temperature and applied pressure that affect the 

activity and chemical potential of the molecules
16

.  Note the hydrodynamic radius of a diffusing 

ion is not simply the radius of the ion or the polyatomic species, but also includes the shell of 

closely hydrogen-bonded water molecules around the ion, termed a solvated ion.  The size of the 

solvation shell is a function of the attractive electrostatic forces between the ion and the 

oppositely-charged dipole of the water molecules and the repulsive forces between the nuclei
17-

18
.  These solvation shells increase the effective size of the solute to the order of a single 

nanometer for common monatomic ions like sodium and chloride to several nanometers for 
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larger polyatomic ions such as sulfates, with lighter monatomic ions being relatively larger than 

heavier monatomic ions due to the increased charge density
19-21

. 

There is an inverse relationship between salt rejection and water flux, and manipulating 

membrane properties such as the porosity of either the selective or support layer to maximize one 

desired attribute will reduce the other.  To address this trade-off, researchers have investigated 

the use of nanostructured materials that enable less-hindered water transport while still providing 

mechanisms for salt rejection in the membrane
22

.  The literature on nanostructured materials for 

RO membranes contains experimental and theoretical work on selective layers using carbon 

nanotubes
23

, graphene
24

, metal oxide nanoparticles
25-26

, and zeolites
27

 with varying degrees of 

success.  Underlying these investigations is the hypothesis that the incorporation of impermeable 

nanomaterials into a selective layer introduces effective nano-sized channels inhibiting the flux 

of large solutes.  Particularly, the focus is on developing channels or pores with a length scale on 

the order of 1 nm, which enables solute rejection via size exclusion
28

, as this number is between 

the hydrodynamic radius of a water molecule and small solvated ions such as Na
+
 and Cl

-15
.  For 

this reason, we are interested in the use of laponite clay, a high-aspect ratio nano-platelet that 

may be layered into films to form highly tortuous diffusive pathways for solvated ions.  Clay-

containing ceramic membranes have been used with some success in water microfiltration 

applications
29

 and oil-water separations
30

, while recent research into the use of similar composite 

thin films as selective layers in RO membranes has primarily focused on the incorporation of 

carbon nanotubes and zeolites
22

.  More generally, polymer-clay composites have unique 

properties that have been utilized in a number of applications including gas barriers
31-34

, medical 

devices and biocompatible materials
35-37

, and the release of chemical agents
38

. 
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Many of the assembly techniques commonly used to incorporate these nanomaterials into 

membranes, such as the inclusion of nanoparticles to the polymerization step of the selective 

layer or the phase inversion processing of the support layer, generate composites with a 

disordered internal structure that do not form uniform barrier layers.  A potential improvement to 

this approach would be to build a more uniform selective layer through a sequential assembly 

process, enabling finer control over the internal structure of the selective layer.  The layer-by-

layer (LbL) assembly process, in which thin films are assembled via the sequential deposition of 

film components with complementary functionality such as electrostatic interactions
39

, is one 

such method to accomplish this control while enabling the construction of highly conformal thin 

films atop a range of porous supports.  The composition of LbL films can be varied through the 

manipulation of process conditions such as deposition times, concentration of the adsorbing 

solutions, and ionic strength of the film components
40-41

.  Aerosolizing the film components with 

a forcing gas and spraying onto the substrate in what is termed Spray Layer-by-Layer (Spray-

LbL) assembly can decrease the processing time for depositing large films by an order of 

magnitude
42

 and further enhance the lateral order of nanomaterials incorporated in the film.    

Previous research has examined the use of LbL films containing polyelectrolytes
43-49

 and metal-

ion complexed polymers
50

 has been conducted on dip-assembled and spin-assembled LbL films 

to serve as selective layers in osmotic membranes.  The flexibility of the LbL assembly process 

enables the incorporation of clay platelets into LbL-assembled films
51-53

, but there is a gap in the 

scientific literature concerning the use of LbL to generate nanostructured clay composite 

selective layers for RO membranes. 

In this work, we investigate several spray-LbL assembled film architectures that consist 

of laponite clay layers (LAP) and polyelectrolyte layers.  Analogous to what is observed in 
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models for composite polymer-clay membranes used in gas permeation applications
54

, we 

hypothesize alternating layers of clay intercalated with polyelectrolytes will increase the 

tortuosity of the diffusive path length for solutes and introduce size-exclusive transport 

mechanisms that impact the transport of solvated ions to a greater degree than for smaller water 

molecules.  We ground this hypothesis in three primary observations: first, prior work has shown 

laponite clay-containing thin films inhibit the in-plane mobility of Li
+
 ions by up to two orders of 

magnitude compared to the cross-plane mobility, thus serving as a barrier to ion mobility
55

. 

Second, incorporation of clay platelets into polymer composites was found to significantly 

increase selectivity in gas barrier and separation membranes, showing that LbL-assembled clay 

composites serve as an effective small molecule barrier
31-34

.  Third, recent studies on RO 

membranes containing inorganic nanoscale materials suggest the possibility of preferential water 

flow channels through the composite membrane
15

.  Through tuning of the LbL assembly 

conditions, films can be assembled with a relatively high degree of incorporation of nanomaterial 

into the polymer matrix, on the order of 50% of the weight fraction of the film
56

, compared to 

weight fractions under 10% observed in traditional polymer composites
57-58

.  We believe an 

increased quantity of nanostructured materials can further enhance selectivity in RO membranes. 

Results and Discussion 

In this work, the spray-LbL assembly technique is used to deposit composite thin films 

containing LAP on polyethersulfone ultrafiltration membranes to generate novel RO membranes.  

LAP clay platelets were selected for the composite film assembly for three reasons.  First, the 

cation-exchanged platelets have a negative surface charge and thus can be incorporated into LbL 

film architectures.  Second, the platelets have a flat disc-like geometry with an aspect ratio of 

approximately 25:1
59

 to 30:1
60

, and can be layered into films aligned with the membrane surface 
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as shown in Figure 1.  Three, LAP clay has a smaller particle size than other silicate clays such 

as montmorillonite, and thus is more compatible with the aerosolization technologies used in 

spray-LbL deposition.  These features make LAP clay platelets ideal for the spray-LbL 

deposition of these types of clay composite thin films. 

We examine two composite film architectures, the first containing the strong polycation 

poly(diallyldimethylammonium) (PDAC) and laponite (LAP) clay, shown in Figure 1a.  For this 

film architecture, we control the composition of clay in the film by adjusting the spray times of 

the two film components.  For the first film, the PDAC spray time was held constant at 3 seconds 

and the LAP clay spray time was held at 3 seconds (3s:3s); for the second bilayer composite 

film, the LAP clay spray time was increased to 9 seconds (3s:9s). 

The second is a cross-linked tetralayer architecture of poly(allylamine) (PAH) and 

poly(acrylic acid) (PAA) bilayers between clay-containing bilayers of PAH and LAP, shown in 

Figure 1b.  As both PAH and PAA are weak polyelectrolytes their degree of ionization depend 

on assembly pH.  We examined films assembled at pH 5 and pH 6, which yield different film 

properties.  Both the pH 5 and pH 6 films swell under aqueous conditions, as is expected for 

most LbL polyelectrolyte film systems, so thermal cross-linking
61

 was used to form covalent 

bonds in the polymer matrix to lower film swelling.  This additional step maintains the average 

spacing between layers of clay platelets to maintain an effective barrier layer, while toughening 

the polymer matrix and increasing the overall hardness and elastic modulus of the film, a 

phenomenon observed in prior research on polymer-clay nanocomposite films
62

.  Finally, a 

cross-linked (PAH/PAA) film assembled at pH 5.0 without clay was used as a control system. 
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Figure 1. Spray-LbL assembly process and film architectures of a) polymer and composite 

bilayer films, and b) nanocomposite tetralayer films.  Process is repeated to deposit desired 

number of bilayers or tetralayers. 

Film Thickness and Composition.  The dry thicknesses of the assembled thin films 

were measured by profilometry.  All of the examined film architectures appear to grow linearly 

with respect to the number of bilayers or tetralayers deposited (Figure 2a and 2b) up to a 

maximum of 60 repeating units.  The thickness per bilayer for the (PDAC/LAP) 3s:3s composite 

bilayer films was approximately 2.6 nm per bilayer, and for (PDAC/LAP) 3s:9s system 5.2 nm 

per bilayer, approximately 84% thicker.  This corresponds to an increase in the clay content of 

the films from 52% at 3s:3s to 83% at 3s:9s (Table 1), indicating the increase in thickness is 

correlated with the additional incorporation of LAP into the film.  The increase in clay content 

with longer spray times indicates that for these LAP containing film architectures, the spray-LbL 
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deposition does not achieve full equilibrium at the film interface per layer deposition.  Rather, 

more clay is deposited at longer exposures, which suggests kinetic control of LbL film content 

over these spray conditions, in contrast to the equilibrium-controlled mass content usually 

observed with dip-LbL with appropriately long dipping times.  

 

Figure 2. Growth curves of spray layer-by-layer assembled a) polymer bilayer (PAH/PAA) and 

composite (PDAC/LAP) thin films, and b) composite tetralayer (PAH/PAA/PAH/LAP) thin 

films assembled at different pH values. 

Table 1. Film clay content as a function of assembly conditions 

Film Architecture Clay Content (wt. %) Thickness per Repeat Unit 

(PAH/PAA), pH 5.0 0% 1.5 nm/bl 

(PDAC/LAP), 3s:3s 52.5% ± 6.9% 2.6 nm/bl 

(PDAC/LAP), 3s:9s 82.6% ± 2.2% 5.2 nm/bl 
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(PAH/PAA/PAH/LAP), pH 5.0 37.8% ± 4.9% 5.0 nm/tl 

(PAH/PAA/PAH/LAP), pH 6.0 56.3% ± 6.6% 2.6 nm/tl 

The tetralayer films were assembled with spray times of 3 seconds maintained for each 

film component but at three assembly pH values.  At pH 6.0, the PAH and PAA are both highly 

ionized when deposited at the film interface based on their respective pKa values (PAA pKa = 

6.0-6.5; PAH pKa = 8.0-9.0
63

), which results in very thin, dense polymer layers being deposited.  

On average, the dry thickness for (PAH/PAA/PAH/LAP) pH 6.0 films was 2.6 nm per tetralayer, 

similar to what was observed for the (PDAC/LAP) 3s:3s assembly conditions (Figure 2b).  The 

clay content of these two films were also statistically indistinguishable (Table 1), indicating the 

polymeric matrices of the (PDAC/LAP) 3s and (PAH/PAA/PAH/LAP) pH 6.0 films were of 

similar dry film thickness. 

The (PAH/PAA/PAH/LAP) pH 5.0 and pH 5.5 films assembled were significantly 

thicker than the pH 6.0 films of the same architecture, with a thickness of approximately 5.1 nm 

and 4.8 nm per tetralayer deposited respectively (Figure 2b).  At pH 5.0 assembly conditions, the 

PAA chains are less ionized, resulting in the deposition of thicker polyelectrolyte layers between 

the clay layers, decreasing the overall clay content of the film to approximately 38% (Table 1).  

This is a similar trend to what is observed in the literature for dipped (PAH/PAA) bilayer films 

over the same pH range
40

.  Within the margin of error, the thickness of the tetralayer pH 5.0 film 

appears to be a linear sum of the LAP-containing bilayer and the (PAH/PAA) pH 5.0 bilayer, 

implying the intercalating clay layers do not have a significant impact on the dynamics on the 

polyelectrolyte deposition, unlike what has been observed for other LbL polymer-clay 

nanocomposite films
64

.  There are two contributing factors that explain this observation.  First, 
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the smaller LAP clay platelets form more uniform surface layers during each deposition cycle.  

Second, the short deposition times employed by the spray-LbL assembly process tend to generate 

linearly growing films, in contrast to the exponential growth patterns observed with weak 

polyelectrolytes assembled via dip-LbL. 

Thermal Cross-linking.  The tetralayer composite films were cross-linked to form amide 

bonds via uncatalyzed heating in a 175°C oven at atmospheric pressure for 5 hours.  The 

resulting covalent bond formation was characterized by ATR-FTIR spectroscopy (Figure 3).  

Qualitatively, the 1550-1540 cm
-1

 peak corresponds to the N-H bending in the amine and is 

significantly reduced after cross-linking, indicating the reaction of primary amines to form 

secondary amides.  Through the application of ORIGIN software for linear baseline adjustment, 

peak deconvolution, and peak integration, an estimate of roughly 20.6% of the amine groups 

were cross-linked for the pH 5.0 films (Figure 3a), compared to 12.8% for pH 6.0 films (Figure 

3b).  The increase in the degree of cross-linking for the pH 5.0 films is attributable to the 

increased number of free, unbounded acid functional groups present in the pH 5.0 films that are 

available at the lower pH of assembly.  An additional side reaction possible with these free 

carboxylic acid groups is the formation of acid anhydrides.  The formation of acid anhydride 

bonds was not observed; the key peaks for the identification of these bonds are in the 1830-1800 

cm
-1

 and 1775-1740 cm
-1 

range, neither of which were appreciable in the spectra. 
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Figure 3. ATR-FTIR spectrograph showing the untreated films (solid line) and the films cross-

linked at 175°C for 5 hr (dashed line) for (a) (PAH/PAA/PAH/LAP) pH 5.0 films, and for (b) 

(PAH/PAA/PAH/LAP) pH 6.0 films. 

 To show the impact of the cross-linking under aqueous conditions, spectroscopic 

ellipsometry was used on 20 bilayer and tetralayer samples to evaluate the degree of swelling in 

both in the untreated and cross-linked state (Table 2).  The uncross-linked (PAH/PAA) pH 5.0 

films were observed to significantly swell as the films undergo a significant pH shift from the 

assembly conditions as well as have more free amine and carboxylic acid groups present to form 

hydrogen bonds with water molecules.  The composite bilayer of (PAH/LAP) swelled 

approximately 62% upon exposure to DI water, significantly less than the polyelectrolyte 

(PAH/PAA) pH 5.0 films.  Cross-linking reduced the observed film swelling to roughly 10-15% 

regardless of assembly pH.  This suggests that the covalent bonds formed during the cross-

linking process both reduce the number of free amine and carboxylic acid groups that can 

interact with water and physically constrain the swelling of the film. 

Table 2. Swelling in untreated and cross-linked films 
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Film Architecture Untreated Cross-linked 

(PAH/LAP), pH 5 62% ± 5% -- 

(PAH/PAA), pH 5 110% ± 38% 11% ± 13% 

(PAH/PAA), pH 6 19% ± 2% 10% ± 10% 

(PAH/PAA/PAH/LAP), pH 5 147% ± 3% 15% ± 3% 

(PAH/PAA/PAH/LAP), pH 6 37% ± 2% 11% ± 1% 

Imaging of Composite Films.  The uncoated substrate, a polyethersulfone (PES) 

ultrafiltration membrane, has a regular distribution of surface pores of approximately 30 nm 

diameter (Figure 4a).  Deposited film components, such as (PAH/PAA/PAH/LAP)40 film 

architecture shown in Figure 4b, bridge the underlying pore structure to form thin, relatively 

smooth surface films.  These films do not appear to penetrate into the underlying porous 

structure of the PES membrane, as observed by comparing the cross-sectional SEM micrographs 

for the uncoated membranes in Figure 4c and a (PAH/PAA/PAH/LAP)40-coated membrane in 

Figure 4d.  Clay platelets with intercalating polymer regions were observed by TEM imaging of 

the cross-sections of these membranes, shown in Figure 4e.  Through ImageJ software analysis, 

the approximate size of the clay platelets observed in the cross-sectional SEM was on the order 

of 50 nm, indicating the clay platelets are not aggregated within the film and are intercalated 

within the polymer matrix.  There was no statistically significant difference apparent in the 

average platelet spacing for the uncross-linked pH 5.0 films (2.41±0.23 nm) and the cross-linked 

films (2.57±0.39 nm). 
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Figure 4. a) SEM micrograph of uncoated PES ultrafiltration membrane with 30 nm pores; b) 

SEM micrograph of (PAH/PAA/PAH/LAP)40 pH 5.0 composite tetralayer film on PES 

membrane; c) cross-sectional SEM micrograph of uncoated PES membrane; d) cross-sectional 

SEM micrograph of (PAH/PAA/PAH/LAP)40 pH 5.0 composite tetralayer film on PES 

membrane; and e) TEM micrograph of (PAH/PAA/PAH/LAP)40 pH 5.0 composite tetralayer 

film deposited on Si wafer. 

 Micrographs were also taken of the membranes as assembled and after water and salt 

permeation experiments were conducted (Figure 5).  Significant defects formed in 

(PDAC/LAP)40 and (PDAC/LAP)60 films following the permeation trials with applied pressures 

in excess of 100 psig (Figure 5a and 5b).  Qualitatively, it would appear that matrix of the PDAC 

and LAP film formed during the LbL deposition process does not have the mechanical 

cohesiveness and integrity to withstand the in situ RO conditions.  The cross-linked 

(PAH/PAA/PAH/LAP)40 and (PAH/PAA/PAH/LAP)60 films however, do not exhibit such 

defects after permeation trials (Figure 5c and 5d), indicating the covalently bonded LbL film is 

more mechanically robust under RO conditions.  Salt deposits in the form of micron-sized salt 

crystals were observed on the surfaces of LbL films following the permeation trials, however 
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these crystals appear independently of the fractures in the (PDAC/LAP) films and are the result 

of the washing and drying of the films in the sample preparation for the SEM. 

 

Figure 5. a) SEM micrograph of (PDAC/LAP)40 3s:3s film as prepared before permeation 

experiments; b) SEM micrograph of (PDAC/LAP)40 3s:3s film after water and salt permeation 

experiments; c) SEM micrograph of (PAH/PAA/PAH/LAP)40 pH 5.0 film as prepared before 

permeation experiments; d) SEM micrograph of (PAH/PAA/PAH/LAP)40 pH 5.0 after water and 

salt permeation experiments. 

Permeation Properties of LbL Films.  Water flux and salt rejection data on the thin 

films were collected from dead-end permeation cell measurements over a pressure range of 50 

psig to 250 psig with 10,000 ppm NaCl solution (Figure 6a and 6b respectively).  A localized 

permeability coefficient was calculated through a regression of the Spiegler-Kedem model to 
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yield a single value to compare films where several different transport mechanisms are at work.  

The water permeability of the commercial TFC-HR polyamide active layer under these operating 

conditions is 7.6·10
-15

 m
2 
/ Pa s with 98% salt rejection.  All the examined LbL films exhibited 

significantly greater water permeability, on the order of one to two orders of magnitude. 

Due to the formation of defects in the (PDAC/LAP) selective layers, the salt rejection 

was low: 28% for the 3s:3s film and 10% for the 3s:9s film.  The water permeability for the 3s:3s 

film was 2.27·10
-13

 m
2 
/ Pa s and for the 3s:9s film 8.96·10

-13
 m

2 
/ Pa s, roughly four times 

greater.  It is likely that the lower salt rejection and increased water flux correspond to an 

increase in the cracks formed in the (PDAC/LAP) films during operation (Figure 5).  However, 

this phenomenon appears to have been eliminated in the tetralayer composite films, which 

exhibit similar water permeability but significantly increased salt rejection. 

It is notable that for the composite tetralayer series from pH 6.0 to 5.0, the water 

permeability dropped by approximately a factor of two from 4.60·10
-13

 m
2 
/ Pa s to 2.82·10

-13
 m

2 

/ Pa s.  However, the salt rejection increased from an average of 46% to 89%.  We suspect this 

occurs for two reasons: 1) the increased degree of cross-linking in pH 5.0 films reduces the 

effective averaged channel width between clay layers after swelling under in situ RO conditions, 

and 2) additional free carboxylic acid groups present in the pH 5.0 film slow the diffusion of 

solvated ions due to charge effects.  The ultimate impact of these two phenomena is an increase 

in tortuosity of the selective layer, resulting in longer diffusive path lengths for solvated ions. 

It is also notable that the overall clay content of the film does not directly correlate to its 

performance in the salt rejection trials.  The best performing film, the (PAH/PAA/PAH/LAP) pH 

5.0 film, had an average clay content of 38% and a salt rejection of 89%.  Extremely high clay 
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content films assembled via the (PDAC/LAP) method perform similarly with regards to water 

permeation, but were more brittle due to the high clay content, and thus more susceptible to 

critical defect formation during RO, with a 83% clay membrane only rejecting 10% of salt ions.  

This demonstrates the importance of the cross-linked polymeric matrix that reduces the 

brittleness of the film; these cross-links fortify the polymeric matrix encompassing the clay 

platelets, and prevent the formation of cracking and critical faults under in situ RO conditions.  

The film architecture without clay, the (PAH/PAA) bilayer architecture, only exhibited 53% salt 

rejection.  This is indicative of a swollen polymeric matrix that does not serve as an effective 

barrier to solvated ion diffusion due to the lack of size exclusion-driven rejection through the 

nano-channels present in the clay composite films.  To better illustrate the trade-off between 

increased water permeability and salt rejection, the salt and water permeation data is plotted 

against each other (Figure 6c). 
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Figure 6. Plot of (a) water permeability of layer-by-layer thin films against commercially-

available Koch TFC-HR RO membrane, (b) salt rejection of layer-by-layer thin films against 

commercially-available Koch TFC-HR RO membrane, and (c) prior data plotted on two-axis 

graph of water permeability against salt rejection. 

Conclusion 

In this report, we have demonstrated the effectiveness of using LAP clay in spray-LbL 

assembled selective layers for RO membranes in both a strong polyelectrolyte film architecture, 

(PDAC/LAP), and a weak polyelectrolyte film architecture, (PAH/PAA/PAH/LAP).  The 

physical and permeability properties of these two architectures were characterized and compared.  
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The calculated water permeability through the Spiegler-Kedem model for all LbL-assembled 

composite thin films was between one and two orders of magnitude greater than what was 

observed for commercially-available thin film composite RO membranes.  The salt rejection 

measured for un-crosslinked bilayer (PDAC/LAP) films was between 10% and 28% and for the 

cross-linked tetralayer (PAH/PAA/PAH/LAP) films was between 46% and 89%, with the 

greatest salt rejection observed for films assembled at pH 5.0. 

The (PDAC/LAP) composite bilayer film architectures were too brittle under in situ RO 

conditions and formed critical defects during operation.  These defects were effectively 

eliminated by the introduction of a cross-linkable polymer matrix of PAH and PAA that reduced 

brittleness and film swelling under aqueous conditions, which made the composite films more 

mechanically tough and maintained the nano-channels between platelet layers.  We hypothesize 

that the selective salt rejection and high water permeability is the result of a combination of two 

transport mechanisms: a size-exclusion transport mechanism that hinders the flow of solvated 

ions between clay layers to a greater degree than individual water molecules, and charge 

interactions between the polyelectrolytes and the solvated ions in the selective layer.  We 

attribute the efficacy of the pH 5.0 tetralayer architecture over the pH 6.0 to the increased degree 

of cross-linking via free carboxylic acid groups which strengthens the polymeric matrix, as well 

as the enhanced presence of free carboxylic acid groups that may act as hydrated regions to 

further enhance water permeability while retarding ion transport. 

Interestingly, although the (PDAC/LAP) films have higher clay content than the 

tetralayer (PAH/PAA/PAH/LAP) films and naively one would predict a greater degree of 

tortuosity for these films leading to an increase in salt selectivity, a more complicated trend was 

observed.  This was due to the high rate of defect formation observed for the (PDAC/LAP) 
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bilayer films under RO conditions, which was reduced through increasing the polymer content of 

the film and forming a strong polymeric matrix through thermal cross-linking.  However, given 

the polymer (PAH/PAA) bilayer films exhibited 53% salt rejection, there is necessarily an 

optimal value for maximizing salt rejection as a function of clay content.  Of the film 

architectures investigated, the best performing film was tetralayer pH 5.0 film with an average 

clay content of 38%, a degree of incorporation that is difficult to achieve with other assembly 

methods but is attainable through spray-LbL assembly. 

These findings represent an opportunity for further development of LbL-assembled clay 

composite formulations that can be adapted to water filtration applications.  Furthermore, if the 

fouling properties were characterized or dedicated antifouling layers were introduced, these high-

flux clay composite membranes could provide a high throughput alternative for wastewater and 

brackish water treatment and potentially for forward osmosis applications. 

Experimental Section 

Materials.  Laponite clay was provided by Southern Clay Products; clay dispersions 

were prepared at a concentration of 1.0 wt.% clay and the balance reagent-grade water.  

Poly(diallyldimethylammonium chloride) (MW: 200-350 kDa) was obtained from Sigma-

Aldrich, and both poly(allylamine hydrochloride) (MW: 60 kDa) and poly(acrylic acid) (MW: 20 

kDa) were obtained from Polysciences, Inc.  Polyelectrolyte solutions were prepared at 10 mM 

concentration and were adjusted to the assembly pH by using a Φ340 pH/Temp Meter and 

concentrated HCl or NaOH solution as appropriate.  Millipore PES ultrafiltration membranes 

with 30 nm pores were purchased and used as a substrate for deposition.  PES membranes were 
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plasma-cleaned in a Harrick Plasma Cleaner/Sterilizer PDC-32G at 18 W for 30 seconds and 

soaked in PDAC or PAH solutions before spray-LbL film assembly. 

Spray Layer-by-Layer (Spray-LbL) Deposition.  Films were constructed using a 

custom-built spraying apparatus.  Solutions and clay dispersions were aerosolized with N2 gas at 

20 psi and are sprayed onto the substrate rotated at 10 rpm.  The basic program for each layer 

involved spraying the film component for 3 seconds, pausing for a 5 second drain period, rinsing 

for 10 seconds with pH-adjusted water, and then and then a final 5 second drain period.  The 

sequence is repeated for each film component listed to assemble a bilayer or tetralayer.  Films 

assembled at different component spray times are identified by the expression ns:ms, where n 

refers to the spray time of PDAC, and m refers to the spray time of LAP. 

Characterization.  A Dektak 150 profilometer was used to determine the film thickness.  

Profilometry samples were deposited on glass slides plasma-cleaned using the above equipment 

for 5 minutes; otherwise, the standard protocol above was used.  Both a JEOL JSM-6060 and a 

JSM-6010LA Scanning Electron Microscopes (SEM) were used to image both film surfaces and 

cross-sections.  Cross-sectional SEM samples were prepared via the cryo-fracture method by 

submerging the sample in liquid N2 and then physically separated.  A J.A. Woollam Co., Inc. M-

2000D spectroscopic ellipsometer was used to determine swelling through the measured change 

in film thickness between the dry state and being immersed in DI water for films deposited on Si 

wafers.  The spectra were fitted with a 1) Si model, 2) SiO2 model, and 3) Cauchy model 

corresponding to 1) the bulk of the Si wafer, 2) the oxidized surface of the Si wafer, and 3) the 

LbL-deposited thin film.  A TA Instruments Discovery Series Thermogravimetric Analyzer was 

used to determine the film composition of LbL films (150-200 bilayer/tetralayer depositions on 

polystyrene chips) with the following program: temperature equilibration step at 65 °C for 5 
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minutes, followed by a ramp up to 800 °C at the rate of 10 °C/min, followed by a final 

temperature equilibration step at 800 °C for 5 minutes.  The percentage clay content was 

calculated by taking the final mass of the remaining film after thermal decomposition and 

dividing by the mass taken after the temperature equilibriation step at 65 °C.  A Sterlitech 

HP4750 dead-end permeation cell was used to determine both water permeability and salt 

rejection.  The cell was operated with an applied pressure between 50 and 300 psi and on a 

Benchmark H4000-S-E Magnetic Stirrer at speed ‘8’ for films assembled on ultrafiltration 

membranes.  A Spiegler-Kedem model was applied to determine the local water permeability 

constants.  The chloride ion concentration of the collected permeate was measured with an 

Oakton Ion 700 conductivity meter and Thermo-Scientific Orion 9617BNWP IonPlus Probe. 

ASSOCIATED CONTENT 

Supporting Information. The method for calculating water permeability via the Spiegler-

Kedem method, a pore size distribution analysis on the PES-30 nm UF membranes, and 
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