
High Dimensional Revenue Management

by

Dragos Florin Ciocan

B.A., Applied Mathematics, Harvard College (2007)
Submitted to the Alfred P. Sloan School of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Management

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2014

Massachusetts Institute of Technology 2014. All rights reserved.

Author....................Signature redacted
Alfred P. Sloan School of Management

August 8, 2014

Signature redacted
C ertified by ................................ ........ ............

- Vivek F. Farias
Associate Professor and Robert N. Noyce Career Development Professor

Thesis Supervisor

Accepted by ........ Signature redacted..........
Ezra W. Zuckerman

Director, Sloan School of Management PhD Program

rUTE
MAR 1

LIBRARIES
ARCHIVES



2



High Dimensional Revenue Management

by

Dragos Florin Ciocan

Submitted to the Alfred P. Sloan School of Management
on August 8, 2014, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Management

Abstract

We present potential solutions to several problems that arise in making revenue man-
agement (RM) practical for online advertising and related modern applications. Prin-
cipally, RM solutions for these problems must contend with (i) highly volatile demand
processes that are hard to forecast, and (ii) massive scale that makes even basic op-
timization problems challenging. Our solutions to these problems are interesting in
their own right in the areas of stochastic optimization, high dimensional learning and
distributed optimization.

In the first part of the thesis, we propose a model predictive control approach to
combat volatile demand. This approach is conceptually simple, uses available demand
data in a natural way, and, most importantly, can be shown to generate significant
revenue advantages on real-world data from ad networks. Under mild restrictions, we
prove that our algorithm achieves uniform relative performance guarantees vis-a-vis
a clairvoyant in the face of arbitrary volatility, while simultaneously being optimal
in the event that volatility is negligible. This is the first result of its kind for model
predictive control.

While our approach above is effective at hedging demand shocks that occur over
"large" time horizons, it relies on the ability to estimate snapshots of the prevailing
demand distribution over "short" time horizons. The second part of the thesis deals
with learning the extremely high dimensional demand distributions that are typical
in display advertising applications. This work exploits the special structure of the
display advertising version of the NRM problem to achieve a sample complexity that
scales gracefully in the dimensions of the problem.

The third part of the thesis focuses on the problem of solving terabyte sized LPs
on an hourly basis given a distributed computational infrastructure; solving these
massive LPs is the computational primitive required to make our model predictive
control approach practical. Here we design a linear optimization algorithm that fits a
paradigm for distributed computation referred to as 'Map-Reduce'. An implementa-
tion of our solver in a shared memory environment where we can benchmark against
solvers such as CPLEX shows that the algorithm outperforms those solvers on the
types of LPs that an ad network would have to solve in practice.
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Introduction

This thesis tackles several challenges that arise in high dimensional network revenue

management (NRM) problems. While NRM is a core problem in revenue management

and has been extensively researched in the last two decades, there has been relatively

less effort towards making classical NRM approaches practical at a scale where the

number of customer types and resources run into the billions, as is the case with

modern applications such as online advertising. Here, we provide potential solutions

to three of the challenges one must contend with at this scale:

1. Absence of demand forecasts: in the long term, demand is highly uncertain and

difficult to forecast. A good scheme must "hedge" the impact of this uncertainty.

2. Measuring current demand: even in the short term, customer demand might

be difficult to estimate since the number of demand observations an algorithm

may have access to will typically be much smaller than the number of demand

types.

3. Computational tractability: classical NRM models typically rely on basic op-

timization tools such as linear programming. However, existing linear opti-

mization packages are not designed to scale to the dimensions encountered in

applications such as online advertising. A practical scheme must contend with

these scalability issues.

Part I of the thesis develops a model predictive control scheme to mitigate the

effect of demand volatility for a broad class of resource allocation problems with un-

certain demand, including online advertising and airline yield management. While
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the classical Deterministic Linear Program (DLP) framework for NRM assumes de-

terministic known demand arrival rates, we consider a setting where these rates are

unknown (or, put another way, impossible to forecast). Under fairly mild assumptions

on the nature of the stochastic processes driving these demand rates, we provide an

algorithm which achieves constant factor guarantees versus the offline optimal even in

the presence of arbitrarily large volatility, while simultaneously being optimal when

volatility is low. The approach relies on periodically re-solving an LP requiring only

the currently observable arrival rates. In a study on real data from an ad network,

we show that the scheme yields nearly optimal performance.

Surprisingly, in Chapter 2 we are also able to extend our scheme to Generalized

Second Price ad allocation, which can be interpreted as a variation of the classical

network revenue management problem where rewards are endogeneous to the dynam-

ics of the system. This extension makes use of a crucial balancing property of our

allocation scheme, which guarantees that resources are exhausted at a constant pace

over the time horizon of the problem.

In Part II, we deal with the problem of learning high dimensional customer demand

distributions. The model we consider here is one where customers arrive iid from a

fixed but unknown multinomial distribution on an exponentially large set of customer

types. The question we ask is: can we use a much smaller number of customer

arrival observations to learn a control which is 1 - e optimal versus a clairvoyant?

In Chapter 3 we identify a class of NRM problems, inspired by display advertising,

which have enough structure that this learning problem becomes tractable: for this

class of problems we achieve a sample complexity that depends logarithmically on

size of the support of the demand distribution. This sampling algorithm ties into

our earlier results from Part I - in particular, at the "global" timescale over which

customer arrival rates are non-stationary, the prescription is to periodically re-solve

an LP in which current rates are plugged in. We build up on this by addressing the

issue of how to efficiently learn these current rates over the "local" timescale of one

LP re-solve.
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Finally, Part III focuses on practically solving linear programs at the terabyte

scales that occur in online advertising applications. Here we look for an algorithm

which is amenable to implementations in the decentralized computational infrastruc-

tures that are typically employed by ad networks. More specifically, our solution fits

the Map-Reduce paradigm for distributed computation. Our algorithm proceeds by

solving a sequence of relaxations of the original linear program; the key computa-

tional step to solving one such relaxation is a large sort, an operation that modern

distributed frameworks like Map-Reduce are optimized for. Our implementation in a

shared memory environment where we can benchmark against solvers such as CPLEX

shows that the algorithm outperforms those solvers on the types of LPs that arise

in the online advertising context. Additionally, we show our algorithm outperforms

other distributed approaches for solving a broader class of LPs known as packing

problems by an order of magnitude on average.
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Chapter 1

Model Predictive Control

1.1 Introduction.

In this chapter we consider an archetypal dynamic allocation problem that captures a

swathe of disparate applications in revenue management and e-commerce. Informally,

the class of problems we consider can be described as follows: we are given a bipartite

graph consisting of a set of I sources and A sinks, together with E edges from the

sources to the sinks. Every source node i receives 'demand' over time. The rate at

which demand arrives is described by a general stochastic process. An allocation is an

assignment of the demand arriving at each of the source nodes to the sinks they are

connected with. This allocation may change over time; hence the dynamic moniker.

For every unit of demand allocated along edge e (connecting some source i(e) to some

sink a(e)), we receive a reward of p,. In addition, this unit allocation will consume

varying quantities of each of K distinct resources described by a vector A, E R+ . We

begin with an initial allocation of each of the K resources and must allocate demand

over time in a manner that maximizes revenues while consuming no more than the

initial allocation of resources. The key source of uncertainty in this model comes

from the stochastic demand rate processes; in practical settings even specifying such

a process is a potentially non-trivial task.

The abstract allocation model we have described above can capture a number of

applications of broad interest. Two examples that are of particular interest in revenue
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management (RM) are:

" The Network Revenue Management (NRM) problem: This is a generic high-

dimensional allocation problem encountered in industries ranging from the hos-

pitality industry to the airline industry and is effectively a cornerstone RM

model. For concreteness, consider the problem faced by an airline that sells a

variety of itineraries over a network of cities over time. Each itinerary requires

seats on different legs of the network and generates different revenues. The air-

line must sell itineraries over time in a manner that respects seat capacity and

maximizes revenues. Volatility in demand and the high-dimensional nature of

the allocation problem together make it challenging.

" Online Ad Display problems: An ad network serves as an intermediary be-

tween publishers (sources of traffic or demand) and advertisers. Via a variety

of contractual agreements it agrees to display ads from specific advertisers to

compatible traffic from publishers (where the notion of compatible might cor-

respond to the publisher's entity among other things). Advertising contracts

might specify that a given ad is displayed up to a certain number of times

to compatible traffic. Alternatively, by specifying a dollar rate for the display

of a specific ad to a specific type of demand, the advertiser might commit to

spending up to a certain budget on advertising. The ad exchange may, in turn,

seek to exhaust as much of this budget as possible while maximizing revenues.

Again, volatility in traffic across publishers and over time, combined with the

sheer number of potential alternatives for the allocation of a given unit of traffic,

makes this a non-trivial allocation problem.

We defer a rigorous problem definition and a precise explanation of how the above

problems and others fit into our framework to Section 3.2. For now, we simply note

that the above problems are considered difficult primarily due to uncertainty in de-

mand and the high-dimensional nature of the resource allocation problem at hand.

As such, there are distinct bodies of literature devoted to the above problems and

variants thereof. Rigorous algorithmic approaches appear to fall roughly into two

20
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categories at diametrically opposite ends of the spectrum on demand assumptions.

On the one hand, by assuming that the demand processes admit only 'small' shocks

so that uncertainty in total demand at each source is small relative to its magni-

tudel, one may resort to solving simple 'offline' versions of the allocation problem

at hand. These solutions yield, via an appeal to a law of large numbers argument,

an essentially optimal solution to the actual allocation problem. This has been the

dominant modeling approach in the majority of RM applications. On the other hand,

the assumption of 'small' demand shocks is clearly an idealization, so that a distinct

approach to such problems has been to assume that demand is adversarial. One then

seeks to design online allocation schemes that compete effectively with the adversary

generating demand. This has been the dominant modeling approach for many of the

e-commerce related allocation problems alluded to above. While such online schemes

are typically quite simple, their design and analysis is typically fairly brittle to model

assumptions.

In reality one typically faces a world that is somewhere in between the assump-

tions above: whereas assuming that demand is effectively deterministic (by assuming

small shocks) is potentially unrealistic, the assumption of adversarial demand is it-

self potentially conservative and unrealistic. In particular, in many instances of the

applications discussed above, one generates copious amounts of historical data on

demand over time that in principle might be used to construct useful forecast mod-

els. Unfortunately, such forecast models are far from easy to construct in practice

- challenges include judging the historical relevance of data, learning factors that

serve as useful predictors, and of course, problem scale. Moreover, even assuming

access to such a forecast model, the resulting dynamic optimization problem remains

high-dimensional and intractable. The present paper tackles this middle ground on

demand assumptions and provides solutions that attempt to address these challenges.

'This is analogous to assuming a deterministic demand rate process in the general model we will
consider.
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1.1.1 Contributions.

The present work posits a simple new approach to the general class of allocation prob-

lems above that relies on a combination of re-optimization and 'robust' forecasting;

importantly, the approach does not require that the demand rate process be speci-

fied. The approach is pragmatic and at the same time admits attractive theoretical

performance guarantees. In greater detail, we make the following contributions:

1. A Simple Allocation Scheme: We design an allocation scheme that relies on

frequent re-optimization using suitably updated forecasts. In particular, at

discrete points in time, one uses demand realized up to that point in time to

construct a forecast for future demand in a precisely specified fashion. Assuming

these forecasts to be exact, one then solves a simple linear optimization problem

that prescribes an allocation of demand from sources to sinks. This allocation

rule is followed until the next opportunity to re-optimize. The scheme is entirely

mechanical in that it can be applied to any dynamic allocation problem within

our framework without any instance specific analysis.

2. Uniform Worst Case Guarantees: Assuming that the demand rate process faced

lies in a certain broad class of stochastic processes 2, we show that our allocation

scheme yields expected revenues that are within a constant factor of expected

revenues under a certain super-optimal policy. The value of this constant is

either 0.342 or 0.2 depending on the specific assumptions we make on the family

of demand processes. These worst case results are remarkable - they hold for

arbitrarily volatile demand processes and illustrate that the proposed scheme is

robust across a broad class of demand processes while being oblivious to the

specification of the process. Our performance analysis overcomes the technical

hurdle of analyzing the impact of basis changes in certain math programs that

underlie our allocation scheme; this is the primary hurdle in analyzing allocation

schemes that rely on re-optimization.

2We essentially allow for multi-variate Gaussian processes with continuous sample paths. We
require that the volatility of any variate be a concave increasing function of time; we show that
these requirements may be viewed as natural in the context of any stochastic forecast model.

22
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3. Parametric Guarantees: In addition to uniform worst case guarantees, we present

performance guarantees that reveal that as the volatility of the underlying de-

mand process shrinks, our allocation scheme approaches optimality. Together

with the worst case guarantees, this allows the following interpretation: the

scheme we propose is essentially optimal if available forecasts are accurate, but

otherwise robust to forecast inaccuracies.

4. Computational Evidence: We present computational experiments on both syn-

thetic problem instances as well as a real-world example of an Ad Display prob-

lem using demand data from a mobile ad-network. In both the synthetic and

real-world instances, the proposed scheme is seen to provide performance levels

that are typically well within 90% of an upper bound constructed by assuming

that demand realizations were available a-priori.

While our literature review will extensively place these contributions in the context

of the extant work on dynamic allocation problems, we end this discussion with

a brief statement of the relative merits: The nature of the assumptions made in

traditional RM modeling (that of 'small' demand shocks) translates in our model to

a demand rate process that is deterministic; the assumption of a stochastic demand

process with no restrictions on volatility allows one to model (and address) large

shocks in demand. Conversely, if one were to adopt an adversarial view of demand

within our model, the nature of an optimal online scheme varies considerably across

specializations of our model as do the corresponding competitive ratios. Loosely

speaking, optimal competitive ratios range from a constant (in certain variants of

the Ad Display problem) to scaling inversely with the log of the number of demand

types (in the case of a general packing problem such as the NRM problem); the

corresponding allocation schemes are quite distinct. Moreover, one typically loses the

notion of what it means to have an 'accurate' forecast model in such a setting. In

contrast, we present a unified approach based on re-optimization and forecast updates

to what is apparently a broad range of problems and establish that it performs well

in an expected sense assuming a broad generative family of demand processes.
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1.1.2 Literature Review.

By virtue of its generality, our dynamic allocation model bears comparison to a very

broad class of models. As such we organize our review of relevant literature around

generic algorithmic approaches to comparable models. Given the diversity of compa-

rable dynamic allocation models, this review is by necessity incomplete and biased.

Online Algorithms: The dynamic allocation problems we study are quite

similar in spirit to (multi-dimensional) online packing problems. A powerful tool in

the design of schemes for such problems is the primal-dual schema. Under an as-

sumption of entirely adversarial demand it is possible to use this schema to design

online algorithms that bear a competitive ratio on the order of the logarithm of the

number of item types (i.e. O(log I) in the context of our model); see Buchbinder

and Naor (2009). Under the so-called random permutation model, where an ad-

versary selects the number of arriving items but nature then permutes these items

uniformly at random, substantially stronger guarantees are possible - in particular,

it is possible to provide online algorithms that constitute polynomial time approx-

imation schemes under this model for a variety of packing problems in appropriate

regimes. In particular, this was pointed out by Kleinberg (2005) in the context of a

secretary problem. More recently, Agrawal et al. (2014) developed an online PTAS

for a general multi-dimensional packing problem under this model. The exchangeable

nature of the demand distribution under this adversarial model is what effectively

drives these results; unfortunately this sort of model does not appear appropriate for

demand processes that are inherently non-stationary.

There has also been a good amount of work on online algorithms for some of the

specific applications we consider. In particular, for the so-called AdWords problems

(a specialization of the Ad Display problem we discuss), Mehta et al. (2005), de-

sign an online 1 - 1/e-competitive algorithm. Mahdian et al. (2009) work with the

same Adwords problem, but allow for the existence of forecasts of demand (keyword

arrivals). They not only obtain a constant factor guarantee versus worst case (adver-

sarial) inputs, but also a constant factor guarantee versus the revenues that would be
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achieved if the forecast was perfect. The analysis in both papers assumes individual

bids are small compared to the total budgets. In the case of the NRM problem, Ball

and Queyranne (2009) consider a simplified version of the NRM problem, namely a

setting in which the airline operates multiple itineraries on a single leg, i.e. K = 1

and show that a competitive ratio of 2 is achievable and optimal.

Many of the online schemes we have discussed are inherently conservative which

leads to hesitation in their adoption in practice.

Approximate Dynamic Programming (ADP): Given a model of demand,

one may in principle solve the sort of dynamic allocation problems we study via

dynamic programming. Of course, this is untenable in practice due to the cure of

dimensionality and one approach of contending with this issue is the design of ap-

propriate ADP schemes. For instance, Bertsimas and Demir (2002) solve integer

multidimensional knapsack problems via ADP. ADP heuristics have also been devel-

oped for the NRM problem. In particular, see Adelman (2007), Farias and Van Roy

(2007) and Zhang and Adelman (2009). While with careful tailoring to the problem

in question, these heuristics often exhibit excellent practical performance, (absolute)

theoretical performance guarantees are difficult to come by in general. Moreover, the

'tailoring' required is frequently non-trivial - one needs to provide these algorithms

with good 'approximation architectures' for the problem at hand.

Fluid Models: Fluid models arise essentially from considering allocation prob-

lems with their (stochastic) demand processes replaced by 'fluid' arrival processes

with deterministic rates matching those of the stochastic demand process; of course,

these rates have to be available a-priori. Solving these models is typically substan-

tially easier than the original stochastic problem and the resulting solutions can work

well in the original stochastic problem. Briefly, one can expect good performance

provided the deviation in cumulative demand relative to its mean is 'small' and this

typically requires a suitable scaling of the original problem. The model we study

is, in contrast, a stochastic fluid model where the rates of the fluids in question are

stochastic processes as opposed to being deterministic and known a-priori. Said an-

other way, our work can be viewed as taking the fluid model approach without a-priori
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information on the demand rate process which is itself stochastic.

A typical area of application is in the analysis of control policies for queuing

networks; see for instance Bramson (1998). A second area that has found applications

for these tools is revenue management. For instance, the seminal work of Gallego and

van Ryzin (1997) essentially posits a fluid model for the NRM problem and then

proceeds to show that solutions derived from this model work well assuming the scale

of demand and capacity grow large simultaneously. It is worth re-iterating that this

again requires one know the rate of the underlying demand process a-priori and in

that sense such a model is unable to capture 'large' shocks in demand. There is a

vast literature preceding this paper, two of which do make an attempt to capture

large shocks in demand - the first is a paper by Akan and Ata (2009) that considers a

stochastic fluid model for NRM. Their model is very closely related to the one studied

here. The authors provide a remarkable characterization of optimal policies and show

how to compute these optimal policies assuming the demand process is described by

a diffusion. Unfortunately, this still requires that one specify the diffusions a-priori.

A second paper by Chen and Farias (2013) that is perhaps most closely related to the

present work studies a one dimensional allocation problem (with a somewhat distinct

control/ reward mechanism) under similar assumptions as those studied here. We

present performance guarantees relative to a multivariate version of the family of

demand processes studied in that work.

Re-Optimization/ Model Predictive Control: The area of model predictive

control essentially prescribes solving hard stochastic control problems by posing fluid

models and then re-solving these fluid models with suitable updates as uncertainty

reveals itself. Our approach falls squarely within this philosophy. For a survey of

model predictive control literature, see Bemporad (2006).

The MPC approach has been used (under different names) in a variety of settings.

One prime example is in scheduling for queuing networks; for instance, the semi-

nal work of Chen and Yao (1993) can be viewed in this light as can the celebrated

Max Weight scheduling policy (see Shah and Wischik (2010)). More recently, this

philosophy has also found application in revenue management, and in particular, for
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the NRM problem. In that context, Maglaras and Meissner (2006) pointed out that

repeatedly re-solving the fluid model linear program prescribed by Gallego and van

Ryzin (1997) yields an optimal allocation in the fluid scale. Subsequent work has

shown that this re-optimization can play a substantial role in accelerating the rate at

which such allocations approach optimality as the problem is scaled. In particular,

Reiman and Wang (2008) show that a single re-optimization at a carefully chosen

point can result in an additive performance loss that grows like the square-root of

the problem scale. Recently, Jasin and Kumar (2012) provided an extremely elegant

demonstration of the fact that with repeated re-optimization (that can be at uni-

formly spaced intervals) the additive performance loss is independent of the problem

scale. This work nicely illustrates the impact of re-optimization in combating 'small'

shocks in demand (the demand rate is known in all of the above papers). The present

paper can be seen as complementing that work by showing that re-optimization with

appropriate forecast updates is beneficial when the demand rate itself is unknown

and stochastic, and thereby aids in combating 'large' shocks.

1.2 Model.

This section will describe our model rigorously. We then present examples of three

problems that are captured within our model. The first two are the NRM and Ad

Display problems described loosely earlier. The third concerns revenue management

in a multi-class processing network with stochastic arrival rates.

System: Consider a bi-partite graph with I sources indexed by i and S sinks indexed

by a. The edge set of this graph has size E, and a generic edge will be denoted by e.

We understand by i(e) the source node for edge e and by a(e) its sink node. Given

this graph, that will underlie a general allocation process over time from sources to

sinks, we next describe several key model primitives:

1. Demand: We associate each source with a non-negative real valued stochastic

process, {Ajt(w)}, with continuous sample paths '. Each of these I processes

3 we will suppress the dependence on w if this is clear from context
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are defined on a common probability space (Q, F, P). The total demand at

source i over the horizon [0, T] will be understood as f Ai,tdt. We denote by

Ft, the sigma algebra generated by the sample paths of the I demand processes

up to time t, i.e. F = -({A,() : 0 s < i}, i < t, w E Q).

2. Resources and Resource consumption: We are given a set of K distinct resources

indexed by k. The available quantity of these resources at time t is given by

a vector xt E RK. A unit allocation of demand along edge e will consume

resources. The amount of resource k consumed is given by Ak,e; the vector of

resources consumed by a unit allocation on edge e is thus the column vector

A.,e Ae. Denote by A E R E the matrix whose eth column is Ae.

3. Prices/ Revenues: Allocating a unit of demand along edge e generates revenue

Pe Denote by p E R E the column vector whose eth component is pe.

Control: Although our system evolves in continuous time, control is exerted at dis-

crete times, {0, T/N, 2T/N,... , T} TN. The control chosen at time iT/N remains

in effect over the interval [iT/N, (i + 1)T/N), and is specified by a vector z E Z where

the set of feasible controls at time t, Z, is defined as:

ZR: ze z _1Vi}.

e:i(e)=i

The control chosen at time iT/N determines the allocation of demand across edges

over the subsequent interval. An admissible control policy is a Z-valued process

adapted to the filtration Ft which we will denote {zt}. Denote the set of admissible

control policies by 11N. We also denote by {ze,t} the e-th component of {zt}, i.e. the

process describing the allocations across a particular edge e.

Dynamics: The state of the system at time t is effectively the history of the

exogenously evolving demand processes up to that point and the quantities Xt of the
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K resources that remain. The evolution of Xt is specified by the differential equation:

d - Ee Ak,eAi(e),tZe,d(t) if Xk,t > 0

dt 0 otherwise

for all k. Here d(t) = max{i:iN/T<t} iN/T.

The Problem: Define the event Ie,t {Xk,t > 0 V k s.t. Ak,e > 0}. We are tasked

with finding an admissible control policy {zt} that solves the following optimization

problem:

max E[JZ peAi(e),tZe,d(t) 1t,dt (1.1)
{zt}ErIN

We denote the optimal value to this optimal control problem by J*,N(Xo)-4

The model we consider is best thought of as a stochastic fluid model. In particular,

in a real system demand is potentially best captured as a multivariate point process

with rate At; in our model we ignore the fluctuations of this counting process from

its mean focusing instead on shocks in the rate process itself. In most applications

the fluctuations of the counting process about its mean are 'small' in that their effect

can be shown to be negligible in a regime where x0 and At are scaled simultaneously

by some scale factor that grows large.

1.2.1 A Family of Stochastic Demand Models.

While the algorithms we present will apply to general non-negative rate processes, it

is hopeless to expect any single algorithm to perform well across a class this broad.

As such our analysis will be limited to studying the performance of our prescriptions

across a more limited family of processes. We consider this family here and then

present examples of processes within this family:

Assumption 1.2.1 Structure of {A}:

1. Ai,t = (Xi,t)+, where At is a Gaussian process with continuous sample paths.

4We will often omit a reference to N when it is clear from context
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2. E [Ai,t] A Ai, is positive.

3. The variance of the random variable Ni,t, a, is non-decreasing as a function

of t and concave.

Note that we do not make any assumptions on the correlation structure for this

multi-variate stochastic process. While restricting attention to rate processes within

some class of stochastic processes is certainly restrictive relative to, say, an adversarial

model of rate processes, the family of processes permitted by Assumption 1.2.1 is

ubiquitous in applications:

Ubiquity of Assumption 1.2.1.

We now demonstrate a family of processes that is both ubiquitous in applications and

satisfies the requirements of the Assumption 1.2.1. Consider processes {At} defined

according to:

Ai,t = -i,t + #i(t - s)dZi,s

where Ai,t is some Lipschitz-continuous, non-negative function of t for all i, i(.) is

a Lipschitz continuous function of t such that #i(-) is non-increasing, and Z, is I-

dimensional Brownian motion. For reasons that will become apparent shortly, we

will refer to these as moving average processes. Moving average processes satisfy the

requirements of Assumption 1.2.1.

To begin, we note that the class of moving average processes include a fair number

of common continuous time processes used in stochastic modeling. For instance,

setting #j = 1 yields the Wiener process, while setting O(s) = exp(-s) yields the

well known Ornstein-Uhlenbeck (or Langevin) process. The ubiquity of this class is

perhaps more obvious if one considers evaluating the process at discrete points is

time.

In particular, for any A > 0, we have (via Ito isometry) that:

n-1

i,nA= Ai,nA - On-kEk
k=O
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where ek are independent standard normal random variables, and j = V 1_ , 2(s)ds.

This is nothing but a moving average model which finds wide application in time se-

ries modeling. In particular, Assumption 1.2.1 can thus be seen to permit moving

average models that are

1. Of arbitrary order.

2. Not necessarily stationary.

3. Satisfying the property that the weights {0} be non-increasing so that past

shocks have smaller influence on the process than more recent shocks do.

This is evidently a broad class of models.

In subsequent performance analyses we will heavily exploit the natural symmetry

in the marginals of this class of processes, as is made precise by the following lemma.

The fact that it is the symmetry of the marginals of the demand process that drive

our performance results is something of a unique insight: 5

Lemma 1.2.2 Let f : R+ - R+ be continuous, nondecreasing, and concave with

f(0) = 0. Then, provided the process { At} satisfies Assumption 1.2.1 and further,

i,t = AiI Vi I,t E [0,T], we must have:

E f f(Ai,t)dt]
> 0.342

f(E f Ai,tdt]

for all i.

Remark 1.2.3 (Low Volatility) The above result demonstrates an outcome of the

symmetry of the marginals of our stochastic process and the resultant uniform bound

holds irrespective of the magnitude of a-. Of course, one may hope that, if a-t is small,

then one might expect a tighter bound. In fact, Lemma 7 of Chen and Farias (2013)

5
1n fact, analogues of Lemma 1.2.2 for non-Gaussian marginals drive analogous performance

guarantees to those we shall derive in subsequent sections and we will provide one such example in
Section 1.3.5.
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establishes that if o-,t/Ai ; V/7FB for all t, then one has:

E [ f (Ai,tdt 1 B[T> L I - B (exp(1/47rB 2) + 0.853).

f (E [IfTAi,,dt] I+ B I1+ B

The first allocation scheme we consider will not require any knowledge of the

specification of the process At. The second scheme we consider will use information

on the drift of the process At; in particular, this scheme will know {Ai,t} for all i. Note

that even in the latter case, the information utilized is mild - it is trivial to construct

processes with identical {Aj,t} but drastically different behavior; for instance, an OU

process and a Wiener process.

1.2.2 Examples.

The generic allocation problem described above is quite rich and encapsulates several

important classes of problems described below. The first two classes collectively drive

billions of dollars in commerce. We describe these problems next:

Network Revenue Management: Here each of the source nodes corresponds to

an arriving customer class so that Ajt captures the arrival rate of that class. Each of

the sink nodes corresponds either to an itinerary or an 'offer set' depending on the

precise NRM model we wish to capture. Every source has an edge to every sink. K

corresponds to the number of legs on the network so that Xk is the residual capacity

on leg k. We consider two distinct NRM models and interpret the control {zt} in

each:

1. Separable Demand: Here each customer class (i.e. source node) is connected

to exactly one itinerary (i.e. sink). Ak,e corresponds to the number of seats

consumed on leg k by itinerary a(e) and pe is the price of this itinerary. The

demand at a given source node is consequently interpreted as demand for a

given itinerary-price pair. The control {zt} is interpreted as follows: zt,e is

the probability that the itinerary-price pair corresponding to edge e is made

available at time t. This is the pre-dominant model for NRM problems.
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2. Customer Choice: Here a given customer class may be connected to multiple

sinks. A given sink is associated with an 'offer set' i.e. a set of itineraries

the customer might be offered from which she will pick an option desirable to

her. Ak,e corresponds to the expected number of seats consumed on leg k when

customers of class i(e) are presented the offer set a(e); pe is the expected price

of the itinerary selected from the offer set. The control {zt} is then interpreted

as follows: zt,e is the probability that the offer set corresponding to edge e is

shown to an arriving customer of class i(e) at time t.

What is of note in our model is the ability to capture the fact that the demand rate

for a given customer class Ai,t is stochastic as opposed to being deterministic (as is

assumed typically). This allows us to capture 'large' shocks in demand. Anticipating

our scheme for allocation we will be able to do this without explicitly modeling the

underlying demand process.

Online Ad Display Allocation: Here each of the source nodes corresponds to an

arriving impression type 6, and each of the sink nodes corresponds to an advertiser.

Every source has an edge to every sink. K is equal to the number of sinks; Xk

can have several interpretations depending on the nature of the contract with the

advertiser. For instance, the contract may specify that the advertiser will pay no

more than a certain budget in which case Xk is the amount of this budget that

remains. Alternatively, the advertiser may agree to having its ad displayed no more

than a certain number of times over some period in which case Xk corresponds to the

number of times advertiser k's ad can be displayed. p, is interpreted as the revenues

garnered in allocating an impression of type i(e) to the advertiser a(e). In the context

of budget based contracts Ak,e = Pe; in the case of contracts based on the number of

impressions served with an ad, Ak,e = 1 if i(e) is an acceptable ad to advertiser a(e)

and 0 otherwise.

It is interesting to note that past work on the above problem in the adversarial

setting also effectively considers a fluid model by assuming that the unit of allocation

6An impression can be thought of as a unit of web-traffic satisfying certain pre-assigned criteria,
such as say gender, age, website etc.
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is small relative to the budget, i.e. Ak,e < Xk

Revenue Management for a Multi-class Processing Network: Consider a

fluid processing network wherein I types of fluids are processed. Fluid i is processed

at precisely one of K processing stations at rate 1/pii. Upon being processed, a unit

of fluid i is transformed into Pj units of fluid i'. Let P E RIxI be the matrix

whose i, i'th entry is Pj and assume that I - P is invertible. Fluid i arrives to

the system at a rate given by the stochastic process {Ai,t} and the revenue from

processing a unit of arriving fluid of type i (assuming all fluid generated in subsequent

processing steps is also processed) is given by pi. The goal is to design an admission

policy that maximizes revenues from processing fluid over some finite horizon '. This

may be cast within our framework as follows: we consider a problem with I sources

corresponding to each fluid type and a single sink node. For every edge e we have

p, = Pi(e). We set xt to be the vector of uncommitted processing time available over

the remainder of the horizon at each of the K stations at time t; thus xO = T1. We

set Ae = A 0 (I - P)-lui(e) where uj is the jth unit vector 8. Note that the quantity

v = (I - P)-luj solves the Poisson equation v = uj + Pv and represents the effective

amount of fluid (of all types) that an inflow of 1 unit of fluid j will introduce into

the system. In this setting we interpret zt,e as the fraction of (non-reentrant) fluid of

type i(e) entering the system at time t that is admitted.

It is interesting to note how this processing model departs from typical processing

network models: First, the arrival rate of a fluid is stochastic; the process driving this

rate is allowed to be fairly general (as discussed in the preceding section). Second,

we maximize rewards associated with processing fluid as opposed to minimizing some

cost associated with backlog. Finally, we note that we do not allow a backlog at

time T. A richer formulation would allow for us to optimize some combination of

rewards associated with processing fluid and costs associated with backlog at time T;

unfortunately our model does not allow this.

7Note that no revenues are generated from processing re-entrant fluid.
Vor a, b E R", a (D b = [a, -bl, .. ., an - bn] T
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1.3 A Re-Optimization Based Heuristic.

Imagine our information structure were such that {At, t > 0} E o. If this were the

case, the control problem at hand reduces to a deterministic optimization problem;

in particular, one simply employs an allocation rule given by any optimal solution to

the program

max ZPeze Ai(e),tdt
e

subject to Ak,eZe J Ai(e),tdt < XkO V k, (1.2)

z E Z.

Here we define an extremely simple control scheme for the problem we face. The

scheme we propose will resolve a similar linear program as the one above at the

times in TN with a certain 'projected demand' based on conditions at the time of

re-optimization.

1.3.1 The Re-Optimization Scheme.

For (t, A, x) E R+ x R+ x RK, define the linear program LP(t, A, x) according to

max S PezeAi(e) - (T - t)
e

subject to Ak,eZeAi(e) - (T - t) < x| V k,
e

z E Z.

Abusing notation, we will also denote the optimal value to this program by LP(t, A, x).

We will consider a re-optimization based heuristic control policy {f} defined so that

zR = z RZ d(t),
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where zR/N is any optimal solution to the linear program LP (iT/N, AiT/N, xiT/N)-

In words, this scheme assumes, at every point of time in i E TN that the demand

rate over the remaining time horizon will remain unchanged from A;, and employs

the allocation rule that is optimal for such a scenario over the interval of time until

the next re-solve. This procedure is summarized below

Re-optimization Heuristic

At each re-optimization interval i = 0, . . . , N - 1
1. Measure demand rate AiT/N
2. Obtain fractional allocation z E arg max LP(iT/N, AiT/N, XiT/N)

3. Over the interval [iT/N, (i + 1)T/N), allocate the demand fi)T/N Adt

according to zR/N

Now define Jt} (xo) as the revenues under the re-optimization heuristic under a

specific sample path of demand, {At}, starting with inventory xo. In particular,

JI (xo) j ZpeAi(e),tzet 1{itIdt

where, as before, Ie,t {Xk,t > 0 V k s.t. Ak,e = 1}. We denote the total expected

reward under the re-optimization policy assuming a starting inventory level xo by
jR(Xo); JR(Xo) = E LJ(xo)1.

1.3.2 An Upper Bound.

Define J} (xo) as the optimal value of the (offline) optimization problem (1.2). That

problem provides a useful upper bound on J*,N(xo). In particular, we have:

Proposition 1.3.1 E [JU (o)1 J*,N(xo) for all N.

The proof of this result can be found in the Appendix - the result is natural; knowing

realized demand a-priori is in essence the best we can hope for.
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1.3.3 Sample-path Properties of the Re-optimization Policy

and a Lower Bound.

This section concerns two sample-path properties of the re-optimization policy. The

first is simply a representation of Jt (xo) in terms of the optimal value of the linear

programs solved along a sample path. The second simple but crucial property is a

statement of 'balanced' inventory consumption along a sample path.

Define Am n E R so that Am = min{Ai,t : d(t) <; t < d(t) + N/TI. Similarlyd(t) + i,d(t)

define Ama. We then have the following lemma:

Lemma 1.3.2

J (xo) T N LP (jT/N, N, /N - C KZp.) Z(AmT/N - iJT/N))

where C is some constant dependent only on the quantities Ak,e, k G 1,. .. K, e E E.

The proof of this lemma is relatively routine and can be found in the Appendix.

The continuity of the sample paths of {At} yield as an easy corollary the following

result, whose proof is also in the Appendix.

Corollary 1.3.3

lim inf R T N-1 LP (jTN, AjT/N, XjT/N)
nJ (xo) liminf N T - jTN

We next demonstrate a crucial sample path property that will eventually allow us

to relate the linear programs solved at each opportunity to re-optimize to the initial

(offline) LP solved at t = 0. The property is natural and simple to derive, but quite

powerful in its application.

Lemma 1.3.4 (Balancing) For every sample path of At,

N- n T
Xk,nTIN Xk, Ak,e (Ai(eT - e) T/N )

j=0 e
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for all n < N.

Proof We proceed by induction. The claim is trivially true for n = 0. Assume the

claim true for n = 1 - 1 < N - 1 and observe that

Xk,(I+1)T/N Xk,lT/N -

> Xik,lT/N -

E Aie (+1)TIN
k~e (T/N

E Ake (l+1)T/N

ke (iT /N

Ai(e),tdt) ZeITIN

A ITIN ZeTIN

= Xk,ITIN - ke~i(e),lT/NZe,1T/N + ,e Ai(e),IT/N - A e 1TIN) Ze ,T/N

> Xk,lT/N (I -
N- )

+ 5 T Ak,e (Ai(e),lTIN - A max T) ZIN

e

(1.3)

The final inequality follows from the fact that zR/N is a feasible solution to

LP (lT/N, AlTIN, iXlTIN). But the induction hypothesis yields

Xk,lTIN Xk,O N 1 Ak,e (Ai(e),jTIN - ie TIN)
j=O e

and substituting in the final inequality of (1.3) then yields

Xk,(i+1)TIN > Xjk,0 N-(1+1) N Ak,eN N
j=0

(Ai(e),jTIN - Am )TN

Induction on 1 completes the proof.

Lemma 1.3.4 yields as a corollary the following result whose proof may be found

in the Appendix:

Corollary 1.3.5

lim T N-1 LP (jTN, AjT/N, jT/N) > limi N-1 LP

N N T - jT/N N N.
j=0 j=0

(jT/N, AjIT/N, xo(N - j)/N)

T - jT/N
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Corollaries 1.3.3 and 1.3.5 together imply the following lower bound on revenues

under the re-optimization heuristic:

Theorem 1.3.6

- - R N-1 LP (jT/N, AjT/N, xo (N - j)/N)
N {AtjkXO) > N N. T - jTNj=0

1.3.4 Properties of the Re-Solved LP and a Decomposition.

Here we briefly develop an 'expansion' of the optimal value LP(t, A, x) that is separa-

ble in the components of A. This expansion will serve us in our performance analysis

and, in particular, will be crucial in analyzing an inherently multi-dimensional system

via a single-dimensional analysis. We begin with some definitions.

For every i E {1, ... , I} and tuples (t, A, x) E R+ x R' x R', let z(t, A, x) E RE

denote an optimal solution to LP(t, A, x), and define the functions f"'A'x : R+ -+ R+

according to

ft'A'x(w) Zpe min{Aj, w}ze(t, A, x).
e:i(e)=i

We catalog a few properties of these functions that will serve us well in the sequel;

these properties are proved in the Appendix.

Lemma 1.3.7 For every i E 1, and (t, A,x) E R+ x R' x RK, the function f(w) A

f 'Ax(w) satisfies the following properties:

1. f (0) = 0 and f is continuous and non-decreasing.

2. f(-) is concave.

3. For w, V > 0, f min { ,1}.

4. fe f (w)dw X;f().

The utility of the functions fi'A'x lies in the fact that they allow us to construct

useful approximations to LP(t, A, x) that are separable in the components of A. This

is made precise by the following result whose proof is deferred to the Appendix:
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Lemma 1.3.8 For any (t, u, x) c R+ x Ri x RI, and an arbitrary A E RI, we have:

LP(t, u, x) ;> (T - t) fi(t,A,x)(uj)

with equality for u = A.

1.3.5 Performance Guarantees for the Re-optimization Scheme.

With the lower and upper bounds developed thus far, we are finally in a position to

present performance guarantees for our approach for processes where Ait = Aj.

Theorem 1.3.9 For demand processes {At} satisfying Assumption 1.2.1, and with

Ait = Ai for all i, t, we have, assuming an initial inventory of xo:

E J (X,,)
lim inf > 0.342.

N E [JU(x)

Proof We know by Fatou's Lemma that

.E.[E J (x0)]
lim inf >

N E [J B(x)

E [lim infN jA(x)

E [JT,(x,)

We will proceed in turn to bound the numerator and denominator.

that:

liminf", (x0) > lim inf
N IN

We then have

N LP (0, AjT/N, xo)

N=E T
j=O
N--

> limNinf - o)(Ai,jT/N
N N.

j=O

(1.4)

f (0,A,xo)(At)dt

i0

where A E R' is arbitrary. The first inequality is a consequence of Corollaries 1.3.3

and 1.3.5 and the fact that LP(t, A, x(1 - t/T)) = I- LP(0, A, x) for 0 < t < T
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and arbitrary A E R, , x C RK. The second inequality is Lemma 1.3.8. The final

equality follows from the continuity of f4 "'A 'o)(-) (Lemma 1.3.7, property 1) and the

continuity of Ajt in t.

Next, we have that:

E [JI(xo)] E [LP (0, X,o)] LP (0, E [ x] ,x 0) ZTfi(EAo) (E [Ai])

(1.5)

where we define ER according to i = f Ai,tdt. The inequality above is

Jensen's inequality (since LP(t, u, x) is concave in u). The final equality is Lemma

1.3.8. Now, from (1.4) and (1.5), it follows that:

liiu F R [JE(x) F[T If(E[A]X) (At)dt]E Jt (X0) E 'EVi zo

lim inf -- => - E AoN E J (UB),(f L ],xo) (E [FA])

E [fT if(0,E[XXo)(Ait)dt
> min-

T (0,E ,xo) ( [ i]

> 0.342

where the final inequality is the estimate derived in Lemma 1.2.2.

The above guarantee is remarkable in that it is uniform over a broad class of

demand processes. In particular, the guarantee places no restrictions whatsoever on

the volatility of these processes nor on their correlation or autocorrelation structures.

Of course, in the event that the volatility of the underlying process were small, one

expects even better performance from this very natural algorithm, and indeed a proof

essentially identical to the one above yields the following theorem:

Theorem 1.3.10 Consider demand processes { At } satisfying A ssumption 1.2.1, with

At = A for all t. In addition assume that o-t/A < NV7B. We then have, assuming an
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initial inventory of xO:

lim inf E[JR}(xo)] > max 0.342, 1 B (exp(-1/47rB2 ) + 0.853)}N E J (xo) I + B I + B

The proof of the above theorem proceeds identically to that of Theorem 1.3.9 with

the exception that, in the very final inequality of that proof, we use the general bound

given in Remark 1.2.3.

Theorems 1.3.9 and 1.3.10 together establish a strong statement about the ro-

bustness of our re-optimization heuristic. In particular, these theorems establish that

with frequent re-optimization, this natural heuristic attains the ability to compete

with a clairvoyant with perfect knowledge of the sample paths of the demand pro-

cess, irrespective of the volatility of that process. Simultaneously, in the event that

the underlying process were not volatile at all the same scheme is essentially optimal.

Essential Properties of the Rate Process and Potential Generalizations.

The essence of Theorem 1.3.9 is that it reduces the performance analysis of our

re-optimization scheme to the analysis of simple properties of marginals of the the

rate process. As it happens, these properties can be tractably quantified for moving

average processes (which as we established earlier are a particularly interesting family

of processes). However, it is possible that such guarantees might be established for

other classes of processes, and to this end we explicitly isolate the property of the

rate process that drives the bound of Theorem 1.3.9 and then present an example of a

process that is not a moving average process but admits a constant factor guarantee.

Notice that the proof of Theorem 1.3.9 yields

.im E J (xo) E [ fL[ fi(Ait)dt
him in > min,

N E [J j~(Xo)] fi (E [fj1 Ai,tdt]

for some set of functions fi, each satisfying Lemma 1.3.7, and any rate process with

continuous sample paths. We were able to come up with a uniform lower bound to
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this quantity for arbitrary, non-stationary moving average processes.

The analysis of the above quantity is substantially simplified in the case of sta-

tionary processes. In particular, consider processes that are stationary and whose

marginals have finite expectation. If this were the case, we have:

E [1fT fi(Ait)dt T Ad
T i(jt~t > E - min . ' 1I dt

fi (E [1 f Ai,tdt] jo E [ f Ai,tdt]

E [ min{ ' 1 dt
T 0 E [A ,t]'

E [min { 1

where we have used Lemma 1.3.7 for the first inequality, and the stationarity of the

process with Fubini's theorem for the next two equalities. Notice that this bound has

a natural interpretation. It measures, in a sense, the asymmetry of the marginals of

the process under consideration. In general, this quantity can be arbitrarily small

(consider, for instance, a suitable two point distribution). However, as witnessed

by the moving average family of processes, there are potentially large families of

stochastic processes for which this quantity is uniformly bounded for all processes

within the family.

Here we give another example. Imagine that each of the I marginals are described

by a Cox-Ingersoll-Ross (CIR) process. A CIR process is a non-negative, mean-

reverting process and is perhaps the best known example of an affine process. It is

typically used to model the behavior of non-negative quantities such interest rates or

(more recently) arrival rates to a queueing system (see Besbes and Maglaras (2009)).

The process is defined as the solution of the stochastic differential equation:

dAi,t = Oj(Aj - Ai,t)dt +-I o- dZi for Oj, Aj, O-i > 0.

When 290Ai > a? (the regime typically considered in any modeling with this pro-

cess), the CIR process is strictly positive and has a stationary distribution. This

stationary distribution is Gamma (as opposed to Gaussian for moving average pro-
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cesses) with shape parameter a = 20iAi/u? and scale parameter o?/20i. Consequently,

for stationary CIR processes we may compute (see Farias and Van Roy (2010)),

A o F(a + 1, a) F(a, a) 1E[min{1 =1- >1>
E[Ai,o] F(a+1) r(a) - e

for a > 1. This yields the following Theorem

Theorem 1.3.11 For demand processes whose marginals are stationary (but other-

wise arbitrary) Cox-Ingersoll-Ross processes, we have assuming an initial inventory

of x0 :

E [J (xo)
lim inf > " --

N E J (xO)e

Of course, the class of processes here, while allowing for arbitrary volatility, is

nowhere as large or perhaps interesting as the moving average processes we have

focused on, but the result provides a sense of the generalizability of the analysis.

1.3.6 The Impact of Re-Optimization Frequency.

Our performance guarantees thus far call for frequent re-optimization (i.e. large N).

At this juncture we ask two questions:

1. Is a large value of N - and the implicit demand forecast updating - truly

necessary for good performance of our scheme?

2. If large values of N are indeed necessary, what impact does a finite number of

re-optimizations have on the performance guarantee of Theorem 1.3.9?

We will answer the first question in the affirmative by providing a sequence of prob-

lems where infrequent re-optimization results in poor (in fact, arbitrarily poor) per-

formance. As for the second question, we will use a well known result on the modulus

of continuity for the sample paths of Brownian motion, to characterize the error due

to finite re-optimization.
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Throughout this section, we make the dependence of the revenue on the number

of re-optimization intervals explicit through the notation J (in place of simply

J 1 ). To answer the first question and demonstrate the importance of re-solving, we

will describe a sequence of problems, indexed by T, and show that if we choose to not

re-optimize (and thereby not adjust forecasts) under our scheme, such a choice can

grow arbitrarily sub-optimal as T grows large. This will show that re-optimization

plays a dramatic role in the actual performance of our scheme. We next describe this

sequence of problems:

Example Consider an allocation problem with two sources and a single sink. We

have one resource type so that K = 1, and set A,,(i,) = A1,(2,1) = 1, while we set

x0 = T. Our time horizon is T, and we set p(1,1) = 1 and P(2,1) = T1/3 +6 where e > 0

is some constant. The demand process is described as follows: A1 ,t = (I + V-I W)+,

where Wt is standard Brownian motion and A 2 ,t =. Notice that this demand process

satisfies Assumption 1.2.1.

We then have the following result whose proof may be found in the Appendix:

Proposition 1.3.12 For the problem described in Example 1.3.6, we have:

JRl(X0) 
-1/3.

JUB ( 0 )

Now, in contrast, Theorem 1.3.9 implies that

JR,N(xo)
lim inf = 0(1).

N JUB(Xo)

Contrasting these two results demonstrates the importance of frequent re-optimization

in the context of using our allocation scheme.

In light of the above result, we can move on to answering the next logical question,

which asks us to establish the effect of a finite number of re-optimizations, or more

specifically a 'rate' for the limit infimum in Theorem 1.3.9. We will establish such a
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rate for moving average demand rate processes. Doing this will require the following

principal technical tool which is a global modulus of continuity for sample paths of

moving average processes (see, for instance Karatzas and Shreve (1991)):

Theorem 1.3.13 (Levy's modulus of continuity) Let Xt be a moving average process.

Then, almost surely,

lim sup sup At+h - Ati (0)
h-+O O<etT-h V2hlog 1/h

Note that Levy's theorem is typically stated for standard Brownian motion where

the limit above can be shown to exist, and is equal to 1. The above result is, in fact, a

simple corollary to that theorem. Roughly, the theorem can be interpreted as stating

that supo<t<T-h At - At+hI = O( h log 1/h). We will now employ this theorem to

prove a performance guarantee for the re-optimization scheme allowing only a finite

number of re-optimizations.

Theorem 1.3.14 Assume the demand rate process {At} satisfies Ai,t = (AV,t)+ where

At is a multi-variate moving average process. Define o-i O /j(0). Then,

E [J (Xo)] > 0.342E [JU (xo)] - A(N),

where A(N) satisfies

lim sup (N) < C i.
N VlogN/N

The constant C' can be specified independent of the demand process.

The constant C' above is derived explicitly in the proof of the theorem (which

can be found in the Appendix). It depends solely on the quantities p, A, K, T and

I. As such, the above result can loosely be interpreted as stating that a finite

number of re-optimizations introduces an additive error that behaves roughly like

o ailog N/N). This has an interesting interpretation: the additive error com-

ponent grows at most linearly with the volatility of the process. However, with

sufficiently frequent re-optimization (as specified by the rate in the theorem), this ad-
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ditive error can be made arbitrarily small. Put another way, frequent re-optimization

is particularly valuable when the demand rate process in question is highly volatile.

1.4 A Heuristic That Uses Forecasts: 3-Re-optimization.

In this Section, we develop and analyze a heuristic that has access to a deterministic

forecast of demand evolution. In the context of our assumed model of stochastic

demand processes, we will assume knowledge of At. The heuristic we develop is

closely related to the re-optimization heuristic, and will be competitive for processes

where At is not necessarily constant.

Imagine a scenario wherein the demand process had no noise - in particular,

-t = 0. In this event, any optimal solution to LP(0, fo' Atdt, x0 ) constitutes an optimal

(and static) allocation rule. Of course, if a- > 0, this is not the case, and so the policy

we propose will entail a careful convex combination of this 'deterministic' policy with

a re-optimization policy analogous to that studied in the previous Section.

Informally speaking, our heuristic will approximately simulate the following allo-

cation over time:

1. Split the total demand {At} and resource capacity x0 into two systems. System

1 (the 're-optimization' system) sees the demand process {(1 - 0)At} and begins

with inventory (1 -#3)xo. System 2 (the 'deterministic' system) sees the demand

process {3At} and begins with inventory xo.

2. Apply the re-optimization policy (of the last Section) {4} to the re-optimization

system.

3. Apply the deterministic policy (to be defined momentarily) {zD} to the deter-

ministic system.

This Section will establish uniform performance guarantees for the policy de-

scribed (loosely) above; these guarantees will implicitly identify an oblivious choice

of # that is 'good'. In addition, we will provide a sketch of potential improvements
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to the policy and a guideline on how to tune 3 given further information about the

demand process. In broad steps, the analysis will proceed along the lines of the

following roadmap:

1. Establish a performance guarantee for the re-optimization policy with respect

to an upper bound on revenues for the 're-optimization system'. This will utilize

our previous analysis. See Lemma 1.4.4.

2. Establish a performance guarantee for the deterministic policy with respect to

an upper bound on revenues for the 'deterministic system'. See Lemma 1.4.5.

3. Establish a relationship between optimal revenues for the re-optimization and

deterministic systems with optimal revenues for the original problem. See

Lemma 1.4.6.

4. Using the above three steps, compute a performance guarantee for the overall

scheme. This guarantee will be a function of 3, which we may then optimize.

See Theorem 1.4.7.

We next define our policy formally.

1.4.1 The 8-Re-optimization Scheme.

We first construct a few auxiliary processes. In particular, define the 're-optimization'

inventory process . t according to:

&R 1 (t) ~ dtXk~t = kO 1&R -~>0 E Ai(e),t~'k,e e,d~t
fO e

where = o and iN s any optimal solution to LP (iT/N, AiT/Ni T/N)

words, . is the inventory process obtained if one employs the allocation policy

Zt R 
~)

Next, let us denote by zD, an optimal solution to LP(O, ft Xidt, xO). Define the

'deterministic' policy {4f} according to D /\ A 1A zD. Note that {s} is an

optimal allocation policy in the event o- = 0.
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The control we propose, denoted zf } is defined according to

ZR/= (1 - )ite) + 43dt).

4-Re-optimization Heuristic

1. Compute zD
2. At each re-optimization interval i = 0,... ,N - I

a. Measure demand rate AiT/N
b. Obtain allocation T arg max LP(iT/N, AiT/N, xiT/N

c. Over the interval [iT/N, (i - 1)T/N), allocate the demand according to

(1 -43) /N + 4 N

1.4.2 Preliminary Sample Path Properties.

Here we identify several sample path properties for the 4-re-optimized policy. Define

the 're-optimized' revenue under the 4-re-optimized policy according to:

JS,{At} PeZed(t)A(e),tIc, dt
e

where e,,t {Rtt > 0 Vk s.t. Ak,e > 0}. Similarly define the 'deterministic' revenue

under the 4-re-optimized policy according to:

R, T P D Ai(e),tdt-
e

Given the definitions of , and ~/'Theorem 1.3.6 immediately implies:

lim inf Js{A}(Xo) > lim inf T
N 'N NEj=0

LP (jT/N, AjT/N, .o0(N - j)/N)

T -jT/N
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Moreover, we have:

rT TN-1 Ain T D

teJ Ai(e),t Zdt > Pe i(e),jT/N ejT/N
e j=O e

T N-1

N -- peAi(e),jT/N ZejT/N
j=0 e

X e (Ai(e),jT/N - A"T/N

so that
TN-1

liminf JD,{A,}(XO) IiM in - I PeAi(e),jT/N ejT/N (1.7)
j=O e

Finally, we have the following result that decomposes the revenues under the

/3-re-optimized policy into the above 're-optimized' and 'deterministic' revenue com-

ponents; the proof may be found in the Appendix.

Lemma 1.4.1

liminf E [J--(x) lim inf(1 - /3)E [JS{A,}(xO)] + lim inf #E [JD,{A,}(x0)

Remark 1.4.2 We note that although we will not need this fact, the inequality es-

tablished in the result above also holds on a sample path basis; In particular, we can

show:

limin xo) > lim inf(1 - /3)J.{A,}(XO) + lim inf D3J,{At}(Xo)-
N AIN N

1.4.3 Performance Analysis.

This Section establishes uniform performance guarantees on the performance of the

/-re-optimization scheme. Using the decomposition arrived at it the previous Sec-

tion, this guarantee is arrived at by deriving appropriate uniform guarantees on the

re-optimized and deterministic revenue terms. The former guarantee is essentially

obtained via Theorem 1.3.9 while the latter requires a new argument. Our arguments
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will require one extra technical assumption on the demand process {At }:

Assumption 1.4.3 For all i, E [maxtE[o,T Ai,tI < o.

We begin with an analysis of the 're-optimized' revenue component, J . The

proof is essentially a corollary to Theorem 1.3.9 and deferred to the Appendix.

Lemma 1.4.4
E [T

lim inf E J>A (X) > 0.342
N E [JNA (Xo)

{(At -At)+j1

Our next result provides an analysis of the 'deterministic' component of revenues

under the /3-re-optimization scheme, JR

Lemma 1.4.5
E JR zo

himmif 7B>
N f At&xro) 2

Proof Now, we have:

lim inf E [JD,{A,}(Xo)] > E liminf {A}o
N N 1

N N 0  e I

l ETN-1 I
= N 

EE peAi(e),jT/N4ejT/N j=O eI

TN-1
> limjnf E : : P{Ai(e),JT/N i(e)jT/N i(e),jT/Ne

. j=O e )TN

l N-1D

N iNpe Ai(e),jT/NZe
j=0 e

1
= Jg}(xo).

The first inequality is Fatou's Lemma while the second follows from (1.7). The second

equality follows from the Dominated convergence theorem: in particular, observe that

N-1

Nm N E peAi(e),jT/N ejT/N
j=O e
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exists by the definition of 2D and the continuity of Ai,t and At. Further,

N-1

j=O e

PeAi(e),jT/Ne jT/N _ E ma[ Ai,
tE2 T

which was assumed finite by Assumption 1.4.3.

Before moving on to our approximation guarantee, we establish one last fact (the

proof is in the Appendix):

Lemma 1.4.6

J UB (xo) + E J B (xo) E [JT B(xo)]

We are now in a position to provide a uniform performance guarantee for the

/-re-optimized scheme. In particular, we have:

Theorem 1.4.7

lim inf (1 - /)0.342 A /0.5
N E [JUB (Xo)[ {At k

Proof We have

E J -I (XO)
lim inf

N E [J (xo)]

liM infN(1 - O)E [JS{At} Io - lim infN /E [JD,fA(Xo)

E [J-A+ (xo)] + JU (XO)

(1 - 0)0.342E JN! ) (Xo)] + 0.5J4 1 (xo)

E J0 (O) + Jp(.o)

=(I - 3)0.342 /\ 00.5.

The first inequality follows from Lemmas 1.4.6 and 1.4.1. The second inequality

follows from Lemmas 1.4.5 and 1.4.4.

Before closing this Section, we remark on the implications of the above result and

several issues related to implementing the /-re-optimized scheme in practice:
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1. Choosing /: Optimizing the bound in Theorem 1.4.7 suggests setting 3 ~ 0.4.

This is an oblivious choice of / that results in a uniform performance guarantee.

2. With further knowledge about the demand process one might be able to do bet-

ter. For instance, an estimate of the relative values of J" (xo) and E J4 ) (xo)
(which can both be computed easily if the model for At were known) suggests

a better selection rule: set / 1 if JB (X0 ) > 0.684E J _ (Xo) and set

3 = 0 otherwise. A practical guideline is to set I = 1 when we believe there

is little to no volatility in the demand process, and set / = 0 otherwise. Our

numerical experiments (described in the following section) seem to suggest that,

for natural problem instances, volatility quickly drowns out the value of fore-

casts, and hence / = 1 tends to perform best in most instances where demand

uncertainty is present.

3. A practical improvement to the algorithm that does not alter the guarantees

moves inventory made available due to 'under-utilization' by the deterministic

system to the stochastic system. This compensates for the lack of inventory

'sharing' between the re-optimized and deterministic systems. In particular,

while leaving all of the details of the algorithm unchanged, we define the dy-

namic for .0 according to

, - >0 ft A.Ae),A 'Rdt f N(Aie),tzD _ Ai(e)t~ed

1.5 Experiments.

We focus our experiments on instances of the Ad Display problem. We present results

for two sets of experiments. The first set consists of synthetic instances; the purpose of

this set of experiments is to gauge performance across a variety of parameter regimes.

The second set of experiments is derived from an actual allocation problem and (real)

traffic from an ad network.
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1.5.1 A Generative Family of Instances.

We characterize problem instances along two dimensions, namely:

1. Load Factor: We define load factor as the quantity

LF A [Ei fT -itt

ZF k Xk,O

This is a natural measure of the scarcity (or abundance) of a resource relative

to demand.

2. Coefficient of Variation: We measure the relative volatility in demand via

the quantity

C Var[Ei fefXi,tdt]

E[Ej foT Ai,tdt]

We consider the following generative family of instances:

1. Topology: We set I = 30 and A = 30. An edge connecting a given source

i to a given sink a exists independently with probability 0.1. In essence, this

prevents a scenario where a given unit of traffic can be used by essentially all

sinks.

2. Resources, Prices and Horizon: We set Xk,o = 100. The price associated

with a given edge is generated according to an independent uniform distribution

on [0, 100]. We set T = 1.

3. Demand: We use an Ornstein-Uhlenbeck process to generate At. In particular,

we set

At = At + afo e(S-t)dZ,

where Z, is standard I dimensional Brownian motion.

We generate At as follows. First, we draw a vector A uniformly from [0, 100]'.

Depending on whether the experiment tests the no-forecast algorithm or not, we

then either set Aj,t = MAj (for the no forecast case) or we set Ai,t = MA (1 + 2t)
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with probability 1/2 and At = MA (I - t/2) with the remaining probability (in

the case where we test the algorithm incorporating forecasts). In both cases,

M is selected so that the load factor LF takes the appropriate value for the

instance we wish to generate.

We set o- so that CV takes the appropriate value; we use bisection to find the

appropriate value of - here.

Finally, we generate the stochastic process via the natural discretization of the

continuous time process defined above; in particular, we use the recursion

AnA = AnA + (1 - A)(A_ 1 A - An_ 1A) + O-En

where A = 1/100 and En is a zero mean normal with variance A.

1.5.2 Results for Instances from Generative Family.

We first consider problems generated from the family described above with A set to

a constant. We consider 30 ensembles of instances. Each ensemble differs in the

parameters (LF, CV) and itself contains 30 individual problem instances. We employ

the re-optimization scheme designed for scenarios where no forecast is available, taking

the re-optimization frequency, N, to be 100. We use as our upper bound the quantity

E [JB (xo)] .

The results of these experiments are summarized in Table 1.1. The 95% confidence

intervals for reported figures are within +/ - 5%. Here we make several observations:

First, performance relevant to the clairvoyant upper bound is consistently good; it

is at least within 80% of this upper bound, and, frequently, well within 90%. We

observe some performance degradation in regimes of extremely high volatility. Also,

problems with low load factors (i.e. where demand is scarce) appear to be more

challenging for the scheme. This is somewhat intuitive if seen from the perspective

that in such a regime, one will not be able to consume each component of xo with its

'optimal' impression.

Next, we consider a similar ensemble of problems, but with At allowed to be
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time varying (in the manner described in the previous section). We employ the re-

optimization scheme that utilizes forecasts. This scheme requires a tuning parameter

13. We consider two sets of experiments; the first uses the 'robust' choice of 1 (0 =

0.406) identified via Theorem 1.4.7; the results for this scheme are described in Table

1.2. We then allow the algorithm designer to choose # from the set {0, 0.2, ... , 1.0},

and report performance for the best of these values in Table 1.3. Again, we set

N = 100 and use E f (xo)1 for upper bound comparisons in all experiments.

In addition, we note that we employ the 'inventory sharing' improvement described

following Theorem 1.4.7.

The results for these experiments are described in Tables 1.2 and 1.3 respectively.

While it is not displayed here, the optimal 1 in essentially all cases for Table 1.3

where demand was volatile was 1 = 0; i.e. the simple re-optimization scheme that

ignores forecasts altogether. We see qualitatively similar results to the case where

A is a constant. Moreover, when one allows the user to optimize 1, performance is

essentially as good as the constant A case.

Lastly, we test the no-drift algorithm by varying N in the set {1, 2, 5,10,50, 100},

while keeping the load factor constant at 1. As expected, the impact of discretization

increases with volatility. However, performance is often satisfactory even for N = 1, 2

or 5. Increasing N from 1 to 5 does not seem to have a reliable effect, however

increasing N from these lower ranges to 100 monotonically and markedly improves

performance. The results of the experiments are summarized in Table 1.4.

Table 1.1: No-drift algorithm performance vs upper bound. The load factor is along
the vertical axis and the CV is along the horizontal axis.

Load Factor/CV 0 0.5 1 2.5 5 10

0.1 100.00% 99.97% 99.00% 92.04% 79.06% 81.00%
0.5 100.00% 98.75% 97.03% 90.32% 82.31% 82.63%

1 100.00% 99.15% 96.86% 91.08% 86.51% 84.54%
2 100.00% 99.91% 99.54% 97.34% 91.98% 87.88%
5 100.00% 99.92% 99.68% 98.85% 97.23% 94.26%
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Table 1.2: Drift algorithm performance vs
factor is along the vertical axis and the CV

upper bound for 3 = 0.406. The load
is along the horizontal axis.

Load Factor/CV 0 0.5 1 2.5 5 10

0.1 100.00% 74.45% 67.80% 62.79% 62.54% 74.35%
0.5 99.91% 91.66% 84.59% 73.45% 69.35% 74.80%

1 99.74% 95.46% 91.03% 81.54% 76.95% 78.08%
2 99.86% 97.63% 95.44% 91.13% 86.34% 84.37%
5 99.95% 99.06% 98.46% 97.23% 95.15% 92.43%

Table 1.3: Drift algorithm performance vs upper bound for optimized /. The load
factor is along the vertical axis and the CV is along the horizontal axis.

Load Factor/CV 0 0.5 1 2.5 5 10

0.1 100.00% 99.95% 98.90% 92.18% 79.17% 80.98%
0.5 100.00% 99.31% 97.87% 90.80% 82.34% 82.55%

1 100.00% 98.95% 97.23% 90.70% 85.81% 84.28%
2 100.00% 99.17% 97.84% 94.60% 90.10% 87.21%
5 100.00% 99.80% 99.56% 98.71% 96.57% 93.22%

Table 1.4: No-drift algorithm performance vs upper bound for various re-solving
frequencies. The number of re-optimization intervals is
the CV is along the horizontal axis.

along the vertical axis and

N/CV 0 0.5 1 2.5 5 10

1 100.00% 99.99% 98.59% 94.49% 83.95% 74.46%
2 100.00% 99.94% 98.09% 94.09% 83.37% 74.79%
5 100.00% 99.96% 98.03% 93.71% 83.54% 75.96%

10 100.00% 99.99% 98.39% 94.74% 85.31% 78.91%
50 100.00% 99.99% 98.85% 96.13% 89.5% 85.15%

100 100.00% 99.99% 99.15% 96.86% 91.08% 86.51%
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1.5.3 A Real Instance From An Ad Platform.

We also consider experiments on a real instance of the Ad Display problem described

here. In particular, we have data from a mobile ad platform for a single day of traffic.

On this day, the platform served 240 distinct advertisers using impressions from a

highly heterogeneous pool. Each campaign can only be served by a subset of this

traffic based on a set of parameters. Payments are uniform across compatible traffic

for a given advertiser; i.e. P(ia) E {0, Pa}. We aggregated impressions based on their

originating website/ mobile application resulting in a total of about 40 traffic sources.

The number of arrivals during the 24 hour interval varies from 4 million for the largest

inventory type, to 10 thousand for the smallest. The coefficient of variation varies

from 0.4 to 1.5 and there are noticeable intra-day, cyclical trends in arrival rates (for

example, arrivals have larger intensity in the morning and evening, versus late night).

The average in-degree of the implied bipartite graph from inventory to campaigns is

4.5, the average out-degree is 18 and the load factor of user requests to campaign

capacities is 1.5.

We chose to use the re-optimization scheme without forecast inputs and set the

re-optimization frequency to N = 24 (i.e. once every hour). Solutions to the LP were

interpreted probabilistically, and we used as our benchmark the clairvoyant bound

(which in this case corresponds to assigning the day's traffic after it has been real-

ized). Our scheme earns revenues that are within 99.3% of this benchmark which is

encouraging. Moreover, performance within 99% of the benchmark was maintained

under two stress tests, namely scaling down the load factor to 0.75, and introduc-

ing heterogeneous prices (where we multiplied prices by a standard uniform random

variable).

1.6 Conclusion.

Our main contribution has been to develop a simple, easy to interpret algorithm that

can efficiently solve a large class of dynamic allocation problems. Our method is ro-

bust (as witnessed by worst case guarantees) and in the event that demand volatility
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(or, equivalently, deviations of demand from its forecast) is not large, the scheme

is simultaneously optimal. Practical experiments have shown that the approach is

promising both in terms of performance and practicality. At a somewhat more ab-

stract level, we believe this work contributes to the (theoretically) poorly understood

area of model predictive control, and as such, we believe the simple analytical tools

developed here (the balancing property) may provide value in other contexts.

Our scheme also motivates some of the research questions that constitute the rest

of this thesis. In particular:

1. Chapter 2 deals with a non-standard NRM model where instead of an exoge-

nous reward p, on each edge of the graph, the mechanism governing the reward

makes pe depend dynamically on the prevailing landscape of resource consump-

tion. Such a mechanism in encountered in the sponsored search varieties of

online advertising, where the amounts the advertisers are charged are deter-

mined through a Generalized Second Price mechanism.

2. Our scheme relies on the ability to measure the instantaneous demand At at the

start of each reoptimization interval. This may in itself be a difficult estimation

task. In a highly volatile regime where the reoptimization interval becomes

small, the number of samples available to estimate the I different instantaneous

rates is substantially smaller than I. Chapter 3 deals with how to accomplish

this learning task efficiently.

3. The scheme also relies on the ability to quickly resolve a linear program. Such

LP based techniques have not been adopted to this point in online advertising

due to the prohibitively large size of the LPs that must be solved in practice.

Chapter 4 tackles this computational challenge.

There are many directions that merit further attention beyond the scope of this

thesis:

1. Dynamic Prices: The NRM models that we consider in this chapter and the next

capture contract based variants of online advertising where advertisers commit
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to their bids for the entirety of the contract lifetime. The recent emergence of

ad exchanges calls for NRM models that incorporate the strategic behavior of

advertisers, which may be dynamically changing their bids over the lifetime of

the contract.

2. Fairness: In practice, ad networks are also concerned in meeting certain quality

and fairness metrics for their advertisers, since advertisers who do not receive

an appropriate level of service are unlikely to purchase contracts in the future.

It would be interesting to explore extensions of our scheme where fairness con-

straints would be incorporated into the model.

3. Inventory Balancing: In addition to being a potentially valuable theoretical

tool in other contexts, the inventory balancing property of our re-optimization

scheme permits some interesting (un-intended) applications. From a practical

perspective, in the case of the Ad Display problem, it automatically results

in allocations that satisfy what are commonly called 'pacing' constraints where

resources (eg. budgets) may be consumed at most at some pre-specified uniform

rate over time. From a theoretical perspective, a future direction of research is

to see whether simpler heuristics (compared to resolving LPs) that preserve the

inventory balancing property could yield comparable performance.
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Chapter 2

Optimal Allocation for Generalized

Second Price AdWords

2.1 The Generalized Second Price AdWords Prob-

lem.

The focus of Chapter 1 was a "first price" model of network revenue management. For

online advertising, this corresponds to a contract based system where the advertiser

declares a bid for an impression and upon the allocation of this impression, the adver-

tiser is charged their own bid. This is typically the pricing scheme that characterizes

display advertising systems, but not the only pricing mechanism encountered in the

online advertising industry. In contrast to display ads, most sponsored search systems

use an alternative mechanism referred to as a Generalized Second Price (GSP) scheme

where the amount an advertiser is charged is a function of the bids of other compet-

ing advertisers, as well as their remaining budgets. The rationale behind this pricing

scheme, which was first introduced with Google AdWords sponsored search system, is

that it generalizes the idea of a Vickrey auction (Krishna (2002)) and hence hopefully

preserves its incentive computability properties, thus incentivizing advertisers to de-

clare their true valuations for an impressions to the ad network. Unfortunately, it has

since been shown in Varian (2007); Edelman et al. (2005) that GSP is non-truthful.
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From a revenue management perspective, it is perhaps most natural to regard

GSP as an endogenous price NRM problem. Algorithmically, handling this endogene-

ity is significantly more challenging when compared to the exogeneous, "first price

"variant described in Chapter 1. Hence not surprisingly, both the computer science

and RM communities have previously focused on the first price approximation to this

allocation problem which ignores the GSP pricing mechanism. This approximation,

which also fits the NRM model we considered in the previous chapter, is referred to

in the literature as AdWords. Accordingly, we will henceforth refer to the realistic,

endogenous version as Generalized Second Price Adwords and note that, a priori, it

does not fit the model from Chapter 1. This chapter will exploit the balancing prop-

erties of our model predictive control scheme described in Lemma 1.3.4 to yield an

algorithm that extends our old revenue guarantees to GSP AdWords.

2.1.1 Literature Review.

Much of our literature review from the previous chapter is relevant for the simplified

AdWords version mentioned above. Of particular note is the adversarial arrival primal

dual schema due to Mehta et al. (2005) and Buchbinder and Naor (2009), as well as

the bid price learning schema of Devanur and Hayes (2009), which assumes a random

order model of keyword arrivals. There been fewer results that deal with the realistic

GSP AdWords version. Abrams et al. (2007) formulate the offline version of problem

as a linear program, and propose column generation methods to solve this program,

but do not provide an algorithm for the online version with uncertain impression

arrivals. The only result for this online version that we are aware of is due to Goel

et al. (2010), who propose a greedy heuristic with a 1/3 worst case competitive ratio,

but no asymptotic guarantees versus the forecasts.

While GSP AdWords have not been extensively studied from the above online

algorithms and dynamic allocation perspective, there is a second, so far separate and

much more intensely studied, stream of literature focusing on the game theoretic

properties of the GSP mechanism. While we study a model where we need to allo-

cate a highly heterogenous pool of impressions to another highly heterogenous pool
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of advertisers, but abstract away any game theoretic complexities regarding adver-

tising bidding behavior, this stream of literature abstracts the allocation problem by

focusing on simplified models where a single impression type is auctioned off, but

tries to gain game-theoretic insight into the advertiser bidding behavior. In partic-

ular, Varian (2007) and Edelman et al. (2005) point out the non-truthfulness of the

GSP mechanism even in a single shot setting, characterize an envy-free family of its

bidding equilibria, and show this family contains an equilibrium with revenues equiv-

alent to the VCG outcome. The more recent works of Iyer et al. (2012) and Balseiro

et al. (2012) obtain mean field equilibria characterizations of the bidding landscape

in repeated auctions with budgeted advertisers - this still abstracts away the het-

erogeneity in impression types and is thus disparate form the setting that we are

concerned with.

2.1.2 Model.

The Generalized Second Price AdWords problem differs from the Ad-Display problem

described in Section 1.2.2 in several key features:

1. Multiple slots per impression: for every impression there are k > 1 "slots" to be

assigned to advertisers. Each slot has a non-increasing quality factor 01, with

01 = 1. Advertiser a declares a bid bi,a for the top slot for impression i, and its

bids for the lower slots are scaled down by the quality factor. (This captures

the empirical observation that the ad shown in the top-most slot is more likely

to be clicked on than the same ad placed in a lower slot.)

2. Advertiser budgets: for AdWords problems, budgets are specified in dollar terms

rather than impression counts. We denote the starting budget vector of adver-

tisers by BO.

3. Generalized Second Price allocation mechanism: this describes how much ad-

vertiser budget the ad network charges from assigning an advertiser's ad in slot

1 for impression i. The mechanism is the following - upon the arrival of an
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impression of type i, the ad network selects a subset of size at most k + 1 ad-

vertisers. We call this subset a "slate". The selected advertisers are assigned

slots beginning from the top-most downwards to the k-th. The advertiser with

the l-th largest bid is assigned slot 1, but they are charged the (1 + 1-th highest

bid (hence the Second Price name); the (k + 1)-th advertiser does not receive

a slot and is selected simply to determine the amount paid by the advertiser in

the k-th slot.

There are two variants of the GSP mechanism that have been proposed:

The non-strict model: at time t, the ad network is allowed to pick and allocate

impressions to a slate composed of advertisers whose remaining budgets Bt = 0. This

is a model in which advertisers who are effectively inactive due to having exhausted

their budgets can still be used by the ad network to set prices for active advertisers -

for this reason, this is generally not an accepted GSP model. However, it is attractive

in that it corresponds to an exogenous price NRM problem, as prices are set at time 0

and do not depend on the evolution of the budgets in the system. Consequently, the

non-strict version fits the model described in Section 3.2 and therefore the theorems

regarding the performance of the model predictive control policy transfer directly.

For non-strict GSP, the mapping to our resource allocation graph from Section 3.2

is as follows: while the source nodes still correspond to impressions, the sink nodes

now correspond to slates; the number of slates is + where A is the number of

advertisers. We remind the reader that we use the notation j(e) to denote the slate

that edge e is incident to. Additionally, we define the notation a(j, 1) to denote the

advertiser that has the l-th highest bid in slate j. For edge e, we set

k

Pe bli(e),a(j,I+1)
1=1

and

ca,e = Olbi(e),a if a = a(j(e), 1) and 0 otherwise.
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The strict model: this is a model where slates may dynamically become disallowed,

since the ad network may only permit advertisers with positive remaining budgets

can participate in the auction. This is the model that has garnered adoption in the

industry, due to it being perceived as fairer than the non-strict version. It is a model

with endogenous prices, since the prices associated with a particular slate depend on

whether all advertisers within the slate have remaining budget. In particular, consider

an edge e from an impression type i to a slate j and define the event e,,t = {Ba,t >

0, Va E j(e)}. At time t E [0, T], the rewards are:

k

PeGSP (t Oi,a(j(e),1+1) 1(1e,t) (2-1
1=1

where j {ai, . . . , ak+1 } and we assume without loss of generality that the advertisers

are indexed in order of decreasing bids. Similarly, the budget consumption rates are:

GSP Olbi(e),a(j(e),l+1) 1(e,t) if a = a(j(e), 1), 0 < 1 < k (2.2)Ca,e (M =(2)
0 otherwise.

Note that the dependence on Bt is non-linear, which in fact may suggest our previous

model predictive control scheme cannot generalize to this setting.

We mention that the practice of choosing a slate of advertisers out of the possibly

much larger set of advertisers who have positive bids for an impression is known in

the industry as "throttling". Sponsored search systems use throttling as a means to

give the network freedom to optimize the allocation process. If no throttling was done

and all interested advertisers were allowed to participate auction, the trajectory of

the allocations would be completely set by the GSP rule and the ad network would

have no way of controlling the allocation process.
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2.2 An Extension of Model Predictive Control to

Generalized Second Price AdWords.

In this section, we extend the re-optimization scheme from Chapter 1 to online Gener-

alized Second Price AdWords in the strict model. As stated before, the main barrier

to directly applying the result lies in the endogeneity of prices in the strict GSP

setting. However, note that endogeneity is not an issue in the offline version of the

problem for either the strict or non-strict models. Indeed, if impression frequencies

are known ahead of time, an LP formulation achieves uniform advertiser budget con-

sumption over time, ensuring that Ie,,t = 1 for all t and hence every slate remains valid

until the end of the time horizon. However, for the online version of the allocation

problem, this task is much harder - as the the frequencies of impression arrivals vary

over time, it is not clear the system can be controlled in a way that ensures smooth

budget consumption. This suggests that (i) the rate at which budget is consumed

can be crucial in analyzing the performance of a policy in this system, and (ii) that

the model predictive control policy from the previous chapter, which admits precise

characterizations of this rate, might be a tractable policy to analyze in this case.

Indeed, our algorithm does exploit the balanced budget consumption property

of the model predictive control scheme in the following way. First, we look at the

system in the non-strict model where the dependence of the GSP prices on Bt has been

relaxed; we apply the model predictive control scheme to this hypothetical system

to yield a control which we use in the real system. Secondly, we make use of the

Balancing Lemma to show that following the prescriptions given by our relaxation

does not lead to any revenue loss when we apply the strict GSP constraints ex post.

For the sake of completeness, we define a model for strict GSP that is analogous to

the one from Section 3.2 except in the fact that the rewards and resource consumptions

are allowed to vary dynamically with time as defined in (2.1) and (2.2).

Control and Dynamics. As before, our continuous control x is reevaluated at N

discrete time intervals {0, T/N, 2T/N, . . , T}. The control that is calculated at time

iT/N remains in effect over [iT/N, (i + 1)T/N] and is specified by a vector x E X,
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where X = {x E R' : Ee:i(e)-i Xe < 1 VZI}.

The state of the system at time t is given by the level Bt of advertiser budgets

that remain at t. The evolution of Bt is specified by the differential equation:

dB~ NC ,sP (t) Xeld(t)dt~Ba,t =- c a~~z~e t

for all a. Here d(t) = max{i:iN/T<t} iN/T.

Optimum value. The optimization problem is to find an admissible control policy

{xt} that maximizes the overall revenues:

max E [I p (t) Ai(e),txe,d(t)dt (2.3)
f{t} e I

We denote the optimal value to this optimal control problem by J*'N (Bo).

For our proof, we will consider a hypothetical, non-strict correspondent of this

system, where pnOn-strict-GSP (t) = pGSP(0) and cno-strict-GSP(t) - CGSP(0) for all t. Let

us define a policy which simply applies the model predictive control resolve technique

from Section 1.3 in this hypothetical system:

max 5 PGSP(0)XA . (T - t)
e

subject to c G' (0) XeAi(e) -(T - t) ; B - V a, (2.4)

X E X.

We define the revenues garnered by this heuristic in the non-strict GSP system

nRo,N stitGSrT non-strict-GSP (Ai,t t
non-src-S (Bo)ons=rJ0tGEP ie, R,

e

= jT ZpGSP(o)Ai,tX idt.
0 e

Moreover, the linear program above also gives an offline upper bound on J*',N(Bo)
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equal to

JGs(BO) = LP 0, Atdt, Bo).

This is due to the fact that the above quantity is an upper bound on Jn-strict-GSP

by Proposition 1.3.1 and, also, on J*SN since the prices pGsp are by definition non-

increasing in t.

The following proposition applies Theorem 1.3.10 to the non-strict system:

Theorem 2.2.1 Consider demand processes { At} satisfying Assumption 1.2.1, with

At = A for all t. In addition assume that ut/A < v'2Nv. We then have, assuming an

initial inventory of xO:

lim inf E [JUn-strict-GSP(Bo)] > max 0.342, 1 - B (exp(-1/47rV2) + 0.853)5.
N E [ JU B( Bo )] -~1 + V 1 + V

Let us now return to the strict GSP AdWords model; in the following, we make use

of Lemma 1.3.4 to show that the control computed assuming a non-strict model will

never exhaust advertiser budgets mid-way through the time horizon of the problem.

Hence, across all sample paths of impression arrivals, all slates will remain active,

implying equivalence between the strict and non-strict versions of the problem.

Lastly, define

TJ-I~s(Bo) = pO E P (t)Ai,tzet(,,~t

the revenues garnered in the real system using the sequence of re-optimized controls

xR for the non-strict GSP problem. In the following we will show that

lim inf JlN(BO) _ lim inf jRN
N J N non-strict-GSP(Bo).

Intuitively, this is due to the fact that the Balancing Lemma guarantees that

lim inf p GSPt non-strict-GSP e, t
N

limN in P ( non-strict-G5P(),aet
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We are now ready to state and prove the validity of our algorithm in the strict

model.

Theorem 2.2.2 Consider demand processes {At} satisfying Assumption 1.2.1, with

At = A for all t. In addition assume that a-t/A < V27Tv. We then have, assuming an

initial inventory of xO:

E JG, N( Bo)
lim F > max 0.342, - (exp(-1/47V2) + 0.853)

N E [ J~GS(B)] -- 1+ + j

Proof We have

E [JG(B)]
lim inf

N E [JGUsBp (xo)
> lim inf JRonstrict-GSP(Bo) J e,t > 0, Vt, e P [Iet > 0, Vt]

N E [Jnin-strict-GSP (X0)I

lim inf (Ea Ba,O) (1 - P [Ie,t > 0, Vt, e])
N E [Jon-strict-GSP(X0)

E [Jo'l strict-GSP(Bo) I Ie,t > 0, Vt, e
> lim inf EUB liminf P'[It > 0, Vte

[Jnon-strict-GSP(X 0

E [Jno'-strict-GSP(Bo)
=lim inf

N E [JGUSBp (x0 )]

> max 0. 3 42 , B (exp(-1/47rB2) +0.853)
(1 +B I+B

where the first inequality follows by taking conditional expectations and noticing

that the total revenues are upper bound by the sum of advertiser budgets, the second

inequality follows from the fact that lim inf anba ;> lim inf a, lim inf b, and the fact

that the Balancing Lemma implies that lim infN IP [Ie,t > 0, Vt, e] = 1, and the last

inequality follows from Proposition 2.2.1.

We end this section by noting several features of our result. Firstly, for simplicity

here, we have only given a proof of validity for processes with At = A for all t. As

we have done in the previous chapter, using 3 reoptimization would allow us to relax

this assumption at the expense of a worse constant factor. Secondly, the algorithm

and its analysis is applicable to any pricing mechanism (beyond GSP) where the price
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endogeneity originates from the restriction that only advertisers with un-exhausted

budgets are permitted to set prices, i.e. mechanisms where Ie,t is a sufficient statistic

for pe(t) and c,e(t).

2.3 Conclusion.

In this chapter of the thesis, we have extended our model predictive control scheme

to the Generalized Second Price AdWords setting. Compared to first price versions

of the AdWords problem, our model captures the realistic GSP price mechanism used

by most sponsored search systems. Quite interestingly, the balancing property of our

scheme lies at the heart of our reduction to the first price case.

In terms of future directions, an inconvenience of our scheme lies in the exponential

dependence in the number of slots. It would be quite interesting to see whether some

dimension reduction in the number of slates that need to be considered. One possible

direction could to be to use a bid-price control approximation that could be calculated

from a linear program of reduced dimension.
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Chapter 3

Demand Learning for Display

Advertising

3.1 Introduction

The explosion in recent years in web and mobile online advertising volume has brought

to the fore a host of dynamic allocation problems in the same genre as the network

revenue management (NRM). A modern version of an NRM problem which we will

refer to as the Ad Display problem occurs in online display advertising markets.

Informally, the Ad Display problem is formulated as follows: an ad network re-

ceives an online sequence of user arrivals called impressions, each associated with a

vector of features in some d-dimensional space X. Each vector x C X identifies an

impression type. Upon the arrival of an impression, the network must decide whether

to allocate it to one of m competing advertisers. Typically, the network and the

advertisers strike contracts for ad campaigns where the advertiser commits to paying

some fixed amount ra ("bid") for any impression belonging to a set of compatible

types X C X for up to a total amount of impression deliveries (the "budget"). The

ad network's goal is to maximize its overall revenues from allocating impressions to

advertisers over the finite time horizon of the various campaigns, subject to advertiser

budget constraints.

We emphasize the fact that we describe a problem with the special structure
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that advertisers pay a fixed bid for any compatible impression type; this problem is

also referred in the literature as vertex-weighted matching (Aggarwal et al. (2011))

and differs from the more general network revenue management structures considered

in the previous chapters where advertisers could potentially place different bids for

the various types in Xa. This special structure mirrors the contracts that occur

in display advertising, where the contracts written between advertisers and the ad

network do indeed specify a single fixed bid for an entire set of acceptable types. In

practice, advertisers who may want to express heterogenous impressions valuations

may contract the network to concurrently run several campaigns, such as a campaign

that targets "low quality", cheap impression types and another campaign that targets

"high quality" types for which the bid may be significantly higher.

The revenue management literature has extensively studied network problems of

this flavor where arriving "customer types" (impression types in our setting) must be

matched to "products" (ads) which consume a set of limited "resources" (advertiser

budgets) in a way that maximizes the seller's overall revenues. The universal pre-

scription is the following: with a priori knowledge of the distribution of customer

demand, one can solve a linear optimization problem known as the Deterministic

Linear Program (DLP) and obtain a control known as a bid price policy Gallego

and van Ryzin (1997); Talluri and Ryzin (1998), which assigns a customer to the

product with maximum revenue discounted by the total economic opportunity cost

of the resources required to "build" the product. This bid price policy is known to be

optimal under mild assumptions on the instance structure; more recently it has been

discovered that, even in the case of changing demand, the bid price policy is optimal

as long as the DLP is resolved at roughly the same timescale as the scale of demand

changes Ciocan and Farias (2012).

In typical applications, the assumption that customer demand is known a priori is

fairly innocuous since the relatively small number of customer types makes it simple to

learn the demand distribution quickly - in a "high volume" regime where the number

of samples is on the same scale as the number of types, an empirical demand estimator

performs extremely well essentially via a Strong Law of Large Numbers argument. In

74



contrast, the present paper is concerned with settings where the demand distribution

is extremely heterogenous and high-dimensional. This is the case with Ad Display

where an impression type is described by a detailed information vector including user

location, demographics, past browsing behavior and various other user attributes. To

give the reader a sense of the dimension of the problem in practice, we note that

modern platforms such as Facebook or Google AdSense currently use d = 30 to 70

such attributes; the resulting demand type space X has dimension n = exp(d) = 270.

The reason this regime is fundamentally different from the first is the following:

in order to be practical at realistic scales, an ad serving algorithm needs to calibrate

the demand distribution at time scales on the order of 10 minutes. Over a 10 minute

interval, there is not enough volume of observed impression arrivals is not enough to

even cover X, which would be necessary to learn via a direct application of the Strong

Law of Large Numbers. At first glance, it seems impossible to learn a multinomial

distribution with support n using significantly fewer samples than n and it is not a

priori clear that a better scaling is achievable. Additionally, this difficulty is sup-

ported by what we observe in practice: most advertising systems that are deployed in

production in fact eschew the usage of demand forecasts in the interest of tractability

and use policies that are agnostic to the demand model even at the expense of leaving

revenues on the table. See for example, the primal dual algorithms of Mehta et al.

(2005); Buchbinder and Naor (2009); Feldman et al. (2009); it is interesting that these

policies also take the form of a (different) bid price policy from the one yielded by

the DLP.

In light of the above, the question we ask is the following: is there an algorithm

that learns a nearly optimal bid price policy with a more graceful sample complexity

dependence in terms of X than the 0(n) that is suggested by the Strong Law of Large

Numbers? Our results are the following:

1. We show that Ad Display is a special class of network revenue management

problems for which the sample complexity indeed scales gracefully. In particular,

we show that one can learn a bid price policy which, with high probability,
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captures 1 - c of OPT with

m log(nm)

impression arrival samples, where p is an instance-specific quantity that relates

the optimal rate of revenue per impression to the maximum advertiser bid.

While we cannot arrive at a uniform bound on p across all problem instances,

we show that reasonably mild regularity conditions imposed on the family of

instances yields a p that scales like the ratio between the maximum advertiser

bid and the advertiser bid. Hence, under these conditions, our bound scales

linearly of the impression type space dimension d = log n, rather than the

expected linear in n dependence.

2. Moreover, the result nearly matches the lower bound for our algorithm, as we

show that our analysis is tight up to a factor of log(nm).

As will become clear in the following section, we achieve these results by building

a simple empirical estimator f of the true demand (i.e. impression) distribution p

which has extremely sparse support versus p (log(n) versus n); one could hence view

the algorithm as implicitly recovering a latent low dimensional representation of the

real distribution.

3.1.1 Literature Review

Clearly, with such a stringent condition on the sample complexity, it is hopeless to

arrive at a uniformly sharp resolution over all of X. Instead, our learning goal is

to arrive at an estimate over X that yields an approximately optimal control to the

allocation problem; put another way, we require a forecast that we can plug into

the DLP and achieve roughly the same objective value we would have garnered with

knowledge of the true forecast. One natural candidate scheme to accomplish this is

to sample N impressions and feed the resulting empirical distribution into the DLP

to obtain estimate bid prices; these estimates can then be used as hopefully accurate
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controls to drive the allocation decisions over the remaining life of the problem.

This natural sampling based approach has been analyzed in a sequence of papers,

Devanur and Hayes (2009); Feldman et al. (2010); Agrawal et al. (2014); Molinaro

and Ravi (2012), in the context of the AdWords problem, and subsequently, of a

general NRM (or resource allocation) framework. These papers consider a random

permutation model of demand arrivals, in which the assumption is that the total

number of arriving impressions is known in advance, but the order of the arrivals is

uniformly chosen over all possible permutations. We note that, while more general

than the i.i.d. model we will consider in our model, the random permutation model is

still limited to describing stationary demand distributions.1 The guarantee that these

papers establish is the following: with en samples, the algorithm is 1 - e optimal as

long as the minimum advertiser budget Bmin satisfies a certain scaling g(n, m, e). As

we discuss in Section 3.5.1, in order to achieve a polynomial dependence on d and m

by appealing to these existing analyses, one needs restrictive conditions on g, leading

significantly worse sample complexity.

The algorithm we employ is essentially identical to the one used in the random

permutation model literature cited above. However, we restrict our analysis to Ad

Display problems rather than the general network revenue management problem.

This is a crucial assumption: we leverage the particular pricing structure (a single

advertiser bid for all compatible impressions) that is idiosyncratic to Ad Display to

achieve our improved result and it is unlikely that our analysis could be generalized

beyond the Ad Display model.

3.2 Model and Algorithm

Impressions model: We consider a discrete T-time period model in which, at each

time step 1 < i < T exactly one impression arrives to the ad network. Let X C IRd

'In fact, de Finetti's theorem establishes that the exchangeable distributions of demand in a
random permutation model are in fact independent conditioned on a latent variable.

77



be a discrete feature space with each point in X describing an impression type.2 We

assume that there exists an unknown distribution p : X -+ [0, 1] from which each

of the arriving T impressions are sampled i.i.d.; upon arrival, each impression is

assigned a type in X according to p. Let X 1, ... , XT be the sequence of random

variables denoting the types of the arriving impressions.

Advertiser model: There are m advertisers with budgets B - T E R'. B can be

interpreted as the budget the contract specifies per unit of impression. Each advertiser

a is endowed with a characteristic set X, C X such that a's bid for impression type

x is ra](x E Xa) for some positive ra. In order to provide exact constants in our

bounds, we will assume m > 4 throughout.

Let OPT(T, TB) be the maximum revenues achievable in this system. In principle,

this optimum could be calculated in the following way. Let B(t) the m-dimensional

random variable that describes the remaining budgets of advertisers (with the bound-

ary condition B(0) = BT), and define the admissible control set at time t to be:

0' = {o: X-+ {e , ... ,em} s.t. 1'o < 1, o < B(t)},

where ea is the a-th unit vector in R'. Then,

OPT(T, TB) = maxE Zral(Xt E )o
t=1 a

In the analysis of our algorithm, we work with a natural upper bound on this

2 It is not necessary to constrain X to be discrete. Alternatively, X could be any Borel measurable
set and d would correspond to the metric entropy of X.
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optimum value. Let us define the following unit time optimization problem

LP, =max Z: raJ( EXa)z(x,a)p(x)
a xGX

subject to > z(x, a)p(x) Ba
XeX

Lz(x, a) 1
a

z>0,

together with its dual formulation:

D-LPP = min Za(x) + Ba (a)
xEX a

subject to a(x) + p(x)#(a) > ra1(X E Xa)/I(X)

a, / > 0.

One can interpret LP as the long run unit time revenue a clairvoyant could

achieve as T -+ oc with a priori knowledge of p. More rigorously, LP, provides an

upper bound on the unit time optimum as stated in the following lemma whose proof

is delayed to the Appendix:

Lemma 3.2.1 LPI, OPT(T, TB)/T.

It will be convenient in our analysis to use LPJ, as the benchmark to measure the

performance of our learning algorithm.

Furthermore, we make the well-known observation that the dual of LP,, gives rise

to a vector of "bid prices" on advertisers which can be used to calculate a primal

control in the following way:

Definition Let # E R' be a vector of shadow prices for the m advertisers. The bid

price control associated to # is a map

z : X x [M] -+ {0, 1}
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such that

I, if a E arg max3 {rj I(x E Xj) - (j)} uniquely

ZA(x, a) and ral(x E Xa) - 0(a) > 0

0, otherwise.

Note that our definition potentially throws away many impressions because of ties.

We show that the impact of how we deal with ties is negligible in the next section.

We are now ready to describe our learning algorithm. As with previous approaches

such as Agrawal et al. (2014), we allow the algorithm a "burn-in" period to observe

N training impression arrivals and estimate a control policy. This policy will then

be used to decide the allocation for the impressions that arrive over the following T

period horizon.
Learning algorithm:

1. Sample N impressions from 1- and calculate the empirical distribution AN

AN (X) = N 1(X' = x).
1<i<N

2. Compute an extreme point 13 E arg min D-LPAN'

3. Use the control z to allocate impressions X1, ... , XT.

Computational burden of the learning scheme. The size of D-LPfN in step 2

of the algorithm only depends on n artificially. In fact, since at most N points of A

have nonzero density, the impression dimension of D-LP is at most N. Put another

way, the benefits of our algorithm having low sample complexity are two-fold - besides

learning a control policy with a parsimonious number of samples, the computational

complexity of the underlying control problem is also reduced significantly.

We end this section by defining additional notation that we will use throughout

the rest of the paper. For some bid price 1, let ZO, be the set of x's which get allocated
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to advertiser a, i.e.

Z {x E X : z'3(x, a) > 0}.

Additionally, let us denote the revenues of using policy # when impressions arrive

from measure v by

Rev,() = ra min Ba, S R(X EXa)ze(x,a)v(x)dx
axEX )

= ramin {Ba, V (Z)} .
a

Lastly, we define the following quantities which will appear in our sample complexity

results:

ravg Era, Tmax =max ram a
a

and, correspondingly,

Pavg m 
min LPI, -, PPmax = LP, Tavg Tmax

3.2.1 Bid prices and Optimality

In this section, we describe a generic condition under which using the bid price controls

defined above closely approximates the value of using the optimal primal control.

Our argument here is similar to that used in Agrawal et al. (2014) and requires that

the impression type distribution p is "granular" enough that no single mis-assigned

impression type can contribute a disproportionately large fraction of the optimal

revenues. We define this property formally below:

Definition A distribution v : X -÷ [0, 1] is c-good if

||0||C) < -.
m

We give some brief intuition for this condition here. While we delay a formal and

detailed argument to the Appendix, it turns out that the bid price policy coincides
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with an optimal primal solution in all but at most m impression types in X and,

by the way we defined z,, does not assign the rest. Hence, the error from the mis-

assignment versus the primal optimum is at most mrmax maxx P(x). For an E-good

distribution, this is bounded by ELPA.

In order for our analysis to carry through, we need to make the following assump-

tion on the granularity of /pt:

Assumption 3.2.2 The true distribution p is k-good.

We make two observations: the first is that, while it seems we have imposed an un-

necessarily strong condition on p, we will leverage this to further guarantee that 3

is also at most eLP, away from LP4 , which is a condition our analysis will require.

Secondly, this assumption is without loss of generality: if there exist heavy mass

impression types that violate this assumption, we can divide them into several arti-

ficial types such that each individual point x E X has the required condition on its

probability mass.

We now state a lemma qualifying the optimality of the bid price / versus LP[;

the crucial property that achieves this is that the sampled distribution [I is E-good

with high probability for N = poly(log n, m). This lemma is proved in the Appendix.

Lemma 3.2.3 Let X 1 ,... , XN be N i.i.d. draws from the distribution p and for all

x E X,

ANW N E I X' = x).
1<i<N

For
4 m (

N > 4 log n + log-)
pelogrm (

fN is E-good with probability at least 1 - 6 as long as p satisfies Assumption 3.2.2.

Before moving on, we note that, as suggested, there is a loss of a factor of m in

the granularity of f versus p. We could instead only assume p is E-good and still get

the same guarantee for f via the Dvoretsky-Kiefer-Wolfovitz inequality, but at a cost

of a quadratic dependence on m in the sample complexity.
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Lastly, we give the following bound on the total number of possible bid prices which

can arise as the solution to the dual linear program over all possible distributions V.

We will later use this lemma in Section 3.4, as proving that / is approximately

optimal with high probability will involve taking a union bound over all possible bid

price controls that our algorithm could output.

Lemma 3.2.4 Let

B = {0 E R' s.t. 3 a distribution v for which # is an extreme point of D-LP}.

Then

|131 < nm)

Proof For any v, using the transformation d(x) =(x) yields that / is the solutionu(x)

to:

min v(x)&(x) + Z Ba3(a)
EX a

subject to &(x) + /(a) ;> r Va, x E Xa

I, / > 0,

The feasible set of the dual LP under the above change of variable does not depend

on v, so we are only left with counting the total number of #s that can form its extreme

points, of which there are at most

(aIXaI) (mn)
m ~-M

3.3 A Lower Bound on N

In this section, we exhibit a lower bound on the number of samples our algorithm

-requires to find a near optimal #. In order to do this, we ask a simpler question: for

a fixed bid price policy 3, how many samples N are needed to estimate the revenues

from using that policy (i.e. bound the distance between RevaN (/) and Rev,(/3))? In
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fact, it turns out that there exist instances for which there will always exist a gap

between the estimator Rev[N (0) and its true value:

Lemma 3.3.1 Fix any bid price / and consider a family of instances where we set

Ba = W (Z) = ,Va. Then,

IE [ReVAN (0)1 - Revl,(3)I N -ravg,l av, N*

Proof The bound is a consequence of part 2 of Lemma A.10.1 in the Appendix with

YN = AN (Z9):

IE [RevN (0)] - Rev,,(#)1 = E E ramin {Ba, AN (Z ) ramin {Ba, i (Zg)}

= E [ ra N (Z ) -

=K ra E [ (N(z >ij

1 3(1-2pN (Z ))
a (72 N 7 N

2 ravg - 3 ravg N

Note that, for the third equality, we have used that all terms within the sum are

all negative and, for the last inequality, the fact that for all a, o- (AN (Z9))

VL(I - 1) /N.

Note that this implies that in order to bound the error of a single / by eLPA one

needs to draw on the order of ( 2 ) samples. Not surprisingly, this turns out

to be a bound on the number of samples required by our algorithm to learn a near

optimal # over the entire space of bid prices, as evidenced by the following theorem:

Theorem 3.3.2 The algorithm requires drawing at least

N = ( - )
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samples to guarantee that

|Rev, (#) - E [Rev,,()]| I eLP.

Proof We exhibit a simple instance for which a large estimation gap in the value of

the optimal bid price policy /* implies a large optimality gap for the approximate bid

price policy /. Let us fix a bid price control /: we construct an instance such that

this / is optimal by setting Ba = p(Zg) = 1/m and additionally, setting the bids

such that for every x E X, there exists a unique advertiser a such that x E Xa (in

other words, each impression type can only go to one advertiser). For this instance,

/3 achieves the best possible revenues, equal to ravgi. Furthermore Oa = /* = 0, for

all a, and X = Z . Let us assume that the estimation gap for / is such that:

IRev,,(#) - E [RevA(O)] I A

and we shall prove by contradiction that this implies:

IRev4(0) - E [Rev,,() I A.

Assume the contrary; since Rev,(#) = E raB = ravg,1 and thus is greater or equal

to both E [RevA()] and E [Rev,(,) , it must then be that

E [Rev[()] + A < Rev,,() < E [Rev,,() + A

which implies that E [Rev,,() > E [Rev (/)], or, expanding their expressions

rS E min -t (Zc) - min ipZ) t 0.
a M m

Since we have constructed the instance such that no impression types can go to two
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advertisers, it follows that # can only take two values, namely

if 2(Xa) > Ba = p4Xa)

otherwise

and, since this implies we accept impression type x if and only if A(Xa) > p(Xa),

E min -,
m M [p(Z )

1
= IP [A(Xa) > p(Xa)]

m

= 1IP [A(Xa) > p(Xa)] + E
m

= E [min

[#(Z*)] (1 - P [#(Xa) > A(Xa)])

-,I2(ZM)

E [A (Z)Ii(Xa) > p (Xa)] (1 - P [A (Xa) > p(Xa)]).

>0

Hence E [(min{, p (Za)} - min { t(Zl)} < 0 and summing over all a we get

the desired contradiction. To complete the proof, note that to get A = E (ravg V)

ELP., we need to set

\ vg E2

3.4 Sample Complexity

The key step in our sample complexity analysis will be to find a uniform bound on

the estimation error of IRev,N () Rev,(/) , over all bid-prices / C B. We state

this key lemma below.

Lemma 3.4.1 For
64 f

N = 64 m log(mn)
P 2 E2 \\

+ log )
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P [0 E B s.t. IRevN (0) - Rev.(0)| ; e LP,,] < 6.

In order to prove the above, we proceed in two stages

1. We first bound the estimation error for a fixed # c B. We will break up this error

into two components, which we bound in Lemmas 3.4.2 and 3.4.3, respectively.

2. Having bounded the error for a fixed 3, we prove the above lemma by taking

a union bound over all possible bid-prices, whose cardinality we have upper

bounded in Lemma 3.2.4.

As alluded to above, given a particular 3, we use the triangle inequality to split

the estimation error into two components:

IRev#N,(3) -Rev,,(B)I IRevfNB() -E [RevN (3)] + E [RevfN(#)] - Rev,()j (3.1)

We bound the two terms in equation 3.1 separately: (a) The first component is

probabilistic and we control it using a concentration of measure argument. (b) The

second component is precisely the expected bias we lower bounded in Section 3.3; in

the following, we provide a uniform matching upper bound on the magnitude of this

bias allowing us to calculate the rate at which E [RevfN ('3)1 approaches Rev,(3).

The first term admits the following high probability bound:

Lemma 3.4.2 For fixed E 6 B,

N22
P [IRevaN (0) - E [RevAN(0)] 1 eLP] 2exp ( N68P2 )

Proof Let us view our estimate as a function of the N samples X = (X1 ,... , XN)

drawn from 1t to form the empirical distribution, i.e.

RevAN(0) = g *(X)

We begin by showing that g satisfies a bounded difference property. Consider two par-

ticular sequences of observations, s = (X, ... . ,xi, . . .XN) and s' = (x1 , ... , x', . .. XN)
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inducing empirical distributions AN and, respectively, A'. S

sample on which s and s' differ, it follows that:

AN(X) = A(x), V E X \ {Xi,X'}
1

IAN ()- AN (X)| I ! , - Vx E {xj, X'}

and, consequently

Ig(s) - g(s')I = Era min{ Ba, I'N (Za) I
a

<2 max
N

ra min{Ba, A' (zg)

Using the Bounded Differences Inequality (Proposition A.11.1), it follows that:

P [lg(X) - E [g(X)] I ELPI, 5 2 exp
NE2 P2)

(.

We now focus on the second term of equation 3.1, IE [Rev (N)] Rev,(#) 1 and

prove an upper bound on the magnitude of the error.

Lemma 3.4.3 For any # E R' and N > m,

IE [RevAN(P)] - Rev.(0)I 1 4rm N
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Proof The expected bias is

IE [RevaN(3)]- Rev(3)= E Era min{Ba AN (Z) ramin{Ba,(

E ra mn {Bai AN Era mi[ {Ba, E[a
. ra .i B a

aa
a a E [min f{Ba, AN -Z min { Ba, E [A N

< 1 a( AN( 3 (1 - 2p- (Za,))
v r a 0-A Z + N

-1 rag (AN (Z rmax

where the first equality follows from linearity of expectations, the second from the

fact that E [AN (Zg)] = y (Z ), the first inequality is an application of the triangle

inequality, the second inequality follows from Lemma A.10.1 with XN = AN (Zg) and

in the last inequality we assumed N > m.

For ease of notation, let us call Pa = P [1(x C Zg)] such that

PaiPa)
o- (AN (Za)) = N

In order to find a uniform bound on the expected bias IE [RevAN (4)] Rev,()1

(up to constants), we can now simply optimize the above the bound over all possible

probabilities p:

1 '-*~Pa~Pa) m
IE [RevAN (0)] - Rev,() 1 max ra + 3Hrmax

' 7 pk0,1T p<l -N Na

1 mpa( -Pa) m
rmx,1 pa -- + 3-r .

N/- < ,7' aN N
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The last optimization problem is maximized when pa = ,Va, yielding the bound

1 m ma ilig h on

jE [RevaN(#)] - Rev.(3)15 rmax + 3 rmaxH
N

< 4 rmax m

We note that the lemma above heavily uses the special structure of our problem

by simplifying the bias to a sum of truncated random variables; such a simplification

would not be possible had we used a more general price structure where advertisers

might bid different amounts over the space Xa of compatible impression types.

Proof of Lemma 3.4.1. We show that, if N> 64 (m log(mn) + log ),
- p

2
E

2

P[]3 E B s.t. IRevN (#) - Rev,() I ELP,] 6.

For any N = N1 > 6, Lemma 3.4.3 guarantees that

IE[RevaN 3) Rev,,(3) 2 LPK ,

such that

IP [3 E B s.t. IRevtN (#) - Rev,()I ELP,]

P [3 E B s.t. IRevfN (0) - E[RevAN()] 'LP,]

as a consequence of equation 3.1. To conclude our proof, we simply employ a union

bound over / E B (Lemma 3.2.4) and use Lemma 3.4.2 to show that

P [23 E B s.t. IRev4 N () - E [RevaN3)1I - 'LP,]
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< ") P [IRev4N ( E [Rev4N > jLPj,
m) 2

Smn)2exp 1 E2NP2)
-~M 32

(mn)'2exp ( 1 2 N ,

The above probability is bounded by 6 for N2 =4 (m log(mn) + log 1). There-

fore, taking N > max{N1, N 2 } = N2 yields the result.

The following theorem uses the above uniform bound on the estimation error over

all bid-prices to show that the sampled problem, in which impressions arrive from

[N, provides a close representation of the original problem.

Theorem 3.4.4 Let * argmax D-LP,, and 3 E argmax D-LP[N . With probability

at least 1 - 26,

Rev,,(*) - RevN ( LP,1

for

N = m log(mn) + log .)

Proof First we take a union bound over the events {/ is not e/2-good with respect to LP,}

and {13, IRev,() - RevN(#) ILP,I} to show that for

N = (m log(mn) + log

the following hold with probability at least 1 - 26,

|LPAN -RevAN 1*)I (

IRev(1*) - RevaN(-*)I L (3.3)
2

and

Rev,,() - RevAN() E LP (3.4)

We have used Lemma 3.2.3 for 3.2 and Lemma 3.4.1 for 3.3 and 3.4.
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But then,

Rev,,(*) Rev,,(#) - 'LP

Rev4a -3

5c
Reva(3N ) - 5LP

Rev,(#*) - -LP

where the first inequality follows from applying Assumption 3.2.2 and Lemma A.9.1,

the second from equation 3.3, the third from equation 3.2, and the fourth from equa-

tion 3.4. It hence follows that

Rev,(#3*) + ELP, RevN() Rev,,(*) - eLPj,

or, equivalently,

Rev,, (*) - RevN ' ELP,.

We are now ready to prove our main result, which is a direct consequence of

the theorem above, and proves that the sampled bid-price control 3 gives a 1 - E

approximation to the optimal primal control:

Theorem 3.4.5 With probability at least 1 - 26,

Rev 1(/N) : (1 - 2E)LPm.

as long as

N > 2 5 m log(mn) + log.g).

Proof Using the same union bound over events as for theorem 3.4.4,

LP1, -Rev,(0) Rev,,(0*) - Rev,,() +
4"

K Rev,(*) - RevAN(0) + RevAN() - Rev,() + LP,

< 2eLP,,
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where we have used Lemma A.9.1 in the first inequality, the triangle inequality in the

second, and Theorem 3.4.4 and equation 3.4 in the third inequality.

Finally, we relate our main theorem back to OPT(T, TB). Theorem 3.4.5 is a

statement regarding the performance of our algorithm as T -+ oc. However, it is

straightforward to establish that this result holds for finite T:

Corollary 3.4.6 Let N satisfy the condition in Theorem 3.4.5. Let RevT(N) be

the revenues garnered from using the resulting bid-price control on the following T

samples. Then, with probability 1 - 36,

RevI(N) (1 - 3e) OPT(T, B T),

for T > 6 (m log(mn) + log ).

Proof Note that Rev T (/N) = TRevAT (N). By applying a union bound and using

Lemma 3.4.1 and Theorem 3.4.5, we can guarantee that, with probability at least

1 -36

JRevAg(
3 N - Revp(N)I < eLPI,

and

Revu(3N > (1 - 2eLPt.

Hence,

RevT (ON) T(Rev,(N) - eLP.)

T(1 - 2e)LP,)

!(I - 2e)OPT(T, TB),

where the last inequality follows from Lemma 3.2.1.

Before moving on, we address an issue that our analysis raises. Our sample com-

plexity result stems from Lemma 3.4.3, which establishes that

IE [RevAN (0)] - Rev,,(0) 1 4r g .
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Noticing that g(A) = Rev,(j) is a concave function in A, the above error term becomes

a Jensen's inequality type bias equal to g(E[ ]) - E[g(p)] > 0. The simple structure

of g in our case potentially leaves room for us to improve our analysis: the idea would

be to correct for this convexity bias by using some other estimator that empirical

distribution. While beyond the scope of this chapter, this is an interesting avenue for

future research that further leverages the unique structure of the problem examined

here.

3.5 How large is p?

Our sample complexity results depend on the ratio between LP, and the maximum

advertiser bid. Clearly, an adversary could choose a problem instance where these

ratios were arbitrarily small by simply choosing appropriately small advertiser budgets

- for example, choosing B such that E. Ba = 1/n would lead to an large N that

scaled one-to-one with the size of X. However, such extreme instances would be

unlikely to occur in practice, where typically ad networks negotiate budgets with

advertisers such that the number of total impressions that must be delivered (i.e.

T - E Ba) is roughly balanced with the inventory that is expected to arrive over the

life of the campaigns (T - 1 p(x)).

Hence, one might hope that by imposing certain mild constraints on the instance

family, such as E Ba = K for some constant K > 0, one might obtain significantly

better scaling of the ps and, consequently, of N. In this section, we present one

such generative family of instances for which the p ratios are 0(1) on average (where

the 0 notation hides any logarithmic dependencies on n and M). We define the

parameters of our generative model for the instance family as follows:

Generative Model 1 1. Dimensions: Let n be the set of impression types and

m be the number of advertisers and assume that

.M log m
nlogm= 0(1).
n
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2. Advertiser budgets: Let the advertiser budget vector B be drawn from a joint

distribution f with the following properties:

(a) E [Ba] = '.

(b) P Ba -L] a for some constant a > 0.

3. p distribution: Let the impression type distribution p be drawn iid from a joint

distributions f with the following properties:

(a) E [Ba] = -,E [p(x)]=1.

(b) For any S C X, P s > p(x) ] > for some constant > 0.

4. Graph topology: For every x E X, we sample uniformly at random one adver-

tiser a(x) c [m]. We allow any edge set of compatible advertisers that contains

a(x).

5. Advertiser bids: We allow any bid vector r E R.

Before quantifying the magnitude of the value of LP, drawn from this family, we

pause to highlight the generality of this generative model for Ad Display instances:

" Our choice for the distributions of B and p is quite general: properties (2.a) and

(3.a) enforce that the "load factor" of the instance is constant, while properties

(2.b) and (3.b) enforce that the marginals have constant positive mass to the

right of their expectations. We note that these properties allow for distributions

with both light tailed and heavy tailed marginals.

" One should interpret our requirement on the instance's edge topology in the

following way: we allow any graph where the edge set of each impression type

contains at least one advertiser chosen uniformly at random. This in particular

places no additional constraints on the size of the edge set or the distribution

of the other advertisers in this edge set.

For instances belonging to Generative Model 1, we can show that the expectation

of LP, (and hence p) does not depend on either m or X. In particular,
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Theorem 3.5.1 Consider an instance generated according to Generative Model 1.

Then,

E [LPt] = 0 (rag).

3.5.1 Comparison with existing results

For the sake of precision, we compare our result to the one-time learning guarantee

from Agrawal et al. (2014) - however, our comparison is also valid with respect to

the other papers mentioned in the literature review. We can modify their analysis

to allow for a separate fixed approximation ratio e and sampling ratio 6 to yield the

following result:

Theorem 3.5.2 (Agrawal et al. (2014)) In the random permutation model, as

long as

Bmin = min Ba = Q (mlo,(n/,)

the competitive ratio of the one time bid learning algorithm with 6n samples is 1-0(c).

The number of samples required by Agrawal et al. (2014) becomes:

N = m log(n/c)
(E 2Bmin)

The above condition involving Bmin is significantly more punishing on typical

instances than our condition involving p. For example, consider an instance drawn

from our generative model 1, with the budgets drawn from the following distribution:

Y
Ba =

Zat Ya'
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where the Y ~ Exp(n/m) are independent. Then, if U = Ea, Ya',

E [Bmin] < E min -"U > n - 0.5n] P [U > n - 0.5n] + IP [U < n - 0.5n]
a UI

- 1 0.5)-mn + e.5)-m

= [min IU>n-0.5n] (- (
_a U 1.5 1.5

< E 2min-] (I -e(05)-rn) + (0
- _ a n 1.5 1.5

2 (- 0.5 -m ) .5 --m

M2 1.5 1.5)

where in the first equality we used a Chernoff bound for exponential random variables,

and in the second equality we have used the fact that the expectation of the minimum

of k independent Exp(A) random variables is 1/kA. Assuming all advertiser bids are

bounded by a constant, Theorem 3.4.5 gives an average sample complexity that scales

like
m log(nm) + log 1/

0(1), E

whereas by comparison, the Agrawal et al. (2014) analysis gives a bound of

m 3 log n/cE
E2*

More generally, distributions with heavier left tails than those of the exponential

could potentially lead to even exponentially small minimum budgets in m, leading to

an exponential sample complexity, while our sample complexity would stay the same.

3.6 Experimental Performance

We test the sampling algorithm on a family of synthetic Ad Display instances where

we set the number of advertisers m = 50 and the number of impressions T = 5000.
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We define the load factor of an instance to be the ratio

LF T
a Ba

and try out load factors in LF E {0.5, 0.75,1,1.5, 2} by setting advertiser budgets

uniformly. For every impression in [T], we uniformly draw a random subset of 100

advertisers - this defines the characteristic sets X, for each advertiser and hence the

impression types. For each advertiser, we also sample a price ra for Xa independently

from an Exp(1) distribution.

We consider an ensemble of experiments where for 50 randomly drawn instances

from the family above, we sample a 100%, 50%, 10%, 5% and 1% fraction of the im-

pressions and we use these sampled impressions to calculate bid prices. We then

measure the revenues resulting from these bid prices if they were used on the entire

set of T impressions.

Figure 3.6 shows the performance of the sampling algorithms versus the true

optimum.We observe that the performance of the algorithm varies substantially based

on the load factor of the instance; one might intuit this since t the load factor controls

how difficult the instance is. For example, for high load factors one expects the

optimal policy to be close to the greedy policy that just allocates all impressions

the the highest paying advertiser. Such a policy would be easy to learn, which can

be seen in our experiments where for LF = 1.5, 2 very few samples essentially yield

the optimum. On the other hand, for lower load factors where it is not clear the

optimum policy is as simple, the amount of samples has a substantive difference on

performance.

3.7 Conclusions

We have analyzed a class of NRM models, specifically Ad-Display allocation problems,

in which the sample complexity of learning a high-dimensional demand object scales

linearly with its underlying dimension, whereas previous results suggested the best
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Figure 3-1: Performance of our algorithm as a function of the fraction of the im-
pressions which are sampled, for a variety of problem instances with different load
factors.

0.9-

0.8-

0.7 -

0
oS _- LF=2.0

0.6- ----- LF=1.5
-_ LF=1.0
-_LF=0.75

0.5- -LF=0.5

0.4 --

0.01 0.05 0.1 0.5 1.0
Fraction sampled

99



dependence was exponential. Moreover, we have established a lower bound on the

sample complexity of our estimator.

There are several direction of future research that we find particularly tempting:

1. In this captor we have developed an algorithm which is based on the empirical

estimator. A question to ask is whether this estimator is the one that leads to

the optimal sample complexity, or whether alternative estimators could work

better.

2. One way to interpret our result is that we have made a "low rank" assumption

on the problem structure which has resulted in a revenue function that is easier

to learn than it would be in more general models. An interesting direction is to

ask whether other low rank assumptions can yield similar results for a broader

class of allocation problems.

3. A natural extension to our model is to think of advertisers as also arriving i.i.d.

from some distribution of features. It would be very interesting to see whether

a bid price policy can be built on sampling both advertisers and impressions,

and whether such an approach could lead to a better dependence on m in the

sample complexity.
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Part III

Massive Scale Optimization
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Chapter 4

Solving Linear Programs in

Map-Reduce

4.1 Introduction.

The "yield management" problem is a central optimization problem that must be

solved by ad networks in the process of optimally matching impressions (sessions on

web sites/ mobile apps, etc.) to advertisements. The problem is non-trivial since,

in addition to many other business constraints, advertisers have finite budgets, the

supply of impressions of a given type is limited, and finally, the economic value

generated from a single impression can vary widely across ads and advertisers. The

net economic value of this problem is large (on the order of tens of billions of dollars

in a year).

A first best approach to solving this problem in practice entails solving a certain

linear program - the so-called "DLP" - and today forms the basis to solving yield

management problems in several large industries (airlines, hospitality, etc.). This

approach has not seen wide adoption in advertising applications which instead rely

on certain "adaptive greedy" approaches to allocation in spite of a potentially large

up-side to using the former approach. One of the primary reasons motivating this

choice is efficient computation at scale. In particular, we do not have effective tools

for computing the DLP at web-scale and in the sorts of distributed computational
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environments that are germane to those settings.

This paper presents a candidate algorithm that is amenable to solving a large class

of structured linear programs that include the DLP in Map-Reducible environments,

and at web-scale. In particular, we make the following contributions:

1. We develop an algorithm for solving structured LPs (such as the DLP) by solving

a sequence of "projected" versions of the DLP, a general scheme introduced

in seminal work by Plotkins, Shmoys and Tardos two decades ago (Plotkin

et al. (1991)). Here, we choose the projection carefully so that solving the

projection relies on a fully combinatorial algorithm for the computation of a 2-

D convex hull, which in turn relies on a sort. Put another way, the key large scale

computational step in our scheme is a large scale sort; sorting is an operation

that many modern distributed computational frameworks, such as Map-Reduce

handle well (see for instance O'Malley (May 2008)).

2. We prove that the number of projections solved by our approach for an C-optimal

solution scales like 0 (P1A) , where A is the number of advertisers in the prob-

lem and p is a certain sparsity parameter. Importantly, the number of rounds

(or sorts) is independent of the number of impression types which can be very

large - in the case of a naive application of PST, the dependence would be

O(log(I + A)). Our algorithm is hence particularly appealing for lop-sided bi-

partite matching problems where I>> A (perhaps even exponentially so).

3. Most importantly, we implement our scheme in a large scale shared memory

environment where comparisons with commercial, non-distributed solvers are

possible alongside comparisons with state of the art distributed approaches tai-

lored to solving packing programs. Here we show that we outperform distributed

approaches for packing programs by up to an order of magnitude on typical in-

stances. Surprisingly, we also outperform a state-of-the-art commercial solver

that was optimized for network structured programs and made full use of all

cores for linear algebraic operations; this commercial solver obviously cannot

scale beyond a shared memory environment.
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4.1.1 Literature Review

Our work lies at the intersection of several streams of research dealing with (a) dy-

namic resource allocation, (b) distributed algorithms for linear optimization .

Dynamic Resource Allocation: While the model of dynamic resource allocation

we consider covers most models relevant to modern yield management, we single

out two specific problems relevant to online advertising: Display Ads Allocation (DA)

and Ad Words (AW) both of which are concerned with the allocation of impressions to

advertisers. Ciocan and Farias (2012) presents a model predictive control approach

to solve such problems that requires repeatedly solving a certain LP and presents

constant factor relative performance guarantees assuming that impression arrivals

are governed by a general class of stochastic processes. A related class of stochastic

models assumes that the stream of impressions form an exchangeable sequence. In

this setting, Devanur and Hayes (2009); Feldman et al. (2010); Vee et al. (2010);

Agrawal et al. (2014); Molinaro and Ravi (2012), all develop near optimal (i.e. (1 -C)-

approximation) algorithms that rely on "learning" demand from a few early samples,

solving a 'sampled' linear program and then deriving an allocation mechanism from

the solution of this program. The class of linear programs we consider in this paper

subsumes the class of programs considered in this stream of literature. It is worth

noting that when the budget or capacity of advertisers is "large", the adversarial online

AW and DA problems admit a (1 - !)-competitive algorithm by applying a primal-

dual technique( Mehta et al. (2005); Feldman et al. (2009)). This primal-dual analysis

again rests on analyzing the properties of a linear program of a similar nature as in

the literature above and yields the sort of adaptive greedy algorithms that find use

today. However, this approach eschews the use of impression traffic statistics taking

a "worst-case" approach instead.

Distributable First Order Methods for Linear Programming. While design-

ing a parallel algorithm for solving general linear programs is a P-complete problem,

various primal-dual type techniques have been developed for packing and covering

LPs - broadly, these techniques are message passing algorithms which rely on passing
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update messages between the primal and dual variables of the optimization problem.

The multiplicative weights framework of Plotkin et al. (1991) is closest to the current

work - our algorithm can be interpreted as a multiplicative update, customized to our

special "resource allocation" LP structure. Other algorithms that share commonality

with multiplicative weights have been studied in Garg and K6nemann (2007); Luby

and Nisan (1993). Stateless distributed algorithms have been developed for these

problems Awerbuch and Khandekar (2008) and have been recently generalized for

solving mixed packing-covering LPs Manshadi et al. (2013).

Besides multiplicative update rules, one other message passing paradigm that is

of particular interest are max product belief propagation (BP) algorithms. Originally

a tool for inference in graphical models, these algorithms have recently been rein-

terpreted in the context of linear optimization. For example, for maximum weight

bipartite matching and subsequently b-matching, which are a subfamily of the net-

work revenue management LP structures we will consider, Bayati et al. (2008a,b);

Sanghavi et al. (2009) establish BP's pseudo-polynomial convergence as long as the

matching has a unique optimum. Gamarnik et al. (2012) prove a similar result for

min-cost network flow, as well as provide a fully polynomial time random approxima-

tion scheme which does not require uniqueness.

There has been relatively less focus devoted to understudying these algorithms

from a distributed systems perspective - to the best of our knowledge, Manshadi

et al. (2013) is the only existing attempt at building a MapReducible LP algorithm.

From a theoretical perspective, our work differs from the results described above in

that we seek a solution that is optimized for resource allocation LPs, which we define

shortly, rather than a generic algorithm for packing/covering.

4.2 Linear Programs for Yield Management.

The linear program we study is associated with the resource allocation structure

from Section 3.2. For completeness, we describe this family of linear programs here.

Consider a bi-partite graph with I sources indexed by i and J sinks indexed by j.
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The edge set of this graph has size E, and a generic edge is denoted by e. We use

the notation i(e) for the source node for edge e and j(e) for its sink node. Given this

graph, define the following primitives:

Demand: We associate each source i with a deterministic inflow equal to Di.

Resources and Resource consumption: We are given a set of A distinct resources

indexed by a. The available capacity of these resources is given by a vector B E

RA. We assume that allocating a unit of impression (demand) type i to advertiser

(product) j (i.e. making an allocation along edge e A (i, j)) consumes Ca,e units of

resource a. We write a E j' if ca,e > 0 for some edge e incident on j', (i.e. j(e) = j').

Prices/ Revenues: Allocating a unit of demand along edge e generates revenue pe.

Denote by p E RE the column vector whose eth component is pe.

The objective is to maximize total revenues from fractionally allocating demand

from sources to sinks:

max peze
z>O

es.t. ZcO,eZe iBa V a (4.1)

ze L Di V i.

We refer to the first set of constraints (indexed by a) as the resource constraints, and

the second set (indexed by i) as the source constraints. We also note that, while our

algorithm solves the primal allocation problem, it is quite easy (via complementary

slackness) to transform an optimal primal solution to this LP into a dual solution and

obtain bid prices similarly to Talluri and Ryzin (1998).

In practice, Di is obviously not known and must be learned; the recipe that we

have proposed in Chapter 1 to handle the online allocation problem is the following:

estimate Di by observing the demand process for a short time; use the LP with the

estimated Di. Re-estimate Di at reasonable intervals of time and re-solve the LP.

Without loss of generality, we will henceforth normalize all Di to 1.

The family of general resource allocation problems described above is applicable
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to many settings. However, we focus on modeling several large scale ad allocation

problems including Ad Display (Section 1.2.2) and Generalized Second Price AdWords

(Section 2.1.2).

Practical Scale For LP: In online ad related applications, the size of the bipar-

tite graph is up to 1 billion impressions and 1 million advertisers, with 100 billion

edges between them - in terms of data sizes, representing such a graph sparsely re-

quires on the order of 100Gb. Lastly, we note that in both applications, it is quite

natural to think of the number of an impression as scaling exponentially in some

feature dimension d; for example, a given impression may be specified by hundreds of

features describing the user's demographic information, browsing history and other

parameters.

4.3 Map-Reducing The Yield Management LP.

The yield management linear program (4.1) consists of A resource specific constraints

and I source type constraints. Our overall approach solves a sequence of relaxations

to this problem by 'averaging' the resource constraints. The solution to each such

relaxation will be computed using a (distributed) algorithm that exploits strengths

of the Map-Reduce paradigm with the key step that uses 'all' the data being a single

(large) sort. In greater detail, the following is a schematic view of the algorithm:

1. Begin with the uniform measure wo on all resources.

2. At the t-th stage construct a linear program, form Relax(wt ) that relaxes (4.1)

by replacing the A resource constraints

S ca,eze Ba V a

with a single 'averaged' constraint

w Ca,eZ e w Ba
a e a
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using the measure wt.

3. Solve Relax(wt ) using a fully combinatorial distributed algorithm that exploits

map-reduce; described in detail in Section 4.3.1.

4. Use the solution of the relaxation to compute wt+1 (discussed in Section 4.3.2);

go to step 2.

In the following two sections, we answer (i) how one can solve Relax(wt ) and (ii)

how many relaxations are necessary to guarantee convergence to an optimal solution

of (4.1).

4.3.1 Solving Relax(w).

Our goal here is to solve the relaxed program Relax(w) that forms the crux of each

iteration of our scheme. We first write this relaxation as

max Peze
z>O

e

s.t. Ceze B (4.2)

ze 1 V i,
e:i(e)=i

where c, waca,e and B A La WaBa. Let us begin by observing that we can

partition all the decision variables ze of (4.2) by source node (i.e. impression type)

i, suggesting I source type specific subproblems whose primal and, respectively, dual

are:

f'(B) = max peze min uB' + v
z_0 u v>0

e:i(e)=i

s.t. E c ze < B' s.t. UCe + V > Pc Ve s.t. i(e)=

e:i(e)=i

)7 ze 1
e:i(e)=i
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Figure 4-1: Subproblem structure for an Ad-Display type allocation LP.

Figure 4-1 illustrates the nature of this decomposition pictorially. The objective value

Relax(w) is then equivalent to that of the following program:

max f'(Bi)
B>

S.. 7 B' < 5,l
(4.3)

This equivalent program is now

that we solve as follows:

easily seen to be a non-linear knapsack problem

1. Compute a representation of fi independently for each impression type i: We

can show that fi is concave and admits the following representation:

u1B + v1 ,

f2 (B) = <u'B-v',

uB B+VI,

if B E [0, B')

if B E [B_1, Bj)

if B E [B_ 1,oc).

The number of pieces is 1 < d + 1 where d is the number of non-zero coefficients

in the constraint Ee:i(e)=i ceze K B'. Moreover, this representation can be
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computed in O(d log d) time. Denote the k-th 'segment' of this representation

by the tuple (uk, vk, Ak) where Ak = B. - B. 1 is the length of the segment

with the convention that B' = 0 and B[ = o. Define uk as the slope of segment

k.

2. Sort segments across all fi by slope (the key step that cannot be solved inde-

pendently across all impression types): Construct an ordered list L consisting

only of segments with positive slope, with the property that segment slope is

non-increasing in the order of the list. This step requires E log E operations.

3. Build a solution: We must now allocate the budget B in (4.4) across impression

types. We do this as follows: Consider segments in the list L in order. For

segment (Uk, Vk, Ak) allocate the smaller of the remaining budget and Ak to

that segment and decrement the remaining budget.

4. Construct primal solution: Given the optimal individual budget allocation to

each subproblem, the primal solution to each subproblem can be computed

using complementary slackness.

Before giving proofs for the validity of the algorithm's steps, we note that:

1. The key computational step in the procedure above is the sort entailed in con-

structing the list L; the remaining procedures are easily solved as (easy) inde-

pendent sub problems. In particular, our overall algorithm will spend the bulk

of its runtime in this step so that such an algorithm will benefit tremendously

from a system that is optimized to sort very large sets of numbers.

2. The relaxation provides an upper bound on the true optimum and, consequently,

a certificate for the optimality gap.

Lemma 4.3.1 The optimal value of the i-th subproblem with respect to its assigned
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budget B' is a piecewise linear function of the form

u1B + v1 , if B E [0, B')

f'(B) Uk B +vk if B E [B'- 1,B')

u'B + v1, if B E [B 1, oo).

Additionally, 1 < d+ 1 where where d = {e: i(e) = i}, and the coefficients specifying

fi can be computed in O(d log d) time.

Proof Consider the feasible region of the dual as illustrated in Figure 4.3.1. Although

there are (d + 2)2 possible intersections between the inequalities defining this feasible

region, each constraint cannot create two intersections points with other constraints

that lie on the envelope of the feasible region. Hence, the feasible region has at most

d + 1 extreme points (ul, v 1), . .. , (ul, v1) with 1 < d + 1, and since the feasible region

is convex, it must also be that vk < Vk+1 and uk > uk+l.

It remains to prove that fi indeed has the threshold structure from the lemma's

statement. Clearly, for the (k + 1)-th extreme point to achieve at least the objective

value than the k-th, it must be that:

B' > Vk+1 - Vi

uk - uk+1

and a direct inductive argument yields that extreme point (uk, vk) is optimal for B'

in the range

[B'- 1 1 B ) Vk - Vk-1 Vk+1 - Vk

k uk-1 - uk uk - uk+1

Moreover, it is a well known fact in computational geometry that finding the active

constraints that define the envelope can be reduced to finding the convex hull of

at most d + 1 points in the plane (Har-Peled (2011)). Hence, the constraints that

determine the upper envelope can be computed in O(d log d) time.
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Figure 4-2: Feasible regions and objective value parametrization of the i-th subprob-
lem.

V f'(B') ;

Feasible region

0 U

Having parametrized the subproblems, we

of B, i.e. find:

(B',..., B') E argmax

subject to

Objective function
parametrization

0 Bi Bi Bi

now compute the optimal partitioning

f'(B')

SB ; B, (4.4)

B' > 0 V i,

where ft is the parametrization of the objective of the i-th subproblem (as in Lemma

4.3.1). Fortunately, it turns out that the optimal solution to this problem has a similar

structure to the solution to a simple fractional knapsack program. In particular, the

following algorithm computes the optimal budget partition (B', ... , BI) by simply al-

locating the total budget B in order of highest marginal return:

initialize L = 0 and B' = 0, Vi

initialize unallocated budget r = B;

113



for i = I), ... I do

calculate parameters of subproblem i's segments { (ut, v, A ) } of fi;

add all slopes u' > 0 of fi to the list L;

end for

sort L in decreasing order;

while r > 0 do

pick next u E L and increase B' by min{r, M};

end while

Informally, the algorithm initializes (B1,..., B") to 0 and increases the resource

allocation B' to the subproblem i with the highest possible marginal return, given by

uj, to the point that either B is exhausted or it not possible to increase budgets with

positive marginal returns. Hence, the computational primitive that we require is the

ability to sort all slopes (i.e. marginal returns) in decreasing. The theorem below

shows that such a procedure indeed computes an optimal allocation of B.

Theorem 4.3.2 An optimal resource partition (B1,.... BI) that minimizes (4.4) is

found in O(E log E) time by the above algorithm.

Proof We show by contradiction that the optimal solution has the structure output

by our algorithm. Let us account for the optimal resource allocation (B1,... , BI) in

a more detailed way: in particular, let J' be the resource amount that is allocated in

this optimal solution to the k-th segment of subproblem i; by definition Ek 6s = B'.

There exists an optimal solution with all B' ; 1: Ak, since increasing budget past

that point does not change the objective value of subproblem i.

Our algorithm produces an allocation with the following property

for any indices i1 , i2, k 1, k2 with u 1 > U2, 62 > 0 iff Jo = A (4.5)

Let us assume for a contradiction that the optimal resource allocation vector does

not have this property. Then, there must exist indices i 1 , i2 , ki, k2 with ul > u2 and
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v > 0 such that f < A"" - v and 65' > v (this corresponds to a scenario where the

algorithm has allocated some amount v to a segment with a lower slope instead of

one with a higher one). Then, one can decrease 6k by v and increase 65' by the same

amount; this will preserve the overall allocation level E B', while it will increase

the objective value by v(us - U.2 ) > 0, leading to a solution that strictly dominates

the one we had started with. Therefore any optimal budget allocation must have

property (4.5). It can be easily verified that any allocation satisfying this property

yields the same objective value, thus proving that the algorithm terminates with an

optimal objective.

Since the algorithm needs to sort at most as many ratios as there are edges in the

graph, the complexity is O(E log E).

So far, we have built a vector of allocations of B to each subproblem that achieves

the optimum. What is left to do is find a primal assignment that corresponds that

this optimum value. The following lemma provides this by proving that it is easy to

convert optimal dual solutions to optimal primal solutions. It relies on a standard

complementary slackness-based argument which we delay to the appendix.

Lemma 4.3.3 Given a level of resource allocation B' and an optimal dual solution

(u, v), the optimal (primal) solution to the i-th subproblem can be found in O(d) time.

4.3.2 Updating Weights.

So far we have shown how given a set of weights w one can solve Relax(w) effi-

ciently. In this section, we make use of the multiplicative weights machinery due to

the Plotkin, Shmoys and Tardos (Plotkin et al. (1991)) to yield an algorithm that

will convergence to an optimal solution in an appropriate sense by solving a sequence

of such relaxation linked together by multiplicative updates of the weight vector w.

Given an initial set of weights w t , and a solution to the program Relax(wt ) (ob-

tained via the procedure above), we proceed to generate an updated set of weights

Wt+1 as follows. Now a solution to Relax(wt ) may well violate some (if not most) of
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the resource constraints in the LP we are trying to solve, (4.1). We first compute the

extent by which each of these constraints is violated as defined by

va(z) = Ca,eZe - Ba.
e

Before we update weights we define an error parameter e and a parameter p

typically called the LP width which equals maxa maxz Iva(z) 1. Now we update weights

according to

Wt+1 _ Va(z)
a a P

Finally, we normalize wt+1 so that the entire weight vector sums to unity.

We are left with showing that the algorithm does not need to perform too many

weight updates before converging to a good solution. As hinted before, we appeal to

the multiplicative weights (MW) framework for solving packing/covering LPs due to

Plotkin et al. (1991) and Arora et al. (2005). We note however that the framework

gives us algorithmic freedom in terms of what relaxation to choose for (4.1). In

particular, a first attempt at choosing a relaxation for which the multiplicative weights

algorithm could be applied would relax all constraints of the LP; in this case, Relax(w)

would become a fractional knapsack which, as mentioned in the previous section,

admits a solution that is both very efficient and amenable to being Map Reduced.

Such a straightforward knapsack relaxation fails to take advantage of the special

structure of our problem, and leads to both a higher number of iterations in theory

(depending on log(IA) instead of log A) as well as worse practical performance. In

fact, it is our intuition that the encouraging practical performance which we will

highlight in our experiments section is due to this particular choice of relaxation

rather than due to the choice of weight update method.

The following theorem bounds the number of weight updates, and is a application

of of the machinery from Arora et al. (2005):

Theorem 4.3.4 Let 6 > 0 be an error parameter and e = min . For T >

6pgA, consider the sequence z.. . , zT of solutions obtained thorough performing T
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multiplicative weight updates with update step size E. Let - be the average solution,

T= z. Then T satisfies:

1. - G x and - is 6-feasible for all resource constraints, Ze Ca,eZe Ba + 6, V a.

2. The objective value of - at least equal to the optimal objective of (4.1).

Proof The first part follows directly from applying Corollary 4 from Arora et al.

(2005). The second part follows from the fact that the objective value of each relax-

ation is greater by construction than the optimal objective of (4.1).

Before proceeding, we note that this approach is completely symmetrical: instead

of relaxing all resource constraints while keeping the source constraints explicit, it

is equally possible to relax the source constraints instead, and obtain a "mirrored"

relaxation

max peze
z>O

s.t. ca,eze Ba V a
e

Wa(e)Ze ZWa.
e a

A mirrored argument could show what the complexity of solving this relaxation also

reduced to a non-linear knapsack problem which mirrors the O(E log E) one from the

previous section. While in this case, the theoretical number of iterations increases

from log A to log I, using this relaxation is worthwhile in practice. In fact, in our

experiments described in Section 4.3.4, we test both approaches and find that choosing

between these two relaxations carefully can have significant impact on performance.

In addition, as a direction of future research, we think that the idea of using both

relaxations in parallel could lead to an algorithm with improved performance over the

one considered here.
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4.3.3 Distributed Implementation of the Algorithm.

While a comprehensive systems design document is beyond the scope of this paper,

we outline how the inner algorithm is expressible in the MapReduce framework. One

solve of Relax(w) is carried in two Map-Reduce steps, with the main challenge being

performing the large and computing a value to the non-linear knapsack (4.4). The

pseudocode is given below:

MapReduce round 1

Mapper i

Input: subproblem i data

Calculate the set of slopes and budget cutoffs of fi,

Li = {(ij, u , A ), for all j E [Ile : i(e) = i}| + 1]}

Emit (key, value) = (ij,u, A )

Partitioner

Sample num-reducers keys from UjLj

Assign 0i to Reducer j iff key[j - 1] ;U'j < key[j]

Reducer j

Bj = 0

for all u k received do

By< y+ Ak

Li Li U {(ij,4uA)}

end for

Emit (j, Bj, Lj)

Synchronization round

Compute threshold j* at which Z1 ,<j. B > B

Output (j*, B - E<j<j*1 Bj)

MapReduce round 2

Mapper k

Input: j* B - E , Bj, Lj
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if j 7 j* then

Allocate A' of B along all slopes u in Lj

else

Allocate B in increasing slope order up to level B - Zj 3 jj B

end if

for all slopes in Lj do

Emit (key, value) = (i, (u, i, k, resource allocation))

end for

Reducer i

Aggregate optimal resource allocation B' for subproblem i

Compute and output primal solution of subproblem i

In the first Map Reduce step, the segments describing each subproblem are com-

puted and sorted. Note that, as in the implementation of TeraSort from O'Malley

(May 2008), we use a customized partitioner with randomized pivots for the aggre-

gate list of segment slopes output by the mappers; this ensures that the list of slopes

is globally sorted, and that the load on each reducer is balanced. The aggregate

list of sorted segment slopes is then partitioned and sent to reducers, each of which

then calculates how much budget would be used if each segment were to receive an

allocation.

Since the slopes were partitioned to the reducers after being sorted, it is now

straightforward for a synchronization round to go through the reducers and figure

out the reducer index j* past which the aggregate allocation exceeds B. Finally, in

the second Map Reduce, the optimal resource allocations to each segment can be

computed given j* and, consequently, the optimal primal assignment.

4.3.4 Experimental Performance.

We implemented a shared memory parallel version of our algorithm using C++ and

OpenMP. The code can be found at: https: //sites .google .com/site/nips2014mrlp/

We run our experiments on a machine with dual 2.93GHz Intel Xeon 6-core proces-
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sors and 128Gb of memory. While our algorithm is ultimately designed to port to

the non-shared memory model, the purpose of this shared memory implementation

is to allow benchmarking versus: (i) state-of-the-art shared memory implementations

of simplex: the benchmark we use is CPLEX 12.5 (using primal simplex) and (ii)

first-order methods that are also amenable to distributed implementations: we pick

the primal/ dual method ("AW P/D") of Awerbuch and Khandekar (2008); Manshadi

et al. (2013) as a benchmark and note that this method also employs multiplicative

updates for the dual variables.

We test our implementation on a family of synthetic instances of Ad-Display and

AdWords problems. Each instance has 1mm impressions and 1mm advertisers. We

generate the matrix of bids from advertisers to impressions in the following way: for

each advertiser, we choose 100 impressions uniformly at random for which we assign

an edge (i.e., a non-zero bid.) At this sparsity, storing the bid matrix (represented as a

list) in memory requires 3Gb. We generate the bid values according to a factor model

that is designed to simulate "hot"/"cold" advertisers and impressions. In particular, for

each impression i, we generate a 5-dimensional feature vector #i with each component

drawn i.i.d. from a log-normal distribution. We also generate a similar feature vector

0 for each advertiser. We then set bi,a =< 0j, 0, > for each impression to advertiser

edge.

We choose advertiser budgets in order to simulate several load factor scenarios.

Depending on the instance type, we define its load factor in alternate ways:

L F= B," if instance is Ad-Display

F_. Ba if instance is AdWords1IE[bi,a]

We set the budgets Ba uniformly to achieve load factors taking values in {0.5, 0.75, 1, 1.5, 2}.

We heuristically initialize the multiplicative weight of advertiser a to be proportional

to the average bid going into a (Wa OC EZ bi,a/100.) For both sets of experiments, we

set E = 0.5. Also, we set a burn-in period for which still do the regular multiplicative

updates but which we do not count into the calculation of the primal solution; we
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use a burn-in of either 25 or 50 iterations and report whichever run results in fewer

iterations. As noted before, our algorithm works analogously if we relax the source

(impression) constraints rather than the resource (advertiser) ones; in the results

below, we report performance of the best.

Table 4.1 reports the number of iterations required for our algorithm to reach 95%

optimality and Figure 4-3 shows the speed of convergence for a particular Ad-Display

instance where we set the load factor to 1. We note that the algorithm is fast at

reaching 95% optimal solutions, requiring fewer than 100 iterations. Since in many

distributed frameworks such as MapReduce, the setup time to run one round is quite

high, an algorithm which requires a small number of rounds is highly desirable. The

slow convergence beyond the 95% point can be improved by lowering e at the expense

of slower initial progress.

Table 4.2 compares the wall clock times required by our algorithm versus CPLEX

and an implementation of AW P/D 1; we measure the time required to reach 95% the

optimal values for out set of Ad-Display and, respectively, AdWords experiments:

1. Comparison with CPLEX: Our algorithm is consistently as fast, if not better,

than CPLEX. This is quite surprising, since CPLEX is optimized for speed in

multicore shared memory environments.

2. Comparison with AW P/D: On Ad-Display instances, AW P/D has a running

time of almost a factor of magnitude larger and, in fact, the best approximation

we could achieve with AW P/D was only around 90% for some of our prob-

lems. Moreover, we observe that it requires a much larger number of iterations

compared to our approach. We interpret this as an indication that the buy

in our algorithm does not necessarily come from the use of a multiplicative

update rule, but rather from that fact that we solve a particularly tight relax-

ation of the original feasible space. On our AdWords instances, AW P/D is

competitive with our scheme and CPLEX; this is consistent with our intuition

that AdWords type instances should be easier to approximate due to the one

'We also use the primal initialization and dynamic stepsizes employed in Manshadi et al. (2013)
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Table 4.1: Iteration count to 95% optimality.

0.5 0.75 1 1.5 2Instance Typ
Ad-Display 52 48 59 55 73
AdWords 34 46 56 59 62

Figure 4-3: Progress per
LF= 1.

.2

0

V0

C

0

0

C>

to one correspondence between

constraints.

iteration for our algorithm for an Ad-Display instance with

1 1
80 100

the objective value and the advertiser budget

4.4 Conclusions.

We have proposed an algorithm for the classical Deterministic Linear Program that

forms the basis to solving many network revenue management problems of interest.

Our algorithm takes advantage of the special structure of the DLP to reduce the

problem of computing an optimal solution to the problem of repeatedly sorting a

large vector; compared to methods such as simplex which rely on a pivot or matrix

inversion step, this approach is particularly amenable to implementations in decen-
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Table 4.2: 95% optimality wall clock times (in minutes) for Ad-Display.

Ad Display
LF

0.5 0.75 1 1.5 2

MW 10.76 10.58 13.75 11.73 14.73
CPLEX 14.86 15 15.3 16.45 14.91
AW P/D Algo 86.66 110.2 132.2 >200 >200

Table 4.3: 95% optimality wall clock times (in minutes) for AdWords.

LI AdWords

0.5 0.75 1 1.5 2

MW 7.03 9.51 13.06 11.38 11.72
CPLEX 15.23 15 15.3 15.71 14.91
AW P/D Algo 8.8 12.3 20.1 78.1 180.6

tralized models of computation like Map Reduce, making it particularly attractive to

extremely high dimensional applications such display advertising or sponsored search

ad allocation where the data is so large that it must be distributed across multiple

machines.

We find quite surprising that, beyond the scalability properties mentioned above,

experiments suggest our method is highly competitive versus established linear op-

timization solvers which employ optimized simplex methods. Moreover, our method

versus is superior to other first order methods which are generic to packing/covering

LPs and which in theory would provide alternative candidates for Map Reduce imple-

mentations; this suggests that choosing our particular relaxation (instead of choosing

for example a relaxation where we relaxed all constraints is valuable.

There are several future directions we find interesting:

1. Alternating relaxations: Our algorithm works symmetrically for the cases where

we relax resource or source constraints. It would be interesting to see if an

algorithm which alternates between solving a resource constraints relaxation

and a source constraints one could yield better convergence.
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2. Parallel multiplicative weight rounds: Another natural extension is to ask whether

something one could run multiple multiplicative weight relaxations in parallel:

in particular, is there something to be gained by either (i) starting from k dif-

ferent weight vectors and running k multiplicative updates with difference seeds

or (ii) picking k different sets of constraints which can conveniently relaxed and

running the k different relaxations in parallel?

3. Warm start guarantees: As suggested, the setting that is most interesting to

us is one where the LP is solved repeatedly over the length of an ad campaign.

Access to warm starts could potentially strengthen the convergence guarantees

for our algorithm, as well as lead to better performance in practice.
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Conclusions

In this thesis, we tackle several problems specific to modern applications such as on-

line advertising; these problems are relevant in a broader scope to high dimensional

network revenue management. These applications are challenging due to their ex-

treme granularity - for example, an ad platform will observe hundreds of millions of

different customer classes in a single day's worth of traffic, whereas in more traditional

RM applications such as airline yield management the overall number of customer

classes would not exceed several hundreds.

The motivation for Part I of this thesis is that in regime where customer classes

are extremely fine grained, it becomes extremely difficult to forecast the idiosyncratic

evolution of each individual customer demand stream. Hence we focus on designing

schemes that (i) are robust to large demand shocks, (ii) make use of available historical

data, but (iii) do not require making sophisticated forecasts about the future evolution

of demand. To the best of our knowledge, our model predictive control approach

admits the first constant factor guarantees against arbitrary volatility for a broad

class of network revenue management problems including optimal ad allocation for

sponsored search and advertising. From a theoretical standpoint, these are the first

results of this type in the area of model predictive control. Lastly, the scheme yields

nearly optimal performance in our experiments with real ad traffic volatility.

While Part I deals with handling demand uncertainty at a global time scale, Part II

is concerned with demand uncertainty at the local time scale. In particular, assuming

that we were looking at a small enough timescale that the demand distribution driving

the arrivals of the different types of customers was static, we examine the sample

complexity of learning such a highly dimensional probabilistic object. Here we study
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a particular NRM model that is specific to optimal allocation for display advertising

markets. Its special structure allows us to arrive at a graceful dependence of the

sample complexity in the problem parameters; quite surprisingly, we in fact show

that under mild assumptions on the NRM instance, the sample complexity depends

quite gracefully on the number of customer types.

Part III of the thesis focuses on computational issues related to making the above

approaches practical at scale. We propose an algorithm for solving network rev-

enue management linear programs that tailored towards distributed computational

infrastructure such as Map Reduce. Remarkably, we observe that our algorithm also

benchmarks quite favorably in terms of speed against the state-of-the-art shared mem-

ory solvers for linear programming. Our algorithm leverages the special structure of

NRM LPs which are a special case of a packing LP; experimentally, we show that it

outperforms other generic paralellizable methods for packing.

More generally, considering the decreasing cost of acquiring data in recent years,

we expect that many other classical operational problems will become high dimen-

sional as customer behavior is modeled at increasingly granular levels, as has been the

case with the transition from advertising in traditional media to advertising over the

Internet. The present thesis attempts to introduce three prototypical challenges we

encounter in such novel settings and propose an optimization toolkit to tackle them

in systematic way. Lastly, we note our main area of application, online advertising,

opens up many other research directions in modern revenue management that can

build upon the present work.
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Appendix A

Proofs

A.1 Proofs for Section 3.2.

Proof of Lemma 1.2.2 Employing the notation aT1 -Tfo-Tdt, we have:

E [Ifoff(At)dt]

FE [ f" Atdt]

E [f(At)dt 1

TfO E[At] dt)

E[ ff(A,)dt]
> f ( I f T ,+ V -t

JO T
f ((A + y)+)

J-O f A + OT

I T F0min
0 J-COO

jTIl

Io T
1

{ / )
IfT a'tdt'A -T JO 2 -7

exp(_y2/2c ) dy dt
2

1

at-fr 0

-b (
- <D

e(Y 2/2cf)d dy dt

A+y exp(-y2/2)d
- t dy dt

y exp(-y /29t)dl dt
A+ u5Tjl/v --r V/2r

> 0.342
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In the above sequence of bounds, the first inequality comes from the fact that f(.)
was assumed non-decreasing, and the fact that for a Normal random variable with

mean M and variance o , one has

E[X+ +

so that E[At] ; At + -at /v/27. The second equality follows from Fubini's theorem. The

second inequality follows from property 3 of Lemma 1.3.7 applied to f(.). The final

inequality is Lemma 14 of Chen and Farias (2013).

A.2 Proofs for Section 1.3.2.

Proof of Proposition 1.3.1 Let {Zt} E HN be an E-optimal admissible control pol-

icy feasible for (2.3) (which exists for arbitrary E > 0, see Bertsekas and Shreve

(2007)). For a given sample path w, define

f Ai(e),tZe,d(t)1Ict}dt

f=' Ai(e),t

Then ze is feasible for (1.2) by the definition of e,t so that it yields a solution to (1.2)

of value no greater than J*AI(xo). Moreover, the value of this solution is precisely the

value garnered by {zt} on w. Taking expectations yields E J (}o] > J*,N ( 0 ) -'E.

Since our choice of E > 0 was arbitrary, the result follows.

A.3 Proofs for Section 1.3.3.

Proof of Lemma 1.3.2 Observe that the quantity of resource type k consumed by

edge e in the interval [jT/N, (j + 1)T/N) is at least

T min R A max R

N i(e),jT/NZe,jTnk,e i(e),jTN - '),jT/N ZejT/nAk,e
e L#~e~)j/ (
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It follows that the revenues garnered along edge e over that interval are at least

Te A "injT/NZejT/n - e (e a jT/N- A
\ Pe'fe

where Ce = maxje,,k:Ak0>o1 Ak,e'/Ak,e. It then follows that total revenues over the

interval are at least

E pezj T/nAi(e),jT/N + Peze jT/nAminjT/N - PeZejTnAi(e),T/N

- epe ej i() Ae",,j j ie',j

e e e

- : Z..C ePe E k(max,jN - i(e'),jT/N))
e e'$Ae /~l jI

> (13PeZeT /NAi(e),jT/N - C ( e)

T (LP
N

(jT/N, AjT/N, XjT/N)

T - jT/N Pe )

(e)jTN -Ai,jT/N)

i ,A max mi jnieTN- Ai(e),jT/N))

e

where C = max C,. Summing over intervals yields the result.

Proof of Corollary 1.3.3 Given the continuity of the sample path Ai,t in t for all

i, we have that:
N-1 N-1i

T lT
lim - AmaIN N= lim - %

j=0 j=0

for all i. The result then follows from Lemma 1.3.2.

Proof of Corollary 1.3.5 We begin with making two elementary observations. First,

LP(A, t, x - 6) LP(A, t, x) - E 15 6 eP>
k milne:Ak,> Ak,e

Second, LP(t, A, x) is a component-wise monotone function of x. These observations
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with the result of the balancing lemma then immediately yield:

LP (jT/N, AjT/N, iXjT/N)

T - jT/N

LP (jT/N, AjT/N, xo(N - j)/N)
T - jT/N

j 1 TA k,e ( Ai(e),T 1N -~~ e) T/N)

k .1=0 eI

E, Pe
mine:Ake,>o Ak,e

LP (jT/N AjT/N,xo(N - j)/N)

T - jT/N
N-[Z

+ M [N-

1=0

T (Amin
N i,1T/N

i

where M minkeAk oA,e (Ee Pe)KE. Consequently,

T N-1 LP (jT/N, AjT/N, XjT/N)

N j T - jT/Nj=0

LP (jT/N, AjT/N, xo(N - j)/N)

T - jT/N

LP (jT/N, AjT/N, xo(N - j)/N)
T -jT/N

N-1

+MT E
1=0 i

T
N (A mN - AmN)

(Amin -A m~a

(A.1)

Then, using the fact that the continuity of the sample path Ai,t in t for all i yields

T N-1 max T N-1mn
lim E AmT/N --m AT/N-

N N 'iTN =N N t3I
j=0 3=0

for all i, we may take the limit infimum on both sides of (A.1) to arrive at the result.

A.4 Proofs for Section 1.3.4.

Proof of Lemma 1.3.7 We have

1. That f(0) = 0 and f is continuous and non-decreasing follows immediately from

the definition of f.
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2. f(.) is concave since min {E, 1} is concave, and since summations preserve

concavity.

3. For w , min {, 1} =1and 1 by virtue of f being non-decreasing.

For w < v, since f is concave, and w, v > 0 with w/v < 1 we have f(w)

f(0 + w/v -v) w/v - f(v). Thus, f(w) > .
f (V) -V

4. The result is a consequence of Jensen's inequality.

Proof of Lemma 1.3.8 Define E RE according to Ze = Ze(t, A, x) min{Ai(e)/ui(e), 1}.

Observe that i is a feasible solution to LP(t, u, x). In particular,

Ak,e-eUjie)(T - t) = Ak,eZe(t, A, x) min{Ai(e)/ui(e), 1}ui(e)(T - t)
e e

<> A k,eZe (t , A, x)Ai(e)(T - t)

<Xk

where the last inequality is due to the feasibility of z(t, A, x) for LP(t, A, x). Fur-

ther, E E Z by construction. Now, the objective value of this solution is precisely

i=0 fi't,,x) (ui), and the result follows since the value of an optimal solution to

LP(t, u, x) should be at least as large.

A.5 Proofs for Section 1.3.6.

Proof of Proposition 1.3.12 Begin by considering a policy {f} defined according

to zt, = 0, zt,(2 = 1. Clearly, Ju(xo) = T4 /3 +E/2. Consequently,

JUB(X0) T4/3+6/2. (A.2)

Now consider our re-optimization policy with N = 1. It is easy to see that for this

policy, we have z =R 1. We now compute an upper bound on JR,1(xo).

First, note that E[A1,] = !fs and Var[A,,] = s(7r-1). Hence, for any 0 < t < T, the
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quantity fJ A1 ,,ds has moments E [f' Aisdsl = 2 t/ 2 and Var [f A1,sds] = 2

By Chebyshev's inequality, it follows that

[f 3 33 8(ir - 1) 1

0 A1,ds - I- +t2) > -t/2 - 9
S '2 2 ~4 ~ 9 t

In particular, with probability at least 1 - 8(i), f 0 A,sds > L + t3 / 2 . Now, define

T to be the solution to the equation T + 2T3/ 2 = T. One may consequently interpret4

T as the first time t at which xt = 0 assuming the A1 process followed its mean.

Now define the stopping time f according to i inf {t : f7 A1 ,s + A2 ,,ds > T}.

Now on the event where < r, we have:

SA1,ds = T - jA 2,,ds
0

> T - ] A2,,ds

3 /2

2 4

Consequently,

I A 2,,ds = T - jA1,sds0
~32

2 4
T

2

It follows that on the event whereT < ; we have:

JA} (xo) = T/ 3+E j A 2,8 + T - A2,8 ds
T T

< T1/ 3 +E +T -
2 2

On the complementary event, we consider the trivial upper bound

(R,)1 
4 /3 +E

{ At} -)
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Now notice that P (- < r) = P (fo A1 ,, + A 2,ds > T) 1 _ 8(7r-1) so that taking97-

expectations immediately yields with the above two inequalities:

JR,1(1) (i (A.3)9 /3+c 2

But it is easy to verify that T= E(T2/3), so that the right hand side of the above

inequality is in fact E(T+'). The result then follows immediately from (A.3) and

(A.2).

A.5.1 Proof of Theorem 1.3.14.

First, let us define

We begin with a simple proposition

Lemma A.5.1

LP(0, AjT/N, X 0 )
T

1jT

Proof We have

j=0

LP(0, AT/N, XO) 1
TT

LP(0, At, xo)dt > - maxp f(N)
e

I T

1 N--T
> LP(OAjT/NXO) -
j=0

LP(0, At, xo)dt

LP(0, AmaN, T)

> - maxpe f(N)
e

where the first inequality follows from the monotonicity of LP(.,-,-) in its second

argument, and the final inequality follows from the fact that for any 6 > 0 and any
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u, x > 0, we must have

LP(0, u + 6, x) - LP(0, u, x) maxPeZ(ie

We next define a few useful'error terms', namely hi(N) = TC(E pe)Ef (N), h2(N)

MT2 f(N) , and finally h3(N) = maxe pef (N). The constants C and M are defined

in Lemma 1.3.2 and Corollary 1.3.5 respectively. It will be useful to characterize the

rate at which these terms approach zero. In particular, define

g(N) = h1 (N) + h2(N) + h3(N).

We have:

Lemma A.5.2

lim sup g(N) < C'o-i a.s.
N 12 log N/N

where C' T C(Ze pe) E + MT2 + maxe pe. Consequently,

lim sup E [g(N) C
N V2 log N/N

Proof We have that for almost all w and N sufficiently large,

g(N) = C'f(N)

N-1

E 

C' N )7max (Ai"jT/N -An/N)

i j=0

~C1V mXaxJ/ i,j/
Max ( AiTmN - nnT/N,

From the modulus of continuity of the sample paths of the rate process, Theo-

rem 1.3.13, we have that

lim sup g(N) < C' -i a.s.
N \2 log N/N -

134



An application of the reverse Fatou's Lemma yields

lim sup E [g(N)] < C' S
N /2log N/N -

We are now in a position to prove our result. In particular:

R,N( T N-1 LP(jT/N, AjT/N,XjT/N) h1(N)
A^XX Y - N T - jT/N

j=0

>T N-1 LP(jTN, AjTN,xo(N - j)/N) hi(N) - h2 (N)
N L:T - jT/N

T N-1 LP(0, AjT/N,xo) _ hi(N) - h2 (N)
= N ET h( 2N

j=0

1 I LP(0, AT, Xo)dt - hi(N) - h2 (N) - h3 (N)

where the first inequality follows from the proof of Lemma 1.3.2, the second inequality

follows from the proof of Corollary 1.3.5, the equality follows from the fact that

LP(t, A, x(1 - t/T)) = TfLP(O, A, x), and the final inequality follows from Lemma

A.5.1. Now, taking expectations yields

E [J (o)] E [1 LP(0, AT, xo)dtl - E [g(N)]

> O.342E [Jg;(xo)] - E [g(N)]

where the second inequality follows from the proof of our approximation guarantee

in the setting with a large number of re-optimizations, Theorem 1.3.9. Defining

A(N) = E [g(N)] with the result of Lemma A.5.2 yields the proof of the Theorem.
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A.6 Proofs for Section 1.4.2.

Proof of Lemma 1.4.1 Let us define p =" maxe p, and A maxk,e Ak,e. We begin

by observing that

J- (xo) =T p ((1 _- )seadR) + /Ze d(t)) Ai(e),thI[,tdt

jT Pe ((1 - /3) (t) + !3eid(t)) Ai(e),tdt

k (1 f
T

Ak,eAi(e),tZe R-dt - XO,)

(A.4)

(1 - O)JS jA~j(XO) + 3JD,{A,}(xo)

k

k

Ak,e(1 - )Ai(e),t etdt - (1

Ak,eOAi(e),ts ed - OXO,k

( f 
T

(jT

Next, observe that

Pr N-1

e jT IN Ak$e),jT IN
j=O e

N-1

j=0 e

PT Ak,eAi(e),jT/N +
-1 e

N-1

AejT/N

zD AkeieTN+A\ Jmax
e jT/N / kei(e),jT/N

j=O e

- Ai(e),jT/N

- Ai(e),jT/N

(A.5)

But for any i,

Aj/N - AijT/N = 0lim TN
j=0

by virtue of the continuity of Ai,t and further,

limTH Z jT/N Ak,eAi(e),jT/N = ZDAk,e
j=O
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since Ai,t is continuous in t for all i. Since, by the definition of zD, we have that

e zeAk,e f' Ai(e),tdt < xo,k, it then follows from (A.5) that

lim sup j Ak,eAi(),ti Dtdt < XO,k
N e 0

for all k. Consequently, for all k,

AjT A,3A (e),tD dtik~ e),t e't - 3Xo) + EA a A ,

the dominated convergence theorem allows us to conclude that for all k,

lim E jTAk,e3Ai(e),t D dt - /xo k =0. (A.6)

Further, we must have that

SI T Ak,eAi(e),te dt XO,k + max (A/N - A/N

by virtue of the dynamics of .0 and the definition of ZR/N which guarantees that

Ake4ed(t) =0 if -dR = 0. It follows that

lmj j Ak,e(1 - #3)Ai(e),t. R dt - (1

As in (A.6), the dominated convergence theorem applies to yield

lim E Ak,e(l - 3)Ai(e),t i dt - (1 - O)XOk)
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lim Ak,e!Ai(e),t D dt - xok

Now, since

-- )xok

-0 (A.7)



Taking an expectation followed by the limit infimum on both sides of (A.4) then

yields by (A.6) and (A.7) the result.

A.7 Proofs for Section 1.4.3.

Proof of Lemma 1.4.4 Let us define the process At according to Xt = (At - At)+

and observe that At satisfies the conditions of Theorem 1.3.9. Now, we have:

E [J R (xo)
lim inf >

N E [JB (XO)]

E

E J (xo)

- - T N-1 LP(jT/N,A&jT1/N,&(N-j)N 1
E minf N j=O T-jT/N

E [JU (xo)]

where the first inequality is a consequence of Fatou's lemma and (1.6), and the second

inequality follows from the monotonicity of LP(t, A, x) in A, and the fact that At Xk.
The remainder of the proof is then identical to Theorem 1.3.9.

Proof of Lemma 1.4.6 We have

JUB(x) + JUB () LP 0 4

LP 0

LP 0

ITAtdt, O +T LP_,(At - At)+ dt, xoIT~
At + (At - At)+dt, xo

TAtdt, x)

= JUI(Xo)

The inequality follows from the concavity of LP(t, u, x) in u and since any concave

function h : R+' - R with h(O) = 0 must be super-additive. The second inequality

follows from the monotonicity of LP(t,u, x) in u and since At + (At - At)+ > At.

Taking expectations in the inequality above yields the result.
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A.8 Proofs for Section 3.2

Proof of Lemma 3.2.1. Define, for each impression type, the frequency count

CT(x) = I{Xt, t E [T] s.t. Xt = x}1, as well as the linear program

LP(CT) - max 1 1 r1(x E Xa)z(x, a)CT(x)
a xEX

subject to 1 z(x, a)CT(x) TBa
xEX

Zz(x, a) 1
a

Z >0.

Now consider an c-optimal sequence of controls o = {o1, ... , oT} for OPT(T, TB),

which must exist for arbitrary c > 0 (Bertsekas and Shreve (2007)). Fix some real-

ization w of impressions arrivals, and let be such that

i(x, a) = (X )

Since o is a sequence of admissible controls, one can show by a simple induc-

tion argument that E ot < TB so is feasible for LP,I(CT). Taking expecta-

tions yields OPT(T, TB) - < E[LP(CT)]. Since the choice of E was arbitrary,

OPT(T, TB) E[LP(CT)]. The lemma follows from the fact that E[LP(CT)] TLP

by Jensen's inequality.

A.9 Proofs for Section 3.2.1

We first prove the following lemma which bounds the revenue loss from using an

optimal bid price control versus a primal optimum solution to the linear program

given any distribution v that satisfies a granularity condition. (We note that the

granularity condition involves a term p which we have defined with respect to the

true distribution p; this will allow us to quantify the error from the bid price policy
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in terms of the magnitude of LP,,.)

Lemma A.9.1 For any v that is c-good,

LP, - Rev,(3,) eLPt,,

where 0* E arg min D-LP,.

Proof Through randomly perturbing the allocation rewards by by an arbitrarily

small amount 6(x, a) before we solve the dual problem, we can guarantee that with

probability, there can be at most m ties in the adjusted bids (this is a standard

argument in the literature; for a more in-depth treatment of this issue, see Agrawal

et al. (2014).) The loss from setting all allocations with ties to 0 is at most

LPV - Rev,(z") mrmax max v(x)
xEX

<ELP/.

Proof of Lemma 3.2.3. We make use in the proof of the following simple bound

on the tails of a binomial random variable:

Fact 1 (Dudley (2002)) P [Bin(N,p) k] (Ip)k ek-Np if k > Np, where Bin(N,p)

is a binomial distribution with N trials and success probability p.

Let us bound the probability that j is E-bad.

E [I|NII. ' EpP Z [N(x) P-
XEX

< nP Bin N,P+) pl
M eNpNp (1-

< n -(LNP
4 e Np
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where the first inequality is a union bound over x E X and the third inequality uses

Fact 1. In order to make this probability lower than some 6, one must hence choose

4m log i
N=

pC log m
4 m log '
p f logim

A.10 Lemmas for Section 3.4

Lemma A.10.1 Consider a random variable XN -N j1 Y, where the Y 's are

a sequence of i.i.d. Bernoulli random variables with E[Yi] = p,o-(Y) = o-, and a

threshold b > 0. Then,

1.

E [min {b, XN} - min {b, pj i < + 3 N
f227rN N

2. In the special case that b = p,

IE [min {b,XNI - min {b, p] I
2wrN N

Proof We prove both of these results by approximating XN with a Gaussian random

variable for which the computation of the above error is easy. For part 1, by triangle

inequality,

IE [min {b, XN} - min {b, p}]I IE [min {b, Z} - min {b, p}]I

+|E [min{XN - p,b - p} - min{Z - p,b - pj}],

where Z is a Gaussian r.v. with mean and variance identical to XN's. By Lemma

A.10.2, we can bound the second term from above by 3( 2). We will now give precise

bounds on the first term (where we have replaced XN with Z), which will asymptot-

ically dominate the second.
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Case 1: b < y. Then,

JE [min {b, Z} - min {b, p}]l = E [(Z - b)-]|

E 
| [(Z -

=E [(Z -p+

/2irN

where we have used the assumption that b < /p in the first inequality, and the fact

that, if if Z is a 0 mean Gaussian, E[Z+] - aZ)

Case 2: b > /t. For this case,

IE [min {b, Z} - min {b, p}1] = E [min {Z - y, b - p}]
1
IE
2

1
K E [Z

[min { Z - p, b - 1}IZ - / > 0]

I E [min {Z - /, 0}1]

v27rN'

where we have used the fact that in the first inequality, E [min {Z - y, b - P} IZ - t > 0]

is positive due to b > p and less than E [Z - p IZ - p :5 0] by the symmetry of Z.

Proving part 2 of the lemma is similar, except that now we bound

|E [min {b, XN} - min {b, p}] = E [(XN - p)

> |E [(Z - pi)-]|I-|JE [(XN - -(Z -p-]

> __a 3(1 - 2p)
/2rN N

where we have used the reverse triangle inequality in the first inequality, and for the

second, Lemma A.10.2.
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Lemma A.10.2 Consider a random variable XN k -I- Yi, where the Y 's are a

sequence of i.i.d. Bernoulli random variables with E[Y] = p, a(Y) = or. Then there

exists a Gaussian random variable Z such that E[Z] = E[XN], a(Z) = c-(XN) and

3(1 -- 2)
IE [min{XN- p,b tp - min{Z - p,b - }]| = N 

Proof For notational convenience, let f(x) = min{x - p, b - p} and notice that f is

a 1-Lipschitz function. Moreover, let WN W i - y) be the transformation

of XN into a random variable with standard normal mean and variance.

The expression in the statement of the lemma becomes

|E [f(XN) - f(Z)]I < sup JE [h(XN) - h(Z)]|
h:jh'I ,<1

dw(XN, Z)

= dw(WN, 0 (Z -

a 3E [(Yi - p|io)]

3(1 - 2p)

N

where we have used the Lipschitz property of f in the first inequality, used the

definition of the Wasserstein metric in the first equality, applied Proposition A.10.3

for the second inequality, and used the fact that E[Y - p3 (I_ /)3 _ __ 3

for the last equality.

Finally, we state the following finite sample Central Limit Theorem convergence

result under the Wasserstein metric, which we used in the proof of the above lemma;

the result is derived using Stein's method and a proof can be found in Chen et al.

(2011).

Proposition A.10.3 Consider a sequence X 1 ,..., XN of independent random vani-

143



ables with E[X ] = 0, E[X'] = 1 and E [1X |3] < oc. Then,

N

dw(WNZ) < E[X 13],N3/2 ZiIiI]
i=1

where dw is the Wasserstein distance defined as

dw(U,V)= sup IEh(U)-Eh(V)I,
h:jh'IIo <1

WN j=1 X, and Z is a Gaussian random variable with mean and variance

equal to WN s.

A.11 Lemmas for Section 3.4

Lastly, we the Bounded Differences Inequality which we have used for Lemma 3.4.2

(a proof of this inequality can be found in Motwani and Raghavan (1995)):

Proposition A.11.1 (Bounded Differences Inequality.) Suppose that f : Rn -+ R

satisfies, V1 < k < n,

if (X1, . .. , Xi, ... ., Xn) - f ( li, . . i ., X',.. , n)| < L

Consider a vector X = (X 1 ,..., Xn) with independent components. Then,

IP [f(X) - E[f(X)]I ;> t] 2 exp 2

A.12 Proofs for Section 3.5

Proof of Theorem 3.5.1. We first consider a policy which goes through the im-

pression types in X in sequential order and assigns each x to the advertiser a(x) (as

defined in Generative Model 1). Define N(a) C X to be the set of impression types

which this procedure allocates to advertiser a. Viewing the procedure above as assign-
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ing balls (impression types) to random bins (advertisers), it follows from Berenbrink

et al. (2000) that with probability 1 - o(1),

N(a) < - + 0m) , Va E [iM].

We show that this assignment of impressions to advertisers leads to a feasible allo-

cation (which is a lower bound on the expected value of LP,,) with expected value

E(1).

Since in order to guarantee feasibility we have to truncate the allocation into an

advertiser by that advertiser's budget, the expected size of the matching becomes

E ra min Ba, (x)}
a I xEN(a)

raE min Ba, 1Z (x)}1
a I xEN(a)

raE min Ba, Y 1L(x) |Ba> II P Ba i
a xEN(a) -n

= I: ra E min ,W~x
a rI xEN(a)

where we have used property (2.b) of the generative model in the last line.

Furthermore, since Ea N(a) = n and maxa N(a) < n/m + O( " * "') with high

probability, the following event has probability o(1):

{= a s.t. N(a) <-- - O(m n logr- m9m)
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In addition, let N = - - O( nmlog m). Hence

E[ ramin Ba, Na It(x)

a XEN(a)

raE min pI~)

> Vre 1:MWa I XEN(a)

>a E min :P W) IEG, E PX JN(a)J

a I xEN(a) xEN(a)n

P [Sc] p P(x)> IN(a)I1

LxEN(a) -

> a#(1 - o(1))5 rE min{ I,1 ( rirnlogm)

O(ravg),

where for the second to last inequality we have used property(3.b) of our generative

model definition along with the high probability guarantee on the event E, and for

the last equality we have assumed the condition "logM = o(1) that our generative

model assumes. Since our allocation policy was suboptimal, the theorem follows.

A.13 Proofs for Section 4.3.1

Proof of Lemma 4.3.3. Let us begin by writing down the complementary slackness

conditions for the optimal u, v, z:

U E Ceze - B' = 0

(e:i(e)=i

V E Ze = 0

(e:i(e)=i

ze (UCe + v -pe) = 0, Ve subject to i(e) = i.

There are three cases:
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1. u = 0, v > 0. Then, Ee:i(e)=i Ze = 1 and the optimal primal is found by

allocating fully to the edge e with maximum price pe. This follows from the

feasibility condition uce + v > pe, Ve subject to i(e) = i, so only the ze with

maximal price can be positive. Note that we are assuming here there is a single

item with maximal price - this can achieved without loss of generality by an

arbitrarily small random perturbation of the price vector.

2. v = 0, u > 0. Similarly to the first case, it follows from the complementary

slackness conditions that it is optimal to fully allocate along the edge e with

the maximal ratio pe/Ce.

3. u > 0, v > 0. Thus implies that Ee:ie)(i Ze =1 and Ee:i(e)=i CeZe = B'. By

construction of the envelope, we cannot have more than two tight constraints

V + UCe - Pe = 0, so by the last complementary slackness condition only two ze's

can be positive. Therefore, we can completely identify the primal solution.

In either case, the solution can be determined using no more than O(d) calcula-

tions.
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