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Abstract

This thesis introduces several new models in operations management, that are mo-
tivated by practical settings. It studies these models in an optimization-driven ap-
proach, employing mathematical programming techniques to derive important struc-
tural and algorithmic insights on the corresponding problems.

In the first part of the thesis, we study subsidy allocation problems under budget
constraints and endogenous market response, where the central planner's objective
is to maximize the market consumption of a good. We first consider co-payment
subsidies, that are paid to manufacturing firms per unit sold. We focus on "uniform
co-payments", in which each firm receives the same co-payment, regardless of its cost
structure, or efficiency. Uniform co-payments are frequently implemented in practice.
Therefore, a natural question is whether uniform co-payments are in fact the best
that the central planner can do; or, more generally, how do they perform compared
to the optimal co-payment allocation? Notably, we first identify relatively general
sufficient conditions such that uniform co-payments are optimal, even if the firms are
heterogeneous, and if the central planner is uncertain about the market response. We
then complement the effectiveness of uniform co-payments, by studying a very relevant
setting where they are not optimal. We show that, for any instance of this model,
uniform co-payments are guaranteed to induce at least 85% of the optimal market
consumption. In summary, uniform co-payments turn out to be surprisingly powerful
in maximizing the market consumption of a good. We then consider lump sum
subsides, which are an alternative subsidy mechanism also implemented in practice.
We show that the problem of optimally allocating lump sum subsidies is NP-hard,
and discuss two simple allocation policies that have good performance guarantees.

In the second part of the thesis, we introduce a model to incorporate the cost of
handling orders at a central distribution center, into the procurement decisions of a
company. We show how structural results for this model lead to a practical method
to select the best case pack size per SKU in procurement contracts, as well as to serve
orders at the distribution center. Furthermore, we test this method on real data from
a large utility company, finding significant total cost reductions.
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Introduction

This thesis introduces several new models in operations management, that are mo-

tivated by practical settings. It studies these models in an optimization-driven ap-

proach, employing mathematical programming techniques to derive important struc-

tural insights on the corresponding problems, as well as developing new, and theo-

retically efficient, algorithms to solve them. The main research question addressed in

Part I of the thesis is, how should a central planner increase the market consumption

of a good, by allocating subsidies to its competing and selfish producers, when there

is a budget constraint? The motivation to allocate such subsidies stems from the

positive societal externalities generated by the aggregated market consumption, and

from the fact that, left alone, the resulting market equilibrium induced by the selfish

competing producers might not be socially optimal. To address this problem, we

study different subsidy allocation problems under budget constraints and endogenous

market response. We focus on settings where, due to practical reasons, it is more

convenient to allocate subsidies to the firms producing the good rather than to the

consumers.

We first consider co-payment subsidies, that are paid to the manufacturing firms

for each unit sold in the market. We focus on "uniform co-payments", in which each

firm receives the same co-payment, regardless of its cost structure and efficiency.

Uniform co-payments are frequently implemented in practice. Therefore, a natural

question is whether uniform co-payments are in fact the best that the central planner

can do; or, more generally, how do they perform in maximizing the market consump-

tion of a good compared to the optimal co-payment allocation? Notably, in Chapter 1

we identify relatively general sufficient conditions on the firms' cost structure, under
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which uniform co-payments are optimal, even if the firms' efficiency levels are arbi-

trarily different. Moreover, we show that this insight is preserved, under slightly less

general conditions, even when the central planner faces uncertainty about the endoge-

nous market response, or when the objective of the central planner is to maximize

the social welfare. We then complement the effectiveness of uniform co-payments,

by presenting extensive simulation results in relevant settings where they are not op-

timal. The computational experiments suggest that uniform co-payments induce a

market consumption that is, on average, very close to the optimal.

In Chapter 2 we focus on the important case of Cournot competition with linear

demand and constant marginal costs. This is a fundamental model, that generally

provides interesting insights. For this model, we characterize the optimal co-payment

allocation, which consists of giving larger co-payments to less efficient firms. We argue

that this policy is hard to implement in practice, and thus we study the performance

of the more practical, and conceptually simpler, uniform co-payments. We show

a tight worst-case parametric performance guarantee, which depends on the total

number of firms in the market. This leads to an asymptotically tight 85% uniform

worst-case performance guarantee. Namely, we show that uniform co-payments will

induce at least 85% of the market consumption induced by optimal co-payments, in

any instance of this model. Taken together, the results of the first two chapters of

the thesis suggest that uniform co-payments are surprisingly powerful in maximizing

the market consumption of a good. Therefore, the decision makers facing this type

of problems should not spend time and resources designing a more sophisticated co-

payments allocation policy, as the simple uniform co-payments policy is likely to

provide most of the potential benefits.

In Chapter 3 we consider lump sum subsides, which are an alternative subsidy

mechanism also implemented in practice. We model this problem as a novel applica-

tion of a continuous knapsack problem with separable convex utilities. We show that

the problem is NP-hard, and we provide two simple algorithms that have worst-case

performance guarantees, as well as a practical interpretation. Moreover, we identify

special settings where these simple algorithms are actually optimal. These results sug-

16

1 11 I FIPI | 1II1 IIF I 1 | I I lIy Illl' III ll ll i 'I|' 1 I111 l 11 ll ill'llw Ii J 11 1 1 n i M l' 'I 1 l 1 -ll " l ' 111 11 , 1 111ll 11 " -l iM



gest that simple subsidy allocation policies have a good performance in minimizing

the market price of a good.

In part II of the thesis we focus on supply chain procurement. Procurement

decisions are often made in a silo, without taking into consideration the effect that

they might have on the internal supply chain costs of the company. In Chapter 4, we

introduce a novel optimization framework to incorporate the cost of handling orders at

a central distribution center, into the procurement decisions. Specifically, our model

explicitly considers the effects of the case pack selection in procurement contracts, on

the purchasing and handling costs of a company.

We show how structural results for this model lead to a practical method to

select the best case pack size per SKU, as well as to serve orders at the distribution

center. Furthermore, we test our method on real data from a large utility company.

The simulation results suggest that our method has the potential to significantly

reduce the purchasing and handling costs for the company. Importantly, the optimal

policy suggested by our method is simple to implement, and to communicate. It only

requires to compare the easily computable long run average purchasing and handling

costs induced by each available case pack size, therefore facilitating the incorporation

of the distribution center's handling costs into the procurement department decisions.

We additionally consider the problem of choosing multiple case pack sizes per

SKU. For this problem we show that, under some assumptions, selecting at most

three sizes can provide a guaranteed performance when compared to the optimal

policy. This is important because the optimal policy can potentially imply selecting

every case pack size available from the supplier, making it unlikely to be applied in

practice.

17



Part I

Subsidy Allocation with

Endogenous Market Response
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Chapter 1

On the Effectiveness of Uniform

Co-payments in Maximizing Market

Consumption

1.1 Introduction

In this chapter we provide a new modeling framework to analyze a subsidy allocation

problem with endogenous market response, under a budget constraint on the total

amount of subsidies that the central planner can pay. The central planner's objective

is to maximize the aggregated market consumption of a good. Using our framework,

we identify sufficient conditions on the firms'marginal cost functions, such that uni-

form subsidies are optimal. That is, the simple policy that allocates the same subsidy

to every firm is optimal, even if the firms are heterogeneous, and their efficiency levels

are arbitrarily different. This is an important insight because uniform subsidies is a

policy commonly used in practice, primarily because of its simplicity and perceived

fairness. Moreover, we prove that, in many cases, uniform subsidies do not only ob-

tain the optimal aggregated market consumption, but at the same time obtain the

best social welfare solution. Furthermore, we show that the optimality of uniform

subsidies is usually preserved, even if the central planner is uncertain about the spe-
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cific market conditions. Finally, we present simulation results in relevant settings

where uniform subsidies are not optimal. They suggest that the aggregated market

consumption induced by uniform subsidies is relatively close to the one induced by

optimal subsidies.

We study the important setting in which a central planer aims to impact a given

market. Specifically, her goal is to increase the aggregated market consumption of a

good, by providing co-payment subsidies, which are paid for each unit that is produced

to competing (profit maximizers) heterogeneous firms. The motivation to provide

such subsidies stems from the positive societal externalities that can be obtained by

increasing the aggregated market consumption, and from the fact that left alone the

resulting market equilibrium induced by the selfish competing producers might not

be socially optimal. A current example are the recent efforts around the production

of infectious disease treatments to the developing world, such as antimalarial drugs

(e.g., Arrow et al. (2004)), and vaccines (e.g., Snyder et al. (2011)).

Furthermore, typically the central planer makes her subsidy allocation in the pres-

ence of a budget constraint, which is often determined prior to the actual subsidy allo-

cation decision. For example, in some cases the central planner could be a foundation

that raised a certain amount of money to address a related issue, and it is then facing

the challenge of how to allocate the budget towards co-payment subsidies. Another

challenge typically faced by the central planner is that the intervention in the market

through the allocation of subsidies will likely change the market equilibrium induced

by the competing producers. Hence, to optimally allocate the subsidies, the central

planer has to take into account these complex dynamics.

We propose a novel modeling framework to study strategic and operational issues

related to co-payment subsidies allocation. The models that we develop explicitly

capture the setting of a central planner aiming to maximize the aggregated market

consumption of a good, in the presence of a budget constraint, and market compe-

tition between heterogeneous profit maximizing firms. The firms are heterogeneous

in terms of their respective efficiency and cost structure. This is modeled through

firm-specific marginal cost functions. The models that we develop fall into the class
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of Mathematical Program with Equilibrium Constraints (MPEC). They are relatively

general and capture different cost structures, inverse demand functions, as well as

a range of market dynamics of quantity competition that are typical to the settings

being studied. For example, the models capture as special cases Cournot Compe-

tition with linear demand, as well as Cournot Competition under yield uncertainty

with linear demand and linear marginal cost functions. MPEC models are typically

computationally challenging, both to solve optimally and to analyze, see for example

Luo et al. (1996). However, by reformulating these problems, we are able to develop

tractable mathematical programs that provide upper bounds on the optimal objec-

tive value, and allow the development of efficient algorithms. Even more importantly,

they allow analyzing the effectiveness of practical policies. In particular, the chapter

focuses attention on the effectiveness of the commonly used uniform co-payments, in

which the per-unit co-payment is the same for all competing firms in the market. The

common use of uniform co-payments, in spite of the existence of heterogeneous firms,

each with potentially different efficiency level, is primarily driven by the simplicity

of implementation, as well as some notion of fairness. The chapter addresses the

important question of to what extent uniform co-payments are effective in increas-

ing the aggregated market consumption, compared to potentially more sophisticated

policies that could allow the co-payment to be firm-specific. Through the mathe-

matical programming upper bound relaxation that we develop, the chapter provides

some surprising insights. First, we can show that for a large class of firm-specific cost

structures, uniform co-payments are in fact optimal. That is, there is no loss of effi-

ciency in using uniform co-payments in these settings compared to any other possible

co-payment allocation. Second, this insight is maintained even if one considers the

case in which there exists uncertainty about the future market state, and the central

planner has to set up the subsidies prior to the realization of the market condition.

Third, in many cases uniform subsidies do not only obtain the optimal (maximal)

aggregated market consumption, but at the same time obtain the best social welfare

solution. Finally, in other settings, where uniform subsidies are not optimal, extensive

computational experiments suggest that they still perform, on average, very close to

21



optimal.

To demonstrate the applicability of the model and the relevance of the issues

studied in the chapter, we next discuss in detail the case of antimalarial drugs.

1.1.1 Application: Global Subsidy for Antimalarial Drugs

A motivating example, where the setting modeled in this chapter is observed in prac-

tice, is the global fight against malaria. This has been a long standing challenge for

the healthcare industry. It is estimated that in 2012 about 200 million cases occurred

worldwide, and more than 600,000 people died of malaria, see the world malaria re-

port by the World Health Organization (2013). To make matters worse, recently

chloroquine, the traditional drug for treating malaria, has become less effective due

to growing resistance to this medication. Artemisinin combination therapies (ACT)

have been identified as the successor drugs to chloroquine in order to treat malaria;

however, they are at least ten times more costly, see White (2008).

In 2004 the Institute of Medicine (IoM) reviewed the economics of antimalarial

drugs. It identified that several manufacturers compete in an unregulated market,

and concluded that the most effective way of ensuring access to ACTs for the greatest

number of patients would be to provide a centralized subsidy to the producers. The

goal would be achieving high overall coverage of ACTs, therefore, the subsidized

price to the end user should be at least as low as chloroquine's. Moreover, the

IoM recognized that firms had not invested in producing ACTs on the scale needed

to supply Africa, because there had been no assured market, therefore, the global

capacity to produce ACTs was quite limited, see Arrow et al. (2004).

In this context, the Roll Back Malaria Partnership and the World Bank, developed

in 2007 the Affordable Medicines Facility for malaria (AMFm), a concrete initiative

to improve access to safe, effective, and affordable antimalarial medicines. In 2008,

the Global Fund started hosting and managing the AMFm, which began operations

in July 2010. By July 2012, the AMFm had managed a budget of US$336 millions

-pledged by UNITAID, the governments of the United Kingdom and Canada, and the

Bill & Melinda Gates Foundation- to pursue its main objective: increasing the con-
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sumption of ACTs, as detailed in their evaluation report online AMFm Independent

Evaluation Team (2012).

As usually implemented in practice, the policy proposed by AMFm consisted

of giving a uniform co-payment, see AMFm Independent Evaluation Team (2012).

Namely, each firm receives the same co-payment, for each unit sold, regardless of any

differences among them. Moreover, there are 11 firms participating in the AMFm

program, and they range from large pharmaceuticals like Novartis, with manufactur-

ing plants in USA and China, and Sanofi, with manufacturing plants in Germany

and Morocco, to smaller firms with manufacturing plants in Uganda, India and Ko-

rea, see the market intelligence aggregator, funded by UNITAID, A2S2 (2014). Note

that the firms receiving the uniform co-payments are highly heterogeneous, both in

their market size and location-wise. One additional relevant characteristic of the

AMFm program is that all the ACT manufacturers that receive co-payments commit

to supply antimalarials on a no profit/no loss basis, see the report by Boulton (2011).

Giving the right incentives to the firms producing these drugs can increase access to

them, hence, it has the potential to have a significant impact on this global problem,

see Arrow et al. (2004).

Results and Contributions. The main contributions of this chapter are the fol-

lowing:

New modeling framework for a subsidy allocation problem. We introduce a

general optimization framework to analyze subsidy allocation problems with

endogenous market response, under a budget constraint on the total amount of

subsidies the central planner can pay. The central planner's objective is to max-

imize the aggregated market consumption of a good. Our models allow general

inverse demand and marginal cost functions, assuming only that the inverse

demand function is decreasing in the aggregated market consumption, and that

the firms' marginal costs are increasing. These are standard assumptions in the

literature. In fact, they are more general than assumptions usually considered.

Sufficient conditions for the optimality of uniform co-payments. We compare
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uniform co-payments to the optimal, and potentially differentiated, co-payment

allocation, which provides more flexibility, but it is potentially significantly

harder to implement. The main result in this chapter shows that uniform co-

payments are in fact optimal for a large family of marginal cost functions. This

family of marginal cost functions includes homogeneous functions of the same

degree as a special case. This result is surprising, considering that firms are

heterogeneous, and particularly since the assumptions on the inverse demand

function are very general (essentially only monotonicity and continuity). More

importantly, it establishes sufficient conditions such that the policy that is fre-

quently being used in practice is actually optimal. Additionally, we provide

sufficient conditions for uniform co-payments to simultaneously maximize the

social welfare. In particular, we show that homogeneous functions of the same

degree satisfy these conditions as well.

Incorporate market state uncertainty. We extend the models by assuming that

the central planner does not know the exact market state with certainty (i.e.,

the specific inverse demand function is uncertain), but she has a set of possible

scenarios, and beliefs on the likelihood that each scenario will materialize. We

model this setting as a stochastic MPEC, where the central planner decides

her co-payment allocation policy with the objective of maximizing the expected

aggregated market consumption. This model is considerably harder to analyze,

see Patriksson and Wynter (1999). However, we show that uniform co-payments

are still optimal in this setting, for a large family of firms' marginal cost func-

tions. In particular, this family includes convex homogeneous functions of the

same degree. Moreover, the analysis suggests that the central planner only

needs to consider the scenario with the highest aggregated market consumption

at equilibrium, regardless of the exact distribution over the different market

states.

Tractable upper bound problems. Based on an innovative mathematical pro-

gramming reformulation of our model, we develop tractable upper bound prob-
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lems. These are used extensively in the analysis mentioned above. In addi-

tion, we use them to conduct a numerical study of the performance of uniform

co-payments in relevant settings where they are not optimal. Specifically, we

consider Cournot Competition with linear demand and constant marginal costs,

and a more general setting with non-linear demand, and non-linear marginal

cost. The results obtained on data generated at random suggest that the ag-

gregated market consumption induced by uniform subsidies is on average 96%

optimal. We believe that the innovative reformulation of the model, and the

resulting upper bounds, would be useful to study additional interesting and

important research questions.

The rest of the chapter is structured as follows. Section 1.2 reviews related lit-

erature from operations management and economics. In Section 1.3 we present our

model, the uniform co-payments allocation problem, and a relaxation of this prob-

lem. Section 1.4 presents the main result on sufficient conditions for the optimality

of uniform co-payments in the deterministic model. In Section 1.5 we extend our

model to consider the case when the central planner is uncertain about the market

state. Section 1.6 considers the alternative objective of maximizing social welfare,

and presents sufficient conditions for the optimality of uniform subsidies. Section 1.7

presents a numerical study of the relative performance of uniform subsidies in settings

where they are not optimal. Finally, Section 1.8 provides concluding remarks.

1.2 Literature Review

The subject of taxes and subsidies allocation and incidence has a vast literature in

the economics community. Fullerton and Metcalf (2002) present a thorough review of

classical and recent result in this area. The main areas of research in this literature are

imperfect competition, partial equilibrium models, and general equilibrium models.

This chapter is closely related to the study of subsidies in imperfect competition

models. However, the traditional approach in this literature assumes homogeneous

firms, and focuses on studying the impact of taxes, or subsidies, on the number of firms

25



participating in the market in a symmetric equilibrium, see Fullerton and Metcalf

(2002). Alternatively, models of differentiated products are considered, which give

the firms some monopoly power, and the focus is again on the number of firms active

in the market in equilibrium. The reason for this is that the number of competitors

in the market is directly related to the ability to pass taxes forward to the consumer.

More generally, when analyzing comparative static properties in oligopoly models,

like the subsidy allocation in our case, it is fairly common to focus on symmetric

equilibria with homogeneous firms in order to obtain more precise insights, see, for

example, Vives (2001). In contrast, in our model we take an operational view: we

assume heterogeneous firms that produce a commodity, and we focus on the specific

subsidy allocation among them. Additionally, an important modeling characteristic

we consider is the presence of a budget constraint, in terms of the total amount of

funding that can be allocated to these subsidies. This feature allows us to investigate

the interplay between the optimal subsidies structure, and the budget available.

Within theoretical research in economics, one particular area that studies a prob-

lem related to the one considered in this chapter is the strategic trade policy literature,

particularly the "third market model", see Brander (1995). In this model, n home

firms and n* foreign firms export a commodity to a third market, where the market

price is set through Cournot Competition, with constant marginal costs, among all

the firms. The government can allocate subsidies to the home firms, increasing their

profit at the expense of the foreign competitors. The government's utility is equal to

the profit earned by the home firms, minus the cost of the subsidy payments. Let us

emphasize that the government does not face a budget constraint, and that the firms'

profit is equally weighted with the cost of the subsidy payments. An exception to the

latter is found in Leahy and Montagna (2001), where the cost of the subsidy payments

is weighted by a parameter 6, interpreted as the social cost of funds. An alternative

interpretation of 6 is to let it be the Lagrange multiplier of a budget constraint for

the government, relating it to our model. We focus here on the case with heteroge-

neous firms. In this setting, Collie (1993) and Long and Soubeyran (1997) assume a

uniform subsidy and study its effect in the market shares of the firms. Later, Leahy
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and Montagna (2001) assume linear demand, and derive closed form expressions for

the optimal subsidies. They conclude that the optimal subsidy policy is generally not

uniform; and if the social cost of funds is sufficiently low then the government should

allocate higher export subsidies to more efficient firms. Note that this result is con-

sistent with our numerical study in Section 1.7, where effectively uniform subsidies

are not optimal for Cournot competition with linear demand and constant marginal

costs in our model. Nonetheless, we find evidence that the relative performance of

uniform subsidies is very good. In contrast, in our model we assume more general

increasing marginal cost functions, and find conditions under which uniform subsidies

are optimal.

On the other hand, the economics literature in this area has shifted towards em-

pirical research. In particular, Cohen et al. (2014) show in a recent randomized

controlled trial in Kenya that a very high subsidy for ACT antimalarials dramatically

increases access to them, and they suggest that this program should be complemented

with the introduction of rapid malaria tests over-the-counter to reduce the risk that

the treatment goes to patients without malaria. This is an important insight, as it

shows empirically that subsidies for ACTs, as the one considered as a motivation in

Section 1.1.1, work in practice. Similarly, Dupas (2014) also showed in a randomized

controlled trial in Kenya that short-run subsidies for an antimalarial bed net had a

positive impact on the willingness to pay for the bed net a year later. This is in

contrast to the belief that consumers may anchor around the subsidized price and be-

come unwilling to pay more for the product later. This result suggests that short run

subsidy programs, as the one also considered to increase the consumption of ACTs,

are expected to be beneficial in the long run as well.

Mathematical Programs with Equilibrium Constraints (MPECs) are very hard to

solve and analyze, both in practice and in theory. In particular, even the simplest

case with linear demand and linear constraints is NP-hard, see Luo et al. (1996)

Luo et al. (1996). Moreover, Stochastic Mathematical Programs with Equilibrium

Constraints can be even harder to solve in practice, and are as hard as their de-

terministic counterparts in theory, see Patriksson and Winter (1999) Patriksson and
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Wynter (1999). In this context, the best that we can hope for is to identify interesting

structure in particular cases that may lead to structural or algorithmic results. The

co-payment allocation problem (CAP) presented and analyzed in Sections 3 and 4 is

a particular case of an MPEC, while the co-payment allocation problem with mar-

ket uncertainty (SCAP) presented and analyzed in Section 5 is particular case of an

SMPEC. In both cases, our main methodological contribution consists in identifying

a fairly general model of a practical problem, whose structure allows us to prove sur-

prising structural results, such as the optimality of uniform subsidies for a family of

marginal cost functions and for any inverse demand function. Examples in the oper-

ations research and operations management literature that study similar models, and

give structural or algorithmic results include DeMiguel and Xu (2009) DeMiguel and

Xu (2009), and Adida and DeMiguel (2011) Adida and DeMiguel (2011). Addition-

ally, in the operations research and operations management communities, a growing

literature has been devoted to analyzing oligopoly models with congestion, e.g., Ace-

moglu and Ozdaglar (2007), and Johari et al. (2010). Recently, Correa et al. (2014)

study markup equilibria, a particular case of supply function equilibria, with firms

that have increasing marginal costs. In supply function equilibria firms are assumed

to choose functions which map the quantity produced to prices, see Klemperer and

Meyer (1989). In markup equilibria firms are restricted to choose a supply function

of the form of a scalar times their marginal cost. Correa et al. (2014) find sufficient

conditions for the existence of markup equilibria for marginal cost functions very sim-

ilar to the ones were uniform co-payments are optimal in our model. On the other

hand, the problem of controlling and reducing the contagion of infectious diseases has

been studied in the operations management literature mainly focusing on the analysis

of vaccine's markets, particularly the influenza vaccine, its supply chain coordination

-e.g. Chick et al. (2008) and Mamani et al. (2012)- and the market competition under

yield uncertainty -e.g. Deo and Corbett (2009) and Arifoglu et al. (2012)- as opposed

to our interest in subsidy allocation. In particular, we consider the case of allocating

subsidies to Cournot competitors under yield uncertainty, and we show that if the

demand and the marginal costs functions are linear, then uniform co-payments are
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optimal in this setting.

The motivation problem of allocating subsidies to increase the aggregated market

consumption of new antimalarial drugs is also studied by Taylor and Xiao (2014),

however they study a different question. Specifically, they consider the case of one

manufacturer selling to one retailer facing stochastic demand at a fixed price c. Their

analysis focuses on the placement of the subsidy by the central planner in the supply

chain, comparing the possibility of subsidizing either sales or purchases (from the

retailer point of view). They conclude that the central planner should only subsidy

purchases, which is equivalent to subsidizing the manufacturer and thus consistent

with our modeling framework. They show that this insight is maintained for the case

of multiple heterogeneous retailers and one manufacturer. Furthermore, their Lemma

3 characterizes the order up to level of the retailers, which is decreasing in the whole-

sale price c. Therefore, this model can be characterized by an arbitrary decreasing

inverse demand function from the manufacturer's point of view. In this chapter we

focus directly on subsidies allocated to heterogeneous manufacturers which face an

arbitrary decreasing inverse demand function, and we incorporate market competi-

tion among them. In this sense, our model is consistent with the insights provided

by Taylor and Xiao (2014), and we extend the analysis to focus on the effectiveness

of allocating the same co-payment to competing heterogeneous manufacturers. The

combined message of these two papers to the policy makers is that, on the one hand,

allocating co-payments to the manufacturers make sense when the objective is to

maximize the aggregated market consumption, and on the other hand, even if the

manufacturers are heterogeneous, the very simple and practical policy of allocating

the same co-payments to each firm will most likely obtain most of the potential ben-

efits. On the other hand, there is a growing trend in the operations management

literature that studies the problem of a central planner deciding rebates that are

directed to the consumers, with the goal of incentivizing the adoption of some tech-

nology, such as green technology, see for example Aydin and Porteus (2009), Lobel

and Perakis (2012), Cohen et al. (2012), Chemama et al. (2013), Krass et al. (2013)

Raz and Ovchinnikov (2013), and Cohen et al. (2013). In contrast, motivated by a
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different set of practical applications, we focus on co-payments that are allocated to

the producers, for each unit sold in the market. More generally, our work is related to

the operations management literature that analyzes the impact of contract design on

the behavior of firms in a supply chain. A comprehensive overview of this literature

is provided in Cachon (2003). However, the focus of this framework is set on firms

designing contracts to maximize their profits, while we are interested in a central

planner designing incentives to maximize the aggregated market consumption of a

good.

1.3 Model

In this section, we introduce a mathematical programming formulation of the subsi-

dies allocation problem. We then use this formulation to obtain a relaxation of the

problem, which provides an upper bound on the largest aggregated market consump-

tion that can be induced with the available budget.

We consider a market for a commodity composed by n > 2 heterogeneous compet-

ing firms. Each firm i E {1, ... , n} decides its output qi independently, with the goal

of maximizing its own profit. We assume that the introduction of subsidies in the

market will induce an increase in the aggregated market consumption, and that the

firms do not have the installed capacity to provide all of it. This implies that capacity

is scarce in the market. We model this effect by assuming that the marginal cost of

each firm is increasing. Specifically, we assume that the firms have a firm-specific

non-negative, increasing and differentiable marginal cost function on its production

quantity, denoted by hi(qj).

Consumers are described by an inverse demand function P(Q), where Q E=j qj

is the aggregated market consumption. We assume that P(Q) is non-negative, de-

creasing and differentiable in [0, Q], where Q is the smallest value such that P(Q) = 0.

This is equivalent to assuming that the aggregated market demand for the good is

bounded. This assumption captures the antimalarial drugs example from Section

1.1.1, where even if the new malaria treatment was given away for free there would
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be a finite demand for it. Additionally, we assume that P(0) = P > 0. This is

equivalent to assuming that there exists a finite price such that the demand for the

good becomes zero. This could be motivated by the consumers of the good switching

to a substitute product, or simply not being able to afford it. In the antimalarial

drugs example, there exist alternative treatments, which are less effective, that con-

sumers may choose instead. Moreover, this is precisely the motivation for introducing

a subsidy for the new malaria treatment in the first place.

The assumption on the market equilibrium dynamics is that each firm participat-

ing in the market equilibrium produces up to the point where its marginal cost equals

the market price; and firms that do not participate in the market equilibrium must

have a marginal cost of producing zero units which is larger than the market price.

This can be expressed in the following condition:

For each i, j, if qj > 0, then hi(qj) = P(Q) <; h (q). (1.1)

At this level of generality, in both the firms' marginal costs and the inverse demand

function, an interpretation for this equilibrium condition is that firms act as price tak-

ers and compete on quantity. Note that this simple model captures the behavior of

ACT manufacturers given in Section 1.1.1, where all the firms receiving co-payments

operate in a no-profit/no loss basis. More generally, this is a reasonable model when-

ever the firms in the market have little market power, for example when there are

many firms competing in the market, or when firms face threat of entry to their

market, see Tirole (1988). However, we will show that for more specific families of

marginal cost functions, or inverse demand functions, well known imperfect market

competition models will be special cases of our model. These include Cournot Com-

petition with linear demand, and Cournot Competition under yield uncertainty, with

linear demand and linear marginal cost functions. Assuming a decreasing inverse de-

mand function, and increasing firms' marginal cost functions, ensure that there exists

a unique market equilibrium, see, for example, Marcotte and Patriksson (2006).

Note that the generality of an arbitrary decreasing inverse demand function allows
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to model complex demand mechanisms that have been considered in the operations

management literature. One such example is the case of multiple competing retailers

under demand uncertainty. Specifically, Bernstein and Federgruen (2005) have shown

that in a model where each retailer chooses its retail price pi and its order quantity

yi, and faces multiplicative random demand, the distribution of which may depend

on its own retail price as well as those of the other retailers, there exists a unique

Nash equilibrium in which all the retailer prices decrease when the wholesale price is

reduced. Moreover, under additional mild assumptions this leads to each equilibrium

order quantity being decreasing in the wholesale price, resulting in a decreasing inverse

demand function. This model may potentially capture in more details the mechanism

by which the price to the final consumer is reduced when the central planner allocates

co-payments to the manufacturers, however, as long as it induces a demand to the

suppliers which is decreasing in the wholesale price, this model is a particular case of

a general decreasing demand function, therefore our results apply.

In more details, in the model considered in Theorem 4 of Bernstein and Fed-

ergruen (2005) each retailer faces multiplicative random demand Dj(p) = dj(p)6j,

where Ej is a random variable with cdf Gi(.), independent of the vector of prices

p. Their Theorem 4 shows that if log dj(p) has increasing differences in (pi,pj), for

each i, and if the demand functions satisfy two technical assumptions (satisfied for

example by di(p) being Linear, Logit, Cobb-Douglas or CES, and Ec being expo-

nential, normal with mean one and standard deviation a < 1, or having a power

distribution, for each i) then there exists a unique Nash equilibrium, where all prices

Pi(w) are increasing in the wholesale price w. While the equilibrium order quantity

is yj(p(w), w) = di(p(w))Gi-1 .(w). Note that the additional assumption that

the Jacobian of di(p) is diagonally dominant (on pi) is sufficient for y (p(w), w) to

be decreasing in the wholesale price w, as long as the decrease in the retailer prices

is smaller than the reduction in the wholesale price that induced them. The latter

condition is the behavior we expect to see in practice, as the retailers would tend to

keep a fraction of the benefits generated by the wholesale price reduction for them-

selves, as opposed to transferring all of it to the consumers. Finally, in Bernstein and
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Federgruen (2005) all the retailers buy from one supplier, while in our model, they

would buy at the wholesale price induced by multiple price taking suppliers engaging

in quantity competition.

1.3.1 Co-payment Allocation Problem

We will refer to the problem faced by the central planner as the co-payment allocation

problem (CAP). The co-payment allocation problem is a particular case of a Stack-

elberg game, or a bilevel optimization problem. In the first stage, the central planner

allocates a given budget B > 0, in the form of co-payments yi > 0, to each firm

i E {1, .. . , n}, per each unit provided in the market. Moreover, she anticipates that,

in the second stage, the equilibrium output of each firm will satisfy a modified version

of the equilibrium condition. The difference in the market equilibrium condition is

given by the fact that, from firm i's perspective, the effective price, for each unit sold,

is now P(Q) + yi, or equivalently its marginal cost is reduced by yi.

The central planner's objective is to maximize the aggregated market consump-

tion. Note that this is equivalent to maximizing the consumer surplus, which in

this model is equal to f'Q P(x)dx - P(Q)Q. Specifically, the derivative on the con-

sumer surplus with respect to the equilibrium aggregated market consumption is

-P'(Q)Q > 0, which is positive for any decreasing inverse demand function. This is

the appropriate objective in many applications, where the central planner is a supra-

national authority, like the World Bank, whose main interest is effectively to maximize

the aggregated market consumption, say of an infectious disease treatment, without

explicitly taking into account the additional surplus obtained by local producers (see

Arrow et al. (2004) for further discussion on this topic for the case of antimalarial

drugs). Additionally, in Section 1.6, we will also analyze the case where the central

planner's objective is to maximize the social welfare, including both the consumer

and the producer surplus.

Finally, let us emphasize that the central planner can only allocate co-payments,

and never charge a tax for the units produced in the market. In other words, the co-

payments being allocated have to be non-negative. A formulation of the co-payment

33



allocation problem is given in the following:

max Q
y,q,Q

n

s.t. qiyi ; B (1.2)
i=1

yi >0, foreachiE {, ... ,n} (1.3)
n

qi = Q(1.4)
i=1

qi 2 0, for each i E I1 . ., n} (1.5)

P(Q) + yi = hi(qi), for each i E .1 ... , n}. (1.6)

This is a valid formulation even if there are firms that have a positive marginal

cost of producing zero units, which prevents them from participating in the market

equilibrium. Namely, if for some firm i we have hi(O) P(Q), then we can just

set qi = 0 and yi = hi(0) - P(Q) > 0. This is without loss of generality, because

setting qi = 0 ensures that firm i does not have any impact in the budget constraint

(1.2), and the non-negativity constraint on the co-payment yi ensures that the market

equilibrium condition is satisfied. In other words, constraint (1.6) does not imply that

every firm has to participate in the market equilibrium.

From the equilibrium condition given in constraint (1.6), it follows that we can

replace all the co-payment variables yi by hi(qi) - P(Q). Namely, we can reformulate

the co-payment allocation problem as if the central planner was deciding the output

of each firm, as long as there exist feasible co-payments that can sustain the outputs

chosen as the market equilibrium. The feasibility of the co-payments will be given

by both the budget constraint (1.2), and the non-negativity of the co-payments (1.3).

We summarize this observation in the following proposition.

Proposition 1. The co-payments allocation problem faced by the central planner can

34



be formulated as follows:

maxq,Q Q
n

s.t. Eqjhj(qj) - P(Q)Q < B (1.7)
j=1

(CAP) h (qi) > P(Q), for each i E .. . , n} (1.8)
n

Eqj =Q (1.9)
j=1

qi > 0, for each i E {1, ... , n}. (1.10)

The co-payments that the central planner must allocate to induce outputs q are,

yi(q) = hi(qi) - P(Q), for each i.

Constraint (1.7) is equivalent to the budget constraint (1.2). Note that it has

a budget balance interpretation, namely, the total cost in the market, minus the

total revenue in the market, has to be less or equal than the budget introduced by

the central planner. Constraint (1.8) is equivalent to the non-negativity of the co-

payments (1.3).

1.3.2 Special Cases

Our model is fairly general. In particular, in this section, we discuss some well known

imperfect competition models that are captured as special cases.

Cournot Competition with Linear Demand. The classical oligopoly model

proposed by Cournot is defined in a very similar setting. The only difference is that,

given all the other firms production levels, each firm sets its output qi at a level such

that it maximizes their profit Hi, where

UI = P(Q)q - jq hi (xi )dxi.
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If we assume P(Q) is decreasing and hi(qj) are increasing, for each i, as well as

P'(Q) + qiP"(Q) 5 0, then there exists a unique market equilibrium defined by the

solution to the first order conditions of the firms' profit maximization problem, see

Vives (2001). Namely, at equilibrium, each firm sets its output at a level such that,

OlI
For each i, if qi > 0 then i = 0, or equivalently, P(Q) = hi(qj)-P'(Q)qj. (1.11)

In the equilibrium condition (1.11), the marginal cost must be equal to the

marginal revenue, while in the equilibrium condition (1.1), the marginal cost must be

equal to the market price. Moreover, the term P'(Q)qi is not independent for each

firm.

Now, for the commonly assumed special case where the inverse demand function is

linear, namely P(Q) = a- bQ, it follows that P'(Q) -b. Define hi(qj) = hi(qj)+bqj,

for each i, then we can rewrite the equilibrium condition as follows:

For each i, if qj > 0 then P(Q) = hi(qj).

This equilibrium condition is a special case of condition (1.1), but written for a

modified cost function hi(qj).

Cournot Competition under Yield Uncertainty with Linear Demand and

Linear Marginal Costs. We consider the Cournot Competition under yield uncer-

tainty model used in Deo and Corbett (2009). We assume that each firm i E {1, .... , }

decides its production target qi, while the actual output is uncertain and given by

qj = adi,, where ac is a random variable reflecting the random yield for firm i. We

assume that the random variables ai are identically and independently distributed for

all firms, with E[ai] = p, and Var[ai] = oa. Additionally, we assume a linear inverse

demand function P(Q) = a - bQ, where Q = qj is again the aggregated market

consumption.

We consider two marginal costs: (i) h(qj) per unit of production target, and (ii)

h(qj) per unit actually produced. The first cost is driven by the amount of raw
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materials needed for production, while the second cost corresponds to the cost of

packaging the actual output. Finally, we assume Cournot Competition among the

firms. Namely, given the production target of all the other firms, each firm sets its

production target qg to the level that maximizes its expected profit. We generalize the

model used in Deo and Corbett (2009) in two ways. First, we consider heterogeneous

firms while Deo and Corbett consider homogeneous firms. Second, Deo and Corbett

assume a constant marginal cost function and a fixed cost to enter the market, while

we assume more general marginal cost functions. Moreover, we extend the model to

include a central planner allocating subsidies to the competing firms, anticipating the

market reaction to the subsidy allocation, and facing a budget constraint. In order

to do so, we assume that both marginal cost functions are linear. Namely, we assume

that h(qi) = giqj, and h(qj) = giqi. Note that we consider heterogeneous firms, where

some of them may be more efficient than the others, depending on the values of the

firm specific parameters gi and gi.

Let us start by considering the second stage problem. Assume that the central

planner allocates a co-payment yi > 0 to each firm i {1,. . . , n}. Each firm sets it

production target qg to the level that maximizes its expected profit, given by

~ qi _qi~

E [P(Q)qi + yiqj - h(xi dxi - h(xij)dxi]

=E a - b( aiqj aiqi + yioziqi - gi 2 - gi 2

The expectation is taken with respect to the random variables ac. This is a con-

cave maximization problem in qg, therefore, the first order condition is sufficient for

optimality. In order to write the first order condition in a compact form, define

2i 2+2 ,2n

S 11- + PI + bLL + 2b , I(i) j=1

Additionally, note that the expected market price has the following closed form ex-
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pression,
n

E [P(Q)] = a - ub( qj = a - tbQ = P(Q).
i=1

Hence, we can write the first order condition of the firms' profit maximization problem

as follows:

P(Q) = I(qj) - yi. (1.12)

In order to define the co-payment allocation problem in this setting, it remains

to address how will the yield uncertainty be considered in the budget constraint. We

consider two possible approaches that will lead to optimization problems with similar

structure.

First, assume that the central planner would like to find a co-payment allocation,

such that it satisfies the budget constraint in expectation, then we can write the

budget constraint as follows:

n n

E qjyi =P qjyj < B.

Alternatively, assume that the central planner takes a robust approach. Namely,

she would like to satisfy the budget constraint in each possible yield uncertainty

realization. We will assume, for simplicity, that the i.i.d. random yields for each firm

have a bounded support, that is a, E [, dj, for each i. Then, we can write the budget

constraint as follows:
n

d q y < B.
i=1

Finally, assuming that the budget constraint must be satisfied in expectation

(the robust approach is analogous), we can use Equation (1.12) to write the central
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planner's problem, like in Proposition 1, as follows:

n

max E [Q] = f Z =IQ
y~q i=1

s.t. )- (1.13)

h (q ) P(Q), for each i E .. . , n} (1.14)
n

(1.15)
j=1
q, > 0, for each i E {,. . . , n. (1.16)

The co-payments that the central planner must allocate to induce the production

targets q, are yj = hi(qi) - P(Q), for each i. The resulting problem formulation is a

special case of the co-payment allocation problem (CAP).

1.3.3 An Upper Bound Problem

Note that under our assumptions, the co-payment allocation problem (CAP) is not

necessarily a convex optimization problem. In fact, we have only assumed that the

marginal cost functions hi(qj) are increasing, for each i, and that the inverse demand

function P(Q) is decreasing. In order to gain some insights into the structure of

the optimal solution, we ignore the non-negativity of the co-payments and analyze

the following relaxation, which provides an upper bound on the aggregated market

consumption that can be induced with the available budget B.

maxq,Q Q
n

s.t. Eqjh(qj) - P(Q)Q < B (1.17)
j=1

n

(UBP) q = Q(1.18)
j=1

qj 0, for each i E {, .. .,r}. (1.19)
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This upper bound problem may still be non-convex, because of the budget constraint

(1.17). However, Lemma 1 below asserts that at optimality the budget constraint is

tight (i.e. holds with equality), and each active firm i must have a value of (hi(qi)qi)'

equal to each other, and no larger than any inactive firm. This property will be have

a central role in proving the optimality of uniform subsidies.

Lemma 1. Assume that the marginal cost functions hi(qi) are non-negative, increas-

ing, and differentiable in [0, Q); and that the inverse demand function P(Q) is non-

negative, decreasing, and differentiable in [0, Q]. Then, any optimal solution to the

upper bound problem (UBP) must satisfy the budget constraint (1.17) with equality,

and also satisfy the following condition:

If qi > 0, then (hi(qi)qi)' ; (hj(qj)qj)', for each i, j E {1,. .. ,n}.

Proof. The feasible set Qf problem (UBP) is closed and bounded. It is bounded

because qi E [0, qi], for each i, where qi is such that hi(qi)qi = B. Similarly, Q E [0, Q],

where Q= maxiE1,...,nf qi}. On the other hand, it is closed because it is defined by

inequalities on continuous functions. Additionally, the objective function of problem

(UBP) is continuous. It follows that there exists an optimal solution to problem

(UBP).

Let (q*, Q*) be an optimal solution to problem (UBP). Assume by contradiction

that the budget constraint is not tight for (q*, Q*). Namely,

q hj(qj) - P(Q*)Q* = q (hj(qj) - P(Q*)) < B.
j=1 j=1

Then, we can increase the value of q', for any index i, by e > 0 sufficiently small,

maintain feasibility, and obtain a strictly larger objective value. This contradicts

the optimality of (q*, Q*). Therefore, the budget constraint must be tight for every

optimal solution to problem (UBP).

Assume by contradiction that there exist indexes i, j such that q* > 0 and

(hi(q*)qi)' > (hj(qj)qj)'. Then, we can decrease the value of qi', and increase the
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value of qj, both by the same e > 0 sufficiently small, and maintain feasibility.

Specifically, the marginal change in the left hand side of the budget constraint (1.17)

is - (hi(q*)qf)' + (hj(qj)qj)' < 0. Therefore, the budget constraint for this modified

solution is satisfied, and not tight. However, this modified solution attains the same

objective value Q*, and it is therefore optimal. This is a contradiction to the fact that

the budget constraint must be tight for every optimal solution to problem (UBP). M

1.4 Optimality of Uniform Co-payments

The result obtained in this section asserts that uniform co-payments are optimal

for the co-payment allocation problem (CAP), for a large class of marginal costs

functions hi(qi). Specifically, we show that if the marginal cost functions satisfy

Property 1 below, then uniform subsidies are optimal.

Property 1. For each ij and each qi,qj > 0, if hi(qi) > hj(qj) then (hi(qi)qi)' #
(hj (qj )qj)'

Next, we show that there exists a large class of marginal cost functions that satisfy

Property 1 above. Consider the case in which hi(qi) = h(giqi), where h(x) is non-

negative, increasing, and differentiable over x > 0, and gi > 0 is a firm specific

parameter. This captures the setting where all firms use a similar technology, but

can differ in their efficiency. Specifically, h(x) models the industry specific marginal

cost function, while gi > 0 models the efficiency of firm i.

In this setting there is no loss of generality in assuming h(0) = 0. Specifically, any

positive value for h(0) will affect each firm in the same way, therefore, it will only shift

the market price by a constant that can be re-scaled to zero. This assumption implies

that all firms have a positive output in the market equilibrium, for any positive market

price. Therefore, the underlying assumption is that all firms have already entered the

market before the subsidy is decided, and there is no subsequent entry or exit of firms

into the market. This assumption is reasonable in our setting, where the subsidy is

not permanent (it only applies until the budget is exhausted), and it is paid ex-post

to the firms, for each unit already sold.
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In this setting, any function h(x) such that h(x) + h'(x)x is monotone will satisfy

Property 1. Specifically, for each such function we would have that hi(qj) > hj(qj)

is equivalent, by definition, to h(giqi) > h(giqj). However, h(x) increasing implies

giqj > gjqj. Moreover, h(x)+h'(x)x monotone implies h (giqi)+h(giqi)#giqj h(gjqj)+

h'(gjqj)gjqj. Which is, again by definition, equivalent to (hj(qj)qj)' / (hj(qj)qj)'.

Some functions that satisfy this condition, and the respective marginal cost functions

associated to them, are:

" h(x) = ex - 1, hi(qj) - e9Pll - 1.

* h(x) = xU, for u > 0, hi(q ) = giqu.

" h(x) = ln(x + 1), hi(qj) = ln(giqi + 1).

* Any polynomial with positive coefficients.

Specifically, all these functions have the property that h(x)x is convex over x > 0,

therefore, h(x) + h'(x)x is increasing. Note that the marginal cost functions h(x) are

allowed to be concave, e.g., h(x) = xu for 0 < u < 1, and h(x) = ln(x + 1). Moreover,

note that hi(qj) = giqi corresponds exactly to the only homogeneous function of

degree u > 0 in one variable.

1.4.1 Sufficient Condition for Optimality

The next one is the main result in this section.

Theorem 1. Assume that the marginal cost functions hi(qj) are non-negative, in-

creasing, and differentiable in [0, Q); the inverse demand function P(Q) is non-

negative, decreasing, and differentiable in [0, Q]. If the marginal cost functions satisfy

Property 1, then uniform co-payments are optimal for the co-payment allocation prob-

lem (CAP).

Proof. The existence of an optimal solution to problem (UBP) was shown in Lemma

1. Let (q, Q) be an optimal solution to problem (UBP). We will show that if the

marginal cost functions satisfy Property 1, then (q, Q) induces uniform co-payments
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for every firm with a positive output qj > 0. Moreover, (q, Q) is feasible for the

co-payment allocation problem (CAP), therefore optimal.

From Lemma 1 it follows that (q, Q) is such that the budget constraint is binding,

and for each i, j with q, > 0 and q, > 0, we must have (hj(qj)qj)' = (hj(qj)qj)'. The

assumption that the marginal cost functions satisfy Property 1 implies hi(qj) = hj (qj),

which implies that uniform subsidies are optimal. Specifically, because the budget
B

constraint is tight, it follows that hi(qi) - P(Q) = - > 0 for every i such that qj > 0.

In order to show that the solution (q, Q) is feasible for the co-payment allocation

problem (CAP), it remains to show that the firms that do not participate in the

market equilibrium effectively have a marginal cost of producing zero units which is

larger than the induced market price. Specifically, (q, Q) is such that, for each i, j

with qj > 0 and qj = 0, we have,

h3 (0) - P(Q) > hi(qj) + h'(qi)qj - P(Q) > hi(q) - P(Q) =- > 0.

The first inequality follows from Lemma 1, and the second inequality follows from

hi(qj) increasing. The equality follows from the fact that the budget constraint is

tight, and qj > 0.

Hence, (q, Q) is also feasible for the co-payment allocation problem (CAP), there-

fore optimal. Moreover, (q, Q) induces uniform co-payments. Therefore, uniform

co-payments are optimal for the co-payment allocation problem (CAP). E

This result is surprising, considering that the assumptions on the inverse demand

function are very general, and particularly since firms can be heterogeneous and the

central planner has the freedom to allocate differentiated co-payments to each firm.

The intuition behind this result comes from the market equilibrium condition and

the budget constraint. Essentially, if the central planner allocates a larger co-payment

to a firm, then its resulting market share will increase, which is exactly the rate at

which it will consume budget. This will in turn make less budget available to the rest

of the firms, therefore, their co-payments would have to decrease. Theorem 1 shows

that if the marginal cost functions of the firms satisfy Property 1, then the net effect
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of this change will never be positive.

In particular, Theorem 1 applies for the special cases we considered in Section

1.3.2. For Cournot Competition with linear demand, uniform co-payments are opti-

mal for any marginal cost functions hi(qj), such that the functions hi(qj) = hi(qj) + bq

satisfy Property 1. Specifically, if the marginal cost functions are linear, that is

hi(qj) = giqi, for each i, then uniform co-payments are optimal. Similarly, for Cournot

Competition under yield uncertainty with linear demand, if both marginal costs are

linear, then uniform subsidies are optimal. Note that in both cases we allow for het-

erogeneous firms, where some of them can be significantly more efficient than others.

1.5 Incorporating Market State Uncertainty

A natural extension of the model discussed in Section 1.3 is to consider the setting

where the central planner does not know the market state (defined by the inverse

demand function) with certainty, but generally she will have a set of possible market

state scenarios, and beliefs on the likelihood that each scenario will materialize.

In more details, we assume that she has a discrete description of the market

state uncertainty, where each scenario s c {1, ... , m} is realized with probability p8.

Each scenario s is characterized by a scenario dependent inverse demand function

P8 (Q8 ). For each scenario s E {1,...,m}, we make assumptions like in Section

1.3. Namely, we assume that each inverse demand function P'(Q) is non-negative,

decreasing and differentiable in [0, QS], where Q' is the smallest value such that

P8 (Q8 ) = 0. Similarly, for the market equilibrium condition we assume that if scenario

s realizes, then firms set their output qs at a level such that, for each i, j, if qi > 0,

then hi(qf) = P8 (Q8 ) < hj(qj).

Similar to Section 1.3, a formulation of the co-payments allocation problem under
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market state uncertainty can be written as follows:

max E QSp8

n

s.t. E qjyj B, for each s C {1,. .. ,m}
j=1

yi 0, for each i E {1,.. ., n}

>j q% = Q8, for each s E {1,. .. ,m}
j=1

qi >0, for each i E f{1, ... , n}, s E {1, ... ,m}

hi(q') - P(Q8 ) - yi 0, for each 'E{l.*}i ( q) - P.) -re m

q' (hi(q') - Ps(Qs) - yi) -0, for each iE{1,.714
SC{1...mr}

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

The objective is to maximize the expected aggregated market consumption. Con-

straint (1.20) is the budget constraint, for each market state scenario. Constraint

(1.21) corresponds to the non-negativity of the co-payments. Constraint (1.22) defines

the aggregated market consumption for each scenario. Finally, constraints (1.23)-

(1.25) are the complementarity constraints, which tie together the different scenarios.

They state that, in each scenario, each firm either participates in the market equi-

librium, in which case it produces the quantity that equates its marginal cost with

the market price plus the co-payment; or its marginal cost of producing zero units

is strictly larger than the market equilibrium price plus the co-payment, in which

case the firm is inactive. Naturally, each firm must get the same co-payment in each

possible scenario.

In other words, constraints (1.23)-(1.25) correspond to the non-anticipativity con-

straints, and they state that co-payments are a first stage decision made by the central

planner before the uncertainty is realized. This is precisely what prevents us from

using the co-payments to eliminate the complementarity constraints from the model

formulation, similarly to Proposition 1. This makes the problem significantly harder

to analyze. In order to somewhat simplify this formulation, we make the additional

assumption that producing zero units has a marginal cost of zero, as stated in the
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following Proposition.

Proposition 2. If we additionally assume

. hi(0) = 0, for each i E {, ... , n}.

Then, the co-payments

the central planner can be

max(q8,Q8),=1,...,m

s.t.

(SCAP)

allocation problem under market state uncertainty faced by

re-written as follows:

QSpS
s=1

n

q hj (qj) - Ps(Qs)Qs < B, s E I .I ... , m}
j=1

h (qf) P'(Qs), for each ,...'nl
n

q QS, for each s E {, ... ,m}
j=1

qj 0, for eachiE {l,...,n}, sE {, ... , m}

hi(qf) - P'(QS) = hi(qi') - PS'(Qs'), 9,E{,.}.

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

The co-payments that the central planner must allocate in order to induce outputs

{q3}sE{,...,m} are,

yi = hi(q') - P(Q), for each i c {1, ... , n}, sE {1, ... , m}. (1.31)

Proposition 2 states that, if the marginal cost of producing zero units is zero, then

every firm will participate in the market equilibrium, for any non-negative market

price. Therefore, Equation (1.31) holds, and we can eliminate the variables yj from

the problem formulation.

Like in Proposition 1, constraint (1.26) corresponds to the budget constraint.

Namely, for each scenario s, the total cost minus the total revenue in the market has

to be less or equal than the budget introduced by the central planner. Constraint

(1.27) is the non-negativity of the co-payments, it ensures that the solution proposed

by the central planner can be sustained as a market equilibrium by allocating only

subsidies, and not taxes. Like before, the only constraint that ties all the scenarios
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together is the non-anticipativity constraint (1.30), which states that each firm must

get the same co-payment in each possible scenario.

This problem is still hard to analyze directly, which motivates us to develop a

relaxation that provides an upper bound on the expected aggregated market con-

sumption that can be induced with the available budget, as shown below. All the

proofs in this section are presented in Appendix A.1.

1.5.1 An Upper Bound Problem

We start with a simple observation that is derived from the structure of problem

(SCAP).

Lemma 2. For any feasible solution to the co-payments allocation problem under

market state uncertainty (SCAP), without loss of generality, the scenarios can be

renumbered, such that the following inequalities are true:

P1 (QI) P2 (Q2 ) p m (Qm), (1.32)

h.(ql) > h.(q2) . .. > hi(q"), for each i, (1.33)

q _i 2 .. qi, for each i, (1.34)

Q > Q2 m, (1.35)

qy ;> E yj > . 1.. 2 qj yj, (1.36)
j=1 j=1 j=1

where ", &jy is the total amount spent in co-payments in scenario s.

Let (q', Q8)* 1 .m be an optimal solution to the co-payment allocation problem

under scenario uncertainty (SCAP), and assume that the scenarios are numbered

such that Equations (1.32)-(1.36) above hold. Then, we claim that the solution to

problem (SUBP) below provides an upper bound on the expected aggregated market

consumption that can be induced with the available budget. Specifically, problem

(SUBP) is derived from problem (SCAP) by adding constraints (1.41) and (1.42)

below, and replacing the non-anticipativity constraint (1.30), with the relaxed version

(1.43).
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m
maxqs,Qs S QSPS

8=1
n

s.t. 5 qjhj(qj) - P8 (Q8 )Qs < B, s E {, . . , m} (1.37)
j=1

h (qf) P'(Q8 ), for each ' (1.38)

(SUBP) q = QS, for each s E {, .... , m} (1.39)
j=1

qf ! 0, for each i E {1, n}, s E {1, ... ,m} (1.40)

P1 (Q 1) Ps(Q"), for each s E { , .. . , m} (1.41)

Q1 > Q', for each s E {1,...,m} (1.42)

hi(qf) - P'(Q8 ) hi(q1 ) - P1 (Q'), for each . (1.43)

Problem (SUBP) is a valid relaxation of problem (SCAP). Specifically, the optimal

solution of problem (SCAP), (q", Qs)* 1 . m, is feasible for problem (SUBP), and

attains the same objective value. To argue the feasibility of solution (qS, QS)* 1 . m

for problem (SUBP), recall from Lemma 2 that s = 1 is the scenario that attains

the largest value for both the induced market price (see (1.32)), and the induced

aggregated market consumption (see (1.35)), in solution (q, QI)* 1 .  t follows

that adding constraints (1.41) and (1.42), does not cut-off solution (q', Q 8 = 1 .

Finally, solution (q', Q8)*= 1. m satisfies constraint (1.43) with equality.

1.5.2 Optimality of Uniform Co-payments

In this section, we consider again the setting where all firms use a similar technology,

but they can differ in their respective efficiency, similar to the assumptions in Section

1.4. Specifically, we consider the case in which hi(qi) = h(giqi), where h(x) is non-

negative, increasing, and differentiable over x > 0, and gi > 0 is a firm specific

parameter. The function h(x) models the industry specific marginal cost function,

while gi models the efficiency of firm i. Recall from Section 1.4 that we can assume,

without loss of generality, that h(0) = 0, therefore, we will refer to the co-payment
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allocation problem under market state uncertainty (SCAP), and its upper bound

problem (SUBP).

We now present sufficient conditions, which ensure that uniform subsidies max-

imize the expected aggregated market consumption in this setting. Specifically, we

show that if the firms' marginal cost functions satisfy Property 2 below, then uni-

form subsidies are optimal for the co-payments allocation problem under market state

uncertainty (SCAP).

Property 2. The function h(x) is convex, and such that for any x1 > x 2 > 0, and

h(x2 ) h(x4 ) h'(x2 ) h'(x4 )x1>x3 >x4 >0,if > then
- h(x1) h(X3) h'(x1) h'(X3)

Note that Property 2 implies Property 1, discussed in Section 1.4. Specifically,

h(x) increasing and convex implies that h(x) + h'(x)x is increasing. This is a sufficient

condition for Property 1 to hold.

Remark 1. The functions hi(qj) = giqi, for m > 1, and hi(q.) = e giq - 1, satisfy

Property 2.

Note, from Remark 1, that from the examples of marginal cost functions that

satisfy Property 1 given in Section 1.4, all the ones that are also convex satisfy

Property 2 as well. In this sense, the extra requirements in Property 2, with respect

to Property 1, are mainly driven by the convexity assumption. Finally, note that

functions hi(qj) = giq, for m > 1, are the unique convex homogeneous functions in

one variable.

Theorem 2 below shows that there exists an optimal solution to the upper bound

problem (SUBP), such that the co-payments induced in scenario s = 1, the one

that attains the largest aggregated market consumption (see (1.35)), and the largest

amount spent in co-payments (see (1.36)), are uniform. This result will play a central

role in proving the main result in this section.

Theorem 2. Assume that the inverse demand function P(Q) is non-negative, de-

creasing, and differentiable in [0, Q]. Assume that the marginal costs functions are

given by hi(qj) = h(giqi) for each i, for any increasing and continuously differentiable
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function h(x), such that h(O) = 0. If h(x) satisfies Property 2, then there exists

an optimal solution to the upper bound problem (SUBP), (4, Q8 )s=1.m, such that,

hi(q') - P&(Q1 ) = y 1 for each i E .1,..., n}, for some value y1 > 0.

To prove Theorem 2, we show the following lemmas that will be useful in the

analysis. Specifically, we will consider the optimal solution to problem (SUBP)

with the smallest difference between (maxisE1,...,n} {hi(qj)}) and (ministi,...,n} {hi(qj)})

(from Lemma 3 below we know that such a solution does exist). Note that proving

Theorem 2 is equivalent to showing that this difference is zero. We will assume

by contradiction that this difference is strictly positive, and show that then we can

construct another optimal solution with an even smaller difference, a contradiction.

When constructing the modified optimal solution, Lemma 4 allows us to focus

only on constraint (1.43). On the other hand, using the convexity assumption on

h(x), Lemma 5 provides bounds on the impact that the modifications to the optimal

solution have on constraint (1.43). These bounds will allow us to complete the proof

by arguing that the modified solution is feasible and optimal, while attaining a smaller

difference between the maximum marginal cost in scenario s = 1, and the minimum

marginal cost in scenario s = 1.

Lemma 3. Under the assumptions of Theorem 2, there exists an optimal solution

to problem (SUBP) that attains the minimum of the gaps between the maximum

marginal cost in scenario s = 1, and the minimum marginal cost in scenario s 1,

induced by any optimal solution.

Lemma 4. Under the assumptions of Theorem 2, for any feasible solution to problem

(SUBP), (qs, Q9) 8=1,...,m, if hj(qf) > h-(qj) for some i, j, s, then we can transfer a

sufficiently small E' > 0, from qi to qj, without violating any of the constraints (1.37)-

(1.42) related to scenario s.

Lemma 5. Under the assumptions of Theorem 2, for any feasible solution to problem

(SUBP), (qs, Q8) 8=1,...,m, for any E' > 0, and for any scenario s / 1, the following
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conditions must hold:

h'(g (q - 0))
If e > 0 satisfies el h< gi, ) eIS, then hi(qs-e5)-P(Q8 ) hj(q1-c1)-P1(Q1).

hl(giqi)
(1.44)

h'(gj(q + s).
If e > 0 satisfies h'(gjq,+) C E then hj(q'+6)-P(Q8 ) < hi(qj+c1)-P1(Q).

(1.45)

Theorem 3 below concludes this section characterizing a family of firms' marginal

cost functions such that uniform co-payments are optimal, even if the central plan-

ner is uncertain about the market state. This family includes convex homogeneous

functions of the same degree.

Theorem 3. Assume that the inverse demand function P(Q) is non-negative, de-

creasing, and differentiable in [0, Q]. Assume that the marginal costs functions are

given by hi(qj) = h(giqi) for each i, for any increasing and continuously differentiable

function h(x), such that h(0) = 0. If h(x) satisfies Property 2, then allocating the

largest feasible uniform co-payment is an optimal solution for the co-payment alloca-

tion problem under market state uncertainty (SCAP).

This result is surprising, as it shows that, with some additional conditions, the

optimality of uniform subsidies is preserved, even if the central planner is uncer-

tain about the market state. Different market states induce different inverse demand

functions, which can be arbitrarily different. Moreover, the assumption on the in-

verse demand functions of each scenario are very mild. Specifically, we only assume

that they are decreasing. This is a very relevant setup, as it corresponds to a more

realistic representation of the problem faced in practice, where there are large uncer-

tainties about different characteristics of the market state, which ultimately define

the effective response of the demand side to different market prices.

Moreover, the analysis suggests that the central planner only needs to consider

the scenario with the highest aggregated market consumption at equilibrium (see

(1.35)), i.e., scenario s = 1, regardless of the exact distribution over the different

market states. Specifically, Theorem 2 shows that uniform subsidies are optimal for
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scenario s = 1 in the relaxed upper bound problem (SUBP), while Theorem 3 shows

that the uniform subsidies induced by scenario s = 1, are in fact optimal for the co-

payment allocation problem under market state uncertainty (SCAP). This insight

suggests that the central planner only needs to identify the scenario with the highest

aggregated market consumption at equilibrium, and implement the uniform subsidies

induced by it, as opposed to taking into consideration her beliefs on the likelihood

that each market state will be realized, and the effect that the subsidy allocation will

have on each possible market state scenario.

1.6 Maximizing Social Welfare

In this section, we assume that the central planner's objective is in fact to maximize

social welfare. Given some 6 E (0, 1], which represents the social cost of funds, the

central planner problem of allocating subsidies to maximize social welfare can be

written as follows:

rQ n i
max P(x)dx - j (h(xi) - yi)dxi - 6 qiyi

s.t. y 0, for each i E {, .. .,n} (1.46)
n

Eqi = Q (1.47)
i=1

qi 0, for each i E {1,.. . , n} (1.48)

P(Q)+yi=hi(qi), for each i E {, ... , n}. (1.49)

The first two terms in the objective function correspond to the sum of the consumer

and producer surplus, including the co-payments yi. The third term in the objective

function corresponds to the social cost of financing the subsidies. Note that in this

problem there is no budget constraint. Specifically, the social cost of funds 6 E (0, 1]

will induce a total amount invested in subsidies at optimality, which can be interpreted

as the implicit budget available. Constraint (1.46) states that the central planner is

only allowed to allocate subsidies, and not taxes, to the firms. Like in Section 1.3,
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constraint (1.49) does not imply that every firm has to participate in the market

equilibrium.

From the equilibrium condition given in constraint (1.49), it follows again that

we can replace all the co-payment variables yj by hi(qi) - P(Q), as stated in the

proposition below.

Proposition 3. The social welfare maximization problem can be written as follows:

max Q - n[qi)(n
maxq,Q P(x)dx - 1 h(xi)dxi + (1 - 6) h(qi)qi - P(Q)Q

s.t. h(qi) > P(Q), for each i E {1, ... ,n} (1.50)
n

(CAP - SW) qi = Q (1.51)
i= 1

qi ;> 0, for eachi E {1,..,n}. (1.52)

The co-payments that the central planner must allocate to induce outputs q are,

yi(q) = hi(qi) - P(Q), for each i.

The first two terms in the objective function correspond to the sum of the con-

sumer and producer surplus, with no subsidies. The third term corresponds to the

increase in social welfare induced by subsidies, minus the social cost of financing them.

Constraint (1.50) states that the central planner is only allowed to allocate subsidies,

and not taxes, to the firms.

We will make the natural assumption that the social cost of funds, 6 E (0, 1], is

such that objective function of problem (CAP - SW) is coercive1 , therefore, there

exists an optimal solution, see, for example, Bertsekas (1999). Then, the budget B

that the central planner spends in subsidies, in order to maximize social welfare, can

be written as follows. Let (q*, Q*) be an optimal solution of problem (CAP - SW),

then
n

B = h(qi )q* - P(Q*)Q*.

'Let us denote the objective function of problem(CAP-SW) by SW(q, Q). Recall that SW(q, Q)
is coercive if SW(qk, Qk) -+ -oo for any feasible sequence such that II(qk, Qk)j I oc.

53



1.6.1 Optimality of Uniform Co-payments

We conclude this section by characterizing settings where, in addition to maximiz-

ing the aggregated market consumption, uniform co-payments also maximize social

welfare. Specifically, we show that if the marginal cost functions satisfy Property 3

below, then uniform subsidies are optimal for the problem (CAP - SW).

hi (qi)Property 3. For each ij and each qi,qj > 0, if hi(qi) > hj(qj) then W - >
h' (qi) qi

hj (qj)

h (qj)q j

Two examples of marginal cost functions that satisfy Property 3, are

* hi(qi) = gi q for u > 0.

" hi(qi) = ln(giqi + 1).

Note that these marginal cost functions also satisfy Property 1. Therefore, for these

two marginal cost functions uniform subsidies maximize both the consumer surplus

and social welfare.

This leads to the main result of this section.

Theorem 4. Assume that the marginal cost functions hi(qi) are non-negative, in-

creasing, and differentiable in [0, Q); the inverse demand function P(Q) is non-

negative, decreasing, and differentiable in [0, Q]; and the social cost of funds 6 E (0,1]

is such that it induces a finite central planner's budget B. If the marginal cost func-

tions satisfy Property 3, then uniform co-payments are optimal for the social welfare

maximization problem (CAP - SW).

Proof. Let (q*, Q*) be the optimal solution of problem (CAP - SW). First, we show

that (q*, Q*) must satisfy,

(1 - 6) (q) for each i. (1.53)
hi(q*) + h'(qi')q*'

Specifically, the expression in the objective function of problem (CAP - SW) related
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to the aggregated market consumption Q, is strictly increasing in Q. Namely,

'9 (jQ P(x)dx - (1 - 6)P(Q)Q) = SP(Q) - (1 - 6)P'(Q)Q > 0,

where the inequality follows from the inverse demand function P(Q) being non-

negative and decreasing. On the other hand, the remaining expression in the objective

function of problem (CAP - SW), related to firm i's output qi, is such that,

n n qi

( ) - ) huqj)qi - h(xi)dxi = (1 - 6)(hi(qi) + h'(qi)qi) - hi(qi).
oqi j i=1 I0

Assume for a contradiction that Equation (1.53) does not hold. Namely, there exists

an index i such that, (1 - 6)(hi(q ) + h'(qf)qi) - hi(qf) > 0. It follows that we can

increase ql by e > 0 sufficiently small, and obtain a feasible solution that attains a

strictly larger objective value. This is a contradiction to the optimality of (q*, Q*).

Second, assume by contradiction that there exist indexes i, j, with q* > 0 and

qj > 0, such that hi(q') > hj(q). The fact that the marginal cost functions satisfy

_______ hy(qj)
Property 3 implies that > . From direct algebraic manipulations, it

h'(qi*)qi- h'(qj)qj*
follows that,

hi(qi') hi(q*) - hj (qj) (1.54)
hi(q) + h'l(q%)qi - hi(q ) + h'(qi)q! - hj(q7) - h (qj)qj

Now, Equations (1.53) and (1.54) imply that

hi(qi') - hj(qj)

hi (q*) + h'(q*) qi - hj (qj) - hj (qj)qj

Therefore, we can transfer E > 0 sufficiently small from qi to q , and obtain the

following positive marginal change in the objective function, hi(q*) - hj(qj) - (1 -

6)(hi(qi) + h'(qi)qi - hj(qj) - h'(qj)qj) > 0. Namely, there exists a feasible solution

with a strictly larger objective value. This contradicts the optimality of (q*, Q*).

Hence, we conclude that for each i, j, with q > 0 and qj > 0, it must be the case

that hi(q*) = hj(qj). Therefore, uniform subsidies maximize social welfare. U
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1.7 Numerical Results

In Section 1.4, we have identified conditions on the firms' marginal cost functions that

guarantee the optimality of uniform co-payments to maximize the aggregated market

consumption of a good. In this section we study the performance of uniform co-

payments, in relevant settings where they are sub-optimal. More precisely, in Section

1.7.1 we consider Cournot Competition with linear demand and constant marginal

cost, as well as a more general setting with price taking firms having non-linear

marginal costs and facing non-linear demand. On the other hand, in Section 1.7.2

we extend this study to consider Cournot competition with non-linear demand and

non-linear marginal costs, which require additional modeling and machinery in order

to be simulated. Our goal here is to study numerically the performance of uniform

co-payments on problems with data generated at random.

1.7.1 Results for some Special Cases from Section 1.3.2

In order to evaluate the relative performance of uniform subsidies, we need to be

able to compute the aggregated market consumption induced by them. Proposition

4 below addresses this issue.

Proposition 4. Assume that the marginal cost functions hi(q) are non-negative,

increasing, and differentiable in [0, Q); and the inverse demand function P(Q) is

non-negative, decreasing, and differentiable in [0, Q]. Then, the market equilibrium

induced by the largest feasible uniform co-payment can be computed as the solution to

the following convex optimization problem,

n j q n+ 1
minq E J hj(xj )dx, - P(Q - xn+1 )dxn+1 - B 1n(Q - qn+1)

j=1 in0
n

s.t. q, + gn+=
j=1

(UCAP) qi > 0, for each i.

Assuming that the inverse demand function P(Q) is decreasing, and that the
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Figure 1-1: Boxplot of the Relative Performance of Uniform Co-payments - Cournot
Competition with Constant Marginal Costs

QU/QOPT] n=2 n=3_J n=10 ] K2
Min. 0.9360 0.9175 0.9182 0.9442
1st Qu. 0.9776 0.9734 0.9785 0.9828
Median 0.9919 0.9845 0.9849 0.9876
Mean 0.9860 0.9806 0.9834 0.9866
3rd Qu. 0.9983 0.9930 0.9902 0.9912
Max. 1.0000 1.0000 1.0000 0.9991

Table 1.1: Summary Statistics of the Relative Performance of Uniform Co-payments
- Cournot Competition with Constant Marginal Costs

firms'marginal cost functions hi(qj) are increasing, implies that problem (UCAP) is

a convex optimization problem. On the other hand, in the experimental settings we

consider, it will always be the case that at least the upper bound problem (UBP) is

a convex optimization problem. To solve these problems we used CVX, a package for

specifying and solving convex programs, see Grant and Boyd (2012). We will denote

by QU, QOPT and QUB the aggregated market consumption component of the optimal

solutions to problems (UCAP), (CAP) and (UBP), respectively.
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Cournot Competition with Linear Demand and Constant Marginal Costs

The model presented in Section 1.3 captures Cournot Competition with linear demand

and non-decreasing marginal cost functions hi(qi). Specifically, this implies that the

modified marginal cost function defined in Section 1.3.2, hi(qi) = hi(qi) + bqi, is in-

creasing. In particular, in this section we consider constant marginal costs. Although

the constant marginal costs case moves away from the our scarce installed capacity

assumption, it is a well understood model where uniform co-payments are not opti-

mal. Therefore, it is interesting to study the performance of uniform co-payments in

this setting.

Specifically, in this section we assume P(Q) = a - bQ, and hi(qi) = ci, for each

i. Therefore, the modified marginal cost is hi(qi) = ci + bqi, for each i. Under

these assumptions, the co-payment allocation problem (CAP) is a convex optimiza-

tion problem. Therefore, we solve both the uniform co-payments allocation problem

(UCAP) and the co-payment allocation problem (CAP), and we compare their ob-

jective functions directly. We consider four cases in the number of firms participating

in the market, n E {2, 3, 10, 20}. For each one of this four cases, we solve 1,000

instances of the problem. These instances are randomly generated, with parameters

sampled from the following distributions: a, b are uniformly distributed in [0, 50], ci

are independent and uniformly distributed in [0, a], for each i.

Figure 1-1 presents a boxplot of the results for the ratio QU/QOPT, while Table 1.1

presents some summary statistics. It is interesting that the minimum value of the ratio

QU/QOPT never went below 91% in the simulation results. Moreover, the mean and

median values are above 98%, for each value of the number of firms participating in

the market n. This suggests that, in most cases, the aggregated market consumption

induced by uniform co-payments is fairly close to the aggregated market consumption

induced by the optimal co-payment allocation.

Price Taking Firms with Non-linear Demand and Marginal Costs Now

we consider a more general experimental setup, with non-linear demand and non-

linear marginal costs, where the firms act as price takers. In this setting we assume

58



Qu/QUB

I I I
n=2 n--3 n=10

Figure 1-2: Boxplot
Taking Firms

of the Relative Performance of Uniform Co-payments - Price

QU/QUB I n=2 n=3 n=10 I n=z20

Min. 0.7321 0.7000 0.7149 0.8076
1st Qu. 0.9554 0.9497 0.9592 0.9747
Median 0.9874 0.9808 0.9836 0.9892
Mean 0.9698 0.9661 0.9710 0.9784
3rd Qu. 0.9985 0.9966 0.9952 0.9972
Max. 1.0000 1.0000 1.0000 1.0000

Table 1.2: Summary Statistics of the Relative Performance of Uniform Co-payments
- Price Taking Firms
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QU /QPT [ n=2 n=3 In=1 n=20
Min. 0.8360 0.8370 0.8577 0.8884
1st Qu. 0.9846 0.9798 0.9662 0.9681
Median 0.9952 0.9909 0.9791 0.9803
Mean 0.9878 0.9840 0.9735 0.9756
3rd Qu. 0.9991 0.9963 0.9976 0.9870
Max. 1.0000 1.0000 0.9996 0.9997

Table 1.3: Summary Statistics of the Relative Performance of Uniform Co-payments
- Cournot Competition with Nonlinear Demand

P(Q) = a - bQmO, and hi(qi) = ci + giq7i for each i. Under these assumptions, the co-

payment allocation problem (CAP) is a non-convex optimization problem. However,

the upper bound problem (UBP) is a convex optimization problem. Therefore, we

solve both the uniform co-payments allocation problem (UCAP) and the upper bound

problem (UBP), and we compare their objective functions.

We consider again four cases in the number of firms participating in the market,

n E {2, 3, 10, 20}. For each one of this four cases, we solve 1,000 instances of the

problem. These instances are randomly generated, with parameters sampled from

the following distributions: a, b are uniformly distributed in [0, 50]. For each i, ci

are independent and uniformly distributed in [0, a], gi are independent and uniformly

distributed in [0, 50], and mi are independent and uniformly distributed in (0, 20].

Finally, mo is uniformly distributed in (0, 3].

Note that P(Q) = a - bQmo, mo E (0, 3], captures both convex and concave

decreasing inverse demand functions. Similarly, hi(qi) = ci + giqi, mi E (0, 20] for

each i captures both convex and concave marginal cost firms. The results for the

ratio QUQUB are displayed in Figure 1-2 and in Table 1.2. The minimum value

of the ratio QU/QUB never went below 70% in the simulation results. Moreover,

the mean and median values are above 96%, for each value of the number of firms

participating in the market n, where in this case we are not comparing directly to the

optimal solution, but to an upper bound. This suggests that again, in most cases,

the aggregated market consumption induced by uniform co-payments is fairly close to

the aggregated market consumption induced by the optimal co-payment allocation.
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Figure 1-3: Boxplot of the Relative Performance of Uniform Co-payments - Cournot

Competition with Nonlinear Demand

1.7.2 Results for Cournot Competition with Nonlinear De-

mand

In this section we extend the numerical study of the performance of uniform subsidies

for Cournot competition with nonlinear demand. Recall from equation (1.11) that

this model is not one of the special cases of formulation (CAP) given in Section 1.3.2,

as it would correspond to each firm having a non-separable marginal cost function

h(qj, Q) = hi(qj) -P'(Q)qj, which depends on the market output of all the other firms.

Nonetheless, we will use additional modeling techniques that will allow us to compute

numerically a bound on the performance of uniform subsidies in experiments for this

case as well.

We again consider a fairly general experimental setup, with non-linear demand

and non-linear marginal costs; the difference is that now firms are assumed to engage

in Cournot competition. Specifically, we assume P(Q) = a - bQmO, and hi(q1) =

ci + giq" for each i, where all the parameters are positive. Under these assump-

tions, the non-separable marginal cost function of each firm becomes h(qj, Q)

ci + gjq'i' + mobQmo-lqi. Moreover, we consider the natural generalizations for the
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co-payment allocation problem (CAP) and the upper bound problem (UBP) where

we directly replace the marginal cost function hi(qi) by the non-separable function

h(qi, Q), therefore we skip the problem statements here.

Note that both problems (CAP) and (UBP) are non-convex for our experimental

setup, however we will be able to solve problem (UBP) efficiently as follows. First,

from the continuity of the functions P(Q) and h(qi, Q), and the monotonicity of

the objective function it follows that any optimal solution to problem (UBP) must

be such that the budget constraint is tight. Second, note that the non-separable

marginal cost function of each firm is increasing in its own market output, namely
dh(q ,Q) _ mgq-+m 0bQmo-1+m0 ( 0 _)bQmo-2qi > 0 because Q-I(mo-1)qi > 0

for each m0 > 0, as qi <; Q for each firm. Hence, the function TC(Q) defined below

is increasing in Q.

n n

TC(Q) min h(qi, Q)qi = (ciqi + giqmif+1 + m0obQm0-qi)
i=1 i=1
n

s.t. Eqi = Q
i=1

qi > 0, for each i.

Finally, note that the total revenue in the market P(Q)Q = aQ - bQmo+l is concave

for any mo > 0, and let us denote the total revenue maximizing market output by

QM. From the first observation it follows that the optimal objective value of problem

(UBP), denoted by QUB, must satisfy the budget constraint with equality, namely

P(QUB)QUB TC(QUB) - B. Moreover, if B > TC(QM) - P(QM)QM then the

functions P(Q)Q and TC(Q) - B have a unique intersection. Therefore, QUB can be

computed efficiently using binary search, where a convex optimization problem must

be solved to evaluate TC(Q) at each iteration.

On the other hand, we need to be able to compute the market consumption

induced by uniform subsidies. However, because the marginal costs functions h(qi, Q)
are non-separable and asymmetric in the influence of any two firms, it follows that the

market equilibrium induced by uniform subsidies cannot be formulated as a convex
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optimization problem, see for example Correa and Stier-Moses (2011). Nonetheless,

the market equilibrium can be formulated as an asymmetric variational inequality.

Hence, from Corollary 1 in Aghassi et al. (2006) it follows that (qU, QU) is the market

equilibrium induced by uniform subsidies if and only if there exists AU such that

the solution (qu, QU, AU) is feasible for problem (GUCAP) below, and it attains an

objective value of zero.

m inQ, hi(qi, Q)qi - P'(Q)q + P(Q) + (Q - Q) - AQ
i=1 i=
n

s.t. Eqi = Q
i=1

(GUCAP) qj > 0, for each i

A ; hi(qi, Q), for each i

A < P(Q) + -.

In fact, this implies that this solution is optimal for problem (GUCAP) because the

objective is non-negative for any feasible solution, see Aghassi et al. (2006). In our

setting problem (GUCAP) is non-convex. However, if a nonlinear solver finds a a

feasible solution (qu, QU, AU) with objective value equal to zero, then it follows that

QU is the market consumption induced by uniform subsidies. We use LOQO to

solve the smooth non-convex problem (GUCAP), see Vanderbei (2006), and in our

experiment the solver finds the optimal solution in 94% of the instances considered.

As before, we consider the number of firms being n E {2, 3,10,201, and for each

case we solve 1,000 instances randomly generated with parameters sampled from the

same distributions as in Section 1.7.1. The results for the ratio QU/QUB are displayed

in Figure 1-3 and in Table 1.3. The minimum value of the ratio QU/QUB never went

below 83% in the simulation results. Moreover, the mean and median values are

above 97%, for each value of the number of firms participating in the market n,

which are relatively better results compared to the ones we obtained for price taking

firms in the same setting. As before, in this case we are not comparing directly to

the optimal solution, but to an upper bound. This suggests that, in most cases, the
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aggregated market consumption induced by uniform co-payments is fairly close to the

aggregated market consumption induced by the optimal co-payment allocation, even

for the setting of Cournot competition with nonlinear demand considered here.

1.8 Conclusions

We provide a new modeling framework to analyze the problem of a central plan-

ner injecting a budget of subsidies into a competitive market, with the objective of

maximizing the aggregated market consumption of a good. This is equivalent to

maximizing the consumer surplus. The co-payment allocation policy that is usually

implemented in practice is uniform, in the sense that every firm gets the same co-

payment. A central question in this chapter is how efficient uniform co-payments

are compared to the optimal subsidy allocation, assuming that some firms could be

significantly more efficient than others.

Using our framework, we show that uniform co-payments are in fact optimal for

a large a family of marginal cost functions. Moreover, we show that the optimality

of uniform co-payments is preserved, under less general conditions, in the case where

the central planner is uncertain about the market state. Furthermore, we show that

uniform co-payments also maximize the social welfare for a large a family of marginal

cost functions. Finally, we study the performance of uniform co-payments in relevant

settings where they are not optimal. Our simulation results suggest that the aggre-

gated market consumption induced by uniform co-payments is relatively close to the

aggregated market consumption induced by the optimal co-payment allocation. It is

an interesting research question to explore whether there exist theoretical bounds on

the effectiveness of uniform subsidies in these settings.

In summary, we present interesting evidence that gives theoretical support to the

use of uniform co-payments in practice. Therefore, decision makers facing the problem

of allocating subsidies to increase the aggregated market consumption of a good,

should not spend time and resources developing sophisticated allocation policies, as

it is very likely that the very simple uniform subsidy policy will attain most of the
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potential benefits. Future research on this topic should study whether these insights

are preserved in dynamic models, where the subsidy allocation may change over time,

or under different market equilibrium conditions, such as supply function equilibria.
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Chapter 2

85% Worst-Case Performance

Guarantee for Uniform Co-Payments

2.1 Introduction

In many relevant settings the aggregated market consumption of a good is less than

what is considered socially optimal. This is generally due to the positive societal

externalities generated by its consumption, which, by definition, are not internalized

by consumers. Classical examples of such goods include vaccines and infectious dis-

ease treatments, see Brito et al. (1991) and Arrow et al. (2004), respectively. One

frequently implemented method to address this problem, is having a central plan-

ner intervening the market by allocating fixed per unit subsidies to the producers of

the good, with the objective of increasing its market consumption. These type of

subsidies are known as co-payments.

Let us emphasize that the co-payment allocation policy most often implemented in

practice is uniform, in the sense that every firm gets the same co-payment, regardless

of any differences in their cost structure or efficiency, see for example AMFm Inde-

pendent Evaluation Team (2012) for the case of new malaria drugs. This is probably

due to the simplicity and ease of implementation of this policy. How close the market

consumption induced by uniform co-payments is, to the one induced by the optimal

co-payment allocation, can be the key to effectively correct market imperfections,

67



such as the ones found in markets with large positive externalities. This motivates

the goal of understanding the optimal co-payment allocation structure, and providing

insights on how suboptimal uniform co-payments can be in the worst case.

2.1.1 Main Contributions

In Section 1.7 in Chapter 1 of this thesis we presented simulation results in rele-

vant settings where uniform co-payments are not optimal. They suggest that, on

average, the aggregated market consumption induced by uniform co-payments is rel-

atively close to the one induced by optimal co-payments. In this chapter we focus on

one of these settings, namely Cournot competition with linear demand and constant

marginal costs. For each instance of this model, we show that uniform co-payments

will always induce at least 85% of the market consumption induced by the optimal co-

payments allocation. Namely, we show an 85% worst-case performance guarantee for

uniform co-payments in maximizing the market consumption for Cournot competition

with linear demand and constant marginal costs.

Specifically, we characterize the optimal co-payment allocation in this setting, as

well as the market equilibrium it induces. We show that the optimal allocation con-

sists of giving larger co-payments to less efficient firms. We argue that this policy

is hard to implement in practice, and thus we study the performance of the more

practical, and frequently implemented, uniform co-payments policy. We also charac-

terize the market equilibrium induced by uniform co-payments. Hence, we are able

to write a non-convex optimization problem to minimize the ratio of the market con-

sumption induced by uniform co-payments, over the market consumption induced by

optimal co-payments. The variables of this problem are the demand's parameters,

the firms' marginal costs, and the central planner's budget; and its optimal solution

characterizes the worst case performance of uniform co-payments for this model.

Moreover, we derive a linear program whose optimal solution provides a lower

bound for the worst case performance of uniform co-payments in maximizing the

market consumption. We then use duality theory to find its optimal objective value

in closed form. This result allows us to discard multiple local optima and simplify
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the non-convex optimization problem previously described. Finally, we consider other

relaxations of the simplified problem, which allow us to solve it in closed form. Its

solution shows an asymptotically tight worst case performance guarantee of 2+\/4

85.31%. Namely, we show that, in each instance of this model, uniform co-payments

will induce at least 85% of the largest market consumption that can be attained. The

results in this chapter suggest that the efficiency loss induced by uniform co-payments

can be expected to be relatively small. Hence, this bounded efficiency loss should be

weighted against the important practical advantages of uniform co-payments, such as

their ease of implementation and communication.

2.2 Literature Review

Cournot competition with linear demand and constant marginal costs is a simple

oligopoly model where firms compete in quantity. It is a well understood model

that provides interesting insights. Therefore, it is frequently used by researchers

as a building block to study complex phenomena. Examples of this trend in the

operations management and operations research literature include using this model,

among others, to study the structure of supply chains, see Corbett and Karmarkar

(2001), supply chain contracts, see Cachon (2003), production under yield uncertainty,

see Deo and Corbett (2009), firms' profits compared to other equilibrium concepts, see

Farahat and Perakis (2011), and facility network design under competition, see Dong

et al. (2013). Importantly for us, uniform co-payments are not optimal for Cournot

competition with linear demand and constant marginal costs. Hence, in the same

spirit as in previous literature, we consider this model as a relevant example to study

how much market consumption can be loss, in the worst case, when implementing

uniform co-payments instead of the optimal co-payments policy. As pointed out in

most of the papers in the aforementioned literature, assuming linear demand and

constant marginal costs allows us to write close form expressions for the market

equilibrium, in our case for any given co-payments allocation. These are important in

order to derive the asymptotically tight worst-case performance guarantees for uniform
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co-payments that we present in this chapter.

Similarly, the model of Cournot competition with linear demand and constant

marginal costs has also been used as a building block in other areas, such as marketing

and economics. Some examples in the marketing literature include analyzing channel

structure, see Choi (1991), and process innovation and product differentiation, see

Gupta and Loulou (1998). On the other hand, some examples in the economics

literature include comparing price versus quantity contracts, see Singh and Vives

(1984) and Hickner (2000), as well as studying experimentation and learning with

uncertain product differentiation, see Harrington (1995).

One particular area in the economics literature that studies a problem related

to the one considered in this chapter, is the "third market model" in strategic trade

policy, see Brander (1995). In this model, n home firms and n* foreign firms export

a commodity to a third market, where the market price is set through Cournot Com-

petition with constant marginal costs. The government can allocate subsidies to the

home firms, increasing their profit at the expense of the foreign competitors. The

government's utility is equal to the profit earned by the home firms, minus the cost of

the subsidy payments. Note that the government does not face a budget constraint.

In a model with heterogeneous firms, Collie (1993) and Long and Soubeyran (1997)

assume a uniform subsidy, and study its effect in the market shares of the firms.

Later, Leahy and Montagna (2001) assume linear demand, and derive closed form

expressions for the optimal subsidies. They conclude that the optimal subsidy policy

is generally not uniform, and the government should allocate higher export subsidies

to the more efficient firms. In contrast, in our model we find that it is optimal to

allocate higher co-payments to the less efficient firms. This difference is driven by

the fact that the central planner's objective in our model is to maximize the market

consumption, as opposed to maximize the firms' profits. Although in our setting uni-

form co-payments are not optimal either, the main result in this chapter shows that,

in the worst case, they will induce at least 85% of the market consumption induced

by optimal co-payments.
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2.3 Model

In this section, we introduce a mathematical programming formulation for allocat-

ing co-payments, to Cournot competitors with linear demand and constant marginal

costs. We consider a market for a commodity composed by n > 2 heterogeneous

competing firms. We assume that each firm i E {1,... , n} decides its output qj > 0

independently, with the goal of maximizing its own profit, and that ithas a constant

marginal cost ci > 0. Consumers are described by a linear inverse demand function

P(Q) = a - bQ, where Q = E qj is the aggregated market consumption, and a > 0,

b > 0 are the demand parameters. We will assume, without loss of generality, that

the firms are labeled such that cl < c2 < ... < cn < a.

In terms of the market equilibrium dynamics, we assume that the firms engage

in Cournot competition, see Cournot (1897). Namely, that given all the other firms'

outputs, each firm i E {1, .. . , n} sets its output q, at a level such that it maximizes its

own utility Hi (qj, Q) = (P(Q)-ci)q = (a-bQ -ci)qj. That is, each firm i E {1,... , n}

simultaneously solves the following problem

max HIj(qj, Q), (2.1)
qi>O

and the market equilibrium consists of the fixed point attained at the intersection of

the best responses of all the firms. The necessary and sufficient first order condition

of problem (2.1), implies that each firm i participating in the market equilibrium

produces up to the point where its marginal cost equals its marginal revenue, namely

ci = P(Q) + P'(Q)qi = a - bQ - bqj; and each firm j that does not participate in the

market equilibrium, must have a marginal cost, which is larger than the market price,

namely cj > P(Q) = a - bQ. This can be summarized in the following equilibrium

condition:

For each i, j,if q 1 > 0, then ci + bqj = a - bQ : cj + bqj. (2.2)

The existence and uniqueness of the market equilibrium in this setting is well known,

71



see for example Tirole (1988).

As already mentioned in Section 2.1, we focus on settings where the market con-

sumption induced at the market equilibrium is less than what is socially optimal.

For this reason, a central planner intervenes the market by allocating fixed per unit

subsidies, or co-payments, to each firm. We will refer to the problem faced by the

central planner as the co-payment allocation problem (CAP). The co-payment allo-

cation problem is a particular case of a Stackelberg game, see Stackelberg (1952), or

a bilevel optimization problem. In the first stage, the central planner allocates her

budget B > 0 in the form of co-payments yi ;> 0, per unit provided in the mar-

ket, to each firm i E {1, ... n}. Moreover, she anticipates that in the second stage

the equilibrium output of each firm will satisfy a modified version of the equilibrium

condition (2.2), stated below in constraint (2.7). The main difference in the market

equilibrium condition (2.7), with respect to (2.2), is given by the fact that, from firm

i's perspective, the effective price for each unit sold is now P(Q) + yi = a - bQ + yi.

The central planner's objective is to maximize the aggregated market consump-

tion. Finally, let us emphasize that we have assumed that the central planner can only

allocate co-payments, and never charge taxes for the units produced in the market.

In other words, the allocated co-payments have to be non-negative. This is the case

in the practical problems that motivate this research, as the central planner is seldom

in the position of charging taxes to firms that may operate in different countries, with

the goal of increasing the aggregated market consumption of a good, see for example

Arrow et al. (2004) for the case of malaria drugs. Hence, the following is a valid

formulation of the co-payment allocation problem
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max Q
y,q,Q

n

s.t. qj yj < B (2.3)
i= 1

yi 0, for each i E{1, .. ., n} (2.4)
n

qi = Q (2.5)
i=1

q 2 0, foreachiE {1, ... ,n} (2.6)

ci+bqi = a-bQ+yi, foreach i E {1, ... , n}. (2.7)

Constraint (2.3) is the budget constraint, where the total amount spent in co-payments

can be at most the available budget B. Constraints (2.4) and (2.7) are the non-

negativity of the co-payments, and the modified equilibrium condition previously

discussed, respectively.

This is a valid formulation even if there are firms that do not participate in the

market equilibrium. Namely, if for some firm i we have qj = 0, then, from the modified

market equilibrium condition (2.7), and the non-negativity of the co-payments (2.4),

we must have yj = ci - (a - bQ) > 0. Hence, the non-negativity of the co-payment

yi, in constraint (2.4), exactly ensures that the original market equilibrium condition

(2.2) is satisfied. Moreover, allocating a co-payment yj = ci - (a - bQ) > 0 to firm i

is without loss of generality, because setting qj = 0 ensures that firm i does not have

an impact in the budget constraint (2.3). In other words, the fact that we impose

the modified market equilibrium condition (2.7) on each firm i E {1, ... , I}, does not

imply that every firm has to participate in the market equilibrium.

From the equilibrium condition (2.7), it follows that we can replace all the co-

payment variables yj by ci+ bqj - (a- bQ). Namely, we can reformulate the co-payment

allocation problem as if the central planner was deciding the output of each firm, as

long as there exist feasible co-payments that can sustain the outputs chosen as the

market equilibrium. The feasibility of the co-payments is given by both the budget

constraint (2.3), and the non-negativity of the co-payments (2.4). It follows that, the
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co-payments allocation problem faced by the central planner can be reformulated as

described next

maxq,Q Q
n

s.t. E(ciqi + bqi) - (a - bQ)Q < B (2.8)
i= 1

(CAP) ci +bqi a-bQ, for each i E {, ... ,n} (2.9)
n

qj = Q (2.10)
j=1

qj 0, for each i E {,..., n}, (2.11)

where constraint (2.8) is equivalent to the budget constraint (2.3), and constraint

(2.9) is equivalent to the non-negativity of the co-payments (2.4). The co-payments

that the central planner must allocate, to induce outputs q, are yj = ci + bqj - a - bQ,

for each i E {, ... , n}. Note that problem (CAP) is a convex optimization problem.

The first question we will address, in the following section, is whether we can

characterize the structure of the optimal co-payments, as well as the structure of the

induced market equilibrium.

2.3.1 Optimal Co-payments Allocation

In this section, we will show that we can characterize the structure of any optimal

solution to problem (CAP). Specifically, we will provide closed form expressions

for the market consumption, and each firm's market output, induced by optimal

co-payments, which are parametrized by indexes 1, m E {1, . .. , n} that are defined

below. Additionally, we discuss the practical challenges that would have to be faced in

order to implement this solution, which suggest that the uniform co-payment policy

can be more attractive from a practical perspective. All the proofs are presented in

Appendix A.2.

In more details, Proposition 5 below shows that the market outputs induced by the

optimal co-payments have the following intuitive structure: more efficient firms pro-

duce more than less efficient firms, up to the point where firms are so inefficient that
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they do not participate in the market equilibrium induced by optimal co-payments.

The latter is characterized by an index m E {1, ... , n}, associated to the last firm

that has a positive output in the market equilibrium induced by optimal co-payments.

Similarly, the optimal co-payments have the following structure. The more effi-

cient firms may not get any co-payments, and only after some index 1 C {1, ... I,

firms start getting a co-payment that is increasing in their marginal cost (see Proposi-

tion 5 below). Namely, in order to maximize the market consumption at equilibrium,

for Cournot competitors with linear demand and constant marginal costs, the best

that the central planner can do with her co-payments is to give more co-payments to

less efficient firms. This structural result is driven by the central planner's objective

of maximizing the market consumption. For example, it can be shown that if the

central planner's objective was to minimize the total cost instead, then we would

obtain the opposite result, where more efficient firms would get a larger co-payment

at optimality. This is in agreement with the observations made by researchers in

different problem settings, see for example Leahy and Montagna (2001).

Proposition 5. Any optimal solution of the co-payments allocation problem (CAP),

(q*, Q*), is such that the budget constraint (2.8) is tight, and there exist indexes

1, m E {1,..., n}, with 1 < m, such that the optimal co-payments are given by

y* = 0, for each i E {1, ... ,l - 1}, (2.12)

C. - Ci
yi = y* + - >0, for each i E{l,...,m}, (2.13)

2

y =y,-c* + ci - cl - bq* > y* + c2 > 0, for each i E {m + 1, ... ,n}. (2.14)

The optimal market output of each firm are given by

c* -ci y * ci - c
q* = q b* + > q + 2 >0, for eachi E{,...,l-1}, (2.15)b b 2b

c* -
c >

q* = q* -- > 0, for each i E {l,. .. , (2.16)2b

q* = 0, for each i E {m + 1, . .. , n}, (2.17)
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where the market output of the first firm that receives a positive co-payment qj* is given

by

a+ =a+ Zi=1 c mi - c + y
(m + 1)b b i=2( + 1)b (m + )b

(2.18)

The expressions (2.13)-(2.18) are written as a function of the first positive co-

payment y*, which is given by

a + ci - ci)
y, =1 

+

a + _ ci - 1c, M+ 1 (C, _-c)2 M + bB
21 (ml-l+)l 4 n- +b1)

M- M 1/2

-

ci -c a + c) + c(rni1 1 .(2.

i== i=+1 (m + )l
19)

Finally, the aggregated market consumption is given by

-1 (1-1
Q* 2(m+1)lb (21m - m +- 1)a - (m + il +1) ci -

2(mn + 1)lb ( = n-1+Ii=1+1

1 M -1 m

m-1 +I (ci - c) 2a +2 Eci + Eci -
1i=1 i=1+1

m

1ci - 1 E ci
i=l+1 /

-Q2+41(m + 1) b- c M)2  1+bB

1/2

(M + 1)C, .(2.20)

Practical Challenges. Proposition 5 characterizes the optimal co-payment y*,

and the induced market output qf, for each firm i E {1,. .. , n}, as well as the in-

duced market consumption Q*. Moreover, it provides closed form expressions that

are parametrized by the indexes 1, of the first firm that receives a co-payment, and

M, of the last firm that has a positive market output. Nonetheless, if we wanted to

transfer these insights into practice, we would have to keep in mind that the optimal

co-payments policy imposes the following challenges. First, the optimal co-payments

are a complicated function of the problem parameters, which would make them dif-

ficult to communicate. Second, they are different for each firm, which would signifi-
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cantly increase the complexity of the process of paying to the manufacturers. More

importantly, the optimal co-payments policy requires the central planner to know the

marginal cost ci of each firm i, as well as being highly sensitive to changes in the

value of the marginal costs. Although in our model we assumed a full information

setting, where the central planner knows the marginal cost of each firm, in practice

this may not be the case. Therefore, any practical implementation would either re-

quire a truthful mechanism to elicit the marginal costs, or alternatively it would have

to deal with potential misspecifications. In contrast, the uniform co-payments policy

is simple to communicate and control. Additionally, we will see in the next section

that it only depends on the average marginal cost of the firms, hence it is more sta-

ble to misspecifications. These characteristics make the uniform co-payments a more

attractive policy for practical purposes, as long as the loss in the induced market

consumption, with respect to the optimal co-payments policy, is not very large.

The expression for the market consumption induced by optimal co-payments Q* in

equation (2.20) is nonlinear, and quite complex to work with. Therefore, because we

are interested in the worst case performance of uniform co-payments in maximizing

the market consumption, it would be desirable to have a simpler expression that is

an upper bound on Q*, to compare with. The following lemma addresses this point

by providing an upper bound on Q*, which has a linear expression in the marginal

costs ci, and in the demand parameter a.

Lemma 6. If the indexes 1, m defined in Proposition 5 satisfy m > 2, and 1 c

{2, ... , m}, then the following is a valid upper bound on the total market consumption

Q* induced by the optimal co-payment allocation

2ma-2 2 ci - (m - l + 3)c1_1 - , ci (2.21)
2(m + 1)b

This bound is attained when y* = C -l
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2.3.2 Uniform Co-payments Allocation

In this section, we will characterize the structure of the market equilibrium induced

by uniform co-payments. Specifically, we will provide closed form expressions for

the market consumption induced by uniform co-payments, as well as for the market

output of each firm. These closed form expressions are parametrized by an index

U E {1,... , n}, which denotes the last firm that might have a positive output in the

market equilibrium induced by uniform co-payments. Additionally, we will provide

a lower bound on the induced market consumption, which has a linear expression in

the marginal costs ci. All the proofs are presented in Appendix A.2.

By definition, the uniform co-payments allocation gives the same co-payment to

each firm. In this setting, larger co-payments will clearly lead to a larger market

output, therefore we focus on the largest possible uniform co-payment that can be

afforded with the central planner's budget B. Namely, if we denote by qV the output

of firm i induced by the uniform co-payment yU, then we will focus on the value of

yU that makes the budget constraint tight. That is, Y1 qfyU = B, or equivalently

YU- B

In words, the amount of the uniform co-payment is obtained by simply dividing

the available budget B, by the the largest market consumption that be can attained

with this budget under a uniform co-payment policy, denoted by Qu. In practice,

the way this policy is usually implemented is by dividing the budget by a target

market consumption that the central planner has set as a goal, see for example AMFm

Independent Evaluation Team (2012) for the case of new malaria drugs. Let us

emphasize again that the uniform co-payments policy is conceptually simple, and

easy to communicate and control. In terms of the parameters in our model, the

structure of the market equilibrium induced by uniform co-payments is described in

the following lemma.

Lemma 7. Define, without loss of generality, c,+1 = a. Then, the market output
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induced by the uniform co-payments allocation, (qU, QU), is

U a B c-
q= - _Q +B - 0, for eachiE {, ... , U}, (2.22)

b bQU b 0  (222

qU =0, for eachiE {u+1, ... , n}, (2.23)

ua - ' ci + /(ua - E" 1 ci) 2 + 4u(u + 1)bB

(u2(u + 1)b (2.24)

where u E {1,. .. , n}, is the smallest index such that ci > a - bQU + B, for each

i E {u + 1,. .. ,n + 1}.

The uniform co-payment that induces this market output is

U B
B 

= -> 0, for each i {1,... , n}. (2.25)

The expression for the market consumption induced by uniform co-payments QU,

in equation (2.24), is much simpler than the one we have for Q*, in equation (2.20).

In particular, it only depends on the average marginal cost of the firms that are active

in the market equilibrium. However, this expression is still nonlinear. Similarly to

the previous section, it would be desirable to have a simpler expression that is a lower

bound on QU, to compare with. Lemma 8 below provides such a lower bound, which

has a linear expression in the marginal costs.

Lemma 8. The following is a valid lower bound for the market consumption induced

by the uniform co-payments allocation.

QU > uc - i (2.26)
b

Where the bound in equation (2.26) is attained when qu = 0.

2.3.3 Consistency Constraints on Parameters a, b, ci and B

Proposition 5 and Lemma 7 provide closed form expressions for the market consump-

tion induced by optimal co-payments Q*, and by uniform co-payments QU, respec-
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tively. These closed form expressions are parametrized by the indexes 1, m and u.

Recall that 1 is the index of the first firm that receives a positive co-payment, and m

is the index of the last firm with a positive output, in the market equilibrium induced

by the optimal co-payments allocation. Similarly, recall that u is the last index of

a firm that might have a positive market output, in the market equilibrium induced

by uniform co-payments. However, the existence of the indexes 1, m, u induces con-

sistency constraints on the parameters a, b, ci and B. They are given by the natural

constraints qu 0, 0 < y* < "' , and the definition of the index u in Lemma 7.

Specifically, in equation (2.22) we have that qu = - QU + B - - > 0, which

implies

bB > UCU - i c (U +1)cU - Ec - a .(2.27)
i=1 i=1

On the other hand, the definition of index u in Lemma 7 states that cu+1 >

a - bQU + B, which implies

bB UCU+1 - E (u + )cu+ - ci - a). (2.28)
i=1 C)(i=1

Similarly, equation (2.15) implies y,* ' c"j-2 (or equivalently y* 1  0), which in

turn implies

1 ( m -2 m
bB 54(mn+ 1) ( (ci - c 1 ) 2a + 2 c ci - (m + - 1)c1_1

- S - C1 1 )2 (2.29)
i=1 4

Finally, defining y* > 0, implies

I M -1 M
bB 4(m + 1) ( ci) (2a + 2 C + E ci - (m + )c)

i~+1i=1 i=1+1

- C -c .i)2  

(2.30)
i1:+4

i=1+1
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Note that constraints (2.27) and (2.28) follow from substituting the expression for

QU, given in equation (2.24), and solving for the budget B. Similarly, constraints

(2.29) and (2.30) follow from substituting the expression for y*, given in equation

(2.19), and solving for the budget B. Additionally, note that constraint (2.30) ensures

that the square root in the expression for Q*, in equation (2.20), is well defined.

Our goal in this chapter is to characterize the worst case performance of uniform

co-payments, in maximizing the market consumption in this setting. Therefore, a

natural approach is to write a mathematical program that minimizes the ratio of the

closed form expressions for QU and Q*, parametrized by the indexes 1, m and u in

Lemma 7 and Proposition 5, respectively, as a function of the problem parameters:

the number of firms in the market n, the demand parameters a, b, the marginal cost

of each firm ci, and the budget B. This is precisely what we will do in the remainder

of the chapter, where we will need to make sure that the consistency constraints

introduced in this section are satisfied.

2.4 Preliminary Results and Problem Statement

In this section, we present a mathematical program whose optimal solution quan-

tifies the worst case performance of uniform co-payments, in maximizing the aggre-

gated market consumption, for Cournot competition with linear demand and constant

marginal costs. In order to do so, we will start by giving a set of preliminary results

that will allow us to simplify its formulation, as well as providing useful tools for its

analysis.

We begin with a simple observation that will allow us, without loss of generality,

to scale the marginal costs of each firm ci, and the demand parameter a. The proofs

of Lemmas 9 and 10, as well as the proofs of Propositions 6 and 7 below, are provided

in Appendix A.2.

Lemma 9. For any instance of the co-payments allocation problem problem (CAP)

with c1  0, and for any scaling parameter 6 > 0, there exists a modified instance

with c1 = 6 such that the modified instance has the same set of optimal solutions,
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which attain the same objective value.

From Lemma 9 it follows that we can assume, without loss of generality, that

cl = 0 in the rest of the analysis. Nonetheless, in order to simplify some proofs we

will assume ci = 6 > 0, when convenient.

From Lemma 10 below, it follows that there exists an instance that attains the

worst-case in the performance of uniform co-payments in maximizing the market

consumption in this setting.

Lemma 10. For any given number of firms in the market n > 2, there exists an

instance of problem (CAP) that minimizes the ratio QU /Q*.

Additionally, Propositions 6 and 7 below allow us to reduce the family of instances

of problem (CAP) that we need to consider, in order to quantify the worst case

performance of uniform co-payments in maximizing the market consumption in this

setting. This will be crucial to simplify the analysis.

Proposition 6. For any given number of firms in the market n > 2, any instance of

problem (CAP) that minimizes the ratio QU/Q* must be such that the indexes given

in Proposition 5 and Lemma 7 must satisfy m = u = n.

Proposition 7. For any given number of firms in the market n > 2, any instance of

problem (CAP) that minimizes the ratio QU/Q* must be such that qu = 0. It follows

that both the consistency constraint (2.27), and the upper bound for QU from Lemma

8, must be tight.

Proposition 6 states that, without loss of generality, we can focus on instances

of problem (CAP) such that, in the market equilibrium induced by the optimal

co-payments allocation, all the firms in the market have a positive market output.

Namely, such that m = n. Similarly, Propositions 6 and 7 state that, without loss

of generality, we can focus on instances of problem (CAP) such that, in the market

equilibrium induced by the uniform co-payments, the last firm in the market is exactly

on the verge of start having a positive market output. Namely, such that u = n

and q# = 0. From the perspective of the mathematical program we are constructing,
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Propositions 6 and 7 significantly reduce the number of instances we need to consider,

by fixing the values of the indexes m and u to n, as well as fixing the value of the

budget B, as a function of the marginal costs ci, and the demand parameters a, b,

as in the consistency constraint (2.27). Additionally, Proposition 7 allows us to work

directly with the linear expression for QU from Lemma 8.

2.4.1 Problem Statement

Now we are ready to define the problems, and sub-problems, that we are interested

in solving, in order to identify the worst case performance of uniform co-payments

in maximizing the market consumption in this setting. We will check later that, for

any given number of firms in the market n > 2, the instance of problem (CAP) that

minimizes the ratio QU/Q* will be defined by the marginal costs ci, and the budget

B, for any given demand parameter values a > 0, b > 0. Moreover, the value of the

worst case ratio will be independent of the values of a, b. Therefore, we will only

consider ci, for each i E {1, ... , n}, and B as variables, while we will treat a > 0 and

b > 0 as parameters.

To simplify the notation let us define the function

V/*_1(B, c)

(n-1+) a+)2 +l(n + 1) n *) 41(n + 1)
=Enl+) a ci - 1c, + + E (ci-c n -12+ bB

n-1 +1+ n1+

1n n- 2

nTh+ E (ci - c)) 2a+2 Eci + E ci - (n ll)c) . (2.31)
(i=l+1 i=1 i=1+1

The problem we want to solve is introduced in Proposition 8. The proof is pre-

sented in Appendix A.2.

Proposition 8. For any given number of firms in the market n > 2, and demand

parameters a > 0, b > 0, let WC(l, n) be the worst case performance of uniform

co-payments in maximizing the market consumption, assuming that the index 1 E

{1,... , n} is fixed. Then, WC(l, n) can be computed as the optimal objective value of
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problem (WCP) below

WC(l,n)

QU(c) 2(n + 1)l (ncn - En 1 ci)
mi I~ Qi(B, c) (21n - n + 1 - 1)a - (n + 1 + 1) _:- ci - ici + vl- -(B, c)

s.t. ci 0 (2.32)

ci cj+, for each i E {1,... , n - 1} (2.33)

cn < a (2.34)

bB= nC ci (n + 1) - ci - a (2.35)
i=i=1

- E (C' _ c 1_1)2  (2.36)
4
(i=ll i=1 i=+

- (c, - ci) 2  (2.37)
4

i=I+1
B > 0. (2.38)

In Proposition 8, WC(l, n) is defined restricting ourselves to instances of problem

(CAP) where the first firm that receives a positive co-payment, in the optimal co-

payment allocation, is exactly 1. This definition is motivated by the fact that, given

an index 1 E {1,... , n}, Proposition 5 provides a closed form expression for the

market consumption induced by the optimal co-payments allocation, Q*. Note that,

to simplify the notation of WC(l, n), we have omitted its dependence on the demand

parameters a and b. This is because the worst case ratio will be independent of

their values, as we will check later. Note that constraint (2.32) follows from Lemma

9. Additionally, constraints (2.35), (2.36) and (2.37) correspond to the consistency

constraints (2.27), (2.29) and (2.30), respectively.

A priori, for any given number of firms in the market n > 2, and demand param-

eters a > 0, b > 0, it is not clear which case of 1 E {1,. . . , n} attains the worst case
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performance of uniform co-payments, in maximizing the market consumption in this

setting. Therefore, we are interested in solving the following problem

min WC(l, n). (2.39)
IE{1,...,n}

Solving problem (2.39) potentially requires computing WC(l, n), for each 1 {1, .. . , n}.

That is, solving problem (WCP), for each 1 E {, .. . , n}.

Additionally, in order to compute the largest uniform worst-case guarantee for

the performance of uniform co-payments, in maximizing the market consumption,

for Cournot competition with linear demand and constant marginal costs, we are

interested in solving the following problem

inf WC(l, n). (2.40)
nEN,n>2,E{1,...,n}

2.5 Worst-Case Performance of Uniform Co-payments

In this section we will solve both problems (2.39) and (2.40). Namely, we will compute

an asymptotically tight uniform worst case guarantee for the performance of uniform

co-payments in maximizing the market consumption, for Cournot competition with

linear demand and constant marginal costs. Moreover, for any given number of firms

in the market n > 2, and demand parameters a > 0, b > 0, we will actually identify

the worst case instance for the performance of uniform co-payments in closed form,

which will provide a tight worst case bound.

The following subsection describes a candidate instance to be the worst case, and

the value it induces for the ratio QU(c)/Q*(B, c) in problem (WCP).

2.5.1 Candidate to Worst Case Instance

Consider the following instance of problem (CAP). For any given number of firms in

the market n > 2, and demand parameters a > 0, b > 0, let
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Ci = 0, (2.41)

ci= (a for each i E {2,...,n}, (2.42)
3n + 1

(n - 1), +1n)
B__= 2(2.43)B ~ (3n + 1)2 b (.3

It is not hard to check that this instance is feasible for problem (WCP2 ), that

is for the case 1 = 2. Namely, in this instance the first firm that receives a positive

co-payment, in the optimal co-payment allocation, is firm 1 = 2. We can also check

that it attains an objective value of 2 in problem (WCP2 ). For completeness,

we prove these facts in Lemmas 15 and 16 in Appendix A.2, respectively. Note that

this objective value, that is our candidate to be the worst case performance of uniform

co-payments, is independent of the actual values of the demand parameters a and b.

This was already mentioned in the notation of WC(l, n) in Section 2.4.1, which omits

the dependence on these parameters.

The west of the chapter focuses on showing that, for any given n > 2, a > 0, b > 0,

the candidate instance from equations (2.41)-(2.43), effectively attains the worst case

performance of uniform co-payments in maximizing the market consumption.

2.5.2 Tight Worst-Case Performance Guarantees

This is the main result in this chapter

Corollary 1. For any given number of firms in the market n > 2, and demand

parameters a > 0, b > 0, the candidate instance from equations (2.41)-(2.43) is

the worst case instance for the performance of uniform co-payments in maximizing

the market consumption, for Cournot competition with linear demand and constant

marginal costs, attaining a value of

min WC(l, n) = 2.+-V2+2/n (2.44)
lE 1,...,n} 4
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Figure 2-1: Worst-Case Guarantee for Uniform Co-Payments

Hence, an asymptotically tight bound for the performance of uniform co-payments

in maximizing the market consumption in this model is

inf WC(l, n) = ~ 85.31%. (2.45)
nEN,n>2,E{1,...,n} 4

Proof. The first result follows directly from Theorems 5 and 6 below.

The second result follows from 2+ /2+2/n being decreasing in n, and taking the4

limit as n -+ oc.

The insights from Corollary 1 are summarized in Figure 2-1. It provides a tight

worst-case performance guarantee of 2+N/2+2/n, for the market consumption induced

by uniform co-payments, for any given n > 2, a > 0, b > 0. This bound is attained

by the candidate instance from equations (2.41)-(2.43). and it decreases asymp-

totically to 2+V ~ 85.31%. Namely, the efficiency loss in maximizing the market4

consumption induced by implementing the much simpler uniform co-payments pol-

icy is at most 15%, for any instance of Cournot competition with linear demand

and constant marginal costs. Hence, the practical advantages presented by the uni-

form co-payments -including ease of implementation, communication and control of

the co-payments program- should be weighted against this bounded efficiency loss.

Nonetheless, as shown in Figure 2-1, for any finite number of firms in the market n,
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the tight worst-case guarantee is strictly larger than the uniform bound. In particu-

lar, if the number of firms in the market is n E {2, 3}, then uniform co-payments are

guaranteed to induce more than 90% of the optimal market consumption.

Proof Structure To prove the results that imply Corollary 1, we will proceed as

follows.

1. First, Theorem 5 below shows that, for any given n> 2, a > 0, b > 0, the can-

didate instance from equations (2.41)-(2.43) is an optimal solution of problem

(WCP2 ).

2. Then, Theorem 6 shows that, for any n > 2, a > 0, b > 0, the worst case

instance does not belong to the cases 1 e {1} U {3,.. . , n}.

Theorem 5. For any number of firms in the market n > 2, and demand parameters

a > 0, b > 0, we have that WC(2,n) = + . Hence, the candidate instance

from equations (2.41)-(2.43) is the optimal solution to the problem (WCP2 ).

Proof. The proof structure is the following. For any given n > 2, a > 0, b > 0, we

will analyze a mathematical programming relaxation of problem (WCP2 ), denoted

by (RWCP2 ), whose optimal solution provides a lower bound on WC(2, n). We will

show that solving this relaxation is equivalent to solving one of (n - 1) one variable

optimization problems. Then, we will show that the objective function of any of these

simpler problems is lower bounded by 2+42Y7. The conclusion will follow from the

fact that this objective value is attained by the candidate instance from equations

(2.41)-(2.43).

All these auxiliary results are presented in Section 2.6. In particular, Lemma 11

in Section 2.6 describes the relaxation (RWCP2 ). From Proposition 11 in Section

2.6, it follows that solving the relaxation (RWCP2) is equivalent to solving problem

(RWCP2,1). We will show here that the candidate instance from equations (2.41)-

(2.43) is the optimal solution to problem (RWCP2,1 ), hence it is the optimal solution

to the relaxation (RWCP2 ). Because this instance is in fact feasible in the original

problem (WCP2 ), it follows that it is optimal for this problem as well.
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From Lemma 12 in Section 2.6, it follows that the objective function of problem

(RWCP2,1 ) is quasiconvex. Now we show that the candidate instance from equations

(2.41)-(2.43) is its unique minimizer. Any interior stationary solution must satisfy

dQ'(c*)/Q*,, (c*)
= 0.

dcn

After simplifying, this condition is equivalent to

(c*) = V/(n - 1)(a - 2c*) ((n - 1)a - 2(5n + 3)c*)

2(n - 1)(3n + 1)c* - (n - 1) 2 a (2.46)
3n + 1

Equation (2.46) is quadratic in c*, and its unique non-negative solution is c* =

3n+2 a E[ a], where c* > 1 is equivalent to 2n > 0. Hence, we conclude

that this is the unique minimizer of (RWCP2,1 ). Namely, that the candidate instance

from equations (2.41)-(2.43) is the optimal solution to problem (RWCP2,1 ). U

Let us emphasize again that, a priori, it is not clear which case of 1 E {1, .. . , n}

attains the worst case performance of uniform co-payments, in maximizing market

consumption in this setting. We will show now that it must be attained for the case

1 = 2. In other words, we will show that the worst case instance must be such that the

first firm that receives a positive co-payment, in the optimal co-payment allocation,

is the firm 1 = 2.

Theorem 6. For any given number of firms in the market n > 4, and demand

parameters a > 0, b > 0, we have that

WC(2, n) ; WC(l, n), for each I E {1} U {3, . .. , n}. (2.47)

Proof. The proof outline is the following. Propositions 12 and 13 in Section 2.6 show

equation (2.47), for the cases = 1 and 1 = 3, respectively. Then, we will use the lower

bound on WC(l, n), for any n > 2, and for each 1 c {2,... , n}, from Proposition 9,

to show equation (2.47) for the cases I e {4, ... , n}.
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In more details, Proposition 12 shows that, for any optimal solution to problem

(WCP), constraint (2.37) must be binding. Recall, from the equivalent consistency

constraint (2.30), that this corresponds to y* attaining its lower bound when 1 = 1,

namely y* = 0, or equivalently to y* attaining its upper bound when 1 = 2, namely

y = (c2 - c1)/2. In other words, it shows that the worst case instance for 1 = 1 must

lie in the boundary between the cases 1 = 1 and 1 = 2.

Similarly, in the proof of Proposition 13, for any given n > 3, a > 0, b > 0, the

value of WC(3, n) is lower bounded by 2+ 2+2/n > WC(2, n), where the inequality

follows from the fact that the right hand side is attained by the candidate instance

for the case 1 = 2 from equations (2.41)-(2.43).

Additionally, Proposition 9 below provides a lower bound on WC(l, n), for any

n > 2, and for each 1 E {2, ... , n}.

To conclude, note that for any given n > 4, a > 0, b > 0 and for each 1 E

{4, ... , n}, we have that

2n1 -2n+21-2 6(n+1) 2 2 2/n ~W(,)WC(l, n) > > > > WC(2, n)
- 2nl-n +l-i - 7n-+ 3 - 4

where the first inequality follows from Proposition 9, the second inequality follows

from the left hand side being increasing in 1 (the numerator increases faster than the

denominator), and taking 1 = 4. The third inequality holds for any n > 1. The

last inequality follows from the the fact that the left hand side is attained by the

candidate instance from equations (2.41)-(2.43), for the case 1 = 2 . This completes

the proof of inequality (2.47). U

The next result provides a parametric lower bound, based on linear programming,

on the worst case performance of uniform co-payments in maximizing the market

consumption in this setting, as a function of the number of firms in the market n,

and the index 1 of the first firm that receives a positive co-payment in the optimal

co-payment allocation.

Proposition 9. For any given number of firms in the market n > 2, demand param-
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eters a > 0, b > 0, and for each 1 E {2,... , n}, it must be the case that

2nl - 2n + 21 - 2
WC(l, n) >

- 2nl - n+ l - I

Proof. The proof structure is the following. We will consider the mathematical pro-

gramming relaxation of problem (WCP) from Lemma 13 in Section 2.6, denoted by

(LBP). Its optimal solution provides a lower bound on WC(l, n), for any n > 2, and

for each 1 E {2,. . . , n}. We will reformulate this relaxation as a linear program, and

we will use strong duality to obtain its optimal objective value in closed form.

The relaxation (LBP) is a linear fractional program. Hence, from Charnes and

Cooper (1962), it follows that by defining the transformation

ci = -2 ci for each i E{1, .. ., n}, (2.48)
2na - 2 i1c - (n - 1 + 3)ci_1 - E' ci

and
1

t- (n , (2.49)
2na - 2 Ei- 3)c1. - i

the relaxation (LBP) is equivalent to the following linear program

n

mint,. nXn - i
i= 1

s.t. 0 < X 2  (2.50)

xi xi+1 for each i E {2, ... , n - 1} (2.51)

(LP) Xn < at (2.52)
n

(n + 1)x - Zxi - at > 0. (2.53)
i=1

1-2 n

2nat - 2Exi - (n - 1 + 3)x1_1 - J e = 1 (2.54)
i=1 i=1

t > 0. (2.55)

Note that, for simplicity, and without loss of generality, we have dropped the

constant 2(n + 1) from the objective value of problem (LP). Similarly, we have
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dropped the dummy variable x1 = 0, and replaced it with the equivalent constraint

x 2 > 0. The dual of problem (LP) is

maxA,-,u A

s.t. u2 +-y - 2A < -1 (2.56)

-ui_ +u+y-2A= -1 for each i E {3, ... ,l - 2} (2.57)

(DLP) -U1 - 2 + U1- 1 + - (n - 1 + 3)A = -1 (2.58)

-ui 1 + ui + - A = -1 for each i E {l, .. ., n - 1} (2.59)

-Un-1 + un - n7 - A = n - 1 (2.60)

-aun + a- + 2naA < 0 (2.61)

-Y 0. (2.62)

ui 5 0 for each i {2, ... ,n - 1}. (2.63)

We will now show that for any n > 2, a > 0, b > 0, and for each 1 E 12, n},

the solution

ci = 0 for each i E {1, ... ,l-1}, ci = afor each i {l, ... ,n}, (2.64)
1

is optimal for problem (LBP). It is straightforward to check that this solution is

feasible for problem (LBP), and that it attains an objective value of 2nl-2,+1-2

From the Charnes and Cooper transformation given in equations (2.48) and (2.49),

it follows that the associated solution to the linear program (LP) is

1
xi = 0 for each i c {1, .. 1,-1}, xi = 1 1 for each i E {l, ... , n}, (2.65)

2nI - n+ -

t = 1 (2.66)
(2nl - n + 1 - 1)a*

This solution is primal feasible and attains an objective value of 2f '-1. Recall

that, without loss of generality, we have dropped the constant 2(n + 1) from the
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objective function of problem (LP).

On the other hand, we can also check that the following solution

A = ( ) = -2nA, (2.67)
2nl - n + 1 -- V'

ui = (1 -i - 1)7 - (n +1- 2i - 1) A+ l- i- I for each i E {2, -.. 11l- 2}, (2.68)

UI_1 = 0, ui = -(i + 1)-y - (n - i)A - i for each i c- {1, . . . , n - 1}, Un = 0, (2.69)

is dual feasible for problem (DLP), and it attains the same objective value (-1)
2n1-n+1-1V

For completeness, we prove this fact in Lemma 18 in Appendix A.2.

Hence, from strong duality in linear programming, it follows that the solutions

(2.65)-(2.66), and (2.67)-(2.69), are primal and dual optimal, respectively, see for

example Bertsimas and Tsitsiklis (1997). Therefore, the associated solution (2.64) is

optimal for problem (LBP), and 2,_2n+21-2 is a lower bound for WC(l, n) for any

n > 2, a > 0, b > 0, and for each l c {2,...,n}.

2.6 Auxiliary Results

In this section, we present several auxiliary results that are important to show the

main results in the previous section. In particular, lemma 11 below provides a relax-

ation of problem (WCP2 ), denoted by (RWCP2 ).

Lemma 11. For any given number of firms in the market n > 3, demand parameter

a > 0, and budget B, problem (RWCP2 ) below is a mathematical programming relax-

ation of problem (WCP2 ), whose optimal objective value provides a lower bound on
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WC(2, n)

QU(c)
minBc UC

'c Q2(B, c)

s.t. c= 0 (2.70)

ci_ ci+, for each i E {1,... , n - 1} (2.71)

(RWCP2) cn < a (2.72)
n

(n + 1)cn- ci - a > 0. (2.73)
i=1

Proof. We ignore constraints (2.36) and (2.37) from problem (WCP2 ). Additionally,

from cn ci for each i c {1, .... , n}, together with the expression for the budget

B in constraint (2.35) from problem (WCP2), it follows that constraint (2.38) from

problem (WCP2) is equivalent to (n+ 1)c - E 1 ci -a > 0. To conclude, we replace

constraints (2.38) and (2.35) from problem (WCP2) with this linear inequality. M

The following proposition shows that solving the relaxation (RWCP2) is equiva-

lent to solving one of (n - 1) one variable optimization problems.

Proposition 10. Without loss of generality, solving problem (RWCP2) is equivalent

to solving one of the following one variable optimization problems

Qn (cn) 4(n + 1)kc *,

Q*,k(cfl) (3n + 1)a - 2(n - k)cu + V (a)

(RWCP2,k) s.t. a < Cn (2.74)

cn a, (2.75)

for some index k E {1,...,n - 1}.

Proof. Note that for any number of firms in the market n> 2, and demand parameters

a > 0, b > 0, any optimal solution c* to problem (RWCP2 ) must satisfy that there

exists an index k E {1, . .. , n - 1} such that c* = c*, for each i E {1, ... , k}, and

c = c*, for each i E {k + 1, ... , n}. The proof of this statement is identical to the

first part of the proof of Proposition 19 in Appendix A.2, and it is therefore omitted.
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It follows that, without loss of generality, we can focus on solutions to problem

(RWCP2 ) with a special structure, which can be parametrized by the number of firms

k with their marginal cost equal to c*. Moreover, from Lemma 9, we assume, without

loss of generality, that c* = 0. Then, in this case, the function vl-/(B, c) in equation

(2.31) simplifies to

V*2,k(cn) = ((n - 1) ((n - 1)a2 + 2(k + 1)(4nk + n + 3k)c2 - 4(2nk + n + k)ac )

where, from Proposition 7, without loss of generality, we have dropped the dependency

on the budget B, by replacing it directly by the expression in constraint (2.35) in

problem (WCP).

Similarly, the functions Q*(B, c)and QU(c)simplify to

(3n + 1)a - 2(n - k)ca + *2,k(ca) kc,
62,k(Cn) 4(n + 1)b b

This completes the proof. U

It is straightforward to check that the candidate instance from equations (2.41)-

(2.43) is feasible for problem (RWCP2,1 ).

Proposition 11 below allows us to focus on problem (RWCP2,1 ) only, as it shows

that any solution to problems (RWCP2 ,k), for any index k C {2, ... , n - 1}, must

attain a larger objective function. Additionally, Lemma 12 shows that the objective

function of the problems (RWCP2 ,k) is quasiconvex. The proofs of these results is

given in Appendix A.2.

Proposition 11. For any given number of firms in the market n > 3, demand

parameters a > 0, b > 0, solving problem (RWCP2) is equivalent to solving problem

(RWCP2,1 ).

Lemma 12. For any given number of firms in the market n > 2, demand parameters

a > 0, b > 0, and for any index k c {1,... , n - 1}, the objective function of problem

(RWCP2,k) is quasiconvex in its feasible set.
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Propositions 12 and 13 below show that, in order to identify the worst case instance

for the performance of uniform co-payments in maximizing the market consumption

in this setting, without loss of generality we can ignore the cases 1 = 1 and 1 = 3,

respectively. The proofs of these results are given in Appendix A.2.

Proposition 12. For any given number of firms in the market n > 2, and demand

parameters a > 0, b > 0, any optimal solution to problem (WCP) must be such that

constraint (A.26) is binding. Therefore, WC(2, n) WC(1, n).

Proposition 13. For any given number of firms in the market n > 3, and demand

parameters a > 0, b > 0, it must be the case that WC(2, n) WC(3, n).

Lemma 13 below provides a relaxation of problem (WCP), which is a fractional

linear program.

Lemma 13. For any given number of firms in the market n > 3, and demand pa-

rameter a > 0, problem (LBP) below is a mathematical programming relaxation of

problem (WCP), whose optimal objective value provides a lower bound on WC(l, n),

for each 1 E {2, ... , n}.

minc 2na 2(n + 1) (ncn - Z ,=1 c)
2na - 2 3- ci - (n - 1 + 3)c1_ 1 - E

s.t. c= 0 (2.76)

ci cai, for eachiE {1, .. , n -1} (2.77)

(LBP) c, < a (2.78)
n

(n + 1)c - ci -a > 0. (2.79)
i=1

Proof. By replacing the function Q* (B, c) with its upper bound from Lemma 6, in

the objective function of problem (WCP), we obtain a mathematical programming

relaxation whose objective function does not depend on the budget B. Additionally,

we ignore constraints (2.36) and (2.37) from problem (WCP) altogether. Finally,

from c_ > ci, for each i E {1, .. . , n}, together with the expression for the budget B

in constraint (2.35) in problem (WCP), it follows that constraint (2.38) from problem
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(WCP) is equivalent to (n + 1)c - I ci - a > 0. We replace constraints (2.38)

and (2.35) with this linear inequality. We also drop the variable B, as it does not

play a role anymore.

2.7 Conclusions

We studied the problem faced by a central planner allocating a budget of co-payment

subsidies to Cournot competitors who produce a good. We assume that the firms

have constant marginal costs and face linear demand, and that the central planner's

objective is to maximize the aggregated market consumption of the good. We char-

acterized the structure of the optimal co-payment allocation policy, showing that it

consists of allocating larger co-payments to less efficient firms. We argued that this

policy is hard to implement in practice, and therefore we focused on the performance

of the more practical, and conceptually simple, uniform co-payments allocation.

We used linear programming duality to show a lower bound on the performance

of uniform co-payments in maximizing market consumption for this model. Then,

we analyzed a family of non-convex optimization problems to conclude that, for any

number of firms in the market n > 2, the worst case performance of uniform co-

payments in maximizing market consumption is 2+ +2/n. This immediately pro-

vides an asymptotically tight bound of 2+2 ~ 85.31%. Hence, we conclude that this
4

bounded, and relatively small, loss of efficiency should be weighted against the prac-

tical benefits of the uniform co-payments policy. Such practical benefits include that

uniform co-payments are simple to communicate and control, as well as being more

stable to misspecifications of the marginal costs compared to the optimal co-payments

allocation.

Future research on this topic should study whether the worst case bounds for the

performance of uniform co-payments presented in this chapter hold for a larger family

of instances, as well as whether there are generalized worst case bounds that show

that uniform co-payments have a guaranteed performance for more general market

competition models.

97



98



Chapter 3

A Continuous Knapsack Problem

with Separable Convex Utilities:

Approximation Algorithms and

Applications

3.1 Introduction

In this chapter we study a continuous knapsack problem with separable convex util-

ities. We show that the problem is NP-hard, and we provide two simple algorithms

that have worst-case performance guarantees. We consider as an application a novel

subsidy allocation problem in the presence of market competition, subject to a bud-

get constraint and upper bounds on the amount allocated to each firm, where the

objective is to minimize the market price of a good.

Specifically, we study a continuous knapsack problem, where the objective is to

maximize the sum of separable convex utility functions. We denote this problem by

(CKP). Beyond general methods for concave minimization, see for example Benson

(1995), there is not much literature on this class of problems. An exception is More

and Vavasis (1991), and their algorithm to find local minima. A comprehensive re-
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view of the related nonlinear knapsack problem literature is presented in Bretthauer

and Shetty (2002); however, in most cases, the objective function considered in this

literature is concave. On the other hand, for any given tolerance e > 0, a fully

polynomial time approximation scheme (FPTAS) is an algorithm that generates a

solution which is within a factor (1 - e) of being optimal, while the running time of

the algorithm is polynomial in the problem size and 1/E. Burke et al. (2008) provide

a tailored FPTAS for a minimization variant of a continuous knapsack problem, in

the context of allocating procurement to suppliers. The knapsack problem we study

here is a maximization problem, hence the results from Burke et al. (2008) do not

apply. Finally, Halman et al. (2008) develop a general purpose FPTAS for a class of

stochastic dynamic programs, which applies to general nonlinear knapsack problems.

In contrast, our main goal in this chapter is to study the performance of simple algo-

rithms for problem (CKP), as well as to introduce a novel application of continuous

knapsack problems into a subsidy allocation model in the presence of endogenous

market competition.

The main contributions of this chapter are two-fold. First, we develop two algo-

rithms that are computationally and conceptually simple, such that they can be used

in practical applications. We show that these algorithms have good worst-case perfor-

mance guarantees for problem (CKP). Moreover, we identify special settings where

these simple policies are actually optimal. Second, we show that problem (CKP)

characterizes a novel subsidy allocation problem, and that the simple algorithms that

we develop admit a practical interpretation.

3.2 Problem formulation

Consider n items indexed by i E {1,. . . , n}. For each i, let xi be the non-negative

quantity of item i, and let fi(xi) be the resulting reward. Moreover, fi(xi) is assumed

to be convex. The quantity of item i cannot exceed a given upper bound ui, and the

total amount of all items is bounded by the capacity of the knapsack, denoted by

B. Moreover, both B and ui are assumed to be integers. We are interested in the
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following continuous knapsack problem

n

max F(x) = fi(xi)
i=1

n

(CKP) s.t. xi < B
i=1

0 < xi < ui V i.

The objective function is convex over the feasible set, which is a bounded polyhedron.

Therefore, the existence of an extreme point optimal solution follows from concave

minimization theory, see for example Benson (1995).

The next one is our first result

Proposition 14. Problem (CKP) is NP-hard.

Proof. The proof is a reduction from the subset sum problem, which is well known

to be NP-complete, see Karp (1972).

Consider an arbitrary instance of the subset sum problem, where given a set of

n positive integers {u1, U2 ,... , un}, and a positive integer B, the question is if there

exists a subset J C {u, U2 ,.. . , un} that sums to B.

Now consider the following instance of problem (CKP): let ui be the upper bound

on xi for each i, B be the capacity of the knapsack and f(xi) = Xi(xi - ui) + xi be

the convex reward. It follows that this instance of problem (CKP) can be written as

n n

max X - Xi(ui - Xi)
i=1 i=1

s.t. Zxi B

i=1

0 < xi ui V i E {1,...,n}.

Note that B is an upper bound on the optimal objective value of this problem.

Moreover, this upper bound is attained if and only if there exists a subset J C

{ui, U2 ,.. . ,un} that sums to B.
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Hence, if we can solve problem (CKP) in polynomial time, it follows that we can

solve the subset sum problem in polynomial time. U

The proof of Proposition 14 is in the same spirit of Sahni (1974), which shows the

NP-hardness of non-convex quadratic programming among other problems.

We now make a couple of remarks that will make the exposition clearer.

Remark 2. There is no loss of generality in assuming that, for each i E {,... , n},

the functions fi(xi) are positive and non decreasing.

Specifically, we can pre-process the problem data replacing fi(xi) by the amount

max {fi(xi), fi(0)}, for each i and xi, obtaining non decreasing functions without

changing the problem. Similarly, by adding a constant K > mini{fi(0)} to each of

the functions fi(xi) we obtain positive functions.

Remark 3. There is no loss of generality in assuming that, for each i E {1,. . . ,

ui < B.

Specifically, if any upper bound ui is larger than the capacity B, then it follows

that any feasible solution will allocate at most B to item i. Hence, we can pre-process

the data and replace ui by min{B, ui}, for each i, without changing the problem.

3.2.1 A simple 1/2-approximation algorithm

We next describe a 1/2-approximation algorithm for problem (CKP). Specifically, we

will show that intuitive ideas perform well in this model. Namely, the best solution

between (i) allocating the capacity greedily to the items with the fastest rate of

increase in their utility function, and (ii) allocating the capacity greedily to the items

with the largest absolute increase in their utility function, attains an objective value

that is at most half the value of the optimal objective value.

This algorithm is a generalization of the well known 1/2-approximation algorithm

for the 0/1 knapsack problem. The latter is attained by the best solution between

greedily picking the objects by decreasing ratio of profit to size, and picking the most

profitable object, see for example Williamson and Shmoys (2011).
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Consider first idea (i). We denote the resulting solution by xrate. Essentially, xrate

is the result of a greedy procedure with respect to u(ui)-fO) which is the rate ofui

increase in the utility function of item i, assuming that xi is set to its upper bound.

Algorithm 1 Compute xrate

Xrate<=G

Let Ai - f(u)-f(0) for each iui I
Sort indexes by decreasing Ai

Find i s.t. _ ui < B and u ui > B
x* for each i < i

r~ate f i

On the other hand, consider idea (ii). We denote the resulting feasible solu-

tion by Xmax. Essentially, xmax is the result of a greedy procedure with respect to

fi(min(ui, B)), which is the absolute increase in the utility function of item i, when

allocating the minimum between the remaining capacity b, and its upper bound. In

case of a tie, fi(O) is used as a tie-breaker.

Algorithm 2 Compute xmax

f= B
xmax ,
while b > 0 do

Let Si = {i I fi (min (ui,A));> fi (min (u, f,) for each j : xax 0}
Let S2 = {i E S I fi(0) fj(O), for each j E S1}
Select i E S2

f f A - min U, f)

xmax e min U, f)

end while

It is not hard to see that each algorithm, considered separately, can be made to

perform arbitrarily bad. Examples drawn from a 0/1 knapsack problem are sufficient.

In order to show a worst-case performance guarantee for problem (CKP), we

need an upper bound on its optimal objective value, as provided in the following

proposition.
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Proposition 15. Let x* be an optimal solution to problem (CKP). Algorithm 1 pro-

vides the following upper bound,

f(;-- f;(0) rt
F~* (irate) + f, (0) - f, (Xiate) + 1A(t 0 ate

Where F(x) = E 1 fi(xi).

Proof. Lets relax the knapsack constraint in problem (CKP) with an associated La-

grange multiplier A, to obtain the following relaxed optimization problem,

max AB + (fi(xi) - Axi)
i=1

s.t. 0 x i u ,i V i.

The resulting problem is separable in the variables xi. Specifically, for each variable

it maximizes a convex function over a closed interval. It follows that the optimal

solution is attained at one of the extremes of the interval. For any fixed Lagrangian

multiplier A, let G(A) denote the optimal objective value of the relaxed problem.

Namely, G(A) = AB + En max (fi(0), fi(ui) - Aui). From duality theory, it follows

that, for any A > 0, G(A) is an upper bound for the optimal objective value of problem

(CKP), see for example Boyd and Vandenberghe (2007). Moreover, the best possible

upper bound can be computed from the following program,

n

min G(A) = AB + max (fi(0), fi(ui) - Aui)
A

s.t. A > 0.

The objective function of this problem is piecewise linear and convex. Hence, it can be

solved by trying out the values of A where the slope of the objective function changes.

In particular, Algorithm 1 solves this problem. The optimal Lagrange multiplier is

A- li) i(0 ), where i was defined in Algorithm 1 as being such that ZI ui < B

and E'=, ui > B.

Plugging in the optimal Lagrange multiplier A, in G(A), results in the best possible

104



upper bound from this relaxation. Without loss of generality, set x; 0, then

T-1 n

G(AN) = 3fi(uj) + > fi(0) + B - 3ui)

~S 1

=xrate

F(xrat e) + f;(0) - f;(Xat e)

f (u;) - f;(O) late
+i

The second equality follows from adding and subtracting the term f;(Xzate)

The next theorem is the main result in this section.

Theorem 7. Let x* be an optimal solution to problem (CKP). Let tate be the solution

computed by Algorithm 1, and er"x be the solution computed by Algorithm 2. Then

max (F(xrat e), F(nax)) 1
F(x*) - 2

Proof. To make the notation clearer, define f = maxi {fj (ui)}. Note that,

max (F(Xrate), F(xmx))

F(x*)

max (F(xrat e), f
> F(x*)

F>* max (F(Xrate),

F(xrate) + f;(0) - f;(Xzate) +i (ud)- A(0) rate

< 0

max (F(xrate), f7

F(xrate) + LL(Ui jate

1

> f;(u;) xrate
1+ A-U)

f u;
<1 <1

1
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The first inequality follows from Remark 2, and the definitions of f and x"ax. Specif-

ically, they imply f 5 F(xm ). The second inequality follows from Proposition 15,

while the third inequality follows from Remark 2. The fourth inequality follows from

the definition of f. U

To conclude this section, the following lemma identifies three cases that can be

solved in polynomial time. Specifically, Algorithm 1 solves problem (CKP) exactly if

the utility functions of each item are affine, namely fi(xi) = ai + bixi for each i, for

some ai > 0, bi > 0. Algorithm 1 also solves problem (CKP) exactly if any number

of items, ordered by fastest rate of increase in their utility function, fill the knapsack

exactly. Additionally, if the upper bounds are uniform, then problem (CKP) can be

solved by applying Algorithm 1 n times.

Lemma 14. If the functions fi(xi) are affine, or if the first (i - 1) indexes sorted by

decreasing value of Ai = f(u%)-h(O) fill the knapsack exactly, for some value of i, thenui

xrate is the optimal solution to problem (CKP).

On the other hand, if the upper bounds on the allocation to each index are uniform,

namely ui = u for each i, then problem (CKP) can be solved in polynomial time.

Proof. The first statement in the lemma is a direct consequence of Proposition 15.

Specifically, if xFate = 0, then it follows that F(x*) 5 F(xrate), hence xrate is optimal.

This holds in both cases in the first statement of the lemma.

Assume now that ui = u for each i. Each extreme point solution is characterized

by one fractional variable xi, which gets an allocation (B - [ u), while [J other

variables get an allocation u, and all the remaining variables get no allocation. From

the first statement in the lemma, it follows that we can try each variable as the

fractional variable, allocating (B - [ J) to it; and then use Algorithm 1 to optimally

solve the problem of allocating the remaining capacity [ u, among the remaining

variables. This follows because the first [J indexes sorted by decreasing value of

Ai = (u2 )(O) fill this modified knapsack exactly. In conclusion, in this case problemui

(CKP) can be solved by running Algorithm 1 n times. U
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3.2.2 An (1 - e-)-approximation algorithm

In this section we present an (1 - e- 1 )-approximation algorithm for problem (CKP),

where (1 - e- 1 ) ~ .632. We denote the resulting solution by xseq. In this algorithm

we enumerate all the solutions that allocate capacity to 3 items or less. Then, for

each of these solutions we allocate the remaining capacity, if any, greedily to the

remaining indexes with the fastest rate of increase in their utility function. In that

sense, Algorithm 3 is an extension of Algorithm 1. It captures that among the two

simple rules we have considered, the fastest rate of increase rule is the most powerful.

Specifically, it is enough to consider all solutions that allocate capacity to 3 items or

less, to rule out all the cases where the largest absolute increase rule was important

to define the worst-case guarantee.

To the best of our knowledge, this is the first time that these ideas have been used

in a continuous optimization setting, like our continuous knapsack problem (CKP).

Similar ideas have been used before in inherently discrete settings, such as solving

a budgeted maximum coverage problem in Khuller et al. (1999), and maximizing a

submodular set function subject to a knapsack constraint in Sviridenko (2004).

Algorithm 3 Compute xseq

Consider all sequences of 3 different indexes and allocate the capacity in this order

Let b be the remaining capacity
for Each sequence do

if B > 0 then
Apply Algorithm 1 to the rest of the indexes with capacity b

end if
end for

Theorem 8. Let x* be an optimal solution to problem (CKP). Let e eq be the solution

computed by Algorithm 3. Then,

> (1 - e-1 )
F(x*) -

Proof. If x* allocates all the capacity to 3 or less indexes, then we must have xseq - x*
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by enumeration. Therefore, assume that x* allocates capacity to 4 or more firms. Let

S= {i : X u} = {i 1 , i 2 , ... , ilS} (3.1)

be the set of indexes for which their allocation attains their upper bound ui. Assume,

without loss of generality, that 9 is ordered such that fil (ui,) f 2 (ui2 ) > - - - _

fi1S1(Ui,,,). Let Y C S be the set including the first 3 indexes in S. Namely, Y =

{i1 ,i2 ,i 3 }. Let By be the remaining capacity, after allocating the capacity to the

indexes in Y in this order. Define k to be such that,

Ui ifi cY

0 otherwise.

Let xS*c be the solution generated by completing k using Algorithm 1, considering

all indexes except those in Y, and an initial capacity By. In fact, Algorithm 3

considers xS* as one of its candidate solutions, therefore it outputs a solution at least

as good. We will show that xseq has a worst-case performance guarantee of (1 - e-1)

for problem (CKP).

Define H(x) = F(x) - F(k). Assume, without loss of generality, that indexes are

numbered such that 1 = i1 , 2 = i2 , 3 i3 , and then in decreasing order according to

Aj, for each i E I \ Y. Let x' be such that

i ifj<i
xi =

0 otherwise.

Note that x3 = k. Additionally, let Bi = . u3. Let Pk = + for each k =

B, + 1, ... , Bj+1, i > 3, and Pk = 0, for each k < By. From Proposition 15 it follows

108



that, for every i > 3

H(x*) F(x*) - F(k)
i n

E fi (Uj) + Efi (0)
j=1 j=i+1

+Ai+1 (B - Bj) - F(k)

F(x') + Ai+ 1 (B - Bj) - F(k)

H(x') + Aj+1 (B - Bj)

H(x) + Aj+ 1 (B - By). (3.2)

Let i be the last index with a positive allocation in xseq. Note that i > 4, therefore

B, > By. Additionally, note that

i Bi

H(x) = (fj (uj) - fj (0))= Ajuj : pk V i > 3. (3.3)
j=4 j=4 k=1

Where the first equality follows from the definition of xi and H(x). The second

equality follows from the definition of Aj. The last equality follows from the definition

of Pk.

Hence,

min {H(x') + Ai+ 1By}
i=1,.i-1

- min, n{Pk+PBiB} (3.4)

= win E Pk + PsBY . 35s=,..,{}5k=1

The first equality follows from equation (3.3), and the second equality follows because

we are only adding non-negative terms, therefore the minimizer does not change.
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It follows that,

H(xi) >H(x')
H(x*) min . {H(xi) + Aj+1 (B - By)}

ZBik

min 1 ,. ., {z1 Pk + pPBy}

-1

> 1-e$y

> 1 - e-1. (3.6)

The first inequality follows from equation (3.2). The first equality follows from equa-

tions (3.3) and (3.4). The second and third inequalities are due to Wolsey, where it

is required that both By and B, are integers, see Wolsey (1982). The last inequality

follows from B, > By.

Finally, we conclude that,

F(x"4) = H (x"4) + F(k)

F(k) + H(xi) - (H(x ) - H(xs*)

= F(k) + H(xi) - (F(x ) - F(xse)

> F(k) + (1 - e-1 ) H(x*)

- (F(x') - F(xseq))

(1 - e- 1) F(x*) + e-F(i)

- (f;(u;) - f;(XI))

> (1 - e-1) F(x*) + I F(i) - f;(u,)

> (1 - e- 1 ) F(x*).

The first and third equalities follow from the definition of H(x). The first inequality

follows from equation (3.6). The last inequality follows from the definition of Y, and
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the order of set S. Specifically,

3 n 3

F(k) = fi(ui) + 3 fi(0) > E fi (ui) > 3f;(u,).
i=1 i=4 i=1

Where the last inequality follows from IF(i) - f;(u,) < 0. Which follows from i > 4,

and the order of the set S.

3.3 Application: Allocating technology subsidies to

minimize a good's market price

We consider the problem faced by a central planner with the goal of increasing the

consumption of a given good, due to the positive societal externalities that it gener-

ates. Concrete examples of such goods are vaccines and infectious disease treatments.

In order to achieve this goal, she can allocate a given budget in the form of lump sum

subsidies among heterogeneous competing firms that produce the good. The intro-

duction of subsidies in the market will induce a demand increase. We assume that the

firms do not have the installed capacity to serve all the induced demand, therefore

capacity is scarce. We model this by assuming that the firm's marginal costs are

increasing. Furthermore, in our model, it is in the best interest of each firm to invest

the subsidy to improve the efficiency of its production process, reducing its marginal

costs. Therefore, we refer to them as technology subsidies. We model the central

planner's objective as minimizing the good's market price, therefore increasing its

consumption.

Allocating subsidies to producers, rather than to consumers, makes sense when

the coordination costs associated with paying to each consumer are larger than the

additional benefits generated by impacting consumers directly. This is frequently the

case when subsidizing infectious disease treatments in developing countries. One ex-

ample is the budget of $1.5 billion allocated as lump sum subsidies to producers of the

pneumococcal vaccine in 2007, by the Global Alliance for Vaccines and Immunization
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(GAVI) (see Snyder et al. (2011)).

To model the market equilibrium, we assume that the market is composed by n ;> 2

competing firms. Firms are profit maximizers, and engage in quantity competition,

with a linear inverse demand function P(Q) = a - -Q, where p > 0, and Q = 1 qi

is the total output produced by all firms at equilibrium. Furthermore, we denote by

xi the technology investment that each firm incurs, in order to become more efficient.

Specifically, we assume that firms have a linear marginal cost function of their output

qi, MCj = gj(xj)qj, for each i. Note that .j(xj) > 0 is the parameter of the marginal

cost function, which captures firm i's efficiency. Specifically, the smaller the value of

gi(xi), the more efficient the firm is. A larger technology investment xi reduces the

value of gi(xi), at a cost ci (xi), with a maximum amount that can be borrowed z,. The

function ci(xi) models the financing cost of firm i. Note that the firms in our model

are heterogeneous. The linear demand, and linear marginal costs assumptions are a

good approximation, which allow us to obtain closed-form expressions for equilibrium

outcomes, and to get insights on the subsidy allocation. Similar assumptions are

frequently made by researchers in order to get different insights (see for example Deo

and Corbett (2009)).

To simplify the exposition, define gi(xi) = (gj(xi) + 1). Adding a constant 1 to

the marginal cost of each firm will not make a difference in the analysis, therefore we

will refer to gi(xi) as the marginal cost functions from now on. We make the following

assumption on gi(xi).

Assumption 1. Assume that gi(xi) are continuous, positive and decreasing, for each

i c {1,..., n}. Moreover, assume g (xi)gj(xi) <; 2(g (x,))2 for any technology invest-

ment xi > 0.

Assumption 1 implies that 1 is a convex function of the technology investment
gi (Xi)

xi. To assume that gi(xi) is positive decreasing is natural in our setting. On the

one hand, it implies that a technology investment xi cannot increase the cost of

production. On the other hand, it implies that no matter how large a technology

investment xi is, the resulting marginal cost cannot be zero or negative. The latter
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condition in Assumption 1 is not very restrictive. It is satisfied by any concave,

positive and decreasing function gi(xi). It is also satisfied by convex functions, such

as gi(xi) = kie-k2xi, and gj (xi) = kix;-k2 for any k 2 > 1.

Similarly, we make the following assumption on the financing cost of firm i.

Assumption 2. Assume that c (x ) are continuous, positive, increasing and convex

in [0, .i], for each i E {1,.... , n}, where limx cj(x) = O0.

Moreover, assume ,(x _ - 2 > 0 for any technology investment
ci(Xj) -gi(Xi)g$ (Xi)

Xj E [0, ti].

Assumption 2 states that the cost of borrowing money increases at an increasing

rate for each firm, where 2, is the maximum amount that can be borrowed. The

latter condition in Assumption 2 is technical, it ensures the existence of the market

equilibrium. Intuitively, it states that the financing cost of each firm is convex enough

for the profit of each firm to be quasi-concave in the technology investment xi. Ex-

amples of pair of functions (gi(xe), c (xi)), that satisfy Assumptions 1 and 2, include

(kie-k2Xi, k3 ek4Xi), for any k 4 > k 2  0, and (kix;-k2, k3 ek4Xi) for any k 4  2 > 0,

k 2  1.

Now we characterize the market equilibrium. Let P(x) denote the market price

under technology investments x E R'. Assuming quantity competition with linear

demand allows us to write the following closed form expressions.

Proposition 16. The equilibrium market price, induced by a technology investment

vector x, can be written as

P(x) = ap (1+p (3.7)
i= xi)+

While the market output satisfies qi(x) = P(x)/gj(xj), for each firm i.

Derivations of similar closed form expressions can be found in the transportation

and economics literature, therefore the proof is omitted, see for example Nagurney

(1999).
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From Proposition 16, it follows that the market equilibrium is only a function of

the technology investments xi. Moreover, let r7i(x) be the profit obtained by firm

i at the market equilibrium. Note that the revenue of firm i is the market price

times its market output. Similarly, the cost of production of firm i is the integral

of its linear marginal cost, from zero to its market output. Finally, we also need

to consider the the financing cost of firm i. It follows that firm i's profit, at the

market equilibrium, can be written as Hi(x) = P(x)qi(x) - gi(xi)qi(x)2 /2 - ci(xi),

where the first term is its revenue, the second term is its production cost, and the

third term is its financing cost. Moreover, from Proposition 16 we conclude that

HI(x) = P(x) 2/(2gi(xi)) - ci(xi). Assumption 2 allows us to get the following result.

Proposition 17. The profit of firm i, Hi(x), is quasi-concave in xi E [0,;].

Moreover, the function P(x)2/(2gi(xi)) is quasi-concave in xi > 0, and attains its

maximum when qi(x) = acp/2.

Proof. We need to check that the derivative of each function changes sign at most

once. From Proposition 16 it follows that the profit obtained by firm i at the market

equilibrium can be written as

a2/p2 1 1
HI(x) = 2g - + g p -c)c (xi).

2gi(ii) g =1=,;(Xi)

Define - = E 1 + p, and note it is constant with respect to xi. Then, the

partial derivative of Hi(x) with respect to xi is proportional to

1 2c'(xi) (3.8)
g 

-c22gx+ ipg,(X() (1 + 'ygi(xi))
From Assumption 1 the second term in equation (3.8) is increasing in xi. Therefore,

it is enough for the third term in equation (3.8) to be decreasing in xi, for the partial

derivative of Ti(x) with respect to xi to be increasing. The derivative of the third
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term in equation (3.8) with respect to xi is proportional to

g' (Xi) g (xi) 3ayug (xj) ci (Xi)
+(i) gi(xi) v2+ apgi(xi) C'(xi)

g (xi) 2g(xi) cI (i)

g(Xi) gi (Xi) c (Xi)

2(g(xi ))2 - g(xj)gj(xj) c" (x,)

gj(xi)g (Xi) c (Xi)
<0.

The first inequality follows from g'(xi) < 0. The last inequality follows from Assump-

tion 2.

Hence, the partial derivative of FIj(x) with respect to xi is increasing and Hi(x) is

quasi-concave in xi E [0,4 ].

Similarly, the partial derivative of P(x) 2/(2gj(xj)) is proportional to

g1(x + gi(xi) - 1. (3.9)
(='A gj (Xj)

Which is decreasing in xi ;> 0, therefore the function P(x) 2/(2gj(xj)) is quasi-concave

in xi > 0. Moreover, it attains its minimum when we set the expression in equation

(3.9) to zero. Namely

1 2

(lgj (xj ) 1 -gj(xj )

Or equivalently qi(x) = .

Proposition 17 leads to the following Theorem.

Theorem 9. There exists a market equilibrium as a function of the technology in-

vestments xi.

Moreover, if the financing cost of each firm is zero there is no market equilibrium,

as each firm keeps increasing its investment level xi without bound.

Proof. The strategy set space of each player is [0, ji], a compact and convex set.

The profit function HI~(x) is continuous and quasi-concave in xi E [0, .t]. Hence,
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the existence of a pure strategy equilibrium follows from the Debreau-Glicksberg-Fan

Theorem, see for example Tirole (1988).

From Proposition 17, it follows that if the financing cost of each firm is zero,

then each firm has an incentive to increase its technology investment up to the point

where its market output is qi(x) = ap/2. Note that this is the optimal output of a

monopolist with no production costs, facing a linear inverse demand function P(Q) =

a - IQ. Moreover, this output is unattainable for two or more firms simultaneously.

Hence, each firm keeps increasing its investment level xi without bound. E

Let i be the equilibrium technology investment vector. For simplicity, let us

rescale, without loss of generality, the investment levels such that the equilibrium

technology investments are denoted by Ji = 0. We consider the case where the

market consumption induced by k is less than what is socially optimal. In this

context, the central planner intervenes the market with the objective of minimizing

the market price. The central planner invests her budget B, which we assume to be

integer, into technology subsidies xi ;> 0 (additional technology investments beyond

the equilibrium levels), for each firm i. Note that from Theorem 9 it follows that it

is in the best interest of each firm to invest the technology subsidy in becoming more

efficient, as this extra technology investment has no cost. We consider the case where

the central planner has an integer upper bound, denoted ui, on the amount of money

that she can allocate to each firm i. These upper bounds are motivated by fairness

constraints. From the closed form expression given in equation (3.7), it follows that

the problem faced by the central planner can be written as,

min. P(x) = ap ( i + )

n

(TSAP) s.t. Exi B
i=1

0 < Xi < ui V i.

From equation (3.7) it follows that, in order to minimize P(x), we can equivalently

maximize the convex function E 1 1 over a polyhedron. It follows that, in the
6g(x)
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absence of upper bounds ui on the amount of money allocated to each firm i, in an

optimal solution the whole budget B would be allocated to only one firm. However,

this type of solution would increase the market share of the selected firm, and decrease

everyone else's, resulting in a highly concentrated market. Recognizing that allocating

the whole budget to only one firm can be impractical, it is natural to consider upper

bounds on the technology subsidy that can be allocated to each firm.

By defining the convex function fi(xi) =g- , for each i, it follows that the

central planner's problem (TSAP) is equivalent to our continuous knapsack problem

with separable convex utility functions (CKP). Moreover, any a-approximation algo-

rithm for problem (CKP) leads to a 1-approximation algorithm for problem (TSAP)

(note that problem (TSAP) is a minimization problem, while problem (CKP) is a

maximization problem). Specifically,

P(xag) _ F(x*) + 1 F(x*) 1
P(x*) F(xag) + p - F(xag) - a

Where the equality follows from equation (3.7) and F(x) = E fi(xi). The first

inequality follows from p > 0.

Therefore, the results from previous sections suggest that simple subsidy alloca-

tion policies have a good performance guarantee for problem (TSAP). In particular,

Theorems 7 and 8 show that simple ideas, like allocating the subsidies greedily to the

firms that can increase their efficiency faster (Algorithms 1 and 3), or allocating the

subsidies greedily to the firms that can increase their efficiency the most (Algorithm

2), have a guaranteed performance for this model.

3.4 Conclusions

In this chapter we have studied a continuous knapsack problem with separable convex

utilities. We have shown the NP-hardness of the problem, and we have presented

two simple algorithms that have both worst-case performance guarantees and a prac-

tical interpretation. Moreover, we have identified special settings where these simple
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algorithms actually find the optimal solution.

As an application of this problem we have considered a novel model for the allo-

cation of lump sum subsidies to competing firms, where the objective is to minimize

the market price of a good in the presence of endogenous market competition, and

subject to a budget constraint and upper bounds on the amount that can be allocated

to each firm. The algorithms presented in this chapter suggest that simple subsidy

allocation policies have a good performance in minimizing the market price of a good

for this model.
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Part II

Supply Chain Procurement
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Chapter 4

Optimizing Purchasing and Handling

Costs for Supply Chain Procurement

4.1 Introduction.

Procurement is a fundamental area for most large companies. It encompasses issues

such as multi-sourcing, supplier relationship management and procurement contracts,

see for example Mieghem (2008). However, procurement decisions in practice are often

made in a silo, without taking into consideration the effect that they might have on

the total internal supply chain costs of the company. In this chapter, we introduce a

model that incorporates the cost of handling orders at a central distribution center,

into the procurement decisions. In particular, the model provides insights into how

the size of procured case packs affects the purchasing costs, as well as the handling

costs incurred when serving orders at the distribution center.

The supply chains of many companies in practice have several distribution centers,

and each distribution center satisfies orders placed by multiple end-point locations,

for many different SKUs. For each SKU, each distribution center places orders to a

supplier, who offers multiple case pack sizes, at different per-unit prices. Tradition-

ally, in most companies the case pack selection decisions are made by the procurement

department, which is primarily interested in minimizing the purchasing costs. Conse-

quently, the case pack size usually selected is simply the one that attains the cheapest
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per-unit purchasing cost. On the other hand, it is in the distribution center's best

interest to select the case pack size that better fits the sizes of the orders received from

the end-point locations, so as to minimize its handling costs. This chapter focuses on

developing an optimization framework to inform the case pack selection in procure-

ment contracts, which balances the procurement department's purchasing costs with

the distribution center's handling costs, and applying it on real data from the supply

chain of a large utility company.

To make this trade-off more concrete let us consider the following example: assume

that the supplier of a given SKU offers a discount, of a few cents per unit, for a

case pack of 200 units, making it the cheapest case pack size in terms of its per-

unit purchasing cost. Additionally, assume that the orders placed by the end-point

locations are mostly between 10 to 50 units. In this case, choosing the case pack of

200 units minimizes the purchasing costs at the expense of inducing large handling

costs. Specifically, the workforce at the distribution center would spend most of their

time breaking case packs of 200 units, then picking the 10 to 50 units of each order

individually, and re-packaging them to send them to the end-point locations. One

alternative could be to choose a case pack of 10 units. This option would fit the

orders much better, reducing the handling costs at the expense of the workforce at

the distribution center rounding up most of the orders to a multiple of 10, which

might lead to larger purchasing cost. In other words, the distribution center would

be sending out more units than the amount requested at the end-point locations.

We refer to the latter as waste cost, as these units are considered a loss by most

companies, both from an accounting and from a practical perspective. This is a

fundamental characteristic of the practical settings that motivate this research. In

more details, the distribution center has generally little or no incentive to retrieve

these extra units. However, the value of the total number of units unnecessarily sent

to the field, aggregating over all the SKUs, can be significant. Moreover, this cost is

incurred by the procurement department, as it may end up purchasing significantly

more units over a year than what is actually requested at the end-points locations. At

the same time, in the practical settings that motivate this research, the distribution
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center would argue that the large number of extra units sent to the field is a direct

result of the case pack selected by the procurement department, a decision that is

made without taking into account its impact on the distribution center's operations.

Let us point out that our setting is similar to the classical one-warehouse multi-

retailer (OWMR) problem, see for example Zipkin (2000). However, we incorporate

the case pack size as a decision variable, and we introduce a novel way to explicitly

model the handling costs incurred, when using a given case pack to serve an order.

We consider a fixed inventory policy, and we assume that it induces no shortages,

allowing us to simplify the problem, and to focus on the trade-off between selecting a

case pack size that takes advantage of per unit discounts on the purchasing cost, and

the potential mismatch between the case pack size chosen, and the order sizes that

need to be filled at the distribution center, which might imply larger handling costs.

Finally, let us emphasize that the insights that we obtain are applicable to many

large companies with an internal supply chain, such as large construction companies

and pharmaceuticals.

4.1.1 Main Contributions

We introduce a new model that minimizes the long run average purchasing and han-

dling costs induced by the case pack selection in procurement contracts. We prove

structural results that lead to a practical method to both selecting the best case pack

size per SKU, and serving orders at the distribution center. Furthermore, we test

this method on real data from a large utility company, finding significant total cost

reductions.

Our model brings new insights into the procurement literature, by explicitly mod-

eling the effects of the case pack selection in procurement contracts, on the total

internal supply chain costs of a company. Specifically, we study how it affects the

distribution center's policy for serving orders, and the associated handling costs it

induces. To achieve this, we model the most relevant activities carried out at the

distribution center in order to serve the orders, including breaking case packs, and

picking single units manually.
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We first consider the practically relevant problem of selecting the best case pack

size per SKU. For this problem, we show that a threshold policy is optimal for serving

orders at the distribution center. Notably, the threshold value is independent of the

discrete probability distribution over the order sizes, and of the number of single units

available from broken case packs. Moreover, the threshold value has an intuitive closed

form, which illustrates the interplay between the different cost parameters defined by

the procurement department's case pack selection. This allows us to obtain a close

form expression for the long run average purchasing and handling costs induced by

choosing any given case pack size, providing a practical method to select the case

pack size that induces the least total cost.

For the problem of choosing multiple case pack sizes per SKU, we use the insights

derived for the single case pack size problem to show that, under some assumptions

on the cost structure and case pack sizes, selecting at most three sizes provides a

2-approximation to the optimal cost. Namely, we show that, for each instance of the

problem, there exists a policy that only selects at most three case pack sizes, which is

guaranteed to have a total cost that is at most 2 times the optimal total cost. This is

important because the optimal policy can potentially imply selecting every case pack

size available from the supplier, making it highly impractical.

Finally, we test the method developed to select the best case pack size per SKU

on real data from a large utility company. The numerical results suggest that the

proposed method has the potential to reduce the purchasing and handling costs of

a SKU by 16%. Importantly, our proposed threshold policy is simple to implement,

and to communicate. In fact, the distribution centers at the utility company were

already using a threshold policy, albeit with a fixed threshold of 50% of the case pack

size for each SKU, simplifying the application of our method in practice. Similarly,

the implementation of our method is also simple from the procurement department's

perspective. It only requires to compare the easily computable long run average

purchasing and handling costs induced by each case pack size available from the

supplier, therefore facilitating the incorporation of the distribution center's handling

costs into the procurement department decisions.
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4.2 Related Literature

Our problem is related to the classical assortment problem in Pentico (1974), where

the objective is to identify which set of sizes of some product should be stocked,

when substitution in one direction is available at some cost. Pentico (2008) provides

a recent and thorough review of this stream of literature. The main differences with

respect to our model are related to the type of costs being considered. Specifically, in

our model demand is generic, as opposed to being specific to a given case pack size,

hence there is no substitution cost. Additionally, we incorporate the handling cost

induced at the distribution center by selecting any given case pack size.

Another related research area is on the design and control of warehouse order

picking, see Koster et al. (2007) for a literature review. The typical problems con-

sidered in this literature include layout design, storage assignment, routing, order

batching and zoning. Let us emphasize that Koster et al. (2007) state that broken

case picking is an important warehouse function. However, the decision of when to

break a case pack, and when to round up and serve an order with a whole case pack,

is not included in any paper in their review. This is precisely one of the decisions we

consider in this chapter, specifically in how it is related to the case pack selection.

As already mentioned, our problem is also related to the OWMR model, where one

warehouse orders a product from a supplier to serve orders from multiple retailers.

The objective is to decide the warehouse and retailers' orders so as to minimize the

fixed ordering costs plus the inventory holding costs over the planning horizon, see

Zipkin (2000) for a review of the classical results for this model.

Recently, Wen et al. (2012) worked with a major US retailer in considering the

problem of selecting the ship-pack for each SKU, in a two-echelon distribution sys-

tem. They consider a similar cost structure for the distribution center's handling

costs as we do in this chapter, as well as additionally considering inventory-related

costs. However, they do not consider inventory decisions in their model. Moreover,

for tractability purposes they assume that the weekly demand occurs at a known

constant rate, and that the inventory position of a SKU when a store places an order
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follows a uniform distribution, between zero and the store's known reorder point.

The implementation of their model on real data provided by a retailer suggests that,

by selecting the appropriate ship-pack size per SKU, the retailer can reduce its total

cost by 0.3% - 0.4%. In contrast, in this chapter we focus on the trade off between

purchasing costs and handling costs, and we do not consider inventory costs, allow-

ing us to consider a general discrete demand distribution. The common insight from

both this paper and our work is that, modeling and optimizing the handling costs

induced at distribution centers when dealing with different case pack sizes, can have

a significant impact on the total cost incurred by companies in practice.

Finally, there is little theoretical work in operations management that considers

the case pack size as a decision variable. Exceptions include Cachon and Fisher (2000),

where they find a substantial supply chain cost reduction generated by smaller batch

(case pack) sizes in a OWMR setting. Similarly, Kk and Fisher (2007) also find

a reduction in inventory costs generated by products with a smaller case pack size,

in the context of an assortment planning model with product substitution. Later,

Donselaar et al. (2010) present an empirical study of the ordering behavior of retail

store managers, showing that they tend to deviate more, from the order advices

generated by an automated inventory system, for products with larger case packs.

In contrast to this literature, our model suggests that, when taking into account the

handling costs at the distribution center, a smaller case pack size is not always better,

as it may lead to higher costs. For example, consider the extreme case where each

case pack size is a single unit, then each order would have to be picked manually,

potentially increasing the handling costs. Our model captures the trade-off between

purchasing costs and handling costs in the case pack selection, which leads to not

necessarily selecting the smallest case pack available.

4.3 Model

Our goal in this chapter is to develop a model that allows us to identify both the set

of case pack sizes that should be selected by the procurement department, as well as

126



the optimal policy to serve the orders at the distribution center. We now describe

the main components of the model.

Demand For each SKU, we consider an infinite horizon model, where an infi-

nite sequence of orders received from the end-point locations must be served at

the distribution center. We assume that the order sizes are uncertain, and follow

a known stationary discrete distribution, taking values from the set of positive inte-

gers {di, d2 ,. . . , d,,}, for some positive integer n. Namely, we assume that Dt = di

with probability pi, for i E {1, . .. , n}. The goal is to minimize the long run average

expected purchasing and handling costs.

Decisions To serve each order, we assume that the distribution center has a large

enough supply of case packs, of each of the sizes that have been already selected by the

procurement department. Let us denote by the positive integer m, the number of case

pack types selected by the procurement department, and by Sj, j E {, 1, ... ,},

their size in number of units. For each order, the distribution center has to decide (i)

how many whole case packs of each size to use to serve the order, and (ii) how many

units to pick manually from broken case pack of each size, breaking new case packs

if necessary.

Costs We consider the following stationary cost structure. For each case pack size

Sj, j E {0, 1,... , m}, we model the purchasing costs by a price per case pack P

quoted by the supplier. The handling costs include a cost Cj for using a whole case

pack, a cost K for breaking a case pack, and a per unit picking cost V for units picked

manually from an opened case pack, independent of the specific size of the case pack

they come from. Note that the cost Kj may include the additional costs associated

with a broken case pack, including shrinkage and the increased cost of keeping an

accurate inventory.

We make the following natural assumption on the cost structure

Assumption 3. Assume that for each case pack size Sj, j E {0, 1, ... , m}, it is always
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more convenient to pick the whole case pack rather than opening it and picking all its

units manually. Namely, assume that C < Kj + SjV, for each j E {0, 1, ... , m}.

Assumption 3 is intuitive, and it was satisfied by the instances in the numerical

experiments on real data from a large utility company described later in Section 4.5.

Moreover, this assumption is precisely what makes the problem interesting, otherwise

the optimal policy is to serve all the orders using manual picking.

Our model was originally motivated by the supply chain of a large utility com-

pany. Due to constraints imposed by its IT systems and processes, the company was

interested in identifying the best unique case pack size per SKU. In particular, the

software used at the distribution center only supports one case pack size per SKU.

Therefore, different case pack sizes would be treated as different SKUs, and thus be

placed at a random location within the distribution center, see for example Koster

et al. (2007). As a result, having multiple case pack sizes per SKU could significantly

complicate the picking process. Similarly, the processes followed by the procurement

department are also designed for only one case pack size per SKU. Motivated by

this practical requirements, we start by specializing our model for the case where the

procurement department selects one case pack size per SKU.

4.3.1 DP Formulation for Selecting the Best Case Pack Size

In this section, we will assume that m = 1. Namely, that the procurement department

selects a unique case pack size per SKU. Therefore, we will drop the index j for the

case pack type.

We will address the problem in two steps. First, assuming that the procurement

department has already selected a case pack size, we will study what is the optimal

policy to serve orders at the distribution center. Second, assuming that the distribu-

tion center follows the optimal policy from the first step, we will identify what is the

optimal case pack size that the procurement department should select.

From our assumptions on the cost structure, there are a couple of preliminary

results that follow, which we describe next.
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Preliminary Remarks From Assumption 3 it follows that, for each order size di,

i E {1,... n}, there is nothing better that we can do with the first [ -J units of the

order, than to serve them by picking whole case packs. Hence, any optimal solution

has a long run average expected cost of at least

(P + C)E = (P+C) p (4.1)

It follows that solving the problem in step one reduces to deciding how to serve the

remainder units of the orders that are not considered in equation (4.1). Therefore,

let us define the a priori random remainder orders Rt by

R =D- L j S for each t E {1, 2,. .. },S

where by definition we have Rt E {o, 1, . .. , S - 1}. Note that, from our assumption

on the stationary distribution of the order sizes Dt, it follows that the remainders Rt

are independent and identically distributed, with the following discrete distribution,

Rt = k, k E {, 1, ... , S - 1}, with probability qk = ZiE.i:dj-[dkJ~k} Pi

The problem of deciding how to serve the remainder orders can be posed as the

following infinite horizon dynamic program. Let xt E {o, 1,. . . , S - 1} be the leftover

units available at stage t from an opened case pack, and rt E {0,... , S - 1} be the

remainder order realized at stage t. Then, (xt, rt) will be the state of the dynamic

program. Let pt E {W, O} be the control at stage t, namely a function from the state

of the dynamic program to the feasible set of actions. Specifically, pt = W denotes

serving the remainder rt using a whole case pack, and -t = 0 denotes serving the

remainder rt by picking individual units from a broken case pack, breaking a new

case pack in the process if necessary. Additionally, let II = {[po, pi, . . } be a policy

for the infinite horizon problem.

Let g(xt, rt, [tt) be the cost incurred at stage t when applying control pt, and

being in state (xt, rt). From the description of the cost structure it follows that

g(xt, rt, W) = P + C, and g(xt, rt, O) = Vrt + (P + K)1{rt>,t}. Similarly, the state
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transitions for the leftover units available at stage t from an opened case pack, xt, are

Xt if Pt = W

xt+1(xt, rt) = x - rt if pt = 0 and rt < xt

xt + S - rt if pt = 0 and rt > xt.

Namely, if the control is to serve rt using a whole case pack, then xt stays the same.

If the control is to serve rt by picking individual units from an opened case pack,

then xt is reduced by rt, and S units are added if it was necessary to open a new case

pack (i.e., if rt > xt). Note that we assume that at any point in time there will be at

most one case pack opened. This policy of sequentially opening case packs as needed

is intuitive and practical. Moreover, the analysis of the problem will show that this

modeling assumption does not play a relevant role.

Finally, let Jn(xo, ro) be the long run average expected cost induced by policy H,

starting from the initial state (xo, ro). Note that

J11 (xo, ro) = lim sup IE N (X1 Rt, pt).
N-+o I t=O

Then, the problem that we are interested in solving is finding

J*(xo, ro) = inf Jr (xo, ro),H

for any initial state (xo, ro).

Alternative Cost Accounting There is an alternative method to account for the

cost incurred at each stage, which significantly simplifies the analysis, as stated in

the following proposition. We will focus on state dependent stationary policies.

Proposition 18. For any state dependent stationary policy, the long run average

cost attained by the original cost accounting g(xt, rt, 0) = Vrt + (P + K)1{rt>xt},

g(xt, rt, W) = P + C, is equivalent to the long run average cost attained by the alter-
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native cost accounting g'(xt, rt, 0) (V + (P+K) rt, g'(xt, rt, W) = P + C.

Moreover, minimizing the long run average cost is equivalent to minimizing the

average charge per unit.

Proof. Let pt be a stationary state dependent policy. Let C(N), C'(N) be its cumula-

tive cost from stage 1 up to N, using the cost accounting g(xt, rt, p), and g'(xt, rt, t),

respectively. Additionally, let B(N) = C(N) - C'(N).

Note that, for any stage N, B(N) < (P + K). This follows because at most one

case pack will be broken and charged at a time, before it is actually used for manual

picking. Hence,

lim sup 0(N)
N-+oo N

1 PN-1
=lim sup -E (XRt, 1-t)]

N-+oo N x..d

=lim sup E g'(Xt, Rt, pt) + B (N)
N-+oo _t=0

N-1

lim sup E [E g'(Xt, R, t)
N-+oo N t=0

. C'(N )
lim sup N

N-+oc N

Where the third equality follows because B(N) is bounded by a constant.

completes the proof of the first statement in the proposition.

This

Let U(T) be the total number of order units satisfied by stage T. We consider the

alternative cost accounting g'(xt, rt, p), and every time a whole case pack is used, we

allocate its cost uniformly over all the units being served. Let ai the cost allocated to

unit i in this manner, for i E {1, . .. , U(T)}. Note that ai has a stationary distribution,

for any stationary state dependent policy. Then, we have that the long run average

cost induced by p is
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C'(N) 1U(N)
lim sup = lim sup - U

N-+ 0 N N-+ N

U(N) U(N) a
= lim sup

N~x NU(N)N-+oo N i=1 UN

U(N)

= E[R]lim sup ai
N-oo U(N)

Because E[R] is a constant that does not depend on the policy, we conclude that

minimizing the long run average cost is equivalent to minimizing the average charge

per unit. M

The alternative cost accounting from Proposition 18 allocates the per unit long

run average cost of using a broken case pack to each unit, as opposed to keeping track

of the necessity of opening a new case pack at the appropriate stage. Specifically, the

long run average cost of using an opened case pack is the cost of picking a single unit

V, plus the total cost of purchasing and breaking a case pack (P + K), divided by the

total number of units in the case pack S. Intuitively, this follows from the observation

that any stationary policy will use all the leftover units of an opened case pack to

satisfy some order in the long run.

4.4 Structural Insights

In this section we present the structural insights we derived for the model described

in Section 4.3. In particular, Section 4.4.1 shows how to efficiently solve the problem

of selecting the case pack size that minimizes the long run average purchasing and

handling costs, for each SKU. Additionally, Section 4.4.2 shows that, under some

assumptions, selecting at most 3 case pack sizes can be sufficient for a policy to be

guaranteed to induce at most twice the optimal long run average purchasing and

handling costs, for each SKU. Section 4.4.2 also provides counter-examples, which

show that the assumptions made are, in some sense, necessary to obtain a worst-case
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performance guarantee.

4.4.1 Selecting the Best Case Pack Size per SKU

The following is the main result in this section.

Theorem 10. An stationary threshold policy is optimal to serve any given remainder

order rt at the distribution center.

Moreover, for any given case pack size the optimal threshold d is

- (P+C)S (4.2)
VS+P+K'

independently of the discrete probability distribution over the order sizes.

Hence, the long run average expected purchasing and handling cost induced by

selecting any given case pack size is

(P+ JE - + (P+C)P(R > j)+ V + PfK) E[RIR < d]P(R < d), (4.3)
S S

where R:= D - |2] is the, a priori random, remainder order.

Proof. Without loss of generality, we focus on stationary state dependent policies.

From Proposition 18 it follows that we can equivalently minimize the average charge

per unit. Moreover, the optimality of the threshold policy in the the theorem follows

directly from the alternative cost accounting from Proposition 18. Specifically, for

any given remainder order r, the charge per unit induced by the optimal control is

min {, ~(V + (P+K)) , which leads to the threshold din equation (4.2). Similarly,

computing the expected cost induced by this optimal threshold policy gives

(P +C)P( R>2) + V + I K E[ R\R < ]P( R < j). (4.4)
S

Finally, equation (4.3) in the Theorem follows from adding up equations (4.1) and

(4.4). N
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Let us emphasize that the threshold d in equation (4.2) only depends on the

parameters associated to the case pack size being used, and, surprisingly, it is inde-

pendent of both the distribution of Rt, and of the leftover units available from an

opened case pack xt. Moreover, the threshold j has an intuitive closed form expres-

sion that illustrates the interplay between the different cost parameters. Specifically,

we can rewrite equation (4.2) as follows

P + C P-K (45)j - V S 45

From equation (4.5) it follows that the threshold value d balances, on the left hand

side, the per unit cost of using a whole case pack to serve a remainder order of size

d, with the per unit cost of using an opened case pack on the right hand side. In

particular, on the left hand side of equation (4.5) the cost of purchasing and using a

whole case pack to serve an order is divided by the number of units that are being

satisfied j.

Additionally, note that in most practical settings we will likely have a non trivial

threshold policy, namely we will have d > 1. For this to be the case it is enough that,

for any case pack with S units, it is always more convenient to open the case pack

and pick all its units manually, rather than satisfying S units of an order, each one

of them with a whole case pack, that is P + K + SV < (P + C)S. If this is not the

case, then it is optimal to round-up every order, and use only whole case packs to

serve them.

Theorem 10 provides us with a closed form expression for the long run average

purchasing and handling costs induced by selecting any given case pack size. It follows

that we can then simply select the case pack that induces the least cost. Hence,

Theorem 10 provides a practical method for both serving orders at the distribution

center, and selecting the best case pack size per SKU at the procurement department,

respectively.
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4.4.2 Selecting Multiple Case Pack Sizes per SKU

In this section we consider the problem of selecting multiple case pack sizes per SKU.

From the analysis of the problem of selecting the best case pack size per SKU in

Section 4.4.1, it follows that in the long run it is optimal to pick units manually from

a single case pack size. Namely, it is optimal to pick units manually only from case

packs of the size that induces the smallest per unit long run average cost of using an

opened case pack. Without loss of generality, we will denote the index of this size

by 0, therefore its per unit long run average cost of using an opened case pack is

V + A +CO>

Furthermore, the problem now becomes how to serve each possible order size di,

i E {1, 2, .. . , n}. Namely, what number of whole case packs of each size should be

used to satisfy the order? How many units should be picked manually from case packs

of size SO?

Without loss of generality, we will only consider the case pack sizes Sj, j E

{1, 2,... , m}, to be sent as whole case packs to serve the orders (duplicating So

if necessary), so we can effectively split the actions of using whole case packs, and

picking single units. Then, for any given order size di, the problem we are interested

in solving can be casted as the following integer program.

The decision variables we consider include the number of case packs of size Sj to

satisfy the order, denoted by zj, for each j E {1, 2,... , m}, and the number of units

that are going to be picked manually from case packs of size So, denoted by y. We

impose the constraint that the total number of units sent must be at least the amount

ordered di, as it may be cost efficient to send more units than the amount requested,

incurring in a waste cost, in order to reduce the handling costs. In summary, the

solution to the following integer program provides a detailed policy to serve the orders
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from the end-point locations at the. distribution center

min zj(P C;)+ Vo+ (PyCO))
Y ;jj=1 s

s.t. E zS, + y di
j=1

(IP) zj E N+ Vj E { 1,...,)M}

y > 0.

Note that in the objective function of problem (IP) we have used the alternative

cost accounting from Proposition 18. Namely, we have allocated the per unit long

run average cost of using an opened case pack, V + (PoCo), to each unit picked

manually, as opposed to keeping track of whether a case pack had to be opened for

this particular order.

Because in any optimal solution each variable zi will take only values in {0,, .. . [d] },
the integer program (IP) can be reformulated using _ [i binary variables.

Moreover, any instance of the problem with a large enough cost of picking single

units V, is equivalent to a 0-1 covering problem. Hence, problem (IP) is NP-hard.

Furthermore, this problem is a covering version of the 0-1 knapsack problem with

a single continuous variable introduced by Marchand and Wolsey (1999). Recently

Zhao and Li (2013) provide a 2-approximation algorithm for the knapsack version

of the problem, while Lin et al. (2011) provide an exact exponential algorithm for

it, showing good results in simulations when compared to general purpose solvers.

Unfortunately, these results do not carry over directly to the covering version of the

problem.

In the remainder of this section, we will assume, without loss of generality, that

the case pack sizes are labeled, and the respective costs are scaled, such that

P1+C1  P2 +C 2  Pn+Cn Po+Co
< <...< V0 -+ =1. (4.6)

S1 < S2  < - Sn so

Additionally, let 1 = arg min{Pj + Cj} be the index of the case pack size with least
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S, PIf+C I(P+C)/S]
500 112 0.224
250 87 0.348
100 42 0.42
50 24 0.48
20 15 0.75

Table 4.1: An Instance of the Problem of Selecting Multiple Case Pack Sizes

S[ Di = 795 Di = 672...
500 1 1
250 1 0
100 0 1
50 1 1
20 0 1
So 0 2

Table 4.2: Examples of Optimal Solutions to Problem (IP)

total cost of purchasing it, and using it to satisfy an order. Note that, without loss

of generality, S corresponds to the smallest case pack size available. Specifically, if

there exist indexes j and k such that P + C3 Pk + Ck and S, > Sk, then it follows

that for any solution that uses some case packs of size Sk, we can replace them by

case packs of size Sj obtaining a feasible solution which attains an objective value

that is no worse than the original. Hence, without loss of generality, we can assume

that P + Cj < Pk + Ck implies S _< Sk, for any pair of indexes j and k.

Although the large utility company that provided us with real data was not inter-

ested in selecting multiple case pack sizes per SKU, the analysis in this section allows

to explore the potential benefit of considering this option. Unfortunately, it is not

hard to construct instances of the problem of selecting multiple case pack sizes per

SKU, for which all the available sizes from the supplier are required in the optimal

solution. For example, Table 4.1 describes an instance with the same set of sizes used

in the numerical experiments in Section 4.5, but with different costs that have been

normalized such that Vo + P+CO = 1. For any given order size Di, we obtain anso

instance of problem (IP). Table 4.2 describes the optimal solutions for a couple of

order sizes, including the number of whole case packs of each size used to serve the
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order, as well as the number of single units picked manually from a case pack of size

So in the last row of the table. These examples are sufficient to show how all the sizes

available from the supplier are used in some optimal solution. This characteristic

makes the optimal policy potentially impractical, as many different case packs would

have to be carried, for each SKU, in order to serve the orders, significantly increasing

the complexity of the picking and handling operations at the distribution center, as

well as the negotiations between the procurement department and the suppliers.

In this context, a relevant question is whether only selecting a limited number of

case packs from the supplier is sufficient to have a constant worst-case performance

guarantee. We will show in the main result of this section that, under some assump-

tions, selecting at most three sizes will induce a total cost that is at most twice the

cost of the optimal policy. Namely, selecting at most three sizes will be sufficient to

have a 2-approximation for the problem of selecting multiple case pack sizes per SKU.

Theorem 11. For any order size di --, simply using case packs of size S1 gives a-2'

2-approximation for problem (IP).

Additionally, if P1 + C1  2(PI + Cl) or S1 2S, then using only case packs of

size So, S1 and Si gives a 2-approximation for the problem of selecting multiple case

pack sizes per SKU.

Proof. For any given order size di, let us denote the optimal objective value of problem

(IP) by OPT(di). For any order size di S' we have that2

2OPT(di) 2 1 di d I (P + C)

where the first inequality follows from equation (4.6), and the second inequality follows

from the assumption that di ! S. The last expression is exactly the cost incurred

by only using case packs of size S1 to serve the order di. Therefore, we conclude that

using only case packs of size Si induces a cost that is at most twice the cost of the

optimal solution of problem (IP).

For the second result in the theorem, note that for any order size di S, the

optimal cost of serving it is min{di, P}, where di is the cost allocated to picking
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the units manually, because we have normalized V + (Po+o) =1 in equation (4.6).

Namely, the best that we can do to serve the order is to use a threshold policy between

manual picking from case packs of size So, and rounding up to a case pack of size S.

Hence, we know what the optimal policy is for any order di K S. To conclude note

that if S 2S, then for any order size di S L we get a 2-approximation from

the previous analysis and we are done. Similarly, if P1 +C 1  2(Pi + C) then for any

order di E (Si, -i] we have that

2OPT(di) 2(P + C) P + C1.

Therefore, for any order di Si we get a 2-approximation by using only case packs

of size S 1.

Because this holds for any order size di, it follows that if P1 + C1 2(Pi + CI) or

S, 2 Si, then using only case packs of size So, S, and Si gives a 2-approximation for

the problem of selecting multiple case pack sizes per SKU, for any discrete distribution

of the order sizes, and for any number of case pack types available from the supplier.

U

The result in Theorem 11 is interesting as it gives sufficient conditions for a more

practical policy to have a guaranteed performance compared to the optimal policy.

In particular, the case pack sizes suggested to be selected are intuitive and can be

motivated in practice. So is the case pack size that induces the least per unit long

run average cost of picking units from an opened case pack, therefore it is a size

that is preferred by the distribution center to minimize the cost of their manual

picking operations. Similarly, S, is the case pack size that minimizes the per unit

cost of purchasing a case pack and using to satisfy an order, therefore it partially

considers the procurement department objective of minimizing the purchasing cost,

incorporating into this criteria the cost of using the whole case pack to serve orders

at the distribution center. Finally, Si is the smallest case pack size available, and the

one that minimizes the absolute cost of purchasing a case pack and using to satisfy an

order. In order words, S can often be the most convenient case pack size to round-up
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an order.

Counter-examples with unbounded worst-case performance The assump-

tions on the cost structure and case pack sizes made in Theorem 11 are, in some

sense, necessary in order to have a guaranteed performance using at most three case

pack sizes. Specifically, we now provide counter-examples for the case where the

assumptions in Theorem 11 are not met. It shows that the relative performance

attained by selecting the natural case pack sizes So and S1, together with at most

one additional case pack size, can be arbitrarily bad when compared to the optimal

solution.

For any given order size di, let us denote by ALG(dj) the cost incurred by serving

the order using only case pack sizes So and S1, together with at most one additional

case pack size. Similarly, let us denote by OPT(dj) the cost incurred by serving di

using the optimal policy given by solving problem (IP).

First, assume that the additional size selected is S1. Consider the following in-

stance of problem (IP), with an additional case pack size Sj, where everything is

parametrized in terms of S1,

* Pi + C = 2 S1 - E

" P + C= 2 - E, for E > 0 small enough, S, = 2.

" P + C= 2, Sj = V2 S1.

" di = V2 9 -

It is not hard to see that this instance is well defined, in the sense that is satisfies

equation (4.6), and the definition of the index m, for E > 0 small enough and S1 > 2.

Similarly, di = V S E (Si, -- ) for any S1 > 8, and 2(P + C) < P + C1 for Si large

enough, and E > 0 small enough. Hence, the sufficient conditions in Theorem 11 are

not met for this instance. The analysis will be based on increasing Si in order to get

an unbounded relative performance of the policy that only uses the case pack sizes

So, S1, and Si to serve the order, when compared to the optimal policy.
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The cost incurred when using only case pack sizes So, S1, and S, to serve the order

di = V2S, is ALG(S) = P1 , as the best we can do in this case is to round-up to a

case pack of size S1 . Specifically, we have that

Pi + C1 = -- 2ej

di-
= di - IS

= di P + di - d i ,

where the second and third equalities follow from the definitions of di, S, and P for

this instance. The last expression is precisely the cost incurred when using case packs

of size S1, and picking units manually from opened case packs of size So, to serve the

order. This follows because (di - [L] S) P = S, - E for E > 0 small enough.

Hence, the instance is such that we are indifferent between rounding up to a case

pack of size S1, and using case packs of size S together with manual picking. We

also have OPT(S1 ) P = 2, where the inequality follows because using a case pack

of size Sj is a feasible solution. Hence, we conclude that

ALG(S1) 1, S,
OPT(Si) - 2 2 _ 2

Therefore, the relative performance of the policy that only uses case pack sizes So,

S1, and S, can be made arbitrarily bad by increasing S1.

The other case is similar. Assume that the additional case pack size selected is

Sj # S1. Consider the following instance of problem (IP),

* P1 + C1 = -, for a > 1.

a
" P + Cj= Sg-E, for 0 < < 1 Si.

* P + CI = E, Si = S3 -

The bounds on a and E ensure that equation (4.6) holds for indexes 1 and j. Addition-

ally, equation (4.6) for indexes 1 and m imposes the following consistency constraint
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f > --. Similarly, the definition of the index m imposes the consistency constraint

f > Si - S1.

Consider any fixed order size di such that S1 di = k(Sj - e) < &, for an

appropriate positive integer k. Similarly, the condition 2P = 2E < P = ' ensuresa

that the sufficient conditions in Theorem 11 are not met for this instance. The cost

incurred when using only case pack sizes So, S 1, and Sj to serve the order is

ALG(k)= P + (dj - Sj)

= k(Sj - )- - E,
Si

where again the equality follows from the definitions of P and di for this instance.

Additionally, OPT(k) kE, where the inequality follows because using k case packs

of size Sj is a feasible solution. Hence, it follows that

ALG(k) > (Sj - E) k(Sj - E) 1

OPT(k) ~- E _ Sj _ kV

Therefore, the relative performance of the policy that only uses case pack sizes So,

S1, and Sj can be made arbitrarily bad by decreasing c, and increasing S1, Sj and Ce

appropriately to satisfy the consistency constraints between these parameters.

4.5 Numerical Experiments on Real Data

In this section we present the results obtained when testing the method for serving

orders at the distribution center, and for selecting the case pack size that induces the

least long run average purchasing and handling costs, as described Section 4.4.1, on

real data from a large utility company. Due to confidentiality reasons, all the names

and specific costs have been disguised.

For the numerical experiments, we first selected the SKU carried by the company

that was most frequently ordered during the year 2013, with the goal of being able to

quickly estimate the cost parameters of the model. This SKU was a square washer, a
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Figure 4-1: Empirical Distribution of the Order Size for the Square Washer in 2013

low-cost high-volume item frequently used in construction projects, which had more

than 3,600 independent orders placed during 2013. The case pack that was being

used for this item was of 250 units. Interestingly, the distribution center was already

using a threshold policy to serve the orders received from the end-point locations, for

essentially every SKU that they carried. However, they were using a rule of thumb for

the threshold value of 50% of the case pack for each SKU, regardless of any differences

among the SKUs. This significantly facilitates the implementation of our proposed

method to serve orders at the distribution center, as it only requires to change the

threshold used to the value given in Theorem 10, which depends only on the cost

parameters.

For the probability distribution of the order sizes we used the empirical distri-

bution of the orders placed in 2013, displayed in Figure 4-1. We considered the

5 different case pack sizes offered by the supplier, which are {20, 50,100, 250, 500},

with their respective prices. Finally, we estimated the cost parameters of the model

by measuring the time and resources necessary to carry out all the relevant activities

to serve the orders at the distribution center. After evaluating the long run average

purchasing and handling costs induced by each case pack size available, we obtained

the results displayed in Figure 4-2, where all the costs have been normalized to 1 for

confidentiality reasons. From here we concluded that the procurement department

should select the case pack with 50 units for this SKU. Moreover, an interesting in-

sight from Figure 4-2 is that the long run average purchasing and handling costs are
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Figure 4-2: Purchasing and Handling Costs Induced per Case Pack Size

not a unimodal function of the case pack size. This makes the problem interesting and

challenging. A more detailed account of the costs savings attained by this solution in

our model is discussed next.

A summary of the insights provided by testing our model on real data is given in

Figure 4-3, where all the costs are normalized to 1 for confidentiality reasons. In each

set of results, the first bar corresponds to the total cost, namely the purchasing and

handling costs, while the second and third bars correspond to the handling costs and

the waste cost respectively. The latter bars are already included in the total cost, but

we also display them individually as they are the quantities that the company cares

the most about.

The first set of results is the base case, with a case pack size of 250 units and

a threshold of 50% of the case pack size, or 125 units. The second set of results

answers the question of what happens if we maintain the case pack size of 250 units,

but we use the optimal threshold to serve orders at the distribution center, which in

this case is 92% of the case pack size, or 230 units. Figure 4-3 shows that the total

cost is reduced by 8.6% in this case, where this cost reduction comes from essentially

eliminating the waste cost, at the expense of increasing the handling costs by 22.9%.

In other words, the model suggests that if the company wants to maintain the same

case pack size of 250 units for this SKU, then the distribution center should work

harder. This may not be an attractive result for the distribution center, however we

have not yet addressed which is the case pack size that the company should select.
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Figure 4-3: Summary of the Experimental Results

In particular, the last set of results addresses the question of what happens when we

select the optimal case pack size, which as already discussed is of 50 units, and we

use the optimal threshold policy to serve orders at the distribution center, which in

this case is 80% of the case pack size, or 40 units. Figure 4-3 shows that the total

cost is reduced by 16.7%, that is an additional 8% when compared to the second set

of results, where this cost reduction is attained again by essentially eliminating the

waste cost, but at the same time also significantly reducing the handling costs by

87.8%.

It is interesting to note that, although the model proposes a threshold of 80%

of the optimal case pack size to serve orders at the distribution center, which is

much larger than the rule of thumb threshold of 50%, the handling costs are so much

lower in this case. This is driven by the observation that the new case pack size fits

the different demand modes significantly better, so that the number of orders where

manual picking is required gets drastically reduced. Similarly, note that for this SKU

roughly half of the purchasing and handling costs reduction comes from the fact that

the procurement department is choosing the optimal case pack size, while the rest

comes from the distribution center implementing the optimal threshold policy.

These experimental results suggest that both the method proposed to serve orders
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at the distribution center, as well as the method to select the best case pack size at

the procurement department are easy to implement and to communicate in practice.

Moreover, the results obtained on real data for the square washer suggest that the

cost reductions obtained by implementing these methods can be significant.

4.6 Conclusions and Future Work

In this chapter we have introduced a novel analytical framework to incorporate the

cost of handling orders at a central distribution center into the procurement decisions

of a company. Specifically, our model explicitly considers the effects of the case pack

selection decision in procurement contracts on the purchasing and handling costs of a

company. We prove structural results for our model, which lead to a practical method

to both select the best case pack size per SKU at the procurement department, and

to serve orders at the distribution center.

We tested our method on real data from a large utility company, finding a pur-

chasing and handling costs reduction for one SKU of 16%. These results suggest that

the insights provided by our model can be valuable for companies in practice. Ad-

ditionally, we considered the problem of choosing multiple case pack sizes per SKU.

For this problem we showed that, under some assumptions, selecting only three sizes

can lead to a 2-approximation with respect to the optimal cost, which in general can

require to use every single case pack size offered by the supplier, making it impracti-

cal. Moreover, the three sizes that should be selected are intuitive. They correspond

to the case pack size that induces the least per unit cost of using a whole case pack to

satisfy (part of) an order, the case pack size that induces the least total cost of using

a whole case pack to satisfy (part of) an order, and the case pack size that induces

the least long run average cost of picking single units from it.

Future work on this area should include both testing the robustness of the cost

reductions presented here for more SKUs, as well as developing heuristics for the

considerable harder problem of selecting multiple case pack sizes per SKU.
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Conclusions

This thesis introduces several new models in operations management, that are moti-

vated by practical settings, which range from subsidy allocation problems to supply

chain procurement. Part I of the thesis studies subsidy allocation problems under

budget constraints and endogenous market response. It characterizes sufficient con-

ditions for the optimality of uniform co-payments in maximizing market consumption

(Chapter 1), and a very high worst case performance guarantee for a relevant model

where uniform co-payments are not optimal (Chapter 2). Additionally, it suggests

that simple allocation policies of lump sum subsidies have a good worst case perfor-

mance guarantee in a different but related model (Chapter 3).

The main insight that we get from Part I is that simple subsidy allocation policies

work surprisingly well, as long as there exists market competition among the produc-

ers. The subsidy allocation policies that we analyze are motivated by the fact that

they are already being implemented by practitioners, and in this sense this thesis

moves away from the traditional paradigm in economic theory, and mechanism de-

sign, of focusing solely on solutions that attain the first or second best. Through this

shift in focus we learned that practical and simple policies can have an unexpected,

and many times counter-intuitive, good performance for complex problems.

From a theoretical perspective, the models studied in Part I belong to the class

of mathematical programs with equilibrium constraints (MPEC), which are generally

very hard to solve and to analyze, both in practice and in theory. In this context,

a large portion of the applied research in this area focuses on studying interesting

problems which have enough structure that allows to solve them either numerically

or, less frequently, analytically. This thesis provides a couple of examples where,
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by careful modeling, analytical solutions can be found for a complex model under

relatively mild assumptions, which provide structural insights that have an interesting

practical interpretation.

Part II of the thesis focuses on supply chain procurement, and proposes a model to

incorporate the handling costs incurred at a central distribution center into procure-

ment decisions (Chapter 4). From Part II we get the insight that incorporating the

effects that the procurement decisions have in the internal supply chain of a company

can have a significant impact on reducing the total purchasing and handling costs.

More importantly, the method we propose to incorporate these effects is conceptually

simple, and the solutions provided by the model are intuitive. I cannot stress enough

how important both these aspects were in convincing a large utility company to pro-

vide us with real data from their supply chain to test our model, and to strengthen a

collaboration that will hopefully lead to the principles derived from our model to be

applied in practice.

More generally, this thesis contributes to the growing research trend that applies

the toolkit of operations management and operations research into models that have

traditionally fallen beyond the scope of these areas. I strongly believe that plenty

of the future meaningful contributions in operations will come from the many more

under-explored research areas available, which are an almost limitless source of new

and exciting problems to work on.
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Appendix A

Proofs

A.1 Chapter 1

Proof of Lemma 2

Proof. Assume, without loss of generality, the first chain of inequalities (1.32). Using

Equation (1.31), and given that the co-payments yi are the same for each scenario,

we conclude the second set of inequalities (1.33). From here, hi(qi) increasing implies

the third set of inequalities (1.34). Summing over all firms gives us the fourth set

of inequalities (1.35). Finally, given that the co-payments yi are the same for each

scenario, from the third set of inequalities we get,

gy q2 yi > ... > qi'yi, for each i,

and summing over all firms gives us the fifth set of inequalities (1.36). U

Proof of Lemma 3

Proof. The feasible set of problem (SUBP) is closed and bounded. It is bounded

because q E [0, qi], for each i, s, where qi is such that hi(qi)qi = B. Similarly,

QS E [0, Q], for each s, where Q = maxiEf,...,?f{4i}. On the other hand, it is closed

because it is defined by inequalities on continuous functions. Additionally, the ob-

jective function of problem (SUBP) is continuous. It follows that there exists an
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optimal solution.

Define the set F, as the set of all the optimal solutions to problem (SUBP). The

set F is closed and bounded. It is bounded because it is a subset of the feasible set,

which is bounded. On the other hand, denote by z* the optimal value of the objective

function in problem (SUBP). Then, the set F is closed because it is the intersection

of the feasible set, which is closed, and the set {(qE, Q8 )s=,.,m : 1 QP8 ; z* },

which is closed because the functions Q' are continuous.

Define the set X(F), as the set of all the gaps between the maximum marginal

cost in scenario s = 1, and the minimum marginal cost in scenario s = 1, induced by

any optimal solution. Namely,

X(r) = 3 2 (qsQ").=1,...,m C r s.t. x =max {hi(q)} - min {hi(q}l)}
X {m iE{1,...,n} iE{1,...,n}

The set X(F) is also closed and bounded. Specifically, the maximum and the minimum

of continuous functions are continuous, therefore X(F) is the image of a compact set

under a continuous mapping. Hence, minxEX(r) X is well defined. Namely, the

minimum of the gaps between the maximum marginal cost in scenario s = 1, and

the minimum marginal cost in scenario s = 1, induced by any optimal solution, is

attained.

Proof of Lemma 4

Proof. The modified solution generates the same aggregated market consumption Q'.
Therefore, we only need to check that the budget constraint (1.37) for scenario s, and

the non-negativity of the co-payments (1.38) for scenario s, are still satisfied.

Specifically, from hi(qi) = h(giqi) with h(x) increasing it follows that hi(qf) >

hj(qj) implies giqi > gjqj. Together with h(x) convex, they imply (hi(qf)qi)' =

h(giq ) + giqih'(giqi) > h(g qj) + gj gjh'(gj gj) = (hj (qj)qj)'. It follows that the mod-

ified solution has a smaller total cost, E" hj(q )qj, while generating the same ag-

gregated market consumption QS. Hence, it satisfies the scenario s budget constraint

(1.37).
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Additionally, (qS, Q8 )s=1.m feasible for problem (SUBP), and constraint (1.38),

imply hi(q-) > hj (q ) > P8(qs). Therefore, hi(q' - ES) > hj (qj + E) > P8 (qs)

holds for e- > 0 sufficiently small. Namely, the modified solution also satisfies the

non-negativity of the co-payments (1.38) related to scenario s.

Proof of Lemma 5

Proof. First, from hi(qj) = h(giqi), it follows that the left hand side of Equation

(1.44) is equivalent to h'(q')El < h'(q - Ec)E8. Moreover, from this inequality and

h(x) convex, it follows that hi(ql) - hi(ql - El) h'(q)E' < h'(q - E8)c8 < hi(q8) -

hj(q - E-).

Therefore, on the one hand we have hj(ql)-hj(q' -E 1) K hj(qf)-hj(q -0e). On the

other hand, from constraint (1.43) it follows that hi(qi) - PS(QS) hi(ql) - P1 (Q).

By adding up these two inequalities we conclude,

hi(q 8- C8) - P(Q) hi(ql - El) - P1(Q).

Second, from hi(qj) = h(giqi), it follows that the left hand side of Equation (1.45) is

equivalent to h'i(qj +ES)E = h'(q')E1 . Moreover, from this inequality and h(x) convex,

it follows that hi(qs + Es) - hi(q8) K h'(q + E)E = h'(qj)El K hi(ql + E1 ) - hi(q').

Therefore, on the one hand we have hi(qj-+E)-hi(q9) hi(qil +E 1)-hi(q). On the

other hand, from constraint (1.43) it follows that hj(q ) - Ps(Qs) hi(ql) - P1(Q).

By adding up these two inequalities we conclude,

hi-(q + e 8) - P8 (Q) K hi(ql + el) - P1(Q').

Proof of Theorem 2

Proof. Let Ji be as defined in the proof of Lemma 3. Namely, let ' be the minimum

of the gaps between the maximum marginal cost in scenario s = 1, and the minimum
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marginal cost in scenario s = 1, induced by any optimal solution. The statement in

the Theorem is equivalent to showing x = 0.

Assume by contradiction that i > 0. Moreover, denote the optimal solution

that induces & by (48, Q8 )s=,.,m Let the indexes min and max be such that,

hmin(Ijijn) hi(qj) for each i, and hmax(Idiax) > hi(4i) for each i. The assump-

tion & > 0 is equivalent to hmax(Ijax) > hmin(4in). We will show that we can

construct an optimal solution (4, Q)s=1...,m, such that it induces a strictly smaller

gap maxiE1,..... {hi(ql)} - miniEI1,...,n) {hi(qi)} < &, contradicting the definition

of &.

Specifically, from Lemma 4, it follows that if we transfer an arbitrarily small

E > 0, from Iiax to 14in, then all the constraints (1.37)-(1.42) related to scenario

s = 1 are still satisfied. Therefore, this modified solution could only become infeasible

due to violating the relaxed non-anticipativity constraints (1.43). We can avoid this

infeasibility as follows. We will show that for an arbitrarily small El > 0, and for each

scenario s y 1, there exists E' > 0 such that,

hmax(4msax - Es) - P 8 (0 8 ) 5 hmax(4jax - E1) - P(Q1 ), (A.1)

and

hmin(4mjin + Es) - P8 '(Q) 5 hmin(4ijn + - P 1 (Q1 ). (A.2)

Namely, we will show that we can transfer some c > 0 from 4nax to 4ms ,, for each

scenario s y 1, such that the modified solution satisfies constraint (1.43). Addition-

ally, we will show that the modified solution also satisfies constraints (1.37)-(1.42),

for each scenario s / 1. Hence, the modified solution is feasible for problem (SUBP).

Moreover, it is an optimal solution, and it attains a smaller gap than &.

From Lemma 5 it follows that, for an arbitrarily small El > 0, and for each

scenario s y 1, it is enough to show that there exists an E8 > 0 such that it satisfies

the following stronger condition,

h'(gmin(4'jn + E8)) _ h'(gmax(48ax - Es)) .(
h'(gmindiin) ~- h'(gma4J1 nax)
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Specifically, from Equation (1.44) it follows that the inequality in (A.3) implies con-

dition (A.1). Additionally, from Equation (1.45) it follows that the equality in (A.3)

implies condition (A.2).

Now we show that for an arbitrarily small El > 0, and for each scenario s $ 1, there

exists an 6' > 0 such that conditions (A.1) and (A.2) are satisfied, and constraints

(1.37)-(1.42) for scenario s are also satisfied. We do so by considering all possible

cases. Specifically, if scenario s is such that hmax(jsax) - PS(QS) < hmax(dmax) -

P1 (Q 1 ), then, for an arbitrarily small 0l > 0, taking ES = 0 satisfies conditions (A.1)

and (A.2), and constraints (1.37)-(1.42) for scenario s, and we are done with this

case.

It follows that, without lost of generality, we can focus on an scenario s such that

hmax(tnax) - Ps(Qs) = hmax(max) - P1 (Q1). From constraint (1.41) it follows that

P1 (Ql) > Ps(Qs). Note that if P'(01 ) = P8 s(), then hmax(rjnax) = hmax(4lax) >

hmin(dmin) ;> hmin(4in), where the last inequality follows from Lemma 2. Therefore,

the convexity of h(x) implies that taking an arbitrarily small 'E - d > 0 satisfies

conditions (A.1) and (A.2). Moreover, Lemma 4 ensures that constraints (1.37)-(1.42)

for scenario s are also satisfied, and we are done with this case.

Therefore, without lost of generality, assume Ps(Qs) < P'#). This implies,

>0

hmax(tax) hmax( max) - (P1 (1) - P(Q')) hmax( max)

hmin(d)mn) ) - P - PS(Os) hmin(4rin)

The first inequality follows from hmax(4ax) - Ps(Qs) = hmax(]ax) - Pl(Q') and

constraint (1.43). The second inequality follows from hmax(#ax) > hmin(din). Hence,

from hi(qj) = h(giqi), the fact that h(x) satisfies Property 2, and the strict inequality

above, we conclude that scenario s satisfies,

h '(maxnax) t h'(grndiin) (A.4)
h'(9max0?nax) h'(gninmin)

From Equation (A.4) it follows that the stronger condition (A.3) is satisfied for es > 0
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sufficiently small. Therefore, conditions (A.1) and (A.2) hold, and we are done with

this case. This completes the analysis of all possible cases.

To summarize, we have shown that there exist El > 0, and ES > 0 for each scenario

s - 1, such that the modified solution (4', Qs)s=1,...,m, defined by,

lin= 4 + E', for each s E {1,. . . ,

q,,x = qm'. -c', for each s E {Il.. . , m},

4i = 4i, for each i {min, max}, s E {1, ... m}.

is an optimal solution to the upper bound problem (SUBP). Specifically, it is fea-

sible and it attains the same objective value as the optimal solution (JS, Q6)s

Moreover, by potentially repeating this argument for the finite number of pair of

indexes i, j E {, . . ,n}, we conclude that its gap = maxisE1,...,.. {hni(i)} -

miniEJ1,...,n} {hi(4i)} is strictly smaller than -. This contradicts the definition of i.

Hence, we conclude that i= 0. Therefore, hi (4) = hj(QJ), for each i,j. Or

equivalently, hi(41) - P1 (Q1 ) y1 for each i E {, ... , n}. N

Proof of Theorem 3

Proof. We will show that there exists an optimal solution to the upper bound problem

(SUBP) that induces uniform co-payments. Moreover, this solution is feasible for the

co-payment allocation problem under market state uncertainty (SCAP). Therefore,

uniform co-payments are optimal for problem (SCAP).

From Theorem 2 it follows that there exists an optimal solution to the upper bound

problem (SUBP) (e, Q, )s=.m such that hi(di) - P1(Q#) = y1 for each i. We will

show first that there exists an optimal solution for problem (SUBP), (4', Q8)s=1,...,m,

such that hi(qi) - P'8 (Q) = y' for each i, for each scenario s / 1, for some value

y' > 0. Then, we will conclude by showing that we must have y' = y 1 for each s.
B

Plugging in y1 in the budget constraint for scenario s = 1 we obtain y1 < .

Moreover, for this solution we can decompose the upper bound problem (SUBP) for
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each scenario s $ 1, and obtain the following independent problem,

minq,Q Qps
n

s.t. Eqjh(qj) - P8 (Q)Q B (A.5)
j=1

hi(qi) P8 (Q), for each i E {1, . . , n} (A.6)
n

(SLBP - s) q= Q (A.7)
j=1

qi 0, for each i c {1, .... ,rn} (A.8)

P1(41) ! PS(Q) (A.9)

Q1 > Q (A.10)

hi(qi) - PS(Q) y1 , for each i E 1, . .. ,I n}. (A.11)

It follows that the components of the optimal solution to the upper bound problem

(SUBP) corresponding to scenario s, (4', Q), must be an optimal solution for prob-

lem (SLBP-s) as well. Note that the budget constraint (A.5) is redundant for this

problem. Specifically, we have,

qihi(qi) - PS(Q)Q Qy1 < B.
i=Q 1

The first inequality follows from constraint (A.11), the second inequality follows from

y - g, and the third inequality follows from constraint (A.10). Therefore, without

loss of generality, we can drop the budget constraint in scenario s # 1 (A.5).

Exactly as in Lemma 3, the feasible set of problem (SLBP-s) is closed and bounded,

and its objective function is continuous. It follows that there exists an optimal so-

lution. Now we show that there exists an optimal solution for problem (SLBP-s),

(48, Q8), such that hi(di) - P8(O 8) - y, for each i, for some value y8 > 0. Specifi-

cally, assume by contradiction that this is not the case. It follows that there must exist

indexes min and max such that hmin(4mni.) hi(4f) for each i, hmax( ax) hi(4s)

for each i, and hmin(m'nin) < hmax(#4nax). On the other hand, let el be the optimal
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solution to the following optimization problem.

n

min q hj (qj)
q

j=1
n

s.t. q =
j=1

qi >0, foreachic{1, ... ,n}

We show that (e, Q8) is feasible for problem (SLBP-s). Because budget constraint

(A.5) is redundant, and the aggregated market consumption Q8 is fixed, it follows

that we only need to check that constraints (A.6) and (A.11) are satisfied. From

hi(qi) = h(giqi), and h(x) convex and increasing, it follows that the objective function

of this problem is convex. The first order conditions are (hi(di)di)' = (hj(qj)dj)' for

each ij. Moreover, because h(x) satisfy Property 2, we conclude hi(df) = hj(qj) for

each i, j.

Additionally, we claim that hmin(dmrin) < hi(4i8) < hmax(dmnax) for each i. In fact, if

hmax(dmsax) > hmin(4mjin) > hi(qf), for each i, then we must have, E'_- <

Q'. This is a contradiction to the feasibility of solution (e*, Q'). Similarly, if hi(qi) >

hmax(dnax) > hmin(dn), for each i, then we must have, jg_1 4 > _ s = Q.

This is a contradiction to the feasibility of solution (4 , Q'). This implies, together

with the feasibility of (e", Q) for problem (SLBP-s), that,

hi(qi) > hmin(4ijn) ;> P8 (Q8 ), for each i,

and,

hi(di) - P8 (Q8) < hmax(dmjax) - P*(Q) y1, for each i.

Namely, constraints (A.6) and (A.11) are satisfied. Therefore, (i4', Q) is feasible

for problem (SLBP-s). Moreover, it attains the same objective value than (4 , QS),

therefore it is also optimal. Finally, from hi(qi) = hj(4j) for each i, j, it follows that

hi(qj) - Ps 8( ) = y8 for each i E {1, .. . , n} for some value y' > 0.

Finally, we show that we must have y' = y1 for each scenario s. From hi(qi) =
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h(giqi), it follows that, for any given value of y' > 0, Q' is uniquely determined by

the solution of the equation,

n h-1 (Ps(o(y) + y8)
Q(yS) -

_1 gi

It follows that, QS(y') is increasing in y'. Assume by contradiction that y' < y', then

we can increase y' by E > 0 sufficiently small, and obtain a strictly better objective

value while keeping feasibility. In fact, the only constraint that might prevent this

increase is the budget constraint (A.5), which is not tight. This contradicts the

optimality of (i4, Q)

We have shown that there exists an optimal solution to the upper bound problem

(SUBP) (i4, Q8 )S=1.m such that, hi(qf) - P8(Q) = y1 for each i E {1,. .. , i}, and

for each s E {1,... , m}, for some value y1 > 0. That is, it satisfies the relaxed non-

anticipativity constraints with equality. Therefore, it is feasible in the co-payment

allocation problem under market state uncertainty (SCAP). Hence, uniform co-

payments are optimal for problem (SCAP).

A.2 Chapter 2

Proof of Proposition 5

Proof. The proof follows from the KKT conditions of problem (CAP).

Problem (CAP) is a convex optimization problem, therefore the KKT conditions

are necessary and sufficient for optimality. Let A > 0, 6i > 0, -y, and Oi > 0 be the

dual variables associated with constraints (2.8), (2.9), (2.10), and (2.11), respectively.

Let (q*, Q*) be an optimal solution to problem (CAP). From the market equilibrium

condition (2.7) it follows that the optimal co-payments are y* = ci + bqi - a - bQ*.

First, note that the budget constraint (2.8) must be binding for solution (q*, Q*).
Specifically, assume for a contradiction that the budget constraint (2.8) is not binding,

then we can increase some q*, and Q*, by E > 0 small enough, maintain the feasibility
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for problem (CAP), and obtain an strictly larger objective value, contradicting the

optimality of solution (q*, Q*). This implies that, for any positive budget B > 0, at

least one firm i must have a positive market output q* > 0, and a positive co-payment

y! = ci + bq - a - bQ* > 0.

Second, the KKT conditions for problem (CAP) imply that

A(ci + 2bq') - b6 + -y - O = 0, for each i E {1 .... , n}. (A.12)

On the other hand, the complementary slackness conditions imply 6iy! = 0 and

Oiqi = 0, for each i c {1, ... , n}. Combining these with equation (A.12) we conclude

that

- + y a - bQ* For each i, j, if qi > 0, y* > 0 then bqi + y= - 7 + bqj + yj. (A.13)

Together with the market equilibrium condition (2.7), equation (A.13) implies the

following two conditions

For each i, j, if q* > 0, y* > 0 then y* + 2 ci yj. (A.14)

cj - ciFor each i, I], if q* > 0, y* > 0 then qi 2b < q j. (A. 1 )

Where equations (A.14) and (A.15) must hold with equality for any firm j such that

qj > 0 and yj > 0.

Recall that we have assumed, without loss of generality, that c1 < c 2 < ... K

cn < a. Therefore, from equation (A.14) it follows that y* > 0 implies yj > 0 for

each j ;> i. Similarly, from equation (A.15) it follows that qi' > 0 implies qj > 0 for

each j K i. Additionally, we have already shown that at least one firm i must have a

positive market output q' > 0, and a positive co-payment y! > 0. Hence, without loss

of generality, there exist indexes 1, m E {1, ... , n}, 1 < m, such that y* = 0 for each

i E {1,.. . ,l - 1}, y7 >0 for each i E {l, ... ,n}, and q >0 for each i E {1, .. . ,

qi = 0 for each i E {m 1,..., n}.
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This completes the proof of equations (2.12)-(2.17). Specifically, equations (2.12)

and (2.17) follow from the definition of indexes 1 and m respectively. Equations

(2.13) and (2.16) follow from taking i = 1 in equations (A.14) and (A.15), and the

fact that these equations must hold with equality for any firm j such that qj > 0 and

yj > 0, which is the case for any j E {l, ... , m}. Similarly, the equality in equation

(2.14) follows from the market equilibrium condition (2.7) and qi = 0, for each i E

{m+1,...,n}, namely, a-bQ* ci - y* = c+bq* - y*, for eachi E fm+1, .. ,

while the inequality in equation (2.14) follows from equation (A.15). Finally, the

equality in equation (2.15) follows from the market equilibrium condition (2.7) and

y = 0, for each i C {1,...,l- 1}, namely, a-bQ* ci + bq, = cj-+-bq* -y*, for

each i E {1, ... , 1 - 1}; while the inequality in equation (2.15) follows from equation

(A.14).

Now we show equation (2.18). Adding up equations (2.15) to (2.17) we get

cl -c- : (A. 16) l 1
=mq* b 2b _ b Y,*

i=1 i=l+1

On the other hand, from the market equilibrium condition (2.7) we have that a-bQ*

cl + bq* - yj*. Plugging in the expression for Q* from equation (A.16), and solving for

ql*, we obtain the expression for qj* given in equation (2.18).

Now we show equation (2.19). We have already argued that the budget constraint

(2.8) must be binding for solution (q*, Q*). Note that the budget constraint (2.8) is

equivalent to Ej=j qiy* = B. Therefore, from equations (2.12)-(2.17) it follows that

the the budget constraint (2.8) can be written as E', (q7* - ci-c) (y* + ci) = B.

Plugging in the expression for q* given in equation (2.18) we conclude that the budget

constraint (2.8) is equivalent to

m(a + "=ci ci Z c(+- c _y_* c - c ( ci - c)j - -i C iC- -1 C -1 y* + =i-C B.
(m + 1)b b . 2(m + 1)b (m + 1)b 2b 1 2

i=1 j=+1

This is a quadratic equation on y7*, whose positive root is given by equation (2.19).

Finally, plugging in the expression for q,* from equation (2.18), and the expres-
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sion for y* from equation (2.19), in equation (A.16) and simplifying, we obtain the

expression for Q* given in equation (2.20).

Proof of Lemma 6

Proof. By the definition of index 1, for each i c {1. .. , l-1} we have ci+bqi = a-bQ*,

which implies qi' = R - Q* - C.

On the other hand, from equation (2.15) it follows that y* c'2c' Moreover,

together with equation (2.13), this implies yi 2 for each i E {l, ... , M}.

Therefore, for each i E {l, ... , m} we have ci + bq' = a - bQ* + y* < a - bQ* + C 2

which implies qi * -Q* - f - C.b2b 2b~

Adding up these inequalities, for each i E {1, . . , m}, we get Q* < - mQ* -

1 - RL E -(m -i +1) , which is equivalent to the upper bound in equation

(2.21).

Proof of Lemma 7

Proof. Recall that we have assumed, without loss of generality, that c1  c 2 K .-. K

cn a. From the definition of the index u, it follows that at the market equilibrium,

we must have qu = 0, for each i E {u + 1, ... , n}, as in equation (2.23). Additionally,

from the definition of the index u it follows that, for each firm i E {1, ... , u}, we

have that ci a - bQU + E. Therefore, at the market equilibrium we must have

ci + bqV = a - bQu + I, which is equivalent to equation (2.22).

Finally, adding up equation (2.22) for each firm that participates in the market

equilibrium, we obtain b(u + 1)(QU) 2 - (ua - Eu ci) QU = uB. To conclude, note

that equation (2.24) is exactly the positive root of this quadratic equation. U

Proof of Lemma 8

Proof. At the market equilibrium induced by the uniform co-payments allocation we

must have c- + bquu = a - bQU + B= ci + bqu, for each i E {1, ... , u}. This implies

CU- = q- qu, for each i E {1, . .,u}. Adding up over all i E {1,. .. ,u} we get

UCUii Ci QU - qqU Q Qu, where the inequality becomes tight when qu = 0. U
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Proof of Lemma 9

Proof. For any instance of the co-payments allocation problem (CAP) with c1 > 0,

it is enough to consider the modified instance where the demand parameter is & =

(a + 6 - c1 ), and the marginal costs vector is 6 = (c + (6 - ci)e), where e is a vector

of ones. Specifically, any feasible solution in the original instance, (q, Q), is feasible

in the modified instance, and it attains the same objective value, and viceversa.

We only need to check constraints (2.8) and (2.9). For constraint (2.9), note that

6i + bqi - & + bQ = ci + bqi - a + bQ. Finally, multiplying both sides by qi, and adding

up over all i, we conclude that for the right hand side of constraint (2.8) we have

Z=1 ( iqi + bqi2) - (e - bQ)Q = En1 (ciqi + bq?) - (a - bQ)Q. U

Proof of Lemma 10

Proof. For any given number of firms in the market n > 2, there is a finite set of

possible combinations of the indexes 1, m, u E {1, idots, n}, 1 < m. For each given

combination, the ratio QU/Q* has a closed form expression, which is a continuous

function of the problem parameters: the number of firms in the market n, the demand

parameters a, b, the marginal cost of each firm ci, and the budget B.

Moreover, from Lemma 9 we can assume, without loss of generality, that cl = 0.

From this, together with ci ci 1, for each i C {1,... , n - 1}, and the consistency

constraints (2.27)-(2.30) it follows that the feasible set of the problem parameters is

closed and bounded. Hence, we conclude that there exists an instance of problem

(CAP) that minimizes the ratio QU/Q*.

Proof of Proposition 6

Proof. For any given number of firms in the market n> 2, consider any instance of

problem (CAP) a, b, c, and B that minimizes the ratio QU/Q*. From Proposition 5

and Lemma 7 this instance induces indexes 1, m and u respectively. Let (qU, QU) be

the solution induced by uniform co-payments in this instance.

First, assume by contradiction that u < m. Recall that, by definition, u is the

smallest index such that ci > a - bQU + B , for each i E {u + 1,. . . , n + 1}. Then,
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at the market equilibrium induced by uniform co-payments we have c" + bqu = a -

bQU + B < cm. From this, together with qg > 0, it follows that cu < cm. Let i be

the first index such that i ; 1, and cu < c;. Again, by the definition of the index u we

must have c > a - bQU + y. It follows that we can reduce the value of c, by E > 0

sufficiently small, without affecting the uniform co-payments solution (qu, QU)-

On the other hand, by reducing the value of c, by e > 0 sufficiently small, we

obtain a strictly larger value for the aggregated consumption induced by optimal co-

payments. Specifically, let (q*, Q*) be an optimal solution to problem (CAP) for the

original instance. Consider the modified solution (4, Q* + 3), where di = qi for each

i i i, and;= qi + , where - > 0, for some 7 c (0, E), close enough to 6 > 0.

This solution is feasible for the modified instance of problem (CAP), and attains an

objective value strictly larger than Q*.

To check the feasibility of solution (4, Q* + 3), we only need to check constraints

(2.8) and (2.9). In constraint (2.9), for each i = i, note that the left hand size

remains constant, while the right hand side strictly decreases by b6 = 2 > 0, for

any 'y E (0, E), and any E > 0, therefore these constraints are satisfied by solution

(4, Q* +) for the modified instance. Similarly, in constraint (2.9) for i, note that the

left hand side strictly decreases by b6 + 7, while the right hand side strictly decreases

by b6. Namely, the co-payment allocated to firm i in the modified instance strictly

decreases by 7 > 0 with respect to the co-payment allocated to firm Z in the original

instance. On the other hand, 1 <i <m implies that the co-payment allocated to firm

i in the original instance is strictly positive, therefore, for any 7 > 0 small enough this

constraint will still be satisfied. Finally, note that the right hand side of constraint

(2.8) is equal to B + 6(b(Q* - q ) + y! - y) - -yq! < B, where the inequality holds

for any 3- 2 > 0 small enough, which can be attained by some y E (0, E) close

enough to E, for any arbitrarily small E > 0. For the last inequality we have also used

the fact that 1 < i K m implies that q, > 0. Hence, constraint (2.8) is satisfied by

solution (4, Q* + 6) in the modified instance.

We have shown that if u < m then there exists an index i, with u < K m,

such that when decreasing the value of c; by c > 0 sufficiently small, the aggregated
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consumption induced by uniform co-payments, QU, remains constant, while the value

of the aggregated consumption induced by optimal co-payments, Q*, strictly increases.

Therefore, the relative performance of uniform co-payments strictly decreases with

respect to the original instance, a contradiction. It follows that any instance of

problem (CAP) that minimizes the ratio QU/Q* must be the case that I K m < u.

Second, assume by contradiction that in the original instance we have u > m.

Recall that, by definition, m is the largest index of a firm that participates in the

market equilibrium induced by the optimal co-payments. Then, it must be the case

that c > cm. It follows that we can discard, without loss of generality, any firm with

index i > u+ 1, because they do not participate in the equilibria under consideration

(uniform co-payments and optimal). Moreover, we will assume, without loss of gen-

erality, that qsu > 0, otherwise we can discard firm u as well and analyze the instance

with n = u - 1 firms.

It follows that we can increase the value of cu by c > 0 sufficiently small, without

changing the optimal co-payments solution (q*, Q*). On the other hand, increasing

the value of cu by c > 0 sufficiently small decreases the aggregated consumption

induced by the optimal co-payments QU. Specifically, from equation (2.24) it follows

that,

__ QU < 0, for each i E {1,. .. , u}.
Ocj &Cj (ua - Q" 1 C3) + 4u(u + 1)bB

We have shown that when increasing the value of cu by c > 0 sufficiently small,

the aggregated consumption induced by optimal co-payments, Q*, remains constant,

while the value of the aggregated consumption induced by uniform co-payments, QU,

strictly decreases. Therefore, the relative performance of uniform co-payments strictly

decreases with respect to the original instance, a contradiction. It follows that for

any instance of problem (CAP) that minimizes the ratio QU/Q*, it must be the case

that 1Km = a = n.

Proof of Proposition 7
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Proof. For any given number of firms in the market n > 2, consider any instance of

problem (CAP) a, b, c, and B that minimizes the ratio QU/Q*. From Lemma 9, it

follows that we can assume, without loss of generality, that c1 > 0.

Let (qu, QU) be the solution induced by uniform co-payments in this instance.

Assume for a contradiction that q > 0. Then, from the market equilibrium condition

we get that cn < cn + bqn = a - bQu + U. From this, together with the expression for

QU given in equation (2.24), it follows that we can increase the value of c, and reduce

the value of ci by the same E > 0 sufficiently small, without affecting the aggregated

consumption induced by uniform co-payments QU.

On the other hand, by increasing the value of cn and reducing the value of ci by

the same E > 0 sufficiently small, we obtain a strictly larger value for the aggregated

consumption induced by optimal co-payments. Specifically, let (q*, Q*) be an optimal

solution to the problem (CAP) defined by the original instance. Consider the modified

solution (4, Q* + y), where 41 = q; + + y, qi = qi for each i E {2, .. .,n - 1}, and

qn = q* - 6, for 6 > 0 and -y > 0 such that E = b(6 + 2 -y), where 6 is close enough to

' > 0 and 7 is arbitrarily smaller than 6. This solution is feasible for the modified

instance of problem (CAP), and attains an objective value strictly larger than Q*.

To check the feasibility of solution (4, Q* + 7) for the modified instance, we only

need to check constraints (2.8) and (2.9). In constraint (2.9) for i = 1, note that both

the left hand side and the right hand side strictly decrease by b'y > 0, therefore this

constraint is still satisfied. In constraint (2.9), for each i E {2, . . n, - 1}, note that

the left hand size remains constant, while the right hand side strictly decreases by

b-y > 0, therefore these constraints are satisfied by solution (e, Q* + 6). Similarly, in

constraint (2.9) for i = n, note that the left hand size strictly increases by 2by > 0,

while the right hand side strictly decreases by b-y > 0, therefore this constraint is still

satisfied. Finally, note that the left hand side of the budget constraint (2.8) is equal

to B + 7(b(Q* - q*) + 2bq* + y* - 3b) - 6 (y* - y*), which is less than the budget

B, for any y > 0 arbitrarily smaller than 6, and 6 > 0 close enough to > 0, for

any arbitrarily small E > 0. For the last inequality we have also used the fact that

(y* - y*) > 0, which follows from the following observation: from Proposition 5 and
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equation (2.12) it follows that if 1 > 2, then y* = 0, therefore, (y* - y*) = y* > 0.

Similarly, if 1 = 1, then from equation (2.13) it follows that (y* - y*) = ca1

where the last inequality follows from the fact that if c1 = cn then all the firms are

homogeneous and uniform co-payments are clearly optimal. Hence, constraint (2.8)

is satisfied by solution (4, Q* + y) in the modified instance.

We have shown that when increasing the value of c, and reducing the value of ci

by the same e > 0 sufficiently small, the aggregated consumption induced by uniform

co-payments, QU, remains constant, while the value of the aggregated consumption

induced by optimal co-payments Q* strictly increases. Therefore, the relative perfor-

mance of uniform co-payments strictly decreases with respect to theoriginal instance,

a contradiction. It follows that in for any instance of problem (CAP) that minimizes

the ratio QU/Q* it must be the case that qn = 0.

Proof of Proposition 8

Proof. The formulation of problem (WCP) follows by defining the function

QU(c)= nca - b ci, (A.17)
b

where this expression for the market consumption induced by uniform co-payments,

QU, follows from Lemma 8, Proposition 6 and Proposition 7. Specifically, the right

hand side of equation (A.17) is the lower bound from Lemma 8, which we can write

assuming u = n due to Proposition 6, and with an equality by Proposition 7.
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As well as defining the function

Q*(B, c)

11-1 
n

=21(n + 1)b (21n - n+1- 1)a -(n+1l+1)( c -i - l E ci

- 1(n- 1 l(n+ 1) 4

+ a+ ci - iC) + l(ni ci)2 + bB
21(n +1)b n- 1 n - 1+I

n n-- 2

n - + 1 E (Ci -C1) 2a +2 Ecj+ E ci (n + )cl (A. 18)
i=l+1 i=1 i=I+1

where the expression for the market consumption induced by optimal co-payments,

Q*, follows from equation (2.20) in Proposition 5. Note that we have parametrized

this expression by 1, the index of the first firm that receives a positive co-payment

in the optimal co-payment allocation policy. We have also assumed m = n from

Proposition 6.

Finally, from Lemma 9 it follows that we can assume constraint (2.32) without

loss of generality. Additionally, constraints (2.35), (2.36) and (2.37) correspond to the

consistency constraints (2.27), (2.29) and (2.30), respectively. Finally, from Proposi-

tion 6 it follows that, without loss of generality, we can drop the consistency constraint

(2.28), because u = n implies that there is no firm with index (u + 1). U

Lemma 15. For any number of firms in the market n > 2, and demand parameters

a > 0, b > 0, the instance defined by equations (2.41)-(2.43) is feasible for the problem

(WCP2 ).

Proof. First, we check that constraint (2.34) is satisfied. Note, from equation (2.42),

that for any n > 2, and a > 0, we have that 0 < cn = n+1 a- +a<a,

where the second inequality follows from n(n+1) < (n + 1)2.

Second, we check that constraint (2.35) is satisfied. Note, from equations (2.41)
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and (2.42), that for this instance the right hand side of constraint (2.35) evaluates to

( n(n+1) 2n + 2 n(n+1 -1) n(n+1)
cn(2cn-a) = - 1 a2 = a2 = bB.

3n + I 3n + I (3n + 1)2

(A.19)

Where the second equality follows from simplifying terms. The last equality follows

from recognizing the expression for the budget B for this instance, given equation

(2.43). Namely, constraint (2.35) holds with equality for this instance.

Third, we check that constraint (2.36) is satisfied. Note, from equations (2.41)

and (2.42), that for this instance, and for the case 1 = 2, constraint (2.36) evaluates

to bB < (2a + (n - 1)c)-(ri-1) = ?- cf(a - ca), where the equality

follows from simplifying terms. Plugging in the first expression for bB from equation

(A.19), we get that for this instance, constraint (2.36) is equivalent to cn(2cn - a) <

2 (-+1 cfl(a - cn), which is equivalent to cn < )a. However, from equation (2.42),

it follows that

n n(n+ a (3n + 1)
3n+1 - (5n+3)

Where the inequality is equivalent to 32n4 + 43n3 + 26n 2 + 9n + 2 > 0, which holds

for any n > 1.

Finally, we check that constraints (2.37) and (2.38) are satisfied. Note, from

equation (2.42), that for this instance, and for the case 1 = 2, the right hand side of

constraint (2.37) evaluates to 0, therefore constraints (2.37) and (2.38) are equivalent.

Moreover, from equation (2.43) it follows that for this instance B > 0, for any n > 2.

Hence, the instance defined by equations (2.41), (2.42), and (2.43), is feasible for

the problem (WCP2 ). U

Lemma 16. For any number of firms in the market n > 2, and demand parameters

a > 0, b > 0, the instance defined by equations (2.41)-(2.43) attains an objective

value of2+2+2/n for problem (WCP2 ).

Proof. Plugging in equations (2.41) and (2.42) into equations (A.17) and (A.18), it

follows that for this instance the objective function of problem (WCP2 ) is equivalent
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to

4(n + 1)c ) (A.20)
(3n + 1)a - 2(n - 1)c,, + V(n - 1)2(a - 2q,2+8n- )n+1b

Now we will evaluate the square root term in equation (A.20). Plugging in equations

(2.42) and (2.43) we get

n +/ n(n+I) ( _1) n(n+1)\

(n - 1)2 a - 2 a) + 8(n - 1)(n + 1) a2
N3n+21 (3n+ 1)2 J

(n - 1) 2 a2  n(n +)
(3n+ 1)2 2 )

(n - 1)a (n +I2 n(n 1)
(3n +1) 2

Where the first equality follows from simplifying the expression, and the second equal-

ity follows from n > 2. Plugging in the latter expression for the square root term,

together with equation (2.42), in equation (A.20), we get that for this instance the

objective function of problem (WCP2 )is equivalent to

n + nn+

n(n +1)

n + j a
(3n + )a - 2(n - 1) a + n + 1 + 2 (n

( 3n +1I (3n+1) 2

4(n + 1)(n+ n(n+1)

(3n + 1)2 - (n - 1)2

S+ n(n+)V 2

2n
2 + -2 +2/n

4

Where the first equality follows from simplifying the expression, and the second equal-
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ity follows from (3n + 1)2 _ (n - 1)2 = 8n(n + 1).

Proof of Proposition 11

Proof. We will show that for any n > 3, a > 0, b > 0, and for any index k E

{2,... , n - 1}, there is no feasible solution to problem (RWCP2 ,k) that attains an

objective value smaller than 2+ r n. The result then follows from the observation

that this lower bound is attained by the candidate instance from equations (2.41)-

(2.43), which is feasible for problem (RWCP2,1 )

From Lemma 12 it follows that the objective function in problem (RWCP2 ,k) is

quasiconvex. Hence, its minimum must be attained either at one of the extremes of

the feasible interval ca E [$, a], or at an interior stationary point. We will analyze

each one of these cases, and show that none of them attains an objective value smaller

than 2+ 2+2/n
4

(i) If Cn =a , then the objective function of problem (RWCP2,k) evaluates to
k+1'

Qgk (Cn) _4(n + 1)k

Q2,k (cn) (n + 1) (3k + 1) + /(n - 1) (n + 1) (k - 1) (k + 1)
4k

3k + 1 +Vk 2  1
8

2 +V2 +2/n

- 4

Where the first inequality follows from the left hand side being decreasing in n, and

taking the limit as n -+ oc. The second inequality follows from the left hand side

being increasing in k, and taking k = 2. The left hand side of the second inequality is

increasing in k for any k > /2, thus for any index k E {2, ... , n - 1}, for any n > 3.

Finally, the last inequality holds for any n > 3.
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(ii) If cn= a, then the objective function of problem (RWCP2 ,k) evaluates to

QV(cn)
Q2,k (cn)

4(n + 1)k

n + 2k + 1 + /(n - 1) ((8k 2 + 2k - 1)n + 6k 2 + 2k - 1)
4k

1+ v/8k2 + 2k - 1
4k

3k + 2
> 1

2 + %/2 +2/n

4

Where the first inequality follows from the left hand side being decreasing in n,

and taking the limit as n -* oo. The second inequality follows from (3k + 1)2 >

(8k 2 + 2k - 1), for any index k E {2,. . ,n - 1}, for any n > 3. The third inequality

follows from the left hand side being increasing in k, and taking k = 2. Finally, the

last inequality holds for any n 1.

(iii) Any interior stationary solution to problem (RWCP2 ,k) must satisfy

d Qk(c*)/Q*,k(c*)
dc= 0.

dcr

After simplifying, this condition is equivalent to

2(n - 1)(2nk + n + k)c* - (n - 1) 2a
3n + 1

(A.21)

Plugging in expression (A.21) in the objective function of problem (RWCP2,k), it

follows that any interior stationary solution must satisfy

QV (cn)

Q*,k(cn)

(3n + 1)kc*
2na + n(k - 1)c*
3nk + k

- 3nk+n
6n + 2

- 7n

2+ 2+2/n

4

170



Where the first inequality follows from the right hand side being increasing in c*, and

taking its lower bound c* =|. The right hand side of the first equality is increasing

in c* if 2na > 0, which holds for any n > 1. The second inequality follows from the

left hand side being increasing in k, and taking k = 2. Finally, the last inequality

holds for any n > 1. 0

Proof of Proposition 12

Proof. For any number of firms in the market n > 2, and demand parameters a >

0, b > 0, the worst case performance of uniform co-payments for the case 1 = 1,

WC(1, n), can be computed as as the optimal objective value of the following problem

W QU(c) 2(n + 1) (ncn - Z 1 ci)
W C(1, n) = minBc c U(C

Q* (B, c) na - 1 ci + *i(B,c)
s.t. c, = 0 (A.22)

ci < c i, for each i E {1,..., n - 1} (A.23)

(WCP) c, < a (A.24)
n n

bB= nc - ci (n + 1)Cn - ci - a (A.25)
i= i=1

- 4(c c1) 2  
(A.26)

i=2

where constraint (A.26) corresponds to constraint (2.37) in the generic problem

(WCP). From 1 = 1 it follows that we can drop constraint (2.36) from problem

(WCP), because there is no firm with index (1 - 1). Moreover, without loss of gen-

erality we drop constraint (2.38) from problem (WCP) as well, because B > 0 is

implied by constraints (A.25) and (A.26). Specifically, assume for a contradiction

that B < 0, then the right hand side of constraint (A.25) must be negative as well.

Using Lemma 9 to assume without loss of generality that c1 = 0, this implies that
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a> (n + 1)c - 2 ci. Therefore, from constraint (A.26) we conclude that

bB 1((i+) (2a + ci) - (n+l) c
In n

bB > 4(E 1) (a + Cci- (n + 1) C2 0

i=2 i=2

a contradiction with B < 0. Hence, constraints (A.25) and (A.26) imply B > 0 in

this case.

Let (B*, c*) be an optimal solution to problem (WCP). Lemma 17 below shows

that if the k largest variables ci are equal to c*, with k E {1, ... , n - 1}, then the

objective function is strictly increasing in cn. It follows that c* must attain its lower

bound, otherwise we could strictly improve the objective by decreasing it.

From Lemma 17 for k = 1 it follows that either constraint (A.26) is tight, or

we must have c*, = c* 1 . If constraint (A.26) is tight, we are done. Therefore,

assume that c* = c*_ 1 . In fact, Lemma 17 allows us to iterate this argument for each

k E {2, ... , n - 2}, and conclude that either constraint (A.26) is tight, or we must

have c* = c* for each i E {2,. . . , n}. Again, if constraint (A.26) is tight, we are done.

Therefore, assume that c*, = ci for each i E {2,.. . , n}. It follows that constraint

(A.26) simplifies to

c** 1(C*)2
bB*=c*(2c*a) (n-1) a + (n -1)-) - (n -)

2 2) n +1 4

(3n + 1)
<- c*,> a >0.

-- (5n + 3)

Where the first equality follows from constraint (A.25), and c* = c* for each i c

{2, ... , n}. The equivalence follows from simplifying the expression.

Finally, from Lemma 17 for k = n - 1 it follows that c* must attain its lower

bound, hence constraint (A.26) must be tight. This concludes the proof. U

Lemma 17. For any given number of firms in the market n > 2, and demand pa-

rameters a > 0, b > 0, if the k largest variables ci are equal to cn in problem (WCP),
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with k E {, ... , n - 1}, then

8 QU(c)/Q*(B, c)
aCn

(A.27)

Proof. Note that, for the case 1 = 1, the function V/-(B, c) in equation (2.31) sim-

plifies to

n 2

cj - c + n(n +
i=2 (

Eci - (n - 1)ci
i=2

1) (c -C)2

i=2

1/2

+ 4n(n + 1)bB)

Then, from the assumption that the k largest variables ci are equal to cn, and

taking ci = 0 without loss of generality from Lemma 9, it follows that

SQU (c)/Q*(B, c) _

en

2(n + 1)(n - k)

na - kc, - Zi-1 ci + v/ (B, c)

(-k + 1 c .
2v/6(B,c) Dcn)*

From algebraic manipulations, and recognizing terms, it follows that

& QU(c)/Q*(B, c)
DCn

n

n Ic
i=2

>0

2)

> 0
n-k

+k 1(cn - Ci)

>0

This concludes the proof.

Lemma 18. The solution given in equations (2.67)-(2.69) is feasible for problem

(DLP) and attains an objective value of (1-1)
2nl-n+1-1'

Proof. The objective value of problem (DLP) is A, therefore the checking the objec-

tive value is direct and we focus on checking feasibility.
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-(n + 1)

2(n + 1) ((n - k)cn - i ci)

na - kcn - _- I- f (B,c))

n-k

b (a - ci) (Q*QU)+

>0
>0

U
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For constraint (2.61) we get -au, + a- + 2naA = 0 - 2naA + 2naA = 0, thus

constraint (2.61) is binding. For constraint (2.60) we get -u,_ 1 + u, - nry - A =

nry + A + n - 1 + 0 - ny - A = n - 1, thus constraint (2.61) holds.

For constraints (2.59), for i E {l + 1 ... , - 1}, we get -u_ 1 +- ui + 7 - A =

i-y+(n-i+1)A+i-I-(i+1)- (n-i)A-i+-y-A = -1, thus constraints (2.59) hold

for i E {l+l,.. .,rn-1}. For constraint (2.59), for i = l, we get -u-1I+ul+'y-A =

0 - (1 +1)? - (n - l)A - 1 +y - A = -l2nA - (n - 1 +1)A - 1 = 1 - 1 -1 = -1, thus

constraint (2.59) holds for i = I.

For constraint (2.58), we get -ul-2 + u1-1+ - (n -1+ 3)A = -7 + (n - 1+ 3)A -

1 + 0 + -y - (n - 1 + 3)A = -1, thus constraint (2.58) holds. For constraints (2.57),

for i E {3,...,l - 2}, we get -ui_ 1 + ui + - 2A = -(l - i)-y + (n + l - 2i + 1)A -- l +

i + (1 - i - 1)y - (n + 1 - 2i - 1)A + 1 - i - 1 + -y - 2A = -1, thus constraints (2.57)

hold for i E {3, ... ,l-2}.

For constraint (2.56), we get u2 + -2A = (l - 3)y - (n+l - 5)A +l - 3+y - 2A =

(1 - 2)-y - (n + 1 - 3)A + 1 - 3 = -(1 - 2)2nA - (n + 1 - 3)A + 1 - 3 = -3n_ " _ (12ril-n+l-l

1) + 1 - 3 < -1, where the last inequality is equivalent to n - 1 + 1 > 0, which is

true for any 2 < 1 < n, thus constraint (2.56 holds. For constraint (2.62), we get

-2naA = -2na (1_1) < 0 for any 2 < 1 < n, thus constraint (2.62) holds.2n1-n+1-1

For constraints (2.63), for i E {2,.. . ,l - 2}, we get ui = (1-i - l)y - (n + 1-

2i - 1)A + 1 - i - 1 < (1 - 2)-y - (n + 1 - 3)A + 1 - 2 < 0, where the first inequality

follows from the expression for ui being decreasing in i, and taking i = 1. The second

inequality is exactly what we already showed for constraint (2.56). The expression

for ui is decreasing in i if and only if n - l1 > 0, which is true for any 2 < < n,

thus constraints (2.63) hold for i E {2, ... , 1 - 2}.

Finally, for constraints (2.63), for i E {l,.. . , n - 1}, we get ui = -(i - y - (n -

i)A -i < -(l+1)- - (n - l)A - l = (l+1)2nA - (n -l)A - 1 = (2n+n+) (1 - 1) 1 0,

where the first inequality follows from the expression for ui being decreasing in i, and

taking i = 1. The inequality is equivalent to n > 0. The expression for ui is decreasing

in i if n > 0, thus constraints (2.63) hold, for i E {l, ... , a - 1}. This completes the

proof. U
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Proof of Proposition 13

Proof. For any given n > 3, a > 0, b > 0, consider any optimal solution (B*, c*)

to problem (WCP3 ). Note that if (B*, c*) is such that constraint (2.36) is tight,

then it follows that the worst case instance for the case 1 = 3 lies in the boundary

between the cases 1 = 3 and 1 = 2, or equivalently WC(2, n) WC(3, n) and we

are done. Similarly, if (B*, c*) is such that constraint (2.37) is tight, then it follows

that the worst case instance for the case 1 = 3 lies in the boundary between the

cases 1 = 3 and 1 = 4 (where if n = 3, then the case 1 = 4 is only defined in

the boundary where a fictitious firm 4 is about to start producing), or equivalently

WC(2, n) WC(4, n) WC(3, n), where the first inequality follows from the case

1 = 4 in Theorem 6, and we are done in this case as well. Hence, without loss of

generality we will assume that constraints (2.36) and (2.37) are loose for (B*, c*).

Lemma 19 below shows that then (B*, c*) must be such that c* = c*, and c = c*,

for each i {3, ... , n}. Therefore, without loss of generality we focus on solutions

with this structure. Moreover, from Lemma 9 we will assume, without loss of gen-

erality, that c* = 0. It follows that problem (WCP3 ) simplifies to the following one

variable optimization problem.

Q3(c)
minv Q =

12(n + 1)cn

(5n + 2)a - 3(n - 2)c,- + ((n - 2)(3cn - a)(9(3n + 2)cn - (n - 2)a))1/2

s.t. - < ca (A.28)
3

cn < 2(5n + 2)a (A.29)
9(3n + 2)

where we have dropped the dependency on the budget B by directly replacing it with

the expression from constraint (2.35). Moreover, constraint (A.28) is equivalent to

constraint (2.36), and constraint (A.29) is equivalent to constraint (2.37).

Now we show that for any given n > 3, a > 0, any optimal solution c* to problem

(SWCP3 ) must have an objective value of at least WC(2, n). Recall that if at any

optimal solution to problem (SWCP3 ) constraints (A.28) or (A.29) are tight then we
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are done. It follows that, without loss of generality, we can focus on stationary points

in the interior of the feasible interval. Namely, we focus on values of c" such that

d (Qu(c*)/Q*(c*)) = 0

dcn

After simplifying, this condition is equivalent to

(ri - 2) 2 a
((n - 2)(3c*, - a)(9(3n + 2)c* - (n - 2)a))1/ 2 = 3(n - 2)c* - + a. (A.30)5n + 2

By plugging in expression (A.30) into the objective function, it follows that any

interior stationary point c* must be such that its objective value has the following

simplified expression

Qu (cn) _(5n + 2)c".(A31
Q*(cn) 2na

Furthermore, equation (A.30) is quadratic in c* and its unique non-negative solution

is c* = n+ n ) a. Hence, from the right hand side of equation (A.31) it

follows that any interior stationary point c* attains an objective value of 3 6T >

2+4 2 WC(2, n), where the first inequality holds for any n > 1, and the second

inequality follows from the fact that the right hand side is attained by the candidate

instance for the case 1 = 2 from equations (2.41)-(2.43). U

Lemma 19. For any given number of firms in the market n > 3, and demand pa-

rameters a > 0, b > 0, any optimal solution (B*, c*) to problem (WCP3) for which

constraints (2.36) and (2.37) are loose must be such that c* = c*, and ci = c*,, for

each i E {3,..., n}.

Proof. For any given n > 3, a > 0, b > 0, consider any optimal solution (B*, c*) to

problem (WCP3 ) such that constraints (2.36) and (2.37) are loose. First we show

that, for each index i E {2, ... , n - 1}, it must be the case that either c = c* or

c = c*. Assume for a contradiction that i E {2, ... ,n - 1} is the largest index

such that c* < c < c*. Then we will show that we can transfer an arbitrarily small

e > 0 from c* to c and strictly improve this solution, while maintaining feasibility
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for problem (WCP3 ), a contradiction.

We first address the feasibility of the modified solution. Recall that from Lemma

9 it follows that we can assume without loss of generality that c* = 6 > 0, allowing

the latter transfer for an 0 < c < 6. From constraint (2.35) it follows that the budget

B* remains unchanged when transferring an arbitrarily small e > 0 from c* to c*.

Therefore, from constraints (2.36) and (2.37) being loose, and c* < c*, we conclude

that the modified solution is feasible for problem (WCP3 ) for an E > 0 small enough.

We now address the change in the objective function. Recall from equation (A.17)

that the function QU(c) remains unchanged when transferring an arbitrarily small

S>O 0 from cl to c*, therefore we focus on the change in the function Q*(B, c), which

is

OQ*(B*, c*) _ Q*(B*, c*) _ (n - 2)3__ _ - . 3 * (c -c*) > 0,
Oci 0c1  2bVi (B*, c*)

where the inequality follows from the assumption that c* < c;. Namely, we have

shown that there exists a feasible solution to problem (WCP3 ) which attains a strictly

better objective value than (B*, c*), a contradiction. Hence, we conclude that, for

each index i E {3, ... , n - 1}, we must have either c* = c* or c = c*.

To conclude, note that assuming 1 = 3 implies c* < c*, otherwise if c* = c* then

firm 2 would get a co-payment whenever firm 3 does, contradicting the definition of

the index 1 in Proposition 5. It follows that (B*, c*) must have the structure given in

the statement of the proposition. U

Proof of Lemma 12

Proof. For any given n > 2, a > 0, b > 0, and for any index k E {1,. . . ,n - 1}, the

function *2,k(cn) fits the setting in Lemma 21 below with a = 2(k+1)(4nk+ n+3k),

3 = -4(2nk + n+k)a and y (n -1) 2 . It follows that *2,k(cn) is concave in the set

E [a, a] if 4a7- 3 2 < 0, or equivalently if (4k2 +3k+1)n2 +(3k+1) 2 n+5k2 +3k >

0, which holds true for any index k E {1,. . . , n-1}, for any n > 2. From here, together

with (3n + 1)a > 2(n - k)C , for any C E old

follows that condition 2 in Lemma 20 holds.
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On the other hand, condition 1 in Lemma 20 holds because the numerator in the

objective function of problem (RWCP2 ,k) is linear, thus convex, and c" > 0 for any

cn E [k ,a], k E {1, ... , n-1}, and n>2.

Lemma 20. Let g : S -+ R and h S -+ R, where S is a nonempty convex set

in Rn. Consider the function f : S -+ R defined by f(x) = g(x)/h(x). Then, f is

quasiconvex if the following two conditions hold true:

1. g is convex on S, and g(x) > 0 for each x E S.

2. h is concave on S, and h(x) > 0 for each x E S.

Proof. See Bazaraa et al. (2006). U

Lemma 21. Let f(x) = ax2 + x + y, if 32 - 4ay ; 0 and f(x) > 0 for each

x E S C R, then y f(x) is convex on S.

Proof. dx2 2(f)x))_/2 > 0 <- 4-- _32 > 0, where the equivalence follows
dx 2  (f (X)) 3/2 -

from f(x) >0 for each x c ScJR.U
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