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Abstract

In 1947, the first transistor was made of germanium, but soon silicon became the core material of
computer chips because of its processability. However, as the typical dimensions of transistors are getting
closer to the atomic size, the traditional approach of scaling down transistors to improve performance is
reaching its limits, and other elements need to be used in conjunction with silicon. Germanium is one of the
key materials to empower silicon based devices because it possesses electronic and optoelectronic
properties complementary to those of silicon, among them higher carrier mobilities and a direct band gap
(T-valley) at 1.55 pm (the telecom C-band, therefore adding new capabilities to silicon integrated
microphotonics). Furthermore, good quality Ge layers can be grown epitaxially on a Si substrate, allowing
a monolithic integration of devices.

However, compared to silicon, little is known about the point defects in germanium. The goal of
the present doctoral work is to remedy this gap. To this end, we have used radiation (gamma rays, alpha
particles, and neutrons) to controllably introduce point defects in crystalline germanium, which were then
characterized by Deep-Level Transient Spectroscopy (DLTS), a technique that allows the determination of
the activation energy, capture cross-section, and concentration of the said defects. By studying their
electronic properties, annealing kinetics, and introduction rates, we were able to separate vacancy-
containing from interstitial-containing defects and gain insight on their physical nature and formation
process. We especially identified a di-interstitial defect and a tri-interstitial defect. In addition, we proved
that in the case of alpha particles and neutron irradiation, the fact that defects are generated in a collision
cascade influences their carrier capture rates and annealing behaviors. We have also characterized the
impact of radiation on commercial germanium-on-silicon photodetectors, and showed that point defects
associate with dislocations in epitaxial Ge-on-Si layers. Finally, we have investigated the passivation of
midgap states by implanting germanium with fluorine, and showed how the interaction between the halogen
element, the amorphous/crystalline interface during the solid phase epitaxy, and the implantation damage
is key in obtaining a high performance material.
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Chapter 1.  Introduction

Since the late sixties, Moore’s law has been a staple of the semiconductor industry,
dictating the rate of miniaturization of processor chips. However, production lines will reach the
10 nm node in 2017, and the 7 nm node is already being developed in R&D laboratories: the
scaling down of transistors will soon reach a roadblock as the gate length get closer to the atomic
size. Two approaches are possible to tackle this issue: using materials with better performance than
silicon or shifting paradigm, i.e. using device architectures that are more efficient than the
traditional metal oxide semiconductor field-effect transistors (MOSFETS). These two strategies
are complementary, as using new material can enable new functionalities. Furthermore, due to the
sheer price of modern semiconductor foundries, an important attribute of a new technology
complementing silicon chips is the ability to blend harmoniously in industrial process flows. This
criterion makes germanium a material of choice. It is fully Si-CMOS compatible, and its lattice
constant is close enough to silicon’s that it can be grown epitaxially on it. Germanium has good
electronic properties: its electron mobility is higher than that of silicon, and its hole mobility is the
highest among traditional semiconductors. It also can be used as a stressor to allow strain
engineering and boost the performance of devices. As a result, commercial devices are already
using SiGe alloys to make faster transistors.

In addition to its electronic usage, a very promising application for germanium is in
microphotonics, which is a key technological platform to overcome the difficulties intrinsic to
traditional electronics. Photonics is a device-oriented branch of optics, similar to what electronics
is to the physics of electron in solids. Photons have multiple advantages over electrons for the
transmission of data. Especially, in the linear regime, photons don’t interact with one another. This
paves the way for wavelength multiplexing, the idea of stacking signals at different wavelengths
to multiply the capacity of a fiber or a waveguide. Optical fibers also have a higher bandwidth,
lower latency, lower dispersion and lower loss than copper cable. Since the late eighties, copper
cables has been gradually replaced by optical fibers as the price of the latter went down, starting
first with long distance telecom applications (=100 km) in the 80s, to Datacom applications (=100
m) in the 90s, to board to board (=1 m) communication in data center and super computers in the
2010s. Photonics penetrates homes through fiber internet connections. Nowadays, the challenge is
to shrink photonic devices even more to allow cost effective chip-to-chip (=cm) optical
communication and ultimately replace the back-end metallic wiring that connect transistors to one
another. Because germanium is Si-CMOS compatible and has good optoelectronic properties in
the appropriate wavelength range ( in particular a direct bandgap in the ne