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Abstract

We report and demonstrate a method for measuring the branching ratios of dipole transitions of
trapped atomic ions by performing nested sequences of population inversions. This scheme is broadly
applicable to species with metastable lambda systems and can be generalized to find the branching of
any state to lowest states. It does not use ultrafast pulsed or narrow linewidth lasers and is insensitive to
experimental variables such as laser and magnetic field noise as well as ion heating. To demonstrate its
effectiveness, we make the most accurate measurements thus far of the branching ratios of both 5P, /,
and 5P; /, states in 8851 with sub-1% uncertainties. We measure 17.175(27) for the 5P, /2=581/2
branching ratio, 15.845(71) for 5P /,—5S; /2, and 0.056 09(21) for 5P5 /,—4Ds /,. These values represent
the first precision measurement for 5P5 /,—4Ds /5, as well as ten- and thirty-fold improvements in
precision respectively for 5P; /,—5S; /, and 5P; /,—5S, /, over the best previous experimental values.

1. Introduction

Empirical measurements of physical constants are fundamental to the verification and advancement of our
knowledge of atoms. One important atomic property is the branching ratio of an electronic transition E — G:

AE*?G

BR(E — G) —
ZSEFAE*’S - AEHG

, (Y]

where A is the transition rate and Fis the set of all states E directly decays to. Measuring these constants accurately
is vital for the refinement of relativistic many-body theories and provides a crucial probe in the study of
fundamental physics such as parity non-conservation [1-6].

Branching ratios for different atomic species are of great use in a wide range of fields including astrophysics,
where analyzing the composition of stars contributes greatly to understanding stellar formation and evolution.
Abundances of heavy elements such as strontium are essential for determining the efficiency of neutron capture
processes in metal-poor stars, yet can be difficult to determine from emission spectra due to nearby transitions of
other elements [7—13]. Branching ratios of these transitions are therefore vital for quantitative modeling of
nucleosynthesis processes [11-13].

In addition, precise branching ratios enable the improvement of clock standards, paving the way for better
global positioning systems and tests of the time-invariance of fundamental constants [ 14]. Atomic clocks using
the optical quadrupole transition 58, /,—4Ds , in **Sr™, one of the secondary clock standards recommended by
the International Committee for Weights and Measures [14], have achieved uncertainties at the 10~ level [15],
more accurate than the current *Cs clock standard [ 16]. To further improve the precision of these systems, it is
necessary to reduce uncertainty from the blackbody radiation Stark shift, a dominant source of error in many
clock systems [2]. Branching ratios measured below the 1% level, combined with high-precision lifetime
measurements, can improve the accuracy of static polarizabilities of clock states in **Sr* and many systems and

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Energy levels of 85T, showing the 5P, /, and 5P; /, excited states and their decay channels. 4Ds /, and 4Ds /, are metastable
states with lifetimes much greater than the timescale of the experiment [26]. To measure the 5P5/, branching ratio, we need only lasers
addressing the 408, 422, 1092, and 1033 nm transitions.

thereby reduce the uncertainty in blackbody radiation shift error, in addition to providing a verification against
other methods for determining polarizability [2, 17].

Despite their relevance, branching ratios of heavy atoms have not been precisely measured for many decades
due to the large uncertainties inherent in traditional discharge chamber methods using the Hanle effect [18].
Recent astrophysical studies still use these older experimental results for fitting emission spectra [12, 13]. Only in
the last decade have there been measurements of branching ratios at the 1% level [19-22] using trapped ions,
which are versatile toolkits for precision spectroscopy [4, 15, 23] as well as quantum computation [24]. In
particular, Ramm et al [19] established a simple method for measuring branching ratios of P, /, states in trapped
ions with metastable lambda systems.

Here, we present a novel scheme for measuring the branching ratios of the P; /, state of a trapped ion with an
iterative population transfer sequence, significantly extending Ramm et al’s method. As with [19], we do not
require ultrafast pulsed lasers or narrow linewidth lasers for addressing quadrupole transitions, which were used
by previous precision measurements of Ps /, branchingratios [21, 25]. Our method uses only two lasers that
pump the ion from the ground state to the P; ;, and Ps;, excited states and two lasers to unshelve the ion from
the metastable states below P; /». For **Sr* and analogous species, these dipole-addressing lasers are already used
for Doppler cooling, making this scheme broadly applicable for many trapped ion systems without the need for
additional equipment. Like [19], our method is insensitive to experimental variables such as magnetic field and
laser fluctuations. Furthermore, we show that the method can be extended to measure the branching ratios of an
arbitrary excited state to the ground and metastable states through all intermediate states. We demonstrate the
effectiveness of this method by making the first precision measurement of the 5P /,—4Ds , and 5P5 /,—4Dj3 /5
branching ratios in **Sr* in addition to the most accurate measurement of the 5P, /, branching ratios to date.

2. Iterative branching ratio measurement

We begin by briefly describing the procedure for measuring branching ratios of P; /, states in metastable lambda
systems using the method by Ramm et al, which will be a building block for the P; /, system. We use the 5P; /,
excited state in **Sr™ as the model system (figure 1), and denote the probability of decaying to the ground 5S, /
state as p and thelong-lived 4D; /, stateas 1 — p.

At the start of the experiment, the ion is initialized to the ground 5§, /; state. In the first step, the 422 nm laser
is turned on to optically pump the ion to the excited 5P, /, state while we record ion fluorescence at 422 nm. In
the process of the ion fully shelving to the metastable 4Dj /, state, we detect a mean number of photons
(n) = €4 - p/(1 — p), where €4, is the detection efficiency of our system at 422 nm [19]. In the second step,
the 1092 nm laser is turned on to repump the ion to the excited state, during which we detect ¢4, photon as it
decays to the 55, /; state. The branching ratio p/(1 — p) is therefore equal to the ratio of the number of photons
observed during the two time intervals, independent of the collection efficiency.

For the more complex 5P; /, state, which decays to three instead of two states, we denote the probability of
decaying to the 55, /5, 4D3 /5, and 4Ds ;, statesas g, r,and s = 1 — g — r respectively (figure 1). To measure the
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5P; /, branchingratios /(1 — q),r/(1 — r),and s/(1 — s), we begin with a sequence analogous to the 5P, ,,
sequence, this time detecting photons at both 408 and 422 nm. Starting again with the ion in the 5, /, ground
state, we first pump the ion into the excited 5P; , state with the 408 nm laser (Step A). We detect a mean number
of photons from the ion

(Na) = 64081 1 . , (2)

where €405 is the detection efficiency at 408 nm. We now turn on the 1033 nm laser, which drives the ion to the
5P; , state if it was in the 4Ds /, state and does nothing otherwise (Step B). We detect a mean number of 408 nm
photons

qs
Q=9 -y

in this step. We can obtain the 5P5 /,—4Ds /, branching ratio s/(1 — s) from the photon count ratio of the
previous two steps.

To measure the other two branching ratios, we note that their values are contained in the state of the ion after
Step B—the population split between the 55, s, and 4Dj /, states. To obtain this information, we now turn on the
422 nm laser to pump all 55, /, population into the 4Ds , state (Step C). We detect

(NB) = €08 3)

qs p
(Nc) = € 4)
Q-9 —-51-p
photons at 422 nm. Finally, turning on the 1092 nm laser repumps all of the population to the 55, /; state and we
detect (Np) = €42, photon (Step D), which is necessary for canceling the detection efficiency €4,,.
Since we can determine p experimentally with the 5P, /, branching ratio sequence, we can solve for the 5P; /,
branching ratios without knowing €4, or €40s:

s (Ng)
1—s (Ny) ©)
g  (Ny)(Ne) 1 —r )

1—q (Ng)(Np) p

Aswith the P, , measurement scheme by Ramm et al, our sequence of population transfers is insensitive to
detection efficiencies and most experimental variables. The long-lived shelving states 4D3 /, and 4Ds /, allow for
the length of the measurement to far exceed the timescale needed for population transfer, rendering the
measurement independent of laser power and frequency fluctuations as well as ion heating. There are no
coherence effects or dark resonances since only one laser is on at a time, so our method is also insensitive to
micromotion and magnetic field fluctuations. This distinguishes our method from a proposed P; /, branching
ratio measurement scheme [27], which not only requires an extralaser for the 5P; ,,—4Dj3 /, transition but also
that two lasers be alternately pulsed for each step to avoid dark resonances, making the measurement sequence
significantly longer.

The branching ratios of states higher than 5P; /, to the ground state and metastable D states are also of
practical importance for calculating the scalar polarizability [2] as well as improving elemental abundance
models of stars [13]. Our iterative method can be generalized to find the branching of any excited state to the
lowest five states in ®*Sr™ through any number of intermediate states (see appendix). This also enables the full
branching ratios of many higher states to be determined in **Sr* and analogous species.

. «+ 88
3. Experimental measurement in >°Sr™*

To demonstrate our iterative method, we experimentally measure the 5P; , and 5P; s, branching ratios in 88gp T
using a trapped ion system to levels of precision over an order of magnitude over previous best values.

3.1. Experimental procedure

We trap single **Sr* ions using a surface electrode Paul trap fabricated by Sandia National Laboratories [28]. RF
and DC confining fields are set such that the axial secular frequency of the ion is 600 kHz, with radial frequencies
in the 3-4 MHz range and a 15° tilt in the radial plane. A magnetic field of 5.4 G is applied normal to the trap to
lift the degeneracy of the Zeeman states [29]. Fluorescence from the ion is collected along the same axis by an in-
vacuum 0.42 NA aspheric lens (Edmunds 49-696) into a single photon resolution photomultiplier tube (PMT,
Hamamatsu H10682-210) with a filter that only passes light between 408 and 422 nm (Semrock FF01-415/10-
25). The PMT signal is counted by an FPGA with arrival time binned into 2 ns intervals. The overall detection
efficiency of the setup is approximately 4 x 1073 at both 422 and 408 nm. Dipole transitions of the ion are

3
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Figure 2. Real time-resolved fluorescence collected from the ion at 422 and 408 nm after 8 x 10° cycles of the 5P; /, branching ratio
data sequence. Counts in the background intervals (black ABCD squares) are subtracted from the data intervals (white ABCD squares)
to obtain only fluorescence from the ion for each step. The length T of each interval is indicated, and the laser turn-off timeis 1 us
between each interval. Atomic states losing population (dashed circle) and gaining population (solid circle) during each step are

addressed using frequency-stabilized diode lasers. To execute the experimental sequence, we switch laser beams

on and off using acousto-optic modulators (AOMs) driven by FPGA-controlled direct digital synthesizers.
Each branching ratio measurement cycle begins with 100 s of Doppler cooling using 422 and 1092 nm

lasers. Subsequently, we turn on only the 1092 nm laser for 20 us to ensure the ion is in the 55 /, state, then

perform the experimental sequence. We ran the 5P, /, and 5P/, branching ratio measurement sequences for
1.9 x 108and 6.4 x 107 cycles respectively for a run time of 13 and 6 h each. For each step within the
experimental sequence, the laser is turned on twice: first the data interval where population transfer occurs, then
the background interval that is subtracted from the data interval to obtain only fluorescence from the ion. For
the 5P, /, experiment, the 422 nm and 1092 nm intervals are 35 ;s and 25 s in length respectively for both data
and background, with 1 yts between each interval, and the 5P /, experimental sequence is depicted in figure 2.

3.2. Error analysis

To correct for systematic effects on branching ratios, we carefully calibrated the sources of error in our

experiment, which are summarized in table 1.

The polarization alignment error arises from the Hanle effect and is a function of the magnetic field, detector

position, and incident laser direction and polarization. In the 5P, /, system, the m = £1/2 sublevels both emit
radiation isotropically with 1:2 ratios of 77- to o-polarized light regardless of magnetic and electric fields, so this
does not affect the measurement [30]. However, the Hanle effect is a major source of error for the 5P/, system as
the ratio of emitted 7- to o-polarized photons is 0:1 for m = +3/2 sublevelsand 2:1 for m = +1/2 sublevels.
The ratio of 7 to o light emitted from Step A and Step B will therefore not be equal in general, biasing the

fluorescence ratio.

To resolve this problem, we linearly polarize 408 and 1033 nm light to an axis set at arctan(~/2 ) ~ 54.7° (the
magic angle [31]) with respect to the magnetic field, which is set orthogonally to the laser beam. At the magic
angle, the ratio of 7- to o- polarized light emitted during Steps A and B are both equal to 1:2. The difference
between radiation patterns of m and o photons and any birefringence effects in the detection system cancel out.
We use a Glan-Taylor polarizer (Thorlabs GT10) with >50 dB attenuation of the orthogonal polarization to
align the 408 and 1033 nm laser polarizations to within 0.2° of the magic angle. We measured the effective phase
retardance A¢ due to possible birefringence of optics and vacuum window after the polarizer to be <0.02
radians at both blue and infrared wavelengths, which does not contribute significantly to the uncertainties. The
error in aligning the laser polarization with respect to the magnetic field and setting the magnetic field to be

orthogonal to the laser beam accounts for the polarization alignment error in table 1.

The effects of the other sources of systematics are accounted for by modeling the time-resolved fluorescence
curves using optical Bloch equations to determine the shift and uncertainty contributed by each error source.
PMT dead time, calibrated to be 20 £ 1 ns for our system using the method by Meeks and Siegel [32], leads to
more undercounting in steps with higher count rates. Finite laser durations reduce the fluorescence from the ion

in each step in addition to preparing states imperfectly. The small amount of laser light still present when the
AOMs are switched off (extinction ratios >60 dB) leads to slight coupling between undesirable states. The finite
lifetimes of the 4D3 /, and 4Ds /, states lead to extra counts in the blue intervals and reduced counts in the IR
intervals. Off-resonant excitations, where the ion is excited to the wrong state by a collision or far-detuned laser,

are found to contribute negligible errors to our system based on measuring the frequency of dark events while
Doppler cooling the ion. We find that these sources of systematics do not limit our current level of precision. We
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Table 1. List of systematic sources of error for branching ratios of 5P, /-5, /2,
5P5 /,—5S1 /2, and 5Ps ;,—4Ds /, and their fractional contributions to the overall shift and
uncertainty. Powers of 10 are in brackets.

Fractional shift and uncertainty

Error source P/ = p) 4/l = /(1= 9)
Counting statistics +16[—4] +38[—4] +33[—4]
Polarization alignment — +19[—4] +19[—4]

PMT dead time 46 + 2[—5] 76 + 5[—5] —45 + 1[-5]
Finite laser durations 13 + 9[—38] +3[—6] —6 + 2[—6]
AOM extinction ratio +7[-7] +3[—-6] +1[—6]

Finite D state lifetime 354 4+ 4[—8] —40 + 2[-7] —124 + 2[-7]
5P, s, branching ratio — +16[—4] —

Total 5+ 16[—4] 8 £ 45[—4] 5 4 38[—4]

also verify that the fluorescence from the ion is normally distributed when binned into successive 500 000
measurement cycles.

The largest source of error for both 5P, /, and 5P; s, branching ratios is from counting statistics. This can be
improved via either more measurement cycles, more ions, or greater collection efficiency, though for the latter
two methods it is important to take into account the increased error from PMT dead time. Other errors can also
be reduced via improvement of the experimental apparatus, such as more accurate alignment of the laser
polarization and using a PMT with less dead time. The only fundamental limitation to the accuracy of the
technique is the uncertainty on the finite lifetimes of the 4D3 /, and 4Ds /, states, which restricts the length of the
population inversion sequence, but the limit is many orders of magnitude below the current level of accuracy.

After correcting for systematic shifts and propagating uncertainties, we obtain for the 5P, /, branching ratio
p/(1 — p) = 17.175(27) and for the 5P; /, branching ratios q/(1 — gq) = 15.845(71), r/(1 — r) = 0.0063(4),
and s/(1 — s) = 0.056 09(21), with errors representing 1o bounds. The corresponding branching fractions are
p = 0.94498(8),1 — p = 0.055 02(8), g = 0.9406(2), r = 0.0063(3),and s = 0.0531(2).

3.3. Comparison with previous works

The uncertainty of our results is at a level smaller than the discrepancy between previous experimental and
theoretical results, as shown in figure 3. Our value for the 5P, ,,—5S, s, branching ratio is in agreement with the
recent measurement done by Likforman et al [20] with trapped ions, as well as theoretical values of Safronova [1]
and Jiang et al [2], while it is 1.9 o away from the gas discharge chamber experiment by Gallagher [18]. For 5P; /5,
only the 5P; /,—55; s, branching ratio has been previously reported, also by Gallagher, which our valueis in
agreement with. We are also in agreement with theory values of Safronova and Jiang et al for all 5P; ;, branching
ratios. We note that Safronova’s theoretical values have been found to be in good agreement with precision
measurements of branching ratios and dipole matrix elements in other elements [19, 23, 33-35]. We obtain a
ten-fold improvement in precision for the 5P, /, branching ratios over Likforman et al and a thirty-fold
improvement for the 5P; /,—5S; s, branching ratio over the early results of Gallagher.

For improving the precision of **Sr* atomic clocks, it is important to have accurate rates for transitions to
the 4Ds /, and 55 /; levels. Using the 6.63(7) ns 5P5 /; lifetime value measured by Pinnington et al [36], we obtain
transitionrates Ap, , s, = 1.425(15) X 108 s~ and Ap,,,—p;,, = 8.010(89) x 1065~ using our measured
branching ratios. These are significantly more accurate compared to previous best-known transition rates of
Ap, s, = 1.43(6) x 108 s 'and Ap,,—p,, = 8.7(1.5) x 10° s~ from Gallagher [18]. The uncertainty in
transition rates is now dominated by the uncertainty in the 5P; , lifetime.

4, Conclusion and outlook

In summary, we have introduced a novel method for measuring the branching ratio of the P; /, state in ions with
metastable lambda systems and demonstrated its effectiveness with measurements in **Sr™ at the sub-1% level.
Our scheme, as with the Ramm et al method for P, /; states, uses only dipole transition addressing lasers and is
insensitive to detector efficiencies, laser and magnetic field fluctuations, as well as ion heating and micromotion.
We further describe how to extend this population transfer sequence to measure the branching of any excited
state to the P, /5, P; /5, and ground and metastable states through all intermediate states with the addition of a few
more lasers. This scheme is also broadly applicable to excited states in other elements with a similar lambda
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Figure 3. Branching ratios (BR) for the 5P, /, and 5P , excited states in Sr™ obtained by this work (red diamond) and previous
experimental (filled circle) and theoretical (empty circle) works. Error bars are included whenever uncertainties are provided by the
source.

structure of decaying into a ground state and long-lived states, such as secondary clock standards '**Hg " and
"IYb ™, for which greater branching ratio and lifetime precision can reduce uncertainty from blackbody
radiation as well [37, 38].
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Appendix. Generalization of branching ratio measurement to arbitrary excited states

Denote the set of the five lowermost states in **Sr™, 55, /25 5P5 /2, 5P /2, 4D3 5, and 4Ds 5, as S. Define the set of
all states that state E decays to through any number of intermediate states to be T (E). We define the base
branching fraction BBF(E, A)of E — Afor A € S tobe the probability of state E decaying to A while only ever
occupying intermediate states from the set T (E) — S. Welabel the base branching fractions of Eto 55, /2, 5P; s,
5Pi /2, 4D 5, and 4Ds s, tobea, b, c,d,ande = 1 — a — b — ¢ — d respectively, as shown in figure A1 .

It follows that )~ . BBF(E, A) = 1,asall end states (ground and metastable) of 8Sr* arein S. We define
base branching ratios tobe BBR(E, A) = BBF(E, A)/(1 — BBF(E, A)). Under the assumption that Eand all
statesin T'(E) — S decay much faster than the lifetime of 4Ds /, and 4Ds /,, it is possible to measure base
branching ratios of any E.

Asall higher states of **Sr™ have nonzero probability of eventually decay to 5P, /, or 5Ps 5, there will always
be 422 or 408 nm photons emitted after the ion is excited to E. In fact, base branching ratios can be measured by
the same experimental setup for measuring P; /, branching ratios, with the addition of appropriate dipole-
addressing lasers as well as the minor modification of detecting 422 and 408 nm photons separately. A scheme
which solves for the base branching ratios of any state E ¢ S is as follows:

(i) Pump theion from 58, /, to E, collect (N;) photons total, (N;'*®) at 408 nm and (N;***) at 422 nm.
(ii) Pump from 4Ds , to E, collect (N) photons total, (N,®) at 408 nm and (N;**) photons at 422 nm.
(iii) Pump from 4D; ; to 5P, /,, collect (N;?%) photons.
(iv) Pump theion from 55, /, to E.

(v) Pump from 4Ds /, to 5P; /,, collect (N,*®) photons.

(vi) Pump from 4Dj3 / to 5P, 5, collect (N5*?) photons.
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Figure A1. The base branching ratios of an arbitrary state Ein %8St ™, effectively the branching ratios of the set of states consisting of E
and all states higher than the five lowermost states that E decays to. Only detecting 422 and 408 nm photons from various population
transfers is sufficient for measuring base branching ratios.

Thebase branching ratios can be calculated from the experimental results as follows:

— = {a(N, 1) (N2) — (N (NG)) ((N) (N52) = (N1 + (No)) (N5™2))

1 —
—r(<N1> + (N (INS) [N (NF*22) + (N ((N3?2) — (NS#2)T)/
{q (No) ((NF') + (NZPDLUNL) + (N2)) (N52) = (N) (N3*)]
+ 7 (N2) ((N) + (N2)) (NG ((N*22) + (N5™)) ) (A1)
b () (N) w2
T—b (9 + NS (N + (No) — (NJO) (N3
< _ r () (No) ) w3
L—c  p@@+ (NN — (N32) — (N) (r (N*) — p(q + 1) (N5™))
e _ (N)I(g+ n(N{) —s(N"™)] aa)

L—e (g4 n(N) (NS + s(Nf%)(N)

This scheme is insensitive to the same experimental variables as the 5P; /, measurement scheme. Aside from
the lasers needed for transferring the ion population from 5§, /, and 4Ds , to E, no other additional equipment
is necessary. With some adjustments, it can be used to solve for base branching ratios of other analogous species
with long-lived metastable states.
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