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Abstract

Wavelet representations have recently emerged as a poweriul tool in digital signal
processing and approximation theory. Like the short-time Fourier transform, the
wavelet transform provides a means of studying the time-frequency characteristics of
data. Wavelet methods extend the capabilities of Fourier methods by providing a
framework for approaching engineering problems in a hierarchical fashion.

The focus of this work is to exploit the hierarchical nature of wavelet representa-
tions in two main areas: numerical modeling and data compression. Hence, we adopt
a unified view of wavelets which integrates the approximation theory perspective with
the signal processing perspective. In the area of numerical modeling and analysis, we
investigate the use of wavelet techniques for the multiscale solution of ordinary and
partial differential equations. Our study revolves around the wavelet-Galerkin ap-
proach and it includes both adapted biorthogonal schemes as well as preconditioned
iterative schemes. The issue of boundary conditions leads to an important develop-
ment which we refer to as the wavelet extrapolation method. Wavelet extrapolation
may be regarded as a solution to the problem of wavelets on a finite interval, and it
results in high order numerical schemes for boundary value problems on domains of
arbitrary shape. We generalize the wavelet extrapolation idea to initial value prob-
lems. This allows us to perform a wavelet-Galerkin discretization of the temporal
dimension. The result is a family of high order schemes with excellent stability prop-
erties. The extension of the wavelet extrapolation method to multiple scales leads to
a Discrete Wavelet Transform for finite length data. This is the correct transform for
polynomial data and it can be used to substantially reduce edge effects in image pro-
cessing. We study some of the data processing applications of wavelets by developing
a software tool for the hierarchical compression of image data. The software is used
to evaluate the performance of wavelet techniques in relation to Fourier-based tech-
niques. Various compression and progressive transmission examples are presented.
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Chapter 1

Introduction

i.1 Historical Perspective

In recent years, the theory of wavelets has become the focus of much attention and
a considerable volume of mathematical literature is now available on the subject.
The name wavelet, or ondelette, originated during the early 1980’s in the work of
French researchers such as Morlet, Arens, Fourgeau and Giard [38], Morlet [39], and
Grossmann and Morlet [25]. However, the historical origin of wavelet bases dates
back much further, with the earliest (and perhaps most well known) example of an
orthonormal wavelet basis being constructed by Haar [26] at the beginning of the
century. Many of the principles now embodied in wavelets were developed indepen-
dently e.g. Calderén-Zygmund operator theory in pure mathematics, coherent state
and renormalization group theory in physics, and subband coding theory in engineer-
ing. Modern wavelet theory owes its existence to a number of authors besides the
original researchers. For example, the original orthonormal Haar basis has been fol-
lowed by other notable wavelet constructions due to Littlewood and Paley, Stromberg
[50], Meyer [36], Tchamitchian [51], Battle [4], Lemarié {32] and Daubechies [17]. A
major advance was the formulation of the multiresolution analysis framework in 1986
by Meyer [37] and Mallat [34, 35]. This framework helped to establish the connec-
tion between wavelets and similar work in digital signal processing e.g. the Laplacian

pyramid approach of Burt and Adelson (9], and it led to the Discrete Wavelet Trans-
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form as we know it today. Since then, numerous ac :hors have contributed towards
the dcvelopment of wavelet theory and applications; an exhaustive list is beyond the
scope of this introduction. A few of the more significant milestones in the advance-
ment of wavelet theory, however, are given here. The first example of a biorthogonal
wavelet construction was published by Tchamitchian [51] in 1987. The following year,
Daubechies [17] published her well known work on compactly supported orthonormal
wavelet bases. The original wavelet constructions have been generalized in various
ways. For example, details of the extension from two-band wavelets to M-band
wavelets have been given by authors such as Steffen, Heller, Gopinath and Burrus
[46], and Vaidyanathan [52], while the extension from scalar wavelets to vector mul-
tiwavelets has been described by authors such as Geronimo, Hardin and Massopust
[21], and Strang and Strela [48]. A substantial amount of work has also been done on
the theory of continuous wavelet transforms as well as the theory of wavelet frames,
which are discrete but possibly redundant wavelet systems (see e.g. Heil and Walnut
(28], Lawton [31] and Daubechies [18]).

Wavelet techniques have found applications in a number of domains. The first
application to civil engineering dates back to 1982, when Morlet [39] proposed the
use of wavelets for the analysis of seismic data. Since that time, wavelets have beeu
used in many other areas of signal analysis, particularly in image and audio processing.
Complementary to the signal processing viewpoint of wavelets is the approximation
theory viewpoint. This perspective has led to the application of wavelets to many

areas of numerical modeling and analysis.

1.2 Motivation, Goals and Scope

The digital computer is continuing to play an increasingly important role in the
modeling and analysis of engineering systems, and in the management of engineering
information. A natural consequence of this trend is that engineering data must be
frequently represented and processed in a digital form. The choice of an appropriate

data representation is crucial, since it dictates our ability to identify features in, and

14



extract important information from, the data. In the case of bandlimited functions,
for example, Shannon’s sampling theory tells us that the function must be sampled
at a frequency at least equal to twice the largest frequency present, i.e. at the Nyquist
rate, if the function is to be completely determined by its samples. As a result, we
know how to represent a bandlimited signal in an optimal discrete fashion without
information loss.

Physical domain representations, such as a set of raw data samples, are by no
means the only way to represent data. Frequency domain representations, which are
enabled by the Fourier transform, are equally important. The Fourier transform often
exposes hidden features in the data, and it can lead to a more efficient data representa-
tion. One of the drawbacks of the Fourier transform, however, is its lack of temporal
(or spatial) resolution. To achieve time localization, it is necessary to preprocess
the data using windowing operations. The wavelet transform is a mathematical tool
which provides a similar joint time-frequency representation to the windowed Fourier
transform. A key difference, however, is that the windowed Fourier transform typi-
cally uses a fixed length window, whereas the wavelet transform uses a window whose
length adapts with frequency (see Chapter 2). For many applications, therefore, the
wavelet transform leads to a more efficient representation.

In addition to good time-frequency localization, wavelets possess remarkable fractal-
like properties, which allow us to develop multiresolution representations of digital
data [35). Thus, wavelets provide a framework for approaching engineering problems
in a hierarchical or multiscale fashion. A hierarchical approach allows us to prioritize
information, so that the more significant features in the data can be identified and
processed in a timely manner!. This ability to trade off speed and accuracy is partic-
ularly important in real-time systems, and it is a primary motivating factor for the
present work.

One of the original research goals was to investigate the use of wavelets in numer-

ical modeling, specifically for the hierarchical solution of partial differential equations

le.g. the accuracy requirements of a preliminary design calculation are less stringent than those
of a detailed design calculation, so the solution procedure can adapt accordingly.
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describing physical systems. Two main problem areas became apparent during the
course of this investigation. Firstly, wavelet multiresolution representations become
considerably more complex when differential operators are involved. Secondly, the
modeling of boundaries using a wavelet representation presents special difficulties,
since the wavelets do not automatically satisfy the boundary conditions. We have
used a combination of theory and numerical experimentation to study these prob-
lems, with the aim of finding solutions of practical value to the numerical analyst.
The study of the boundary problem has led to an approach for treating initial value
problems, as well as a Discrete Wavelet Transform for finite length data. A second
research goal has been to investigate some the uses of wavelets in digital data pro-
cessing. We have focused in particular on the development of a software tool for
the hierarchical compression of image data. This tool has been used to study the
performance of wavelet techniques in relation to Fourier-based techniques, and to de-
velop an application for the progressive transmission of images over narrow bandwidth
networks.

This research has resulted in contributions both of a theoretical and of a practical
nature (Chapter 10). Generally, the theoretical development tends to be engineer-
ing oriented rather than following a formal mathematical style. In developing the
algorithms, we have been particularly concerned with issues such as computational
efficiency and ease of implementation. This explains why we have focused our efforts
on orthogonal and biorthogonal wavelet systems instead of redundant discrete wavelet

systems.

1.3 Thesis Outline

In Chapter 2, we introduce wavelets as a tool for multiscale analysis. We describe the
time-frequency tiling characteristics of the wavelet transform, and we contrast them
with the characteristics of the short-time (or windowed) Fourier transform.

Chapter 3 provides the required background theory of wavelets. We include a

summary of the time domain and frequency domain characteristics of orthogonal and
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biorthogonal wavelets, as well as a description of the orthogonal and biorthogonal
Discrete Wavelet Transforms. We also develop a fast algorithm (based on the Discrete
Fourier Transform and cepstral analysis) which can be used to compute the coefficients
of Daubechies’ wavelet filters and some related biorthogonal wavelet filters.

Chapter 4 deals with the computation of commonly encountered wavelet integrals.
In particular, we describe techniques for computing (a) the coefficients of scaling
function and wavelet expansions, (b) the moments of scaling functions and wavelets,
and (c) connection coefficients i.e. integrals involving derivatives of scaling functions
and wavelets. In many cases, the algorithms are mathematically exact, so that the
integrals can be computed to within machine precision on a digital computer.

In Chapter 5, we introduce the wavelet-Galerkin method for the solution of ordi-
nary and partial differential equations. We describe both the single scale formulation
and the multiscale formulation for a one-dimensional linear model problem, and we
show that the two formulations are equivalent. We compare the two formulations,
and we describe strategies for solving the resulting systems of equations. For the
solution of the multiscale equations, we focus on two hierarchical approaches. The
first approach is a direct method which uses biorthogonal wavelets adapted to the
differential operator. Here, we outline a construction due to Dahlke and Weinreich
(15], and we prove that the resulting multiscale wavelet-Galerkin matrix is essentially
diagonal. The second approach is a more general iterative approach based on di-
agonal preconditioning. Both approaches require O(L) running time for an L-point
discretization. We conclude this chapter with an example application of the wavelet-
Galerkin method to a hyperbolic partial differential equation in one time dimension
and two space dimensions.

Chapter 6 deals with the treatment of boundaries in ordinary and partial dif-
ferential equations. Here, we present an approach based on the use of polynomial
extrapolation, which leads to high order schemes for imposing boundary conditions.
We call this approach the wavelet extrapolation approack. The wavelet extrapolation
approach may be regarded as a solution to the problem of wavelets on a finite inter-

val. We contrast the wavelet extrapolation approach with several other techniques for
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imposing boundary conditions, and we study its convergence and stability properties.

In Chapter 7, we extend the wavelet extrapolation idea to initial value problems.
The first issue we address is how to apply initial conditions. We use the wavelet
extrapolation approach to develop high order schemes for generating the required
startup coefficients. The second issue is how to construct stable time integration
schemes. In general, the wavelet-Galerkin method leads to unstable centered dif-
ference schemes. We show how wavelet extrapolation can be used to modify the
standard wavelet-Galerkin equation so as to produce a family of stable schemes with
large regions of absolute stability. Stability and convergence results are presented for
the schemes we develop.

In Chapter 8, we extend the wavelet extrapolation approach to multiple scales.
The result is a Discrete Wavelet Transform for finite length data, which is practi-
cally free of edge effects. In particular, the extrapolated Discrete Wavelet Transform
correctly operates on polynomial data i.e. when the input data corresponds to a poly-
nomial of appropriate order, the lowpass transform coefficients also correspond to
a polynomial, while the highpass transform coefficients are precisely equal to zero.
We compare the wavelet extrapolation approach to conventional approaches, such as
circular convolution and symmetric extension, and we discuss applications to image
processing.

Chapter 9 focuses on the application of wavelets to image processing. Specifi-
cally, we develop a software tool for the hierarchical compression of image data. This
tool is used to evaluate the performance of the wavelet approach in relation to con-
ventional approaches derived from the Fourier transform. We use the hierarchical
nature of the compression algorithm for the progressive transmission of images over
narrow bandwidth networks. Examples of compression and progressive rendering are
presented.

Finally, in Chapter 10 we summarize the main contributions of this work, and we

provide indicators for future research directions.
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Chapter 2

Wavelets and Multiscale Analysis

This chapter introduces wavelets as a tool for multiscale analysis, and it provides
some of the required background on wavelets. We focus specifically on wavelets in a

discrete setting.

2.1 Why Multiscale Analysis?

Scale plays an important role in science and engineering. It needs to be accounted for
in the development of any scientific model. In a model of the solar system, for examrle,
it may be considered reasonable to represent the earth as a sphere or even as a pariicle.
Such a representation may not be appropriate, however, when analyzing the motion
of a vehicle on a highway, and it would be even less appropriate for the analysis
of elementary particle behaviour in quantum physics. In a macroscopic view, small
details become irrelevant, whereas in a microscopic view they become significant. A
sensible approach to analysis, therefore, is to develop a model to account for coarse
scale features first, followed by successive refinement of the model to the point where

the addition of any further detail has no perceptible impact.
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2.2 Wavelet Transforms vs Fourier Transforms

Wavelets provide a mathematical framework for examining data at multiple scales
(resolutions). In this framework, the data is separated into a collection of compo-
nents, each corresponding to a different level of detail. The coarse scale features are
separated from the fine scale features, thereby facilitating multiscale analysis of the
data.

The above description of wavelets suggests that they perform a partitioning of
the frequency spectrum. The key difference between wavelet transforms and Fourier
transforms is that wavelet transforms retain information on the time localization of the
data, whereas Fourier transforms do not. The lack of time-localization in the Fourier
transform can be remedied by the use of a window on the data before applying the
Fourier transform. This results in what is commonly known as the short-time Fourier

transform.

2.2.1 The Short-Time Fourier Transform

Figure 2-1 illustrates the short-time Fourier transform in a discrete-time setting.

i
x[n]: - x[n;m] R s[:;] DIFT | S(elw)

win]

Figure 2-1: Short-time Fourier transform as a windowing cperation.

In this model, the data sequence, z[n], is time-advanced by m samples, after which
it is multiplied by a predetermined window sequence w[n]. The windowing sequence
is typically a finite length sequence having length N and starting at time n = 0. The

windowed sequence is

s[n] = z[n + m] w[n] . (2.1)

20



This sequence is passed though a Discrete-Time Fourier Transformer (DTFT) to yield

the short-time Fourier transform of z[nj:
X[m,w)=SE") = Y z[n+m] wn] e m. (2.2)

n=-—o0o

Equivalently, the short-time Fourier transform is given by the periodic convolution
1 T jom 1] j(w—0)
Ximw) = / M X (IYW (5 -9)dp . (2.3)

The notation X[m,w) reflects the fact that the short-time Fourier transform charac-

terizes the signal z[n] about time n = m.

w[n]
x[n+m]
i) N:1 n
(a)
w(ej (0-6) )
ejem x(ej 0 )
—>° ‘}AVA\/ T \/AV,I
-n 0 o n 0
| Ao |
(b)

Figure 2-2: Windowing of a time-advanced signal, z[n + m]. (a) Time domain repre-
sentation (b) Frequency domain representation.
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Figure 2-2(a) depicts the windowing operation in the time domain as described
by equation (2.1). From this representation, it is clear that time localization is
achieved though windowing, since the windowed sequence only contains informa-
tion about the samples z[m],--,z[m + N — 1]. By computing X[m,w) for m =
0,£N,£2N,x3N,- -, it is possible to sweep the entire time axis, thereby capturing
information about the entire sequence, z[n].

Figure 2-2(b) depicts the windowing operation in the frequency domain as de-
scribed by equation (2.3). From this representation, it is seen that frequency localiza-
tion is also achieved, since W (e?(“~9) is essentially a bandpass filter with center fre-
quency w and bandwidth Aw. Thus, X [m,w) characterizes the signal z[n +m| about
the frequency w. By computing X[m,w) for w = +Aw/2, £3Aw/2, £5Aw/2,- -, it
is possible to sweep the entire frequency axis.

From the above discussion, it is seen that the entire time-frequency plane can
be characterized by computing the short-time Fourier transform at the values m =
0,+N,+2N,£3N, .- and w = +Aw/2, +3Aw/2, +5Aw/2, - - -. This leads to a uni-
form tiling of the time-frequency plane as depicted in Figure 2-3.

Typically, the bandwidth of the window, Aw, is proportional to 1/N. This illus-
trates the fundamental tradeoff between time-localization and frequency resolution.
If the window length, N, is decreased, better time-localization is obtained but the
frequency resolution becomes poorer. The effect on Figure 2-3 would be to make the
tiles taller and narrower. Conversely, if the length of the window is increased, better
frequency resolution is obtained but the time localization becomes poorer. In this
case, the effect on Figure 2-3 would be to make the tiles shorter and wider. Thus,
a change in the window length results in a change in the aspect ratio of the tiles.
It does not change the area of the tiles or the uniform nature of the tiling over the

time-frequency plane.

2.2.2 The Wavelet Transform

For many applications, uniform tiling is not the best way to partition the time-

frequency plane. For example, the human ear hears on a logarithmic scale i.e. fre-
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Figure 2-3: Time-frequency tiling for the short-time Fourier transform.

quencies which are spaced an octave apart create the impression of being equally
spaced in frequency, whereas in actual fact, they are equally spaced on a logarithmic
frequency scale. Thus, in audio applications, the wavelet transform can provide a
more elegant approach than the short-time Fourier transform. The wavelet transform
uses a variable length window whose bandwidth is adapted to the window’s center fre-
quency. Instead of being derived from a frequency shift (modulation) of the window,
the wavelet transform is derived through frequency scaling [52].

Figure 2-4 illustrates the tiling pattern that is typical of the wavelet transform
in a discrete setting. Frequency scaling is achieved through a scaling parameter, m,
while time domain shifts are achieved by varying a translation parameter, k. The
quantity k/2™ corresponds to the position of the variable length window in the time
domain. Figure 2-5 illustrates the filter bank tree structure typically associated with

the Discrete Wavelet Transform. In this figure, a signal represented by a sequence of
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Figure 2-4: Time-frequency tiling for the wavelet transform.

coefficients, ¢,[k], is simultaneously fed into a lowpass filter, H(z), and a highpass
filter, G(z). The lowpass output is downsampled by a factor of 2 to produce the
coefficients cp,—[k], while the highpass output is downsampled by a factor of 2 to
produce the coefficients d,,_;[k]. Since the downsampling factor is the same as the
number of channels, the total numbei of coefficients in the two channels is the same
as the original number of coefficients. We may repeat this process by feeding the
coefficients ¢,,_1k] into a second stage, which also consists of a lowpass filter, H(z),
and a highpass filter, G(z). This iteration process results in a cascade algorithm for

computing the Discrete Wavelet Transform.
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Figure 2-5: Tree structured filter bank implementation of the Discrete Wavelet Trans-
form, showing two stages of the cascade algorithm.
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Chapter 3

Theory of Wavelets

This chapter provides the necessary background in the theory of wavelets and it serves
to establish notational conventions. The focus is on orthogonal and biorthogonal

wavelets.

3.1 Orthogonal Wavelets

3.1.1 Time Domain Representation

Here, we provide a description of orthogonal wavelets in the time domain. We use the
symbol t to denote time. Although we refer to the time domain, it should be noted
that the results of this section are equally applicable to the spatial domain.

With orthogonal wavelets, the goal is to generate a multiresolution approximation
to a function, f(t), which is typically assumed to belong to the space of square

integrable functions, L2(R). To this end, consider a sequence of embedded subspaces,
{0}c---cV_,cV_,CcVeCcV,CcV,C---CL?R),
possessing the following properties:
1. Ujez V;j is dense in L2(R). (Z denotes the set of integers.)
2. N;ezV; ={0}.
3. The embedded subspaces are related by a scaling law
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9t) e V<= g(2t) € Vjy, .

4. Each subspace is spanned by integer translates of a single function, g(t), such

that
g(t) e Vo <= g(t+1) € V,.

Condition 4 suggests that we can find a function, ¢(t) € Vj, whose integer trans-
lates form a basis' for V. It follows from Condition 3 that the functions ¢(2t — k)
must span V;. In particular, since Vo € V,, we may write a two-scale difference

equation (also known as a dilation equation) of the form

B(t) = Y alklp(2t - k) . (3.1)

k

Here {a[k]; k € Z} is a sequence of constant coefficients, which can be thought of as a
digital filter. Typically, the filter coefficients, a[k] are real valued, although complex
wavelet filters can also be generated. The impulse response of the filter may be either
IIR (meaning that it has infinite length,) or FIR (meaning that the filter length is
finite.) A digital computer, however, can only represent finite length data. This
means that an IIR filter must either be described by a recursive difference equation,
or it must be approximated by an FIR filter. Most of the filters of interest in this
work are FIR filters, and we will generally regard a[k] as being of finite length, N.
Note that the two-scale difference equation defines a continuous function in terms of
a discrete filter. For obvious reasons, the function ¢(t) is usually referred to as a
scaling function.

It also follows from the translation and scaling argument that we may define a

function

bmi(t) = 2™29(2™t —k); k€ Z , (3.2)

which forms a basis for the subspace V,,. Thus, given a function f(t) € L?(R) we

may generate a sequence of successive approximations to f(t) by projecting it on to

1The bases we deal with are Riesz bases.
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the subspaces V,;,. We use the notation P, f(¢) to denote the projection of f(t) on

to V,,, and we observe that we can write P,, f(t) in the form
Prf(t) =) cmlklomk(t) . (3.3)
k

A defining characteristic of orthogonal wavelets is that {¢,, (t); k € Z} is an orthog-
onal set. This means that the expansion coefficients in equation (3.3) are given by

the inner product

enlk] = [ fObmalt)dt . (3.4

Note that P, f(t) approaches f(t) as m — oco. Since f(t) has a non-vanishing
integral in general, the integral of the scaling function, ¢(t), cannot be zero. This,
together with Equation (3.1) leads to a normalization condition on the filter coeffi-
cients:

Y alk]=2. (3.5)

k

Another constraint on the filter coefficients is imposed by the orthogonality of the
scaling function to its integer translates. This condition is known as Condition O,
and is given by

> alklalk — 2] = 26[1) . (3.6)

The difference between the subspaces V,,,; and V,, is of interest since it contains
the detail that must be added to P, f(t) to obtain P, f(t). We use the notation
W, to denote this detail space and we use Q,,f(t) to denote the projection of f(t)
on to Wy,. For orthogonal wavelets, the spaces W,,, and V,, are orthogonal, and

W,, is said to be the orthogonal complement of V,, in V,,,,. This is written as
Vi1 =V @Wm; W,. LV, . (3.7)
Equivalently, the projections are related by

Pri1f(t) = Puf(t) + Qmf(t);  Puf(t) L Quf(). (3.8)
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We may construct a function (t) whose integer translates form a basis for Wy by
noting that (a) v(¢) must be in V, and (b) ¥(t) must be orthogonal to ¢(t — k).

These requirements are fulfilled by choosing
¥(t) = Y blkIo(2t — k) (3.9)
k

with
blk] = (=1)* a[N -1 k] . (3.10)

The function 1(t) is referred to as a wavelet. It is related to the scaling function:
note the similarity between equations (3.1) and (3.9). Just as the scaling function
is characterized by the filter a[k], the wavelet is characterized by the filter b[k]. The
translation and scaling argument also apply to the wavelet, so we may define a func-
tion

Ymi(t) = 2™M2p(2™t —k); k€ Z (3.11)

which forms a basis for the subspace W,,,.
It can easily be shown that orthogonal wavelets follow from orthogonal scaling
functions by forming the inner product < ¥(.),%¥(. — k) > and then substituting

equation (3.9). This result allows us to write an expansion for Q,, f(¢) of the form

Qmf(t) = 3_ dm[k]tbmx(?) (3.12)
k

with
dnlk] = [~ f(E0pma(t)dt (3.13)

Finally, the recursion given by equations (3.7) and (3.8) may be applied to give a

complete wavelet decomposition of the form

f&) =3 dulk]mi(t) - (3.14)
m k
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In summary, orthogonal wavelets are characterized by the following conditions:

< Omil(-) Oma(-) > = 8lk-1], (3.15)
< Urk( () > = Slk—1] , (3.16)
< Omi(-), Yma() > = 0, (3.17)
< UYma(),Uni(.) > = dm—n]dk-1]. (3.18)

3.1.2 Fourier Domain Representation

The Fourier domain representation of orthogonal wavelets is at least as instructive to
consider as the time domain representation. In fact, the design of wavelets is most
commonly done in the Fourier domain.

To fix notation, we define the Continuous-Time Fourier Transform (CTFT) of f(t)
as

F(jQ) = / ” f(t)edt . (3.19)

—00

This is the analysis equation. The synthesis equation i.e. the inverse CTFT is given

by

00

£t) = -2-1; [ Fioyeman (3.20)

By taking the Fourier transform of the scaling relation, equation (3.1), we obtain

8(jQ) = %A (¢%2) @ (j9/2) (3.21)

where Vol
A (ej“’) =Y a[nle7 " . (3.22)

n=0

Note that, by definition, A (¢’*) is the Discrete-Time Fourier Transform (DTFT) of

the filter a[n]. Similarly, by taking the Fourier transform of equation (3.9), we arrive
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at the Fourier representation for the wavelet:

¥(jQ) = 5B (%) 8 (j0/2) | (3:23)

where N1
() = 5t = oo g (o) (s

n=0

The * superscript is used to denote complex conjugation.
The orthogonality condition (Condition O) in the Fourier domain can be derived
from the time domain orthogonality condition, equation (3.15), by using Parseval’s

theorem. The result is
@+ a@ern)f] =1 52

3.1.3 Daubechies’ Orthogonal Wavelets

A particular class of orthogonal wavelets was introduced by Daubechies [17]. These
wavelets have compact support i.e. they have finite length. The associated filters are
FIR, and their length, N, is even. In addition to satisfying Condition O, Daubechies’
wavelets satisfy an accuracy condition?, which is referred to as Condition A. Condition
A may be stated in one of several possible ways. As a condition on the scaling function,
it states that any polynomial of order N/2—1 can be expressed as a linear combination
of scaling functions, ¢(t — k), with zero approximation error. As a condition on the
wavelets themselves, it states that the wavelets have the maximum possible number

of vanishing moments (for a given value of N) i.e.

/°°¢(t)t"dt=o; k=0,1,---,N/2-1. (3.26)

2Formally known as a Strang-Fix condition.
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Stated as a condition on the filter coefficients, Condition A states that
Y (~1)kalk) ' =0; k=0,1,---,N/2-1. (3.27)
k

In the Fourier transform domain, Condition A states that A(e?*) is of the form

Ae) = (I—“L;l’-“-’) " Ry, (3.28)
where R(e’*) satisfies Condition O. In the z-transform domain, this means that A(z)
has a zero of order N/2 at z = —1.

The fact that Daubechies’ scaling functions can exactly represent polynomials of
a predetermined order means that the Daubechies family of wavelets is particularly
suited for applications such as image compression and the solution of ordinary and
partial differential equations.

Since Daubechies’ wavelets are of considerable use in practical applications, a
simple program was developed for the computation of the Daubechies filters, a[k], for
a given filter length, N. The computation involves a spectral factorization calculation
to determine the function R(e’*) from |R(e’“)|?>. Daubechies’ construction leads to
minimum phase filters and so we are able to compute the required spectral factor
using a cepstrum based approach (see e.g. Oppenheim and Schafer [40].) A Matlab

implementation of the program is given below.

% function a = daub(Na)

%

% Generate filter coefficients for the Daubechies orthogonal wavelets.

% a = filter coefficients of Daubechies’ orthonormal compactly supported
% wavelets.

% Na = length of filter.

function a = daub(Na)

K = Na/2;
L = Na/2; 10
N = 512; % Use a 512 point FFT by default.
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k = 0:N-1;

% Determine samples of the z transform of M1(z) = R(z) R(1/z) on the unit circle.

z = exp(j*2*pi*k/N);
tmpl = (1 +2.°(-1)) / 2;
tmp2 = (-z + 2 — 2.°(-1)) / 4; % sin"2(w/2).

M1z = zeros(1,N);
vec = ones(1,N);
for] = :K-1
Mlz = M1z + vec;
vec =vec .*tmp2* (L +1)/(1+1);
end
Mlz = 4 * Mlz;

% M1(z) has no zeros on the unit circle, so use the complex cepstrum to find

% its minimum phase spectral factor.

Mlzhat = log(M1z);

mlhat = ifft(M1zhat); % Real cepstrum of ifft(M1(z)).
% (= complex cepstrum since M1(z) real, +ve.)
mlhat(N/2+1:N) = zeros(1,N/2); % Retain just the causal part.
mlhat(1) = mlhat(1) / 2; % Value at zero is shared between
% the causal and anticausal part.
Rz = exp(fft(m1hat)); % Min phase spectral factor of M1(z).

Az = Rz * tmpl."L;
a = real(ifft(Az));
a = a(1:Na)’;
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3.2 Biorthogonal Wavelets

3.2.1 Time Domain Representation

Biorthogonal wavelets maybe viewed as a generalization of orthogonal wavelets. With

biorthogonal wavelets, there are two sequences of embedded subspaces

{0}---V_,CcV_CcV,CV,CcV,---L}R),
{0}---V_,cV_,cVecV,cV,---L¥R) .

Two scaling functions are now required: a primary scaling function, ¢(t), for the
subspaces V,, and a dual scaling function, ¢(t), for the subspaces V,,. The subspaces

V. and \-/,,, have respective complementary spaces, W,, and Wm, such that
Vo =V @PW,, and Vo =V,.PW,. (3.29)

However, these spaces are not orthogonal complements in general. Rather, they satisfy

the conditions

W,.1lV, and W,LlV,. (3.30)

The spaces W,, and W,, are generated from two wavelets, 1/(t) € Wy and ¢(t) €
W, respectively. Thus, conditions (3.30) imply that

<(),d(.—k)>=0 and  <P(),¢(.—k)>=0. (3.31)
In addition, the primary and dual functions satisfy
<¢(.),o(.—k)>=06k] and < (), (. — k) > =0[k] . (3.32)

The scaling relationships follow a pattern similar to that of orthogonal wavelets.

However, now there are a total of four scaling relations and four associated filters:

$(t) = Y alklp(2t — k), $(t) = Y alklp(2t — k), (3.33)

k k
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Y(t) = 3 blkla(2t — k), b(t) = Y blkld(2t — k), (3.34)
k k
where
blk] = (—=1)% a[N — 1 - k] and blk] = (~1)* &[N — 1 — k] .

Note that these definitions of b[k] and b[k] ensure that equations (3.31) are satisfied.
As in the case of orthogonal wavelets, the scaling functions have non-vanishing

integrals. This imposes the following constraints on the filter coefficients:

Yoak]=2 and Y ak]=2. (3.35)
k k

In addition, the biorthogonality conditions, equations (3.32), lead to the following

conditions on the filter coefficients:

> alklalk - 21) = 24[] . (3.36)

k

3.2.2 Fourier Domain Representation

Taking the Fourier transform of equations (3.33) and (3.34) results in the following

frequency domain scaling relations:

B(jQ) = %A (@) eG/2), 839 = %fi (™) & (jo/2) ,  (3.37)
(jQ) = %B (effw) @ (jQ/2) , (i) = %B (ef“ﬂ) ®(j/2) ,  (3.38)
where

B (e]w) = e JwHm(N=1) 4+ (ej(w+1r)) and B (er) — e—j(u+1r)(1‘7-—l) A* (ej(w+7r)) .
(3.39)
Furthermore, equations (3.32), lead to the following biorthogonality condition in the

Fourier domain:
1 L . L
i [A(e™) A*(e7) + AE@@) A ()] =1 . (3.40)
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3.3 Orthogonal Discrete Wavelet Transforms

In an orthogonal setting, the Discrete Wavelet Transform (DWT) is an operation
that takes a set of expansion coefficients, c,[k], such as those in equation (3.3),
and transforms them into the coefficients ¢y, [k] and d,,-[k]. This is effectively
the same decomposition as equation (3.8), except that the DWT works directly with
expansion coefficients instead of continuous projections. Note that the decomposition
is recursive, since the same decomposition process may be applied to ¢, [k] to obtain
cm-2(k] and d,_,[k].
The equations representing the DWT are easily obtained by writing

me(t) = Pm—lf(t) + Qm—l.f(t) (3°4l)

and then taking the inner product with ¢m_, »(t) and ¢,_1 »(t). From equations (3.1)
and (3.9), we know that

< bmilt), bmorn(t) > = % alk - 2n] , (3.42)
< (), Ymornt) > = % blk — 2] | (3.43)

Thus we have the following equations for the orthogonal DWT:

malr) = kz: emlk] alk — 2n] (3.44)
2n+N-1
dnaln] = —= Y cmlk] bk — 2n] (3.45)

\/§ k=2n

To obtain an expression for the inverse DWT, we take the inner product of each
side of equation (3.41) with ¢, »(t) and follow a similar line of reasoning. The result-

ing expression for the inverse DWT is

. 2
em[n] = —= > cm-i[k] a[n—2k] +
V2 SRy
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1l

— dm-r[k] bn — 2K} . (3.46)
V2 k:[(n—EN+l)/2]

Equation (3.44) may be interpreted as a convolution of the data ¢,,[n] with the
lowpass filter a|—n], followed by downsampling by a factor of 2. Likewise, equation
(3.45) represents convolution with the highpass filter b[—n], followed by downsampling
by a factor of 2. Two such stages in the DWT are depicted by the signal flow
graph in Figure 3-1. A signal flow graph may also be constructed for the inverse

transformation, equation (3.46).

c,,[n] ¢ alnl c..nl

A\ 4
A

al-n]—— | 2

|2

a[-n]

Y

d
{12 =2

d_,[n]

Figure 3-1: Signal flow graph for a two stage implementation of the Discrete Wavelet
Transform.

A 4

Figure 3-2 provides a pictorial view of the DWT in two dimensions. An 8-bit
grayscale image is processed by applying equations (3.44) and (3.45) first to each row
in the image and then to each column in the image. When the filtering/downsampling
operation represented by equation (3.44) is applied to the rows of the image, it results
in an averaged version of the image which has half the width of the original image.
The filtering/downsampling operation represented by equation (3.45) results in a
detail image, which also has half the width of the original image. The averaged image
and the detail image are processed further by applying equations (3.44) and (3.45)
to the columns of each image. This results in a total of four subband images: one

low frequency component and three high frequency components. The low frequency
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Figure 3-2: Two-dimensional Discrete Wavelet Transform.
38



component is easily recognized as being a subsampled version of the original image.

Figure 3-3 illustrates the reconstruction process. This process allows the original
image data to be perfectly reconstructed from the four subband images. The per-
fect reconstruction property follows from the orthogonality of the wavelet filters i.e.

equation (3.25).

3.4 Biorthogonal Discrete Wavelet Transforms

Biorthogonal Discrete Wavelet Transforms are a relatively straightforward generaliza-
tion of the orthogonal DWT. Since biorthogonal wavelets are associated with two sets
of embedded subspaces, {Vy,;m € Z} and {V,,;m € Z}, we define the respective

projections of a function f(t) onto these subspaces by
Pnf(t) =Y cmlkldmi(t) and  Puf(t) = énlklbmu(t) (3.47)
k k

where
cmlk] = < f(.), Bmi(-) > and Emlk] = < f(.)s dmi(.) > -

Likewise, the projections of f(t) onto the complementary subspaces, W,, and W,y,,

are defined by

Qmf(t) =Y dulklYme(t) and  Quf(t) = dm[k]thmx(t) (3.48)
k

k

where
dmlk] = < £(.), Uma(.) > and dmlk] = < £(), Yma(.) >

It is now possible to define two biorthogonal DWTs, one associated with the
primary projections, P, f(t) and Q,,f(t), and the other associated with the dual
projections, P, f(t) and Q,, f (t). To obtain the primary biorthogonal DWT, we start
with

Prf(t) = Pn_1f(t) + Qm-1£(¢) (3.49)
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Figure 3-3: Two-dimensional inverse Discrete Wavelet Transform.

40



and form the inner products with Js,,,_,,,. (t) and @m_l,n(t). Using the scaling relations,

equations (3.33) and (3.34), we find that

< bnall) bmeralt) > = 75 alk =20, (3.50)
< Gp(D) Umornlt) > = %b[k—Zn]. (3.51)

This leads to the following expressions for the primary biorthogonal DWT:

1 2n+N-1 1 2niN-1
cm-1[n] = 7 k§2: cm[kla[k — 2n) dm_1[n] = 7 kg cm[K]b[k — 2n] .

(3.52)

The inverse transformation is obtained in a similar manner by taking the inner

product of each side of equation (3.49) with @, ,(t). Thus, the inverse primary
biorthogonal DWT is given by the following expression:

Ln/2]

1
nl = — _1lklaln — 2k
cm[ ] ﬁk:[(n—ZN+l)/2'| o 1[ ] [ ] i
1 el )

k= [(n—l\'r+1)/2]

Expressions for the dual biorthogonal DWT and its inverse may obtained by in-

terchanging the symbols (.) and (7). Thus, the dual biorthogonal DWT is given by

1 2niN-1 1 2n+N-1

Em-i[n] = — Cm[k]a[k — 2n] dmaln] = —= EmlKJb[k — 2n] ,
l \/5 k=22n 1 \/5 kgz;n
(3.54)
and the dual inverse biorthogonal DWT is given by
_ 1 [n/2] _
Gl = 5 Y Gnalklaln-24] +
k=[(n-N+1)/2]
1 (n/2] -
dm—1[k]b[n — 2k] . (3.55)

‘/2- k=[(n—-N+1)/2]
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Chapter 4

Evaluation of Wavelet Integrals

Many wavelet algorithms require the evaluation of integrals which involve combina-
tions of wavelets, scaling functions and their derivatives. We collectively refer to such
integrals as wavelet integrals. There are a few instances in which wavelet integrals can
be evaluated analytically. In general, however, it is necessary to resort to numerical
methods of evaluation. The accuracy and efficiency of the technique used to compute
the integrals will have a significant impact on the overall performance of a wavelet
algorithm. For instance, wavelet-based algorithms for solving differential equations
typically lead to integrals involving wavelets and their derivatives. A typical examnle
is the integral
o d
| Zw@u -k, (4.1)
—oo dt

where 1(t) is a Daubechies 6 coefficient wavelet. One might be tempted to compute
this integral using a numerical quadrature method such as Simpson’s rule. However,
brute force methods of this sort tend to exhibit slow convergence since the wavelet
and its derivative are highly discontinuous functions. As is happens, the integral in
equation (4.1) can be computed far more efficiently and accurately (to within machine
precision) by formulating it as the solution to an eigenvalue problem.

In this chapter we consider three classes of wavelet integrals which are commonly

encountered in wavelet algorithms:

(a) Wavelet and scaling function coefficients.

42



(b) Moments of wavelets and scaling functions.
(c) Connection coefficients.

For each class, we outline computational methods which were found to perform well

in practice.

4.1 Wavelet and Scaling Function Coefficients

In Chapter 3, we encountered iniegrals of the form

(o °]

cnlk] = [  iOfmat)at and dmlk] = /_ : FO)me(t)dt,  (4.2)

J -

which were the expansion coefficients in the projections, Pnf(t) and Q. f(t), of the

function f(t) onto the orthogonal spaces V,,, and Wp,:

Prnf(t) = 3 cm[kldmi(t) and Quf(t) =Y dulkl¢mi(t) . (43)
k k

Similar integrals were encountered in the case of biorthogonal wavelets. The integrals
denoted by c,,[k] and d,,[k] are referred to as scaling function coefficients and wavelet
coefficients respectively.

Here we consider how to evaluate the integrals c¢,,[k] (and similar integrals), given
samples of the function f(t). In general, it is not possible to compute the integrals
exactly. This is in contrast to the inverse operation, which simply involves calculating
samples of P, f(t) from the coefficients c,[k]. We outline two approaches for evalu-
ating c,,[k] which are based on the assumption that the samples of f(t) are uniformly

spaced.

(a) Inversion of the expansion formula. In this approach, we consider the expansion

formula evaluated at the points t = 27™n where n is an integer:

Pof(27™n) = ; cmlk]dmie(27Mn) . (4.4)
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(b)

Using the notation P, f[n] to denote the discrete values P, f(2~™n), and re-

calling the definition of ¢,; x(t) from Chapter 3, we have
P f[n) = 2™/2 Y cmlklé(n — k) . (4.5)
k

The values of P, f[n] are unknown, but from multiresolution theory, we know
that P, f(t) approaches f(t) as m — oo. Thus, we make the approximation
Pnf[n] = f[n] where f[n] = f(2=™n). This leads to the approximate identity

fln] %22 cplklé(n — k) . (4.6)
k

We may thus compute the coefficients ¢, [k] from the samples f[nr] by performing

the deconvolution operation using the DFT.

An advantage of computing cn,[k] using the expansion formula inversion ap-
proach is that the original sample values, f[n], can be recovered by substituting
the computed c,,[k] values back into the expansion formula. Thus, the method
is said to be consistent. Expansion formula inversion has been used by Weiss

[53], Qian and Weiss [44] among others.

Numerical quadrature. This is a more direct approach to computing c,,[k].
Assuming that we are given the samples f[n] = f(27™n), we approximate the

integral by a sum. Thus, we compute the scaling function coefficients as
emlk] % 272 Y flnlé(n — k) . (4.7)

With the uniform quadrature approach for computing ¢, [k], we usually cannot
recover the original sample values, f[n], by substituting the computed c,[k]
values back into the expansion formula. Thus the method is said to be incon-

sistent.

Recall from Chapter 3 that the scaling function typically satisfies a Strang-

Fix condition i.e. the translates of ¢(¢) can exactly represent polynomials of
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Gegree less than p. It has been pointed out by Strang and Nguyen [49)] that the
approximate identity (4.7) becomes an exact identity when the function f(t) is
itself a polynomial of degree less than p. For this special case, therefore, the

uniform quadrature approach is both consistent and exact.

Another possible approach is to use the quadrature formula when computing
cm[k], and to use the inverse of the quadrature formula in place of the expansion

formula. This approach is consistent for any f(t).

Both of the above approaches are valid and they have been found to work well in
practice. There appears to be little evidence to suggest that one method consistently
outperforms the other. Note that both methods involve convolutions which can be
efficiently computed using the DFT.

Detailed work on the computation of wavelet and scaling function coefficients has

been done by authors such as Delyon and Juditsky (19] and Xia, Kuo and Zhang [55].

4.2 Moments of Wavelets and Scaling Functions

The moments of scaling functions and wavelets are integrals of the form

s = / : t'o(t — k)dt and o) = /_ : thy(t — k)dt . (4.8)

These moments are simply the scaling function and wavelet coefficients of the monomi-
als ¢!. Wavelet and scaling function moments are closely associated with the accuracy
of wavelet approximations (Condition A) as well as their smoothness properties. In
particular, the moments of scaling functions play an important role in the develop-
ment of smoothness preserving extrapolations (Chapters 7, 6 and 8.)

Consider, for example, Daubechies’ N-coefficient orthogonal wavelet, which has

p = N/2 vanishing moments. The vanishing moments imply that

0, =0; k=0,1,2,---,p—1. (4.9)
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The moments of the Daubechies N-coefficient scaling function, however, are nonzero.
Here, we outline a method for computing these scaling function moments. A similar
approach enables us to calculate the nonzero moments of the wavelet, once the scaling
function moments are known.

Starting with the definition of p}, make the substitution 7 = ¢t — k and then use

the binomial theorem to expand the term (7 + k). This leads to the equation
! S0
=3 (1) K (4.10)

r=0

To evaluate the integrals ug, we start with

= / ” r(t)dt (4.11)

and we substitute for ¢(¢) using the dilation equation (3.1). This leads to the equation

N-1
ST alk)pg - (4.12)
E=0

o —

Ho =

Eliminating p} using equation (4.10) and using the fact that the filter coefficients a[k]

sum to 2, we arrive at the equation

1 r—1 (N—l ) )
Uy = e i alk) €77 ) pg - 4.13
Finally, we note that
= /_ "ot di=1. (4.14)

Equations (4.14), (4.13) and (4.10) provide a recursive method of computing the
moments of the scaling function.

A similar argument leads to expressions for the nonzero moments of the wavelet
in terms of the scaling function moments. Assuming that the first p moments of the

wavelet are zero, i.e. of = 0for k =0,1,2,---,p— 1, the remaining nonzero moments

46



are given by:

r 1 ¢ = i), r-i
Oy = gr+1 Z (t) (2 b[k] k ) Mo r Z p, (415)
i=p k=0
{
o = X ()k % ; 12p. (4.16)
r=p

Note that the method for computing the scaling function moments does not rely
on orthogonality properties. Thus, it is applicable to any orthogonal, biorthogonal
or non-orthogonal scaling function. In the biorthogonal case, equations (4.10), (4.13)
and (4.14) are applicable to the primary scaling function. Equations (4.15) and (4.16)
are applicable to the primary wavelet if b[k], N and p are replaced by E[k], N and
P respectively. As usual, expressions for the dual scaling function and wavelet are

obtained by interchanging the symbols (.) and (7).

4.3 Connection Coefficients

Connection coefficients are integrals involving combinations of wavelets and scaling
functions, their translates and their derivatives. They are most frequently encoun-
tered during the wavelet-Galerkin discretization of ordinary and partial differential
equations. The class of wavelets for which connection coefficients are usually desired
are those wavelets which are orthogonal or biorthogonal and have compact support.
Often, the derivatives of these wavelets are highly discontinuous functions. As a result,
numerical approximations to connection coefficients using quadrature methods tend
to be unstable. Latto, Resnikoff and Tenenbaum [30] outline a method of evaluating
connection coefficients which is both general and exact. The evaluation of connection
coefficients for the operator d" /dt" is also discussed by Beylkin [6]. For r = 1 he tabu-
lates in rational form the connection coefficients corresponding to Daubechies scaling
functions. In this section, we summarize the procedure given in [30], and we present
a Matlab routine for evaluating some commonly encountered connection coefficients.

We consider first the evaluation of two-term connection coefficients for orthogonal
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wavelets. Let
Qfn] = / T o0 St —n)dt; r>0. (4.17)

The case r = 2, for example, corresponds to the coefficients required for the solution
of Laplace’s equation. The basic sclution strategy is to use the dilation equation

(3.1). This gives

o) = 2'Ni:la[k] o2t — k) , (4.18)
k=0
N-1

p(t—n) = Y all] p(2t—2n-1). (4.19)
=0
Substituting in equation (4.17) and making a change of variables leads to
N-1N-1
Qn]=2"""3 > alk] al] Q2n+1-k]. (4.20)
k=0 I=0

This can be conveniently rewritten as two separate convolution sums:

i} = _EIZV la[i-—j] Q5] (4.21)
2n+N-1
Qn] = 271 ; ali — 2n] v[d] . (4.22)

In matrix form, therefore, we have

v = AQ, (4.23)
Q = 274, (4.24)

which results in the homogeneous system

(A2 A - -2-1711) Q=0. (4.25)

This system has rank deficiency 1, and so we require a single inhomogeneous equ~tion

to determine the solution uniquely.

48



To obtain an equation which normalizes equation (4.25), we make use of Condition
A. Recall that this condition allows us to expand the monomial ¢t" (r < p) as a linear

combination of the translates of the scaling function:

Zk: pE d(t—k)=t". (4.26)

The expansion coefficients, pf, are just the moments of the scaling function, and they
can be computed using the approach described in Section 4.2. Differentiating r times,

we have
S up ot —k)y=r!. (4.27)
k

Multiplying by #(¢) and integrating leads to the following normalizing condition:

zkj ui Q—k]=r'. (4.28)

Equations (4.25) and (4.28) form the theoretical basis for computing Q[n]. In addition

to Q[n] we may require the integrals

ofn] = [ 9(t) it -n) dt, (4.29)
Bin) = [ ) wit—n)dt, (4.30)
1Ml = [ 9 ¢t -n) dt (4.31)

These integrals can be computed from Q[n], using an approach similar to the one

described above. Thus we have

2n+N-1

aln] = 27! ; bl — 2n] w(i] , (4.32)
ImeN_1

Bln] = 27! 22: bli — 2n] v[g] , (4.33)
2n4+N-1

yn] = 277 Y afi—2n] wli), (4.34)

1=2n
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where v[i] is given by equation (4.21) and w[z] is given by

i

wlil]= Y bli—34] Q). (4.35)

j=i—N+1

The extension to biorthogonal wavelets is very straightforward since it simply
requires the use of different filters. Note that with biorthogonal wavelets, we have
the choice of computing connection coefficients involving only the primary functions,
or only the dual functions, or both the both primary and the dual functions. As
a particular example, we give the results for the two-term connection coefficients

involving both the primary and the dual functions. For this case, we have

Qfn] = /_:¢<')(t) $(t —n) dt (4.36)
ofn] = /_:¢('>(t) Bt —n) dt, (4.37)
Bin = [ ¢t) bt —m) dt, (4.38)
1Ml = [ 9 a-n) dt (4.39)

The equations for computing €[n] are given by

i

o] = Y afi-4]Qf], (4.40)
j=i—N+1
2n+N-1
Qn] = 2771 Y afi — 2n] 5] (4.41)
i=2n
and

Zk:p; Q—k] =1, (4.42)

where
= “ ot - k)t . (4.43)

The equations for a[n], f[n] and v[n] are
2n+N-1

afn] = 271 3" bfi — 2n] wfd], (4.44)

i=2n
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2n+N-1

Bn] = 27! ; bli — 2n] v[1] , (4.45)
y[n] = 27! ni:_la[i—h] wli] , (4.46)

where v[i] is given by equation (4.40) and w(i] is given by

wiil= 3 bi-4] Q0. (4.47)
j=i=-N+1
The approach for calculating three-term connection coefficients follows a similar

strategy to the approach outlined above. These coefficients are of the form

00

QIS (m, =/ ¢(")(t) ¢(rz)(t —m) d)("")(t —n)dt (4.48)

and they typically occur when a nonlinear differential equation is discretized. In
the three-term case, substitution of the dilation equation into the definition of the
connection coefficients results in a linear system which has rank deficiency r + 1,
where r = r, + 5 + r3. To obtain a unique solution, therefore, it is necessary to find
an additional r + 1 independent equations. At least one of these additional equations
should be inhomogeneous so as to ensure the inhomogeneity of the entire system. As
in the two-term case, the additional equations can be obtained from the moments of
the scaling function. Details of the three-term case are given in {30].

To conclude this section, we give below a sample Matlab program for the compu-
tation of the two-term connection coefficients for orthogonal wavelets, as defined by

equations (4.17), (4.29), (4.30) and (4.31).

% function [omega,alpha,beta,gamma] = concoeffs2(a,r)
%

% Calculate the rth derivative two—term connection coefficients for

% the orthogonal wavelets described by the filter afk].
% a = wavelet filter, sum(a) = 2.

% r = sum of the derivatives of the scaling functions.

% eg. r =2 gives
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% omega[n] = <phi’’(x) phi(x—n)> = —<phi’(x) phi’(x—n)> = <phi(x) phi’’(x—n)>,

% alpha[n] = <psi’’(x) psi(x—n)> = —<psi’(x) psi’(x—n)> = <psi(x) psi’’(x-—-n)>,

% beta[n] = <phi’’(x) psi(x—n)> = —<phi’(x) psi’(x—n)> = <phi(x) psi’’(x-n)>, 10

% gamma[n] = <psi’’(x) phi(x—n)> = beta[—n].

%
% Note: works even if the filter has an odd number of coefficients,
% e.g. when filter is symmetric about origin.

function [omega,alpha,beta,gamma] = concoeffs2(a,r)

[N,dum] = size(a);

M =2*N - 3; % Number of connection coeflicients (depends on a).

n=M+N-1;
m=n+N-1; %=2*M+1.
b = (-1).7(0:N-1)’ .* a(N:—1:1);

% Calculate filter coefficient matrices.

Aa = [a; zeros(n—N,1,];

fori = 1:M-1
Aa(2:n,i+1) = Aa(l:n—1,i);
Aa(l,i+1) = Aa(n,i);

end

Batmp = [a(N:—1:1); zeros(m—N,1)];
fori = 1:n—-1
Batmp(2:m,i+1) = Batmp{l:m—1,i);
Batmp(1,i+1) = Batmp(m,i);

end

ind = [0; 1] * ones(1,M);
ind = ind(:);

ind(m) = 0;

ind = ind * ones(1,n);
Ba = zeros(M,n);
Ba(:) = Batmp(ind);

Ab = [b; zeros(n—N,1));
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fori = 1:M-1
Ab(2:n,i+1) = Ab(1:n-1,i);
Ab(1,i+1) = Ab(n,i);

end

Bbtmp = [b(N:-1:1); zeros(m—N,1)};

fori = 1:n—-1
Bbtmp(2:m,i+1) = Bbtmp(1:m-1,i);
Bbtmp(1,i+1) = Bbtmp(m,i);

end

ind = [0; 1] * ones(1,M);

ind = ind(:);

ind(m) = ¢

ind = ind * ones(1,n);

Bb = zeros(M,n);

Bb(:) = Bbtmp(ind);

% Calculate omega[n]. First formulate eigenvalue problem.

C =Ba* Aa — 27°(1-r) * eye(M);

% Calculate the moments of the scaling function.

for j = Lir
tmp(j) = sum(a .* (0:N-1)’.7j);
end

mur0(1) =1; % mu"00.
forj = lLir

mur0(j+1) = 0;

fori= 0:j—1

mur0(j+1) = mur0(j+1) + binomial(j,i) * tmp(j—i) * mur0(i+1);

end
mur0(j+1) = mur0(j+1) / (2 * (27 — 1));

end
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for k1 = 1:M

k=kl1-N+1;
mulk(kl) = 0;
fori = 0r

mulk(kl) = mulk(kl) + binomial(r,i) * k™ (r—i) * murO(i+1);
end

end

% Insert normalizing condition intc C and solve for omega[n].

C(M,:) = mulk(M:—1:1);
f = [zeros(M—1,1); factorial(r)];
omega = C \ f;

% Calculate alpha[n], beta[n] and gammaln).
alpha = 27(r—1) * Bb * Ab * omega;

beta = 2°(r—1) * Bb * Aa * omega;

gamma = 2"(r—1) * Ba * Ab * omega;

80

20

94



Chapter 5

Multiscale Solution of Ordinary

and Partial Differential Equations

In this chapter, we investigate the use of wavelets in engineering analysis. Specifi-
cally, we consider the use of wavelets as basis functions for the hierarchical solution
of ordinary differential equations (ODEs) and partial differential equations (PDEs).
There are at least two major reasons why wavelets provide an attractive framework
for the solution of differential equations. The first is the multiresolution capability
of wavelets. This property suggests that one could approach the problem by initially
computing the coarse scale wavelet coefficients of the solution, and then incrementally
refining the solution by computing the finer scale wavelet coefficients. The primary
advantage of such an approach is that it allows the user of the algorithm to trade off
solution accuracy for computational speed. To be efficient, a multiscale solver should
progress from one resolution to the next by performing a minimal amount of addi-
tional work i.e. the computation of a finer scale solution from a previously computed
coarser scale solution should make the best possible use of the information available
from the coarser scale solution. The computation of the solution may be terminated
as soon as an acceptable accuracy has been achieved.

A second reason why wavelets are attractive is that they are localized in the phys-
ical i.e. spatial or temporal domain. The localization property indicates that the

solution can be adaptively refined, since the wavelet basis functions which contribute
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to the solution at a particular spatial or temporal location have little or no contri-
bution to locations that are sufficiently far away (note the close agreement with St
Venant’s principle.) Thus, we would expect wavelets to perform well in modeling
high gradients such as stress concentrations and shocks. A direct consequence of the
localized nature of wavelets is that the truncation of a wavelet expansion does not
lead to severe ringing effects as is the case when a Fourier expansion is iruncated.
Figure 5-1(a) illustrates the ringing effects, commonly known as the Gibb’s phe-
nomenon, produced when a Fourier expansion of the periodized Dirac delta func-
tion (with period 2) is truncated after 33 terms. In contrast, Figure 5-1(b) shows a

Daubechies 8-coefficient wavelet expansion truncated after 32 terms.

15r W 15

-5|' E -5

L

10,

08 06 -04 02 O0 02 04 06 08 1 51 08 06 04 -02 0 02 04 06 08 1
(a) (b)

Figure 5-1: Comparison of ringing effects in (a) Truncated Fcurier expansion of the
Dirac delta function and (b) Comparable truncated Daubechies 8-coefficient wavelet
expansion.

We start the discussion by outlining the wavelet-Galerkin method for discre*izing
differential operators. This is followed by a discussion of single resoli:tion and mul-
tiresolution representations. The ideal scenario for a multiscale formulation would be
one in which we could solve for coarse scale wavelet coefficients entirely independentiy
of the finer scale wavelet coefficients. In general, however, we find that differential
operators introduce coupling between the scales. As a result, it is generally necessary
to update the previously computed coarser scale wavelet coefficients each time a new

scale is added. This implies that multiscale wavelet solvers are generally iterative in
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nature.

There are a few notable exceptions to the rule. In particular, we outline the
example of the polyharmonic operator, for which Dahl"2, Weinreich and Kunoth
{13, 15, 14] describe a biorthogonal construction leading to decoupled scales. A closer
investigation of this construction was undertaken, and through numerical experimen-
tation it was found that the resulting matrix differential operator is diagonalized by
the DWT. Thus, differential equations involving the polyharmonic operator may be
solved rapidly (in O(L) time for an L-point discretization) in a true multiscale fashion.
Detailed results of this approach are presented along with a proof of diagonalization.

Finally, we suggest strategies for implementing more general iterative multiscale
wavelet solvers along the lines of the traditional multigrid approach.

The focus of this chapter is primarily on wavelet representations for differential
operators. The issue of boundary conditions is an important one and it is the sub-
ject of in-depth discussion in Chapter 6. For clarity, therefore, the examples in the
present discussion are frequently simplified by the assumption of periodic boundary
conditions, with the understanding that other types of boundary conditions may be

imposed by using the techniques described in Chapter 6.

5.1 The Wavelet-Galerkin Method

The wavelet-Galerkin method is a Galerkin formulation in which the test functions
and trial functions are chosen to be wavelet basis functions. The solution to the
differential equation is therefore approximated by a truncated wavelet expansion,
with the advantage that the multiresolution and localization properties of wavelets
can now be exploited. The exact choice of wavelet basis is governed by several factors
which include the desired order of numerical accuracy, computational speed and otbar
constraints (such as scale decoupling) which may arise from the specific design of the
numerical algorithm. In general, it is desirable to use wavelets which exhibit the

following properties:
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(a) Compact support. Since compact support is associated with time localization,
compactly supported wavelets perform well at resolving high gradients. For a
similar reason, adaptive refinement schemes also benefit from the use of com-
pactly supported wavelets. Shorter wavelets are also preferable when speed is an
issue; typically the complexity of the numerical algorithm varies directly with
the support of the wavelet. Furthermore, compact support usually facilitates

the imposition of boundary conditions (see Chapter 6.)

(b) Ability to represent a polynomial. Often, the solution to a differential equation
is a smooth function. The ability of a wavelet expansion to represent a poly-
nomial with little or no truncation error is therefore a desirable feature. The
maximum order polynomial that can be exactly represented by a truncated
wavelet expansion is determined by the number of vanishing moments of the
wavelet (see Chapter 3.) The ability of a wavelet to represent a polynomial
can also be thought of as its ability to capture low order terms in a Taylor se-
ries. As a result, wavelets with a larger number of vanishing moments generally
lead to numerical algorithms with higher order global errors, and hence greater

numerical accuracy.

Since Daubechies’ orthogonal compactly supported wavelets exhibit both of the
above properties, they are particularly suited for the numerical solution of differential
equations. Orthogonality (or even biorthogonality) is not an essential property, but
it can often be used to simplify the algorithm. In an orthogonal formulation, the
trial functions and test functions usually belong to the same orthogonal set, whereas
in a biorthogonal formulation the trial functions and test functions belong to two
biorthogonal sets. (Strictly speaking, therefore, the biorthogonal wavelet formulation
is a Petrov-Galerkin approach.)

The wavelet-Galerkin method usually leads to integrals involving wavelets or scal-
ing functions and their derivatives. Following the terminology of Latto, Resnikoff and
Tenenbaum [30], we refer to these integrals as connection coefficients. The derivatives

of wavelets and scaling functions are often highly discontinuous functions, and this
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makes the accurate evaluation of connection coefficients a key part of the solution pro-
cedure. In many instances, however, the required integrals can be evaluated exactly
or computed to within roundoff error by solving an eigenvalue problem as described

in Chapter 4.

5.2 The Orthogonal Wavelet-Galerkin Method at
a Single Scale

In a single scale orthogonal formulation of the wavelet-Galerkin Method, an approxi-
mation to the true solution, u(z) € L?(R), is sought in the subspace V,, (see Chapter
3.) The computed solution, u,,(z), is constrained to be in V,, in a Galerkin sense.
Therefore, it will generally not be the same as the orthogonal projection, P,u(z), of
the true solution onto V,,. This will be of particular concern when the discussion is
extended to multiscale representations.

We outline the single scale orthogonal formulation with reference to Daubechies’
N-coefficient wavelets. As an example, consider the following one-dimensional peri-

odic problem:

u'(z) = f(z) =z€l0,1] (5.1)
with  u(0) = u(l) and /olu(z)dx=0. (5.2)

Since we seek a numerical solution in V,,, the numerical approximation has the

form
L-1 .
Um(z) = Y cmlk] $hi(z);  L=2", (5.3)
k=0
where ¢‘,’nl',,(z) represents the periodized scaling function:

P i(z) = i Pmi(z — 1) . (5.4)

r=-00
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The integers k and m are the usual translation and scaling parameters. By substitut-
ing um, (z) into equation (5.1) and performing the Galerkin weighting using ¢, ,(z) as

test functions, we obtain a system of equations which involves integrals of the form

Qfn] = / : ¢"(2)é(z — n)dz (5.5)

and

gmln] = /_ : f(z)$mn(z)dz . (5.6)

Here, Q[n] are the connection coefficients for the scaling function and its second
derivative, while g,,[n] are the expansion coefficients of P, f(z), the ocrthogonal pro-
jection of f(z) onto V,,. Both of these integrals can be efficiently evaluated using the
techniques described in Chapter 4. Note that Q[n] can have nonzero values only for
—N+2 < n < N -2, since the Daubechies scaling function, ¢(z), and its derivatives
are supported only on the interval 0 < z < N — 1.

Using the above notation for the integrals, the Galerkin equations may be written

L-1
22" cmlk] Pn— k] =gm[n]; n=0,1,2,---,L-1, (5.7)
k=0
where QP%[n| represents the sequence Q[n] periodically replicated with period L:

Q*Ln] = i Qn-rL)]. (5.8)

r=—00

We assume here that L is sufficiently large to avoid aliasing i.e. L > 2N — 3. If we

now define

Q[n] 0<n<N-2
whn]={ Qn-L] L-N+2<n<L-1 (5.9)

0 otherwise ,
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we see that equation (5.7) is in fact an L-point circular convolution:

Hence, this problem can be solved efficiently by using the Discrete Fourier Transform
(DFT). Let Cpu[k], W&[k] and G,,[k] be the L-point DFTs of c,,[n], wh[n] and g,,[n]

respectively. Then the solution to equation (5.10) is obtained by computing

0 k=0
c,,,[k]={ , (5.11)
2-2m G k] | WE[K] k=1,2,3,---,L—1.

The value of C,[0] is known to be zero since u,,(z) (and hence ¢,[n]) must have zero
mean. In this particular example involving the one-dimensional Laplace operator, it
is not possible to compute Cp,[0] from G,[0] and WE[0], since W[0] evaluates to
zero. Once Cy,[k] has been computed we use the inverse DFT to obtain ¢, [n], which
may then be substituted into equation (5.3) to obtain the numerical solution, u,,(z).

In this example, the circulant property of the discrete differential operator is a
direct. result of the assumption of periodic boundaiy conditions. Therefore, it will not
always be possible to simplify the computations through the use of the DFT. A point
to note, however, is that the discrete operator will usually be sparse. This follows
from the fact that the sequence Q[n] is zero outside the interval ~-N 42 <n < N-2.
Thus, differential equations with nonperiodic boundary conditions can be efficiently

solved using sparse iterative schemes e.g. a sparse conjugate gradient solver.

5.3 The Orthogonal Wavelet-Galerkin Method at
Multiple Scales

In the previous section, we solved the differential equation at a single scale by looking

for a solution in V,,. From Chapter 3, however, we know that

Vm - Vm_l@wm_l (512)
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Hence, an alternative solution strategy is to seek a numerical solution with com-
ponents in V,,_; and W,,_,. The two components can subsequently be combined
to obtain a numerical solution in V,,. This two-scale strategy can be extended to

multiple scales based on the recursive nature of equation (5.12):

V,,,=V,,,0@Wmo®wmo+l@---®wm_l ; me<m. (5.13)

We illustrate the multiscale orthogonal formulation by deriving the two-scale equa-
tions for the problem considered in Section 5.2. In section 5.4, we will show that these
two-scale equations (and hence the multiscale equations) are equivalent to the single
scale equations.

Since we seek a numerical solution with components in V,,_; and W,,_,, the

numerical approximation has the form

M-1

Um-1(z) = ;cm-l[k] Fr-14(T) (5.14)
=0
M-1

Um-1(z) = Y dmoa[k] i 4(2) (5.15)
k=0

where M = 2™-! and ¢’,’,}_l’k(z) and zl/’,:,l_l’k(a:) represent the periodized scaling func-

tion and wavelet:

‘iﬁ—l,k(x) = _i‘, Sm-ax(z —71), (5.16)
ml-l,k(x) = i: Ym-1 k(T —71) . (5.17)

If we now substitute equations (5.14) and (5.15) into the differential equation (5.1),
and use @1 n(z) and Ym,m_1 ,(z) as test functions, (n =0,1,2,---, M — 1,) we arrive
at the following wavelet-Galerkin equations:

M-1 M-1

g Cm-1[k] QPM[n — k] + kz_;) dm-1[k] M0 — k) = 27%" Vg, i[n], (5.18)
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A:V‘__,l cm-1]k] B”PM[n — k] + A{i dn_i1[k] a”Mn - k] = 27X Dg ([n]. (5.19)
k=0 k=0

Here, the notation t?M[n] denotes the periodic replication of the sequence z{n] with

period M (M > 2N — 3 to avoid aliasing):

*M[n] = i z[n —rTM]. (5.20)

The required integrals are
Qn] = [_: ¢"(z) ¢(z — n) dz , aln| = /_O:o Y"(z) Y(z —n) dr, (5.21)
Bln] = f_ : ¢"(z) ¥(z — n) dz , ¥[n] = /_ o:o V'(z) ¢(z — n) dz , (5.22)

gm-1[n] = [_o:o f(@)pm-1,n(z)dz | Sm-1{n] = [: f(@)Ym-1n(z)dr . (5.23)

All of these integrals may be computed using techniques described in Chapter 4. Note
from integration by parts that S[n| = y[—n]. If we now define

z[n] 0<n<N-2
w)[n] = gin—-M] M-N+2<n<M-1 (5.24)
0 otherwise ,

where z may be Q, a, § or v, then we may express equations (5.18) and (5.19) as

cm-—l[n] @ wg[[n] + d —I[n] @ w'lyw[n] = 2—2(m_l)gm—l[n] ) (5'25)
cm-1[n) @) w¥n] + dmoi[n] 0D wM[n) = 272" Vs, (0], (5.26)

forn=0,1,2,---, M —1. Again, by virtue of the assumed periodicity of the problem,
we can use the DFT to simplify the computations.
Once the solution components u,,_,(z) and v,,-;(z) have been determined, the

total solution may be determined as

Umn(Z) = Um—1(T) + V() - (5.27)
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Alternatively, che inverse DWT may be used to compute c,,[n] from the sequences
¢m-1[n] and dp_y[n], and u,(z) may then be computed from ¢, [n].

Note the presence of the coupling terms, wg[n] and w,[n], in equations (5.25)
and (5.26) which prevent us from computing ¢n_1[n| and 4,,_i[n] independently.
Although these coupling terms are generally nonzero, there are certain instances in
which decounling is possible. Later, we will detail an example for which decoupling

can be achieved using a biorthogonal wavelet construction.

5.4 [Equivalence Between the Single Scale and Mul-
tiscale Formulations

The single scale formulation of Section (5.2) can be shown to be equivalent to the
multiscale formulation developed in Section (5.3). In order to show this equivalence,
we need to be able to express QPM[n], aPM[n], fPM[n] and y*M[n] in terms of QPL[n].
Consider 3PM[n] for example. Substituting equations (3.1) and (3.9) into the defini-

tion of B[n] and making a change of variables leads to

N-1N-1
Bnl=2>" 3 afi] bl Q2n+1—1]. (5.28)
=0 [=0
Hence, we have
BPMn — k] = i Bln — k — rM]

00 N-1N-1

= Y 2}: > ali] bl) Q2n — 2k +1 — i — 2rM]

2k+N—-12n+N-1

=2 ) > ap-2kblg-2n]Pg-p],  (5.29)
=2k q=2n
since L = 2M. By a similar argument,
2k+N—12n+N-1

PMin—k] = 2 Y Y alp-—2k]afg—2n) Pg-p], (5.30)

p=2k g=2n
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2k+N—12n+N—1
a“M[n -k = 2 Z Z blp — 2k] blg — 2n] QP%[q - p] , (5.31)
p=2k q=2n
2%k+N—12n+N-1

PM-kK = 2 S 3 bp-2klalg—20] Pg—-pl.  (532)
p=2k q=2n
Note that equations (5.29), (5.30), (5.31) and (5.32) represent a two-dimensional
circular DWT on the L-circulant matrix whose (g, p)th element is 4 QPX[q — p].
If we now substitute for 2*M[n — k] and v*M[n — k] in equation (5.18) and then

change the order of summation, we obtain

2y S ¥ cnaklap-24 +

g=2n p=0 \k=[(p—N+1)/2]

te/2)

> dm_i1[k] blp — 2k] | alg — 2n] QPL[g—p] = 272%™ Vg i[n] . (5.33)
k=[(p-N+1)/2]

2n+N—-1L-1 ( lp/2}

Here, the limits of the index p correspond to one period of QP%[n], while the limits of
k are determined by the fact that a[n] and b[n] are zero outside the interval [0, N — 1].
From the inverse orthogonal DWT, equation (3.46), we observe that the parenthesized

portion of the above expression reduces to v/2 c,,[p]. Hence we have

] 2mEN-1 L-1

7 S alg—2n] (Z emlp] QPE[q — p]) =2"mg _1ln]; n=0,1,2,---,L/2-1.
q=2n p=0

(5.34)

Similarly, by substituting for & [n — k] and 3?M[n — k] in equation (5.19), we arrive

at

1 2n+N-1 L-1 L )

7 S blg-2n] | Y emlp) g —p] | =27 spm[n); n=0,1,2,---,L/2-1.
q=2n p=0

(5.35)

By comparing equations (5.34) and (5.25) with the orthogonal DWT, equations
(3.44) and (3.45), we see that

L-1
2" Y cmlp) O*lg—pl =gmladl; ¢=0,1,2,---,L—1. (5.36)
p=0
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Hence, the two-scale formulation represented by equations (5.18) and (5.19) is identi-
cal to the single scale formulation represented by equation (5.7). The above argument
can be extended to show the equivalence between a more general multiscale formula-

tion and the single scale formulation.

5.5 Matrix Forms

5.5.1 Equivalence Between the Single Scale and Multiscale

Matrix Forms

A particularly simple way to recognize the equivalence between the single scale for-
mulation and the multiscale formulation is to express the wavelet-Galerkin equations

in matrix form. For the single scale formulation, we may represent equation (5.10) as
2™ QU Cm = Gm (5.37)

where €2,,, denotes the L-circulant matrix whose first column is the vector w§[n] for
n=012,---,L—-1.

We denote a single iteration of the orthogonal circular DWT by the matrix

H
G

where H and G represent the highpass and lowpass filtering/downsampling operations
respectively. Multiplying both sides of equation (5.37) by W and making use of the

orthogonality condition, WTW = I, we have
MW QaWT) (Wep) = Won - (5.39)

The term WQ,,WT represents the two-dimensional DWT of Q,,, which is known
from equations (5.29), (5.30), (5.31) and (5.32). Similarly, the terms Wc¢,, and Wg,,

represent the one-dimensional DWTs of the vectors ¢,, and g,, respectively. Hence
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equation (5.39) becomes

Qm— m— - m-—
92(m=1) 1 Ym-1 Cm-1 - gm-1 , (5.40)
,Bm—l Qmpm—1 dm—l Sm-1
where
Qn1 =2 HQOuHT |,  vuo1 =2 HQ,GT | (5.41)
Bn-1=2GUHT ,  am_1=2G0GT, (5.42)

Note also that Q,,_1, am-1, Bm-1 and <,-, are the M-circulant matrices whose
first columns are respectively given by the vectors wi[n], w¥[n], w}![n] and w![n],
n=0,1,2,---, M — 1. Equation (5.40) can thus be seen to be the matrix form of the
two-scale equations (5.25) and (5.26).

The application of another iteration of the DWT to equation (5.40) will produce

a system of the form

22m=2Q) o 2HM-2,y o | 2Um-1ave Cm—2 9m—2
22(m—2)ﬁm—2 22(m—2)am_2 22("‘_1)7‘1‘{1 dm—2 = Sm—2 . (543)
22(m—l)ﬁ:rzzfl 22(m-l)ﬂ:ineil 22(m—l)am_l dm_1 Sm—1

The key observation here °s to note that while the matrix 2,,_, undergoes a 2D
DWT, the matrices (,,—; and 7,,-; respectively undergo 1D DWTs on their rows
and columns, while the matrix a,,_; remains unchanged. The matrix in equation
(5.43) is typically referred to as the standard form of the wavelet-Galerkin matrix (see
Reference [5].) In designing algorithms for the solution of the multiscale equations,
we may often avoid explicitly forming the matrices 43¢, B¢, 2 and v%!,. Such
algorithms lead to non-standard forms of the wavelet-Galerkin matrix.

Figure 5-2 depicts the structure of the wavelet-Galerkin matrix for the operator
d?/dz? using (a) the single scale formulation, (b) the two scale formulation and (c)

a multiple scale formulation (standard form). Here we have used Daubechies’ 6-

coefficient wavelets. Note that (b) and (c) are related to (a) through a change of
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50 50

100 100

0 50 100 0 50 100 50 100
nz=1152 nz = 2304 nz = 4768

Figure 5-2: Comparison of wavelet-Galerkin matrices for the operator d?/dz? using
Daubechies’ 6-coefficient wavelets. (a) Single scale formulation (b) Two scale formu-
lation and (c) Multiple scale formulation.

basis which is accomplished by the application of the 2D DWT.

5.5.2 Difference Between the Computed Solution and the
Orthogonal Projection of the True Solution

The matrix form (5.40) can be used to explain why the numerical solution, u.,(z),
computed by the wavelet-Galerkin method is generally not the same as the orthogonal
projection, P,u(z), of the true solution onto the subspace V,,. For example, if we

were to formulate the single scale equations at scale m — 1, we would have
2Um=1) Q) Emotl = Gmor (5.44)

and the solution would be represented by ¢,,_;. A corresponding scale m—1 multiscale
formulation would yield an equivalent result which is the DWT of ¢,,_;. If we now
compare equation (5.44) with the scale m two-scale formulation, equation (5.40), we
see that

Cm-1 = Cm—_1 + ACrn—l ’ (545)

where

Q-1 ACm-1 = =Ym-1 dm-1 - (5.46)
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This means that the introduction of another level of detail, d,,,_;, to the scale m — 1
formulation must be accompanied by an update, Ac,,_;, to the scale m — 1 solution,
Cm-1. Since the updated coefficients, c¢,,_;, correspond to a finer scale formulation
than the coefficients ¢,,_; do, we expect that ¢,,_, will be a better approximation to
the expansion coefficients of P, u(z). The introduction of even more levels of detail
to the scale m — 1 formulation will result in further updates to é,_;, so that in the
limit, the updated coefficients will be equal to the expansion coefficients of Py, u(z).

Note that the reason for the difference between c,,_; and ¢,,_; is the presence of
the term v,,_; and the related term (,_, in equation (5.40), which couple c,,_; to
the detail d,;,—,. In formulating the scale m — 1 equations, we neglected both of these
coupling terms. This argument can be extended to explain the difference between

Um-1(z) and P, _ u(zx).

5.6 General Solution Strategies

In general, the solution of the system of equations arising out of a single scale dis-
cretization of a differential equation will be a relatively straightforward task. For
example, the single scale discretization of equation (5.1) resulted in the linear sys-
tem, equation (5.37), in which the matrix Q,, has a sparse structure. In fact, this
system bears a close resemblance to the linear system arising out of a finite difference
discretization of the problem, if we think of ,, as being a difference operator on the
scaling function coefficients, ¢,,. The solution of equation (5.37) is an O{L log L) pro-
cedure when the FFT is used. On the other hand, if the system is solved using Krylov
subspace iteration, e.g. conjugate gradient or conjugate residual, then the solution of
equation (5.37) is typically an O(L?) procedure, since the cost of applying €,, to an
arbitrary vector is O(L), as is the numnber of iterations. (Note that ,, is symmetric
for the particular example considered in Section 5.2, but since its rows sum to zero,
it is only positive semidefinite. The nullspace of €2,,, has dimension 1, and it consists
of constant vectors. Therefore, Krylov subspace iteration typically returns a result

which is within a constant of the zero mean solution, ¢,,. To get ¢,, from this result
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simply involves subtracting out the mean value.)

Multiscale discretizations tend to be more involved than single scale discretiza-
tions. However, the multiscale approach ofters additional flexibility by facilitating
hierarchical and adaptive solution strategies. The discussion of Section 5.5 suggests

several general solution strategies ror solving multiscale equations.

1. Non-hierarchical approaches. In a non-hierarchical approach, the goai ;s to
compute the numerical solution, u,,(z), for a single value of m, where m might
be chosen to satisfy an a priori accuracy estimate. In computing the compo-
nents, Cmo, @mo; dmo+1, * * *» dm—1, of the solution vector, no particular preference
is given to computing the low frequency compounents first, since all components
are needed in order to determine un,(z). A non-hierarchical approach can be
implemented using either a single scale formulation or a muitiscale formulation,
so consideration needs to be given to whether the formation of the multiscale
equations is justified. If we have a priori knowledge of the behavior of the so-
lution, as for example in the case of stress concentrations around a hole in a
stressed elastic plate, then the formation of the multiscale equations will allow
us to eliminate some of the degrees of freedom which do not lie within the region

of high gradient.

Beylkin, Coifman and Rokhlin [5] have devefoped fast algorithms for the ap-
plication of the multiscale wavelet-Galerkin differential operator (and other op-
erators) to arbitrary vectors. This can significantly improve the performance
of iterative solution schemes, where the key component is typically a matrix-
vector multiplication. The algorithms focus on compressing the operator matrix
by thresholding, and they produce a resuit which is accurate to within a pre-
scribed tolerance. When the standard form of the wavelet-Galerkin matrix (see
Section 5.5.1) is used, the cost of the performing the matrix-vector product is
typically O(Llog L) operations. A second scheme uses a non-standard repre-

sentation to pertform the matrix-vector product in O(L) operations.

Although finite difference and wavelet-Galerkin matrices are usually sparse,
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they typically have a dense inverse. However, the inverse of the 2D DWT of
the matrix, (which is equivalent to the 2D DWT of the inverse in the case of
orthogonal wavelets,) typically has a sparse representation if all elements below
a predetermined threshold are discarded. This idea has been used by Beylkin
[8], who describes an O(L) algorithm for computing a sparse approximation to
the inverse of a three point finite difference matrix. The key to the success of
this algorithm is the fact that diagonal preconditioning can be applied to the 2D
DWT of a finite difference or wavelet-Galerkin matrix in order to improve the
condition number from O(L?) to O(1). This confines the number of iterations
to O(1), so that the overall cost of the algorithm is determined by the cost of

performing the sparse matrix-vector multiplication.

. Hierarchical approaches. In a hierarchical approach, the trade-off between com-
putational speed and solution accuracy is controlled by initially computing
a coarse resolution solution, u,,0(z), and then progressively refining the so-
lution by adding in further levels of detail, vy,o(Z), Umot1(), -+, Um-1(x), to
obtain a final result, u,,(z). The computation is terminated when the error,
|lu(z) — um(z)||, falls below a predetermined threshold. In practice, the true
solution, u(z), will be unknown and so it will be necessary to use an alterna-
tive termination criterion. A more practical error criterion, therefore, would be
to specify a tolerance on the detail solution, v,,_;(z), or its wavelet expansion

coefficients, dp_,[k].

(a) Direct methods. As explained in Section 5.5.2, the computation of a scale m
solution, u,,(z), from a previously computed scale m — 1 solution, a,,_;(z),
generally requires the computation of a correcting term, Au,_;(z), in

addition to the detail solution, v,_;(z), i.e.
U (L) = A1 (T) + Aup-1(z) + vy () . (5.47)

The correcting term appears due to the coupling terms 3,,_, and 7,,_; in

equation (5.40). Computing the correcting term can be a burden, however,
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(b)

especially when direct methods are employed to solve the linear system,
equation (5.40). A solution strategy which facilitates direct met! ods of
solution is to eliminate the coupling terms altogether. Referring to Section

5.3, we see that the coupling terms vanish if the integrals

0o

= [ #@ve-mds and = [ ¥'() dla—n) d

are zero. This constraint may be viewed as a statement of orthogonalit:
with respect to the operator d?/dz?. Unfortunately, orthogonal wavelets

also require the integral

| #(@) vz - n) da

to be zero, so that operator orthogonality would impose a conflicting con-
straint. This conflict can be resolved by resorting to a biorthogonal for-
mulation. Section 5.7 discusses a construction which eliminates coupling
by diagonalizing the wavelet-Galerkin matrix. As a result of this construc-
tion, we are able to develop an O(L) hierarchical direct method for solving

a system of L wavelet-Galerkin equations (see Section 5.8.)

Note that when the coupling terms are zero, we have u,,(r) = Pju(zx).
This means that the scale m formulation produces a solution which is the

orthogonal projection of the true solution onto V.

An important advantage of scale decoupled methods is that they can be
easily implemented on a parallel computer. The absence of the coupling

terms means that interprocessor communication can be kept to a minimum.

Iterative methods. The ideal scenario of a scale-decoupled system tends
to be limited to one-dimensional problems involving even derivatives. In
situations where coupling cannot be eliminated, iterative methods of so-
lution are usually preferable. This suggests a solution strategy along the

lines of traditional multigrid iterative schemes (see Hackbusch [27].) Tu this
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context, the DWT may be thought of as a restriction operator, while the
inverse DWT plays the role of an interpolation operator. The algorithms
of Beylkin, Coifman and Rokhlin [5] and Beylkin [8], which were discussed
above, are also applicable here. In particular, we use the diagonal precon-
ditioning idea in Section 5.9 to develop a hierarchical iterative method for

a model problem.

5.7 Biorthogonal Wavelets Adapted to Differen-
tial Operators

In this section, we discuss an adapted biorthogonal wavelet construction which achieves
scale decoupling in the multiscale wavelet-Galerkin formulation. The construction is
due to Dahlke and Weinreich [15], and its goal is to zero out the off-diagonal blocks
in a multiscale wavelet-Galerkin matrix, e.g. the blocks §,,_; and 7,,—; in equation
(5.40). This facilitates the development of fast hierarchical solution strategies by al-
lowing us to solve separately for the different wavelet scales (frequency bands) that
occur in the solution (see Section 5.6.)
We analyze the Dahlke-Weinreich construction for the polyharmonic equation,
&2

Ir_ﬂu(z) =f(z); le€eZ 1>0, (5.48)

and we show that the construction surpasses its original goal of producing a block
diagonal matrix, by producing instead a matrix with a substantially diagonal struc-
ture. Tkhis leads to a trivially invertible matrix and an O(L) algorithm for solving
an L-point discretization of the differential equation. In comparison to orthogonal
wavelets, we find that the biorthogonal formulation has superior performance in terms

of speed, adaptivity as well as convergence.
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5.7.1 The Dahlke-Weinreich Construction

The objective of the Dahlke-Weinreich construction is to construct biorthogonal

wavelets which exhibit the operator orthogonality property

(8%0(),0(. = k)) = (¥*)(), ¢(. — k)) =0 . (5.49)

Note that the operator orthogonality is with respect to the translates of the pri-
mary scaling function and the primary wavelet. Hence, there is no conflict with the
biorthogonality conditions, equation (3.31).

The Dahlke-Weinreich construction to achieve condition (5.49) is summarized as

follows:

Construction 5.7.1 Let h[n};n = 0,1,---,N — 1 be the FIR filier associated with

Daubechies’ N-coefficient orthonormal compactly supported wavelet and let
. N—l .
H (e"") = Y h[n]e7 " {5.50)
n=0

be the corresponding transfer function. Then the transfer functions of the primary

and dual biorthogonal scaling functions which satisfy (5.49) are given by

1) = () )
" 2e7Iv

A(e) = (He_jw)lﬂ(ei“). (5.51)

We refer to [15] for a proof of this construction.

Several numerical experiments were carried out, and it was found that the Dahlke-
Weinreich construction may be successfully applied to orthogonal wavelets other than
the Daubechies wavelets e.g. Battle Lemarié wavelets. The resulting biorthogonal
wavelets exhibit similar operator orthogonality properties (see Section 5.7.2) to the

biorthogonal wavelets derived from Daubechies’ wavelets.
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5.7.2 Properties of the Dahlke-Weinreich Wavelets

Recall that the aim of the construction was to achieve

(¢(),%(.— k) =0.
In this section we highlight another important property of the Dahlke-Weinreich

wavelets which arises naturally from their construction. It is this property which

allows us to solve an L-point discretization of equation (5.48) in O(L) time.

Theorem 5.7.1 Let 1(t) be the primary biorthngonal wavelet derived using the Dahlke-

Weinreich construction. Then 1(t) is orthogonal to its (21)th derivative, i.e.

(W), p(. - k)) = (-1) 2% o[K] ,
where §[k] is the Kionecker delta.

This result was initially observed in numerical experiments. A formal proof is given
below.

Proof:

@D, -8) = [ 9@t -k

= o [ PG e (j0)0

2w J-o
— (_l)l%/:oejmﬂzl
= (15 [T om0 |B (%) @ (0/2) d

— (__1)18%/02”61-91; i IB (ej(Q/2+1rn))

1~ 12/2 . 2
SB (¢ /)<1>(JQ/2)’ 4o

? (Q + 2mn)*

19 (G (/2 + en) a2
= g [T B 3 @+ my?

n=-—oc
2

|© (5 (2/2 + 2mn))* + | B (£7@/2+7))

i (Q+ 21 +4mn)? |® (G (/2 + 7 + 21rn))|2] dQ

= (0, [ e 1B (e cune

1B (@) GG + 27r))] 49
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where, from [15],

)= 3 (@+4n) 18 (G (@2 + 2mm)P = 2% [1 - [

n=-00

(5.52)

Now

B(¢*?)[* G(j0) + |B (12 G(j(a + 2m))
= |e-i@/24m)(N-1) fs (ej(ﬂ/2+n))|"’ G(jQ) +
2D Z+ (%2)* G (j(Q + 2)

= A (@) 6(i0) + |4 (#72)[ G(i(Q +2m))

. 2
T e

-i/2 \! .
(%fﬁ) H (%)
= o8 [ (@) o 1 ()]

= i+2 from equation (3.25) .

F(i)

o |1+ e

Thus we have

@O -R) = (Vi [ @ FGR)D
= (-1) 241%/02"61'9de
= (-1)' 2¥ (K] .

The implication of Theorem 5.7.1 is that the multiscale wavelet-Galerkin matrix
(obtained by applying the dual biorthogonal DWT to the single scale wavelet-Galerkin
matrix) is diagonal, with the exception of the low frequency block. The low frequency
block consists of terms of the form <¢(2’)(.), (. — k)> and it has been shown in [15]

that
i

(6200),8(.— k) = 3 (3) (176l — 3] (5.53)

=1
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Note that thess are exactly the coefficients of the finite difference matrix for the
operator d* /dz?. In particuiar, when [ = 1, we obtain the familiar centered difference

scheme for the second derivative operator:

(0"(.), o(. — k)) = o[k + 1) — 26[k) + o[k — 1] . (5.54)

5.7.3 Computation of the Adapted Biorthogonal Filters

Recall from Section 3.1.3 that Daubechies’ wavelets have a zero of order N/2 at w = ,

since the Discrete-Time Fourier Transform (DTFT) has the form

p—iw N/2 )
H(efw)=(li2 ) R(e) . (5.55)

Combining equation (5.55) with equations (5.51), we see that the DTFTs of the

adapted biorthogonal wavelets have the form

—-jw /
A(ej”) _ (1+2e j )NZHR(eiw) |

_iw\ N/2-1
i) = () R (550

This means that the primary and dual filters have zeros of order N/2+ 1! and N/2 -1
respectively, at w = 7.

To con:pute the adapted biorthogonal filters, a[k] and a[k], we simply modify the
cepstrum-based program for computing Daubechies’ filter coefficients (see Chapter
3,) so as to reflect the differences in the zeros and the presence of the linear phase
term, e ¥,

Table 5.1 gives the filter coefficients for the adapted biorthogonal wavelets ob-
tained when | = 1 and N = 12. The corresponding scaling functions and wavelets

are illustrated in Figure 5-3.
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alk]

alk]

O 00 O U = Wi~ Ol

0.15774243200288
0.69950381407516
1.06226375988165
0.44583132293005
10.31998659889202
-0.18351806406025
0.13788809297474
0.03892320970833
-0.04466374833018

| 0.00078325115°30

0.00675606236293
-0.00152353380560

0.07887121600144
0.42862312303902
0.88088378697841
0.75404754140585
0.06292236201902
-0.25175233147613
-0.02281498554276
0.08840565134153
-0.00287026931092
-0.02194024858894
0.00376965675761
0.00261626427866
-0.00076176690280
0.00000000000000

0.00000000000G00
0.31548486400577
1.08352276414456
1.04100475561874
-0.14934210975863
-0.49063108802541
0.12359495990491
0.15218122604456
-0.07433480662789
-0.01499269003246
0.01655919233706
-0.00304706761120
0.00000000000000
0.00000000000000

Table 5.1: Filter coefficients for the biorthogonal wavelets adapted to d?/dz?, which
are derived from the Daubechies 12-coefficient wavelet.

(@)

(b}

o\~

[ 5 10 0 5 10
(c) (d)
2 2 -
1 1
o— 0
-1 -1
2 -2
0 5 10 0 5 10

Figure 5-3: Scaling functions and wavelets adapted to d?/dz? and derived from the
Daubechies 12-coefficient wavelet. (a) Primary scaling function (b) Dual scaling func-
tion (c) Primary wavelet (d) Dual wavelet.
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5.8 Direct Methods for Solving the Multiscale
Wavelet-Galerkin Equations

In this section, we describe how the adapted biorthogonal wavelets of Section 5.7
may be used to solve an L-point discretization of equation (5.48) in O(L) time. We
consider periodic boundary conditions on [0,1] with the zero mean condition, and

again note that other types of boundary conditions are discussed in Chapter 6.

5.8.1 The Wavelet-Galerkin Equations

The single scale formulation uses the biorthogonai wavelet expansion
L-1 .
Un(2) = Y cmlk] $ip(a);  L=2", (5.57)
k=0

where ¢’,’nl,k(:c) represents the primary scaling function periodized with period 1. Using

®mn(z) as test functions, we obtain

22m Lz—:lcm[k] QPL[n — k] = gm[n] ; n=0,1,2,---,L—1 (5.58)
k=0
with
@l = 3 Qln-rL], nlrl = [ (@) n(z)ds

4
Q] = (620, 6(.—m)) = 3 (&) (~17H6lk — 4],

j=-1

from equation (5.53). Equation (5.58) has the matrix form
2Um Q) Cm = Gim - (5.59)

The key point in this biorthogonal formulation is that the coefficients c,,[k] and §,,[n]
represent function expansions in two different subspaces i.e. V,, and V,, respectively.

We denote a single iteration of the primary and dual biorthogonal circular DWTs
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by W and W respectively i.e.

1 }? -1 1 T A T

W= ol w =—==\/2[H G’T]=W,
(5.60)

7 — 1 -1 __ 1 i T | — wT

W= al w ——ﬁ[HTG]—W,

where H, H, G and G represent filtering/downsampling with the filters a[—k], a[—k],
b[—k] and b[—k] respectively (see Section 3.4.)
Multiplying both sides of equation (5.59) by W and making use of the biorthog-

onality condition, WTW = I, we have
22m(W Q. WT) Wen) = Wi (5.61)

The term WQ,, W7 r presents the 2D dual DWT of €2,,. Hence, equation (5.61)

Q- 0 Orn—
22l(m—l) [ 1 ] — [ ? 1 ] ’ (5,62)
Sm-1

0 (~1) 241
where Q,,_; = 2271HQ,,HT. The off-diagonal blocks, 8,_; = 2%4-'GQ,,HT and

becomes
Cm—1
dm -1

Ym—1 = 2241 HQ,,G7, are zero since they correspond to terms of the form

(6,9 —k)  and  (¥D(),( - k)

respectively. Similarly, the lower right block, am-, = 2%7'GQ,,GT, corresponds to
terms of the form <¢(2‘)(.), P(. — k)), which are simplified using Theorem 5.7.1.
Equation (5.62) tells us that the application of a single stage of the dual biorthog-
onal DWT to equation (5.59) produces a two scale system in which the matrix is
partially diagonalized. Applying further stages of the dual biorthogonal DWT leads

to a multiscale system with an almost perfectly dic gonal matrix:

1
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22%mo 0 | 0

0 (_1)1 22lmIL/4

0 (_1)1 22l(m-i-l)IL/2

J(LxL)
(5.63)
The height of the coarse scale block, §,,,, must be at least 2Mf092(¥e)1=1 yhere N,
is the length of the biorthogonal wavelet filters, alk] and a[k]. Also, to avoid aliasing,
the height of €2,,, must be at least 2l + 1 (see equation (5.53).) Apart from these
constraints, {1,,, may be made as small as possible, so that its size is independent of L.
Thus, the solution of the multiscale equations requires no more than O(L) operations.
We recall that the biorthogonal DWT and its inverse require O(L) operations, so that
the solution of equation (5.59) is also an O(L) procedure. Finally, we note that the
computation of scaling function coefficients and scaling function expansions can also
be performed in O(L) operations (see Section 4.1.)

The multiscale solution algorithm is summarized in Table 5.2.

Compute the dual scaling function coefficients, g,,, of f(z). O(L)
Compute the dual DWT of g,,. O(L)
Construct the multiscale wavelet-Galerkin matrix (5.63), and solve to get the | O(L)
primary DWT of c,,.

Apply the primary IDWT to obtain c,,. O(L)
Expand u,,(z) from its primary scaling function coefficients, c,,. O(L)
Total cost O(L)

Table 5.2: Multiscale solution algorithm.

Figure 5-4a shows the sparse structure of the multiscale adapted biorthogonal
wavelet-Galerkin matrix, for the operator d*/dz* on the periodic interval [0,1) with

m = 7. The biorthogonal wavelets were derived from Daubechies’ 10-coefficient
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Figure 5-4: Structure of the multiscale wavelet-Galerkin matrix for the operator
d*/dz* using (a) Adapted biorthogonal wavelets derived from the Daubechies 10-
coefficient wavelet and (b) Daubechies’ 10-coefficient crthogonal wavelets.

wavelets. By contrast, Figure 5-4b shows the structure of the multiscale wavelet-
Galerkin matrix that would have been obtained if we used Daubechies’ 10-coefficient

orthogonal wavelets instead.

5.8.2 Performance of the Multiscale Algorithm

In this section, we present results from the implementation of the multiscale solution

algorithm. We used three different algorithms to solve the problem

%u = —20m%sin(2mx)sin(4nz) + 16m°cos(2nz)cos(4nT) | (5.64)

where u(z) is periodic with period 1 and has zero mean.

1. Multiscale wavelet-Galerkin algorithm, using adapted biorthogonal wavelets de-
rived from the Daubechies 6-coefficient wavelet. Inversion of the coarse scale

block, €2,,, was performed using the FFT.

2. Single scale wavelet-Galerkin algorithm, using Daubechies’ 6-coefficient ortLog-
onal wavelets. Inversion of the wavelet-Galerkin matrix, 2,,, was performed

using the FFT.
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3. Single scale wavelet-Galerkin algorithm, equation (5.59), using adapted biorthog-
onal wavelets derived from the Daubechies 6-coefficient wavelet. Inversion of

the stiffness matrix, €2,,, was performed using the FFT.

The orthogonal multiscale formulation was not considered because it produces a
considerably more dense matrix (comparable to Figure 5-4b) than the other three
methods. Algorithm 2 involves numerical calculation of the connection coefficients,
(9"(.), #(. — k)) (see Section 4.3.) These connection coefficients were precalculated
and the cost of their computation is not reflected in the results which follow.

Figure 5-5 compares the operation count for the each of the three methods. As
expected, the graph for the O(L) multiscale algorithm is a straight line, whkereas the
other two curves follow the O(Llog,L) behaviour of the FFT. Figure 5-6 compares
the convergence of the three methods. Based oa these numerical results, the multi-
scale algorithm and its mathematically equivalent single scale biorthogonal wavelet
algorithm converge approximately as O(Az*"), whereas the truncation error for the
crthogonal wavelet algorithm is found to be O({Az*?2). Note that higher order wavelets
would have given higher rates of convergence while in contrast, a three point finite
difference scheme would converge only as O(Az?). Algorithms 2 and 3 suffer from
noise introduced by the FFT at large L as evidenced by the upturn in their curves.
This problem is clearly eliminated by the multiscale algorithm. Finally, Figure 5-
7 compares the accuracy-cost performance of the three methods. This conclusively
shows that the multiscale algorithm oflers a considerable improvement in efficiency
over the other two methods.

In addition to the performance advantage, the hierarchical nature of Algorithm
1 allows the computation to be terminated as soon as the solution has reached an
acceptable level of accuracy. Alternatively, a previously computed solution r y be
adaptively refined by adding in further detail components d,,, d;n41, dpyo, - - - as re-
quired. Finally, we note that Algorithm 1 is more suited to parallel implementations

than the other two algorithms.
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Figure 3-5: Operation count for multiscale algorithm using biorthogonal wavelets,
single scale algorithm using orthogonal wavelets and single scale algorithm using
biorthogonal wavelets.
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Figure 5-6: 'nfiuity-norm error for the three algorithms.
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Figure 5-7: Accuracy-cost performance of the three algorithms.

5.8.3 Limitations of Direct Methods

The adapted biorthogonal construction of Dahlke and Weinreich opens new possibil-
ities for the development or rapid and highly accurate solution procedures for certain
classes of ODEs and PDEs. Work on adaptation of wavelets to more general differen-
tial operators as well as to higher dimensions has been done by Dahlke and ‘Weinreich
(13] and Dahlke and Kunoth [14]. However, evidence suggests that adapted construc-

tions are not completely general in their applicability.

5.9 Iterative Methods for Solving the Multiscale
Wavelet-Galerkin Equations

As discussed in Sections 5.7 and 5.8, decoupling of the scales in the multiscale wavelet-
Galerkin equations is possible oaly for a restricted class of problems. For the more

general case where scale decoupling is not possible, iterative methods of solution often




perform better thau direct methods. Here, we discuss how the multiscale structure
may be exploited to develop fast hierarchical iterative algorithms. We illustrate these

ideas using the model problem

u'(z) +u(z) = f(z) z€(0,]] (5.65)
with u(0) = wu(1) (5.66)

and we observe that an L-point discretization of the differential equation can be solved
in O(L) operations, even in the absence of scale decoupling. The key to obtainii:g an

O(L) algorithm is the use of diagonal preconditioning (Beylkin [6, 8].)

5.9.1 Diagonal Preconditioning

Diagonal preconditioning has the effect of redistributing the eigeavalues corresponding
to a linear system of equations. A more even distribution of eigenvalues leads to a
smaller condition number, which in turn accelerates the convergence of many iterative
algorithms.
Consider an L-point single scale orthogonal wavelet-Galerkin discretization of
equation (5.65):
2%+ cn=9gm; L=2". (5.67)

The wavelet-Galerkin matrix, Kinge = 22mQ,. + I, has a condition number, x, whose
growth is experimentally determined to be O(L?). (Recall that the condition number
of the three-point finite difference matrix exhibits similar growth.)

Let W dencte the (m — my)-stage orthogonal DWT, where my represents the

coarsest scale. Then the corresponding multiscale equations are given by
(W@ + DWT| (Wem) = (Won) - (5.68)

Since W is an orthogonal matrix, it has condition number 1. Thus, the multiscale
wavelet-Galerkin matrix, Kmyuipte = W(22™Q,, +I)W7, has the same condition num-

ber, &, as the single scale matrix, K,inge.
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Figure 5-8: Variation of condition number with matrix size for preconditioned and
unpreconditioned Daubechies-6 wavelet-Galerkin matricces.

Now define the diagonal matrix, »J, whose nonzero elements are

1 O0<k<2m -1
D[k][k] = . . . (5.69)
172 2moti=l k< gmoti _ ] fori=1,2,---,m—mn .
Using D as a diagonal preconditioner in equation (5.68), we obtain the preconditioned

multiscale equatiorns
[DW (22 Qi + HWTD] (D™'Wem) = (DWgp) - (5.70)

The preconditioned multiscale matrix, K,,.. = DW (22™Q,,+I)W7 D, has a condition
number, Ky, whose growth is experimentally determined to be O(1). Figure 5-8
compares the O(L?) growth of k with the O(1) growth of k,.e.. These results were
obtained using Daubechies’ 6-coefficient wavelets, with coarsest scale mgy = 4.

Experiments were performed with a more general diagonal preconditioner of the
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Figure 5-9: Variation of condition number with preconditioning parameter, P, for the
Daubechies-6 multiscale wavelet-Galerkin matrix with mg =4 and m = 7.

form

1 O<k<2m —1
DIk][k] = . . . (5.71)
1/P? 2moti-l « | < gmott _ fori=1.2,---,m—-mg,
which was applied to the multiscale wavelet-Galerkin matrix, Kpnuuipte, corresponding
to Daubechies’ 6-coefficient wavelets, with m = 7 and my = 4. The resulting condition

numbers for P € [1, 3] are illustrated in Figure 5-9. Based on these results, we iind

that the choice P = 2 is very close to optimal. This is the choice used by Beylkin (8.

5.9.2 Hierarchical Solution Using Krylov Subspace Itera-
tion

We consider the solution of the preconditioned multiscale equations, (5.70), using the
conjugate gradient method. This method requires O(,/K,rec) iterations to converge

(see Elman {20].) Thus tke number of iterations required is O(1). The conjugate
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gradient method does not require the explicit formation of the matrix i. e, but in-
stead requires the computation of matrix-vector products of the form, K,,..y. Hence,
a considerable saving in cost can be obtained by forming the matrix-vector products

using the following sequence of operations:
Kprecy = D(W(Ksingle(vVT(Dy)))) . (572)

With this approach, each matrix-vector product requires approximately (6 N — 1)L
multiplications, where N is the wavelet filter length. Since the conjugate gradient
method requires one matrix-vector product per iteration, the total cost of solving the
preconditioned multiscale equations is only O(L). By contrast, direct assembly of
Kprec could require as many as (4N + 2)L? multiplications, in addition to the cost of
forming Kp,.cy. The result of solving the preconditioned multiscale equations is the
vector D~'We,,. The computation of the solution from this vector is a trivial task.

In a non-hierarchical solution scheme we compute the solution, ¢,,, to the discrete
form (5.67) for a single value of m. We use the null vector as an initial guess in the
conjugate gradient method, in the absence of better information. On the other hand,
with a hierarchical approach, the solution is computed for all resolutions up to scale
m, starting with the coarsest scale my. Each time we progress to a new scale, we
may use the information from the previous scale as the initial guess in the conjugaie
gradient method.

As a particular example, we considered the solution of equation (5.65) with
f(z) = [16384(2z — 1)? — 255]exp(—32(2z — 1)?) . (5.73)

This example was chosen because the solution, u(.r), has a broad frequency spectrum,
and so each scale contributes to the computed solution. For the non-hierarchical
methiod, we corputed the operations count for each m in the range [4,12]. For the
hierarchical approach, we chose my = 4 and m = 12 and computed the cumulative
operations count for each scale. The comparative performance of the two approaches

is shown in Figure 5-10. This indicates that the hierarchical algorithm can compute
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Figure 5-10: Cost comparison of hierarchical and non-hierarchical approaches using
conjugate-gradient iteration. The hierarchical method has the advantage that all
coarser resolution solutions are computed during the solution process.

all solutions from scale my to scale 7. in approximately the same time that the non-

hierarchical algorithm requires to compute the scale m solution alone.

5.10 Multidimensional Problems

Many of the ideas described up to now are easily extended to multiple dimensions.
The most straightforward way to construct multidimensional basis functions is to use
tensor product bases. In the two-dimensional case, for example, the tensor product

basis functions are the integer translates of

d(z,y) = ¢(z)o(y) , iz, y) = ¥(z)ély) , (5.74)
Ya(z,y) = d(z)¥(y) , Ys(z,y) = v(z)y(y) - (5.75)
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It is also possible to construct non-separable basis functions which are based on a

two-dimensional refinement equaticn of the form

o(z,y) = z alk]llo(2z — £,2y - 1) , (5.76)

Kl
where a[k][!] represents a non-separable two-dimensional filter. While this approach
provides greater flexibility, the design of non-separable wavelet filters is a non-trivial
process. In the present discussion, therefore, we limit ourselves to the tensor product

approach.

5.10.1 The Wave Equation in Two Dimensions

We illustrate the application of the wavelet-Galerkin method to time-dependent par-

tial differential equations by considering the two-dimensional wave equation

%u(x, y,t) = c“Au(z,y,t) (5.77)

with u(0,y,t) = u(l,y,t), (5.78)
u(z,0,t) = u(z,1,t) (5.79)

and u(z,y,0) = wup(z,y) . (5.80)

The scheme developed here uses the orthogonal Daubechies wavelet-Galerkin ap-
proach for the spatial discretization of the problem, and a finite difference approach
for the temporal discretization. In Chapter 7, we will describe how the temporal
dimension may also be discretized using wavelet methods.

The spatial numerical approximation to the solution has the form

L-1L-1
um(z,y,8) = 3 3 cmlkll] Sp(@)mily) s L=2", (5.81)

k=0 I=0

where the expansion coefficients, c,,[k][l], are continuous functions of time. Using the
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test functions ¢m p(z)Pm¢(y), we obtain the wavelet-Galerkin equations

d?

M%MMﬂW2§%MMWW’H+W”Z%MmWL 1 (582)
for p,¢ = 0,1,2,---,L — 1. Here, QPL[n] are the periodized connection coefficients

for the second derivative operator (see Section 5.2.) Letting C,, denote the matrix
whose (p, ¢)th element is ¢,y [p](g], we have the compact matrix representation
d? 2m 2 T
—_ m -
53Cm =2 (U Cm + Cm QF) (5.83)
Equation (5.83) represents a coupled linear system. In order to decouple this system,
we use the two-diinensional Discrete Fourier Transform (DFT). The 2D L x L-point

DFT and its inverse are defined by equations (5.84) and (5.83) respectively,

L-1L-1
v[r]ls] = Zo Y- cmlpilg] wPw (5.84)
‘;,_ 1L-1
cm[plla) = L2 go gﬁ v[r]ls] wPw*? (5.85)

where w = e72/L_ Applying the 2D L x L-point DFT to both sides of equation (5.82),

we obtair a decoupled system of the form

Lol = Ml olrllsl s s =0,1,2,-, L1, (5.86)
where .
Ar][s] = 2™ 2( PRk w4 ZQ”L[I] ) (5.87)
k= 0 =0

Assuming that L is sufficiently large to avoid aliasing i.e. L > 2N — 3, where N is
the length of the wavelet filter, and using the fact that Q[n] = Q[—n] for the second

derivative operator, we may rewrite A[7][s] as

Ar)[s] = 2°™¢? {2Q[0] +2 NZ—:Q Qlk] [cos(2mrk/L) + cos(‘27rsk/L)]} : (5.88)
k=1
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N | Ry

6 | 28.038
8 |22.331
10 | 20.772
12 | 20.186
14 | 19.939
16 | 19.831
18 | 19.782
20 | 19.759

Table 5.3: Values of the constant Ry for various filter lengths, N.

Hence we find that A[r][s] lies on the real axis within the closed interval [-2?™¢?Ry, 0],
where Ry is a positive constant which depends on the filter length, N. Table 5.3 shows
the computed values of Ry for various filter lengths.

In order to integrate equations (5.86), we rewrite them as a first order system of

ODEs, i.e.
0 1
aivy_ v (5.89)
at | 4 Aol

for each v = v[r|[s] and A = A[r][s]. The matrix of equation {5.89) has eigenvalues
p1, 2 = £VX. Based on our knowledge of A[r][s], these eigenvalues lie on the imag-
inary axis within the closed interval [-2™cv/Ryj, 2™cv/Ryj]. The time integration
scheme used to integrate (5.89) must thereiore have a stability region which includes
this portion of the imaginary axis.

As a particular example, we cousider the trapezoidal time integration rule, which
is marginally stable for eigenvalues on the imaginary axis. The initial conditicu.s were
chosen to be

uo(z, ) = e-so[(z-1/2)2+3(y—1/2)2] (5.90)

and the wave speed, ¢, was taken to be 0.025 units/sec. We used Daubechies’ 6-
coefficient wavelets, with a spatial discretizatiou at scale m = 6 and a time step

At = 0.5 sec. The time evolution of the initial waveform is illustrated in Figure 5-11.
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Figure 5-11: Time evolution of a two-dimensional wave using the wavelet-Galerkin

method.
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Chapter 6

The Wavelet Extrapolation
Approach for Boundary Value

Problems

The treatment of boundaries poses a special problem for many numerical methods,
including the wavelet-Galerkin approach. Wavelet constructions, such as those de-
scribed in Chapter 3, generally result in wavelet bases for the entire real line. By
contrast, boundary value problems require bases for a finite interval. A number of
approaches for dealing with the boundary problem have been suggested by researchers.
These include capacitance matrix (or imbedding) methods [53; 44, 43, 10, 11}, penalty
methods [24, 22] and the use of wavelets adapted to an interval on the real line (3, 12].
While all of these methods have been successfully used to solve boundary value prob-
lems, each method has its own drawbacks. For example, capacitance matrix methods
rely on tii2 translation invariance of the Green’s function for computational efficiency.
Penalty formulations have the drawback that the condition number is adversely af-
fected by the penalty factor, unless suitable precautions are taken [24]. Poor condition
nu.nbers also occur in some variants of the capacitance matrix method, as well as in
the original boundary wavelet construction of Meyer. More recent boundary wavelet
constructions [3, 12] avoid this problem. The main inconvenience associated with

such constructions is the need to maintain a separate table for the boundary wavelets
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in a practical implementation.

In this chapter we develop a general, easy to implement, methocd of imposing
boundary conditions which is based on polynomial extrapolation. We refer to this
approach as the wavelet extrapolation method. The wavelet extrapolation method
is motivated by the work of Pereyra, Proskurowski and Widlund [41], who describe
how the method of Kreiss may be used to impose Dirichlet boundary conditions in
a finite difference discretization of the Poisson equation on a general region. Kreiss’
method uses the Lagrange interpolation formula to perform polynomial extrapolation
at the boundaries, and it leads to stable, high order finite difference schemes. We
recall from Chapter 3 that many wavelets, including Daubechies’ orthogonal com-
pactly supported wavelets, saticfy a polynomial approximation condition (Condition
A.) This means that wavelets provide a natural framework within which to perform
polynomial extrapolation at the boundaries. Using the wavelet extrapolation method,
we are able to develop a family of wavelet-based schemes for the solution of boundary
value problems, with the advantages of high accuracy (determined by the number of
vanishing moments,) the ability to deal with arbitrary boundaries (boundary points

need not coincide with mesh points) and the existence of a multiresolution analysis.

6.1 Wavelet Extrapolation for the Possion Equa-
tion in One Dimension

In order to illustrate the wavelet extrapolation method, we consider the Poisson equa-
tion in one dimension. The extension of the method to multiple dimensions is very
straightforward, since the one dimensional case corresponds to a single niesh line in a
multidimensional problem. We describe the construction for both Dirichlet and Neu-
mann boundary conditions, and we show how boundary conditions can be imposed
at points other than mesh points without loss of accuracy. In a multidimensional
setting, this means that the inethod is well suited to boundaries of arbitrary shape.
For convenience, the discussion focuses on Daubechies’ orthogonal wavelzts, which

have N coefficients and p = N/2 vanishing moments. The resulting numerical schemes
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are found to be exact if the solution is a polynomial of order p — 1. More generally,
numerical evidence confirms that the error decays as O(hP) for pure Dirichlet bound-
ary conditions and as O(hP~!) for Neumann boundary conditions, where h is the
effective mesh size. We describe the wavelet extrapolation approach in terms of the
single scale wavelet-Galerkin formulation. As discussed in Chapter 5, the equivalent
multiscale formulation is obtained by applying the Discrete Wavelet Transform to the
single scale formulation. Details of the treatment of boundaries under the application
of the DWT are discussed in Chapter 8.

Consider the elliptic boundary value problem
uzz(z) = f(x) in Q = [Z, T)] (6.1)

with Dirichlet data or Neumann data specified at the boundary points I, and Z;.

The scale m numerical approximation to the solution is
ky—1
Um(z) = Z (k] mi(z) - (62)

k=ko—N+2

Here, kg = |2™%o] and k; = [2™Z,]. Using a transformation of the form

U(y) = u(z) ; y=2"c, (6.3)
we obtain -
Uly) =27 3 calkl oy —k) . (6.4)
k=ko—N+2

We then define three categories of scaling functions with respect to the interval
[.l‘o,.’III] = [Q_mko,Q-mkl] OD0. (65)

1. Regular scaling functions: {k = ko,ky+1,---,k; — N + 1}. These are scaling
functions which lie entirely within the interval [z, z,]. For regular scaliug func-
tions, the wavelet-Galerkin discretization of equation (6.1) can be written down

directly, without any adjustment for the boundaries.
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2. Irregular scaling functions: {k=ky— N +2,ky— N+3,---, ko — 1} and {k =
ky—N+2,k;—=N+3,---,k —1}. These are scaling functions which lie partially
inside the interval [z, z;]. Irregular scaling functions contribute to the solution
in ©, and their coefficients must therefore be included in the solution vector for
equation (6.1). However, the wavelet-Galerkin equations for irregular scaling
functions cannot be written down directly since these equations involve scaling
functions which lie outside the interval [zg,z,]. In the formulation described
here, we write down a modified form of the wavelet-Galerkin equations for all
irregular scaling functions except the two end scaling functions, ko — N + 2
and k; — 1. The end scaling functions are related to the rest by the prescribed

boundary data.

3. Exterior scaling functions: {k = kg—2N+5,ky—2N+6,---,ko—N+1} and {k =
ki, ky+1,- -+, ki+N—4}. These scaling functions lie entirely outside the interval
[zo,z;]. Although their coefficients do not form a part of the solution vector,
they are required in order to write down the wavelet-Galerkin equations for the
irregular scaling functions. By using polynomial extrapolation to predict the
coefficients of the exterior scaling functions, we arrive at the modified wavelet-
Galerkin equations for the irregular scaling functions. Thus, the exterior scaling
functions are no more than an artifice which we employ in order to provide a
consistent modification to the wavelet-Galerkin equations in the vicinity of the

boundary, without compromising the accuracy of the wavelet-Galerkin method.

In section 6.1.1, we describe the details of the wavelet extrapolation method with
reference to the left boundary. The treatment of the right boundary is very similar,
the main difference being in the indices. Formulae for the right boundary are given

in section 6.1.2.

6.1.1 Wavelet Extrapolation at the Left Boundary

Consider the left boundary. Figure 6-1 illustrates the components of the solution

u(z) = U(y) near Z, for the case N = 6. For clarity, the scaling functions are
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represented by triangles.

(N- 3) exterior (N- 2)irregular
scaling functions scaling functions regular scaling functions

~ ) N

k-7 k66 ko-S k-4 k0-3 k0-2 k-1 k k0+l k42 k+3 oo

0

UL
Xp Xo x
Yo Yo ¥

Figure 6-1: Daubechies-6 scaling function expansion of solution at left boundary.

Recall that the N-coefficient Daubechies scaling function has p = N/2 vanishing
moments, and that its translates can be combined to give exact representations of

polynomials of order p — 1. Assume now, that U(y) has a polynomial representation

of order p — 1 in the vicinity of the boundary. (Note that if the solution is in fact a
polynomial of order p — 1, then there will be no approximation error introduced by

this assumption.) Considering a polynomial expansion about y = ky, we have
ki—1 p—1
Uly) =22 3 clkl dly—k) =3 M (y— ko), (6.6)
1=0

k=ko—N+2

where ), are constant coefficients. The expansion coefficients of U(y) are given by

em(k] = 272 (U(y), ¢y - k)) , (6.7)

i.e. B
cmlk] = 27™/2 Z A ,ui_ko , (6.8)

1=0

where p}. are the moments of the scaling function:

= (v, oy - k) . (6.9)

As described in Chapter 4, the moments of the scaling function are easily calculated
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from the following recursion:

po = /_Zcb(y) dy=1, (6.10)
r—1 N-1
= L6 (kz ok 1) . (6.11)
1= =0
1
meo= 3 () F kg, (6.12)

where a[k] are the wavelet filter coefficients.
Using equation (6.8), the unknown polynomial coefficients, );, may be related to

the coefficients of p irregular scaling functions:

- - - - - -

Bonviz  Blyye 0 BN Ao cmlko — N + 2]
g-m/2 Wnis  Blyes o BPALs Ao Cm[ko — N + 3]
i ﬂgN+p+l M}-N+p+l o .u‘:_Nl+p+l 1L A1 ] i cmlko — N +p+1] ]
(6.13)
Let the elements of the inverse of the matrix in (6.13) be given by &;, (I,i =
0,1,---,p —1). Then the polynomial coefficients may be expressed as
p—-1
M=2"23"&; cmlko— N +2+1] ; l=0,1,---,p—1. (6.14)
1=0

Equations (6.6), (6.8) and (6.14) may now be used to

1. relate the scaling function coefficients c,y[ko — N +2], cu[ko~ N+ 3], - - -, cim[ko —
N + p + 1] to the boundary condition.

2. modify the wavelet-Galerkin equations for N — 3 of the irregular scaling func-
tions, {k = ko — N + 3,k — N +4,---,kg — 1}, by eliminating the coefficients

of the exterior scaling functions.
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Boundary condition

In order to incorporate the given boundary data at the left boundary, we use the local

polynomial expansion described by equation (6.6).

1. Dirichlet boundary data: From equation (6.6), we have

p-1

3 A (Fo — ko)t = u(Zo) .

=0

Substituting for )\, using equation (6.14), we obtain

ko—N+p+1
Y. cmlk] Trok-kotn—2 =27 u(Zo) ,
k=ko—N+2
where
p-1
ﬂko,i=z&,i(ﬂo—ko)’; i=0,1,---,p—1.
=0

2. Neumann boundary data: Differentiating equation (6.6), we have

p—1
2™ ML (o — ko)t = ug(To) -
=1

Substituting for A; using equation (6.14), we obtain

ko—N+p+1
Y cmlk] Mhok-rorn—2 = 272 uy(30)
k=ko—N+2
where
p-1
Mhoi = Y E1i U (Go — ko)™ ; i=01--,p—1.
=1

Modified wavelet-Galerkin equations

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

The boundary condition, given by equation (6.16) for Dirichlet data or equation (6.19)

for Neumann data, provides a single constraint on the coefficients of the irregular

scaling functions at the left boundary. Since there are a total of N — 2 such irregular

scaling functions, we need to derive N — 3 additional equations based on the wavelet-
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Galerkin discretization of the differential equation.
From Chapter 5, the standard wavelet-Galerkin discretization for a regular scaling

function with translation parameter n is

n+N-2
22" N cmlk] Qn—k]=gnln];  n=keko+1l,-- ki~N+1, (6.21)
=n—-N+2

where Q[n] are the conrection coefficients for the second derivative operator,
Qn] = (¢ez(z),d(x —n)) ; n=-N+2,---,N-2, (6.22)

(see Chapter 4,) ard g,,[n] are the scaling function coefficients of the function f(z)
in equation (6.1).

In order to modify equation (6.21) to apply to an irregular scaling function, we
split the convolution sum into two parts, with the coefficients of the exterior scaling

functions separated from the rest:

ko—N+1 neN-2
27N k] Q- k] + 2% Y. cmlk] Qn — k] = gm[n) ;
k=n—N+2 k=ko— N+2

n=ky—N+3,kg—N+4,--- kg—1. (6.23)

Using equations (6.14) and (6.8) we obtain the following extrapolation for the

coefficients of the exterior scaling functions:

p—-1
Cm[k] = Z Vk—ko,i Cm[ko - N + 2 + l] )

1i=0
k=ko—2N+5,-- kg—N+1, (6.24)

where
p-1
ki =Y Eui My ; k=-2N+5,---,-N +1

=0
i=0,1,---,p—1. (6.25)

Equation (6.24) may now be used to eliminate the coefficients of the exterior scaling
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functions from the first sum in equation (6.23). Hence, we obtain the following

modified wavelet-Galerkin equations for the irregular scaling functions:

n+N-2 ko—N+p+1
22" 3" cuk] Qn—k] + 22 Y cmlk] Onkok-korn—2 = gm[n] ;
k=ko—N+2 k=ko—N+2

Tl:ko—N+3,k0—N+4,"',ko—1, (626)

where

~N+1
Oni= . UkiQn—kl; n=-N+3,---,—1
k=n—-N+2
i=0,1,"',P—1- (627)

System of equations

Equation (6.26), taken together with either equation (6.16) or equation (6.19), yields
the required total of N — 2 equations for the irregular scaling functions at the left
boundary. These N—2 equations provide a local modification to the Toeplitz structure

of the wavelet-Galerkin matrix operator i.e. the modified wavelet-Galerkin matrix has

the form
272%™ ko0 272 Moy v 272%™ Mo p1 0
D +O_Ni30 W+O_nNi31 - Qpro+O_nizp Qpnr
Qo +O0_na0 UFO_Npan o Qpiza+O_Npap1 Qpyo
o ) ) : . |

On_3+O_10 Qv-4+O_11 - Ovp2+O_1p1 Qnvp3
Qn_2 Qn_3 e On_p-1 QOn_p-2

0 Q-2 e QOn_p QON-p-1

(6.28)
where 7, ; ¢ = 0,1,---,p — 1 are given by equation (6.17) for Dirichlet boundary
conditions and by equation (6.20) for Neumann boundary conditions. Here, we have

used the notation 2, as a more compact alternative to the notation Q[n].
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The modified right hand side vector has the form

2—m/2 U(io)
gm[ko — N + 3]
gm[kO -N+ 4]

gm[ko - 1]
gm[kO]
gm[ko + 1]

-

or

2—3m/2 uz(EO)
gm[kO - N+ 3]
gm[ko - N + 4]

dm [ko - 1]
gm[ko]
gm[ko + 1]

1

(6.29)

for Dirichlet boundary conditions or Neumann boundary conditions respectively.

6.1.2 Wavelet Extrapolation at the Right Boundary

The treatment of the right boundary is very similar to the treatment of the left

boundary. Since there are differences in the indexing, however, we present the key

results for the right boundary. Figure 6-2 shows the scaling function components of

the solution near z, for N = 6.

(N- 2) irregular

(N- 3) exterior

regular scaling functions scaling functions scaling functions
— — — — ~ — >
----- k|-8 k-7 kl-6 kl-S k -1 kl kl+l k+2

- 4 kl-3 kl-l k

T 1
X x
19

Figure 6-2: Daubechies-6 scaling function expansion of solution at right boundary.
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For the right boundary, the coefficients ;; are the elements of the inverse of

p‘gp #l_p e ”P_;l
-1
Kot B o Mg (6.30)
R R . b

Boundary condition

The expressions for the boundary condition at the right boundary are as follows:

1. Dirichlet boundary data:

ky—1
Z Cm[k] Mky k—k1+p = 2—m/2 u(jl) ’ (631)
k=k1—p
where
p-1
nkl,i = Z&,i (yl - kl)l ) 1= 07 1’ Y 1. (632)
=0

2. Neumann boundary data:

k1—1
Z Cm[k] Mky k—ky+p = 2—3m/2 uz’(jl) ) (6'33)
k=k,-p
where
p-1
Mhi = 2 & L (G — ki)' 15 i=0,1,--,p~1. (6.34)
=1

Modified wavelet-Galerkin equations

Following a similar approach to that used for the left boundary, we arrive at the

following discretization for the irregular scaling functions at the right boundary:

k-1 ki1
22" N k] Qn—k] + 2™ Y cmlk] Onckyk—kitr = gm[n) ;
k=n—-N+2 k=ki—p

n=k1—N+2,k1—N+1,--~,k1—2, (635)
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where the modifying coefficients are now given by

n+N-2
Oni= Y. VkiQn—k]; n=-N+2---,-2
k=0
’i:O’l,...’p_l
with
p-1
’/k'izzgl,iui; k:O’l,--.,N_4
1=0

1=0,1,---,p—1.

System of equations

(6.36)

(6.37)

The incorporation of the N — 2 equations for the irregular scaling functions at the

right boundary leads to a modified wavelet-Galerkin matrix of the form

Q_Nip+1 Q_Nip e Q_ni2 0
Q_Nipr2  QoNipi1 o Q_N43 Q_N+y2
Q_Nips2 + Q_Nys + QN3 +
om Q—N+p+3 et
2 O_N420 O_Ni2p-2 O_Ni2p-1
Q2  Qp3+O_30 -+ Q1+60 352 Q2+0_3,,
Qpy Qp2+6_20 -+ +O_g, 2 Q1 +60.9,,
L 0 2_2m nkl'o toe 2—2m nklvp_2 2—2m nkllp_l

, (6.38)

where 7, ; ¢ =0,1,---,p — 1 are given by equation (6.32) for Dirichlet boundary

conditions and by equation (6.34) for Neumann boundary conditions. The modified
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right hand side vector has the form:

gm[ky — N] gmlk1 — N]
gmlkr — N +1] gm[F1 — N +1]
mlk1 — N + 2 mlk1 — N + 2
gl . ] or gm[ks . ] (6.39)
Iml[kr — 3] Imlk1 — 3]
gm[kr — 2] Imlkr — 2]
2—'"/2 U(.'El) | 2—3m/2 Uz(jl)

for Dirichlet boundary conditions or Neumann boundary conditions respectively.

6.2 Convergence

As discussed in Section 6.1.1, the wavelet extrapolation method for imposing bound-
ary conditions is exact if the true solution is a polynomial of order p — 1. If the true
solution contains higher order terms, then the wavelet approximation to the solu-
tion will perfectly capture all terms of degree p — 1 or less. Thus, for pure Dirichlet
boundary conditions, we expect the error in the computed solution to be O(h?), where
h = 1/2™ represents the effective mesh size. For problems with Neumann boundary
conditions, we expect the error to be one order lower, i.e. O(hP~1), since the derivative
u.(z) is approximated by a local polynomial expansion of order p — 2 (see equation
(6.18).)

In order to verify the expected convergence behavior, we solved the equation
Uz (z) = €¥ + 16e** (6.40)

with two sets of boundary data:
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max lu_exact - ul

il

10° 10™
Step size, 1/2m

Figure 6-3: Convergence behavior of the wavelet extrapolation method for pure
Dirichlet boundary conditions.

1. Dirichlet data at both boundaries:
u(0) =2 and u(l)=e+e'. (6.41)
2. Mized Neumann and Dirichlet data:

u(0)=2 and  u (1) =e+4e'. (6.42)

Note that the true solution, u(z), contains all terms of the form z!, where ! is a
non-negative integer.

Figure 6-3 illustrates the convergence results for pure Dirichlet boundary condi-
tions. These results confirm that the error decays as O(h?) for pure Dirichlet data.
Figure 6-4 illustrates the results for mixed Neumann and Dirichlet data. As expected,

the error decays as O(h?P~!) due to the presence of the Neumann boundary condition.
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Figure 6-4: Convergence behavior of the wavelet extrapolation method for mixed
Neumann and Dirichlet boundary conditions.

6.3 Stability Issues

The eigenvalue distribution of the wavelet-Galerkin matrix with boundary conditions
is a matter of interest, particularly when the matrix is to be used in time-stepping or
iterative schemes. When the wavelet-Galerkin matrix corresponds to the spatial dis-
cretization of a time-dependent partial differential equation, it is necessary to ensure
that its eigenvalues are properly matched to the stability region of the time-stepping
scheme to be used.

For example, consider the heat equation
uy(z,t) = ¢ uge(z,t) (6.43)

with Dirichlet boundary data at the boundary points Z, and z;. Performing a wavelet-

Galerkin discretization of the spatial dimension, we arrive at a coupled system of
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ordinary differential equations:

d —o2m 2
dtc,,, =2 Qn Cm - (6.44)

Here (,, represents the wavelet-Galerkin matrix with Dirichlet boundary conditions
applied using the wavelet extrapolation method (see equations (6.17), (6.28), (6.32)
and (6.38).)

Our main concern is in choosing the correct scaling for the first row in equation
(6.28) and the last row in equation (6.38). Through experiment, we have found that
the eigenvalues of (2, are real when the magnitude scaling of the rows is as shown
in equations (6.28) and (6.38). The signs of the rows must also be chosen carefully,
since incorrect signs will lead to an indefinite matrix, i.e. a mixture of positive and
negative eigenvalues, which complicates the task of choosing a stable time-stepping
scheme. Numerical experiments indicate that the first row in equation (6.28) and
the last row in equation (6.38) should both be reversed in sign. This results in a
negative definite matrix which can be matched to a time integration scheme such as
the trapezoidal rule. Figure 6-5 illustrates the distribution in the eigenvalues of €2,
for the case N = 6 and m = 6, when the appropriate sign changes have been made.

Similar experiments were performed for the case of Neumann boundary conditions.
For a Neumann condition at the left boundary, no adjustment is required to the first
row in equation (6.28). For a Neumann condition at the right boundary, however,
the last row in equation (6.38) must be sign reversed.

Note that all sign reversals in the wavelet-Galerkin matrix must be accompanied

by appropriate sign reversals elsewhere, so as to maintain the validity of the equations.
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Figure 6-5: Eigenvalues of the wavelet-Galerkin matrix for the second derivative
operator with pure Dirichlet boundary conditions for the case N = 6 and m = 6.

111



Chapter 7

The Wavelet Extrapolation
Approach for Initial Value

Problems

In this chapter, we develop a wavelet-based method for the temporal discretization
of ordinary and partial differential equations. A major problem associated with the
use of wavelets in time is that initial conditions are difficult to impose. Approaches
which are suitable for boundary value problems, such as capacitance matrix and
penalty methods, generally do not adapt well to initial value problems. A second
problem with wavelet-based temporal discretizations is that the resulting time inte-
gration schemes should be stable. The typical wavelet-Galerkin discretization of a
differential operator results in a centered difference scheme which is unsuitable for
stable time-stepping. We provide solutions to both of these problems by generalizing
the wavelet extrapolation approach described in Chapter 6. The present discussion
focuses on single scale formulations. In principle, however, it is possible to obtain
an equivalent multiscale formulation from the single scale formulation through the
application of the DWT (see discussion of equivalence in Chapter 5 as well as the dis-
cussion of wavelet extrapolation at multiple scales in Chapter 8.) Thus, the wavelet
extrapolation approach opens up interesting possibilities for the multiscale solution

of initial value problems.
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Since the wavelet-Galerkin method is effectively a multistep difference scheme
on the scaling function {and wavelet) coefficients, the problem of imposing initial
conditions may be restated as the proBlem of generating a set of start-up coefficients
which are consistent with the given initial data. We use the wavelet extrapolation
method to obtain a consistent set of startup coefficients which are matched to the
polynomial approximation capabilities of the discretizing wavelet. This ensures that
the accuracy of the numerical scheme is not compromised.

The stability problem is solved by using wavelet extrapolation to provide a con-
sistent modification to the standard centered difference equation arising from the
wavelet-Galerkin method. Accuracy is preserved by modifying the difference equa-
tion in accordance with the polynomial approximation capabilities of the discretizing
wavelet.

We describe the wavelet extrapolation method for initial value problems with

reference to the first order ordinary differential equation

y=f(y,1) (7.1)

with the initial condition

y(to) = %o - (7.2)

In our discussion, we use Daubechies’ orthogonal compactly supported wavelets,
which have IV coefficients and p = N/2 vanishing moments. Let ¢(t) denote the
corresponding scaling function. We recall that the translates of ¢(t) can be combined
to give exact representations of polynomials of order p — 1. This leads us to expect
a local (one-step) error of O(h?) and a global error of O(hP~!). Numerical evidence
confirms this expectation. Furthermore, we find that the time integration schemes are
characterized by large regions of absolute stability, comparable to increasingly high
order BDF methos. In particular, the Daubechies-4 and Daubechies-6 time-stepping

schemes are A-stable.
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Figure 7-1: Daubechies-6 scaling function expansion of solution at start time.
7.1 Treatment of Initial Conditions

Consider the scale m scaling function expansion of the solution to equations (7.1) and
(7.2). We assume, without loss of generality, that ko == 2™t, is an integer value. This
can always be accomplished by a simple translation of the time axis. Let ¢; be the
final time. Then we have

k-1

yt) = D cmlk] dma(t) ; Omk(t) = 2™2p(2™t — k) | (7.3)

k=ko-N+2

where k; = [2™i;]. Using the transformation

Y(r) =y(?) ; T=2"t, (7.4)
we obtain -
Y(1)=2"2 Y culk] $(r k). (7.5)
k=ko—N+2

We refer to the scaling functions {k = ko, ko + 1,---,k; — 1} as regular scaling
functions since they lie entirely within the half line ¢ > ¢;,. The scaling functions
{k=ko—N+2,ko—N+1,---, ko — 1} are referred to as irreqular scaling functions
since they lie only partially within the half line t > t,. Figure 7-1 illustrates the
components of the solution y(t) = Y(7) around t = t; for the case N = 6.

Assume that Y (7) has a polynomial representation of order p — 1 in the vicinity
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of To — 2mto

ki1—1 p—1

Y(r)=2"% Y culkld(r—k) =D N (T- ), (7.6)
1=0

k=ko—-N+2

where ), are constant coefficients. The expansion coefficients of Y'(7) are then given
by

p-1
Cmlk] = 272 (Y (7), $(T — k) =272 3 N pi g, (7.7)
=0

where ). are the moments of the scaling function:

p= (' 8(r =) . (7.8)

As described in Chapter 4, the moments of the scaling function are easily calcu-

lated from the following recursion:

po = /_ Te(r)dr=1, (7.9)
-1 N-1 N\
b = s 0 (kz: ok ) (7.10)
1
o= D) (7.11)

where a[k] are the wavelet filter coefficients.

The unknown polynomial coefficients, A;, may now be determined in terms of:

1. The initial condition,

Y (1) =vyo - (7.12)

2. The values of Y (1) at p — 1 other points,

Y(7) ; i=1,2,---,p—1. (7.13)

These values maybe obtained using p — 1 steps of a one-step finite difference
scheme, with a step size sufficiently small to preserve the accuracy of the wavelet

time-stepping scheme to be used.
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Thus, the polynomial coefficients, A, may be found by solving a Vandermonde system

of the form
B 0 0 1wl | Yo
? (B Tro) e (R - -To)"'_l A Y('f'l) (7.14)
|1 (fp-1—70) -+ (o1 — 70)P7! 1L A1 | Y (%p-1) i

We now use equation (7.7) to compute the coefficients of the irregular scaling
functions, {k = ko—N+2,kg—N+3,---,ko—1}. With these coefficients determined,

we may apply the time-stepping scheme of the next section.

7.2 Time Integration

The wavelet-Galerkin method does not, by itself, give rise to stable time-stepping
schemes. This is evident from a z-transform analysis of the resulting difference equa-
tion for the scaling function coefficients, c,[k], (see Section 7.2.2.) However, polyno-
mial extrapolation can be used to modify the wavelet-Galerkin difference equation.
We use this idea to develop time integration schemes which have very large regions
of absolute stability, without compromising the convergence behavior of the wavelet-

Galerkin method.

7.2.1 The Modified Wavelet-Galerkin Differencing Scheme

The wavelet-Galerkin discretization of equation (7.1) is

n+N-2
2™ ST cmlk] Un — k) = gn[n] ; n=kyko+1,---, kg -1, (7.15)
k=n—-N+2

where Q[n] are the connection coefficients for the first derivative operator,

Qn| = (¢=(z), p(z — n)) ; n=-N+2---,N-2, (7.16)
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and gn[n] are the scaling function coefficients of the function f(y,t).

In equation (7.15), we treat c,,[n] as the next coefficient to be computed i.e. we
assume that coefficients cu[n — N + 2], cm[n — N + 1], - - -, em[n — 1] are known. The
coefficients c,,[n + 1], cm[n + 2], - - -, em[n + N — 2] are to be predicted by polynomial

extrapolation. Figure 7-2 illustrates the situation for N = 6.

known coefficients
—— T

n-4 n-3 n-2 n-1 n n+tl n+2 n+3 n+4

A
" n
-

2™ p
n

Figure 7-2: Coefficients involved in the Daubechies-6 wavelet-Galerkin difference
equation.

Consider now a polynomial expansion about the point 7 =n + 1,

kl—l p—l
Y(r)=2"% Y culklo(r—k) = M (r-n-1), (7.17)
k=ko—N+2 =0
so that
p—1
emlk] = 22 S N phy - (7.18)
=0
Writing down equation (7.18) for k =n —p+1,---,n, we have the linear system
pe, opt, e pby) Ao em[n —p+1]
0 -1
2—m/2 u—f)+l l‘tl—fﬂ-l e ﬂ‘-)-fﬂ-l /\.l _ Cm[n —p + 2] . (719)
i I‘(ll /J'l—l l‘}:—ll 11 Ap-1 ) i Cm[n]

Letting & ; be the elements of the inverse of the matrix in equation (7.19), we have

p-1
MN=2"23"gicmln—p+1+1]; 1=0,1,---,p—1. (7.20)

1=0
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Substituting equation (7.20) into equation (7.18), we obtain the following prediction
for the coefficients cm[n + 1], cn[n +2],---,cm[n + N — 2J:

p—1
cmlk] =Y Vk-n-ri emln —p+1+1] ; k=n+1,---,n+N—2, (7.21)
=0
where
p—-1
Vk,i=Z€t,iﬂi; k=0,1,---,N-3
=0

i=01---p—1. (7.22)

Equation (7.21) may now be used to eliminate all of the unknown coefficients in

equation (7.15), except for the coefficient ¢,,[n]. The resulting equation is

n n

2 Y ] Qn—k + 2" Y culk] O_1hontpo1 = gmln]
k=n—-N+2 k=n-p+1
n—_—ko,ko‘i‘l,"',kl—l, (723)
where
n4+N-2
Oni= Y ;i Un—k]; n=-1
k=0

i=0,1,---,p—1. (7.24)

We may rewrite equation (7.23) in the standard form for multistep difference

equations:

N-2 N—2 :
Y picmln—il=h Y 0igmln—i]; n=ko,ko+1,---, kb —1, (7.25)

i=0 i=0

where h =2"™ and

Qfi] + O—1po1oi ; 1 =0,1,---,p—1
. = { ]+ 151 ! P (7.26)

9[7’]’ i=pap+11"'1N_2,
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{1; ;=0
- - (7.27)

7.2.2 Linear Stability

Consider the linear equation

y=ay. (7.28)
Equation (7.25) then takes the form
N-2
Y (pi—aho)cmn—1i=0 (7.29)
i=0

and the region of absolute stability is given by the region of the ah plane where the
polynomial

N-2
Y (pi—ahao) 2™ (7.30)

i=0
has zeros inside the unit circle. Figure 7-3 shows the regions of absolute stability for
N =4,6,8,10 and 12. The figure shows that the modified wavelet-Galerkin time dif-
ferencing schemes have very desirable stability characteristics which are comparable
to increasingly high order BDF methods. Note that the only A-stable time differ-
encing schemes are those corresponding to Daubechies’ 4-coefficient and 6-coefficient
wavelets. The Daubechies-4 and Daubechies-6 schemes are observed to be of first
order and second order accuracy respectively. This agrees with the observation of
Dahlquist [16] that there are no A-stable multistep methods of order greater than

two.

7.2.3 Solution of Linear Problems

We have already referred to the linear model problem y = a y. In this case, the

scaling function coefficients of the right hand side are simply given by

gm([n] = a cu[n] . (7.31)
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Figure 7-3: Absolute stability regions for the modified wavelet-Galerkin differencing
schemes.
For linear problems which are of the the form § = f(t), we calculate the coefficients

of the right hand side using

N-2
gmln] = (f(Y(7)), ¢(7 — n)) = kg fin+kl ok);  flk]=f(Y(k). (7.32)

This approximation has been found to preserve the overall accuracy of the time-
stepping scheme.
Once the latest solution coefficient, c¢,z[n], has been found, the solution is given
by
T7—-1
Yy =Y ()= Y cmlk] d(r—k), (7.33)

k=1-N+2

where 7 has integer values. This sum is conveniently computed as

y2™™(n+1)=Y(n+1)= NZ_2C,,,[n +1—k] (k) . (7.34)
k=1
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7.2.4 Solution of Nonlinear Problems

When f(y,t) is a nonlinear function of y, the computation of the the coefficient gn[n]
is a more complicated task, since g,[n] depends on values of y which are as yet

unknown. A suitable prediction is therefore necessary for the unknown values,
Y (k) ; k=n+1,n+2,---,n+N-2. (7.35)

Using equation (7.18) to extrapolate the coefficients cpu(n — p + 1],cm[n — p +

2], -+, cm[n], we obtain the prediction
p-1
Y(ky=3 M (k—-n-1); k=n+1n+2---,n+N—-2.  (7.36)
=0

Since the predicted values depend on the unknown coefficient, c,,[n], the resulting
difference equation would have to be solved using a nonlinear equation solver such as
a Newton-Raphson scheme. Note that a similar approach is required even with finite
difference methods.

Another possibility for mild nonlinearities would be to predict the unknown values

of y in terms of only the known coefficients, cp[n — pl,cu[n —p+ 1), - -, cmln — 1.

7.3 Convergence and Numerical Results

If the exact solution to equation (7.1) is a polynomial of order p — 1, then equations
(7.6) and (7.17) do not involve any approximation error i.e. the method is exact. The

local truncation error (LTE) is then given by the lowest order exactness constraint to
fail i.e. the LTE is O(h®). Hence the global error is O(h?P™!).

Figure 7-4 shows the convergence results for the linear ODE

y=-y(t) (7.37)
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Figure 7-4: Variation of global error with step size for wavelet-based time integration

integrated over the interval ¢ = [0, 10] with the initial condition
y(0)=1. (7.38)

These results closely agree with the expected behavior.

7.4 Remarks on the Modified Difference Schemes

In developing the modified wavelet-Galerkin time-stepping schemes, we determined
the p extrapolating polynomial coefficients, Ag, A1,- -+, Ap—1, in terms of p scaling
function coefficients, cu[n — p+ 1),cn[n —p+ 2}, - -, cm[n] (see equation (7.20).) As
a result, the matrix in equation (7.19) is square. A variant on this approach is to
use more than p scaling function coefficients in the extrapolation process. The only
implication here is that it is necessary to solve a least squares problem in order to

determine the unknown polynomial coefficients. Such variants have been found to
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lead to marginally improved accuracy, although the actual order of accuracy remains
unchanged.

Note that the wavelet-based time-stepping schemes were constructed by modifying
the standard wavelet-Galerkin centered difference equation to produce a backward
difference equation of the same order. The use of these backward difference schemes
is not limited to time integration alone. For example, the same backward difference
equations were used to discretize the spatial dimension when developing wavelet-based

upwinding schemes for the one-dimensional wave equation.
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Chapter 8

A Discrete Wavelet Transform

Without Edge Effects

In this chapter, we use the wavelet extrapolation idea to develop a Discrete Wavelet
Transform for finite length sequences, which is practically free of edge effects. By
matching the extrapolation order to the order of the wavelet, we are able to obtain
a DWT which correctly operates on polynomial data. Thus, for example, when the
DWT based on the Daubechies N-coefficient wavelet operates on data corresponding
to a polynomial of order N/2 — 1, we find that the lowpass transform coefficients
also correspond to an (N/2 — 1)th order polynomial, while the highpass transform
coefficients are precisely equal to zero. We base our discussion on Daubechies’ wavelets

for convenience. However, similar ideas are applicable to biorthogonal wavelets.

8.1 The Boundary Problem

The orthogonal and biorthogonal Discrete Wavelet Transforms developed in Chapter
3 implicitly assume that the input data sequence, cp[k], is of infinite length. In a
typical practical situation, however, the available data is a finite length sequence. The
boundaries of a finite length input sequence pose a special problem to the discrete
wavelet filters, since the filters eventually run out of samples to process. Consider, for

example, the action of Daubechies’ 4-coefficient filters on a data sequence of length
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I2
[ cnil-1]] [0 ar]az as 0 0 0 0 0 0|0 0]]| =
cm-1[0] 0 Olag a;f a2 a3 0 0 0 0|0 O cm0]
em-1[1] 0 0(0 O a a a; a3 0 0|0 O cml1]
em1[2] 0 0(0 0 0 0 a a; a as|0 0 || cml2]
Cm-1[3] _ 0 0/]0 0 O O O O a a|ay a3 cml3] L 8.1)
Ay [~1] o bilbo b5 0 0 0 0 0 0|0 O || cmld]
dpn1[0] 0 0[b b b2 b5 0 0 0 0|0 0 || cul5]
dp_1[1] 0 0[0 0 b b b, b5 0 0|0 0 || cnl6]
dm-1[2] 0 0{0 0 0 0 b b b b3|0 0| cal?
| a3 | [0 00 0 0 0 0 0 b bk b || wm
Y2

Here we have used the compact notation a and by to denote the filter coefficients a[k]
and b[k] respectively. Note that we require a combined total of 8 linearly independent
output samples from the lowpass and highpass filters, in order to ensure that the
DWT can be inverted. It is clear from this example that the transform coefficients
¢m-1{—1] and d,—1[—1] depend on z, and z,, which are not specified as components
of the input data set. Likewise the transform coefficients c¢;,—1[3] and dp,—;[3] depend
on y; and y,, which are also unspecified.

Several different approaches are possible for treating this boundary problem. The
simplest solution is to zero pad the given data i.e. z; = zo = 0 and y; = y» = 0.
Although easy to implement, this approach typically introduces an artificial discon-
tinuity in the input data, which is reflected in the output samples corresponding to
the boundaries. We refer to this effect on the output samples as an edge effect. An-
other possible solution, known as circular convolution, is to extend the input data
in a periodic fashion i.e. ; = ¢,[7] and 72 = ¢, [6], and y1 = ¢,[0] and y2 = cm[1].

Since the input sequence is now periodic with period 8, the two output sequences are
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also periodic, but with period 4 due to the downsampling process. In this case, it is
clear that the output samples ¢,;,—1[—1] and dp,—;[—1] are redundant, leaving us with
a total of 8 linearly independent output samples. The circular convolution approach
leads to fast implementations through the usc of the FFT, but it too results in edge
effects due to the zeroth-order discontinuity in the input sequence.

Zeroth-order continuity can be maintained in several ways. One possibility is to
extend the data by repeating the first and last data samples i.e. £, = z, = ¢,,[0] and
Y1 = Y2 = ¢m[7]. Another technique, which is commonly used, is known as symmetric
ertension. In this approach, the data is reflected about the boundary. At the right
boundary, for example, we would have y, = ¢,[7] and ¥, = ¢y [6] or ¥ = ¢,[6] and
Y2 = ¢m[5], depending on whether the last data sample is duplicated or not.

In image processing applications, the zeroth-order extrapolation provided by sym-
metric extension is often quite acceptable. However, from our approximation theory
perspective of differential equations in Chapter 6, it is clear that optimal accuracy is
obtained when the order of extrapolation at the boundary is matched to the order
of the wavelet. In the discussion which follows, we show how to construct the op-
timal DWT for finite length sequences through the use of the wavelet extrapolation

approach.

8.2 Wavelet Extrapolation for the Discrete Wavelet
Transform

As a starting point for developing a Discrete Wavelet Transform for finite length
data, we recall from Chapter 3 the multiresolution analysis equations for orthogonal
wavelets on the entire real line. Let a[k] be the filter coefficients associated with the
Daubechies N-coefficient scaling function, ¢(z), and let b[k] = (—=1)* a[N — 1 — k]
be the filter coefficients associated with the corresponding wavelet, ¥(z). Then, the

multiresolution decomposition algorithm describing a single stage of the DWT on the
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scale m sequence, cp,[n), is

2n+N-1

mail] = 75 S cnlk] alk ~2n), (8.2
2n+N-1

dms[n] = \,iﬁ 3 cnlk] bk~ 0] (8.3)

The multiresolution reconstruction algorithm describing a single stage of the inverse

DWT on the scale m — 1 components, ¢,,—i[n] and dy,_[n], is

m=L 3 Kah-2k+ = 3 dpalk]bfn=2k]. (84
Ccmin] = — cm-1lk] aln—2k| + — m—-1 n—2k|. (8.4
V2 k=[(n—N+1)/2) V2 k=[(n~N+1)/2]

Since these equations were developed for wavelets on the real line, it is implicit that
the sequences ¢y [n], ¢m-1[n] and dp,_;[n] are of infinite length.

Now suppose that we are given a finite length sequence, c,,[n], which is defined on
the interval 0 < n < L — 1. We assume that the length of the sequence, L, is divisible
by 2!, where i is the total number of stages in the DWT. Owing to the recursive
structure of the DWT algorithm, however, it is sufficient to limit our discussion to
the first stage of the DWT. In order to compute a total of L transform coefficients,
em-1[0], em-1{1], - -, em-1[L/2—1] and dp,_1[0], dru—1[1], - - - , dm-1[L/2—1], using equa-
tions (8.2) and (8.3), we require the sequence values ¢y, [L], cu[L+1], - - -, e[ L+ N —3].
These values do not constitute a part of the given data set and they are to be deter-
mined using wavelet extrapolation. To minimize edge effects in the forward DWT,
therefore, we must extrapolate the original sequence, cy,[n], at the right boundary of
the interval [0, L — 1.

A somewhat similar situation exists with the inverse DWT. In order to recover the
original data using equation (8.4), we require N —2 transform coeflicients, ¢, [—N/2+
1), em-1[-N/2+2],---,cm-1[—1] and dpp—1[-N/2+1],dpn_1[-N/2+2], - - -, din—1[-1],
in addition to the L transform coefficients indicated in the preceding paragraph.
The additional set of N — 2 transform coefficients must be determined using equa-
tions (8.2) and (8.3), which means that we require knowledge of the sequence values

cm[—N + 2],em[—N 2 3],---,em[—1]. These values do not constitute a part of the
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original data set, so they are to be determined nsing wavelet extrapolation. Thus, to
minimize edge effects during the application of the inverse DWT, we must extrapolate
the original sequence, c,,[n], at the left boundary of the interval [0, L — 1] before the
applying the forward DWT.

To summarize, our aim is to use the given finite length scale m sequence, cp[n; n =
0,1,2,---,L —1, to obtain a total of L + N — 2 transform coefficients at scale m — 1:
a coarse resolution sequence, ¢,-y[n] ; n = -N/2+1,-N/2+2,---,L/2 ~ 1,
and a detail sequence, dp_y[n] ; n = -N/2+1,-N/2+2,---,L/2 - 1. In or-
der to compute these transform coefficients, we must determine the sequence values
cm[=N +2],cm[-N + 3], -+, cm[~1] and cp[L],em[L + 1],- -+, cm[L + N — 3] by ex-
trapolating the original sequence at both ends. Note that both ends of the sequence
must be extrapolated even though the Daubechies filters are asymmetric.

Our approach to extrapolating the data is to regard the given sequence, c,[n]; n =
0,1,2,---,L—1, as scale m scaling function coefficients of some function f(z) € L?(R)

i.e.

cmln] = /_ : f(z)mn(z)dz . (8.5)

Since the scale m scaling functions, ¢y, n(z), span a subspace, V,,, of L(R), the

projection of f(z) onto V, is
Pnf(z) = Ek:cm[k] Gm k(Z) - (8.6)
Using the transformation F(y) = f(z) where y = 2™z, we obtain
PuF(y) =2m/* Xk: cml(k] By — k) - (8.7)

The extrapolation process is then performed by developing Taylor series expansions
to describe F(y) about y = 0 and y = L. We describe this process in detail with
respect to the left boundary. The treatment of the right boundary is similar, except

for differences in indexing.
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8.2.1 Extrapolation at the Left Boundary

Figure 8-1 illustrates the scale m scaling functions, ¢ i(z) ; £k = -N +2,-N +
3,---,—1, which are associated with the sequence values to be extrapolated at the left
boundary, for the case N = 6. We refer to these scaling functions as the ezterior scal-
ing functions at the left boundary at scale m. Figure 8-2 illustrates the corresponding
scale m — 1 exterior scaling functions, ¢, k(z) ; k= —-N/2+1,-N/2+2,..-,-1.

For clarity, the scaling functions are represented by triangles.

(N- 2)exterior

scaling functions interior scaling functions
s

" — e e,
I a N

"4 -3 -2 -1 0 1 2 3

1
0 x
0 y

Figure 8-1: Daubechies-6 scaling functions associated with the data at scale m around
the left boundary.

(N72 - 1) exterior

scaling functions interior scaling functions
~— — —— —_— —
-2 -1 0 ) [
1
0 x
0 y

Figure 8-2: Daubechies-6 scaling functions associated with the data at scale m — 1
around the left boundary.

Assume now, that F(y) has a polynomial representation of order p — 1 in the
vicinity of the left boundary, y = 0. (Recall that p = N/2 is the number vanishing

moments of the wavelet.) Considering a polynomial expansion about y = 0, we have

p—1

PnF(y) =273 cnlk] ¢y — k) =Y N ', (8.8)
k =0
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where ); are constant coefficients. By taking the inner product of equation (8.8) with

#(y — k), we obtain
p-1
cmlk] = 27™2 3 N pg (8.9)
1=0

where ) are the moments of the scaling function,
k= (v oly—k)) . (8.10)

As described in Chapter 4, the moments of the scaling function are easily calculated

from the following recursion:

po = /_:¢(y) dy=1, (8.11)
1 r—1 N-1 ) .
Mo = 3@ =) ;) () (kZ_% alk] k"') Hp » (8.12)
l
w = ‘;0 () K ug, (8.13)

where alk] are the wavelet filter coefficients.
Equation (8.9) may now be used to determine the polynomial coefficients, A,
from the given sequence. Let M be the number of sequence values to be used in

determining these coefficients. Then we have a linear system of the form

7 ST ST Ao cal] ]
(] 1 . p-1 A 1
g | M1 M H ' cm'[ ) (8.14)
| o1 By ﬂﬁ;ll JL Ap-1 | | em[M — 1] ]

Note that we require M > p in order to determine A;. There is some flexibility, how-
ever, in the exact choice of the parameter M and this will be addressed subsequently
in Section 8.3. For M > p, it is necessary to first form the normal equations, which

take the form
27m2ATAx = ATb . (8.15)
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The normal equations yield a least squares solution of the form
x=2"?(ATA) " ATb. (8.16)

Let & ; denote the elements of the p x M matrix (ATA)—l AT. Then we obtain

the following expression for the polynomial coefficients:
M-1
Al=2m/2 Z gl.i Cm[z] ) l=011s'°'$p— 1. (817)
i=0

We may now extrapolate the given sequence at the left boundary by substituting
equation (8.17) into equation (8.9). Then the coefficients of the scale m exterior

scaling functions are

M-1
cmlk] = D vk cmli] ; k=-N+2-N+3,---,-1, (8.18)
rd
where
p—1
ki = O &i My ; k=-N+2-N+3,---,-1
=0
i=0,1,"',M—1. (819)

Now consider the lowpass multiresolution decomposition equation, (8.2), corre-

sponding to an exterior scaling function at scale m — 1,

1 -1 1 2n4+N-1
cm-1[n] = 7 kgncm[k] alk — 2n] + 7 ,;, cmlk] alk — 2n] (8.20)
n=-N/2+1,-N/2+2,---,~1.

Here, we have split right hand side sum into two parts. The first sum corresponds
only to the exterior scaling functions at scale m, while the second sum corresponds
only to the interior scaling functions at scale m. To eliminate the scale m exterior
scaling function coefficients, substitute equation (8.18) into the first sum. Thus, we

arrive at the following multiresolution decomposition for the exterior scaling function
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coefficients at scale m — 1:

cm-1(n) T ZN cmlk] alk - 2n] + — Z cmlk] Oon i ;
=—N/2+1,—N/2+2,---,—l, (8.21)
where
-1
Y wialk-1); l=-N+2,-N+4-.-,-2
i i=01,-- M—1. (8.22)

Equation (8.21) represents the required modification to equation (8.2) at the left
boundary. A similar process results in tune required modification to the highpass

multiresolution decomposition equation, (8.3), at the left boundary:

ool = T z” mlk] Bk — 2n] + \/—Zcm[k] Ao

n=-N/2+1,-N/2+2,---,—-1, (8.23)
where
-1
Ay = D v blk=1]; l=-N+2-N+4---,-2
k=l
i=0a17'°'1M—1- (824)

The wavelet extrapolation approach we have described leads to a very simple
modification to the standard DWT matrix. The simplicity of the implementation is
evident from the matrix form given below. Note that the modifying coefficients, O ;
and A;;, appear as localized blocks of size (N/2 — 1) x M in the extrapolated DWT

matrix:
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an_2 +O_ny20

an-1+O_ni2 O_n422

O_Ni2,M-1

bo

by by

Here, the output and input vectors are respectively of the form

Cm—l[_N/2 + 2] r
em-1[L/2 1]
and
dm—l[—N/2 + 1]
dm-l["’N/z + 2]
L dm-1[L/2 ~ 1] J(L+n-2)x1
and the modifying coefficients are given by
0 = Av,
A = Bv,
v = pg,
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cm[0]
Cm[1]
cm|[2]

| emlL—1] |

Lx1

an-4 +O_ny40 an-3+O_Ni41 aN_2+O_pNig2 O_Nta,M-1
a; +O_5 az +6_,, as +O_z O_2.Mm-1
Qg a) as
1
V2 bv_2+A_Ny2p bynoy +A_Ny2 A_Ni22 A_Ny2,Mm-1
bn_4+D_Ntso bN_3+A_Nyan Dv-2+A_niap A_NiaM-1
bo+A_2p bs + A_z, by + A2 A_2 M-

)

(8.25)

(8.26)
(8.27)
(8.28)



where

e—N+2|o e—N+2,1

e—N-M,O 9—N+4.l

e—2,0 e—2.1

)
A_Nt20 A_Ni21

0 0 0 O
0 0 0 O
bop b1 b2 b3
0 0 b b

0 0 0 O

0 0 O

V_N4+20 V-N421

V_N4+30 V-N431

0 1
B-Ny2 HB-_N42

0 1
HoNy3 H_N43

0 1

S ‘1

O_Ni2,M-1

O_NyaM-:

O_zm-1 | (N/2-1)x M

A_Ny2,M-1

A_NiaM-1

A_2 M1

anN-g aGN-7 AN-6 OAN-5

ag ay a) as

0 0 ay (15)

bn—6 bv-4 bn_3

bN_s bN—6 bN—5

J(N-2)xM
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(N/2-1)xM

-

ay-¢ aGN-5 GAN-4 QAN-3

, (8.29)

, (8.30)

, (8.31)

(N/2-1)x(N-2)

, (8.32)

J(N/2-1)x(N-2)

(8.33)

(8.34)



So Son - Som-1
£ = 61.,0 fl.,l Lo fl.lt.l—l . (8.35)
| §p-10 §p-10 o0 Sporm-r | XM

8.2.2 Extrapolation at the Right Boundary

The extrapolation process at the right boundary is similar in principle to that at
the left boundary. However, there are a few differences, which arise mainly due to
the asymmetry of the Daubechies filter coefficients and scaling functions. Figure 8-3
illustrates the scale m exterior scaling functions, ¢pmi(z) ; Kk = L,L +1,---,L +
N — 3, which are associated with the sequence values to be extrapolated at the right
boundary, for the case N = 6. Since the goal is to obtain the sequences ¢,,—1[n] and
dm_i[n] ; n = —-N/2+1,-N/2+2,---,L/2 — 1, we are not concerned with scale
m — 1 exterior scaling functions and wavelets at the right boundary (Figure 8-4.)

(N- 2) exterior
interior scaling functions scaling functions
R S R

" L-4L-3L-2 L-1 L L+1 L+2 L+3

{ -
X
L y

Figure 8-3: Daubechies-6 scaling functions associated with the data at scale m around
the right boundary.

Considering a (p — 1)th order polynomial expansion of F(y) around the point

y = L, we have

PrF(s) = 27 S colt] 6y = D =§A, w-L). (8.36)
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exterior scaling functions

interior scaling functions not required
— e — N —_

- L2-2  L2-1  L» L2+1

Figure 8-4: Daubechies-6 scaling functions associated with the data at scale m — 1
around the right boundary.

This leads to the expression

p-1
Cmlk] = 272 N (8.37)
=0

Writing out equation (8.37) for the last M sequence values (M > p), we have

r - r - - -

Wy By o o Cm[L — M]
0 ,1 I 23 -
9—m/2 l‘-)}4+1 P-l‘w+1 ﬂ—l.w+1 ’\.1 — Cm[L .M + 1] (8.38)
S ey e S [ b ] | el

Let A denote the matrix on the left hand side of equation (8.38), and let & ; denote
the elements of the px M matrix (ATA) - AT, This leads to the following expression

for the polynomial coefficients:

M-1
/\l=2m/226l.icm[L_M+i]; l=0,11"'7p_1' (839)

=0
Now that the polynomial coefficients have been determined, we may extrapolate the

given sequence to obtain the coefficients of the scale m exterior scaling functions at

the right boundary:
M-1

cmlk) = Y vk-pi cm[L— M +i]; k=L, L+1,---,L+N—-3, (8.40)
=0
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where

p—-1
vhi= 3 6 bl k=01 N—3
1=0

i=0,1---,M—-1. (8.41)

Using equation (8.40), we obtain the following modified equations for multireso-

lution decomposition at the right boundary:

1 L-1 1 L-1
emaaln] = —= Y cmlk]alk —2n]+ — > cmlk] Om-rh-rin;
2 k=2n 2 k=L-M
n=L/2-N/2+1,L/]2—-N/2+2,---,L/2—-1, (8.42)
where
I+N-1
O, = Z vk alk — 1] ; l=—-N+2,—-N+4---,-2
k=0
t=0,1,--- , M-1 (8.43)
and
1 L-1 1 L-1
dna[n] = —= Y calklblk—2n]+ — Y cmlk] Aon-rk-rirr;
2 =on 2 =M
n=L/2—-N/2+1,L/2-N/2+2,---,L/2-1, (8.44)
where
14+N-1
A = Y wiblk—1]; l=-N+2-N+4---,-2
k=0

i=01---M-1. (8.45)

As in the case of the left boundary, it is instructive to consider the matrix form
of the above equations. Here too, the modifying coefficients, ©;; and A;;, manifest

themselves as localized blocks of size (N/2—1) x M in the extrapolated DWT matrix:
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aN-3 anN-2 an-—y
an-5 + aN-4 T+ an-3 +

O_Ni2M-3 O_nizm-2  O_Ni2M-

a1 +O_4r-3 @2 +O_ym—2 a3 +O_ym_

O_om-3 G+O_2m2 a1 +60_3m

Sl

PR
L i

bn-3 bn—2 bn-1
by_s + bn_g4 + by_3 +

A_nyam-3 A_niam-2  A_niam

by + A_gm-3 ba+A_ym_2 b3+ A_4m

A_am-3 bo+A_apm—2 b+ A_2m J

The output and input vectors for the extrapolated DWT are as given in the previous

section. However, the modifying coefficients are now given by

where
O_Nn+20 O_ni21
e =
O_40 O_4,
O_20 O_2.1

6 = Av,
A = Bv,

v = p&,

-

O_Ni2,M-1

O_4,m1

O_2m-1

4 (N/2-1)xM
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-

A_Ni2,M-1
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(8.50)
A_so Ay A_g M-
| A0 Aogg Aoam-1 | (N/2-1)x M
| an-2 on—1 0 0 0 0 0 ”
ay-4 aN-3 any-2 GaN-1 " 0 0 0
. (8.51)
as as ag ay GN-2 aN-1 0
| @ az a4 as GN-4 GN-3 ON-2 ON-1 | 0 1)(v-2)
[ by—2 bvoy O 0 0 0
by-4 by-3 bn-2 bn—1 0 0
. . (852)
by bs bs by bv-2 bn-1
| b b3 bs bs by-4 bn-3 bn-z bn-1 | (N/2-1)x(N-2)
[ Vo,0 Wi - VoM-1 -
V10 Mg 0 M- ’ (8.53)
| UN-3,0 VUN-3,1 UN-3,M-1 | (N-2)xM
B AR
’f(‘) poo- #’1’."1 ’ (8.54)
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8.3 Choice of the Extrapolation Parameter

The extrapolated Discrete Wavelet Transform described above takes a sequence of
length L at scale m and transforms it into two sequences at scale m — 1 whose total
length is L + N — 2. The scale m — 1 sequences contain all the information that
is required to reconstruct the original scale m sequence using the standard inverse
DWT. Since there is a total of L + N — 2 output samples, however, the extrapolated
DWT exhibits some redundancy, which we describe how to eliminate in Section 8.4.
One of our goals there is to design a storage scheme in which the L independent
output samples are equally divided between the lowpass transform coefficients and
the highpass transform coefficients. In order to achieve this goal, it is necessary to
choose a sufficiently large value for the extrapolation parameter, M.

For example, the smallest value of the extrapolation parameter required to solve
equaiions (8.14) and (8.38) is M = p, where p is the number of vanishing moments.
This might seem like an appropriate choice because the the polynomial coefficients
A will be based on an “exact” solution to equations (8.14) and (8.38), as opposed
to a least squares solution. However, when the reduced DWT matrix (Section 8.4)
is constructed using this choice of extrapolation parameter, we find that it is rank
deficient i.e it does not have L linearly independent rows. This means that we could
never find a corresponding inverse transform which would perfectly reconstruct the
original sequence.

Our numerical experiments indicate that a suitable choice for the extrapolation
parameter is M = N. With this choice we are always able to obtain perfect recon-
struction, regardless of the value of N. Of course, it is possible to use larger values of
M, e.g. to smooth out random variation in the data, but this will limit the size of the
smallest transform that can be performed with a given filter length, N. In general,

however, the choice M = N is recommended.
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8.4 Elimination of Redundancy in the Extrapo-
lated Discrete Wavelet Transform

As indicated in Section 8.3, the extrapolated Discrete Wavelet Transform produces
a total of L + N — 2 transform coeflicients at scale m — 1, out of which there are
a total of L independent coefficients. This means that there are N — 2 samples of
redundant data. Apart from the obvious inefficiency of storing redundant samples,
there is the added drawback that a given sequence c,,[n] whose length, L, is a power
of 2, will typically be transformed into sequences whose lengths are not a power of 2.
In fact, the lengths of the sequences ¢,,—1[n] and dp,_[n] may not necessarily be an
even number. This means that the extrapolated Discrete Wavelet Transform, in its
present form, cannot be recursively applied to the sequences ¢y, [n], cm-1[n], cm-2[n],
.+ ., as is usually done in multiresoiution decompositions.

In order to eliminate redundancy and in order to obtain a full radix-2 multiscale
transform, therefore, we need to choose L independent samples to be stored at scale
m — 1. We also require a method of reconstructing the remaining N — 2 samples from
the set which is stored (see Section 8.5.1.)

Clearly, there is more than one possible choice, and some choices are better than
others. Each choice gives us a different L x L DWT matrix which will produce a
critically sampled signal at its output. The criteria we use in selecting the L samples

to be stored are summarized below:

1. L/2 samples must be taken from the sequence cp,—1[n] and the remaining L/2
samples must come from the sequence dp,_;[]. We aim to choose contiguous

sets of samples from each sequence.
2. The L samples must be linearly independent.

3. The condition number of the resulting reduced DWT matrix must be small.

The condition number is an indication of the invertibility of the DWT.

Based on the above criteria, we choose to store the sequence values cp,—1[n] ; n =

0,1,2,---,L/2 1, and dm_,[n) ; n = —N/2 +1,-N/2+2,---,L/2 — N/2. With
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N | Condition
number
1.7962
3.6392
12.8647
71.9361
560.9095

—
N O 0O

Table 8.1: Condition numbers for the reduced extrapolated Discrete Wavelet Trans-
form matrix based on Daubechies’ N-coeflicient wavelets.

this choice, we have a reduced extrapolated DWT matrix which has a reasonable
condition number. Table 8.1 shows the condition numbers of the matrix for different

values of N.

8.5 Inversion of the Reduced Extrapolated Dis-
crete Wavelet Transform

Computing the inverse of the reduced extrapolated Discrete Wavelet Transform in-
volves two stages. The first stage is to use the stored transform coefficients, ¢,,—[n] ;
n=0,1,2---,L/2-1and dy,_1[n| ; n=—-N/2+1,-N/2+2,---,L/2 — N/2, to
recover the transform coefficients, ¢—1[n] ; n = —N/2+1,-N/2+2,---,—1 and
dm-1[n); n=L/2—-N/2+1,L/2— N/2+2,---,L/2—1, which were not stored. The
second stage is to apply the standard multiresolution reconstruction equation, (8.4),
to reconstruct the original sequence, c,[n} ; n=0,1,2,---,L — 1 from the full set of

transform coefficients.

8.5.1 Recovery of Transform Coefficients

The redundant transform coefficients which were not stored can be recovered from
those coefficients which were stored by manipulating the multiresolution decomposi-

tion and reconstruction equations.
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Lowpass transform coefficients at left boundary

In order to recover the required lowpass transform coefficients, cpm—1[n] ; n = —N/2+
1,-N/2 4+ 2,---,—1, we write down equation (8.21) for n = —~N/2 +1,—N/2 +
2,---,—1 as well as equation (8.4) for n =0,1,---, M — 1. Thus, we have two linear

systems of the form

Cm-1 = Tem, (8.56)
Crn—1
. . Chn1
o = 4 a|pe m ][], 50
de
m—1
| di
where
[ emoi[-N/2+1] [ dpi[~-N/2+1] |
e Cm_l[—N/2+2] e dm_I[—N/2+2]
Cm—1 = . ) dp1 = . ’
Cm—l[—]'] ] | dm—l[_]-]
cm-1[0] dm-1[0]
) 11 ) dm_1{1
. Cm ‘1[ ] , i = .1[ ] ’
_Cm—I[M/2_1] j _dm—l[M/z—I] |
an—2+O_Ni20 an-1+O_Ny21 O_nNni22 cr O_Ng2M-1
1 | av_sa+O_Nys0 aN-3+O_Ni41 aNv-2+O-nia2 - O_niam—
T=— ,
V2
a2 +0O_29 az+0O_2, as +0O_32 o O_am
V= [A‘ At | Be B‘]
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an-2 GN-4 **° Qo 0 O0|bv—2 by_s --- bo 0 0]
aN-1 an-3 - a 0 O f{b~v-1 by-z -+ b 0 0
0 anN-2 *°° Q2 0 0 0 bN._2 bz 0 0
1
= '\_/—5 0 aN-1 *°* aQas 0 0 0 bN—l b3 0 0
0 0 I DY 7 0 0 cee see ees b2 bO
0 0 o coo v a3 @] O O Y

The matrix T is of size (N/2—1) x M, while the matrix V is of size M x (M + N —2).
V is partitioned into four submatrices, A¢, A!, B¢ and B*, whose respective sizes are
M x (N/2-1), M x (M/2), M x (N/2—-1) and M x (M/2).

We may now eliminate c,, from equations (8.56) and (8.57) to obtain the following
formula for recovering the missing lowpass transform coefficients:

¢, = -TA' T (A'¢,_, + B°d:,_, + B'd},_,) . (8.58)

m

Highpass transform coefficients at right boundary

A similar process is used tc recover the required highpass transform coefficients,
dm-1[n); n=L/2—N/2+1,L/2—N/2+2,---,L/2—1, which were not stored. In this
case, we write down equation (8.44) forn = L/2—N/2+1,L/2—-N/2+2,---,L/2-1
as well as equation (8.4) forn=L - M,L—- M +1,.---,L —1. This results in linear

systems of the form

d; = Tem, (8.59)

Cm = [A‘ A¢ | B Be] L (8.60)
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where

[ cm[(L=N=M)/2+1] | [ dni[(L— N~ M)/2+1] |
r em-1[(L = N — M)/2 +2] i - | dmal=N-M)/2+2
m—1 — . ' m—-1 — . )
cm-1{(L — N)/2] ] | dna[(L - N)/2
(L~ N)/2+1] dma (L~ N)/2+ 1]
. cm[(L = N)/2+ 2] dm-1[(L — N)/2 +2]
Cm-1 = ) ] Ay = . )
cm-1[L/2-1] | | dm[L/2-1]
by_s + bn_s4 + by_3 +
A_ni20 -
A_Niam-3  A_Nyam—2 A_Nyam—1
ro L
=7 ,
Ay - bi+A_gm-3 bo+A_ypm_2 b3+ A_spm
| A0 0 Aoms btAoma2 bi+Aom |
V= [Ai A¢ | B} B"]
aN_2 GN-4 *** Qg 0 0 |byv—2 bn—4 bo 0 0|
ay_y an-3 --- a 0 0 |bv_1 bn-3 b 0 0
0 anN—2 °*°° Qo 0 0 0 bN_g bg 0 O
1
= ﬁ 0 an-y - a3 0 0 0 bN.-l b3 0 0
0 0 I/ " T\ 0 0 cee eee e b’.! bO
O 0 I/ Y 21 0 0 hee eee ees b3 bl_

The matrix T is of size (N/2—1) x M, while the matrix V is of size M x (M + N —2).
V is partitioned into four submatrices, A*, A%, B* and B¢, whose respective sizes are

M x(M/2), M x(N/2—1), M x (M/2) and M x (N/2—1). Note that the matrix V
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has exactly the same entries as in the case of the left boundary. The only difference
here is in the partitioning of the matrix.
We may now eliminate c,,, from equations (8.59) and (8.60) to obtain the following

formula for recovering the missing highpass transform coefficients:

e =T -TB®™'T (A'c,_, + A°¢,_, + B'd;,_,) . (8.61)

8.5.2 Multiresolution Reconstruction Algorithm

As a result of the recovery procedure described in Section 8.5.1, we have the complete
sequences ¢,,—1{n] and dy_1[n] for n = —N/2+1,-N/2+2,---,L/2—1. We may now
apply the standard multiresolution reconstruction equation i.e. equation (8.4) in order
to reconstruct the original sequence cp,[n]; n =0,1,2,---, L—1. Note that we obtain
perfect reconstruction in the absence of quantization or numerical roundoff errors.
This is because the wavelet extrapolation approach effectively applies the standard

multiresolution decomposition and reconstruction equations to the extrapolated data.

8.6 Comparison Between the Wavelet Extrapola-
tion Approach and Conventional Methods

In order to compare the wavelet extrapolation approach with conventional methods,
we consider the action of the Daubechies 4-coefficient Discrete Wavelet Transform
on a vector of length 8. The input vector is chosen to consist of the first 8 scaling

function coefficients for the ramp function, f(z) = z, at scale m =0, i.e.

T
[0.6340 1.6340 2.6340 3.6340 4.6340 5.6340 6.6340 7.6340 . (8.62)

Note that these scaling function coefficients can be computed exactly using either the

moment method or the quadrature method outlined Chapter 4.
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The entries in the 8 x 8 reduced extrapolated DWT matrix for N = 4 are:

0.4830 0.8365 0.2241 —0.1294 0 0 0 0
0 0 04830 08365 02241 —0.1204 0 0
0 0 0 0 04830 0.8365 0.2241 —0.1294
0 0 0 0 —0.0085 0.0129 05174 0.8924
0.4441 —0.6727 0.0129  0.2156 0 0 0 0
—0.1204 —0.2241 0.8365 —0.4830 0 0 0 0
0 0 —0.1294 —0.2241 0.8365 —0.4830 0 0
0 0 0 0 —0.1204 —0.2241 0.8365 —0.4830 |
(8.63)

As discussed in Section 8.4, the output vector of transform coefficients associated

with this matrix is of the form
[0 caall] ca2l cafd] dal-1) dalo] dafl] daf] - (69

The redundant coefficients, c¢_;[—1] and d_, 3], are not explicitly computed during the
forward DWT since they can be recovered during the inverse transformation stage.
However, we consider the full set of transform coefficients when comparing wavelet
extrapolation to conventional methods.

Tables 8.2 and 8.3 compare the lowpass and highpass transform coefficients corre-
sponding to the circular convolution approach, the symmetric extension approach and
the wavelet extrapolation approach. Symmetric extension was performed in two ways:
with duplication and without duplication of the boundary samples. The lowpass and
highpass transform coefficients are plotted in Figures 8-5(a) and 8-5(b). These results
confirm that the wavelet extrapolation approach correctly operates on (N/2 — 1)th
order polynomial data, by producing lowpass transform coefficients which also corre-
spond to an (N/2 — 1)th order polynomial, and highpass transform coefficients which

are precisely equal to zero.
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k| Circ. Symm. ext. Symm. ext. Wavelet

conv. (with dup.) (w/odup.) extrap.
-1 9.5206 1.2501 2.5696 -1.0353
01 1.7932 1.7932 1.7932  1.7932
11 4.6216 4.6216 4.6216 4.6216
2| 7.4500 7.4500 7.4500  7.4500
3| 9.5206 10.4425 10.3478 10.2784

Table 8.2: Lowpass Daubechies-4 transform coefficients, c_, [k], for the ramp function.

k Circ. Symm. ext. Symm. ext. Wavelet

conv. (with dup.) (w/odup.) extrap.
-1 | -2.8284 -0.6124 -0.9659  0.0000
0| 0.0000 0.0000 0.0000  0.0000
1| 0.0000 0.0000 0.0000  0.0000
2| 0.0000 0.0000 0.0000  0.0000
3|-2.8284 0.6124 (.2588  0.0000

Table 8.3: Highpass Daubechies-4 transform coefficients, d_,[k], for the ramp func-
tion.

£
z 1
°
-1.5}p
2} Circudar convolution
with dup
— (without
25} Wavelet axtrapolation
1 o ; 2 3 EI ] ; 2 3
k k
(a) (b)

Figure 8-5: (a) Lowpass Daubechies-4 transform coefficients, c_, [k], and (b) Highpass
Daubechies-4 transform coeflicients, d_,[k], for the ramp function.
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8.7 Application to Image Data

In this section, we present examples of the application of the reduced extrapolated
Discrete Wavelet Transform to image data. Image data often contains some poly-
nomial variation, e.g. a gradual change in lighting intensity corresponds to a linear
variation in the data. Typically, however, there is a considerable lack of smoothness
in the data. This may be due to nonuniform variation in the image source or it may
be due to random noise introduced by the sampling process. Through the examples
presented in this section, we demonstrate that the reduced extrapolated DWT can
successfully eliminate visible edge effects in the transformed image, even when the
original image data does not correspond to a polynomial.

Figure 8-6 shows the coarse resolution and the detail snbbands resulting from a two
stage decomposition of a 512 x 512 pixel image using the Daubechies-10 extrapolated
DWT algorithm. In the detail subbands, the zero and small positive coefficients

appear dark, while the small negative coefficients appear light.

Figure 8-6: Two stage decomposition of an image using the Daubechies-10 extrapo-
lated DWT algorithm.

The coarse resolution subband obtained in the above example is compared with
the coarse resolution subband corresponding to circular convolution in Figures 8-7(a)

and 8-7(b). Figure 8-7(a) shows the coarse resolution subband obtained when the
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512 x 512 image is decomposed two levels with a Daubechies 10-tap filter, using
circular convolution. Notice the presence of edge effects, along the right hand edge
and the bottom edge of the subband image, which result from the false discontinuity
introduced by wrapping the image around a torus. Figure 8-7(b) shows the result
when the same steps are performed using the extrapolated DWT algorithm, with all

other parameters unchanged. No edge effects are apparent in this case.

@ | (b)

Figure 8-7: Coarse resolution subband after two levels of decomposition with a
Daubechies-10 wavelet filter. (a) DWT with circular convolution (b) Extrapolated
DWT algorithm.

Often in image processing applications, the image is broken down into blocks and
each block is processed separately!. In this case, the presence of edge effects is far more
apparent. In the example of Figure 8-8(a), a 512 x 512 image was broken down into
four blocks. Each block was processed separately using a two stage DWT with circular
convolution and a 10-tap Daubechies filter. Shown in the figure is a composite image
obtained by piecing together the four coarse resolution subbands. The edge effects in
this example are considerably more disturbing since they now produce artifacts along

the horizontal and vertical centerlines of the composite image. Using the extrapolated

le.g. for memory efficient processing of large images.
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DWT algorithm. with all other parameters unchanged. these image artifacts can be

substantially eliminated. as shown in Figure 8-8(b).

() | (h)

Figure 8-8: Composite image derived from coarse resolution subbands of four image
blocks. Each block was decomposed two levels with a Daubechies-10 wavelet filter,
(a) DWT with circular convolution (b) Extrapolated DWT algorithmn.

Note that as the number of DWT stages increases. the edge artifacts due to
circular convolution (and other conventional approaches) tend to propagate further
and further into the low resolution image. Thus. the reduced extrapolated DWT
is well snited to situations where an image is to be viewed at different resolutions.
Obvious areas of application include the progressive transmission of image (or video)
data. zooming and the archival of high resolution image data for displavs of a lower.
but variable. resolution. The examples we have considered demonstrate how the
reduced extrapolated DWT can be applied to square or rectangular images. However.
it is also possible to apply the wavelet extrapolation approach to images of irregular

shape e.g. for region of iuterest based compression of images.



Chapter 9

Hierarchical Wavelet-Based Image

Compression

In this chapter, we discuss the application of wavelets to image compression. Our
goals are twofold. First we evaluate the performance of wavelet techniques in relation
to more conventional transform coding techniques. Here, we focus our discussion
on a comparison between wavelet-based methods and methods which are based on
or related to the Fourier transform, e.g. the Discrete Cosine Transform-based JPEG
compression scheme. Secondly, we discuss how the unique features of wavelets may be
exploited in practical compression applications. We use the multiresolution property
to develop a hierarchical wavelet-based compression code which is used for the pro-
gressive transmission of images over narrow bandwidth networks. Various examples

are presented to demonstrate the capabilities of the wavelet approach.

9.1 Transform Coding of Images

In transform coding, the image data is transformed into a representation which is more
amenable to compression than the original representation. The transform coefficients
are then encoded using a combination of one or more coding techniques. Often, the
transform coefficients are floating point numbers which must be represented in finite

precision arithmetic before encoding. As a result, it is common (but not always
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C ressed
Trunsformer Quantizer Encoder i image

Figure 9-1: Block diagram for transform coding of images.

necessary) for transform coding schemes to be lossy in nature. Such lossy schemes
prove to be very desirable for a large class of practical applications, since they can
provide a considerable improvement in compression performance over lossless schemes,
at a relatively small cost to image quality. For example, the best compression ratio
that could be expected with a lossless scheme is of the order of 2:1 or 3:1. Lossy
schemes, on the other hand, can usually achieve compression ratios of 10:1 or higher
without any noticeable deterioration in the compressed image.

Figure 9-1 shows the typical stages in a lossy transform coding scheme. The first
stage is a representation stage, which is usually accomplished through the application
of a unitary transform such as the Discrete Fourier Transform (DFT), the Discrete
Cosine Transform (DCT), the Hadamard transform, or the Discrete Wavelet Trans-
form (DWT). The general idea behind tkLis transformation stage is that a significant
portion of the image energy will often be contained in a relatively small number
of transform coefficients. The second stage is a decision making stage, known as
quantization. In the quantization stage, decisions are made as to how the transform
coefficients are to be represented using a finite number of bits. Using rate-distortion
theory, it is possible to determine the optimal bit allocation which minimizes the
image distortion, according to some error criterion such as mean squared error. In
general, this means that transform coefficients with greater energy will be quantized
more accurately than those with a lower energy. The quantization stage is the primary
source of compression loss, and the decisions made during this stage will control the
tradeoff between compression (bit rate) and image quality. The third stage is also a
representation stage, in which the quantized transform coefficients are sequenced and
then further compressed, if possible, in a lossless manner. This is done using tech-

aiques such as run-length encoding, which is used to compactly represent strings of
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repeated symbols, as well as entropy coding, which achieves compression by exploiting
statistical nonuniformity in the data stream. Entropy coding schemes, e.g. Huffman
coding and arithmetic coding, are so named because they attempt to reach a theo-
retical compression limit which is given by the entropy of the probability distribution

of the data [29, 42].

9.2 Image Coding Using the Wavelet Transform

Here, we describe some of the implementation details of a hieraichical wavelet-based
image compression scheme. By hierarchical we mean that the compressed bitstream is
sequenced in such a manner that the coarse resolution component of the transformed

image can be decoded first, followed by the next level of detail, and so on. Figure 9-2

Raw Color space Wavelet Uniform scalar Run-length Huffman| Compressed
jamge converter transform quantizer encoder coder image

Figure 9-2: Wavelet-based image coder.

illustrates the main components of the wavelet-based image coder. We use similar
strategies to those used in a standard JPEG image coder, so that a reasonable perfor-
mance comparison can be made between DWT-based compression and DCT-based
compression. The input to the wavelet coder is either an 8-bit grayscale image, or a
24-bit RGB image. Color images are fed through a preprocessing stage which con-
verts the color space from RGB to YCbCr as per CCIR Recommendation 601. (This
stage alone was observed to improve the compression ratio by as much as a factor of
2.) The DWT is then separately applied to the luminance (Y) channel and each of
the chrominance (Cb,Cr) channels. Each scale of a DWT, consisting of a horizontal,
a vertical and a diagonal subband, is quantized using a uniform scalar quantizer with
a step size appropriate to that scale. In general, the strategy we adopt is to assign an
extra bit of precision to each coarser scale, up to a maximum precision of 7 bits. Due

to the characteristics of the human eye, the two chrominance channels can be gener-
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ally be assigred a smaller number of bits than the luminance channel. Note that the
quantization procedure requires various translation and scaling operations in addition
to rounding operations, so as to ensure that the quantized coefficients lie within the
proper range for digital representation. The coarse resolution subband needs to be
treated separately, since it contains texture information. Through experiment, it was
found that the texture information must be stored at a precision which is several bits
greater than the original 8 bits/pixel/channel.

The quantized data is then sequenced so that the coarse resolution data is trans-
mitted first, followed by increasingly finer scales. Due to quantization, there will
typically be long strings of zeros in the fine scale data stream. These strings are
compressed losslessly using run-length encoding. In our implementation, we iden-
tify run-lengths by setting the most significant bit in a byte. Thus, we may have a
maximum run-length of 128, after which a new run-length is begun. The entropy
coding stage consists of a Huffman coder applied to the fine scale data stream. The
actual Huffman code is transmitted prior to sending the fine scales, along with other
information such as the encoded length of each of the fine scales.

Decoding of the compressed data stream essentially involves reversing the above
operations. Due to the sequencing of the compressed data stream, it is possible to
reconstruct the image to up to a desired resolution (not exceeding the original resolu-
tion,) depending on how much data is decoded. Note, however, that quantization loss
is not recoverable. The ability to reconstruct a lower resolution image from a portion
of the compressed data stream allows us to use the wavelet compression technique for
tasks such as the progressive transmission of image data, or the retrieval of an image
at multiple resolutions from a single archived image file.

Note that a number of alternative coding strategies are possible. For example,
vector quantization [33] or zero-tree coding [45] can be used to exploit the correlations
that can occur between subbands. These schemes usually result in improved coding

performance, but at a somewhat higher computational cost.
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9.3 Comparison of DWT-Based Compression and
DCT-Based Compression

The wavelet-based image coder was used to evaluate the general performance char-
acteristics of the DWT in relation to the DCT. Since the compression of color images
is influenced by operations such as dithering and color space conversion, which can
make comparison more difficult, we focus our discussion on 8-bit grayscale images.
We base our comparison on the variation of Peak Signal to Noise Ratio (PSNR) with

compression ratio. PSNR is defined as

2557
Spq (zlplla) - 2iplla))®

PSNR = 10log,, (9.1)

where z{p][q] is the intensity of a pixel in the original image and Z[p](g] is the intensity
of the pixel after the image has been compressed and decompressed. Figure 9-3 shows
a typical plot obtained by compressing the peppers image, with the resolution of the
original being 512 x 512 pixels at 8 bits/pixel. The wavelet coder was operated using
a 5-stage DWT and a Daubechies 6-tap filter with a block size of 512 x 512. The
DCT coder was a standard JPEG implementation with a block size of 8 x 8. The
figure shows that the performance of the wavelet coder is similar to that of the JPEG
cceder at compression ratios below 20:1. At higher compression ratios, however, the
wavelet coder offers a considerable performance improvement over the JPEG coder.

While we have used PSNR to perform an objective comparison of image quality,
it is not generally a good indicator of subjective quality. For example, Figure 9-
4 compares the wavelet compressed image with the JPEG compressed image at a
common PSNR of 27.2 dB!. Although the two images are of the same objective
quality, the JPEG image reveals blocking artifacts which have a significant impact
its perceptual quality.

Note that the DWT is able to expose spatial correlations in the image data as

well as frequency correlations. Spatial correlations appear as similarities between

1Note that the wavelet compressed image has a higher compression ratio than the JPEG image.
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Figure 9-3: Comparison of wavelet and JPEG compression schemes as a function of
compression ratio.
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Figure 9-4: 512x512 pixel 8-bit grayscale peppers image compressed at 27.2 dB PSNR
using (a) Daubechies-6 wavelet algorithm (57.3:1) (b) JPEG algorithm (43.9:1). Note
the blocking etfects which affect the perceptual quality of the JPEG image.
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neighboring pixels within a subband, while frequency correlations appear as similar-
ities across subbands e.g. due to the presence of edges. At high compression ratios
in particular, the spatial correlations manifest themselves as strings of zeros in the
quantized DWT coefficients. The DCT, on the other hand, is only capable of expos-
ing frequency correlations. In the JPEG coder, therefore, the only means of detecting
spatial correlations is through the 8 x 8 windowing operations. This difference be-
tween the two transforms helps to explain why the DWT can offer a performance

advantage over the DCT.

9.4 Progressive Transmission

Progressive transmission is a capability which is particularly useful when large amounts
of image data are to be transmitted over a narrow bandwidth communication chan-
nel. It is easily achieved by proper sequencing of the quantized DWT coefficients.
Consider, for example, the hierarchy introduced by a two-stage DWT as illustrated
in Figure 9-5(a). The coarse resolution subband represents 1/16th of the total orig-
inal image data. By transmitting this component first, it is possible for the receiver
to view a recognizable subsampled version of the original image, while the remain-
ing data continues to arrive over the communication channel. The next in sequence
are the three detail subbands in the upper left quadrant, which are transmitted in
compressed form. Once these subbands have been received and decoded, they are
combined with the coarse resolution subband to produce a higher resolution image
i.e. the upper left quadrant of Figure 9-5(b). The remaining three quadrants must
now be transmitted in compressed form, decoded and combined with the upper left
quadrant in order to produce the full resolution image shown in Figure 9-5(c).

The intermediate subsampled images can be displayed at the resolution of the
original image by using an interpolation technique. From a computational standpoint,
the most efficient interpolation is a zero-order hold scheme i.e. pixel replication. A
considerably better (and more natural) interpolation can be obtained by applying

the inverse DWT, using the subsampled image as the coarse resolution subband with
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Figure 9-5: Wavelet image hierarchy.



Update | Bit rate (bits/pixel)
1 0.06
2 0.10
3 0.18
4 0.27
5 0.33

Table 9.1: Bit rates for progressive transmission example.

the remaining detail subbands assumed to be zero. This amounts to a bandlimited
interpolation using the lowpass discrete wavelet filter.

Figures 9-6 to 9-10 show a progressively decoded sequence of images. Here we have
used zero-order hold interpolation for speed. The total time required for decoding and
display on a Sparc-10 workstation was of the order of 4 seconds. Table 9.1 shows the
bit rates corresponding to each image in the sequence. The final image, Figure 9-10,
corresponds to a compression ratio of 24.4:1 at 32.0 dB PSNR. A close examination of
this reconstructed image reveals the aliasing effects which result from incomplete alias
cancellation during the synthesis of the quantized transform coefficients. Nonetheless,
the quality of this image is likely to be adequate for many applications. The original
image at 8 bits/pixel is shown in Figure 9-11.
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Figure 9-6: Progressive transmission example: first update using zero-order hold
interpolation (0.06 bpp).
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Figure 9-7: Progressive transmission example: second update using zero-order hold
interpolation (0.10 bpp).
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Figure 9-8: Progressive transmission example: third update using zero-order hold
interpolation (0.18 bpp).
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Figure 9-9: Progressive transmission example: fourth update using zero-order hold
interpolation (0.27 bpp).
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Chapter 10

Conclusions

In our concluding remarks, ve summarize the main contributions of this work, and

we provide directions for future related research.

10.1 Contributions

The present work includes contributions which are of both a theozetical and a practical
nature. Here we highlight the most significant aspects of these contributions.

We have investigated the use of wavelets for the solution of ordinary and par-
tial differential equations. Our study has included the development of two main
hierarchical approaches for solving the multiscale wavelet-Galerkin equations. The
first approach is based on the use of an adapted biorthogonal wavelet construction
due to Dahlke and Weinreich [15]. Here, our main theoretical contribution is a proof
that the construction diagonalizes the multiscale wavelet-Galerkin matrix for the one-
dimensional poiyharmonic equation. This fact went unnoticed by the authors of the
original construction; their goal was o produce a matrix with a block diagonal struc-
ture. We have implemented a hierarchical solver based on the adapted biorthogonal
wavelet approach and compared its cost and convergence characteristics with those
of a non-adapted orthogonal wavelet implementation. We found, however, that the
main drawback with the adapted biorthogonal construction is that it is applicable

only to a limited class of problems. The second hierarchical approach is based on the
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diagonal preconditioning idea presented by Beylkin [6, 8], and it has a much wider
range of applicability. We studied the effect of diagonal preconditioning on the con-
dition number of the multiscale wavelet-Galerkin matrix for a one-dimensional model
problem. We then implemented a hierarchical iterative solver for this problem and
demonstrated that it requires O(L) operations for an L-point discretization. We have
implemented the wavelet-Galerkin method in higher dimensions. In particular, we
have presented results for the wave equation in two space dimensions.

Our investigation into the treatment of boundaries in ordinary and partial dif-
ferential equations has led to the development of the wavelet ezxtrapolation inethod.
The wavelet extrapolation method may be regarded as a solution to the problem of
wavelets on a finite interval, and it is one of the main contributions of this research.
We have used the wavelet extrapolation idea to develop a high order method for im-
posing boundary conditions in the wavelet-Galerkin approach. We have implemented
the method for a two-point boundary value problem, and studied its convergence and
stability properties. We have also shown that the method can be applied to arbitrary
boundaries in higher dimensions, since boundary points need not coincide with mesh
points.

We have extended the wavelet extrapolation method to initial value problems. As
a result, we are able to use the wavelet-Galerkin method to discretize the temporal
dimension. The two main issues we have addressed are the application of initial
conditions, and the construction of stable time integration schemes. The schemes we
have developed are shown to possess large regions of absolute stability. They also
exhibit high order convergence characteristics which are determined by the number
of vanishing moments of the wavelet. We have implemented the method for a model
problem and presented numerical results.

Wc have shown how to extend the wavelet extrapolation approach to multiple
scales by developing a Discrete Wavelet Transform for finite length data, which is prac-
tically free of edge effects. We designed the extrapolated Discrete Wavelet Transform
to correctly operate on polynomial data. This means that when the input data corre-

spouds to a polynomial of order p — 1, (where p is the number of vanishing moments
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of the wavelet,) the lowpass transform coefficients also correspond to a polynomial
of order p — 1, while the highpass transform coefficients are precisely equal to zero.
We have implemented the method and contrasted it with conventional approaches,
such as circular convolution and symmetric extension. We have presented example
applications to image data.

Finally, we have investigated the use of wavelets for data processing applications.
Here, our main contribution is a sotiware tool for the hierarchical compression of
image data. We compared the performance of our wavelet-based algorithm with the
JPEG standard and found that the wavelet approach can often outperform approaches
which are based on the Fourier transform. We have also demonstrated the use of our
software for the progressive transmission of images over narrow bandwidth networks.

In addition to the specific implementations described above, we have developed a
software library of general purpose wavelet routines. This library contains a number

of fast algorithms, including

1. Algorithms for computing filter coefficients for Daubechies’ orthogonal wavelets,
as well as the Dahlke-Weinreich adapted biorthogonal wavelets. These algo-
rithms use a cepstrum-based approach which takes advantage of the FFT. FFT-
based algorithms for computing the Battle-Lemarié wavelets (orthogonalized

B-splines) have also been developed.

2. Algorithms for computing orthogonal and biorthogonal scaling functions and

wavelets from their filter coefficients.
3. Algorithms for computing the integrals described in Chapter 4 i.e.

(a) Scaling function and wavelet coefficients in one and two dimensiors.
(b) Moments of scaling functions.

(c) Connection coeflicients for orthogonal and biorthogonal wavelets.

4. Algorithms for scaling function and wavelet expansions in one and two dimen-

sions.
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5. Algorithms for orthogonal and biorthogonal Discrete Wavelet Transforms in
one, two and three dimensions. A parallel version of the orthogonal DWT has

also been implemented.

10.2 Future Research Directions

The work we have described provides several opportunities for continuing research.
In the area of numerical modeling and analysis, for example, we have developed and
demonstrated the validity of various concepts for hierarchical solution schemes and
the treatment of boundaries. While our results have been promising, many of these
concepts have yet to be incorporated into full scale analyses of real world problems.
We believe that the iterative hierarchical schemes, in particular, show considerable
promise for the analysis of large scale systems. The adapted biorthogonal approach
appears to lack sufficient flexibility for general use in 2D and 3D analysis, although
it does lead to a very elegant solution for certain problems in one dimension.

We believe that the wavelet extrapolation method has significant potential be-
cause of its generality and ease of implementation, and because it arises naturally
from the polynomial approximation capabilities of scaling functions. In the solution
of boundary value problems, there is a parallel between the wavelet extrapolation
approach for the wavelet-Galerkin method, and extrapolation approaches such as
Kreiss’ approach [41] for the finite difference method. We expect similar merits and
limitations, however, there is scope for a more detailed comparative study. For initial
value problems, the wavelet extrapolation approach leads to the intriguing possibility
of discretizing the temporal dimension at multiple scales. Again, this is an area for
further investigation.

The wavelet extrapolation approach for the Discrete Wavelet Transform appears
to have interesting applications in image and video processing. For example, it could
be applied to the boundary of an irregular region in an image, or to a sudden change
of scenery in a video sequence, thus permitting selective compression. The behav-

ior of the extrapolated Discrete Wavelet Transform and its inverse under coefficient
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quantization requires further investigation. In this situation, it may be necessary to
use an alternative storage strategy for the transform coefficients to the one that we
have proposed.

Finally, the hierarchical data compression software demonstrates considerable po-
tential for further development. In addition to the progressive rendering capability,
we would like to further exploit the features of wavelets to provide interactive capa-
bilities such as zooming and panning. Eventually, it is hoped that the software can

be enhanced to process video data.
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