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Abstract

This thesis consists of three papers on semiparametric estimation in various econo-
metric modeis. Panel models are the focus of the first two chapters, and mismeasured
dependent variables are the focus of the final chapter.

The first chapter considers a panel version of the linear transformation model, in
which the dependent variable is subject to an unknown, strictly monotonic transfor-
mation. Examples of the model include the multiple-spell proportional hazard model
and dependent-variable transformation models (e.g., the Box-Cox model). Two al-
ternative estimators are shown to be consistent and asymptotically normal.

The second chapter demonstrates that the maximum score estimator can be used
to consistently estimate the parameters of a general linear index panel model. The
model places no restrictions on the fixed effects, requires only weak nonparametric
assumptions on the error term, and allows for general forms of censoring and trun-
cation. A smoothed version of the estimator is shown to be asymptotically normal
(with a convergence rate approaching n='/2).

The third chapter, joint with Jerry Hausman, considers mismeasurement of the
dependent variable in a general linear index model. The monotone rank estimator
is shown to be consistent in the presence of any mismeasurement process that obeys
a simple stochastic-dominance condition. The proportional hazard model, with an
application to unemployment spells, is studied in detail.
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Introduction

This thesis consists of three papers on semiparametric estimation of econometric
models. The work builds upon that of Manski (1987) and Han (1987), both of which
introduce estimators that use only the ordinal information contained in the dependent
variables. These techniques are shown to be useful in the context of panel data ‘1 ydels
and in the presence of mismeasured dependent variables.

The first two chapters introduce consistent estimators for two different fixed-effects
frameworks. Much has been written about the difficulties of consistently estimating
the parameters of fixed-effects panel data models. The standard first-differencing
trick which eliminates the fixed effect from a linear model extends to only certain
nonlinear models, including the conditional logit model for binary data, the Poisson
model for count data, and certain parametric models for duration data. Each of these
models share an exponential form which allows for cancellation of the fixed effect akin
to first differencing in the linear panel model. Semiparametric methods, which do not
require any parametric assumptions on the error term, exist for consistent estimation
of the binary choice model (Manski (1987)) and the linear censored and truncated
models (Honoré (1992)). '

The first chapter considers a panel version of the linear transformation model,
in which the dependent variable is h(y,) for an unspecified, strictly increasing h.
Examples of the model include the multiple-spell proportional hazard model and
dependent-variable transformation models (e.g., the Box-Cox model). No restrictions
are placed on the fixed effect. Two alternative estimators, a “change” estimator and
a “leapfrog” estimator, are proposed. The “change” estimator is derived by noting
that the model can be transformed into a semiparametric binary response model.
The “leapfrog” estimator, which also allows h to vary over time, is a variation on
the mazimum rank correlation estimator of Han (1987). The proposed estimators
are shown to be /n—consistent and asymptotically normal. Specification testing is
discussed, using a general covariance result for such estimators. Monte Carlo evidence
is reported, and an empirical application to the consumption smoothing effects of
unemployment benefits is considered.

The second chapter demonstrates that the mazimum score estimator of Man-
ski (1987) can be used to consistently estimate the parameters of a general linear
index panel model. The model is one in which the dependent variable y; is a mono-
tonic function of the linear index z,4. The model places no restrictions on the fixed
effects, requires only weak nonparametric assuinptions on the error term, and allows
for general forms of censoring and truncation. A smoothed version of the estimator



has a convergence rate between n~%% and n='/2.

The third chapter, joint with Jerry Hausman, considers mismeasurement of the
dependent variable in a general linear index model, which includes qualitative choice
models, proportional and additive hazard models, and censored models as special
cases. The monotone rank estimator of Cavanagh and Sherman (1992) is shown
to be consistent in the presence of any mismeasurement process chat obeys a simple
stochastic-dominance condition. We consider the proportional hazard duration model
in detail and apply the estimator to mismeasured unemployment duration data from
the Survey of Income and Program Participation (SIPP).

These three papers have the common theme that throwing away information about
the dependent variables can actually help matters in certain situations. In the first
two chapters, the ordinal information contained in the dependent variables is used to
develop consistent semiparametric estimators for models for which no consistent es-
timators were previously known. In the third chapter, estimators that use the actual
values of the dependent variable are shown to be inconsistent when the dependent
variable is mismeasured; however, an estimator that uses only the ordinal information
of the dependent variables remains consistent for a wide range of possible mismea-
surement processes, all of which share the property that the ordinal information is
correct “on average.”

The aforementioned estimators are somewhat computationally intensive since the
underlying objective functions are not smooth and alternative optimization techniques
need to be applied. With the rapid increase in computing speed of recent years,
however, estimators like those discussed in this thesis are sure to see more widespread
use in empirical work.
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Chapter 1

Estimation of the Linear
Transformation Panel Model

1.1 Introduction

The linear transformation model has received much attention in the statistics and
econometrics literature. Most research has focused on the non-pancl mode!

hMy))=z:f+¢ (i=1,...,n) (1.1)

where h is a strictly increasing function.!
When h is left unspecifiec, semiparametric techniques can be used to estimate 8 up
to scale. The methods of Cavanagh and Sherman (1992), Han (1987b), Ichimura (1993),
or Powell et. al. (1989) all yield \/n—consistent estimators of 3. With an estimate of
[ and an i.i.d. assumption on ¢, one can even nonparametrically estimate A and the
distribution of € using the techniques of Horowitz (1996) or Ye and Duan (1995).
This paper considers the panel version of (1.1):

h(yi) =zaf+m+oi+e (i=1,...,n,t=1,...,T), (1.2)

where a is a fixed effect and v is a time effect.? The focus of this paper is on estimation
of 3, the coefficients on the time-varying covariates. Since h is left unspecified, the
goal is to estimate 3 up to scale. Time-invariant covariates are not included explicitly
since they can be thought of as being part of the fixed effect. The semiparametric
methods developed in this paper will only identify the coefficients on the time-varying
covariates. We focus on the two-period model (T' = 2), with extension to larger T
discussed in Section 1.6. Our notation is Az = z; — z), and similarly for other
variables.

The aforementioned estimators of § in the non-panel setting are not applicable

10f course, h could be strictly decreasing. In that case, define h = —h so that k satisfies (1.1)
with —0 as the parameter vector.
2 A location normalization h(0) = co is required for identification of the time effect relative to z/3.
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to the panel model due to the possible correlation between the fixed effect « and the
regressors. The first-differencing method used to partial out the fixed effect in the
linear panel model can not be extended to our more general setting. First-differencing
kills the fixed effect but leaves h(y,)—h(y,) as the dependent variable. For unknown h,
the value of the dependent variable is not known, making standard within estimation
impossible.

Transforming the c'ependent variable incorrectly and performing within estimation
yields inconsistent estimates. If h is the true transformation of the dependent variable
but g is the strictly increasing transformation used by the econometrician, we have

9(p2) —g(y1) = gh N (zB+n+ate))—gh ' (@B+m+ate))
-1
= dg(h”(2) 9(h~(2)) (Azf + Ay + Ae),
dz

where 2 is some value between z,5 + v, + a + €, and 728 + v, + a + €3 (applying the
mean-value theorem). When g and h are not scalar multiples of each other, d—”—("d—;lim is
nonconstant, resulting in inconsistent estimates of 3 due to the correlation betwecn 2
and Az. The degree of misspecification of g will determine the extent of the problem.

To avoid the problems with the within estimator, we consider semiparametric
techniques for estimating 3 up to scale. In Section 1.2, we discuss some interesting
examples of the linear transformation panel model. In Sections 1.3 and 1.4 cf this
paper, two estimators of 3 in (1.2) are proposed, and /n-consistency and asymptotic
normality of the estimators are proven. The estimators are nonparametric with re-
spect to the distribution of the error term € and place no restrictions on the fixed effect
o. The “change” estimator of Section 1.3 uses within-individual, across-time compar-
isons of dependent variables (looking at Ay;). The “leapfrog” estimator of Section 1.4
instead uses across-individual, within-time comparisons of dependent variables (com-
paring y;, against y;, for ¢ # j). Section 1.5 reports the results from a Monte Carlo
experiment using the estimators nroposed. Section 1.6 presents a general covari-
ance theorem as well as applications of the theorem, including several specification
tests. Section 1.7 considers an empirical application that examines the consumption-
smoothing effects of unemployment insurance. Section 1.8 concludes. The Appendix
discusses computational issues and contains pronfs of the theorems.

1.2 Applications

Before discussing the estimators, we motivate the paper with a few examples that
satisfy (1.2). The common feature in the examples is that leaving h unspecified
in (1.2) allows for greater flexibility and robustness in the estimation.

1.2.1 Multiple-Spell Proportional Hazard Models

Most of the literature on proportional hazards models, in both the single- and multiple-
spell models, uses a random-effects approach to model heterogeneity. The obvious
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drawback of this approach is that the heterogeneity is assumed to be independent of
the covariates. For multiple-spell models, panel data allows the possibility of using a
fixed-effects approach where heterogeneity can be correlated with the cevariates.

Examples of multiple-spell models which have been studied in the fixed-effects
framework are consumer purchasing behavior (Goniil and Srinivasan (1993)) and
child mortality (Olsen and Wolpin (1983)). The existing fixed-effects estimation
techniques require some specification of the baseline hazard. Chamberlain (1985),
for instance, considers marginal and conditional likelihood methods for eliminating
the fixed effect in models with Weibull, lognormal, or gamma specifications. Goniil
and Srinivasan (1993) propose a concentrated-likelihood method which can be used
regardless of the functional form of the baseline hazard, but the chosen baseline en-
ters into the concentrated-likelihood function. The estimators of this paper effectively
climinate the fixed effect without having to make any assumptions about the baseline
hazard.

The proportiona! hazards model, incorporating fixed effects, specifies the hazard
function

f(1) = A7) exp(zaB + 1 + ai), (1.3)

where A(-) is the baseline hazard function and t indexes spells (rather than calendar
time). The z;, differ over spells but remain constant within a given spell.
If y;, is the duration of spell ¢ for individual 7, equation (1.3) yields

h(yie) = zuB + 1 + o + € (1.4)

where € has the extreme density (i.e., g(¢) = exp(e — exp(¢€))) and

h(y) = In /0 ¥ Mr)dr.
Since this model fits into the linear transformation panel framework, 8 can be esti-
mated consistently (up to scale) without having to specify the baseline hazard function
which determines h. Using the results of Section 1.6, one could do a specification test
of a specific functional form for the baseline hazard.

There are a few drawbacks to the semiparametric approach. First, since the
baseline is not parametrically specified, duraticn dependence can not be inferred.
(The two-stage estimation technique discussed below can be used if one is willing
to specify a parametric family for the hazard function after estimating 3.} Second,
much of the interesting duration data are censored in some way. The estimators of
this paper do not apply when y is censored. Extension of the estimators to the case
of truncated and censored y is being pursued in a separate paper.

1.2.2 Dependent-Variable Transformation Models

Even when economic models are able to make qualitative predictions, they do not
always suggest the functional forms that should be used to test the predictions in
empirical work. In an effort to allew the data to guide the choice of functional form,
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parametrized transformations of variables have been considered where the transfor-
mation parameters are estimated along with the other parameters of interest. In
this paper, we focus on transforniation of the dependent variable and allow for an
unknown strictly monotonic transformation. The proposed estimators can estimate
B without having to jointly estimate the transformation parameters.

The most widely used parametrized transformation is the Box-Cox transforma-

tion:
[ @ -1)/x ifA>0

with A to be estimated along with the other parameters.

Maximum likelihood estimation (MLE) can be used to estimate the Box-Cox panel

m~del. The estimation, which requires a parametric assumption on ¢, is slightly more
complicated than in the non-panel case (see Abrevaya (1996)). One can also first-
difference the model and use the non-linear instrumental variables (NLIV) technique
of Amemiya and Powell (1981), which does not require any parametric assumptions
on the error term. First-differencing (with A constant over the two periods) gives
A )
@ = Azf + Ay + Ae. (1.6)
The NLIV technique requires use of enough moment conditions (stemming from inde-
pendence of the z’s and their interactions from the error disturbances) to estimate 3,
A7, and A.

More generally, MLE or NLIV can be used to estimate any model where the
strictly monotonic h is parametrized by A (possibly a vector), and (1.2) is rewritten

h(y,, A) = 2B+ 1 +  + €. (1.7)

For each A, h(-, A) is a strictly increasing transformation. For A to be identified, we
need
A, AZ(/\I # /\2) and a,b € R s.t. h(y, /\1) = ah(y, /\2) +bVy e R.

First-differencing yields
h(yz, A) = h{y1, A) = AzfB + Ay + Ae. (1.8)

Bickel and Doksum (1981) have shown that the joint estimation of 3 and A in
the Box-Cox model is sensitive to correct specification of the model. That is, if the
estimate of A is incorrect, it can have large effects on the estimate of 3. Also, it might
be the case that none of the transformations from the chosen parametrized family is a
correct specification of the model, in which case the estimate of 3 will be inconsistent.
We can avoid these problems by estimating § consistently in a first stage using the
“change” or “leapfrog” estimator, neither of which uses any information about A.
Then, in a second stage, a consistent estimate of A (if (1.7) holds) can be obtained
using a first-stage estimate §.

14



For the second stage, we propose NLIV using interactions of the z’s as instruments.?
Since 3 only estimates 8 up to scale and doesn’t estimate an intercept term, we will
need to estimate scale and intercept coefficients in addition to A. Plugging § into (1.8)
yields )

h’(y21 ’\‘) - h(yh ’\) =a+ b(A:L‘ﬂ) +u,

where u is independent of the z’s under either of the assumptions on the error term
needed for consistency of the “change” and “leapfrog” estimators. The independence
gives moment conditions that can be used for NLIV estimation. For instance, we have
E[u'z,) = E[u'Az] = 0, as well as moment conditions using any interactions of the
z's as instruments. As long as enough moment conditions are used, we can estimate
(a,b, A) consistently. One needs to correct the standard errors for these estimates
appropriately, taking into account the use of the estimate B rather than the true .

1.2.3 Repeated Ratings Data

Consider a situation where n objects are rated by some entity over several time periods
indexed by ¢. For instance, colleges are rated by students and administrative officials
in national publications each year, products are rated by consumers, employees are
given performance ratings by their employers, students are rated by testing agencies,
etc.?

Let R; denote the rating given to object 7 in year {. We hope to explain variation
in ratings with time-varying characteristics of the objects. There’s no reason to expect
that the ratings themselves are a linear function of intrinsic quality. For instance,
the quality difference between the top-rated college and the 20th-rated college is
probably much larger than the quality difference between the 100th- and 120th-rated
colleges. Rather than trying to specify the exact nature of the nonlinearity, we say
that perceived quality is an unspecified, strictly increasing function of rating in each
period,

Qit = ht(Rit)-

Then, the linear regression of quality on time-varying covariates and a fixed effect
becomes

hi(Rit) = zuf + v + i + €41 (1.9)

The fixed effect a can pick up any time-invariant covariates as well as any reputation

3Han (1987a) offers a semiparametric alternative which can be generalized to the panel setting
to estimate A. Given [, the estimator A maximizes (over ¢)

Y UAziB > Az;B)1(h(yi2, &) — h(yir, &) > h(yj2, ) — h(y;1,0)).
i#]

4The key here is that the ratings of the objects are comparable, which is why we stress that
they are rated by the same entity. If different entities rate different objects, it's impossible to
compare the ratings. This problem is analogous to trying to compare different consumers’ utilities
in microeconomics.
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effects that might exist. Notice that (1.9) is a linear transformation panel model
where the transformation is indexed by time. The “leapfrog” estimator of Section 1.4
will be shown to be consistent in such a situation.

1.3 “Change” Estimation

The linear transformation panel model can be estimated using within-individual in-
formation after a transformation to a binary response model. If Ac is i.i.d., note
that

Pr(Ay > 0|Az) = Pr(h(y2) > h(y1)|Az)
Pr(AzfS + Ay + Ae > 0)
F(AzB + Avy)

where F' is the c.d.f. of —Ae. Putting an i subscript on h(:) does not affect this
derivation. As long as h is the same for a given observational unit at each time period,
the “change” estimator will be consistent. In contrast, the “leapfrog” estimator of
the next section will be consistent as long as h is the same in a given time period for
each observational unit.

Defining d = 1(Ay > 0), one can estimate a binary response model with dependent
variable d, independent variables Az, and an unspecified increasing F : R — [0, 1].
If one is willing to assume the form of F, an efficient estimate (within the class of
estimators using binary data for the dependent variable) can be obtained using MLE.
When F is assumed to be unknown, several semiparametric \/n—consistent estimators
can be used, including those developed by Han (1987b), Ichimura (1993), and Klein
and Spady (1992).°

We discuss Han’s MRC estimator because of its computational ease and its simi-
larity to the “leapfrog” estimator proposed in the next section. Specifically, let 3, be
the estimator that maximizes the objective function

i£j

over the set {b € RF|by = 1}. A normalization is needed here since 1(Az;b > Az;b)
is not affected by the scale of b (i.e., 1(Az;b > Az;b) = 1(Az;i(cb) > Azxj(cb)) for
¢ > 0). The MRC estimator also does not identify A~y since 1{(Az;b > Az;b) is not
affected by addition of a constant (i.e., 1(Az:b > Az;b) = 1(Az;b+c > Az;b+c) for
all ¢).

5To test a specified distribution for ¥, one can perform a Hausman (1978) test of the parametric
estimator versus a semiparametric estimator. The former is efficient under correct specification but
inconsistent under misspecification.
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B. can be interpreted as a rank estimator since it maximizes

2Rank(A:z:.-b)dh (111)

where the Rank(-) function is defined as follows:5
Az b < Azi,b< ... < Az, b = Rank(Az;,b) = m. (1.12)

For consistency and asymptotic normality of B., we need several assumptions.
Throughout the paper, we follow closely the notation used by Sherman (1993) and
Cavanagh and Sherman (1992).

Assumption 1 [ is an interior element of the parameter space B, a compact subset
of {b € R¥|by = 1}.

Assumption 2 Az is an i.i.d. k-dimensional random variable s.t.:

(1) The support of Az is not contained in a proper linear subspace of RE.

(i1) The k’th component of Az has everywhere positive Lebesgue density, conditional
on the other components.

Assumption E. Aec is an i.i.d. random variable.

A final assumption requires further notation. Let z = (yi,¥2, Az) denote an
observation from the set S C R x R x R*. For each z € S and b € B, define

d(z) = 1(Ay > 0) (1.13)
and
1(2,b) = Ez [{d(z) > d(Z)}{Azb > AXb} + {d(Z) > d(z)}{AXb > Azb}] (1.14)

where Z = (Y1,Y,, AX). Write V,,, for the m’th partial derivative operator applied
to the first k — 1 components of b, and

Tnlo®) = 5 |5t (115

11,.00im

Finally, the symbol || - || denotes the matrix norm: ||(a;;)|| = (Z,-J- a?j)l/z.
We say that “r(z,-) is Taylor-ezpandable” if, for N’ a neighborhood of 23,

(i) For each z € S, all mized second partial derivatives of 7(z,-) ezist on N.

(i) There is an integrable function ['(z) such that for all 2 € S andbe N,

V27 (2,6) — Va7 (2, B)|! < T'(2)[b]-

81t’s innocuous to consider strict inequalities here due to a continuity assumption on Az needed
for consistency (see Assumption 2 (ii) below).
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(ii1) E|V7(-, B)]? < oo.
(iv) E|V,|7(-, B) < oo.
(v) The (d — 1) x (d — 1) matriz EV,7(-, 8) is negative definite.

Then, we have

Theorem 1 If Assumptions 1, 2, and E, hold and 7.(z,) is Taylor-ezpandable, then
. %4
\/ﬁ(ﬁc—ﬁ)—d>( 0‘)

where W, ~ N(0, V. "'A V1), with A, = EV,7.(+, B)[VaTe(+, B)] and 2V, = EV,7,(-, B).

Both V; and A, can be written as functions of the model’s primitives. Let g,(-)
denote the marginal density of Azf3, let AZ denote the first kK — 1 components of Az,
and define Az, = E(Az|Azf). Then, we have

Theorem 2 If F and g, are differentiable and E|Az|? < oo, then

A, = E(AL — AL,) (AT — AZ,)g,(AzB)?F(AzB)[1 — F(Azp)) (1.16)
and 2V, = -E(AZ — A%,) (AL — AL,)F'(AzB)g.(Azp). (1.17)

The “change” estimator suffers from some drawbacks. First, the i.i.d. assumption
on Ae needed for consistency may be considered too restrictive for certain appli-
cations. One way to weaken this restriction is to use the maximum score estima-
tor (MSE) of Manski (1975) instead of the MRC estimator. The MSE requires only
a median restriction on Ae and allows for heteroskedasticity across :. The estima-
tor Bysg Maximizes

> sgn(Az;b)d;, (1.18)

where the sign function sgn(v) = [1(v > 0) — 1(v < 0)]. Unfortunately, the MSE
is not /n-consistent. To quickly see that the MSE is less efficient than the MRC
estimator, recall the interpretation of 3, as a rank estimator in (1.11). The Rank(:)
function of the MRC estimator takes full advantage of F’s monotonicity. At the true
value 3, MSE only uses the fact that d = 1 is more likely for a positive Az than
a negative Az, whereas MRC uses the monotonicity of F' to compare across Azf’s
of all levels. The MSE does identify the coefficient on a constant term in Az (and
thus estimates A«) since the sign of Azf is affected by addition or subtraction of a
constant whereas the rankings of Az are not.

A second drawback is that the “change” estimator, using either MRC or MSE,
throws away a lot of information about the dependent variables by using only the
sign of Ay in the objective function. There is additional information contained in the
levels of the y,’s which should be utilized for more efficient estimation.

Moreover, the efficiency of the “change” estimator depends on the importance of
the time trend in the dependent variable. The estimator is most useful in situations
where Ay is positive for many observational units and negative for many others. In
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the extreme case that Ay is the same sign for all observational units, the parameters
will not be identified at all. One can simply look at the percentage of positive Ay
before doing any estimation to get a sense of how well the “change” estimator can be
expected to perform; a value near 50% is ideal.

Finally, the consistency of the “change” estimator hinges critically on the fact
that h does not change over time. If h were to be a function of ¢ (e.g., a Box-Cox
model with different transformation parameters A; and ), in the two periods), a
different estimator would have to be used.

The “leapfrog” estimator of the next section is proposed as an attractive alterna-
tive to the “change” estimator since it addresses each of the aforementioned weak-
nesses of “change” estimation.

1.4 “Leapfrog” Estimation

In this section, we develop a “leapfrog” estimator that works in the presence of signifi-
cant time trends, allows h to vary over time, and allows for forms of heteroskedasticity
across observational units. The basic idea behind the estimator is to compare depen-
dent variables of a given time period across different observational units. We have

he(yie) — he(yje) = (Tie — z0) B + (i — ) + (€ie — €5¢)- (1.19)

Note that A now has a time subscript, allowing for a different strictly monotonic
transformation h, in each time period. Equation (1.19) immediately yields

Yit > Yjt < (I“ - :z:,-t)ﬂ + (a.- - a,-) + (Cu - ng) > 0. (1.20)
Also, note that
Azif > Az;f = (Tiz — Tjp)B + (2 — o) > (zi1 — 7j1)B + (i — ). (1.21)

If (ei1 — €;1) and (e;2 — €j2) have the same marginal distribution, combining (1.20)
and (1.21) yields

Az, > Az = Pr(yi2 > yjo|Azi, Azj) > Pr(ya > yj1|Azi, Az;y). (1.22)
Assumption E, is thus replaced with

Assumption E, For alli and j, (€;; — €j1) and (ei2 — €j2) have the same marginal
distribution, conditional on (i, Tiz, Tj1, Tj2).

This assumption is rather weak. For instance, if errors are stationary across time for
each individual but heteroskedastic across individuals, Assumption E, is satisfied.
Condition (1.22) suggests maximizing the objective function

S(b) =Y 1(Azib > Az;b)[1(yiz > yj2) — Ly > yi))- (1.23)
i#£]
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We rewrite (1.23) to yield the “leapfrog” objective function:

S(b) = Lizj UHAzib> Az;b)[1(yiz > yjo) + Uy < yj1) — 1]
Tizj LAz > Az;b)[1(yi2 > yjo, yir < yjn) + L(sgn(yi — yi1) # sen(viz — y52))]
= Se(b) + 3izj H(Azib > Az;b)1(sgn(yin ~ yj1) # sen(yi2 — yj2)),

where

Se(b) = E 1(Azib > Az;b)1(ya < Y51, Yi2 > Yjz2)- (1.24)
i#£]
Note that the same estimate will maximize both (1.23) and (1.24) since
S(b) — Se(b) = > 1(Azib > Az;b)[1(sgn(yii — yj1) # sgn(yiz — yj2))]
i£j

= % > 1(sgn(yi — yj1) # sgn(¥i2 — yj2))

i*j

is not a function of b.

Let §; be the estimator that maximizes (1.24) over the set {b € R*|b, = 1}. We
call 3, the “leapfrog” estimator since the objective function rewards leapfrogging by
those observational units having higher Azf3. Leapfrogging by ¢ over j means that ¢
has a smaller dependent variable than j at t = 1 but a larger dependent variable at
t=2.

Since f; depends on leapfrogging behavior, one can calculate the percentage of
observation-pairs that “leapfrog” each other to get a sense of how well the “leapfrog”
estimator will perform. In the extreme case that there is no leapfrogging whatsoever
in the sample, the objective function S;(b) will be equal to zero for all b.

Using the notation of the previous section, for each z € § and b € B, define

H(yi,y2,v) =Prz [y <V, 12 > Yo|AXB = ”J] —Prz(y1 > Yi,y2 < Ya|AX B = 0]
and
Te(2,b) = Ez [{y1 < V1,12 > Yo} {Azb > AXb} + {Yi <y, Y2 > 12} {AXb > Azb}]

where Z = (Y}, Y2, AX). )
The asymptotic normality theorems are analogous to those for ..

Theorem 3 If Assumptions 1, 2, and E, hold and 7,(z,-) is Taylor-ezpandable, then
A W,
vatge- 9) 4 ()
where Wy ~ N(0,V, YAV, with Ay = EVi7o(-, B)[Vi7e(+, B)) and 2V, = EVar(-, 3).

Theorem 4 If g, is differentiable, H is differentiable with respect to its third argu-
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ment, and E|Az|? < oo, then

Ay = E(AZ — A%,) (A% — AZo)go(AZB)2 H (Y1, y2, AzS)? (1.25)
and 2V, = E(AZ — Az,) (AT — AZ,)H3(y1, Y2, AzB)go(Azf). (1.26)

1.5 Monte Carlo Results

In this section, we report the results of Monte Carlo simulations using the proposed
estimators. For comparison, we study the least-squares within estimator to see the
effect of misspecification. In particular, we look first at a correctly specified linear
model and then at models which are slight deviations from the linear model. We
consider the power transformation family studied by Bickel and Doksum (1981), which
allows for negative y values unlike the Box-Cox family:

A
h(y, ) = Iyl sgnA(y) -1 for positive .
We consider three values for A (0.90, 0.95, and 1), where A = 1 corresponds to the
linear model. The associated transformations are shown in Figure 1.1 for the range
of y used in the simulations. As the figure shows, we are considering very mild
misspecification in the Monte Carlo design. More serious misspecifications will result
in greater bias than reported in this section.
We consider the following specification for the Monte Carlo design:

h(yi) = 14z — 2z9i1 + 4730 + o + €
h(yi2) = Tyiz — 2T2i2 + 4T3i2 + o + €42,

where z,;; and z,;; are lognormally distributed, z2;; and z;; are uniformly dis-
tributed, z3;; and z3;; are dummy variables (equal to one with probability 0.3), €;;
and ¢;, are normally distributed, and the fixed effect is

a; = 0.5(z2i1 + T2:i2) + Wi,

where 7; is normally distributed. Aside from the fixed effect, there is no additional
correlation between any cof the random variables. The true coefficient vector for this
design, including an intercept term, is 8 = (fo, b1, B2, B3) = (1,1, —2,4).

For each of the three A values, four estimators were used to estimate 3: (1) the OLS
within estimator; (2) the maximum score estimator; (3) the “change” estimator, fe;
and (4) the “leapfrog” estimator, f,. Samples of 100 and 200 were drawn according to
the design described above. The results for 250 simulations for each sample size and
each ) value are given in Table 1.1. For comparability, the ratios of the coefficients
(to B;) are shown. As explained in Sections 1.3 and 1.4, the “change” and “leapfrog”
estimators do not estimate the intercept ;.
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Figure 1.1:

Figure 1: Power Transformation for lambda = 0.90, 0.95, 1.00

12 T L] T ) L] T T
10} L 3
8 ..,.-,‘./ )
."-')l‘.
6 T
4} i
2r Dotted line —> 1.00 :
oF Dashed line ——> 0.95 1
-2 i Solid line --> 0.90 :
_4 1 1 L L 1 L 1
—4 -2 0 2 4 6 8 10 12
y

22



‘sasoqjuared ur pajrodal are sIolle prepuejs ajdureg ‘suorye[nuwiis ()Gg 19A0 soSerase ajdures are SajeRUIISS Y J,

(1260°0)  (.820°0) (2980°0) (2920°0) (ce60°0) (6920°0)

88670~ 61620 —— | 620S°0- ¥.¥C0 —— | ¥96¥0- <260 —— | Soydes,

(29v10)  (0Z¥0°0) (9821°0) (ST1%0°0) (9191°0) (£¥%0°0)

6S6%°0- eL¥g0  —— | ¢IIS0- €620 —— | SP6V0-  B0SC0 80— 28uey),,

(6691°0)  (9190°0) (9820°0) | (¥8ST°0) (99900) (8€80°0) | (¥991°0) (£850°0) (¢620°0)

01670~ 89S2°0  00S2°0 | 1gIS0- 12820 L9920 | I0S0- OPST0  8I¥T0 ASIN

(z£900)  (e¥10'0) (€920°0) | (9%90°0) (se10°0) (¥620°0) | (0990°0) (€¥10°0) (8920°0)

66870~ 98220  6¥¥Z0 | TP0S0- ¢6EZ0  90SZ'0 | £66v'0- S0SZ0  1IST0 $10
002 = U

(vw¥1°0)  (92%0°0) (o¥¥1°0) (26€0°0) (bzstr0) (60%0°0)

00050~ 88620 —— | 6.6V'0- €esz0 —— | 1008°0- 12620 —— | Soydea,

(Lg1z'0)  (8%90°0) (1261°0) (£990°0) (1£02°0) (8590°0)

21050~ ¢1eg’0 —— | ZgIS0- 89820 —— | 996¥°0- 08¥g0 @@ —— 23uey),,

(sg61°0)  (£280°0) (6%01°0) | (vO1Z'0) (2980°0) (1660°0) | (8S61°0) (6¥01°0) (LI0T0)

9605°0- 69S2°0 I¥SZ'0 | 9€2S°0- €292°0 6093°0 | O1IZS'0- 0S92°0 00920 ASIN

(sv600)  (e6100) (1170°0) | (z00T'0) (9610°0) (98€0°0) | (€00T°0) (£020°0) (€£8€0°0)

S06¥0- €602°0  9.¥Z0 | T¥0S0- 10¥Z0 €SP0 | SPOS0-  S6¥0 12530 S10
001 = u

00090~ 00S2°0 0020 | 000S°0- 00SZ'0 00S2'0 | 000S'0- 00520  00SZ0 aniy,

/% g/ kg /% /% /g tg/% /% tg/'g /%

060 =Y G6'0 =Y (reaur) 1 =Y

S3INSal1 O[Ie)) UOI :I'T el

23



Not surprisingly, OLS is the most efficient estimator when the model is truly
linear. The standard errors for the “change” and “leapfrog” estimators are between
150% and 300% larger. As the true model departs from linearity, the inconsistency
of OLS becomes apparent. The OLS estimate of 8,/; is around 0.24 for A = 0.95
(4% off from 0.25) and around 0.23 for A = 0.90 (8% off from 0.25); the OLS estimate
of B,/f3; for A = 0.90 is about 2% off. The “change” and “leapfrog” estimators are
fairly similar across the A values, with the “leapfrog” estimator slightly outperforming
the “change” estimator in terms of accuracy (most notably for A = 0.95). The MSE
doesn’t appear to perform too well overall; even for A = 0.90, the MSE is not much
better than the inconsistent OLS. Presumably the smoothed MSE with bias correction
(see Horowitz (1992) and Chapter 2 of this thesis) would perform better.

1.6 Covariance Theorem

In order tc develop specification tests involving the proposed estimators. we necd
to be able to determine covariances between estimators which maximize objective
functions like those in (1.10) and (1.24). In this section, we state a general theorem
to serve this purpose. The theorem will also be used to estimate 8 when T > 2
by efficiently combining estimates which each use only information from two time
periods. We state the theorem and then discuss the applications. A new piece of
notation, P,, is the empirical measure that places mass 1/n on each z;.

Theorem 5 Let I'\,(-) and T'y,(-) be objective functions which are sample analogues
of I'1(-) and T'y(-). Both I'i(-) and T'y(-) are mazimized at 6, = 0, whereas the sam-
ple analogues are marimized at 6,, and 0,,, respectively. Suppose 6,, and 6,, are
V/n-consistent estimates of 0, an interior point of ©. Suppose that, uniformly over

O,(1/+/n) neighborhoods of 0,

1 1
F,n(ﬂ) = 50"/10 + EG’W". + o,,(l/n)

1
—\/—ﬁ() Wgn + o,,(l/n)

where V) and V, are negative definite matrices and

1
Can(6) = 56'Va0 +

Wln = \/"—IRIVITl(.io)v W2n = \/ERIVITQ('lO)’

where both 7,(z,-) and 75(z,-) are Taylor-ezpandable.”
Then,
Oin d Vl—lAlVl—l Vl_lAl'ZVZ_]
\/7—2( 02" ) — N (01 ( ‘/'Z—IA’IQ‘/I_I ‘/‘Z—lAQ‘/Z—l )

"Note that 6 is not a normalized parameter. For instance, it can be thought of as the first k — 1
components of 3 from the previous sections. As a result, V, is the m'th partial derivative applicd
to all components of 8. Likewise, Taylor-expandability is defined in this way.
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where

Ay = EVini(-,0)[Vini(-,0))
Az = Evng(',O)[VlTZ('!O)]I
and A, = EVn(-,0)[Vi7(-,0)].

To make Theorem 5 useful in practice, we can give a specific expression for A,
(which can be estimated using kernel techniques) when the estimators maximize ob-
jective functions of the form 3=,.; 1(w;b > w;b)1(- - -). To be precise, we state

Theorem 6 Let 6,, and 65, be estimates satisfying the conditions of Theorem 5.
Suppose that 0, and 0,, are the first k — 1 components of B, and B, (elements of B),
respectively. Suppose also that

Tl(zhb) = /w1b<w.bs(y1'wlﬂ)cl(dwl) + /P(YI,Wlﬂ)Gl(dwl)

ra(eb) = [ T(y2, WaB)Ga(dWa) + [ vlyz, Wa)GaldWs)

where z; = (y;, wi), Z; = (Y;, W;), and G,(-) is the distribution of w; for i =1,2.
If Elwjw,| < 0o, then

Ay = E(wy — uy,)' (W2 — Wa,) g1 (w18)g2(w28)S(y1, w1 8)T (y2, w2 ),

where w; denotes the first k — 1 components of w;, W;, = E(w;|w;B), and g;(-) is the
marginal density of w;0 fori=1,2.

The estimators v2've considered have wy, = w, = Az and y; = y2 = (y1,%2), but
Theorem 6 is stated more generally so that it can be applied for different w; and y;.
Two such applications, testing for fixed effects and estimating the model for T" > 2,
will be discussed.

The main use of these covariance results is to perform specification tests and to
combine estimates for greater efficiency. If under the null hypothesis, both [3, and
ﬂz are consistent estimates of 3, but under the alternative hypothesis, only ,32 is a
consistent estimate of 3, we can perform a x2-test since

(B — B*YVar(BrF — B75)71(Br* - %) %o X, (1.27)

where the superscript “—k” indicates only the first k — 1 components. The variance
term has the form

Var(B7* - B3%) = Var(B7*) + Var(B;*) — Cov(Br*, B7%) — Cov(BT*, By %)
= VAWV + VAV - VALY - VALY

Theorems 5 and 6 allow us to estimate Var(8;* — 3;*) (usmg consistent estimates
Vl, Vg, Al, Ag, and Alz) and then perform an asymptotic x?-test.
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To improve efficiency of two consistent estimates 3; and B,, we can take a linear
combination of the two, taking into account their correlation.? In particular, for a
(k — 1) x (k — 1) matrix A, consider

Ba* = ABTF + (I - A)B;*.
The optimal weighting matrix A* is given by

A* = (Var(B7*) + Var(B7*) - Cov(B*, B7*) — Cov(B*, B7*)') =" (Var(B;*) - Cov(Bi*, 37 %))
= MTAVT + VAT - VT ARY T - VALY TV AT - VT AL YY),

Using Theorems 5 and 6, we can consistently estimate A* to achieve the asymptoti-
cally efficient linear combination of 8, and f3,.

Testing/combining £, and §;: If B, = ﬁc and ﬂg = B,, we can apply the results
from above. The x2-test of their difference could test the validity of Assumptions E,
and E,. A linear combination of 5. and 3, would be appropriate if both Assump-
tions E, and E, hold (i.e., if both 8, and B, are consistent). If the conditions of
Theorem 6 hold,

A = E(AZ — AZ,) (AL - AZ,)g.(AzB)*1(Ay > 0)H (v, v2, Azp).

Testing a specified h: Both j, and j, are consistent when h is unknown as long as
the appropriate assumptions hold. If h is known, we can estimate 3 more efficiently by
using the exact form of h. Specifically, let 8, be the MRC estimate using h(y;) —h(y;)
as the dependent variable and Az as the independent variables. Notice that

Pr(h(yi2) — h(yil) > h(yjz) - h(yjl)) > Pr(h(yi2) — h(yi) < h(lljz) - h(yjl))
<= Pr(h(yi2) — h(yi1) > h(yj2) — h(yj1)) > 1/2

and
Pr(h(yi2) — h(yir) > h(y;2) — h(y;1))
= Pr((Az; — Az;)B + (A€ — A¢j) > 0) (1.28)
Pl’((Al‘,’ - Al‘j)ﬂ-i- (6.’2 - Ejg) - (E,’] - EJ']) > 0) (129)

The equality in (1.28) implies that B, is consistent under Assumption E., while the
equality in (1.29) implies that f, is consistent under Assumption E,. Thus, if A is

8An alternative way of combining the information used by two estimators is to do so explicitly
in an objective function. For instance, if the assumptions for both the “change” and “leapfrog”
estimators are true, then a single estimator which maximizes (S.(b) + S¢(b)) would be consistent.
This approach would require determining the covariance matrix of the new estimator, whereas
the approach described in this section merely uses the covariance matrices derived in the previous
sections.
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correctly specified, B, will be consistent under either assumption. If Assumption E,
holds, one can pe.form a specification test of B, against f. to test if h is correctly spec-
ified. Similarly, if Assumption E, holds, a test of B, against J, tests the specification
of h.

Define

S*(y1,92,v) = Pralh(ys) — h(w) > A(Yz) — h(V)|AXB = o]
— Prafh(y:) - hly1) < h(¥a) - h(Y)|AXB = o]

Then, for ﬂz = ﬁc,
Ay = E(AZ - AZ,) (A% — AZ,)g,(AzB)*1(Ay > 0)S™ (41, y2, Azp).
and for B, = f,
Aqz = E(A% — AZ,) (AL — AZ,)g,(Azf)* H (31, Y2, AzB)S" (31, Y2, AzP).

Testing for correlated fixed effects: In order to test whether a is correlated
with z, one can do a specification test of either B, or B, against a single-period MRC
estimator ﬁ MRC (i e., MRC using dependent variable y; and independent variables z,
for a given t). The smgle-perlod MRC estimator is consistent if the condition

zif > Tjff = Pr(yi > yje) > 1/2
holds. We have

Pr(y.-. > ng) = Pl‘(Iuﬁ + a; + € > Ijgﬁ +o; + fje)
= Pr((xu — Ijt)ﬂ > (ai + fit) - (ij + 6jt)),

which yields the consistency condition if « is independent of z and, for all i and j,
the median of (a; + €ir) — (a; + €;,) is zero. Notice that this condition is weaker
than the restriction made by Han (1987b) since we are considering only a subset of
the models to which MRC applies. Whereas an i.i.d. assumption is needed for MRC
to be consistent for more general models, the restriction here allows for forms of
heteroskedasticity when dealing with the linear transformation model. For instance,
if (a; + €;;) is symmetric for each ¢ but not necessarily identically distributed, the
median condition holds. )

If Assumption E, (or Assumption E,) holds, then B. (or B;) will be consistent
even if there is correlation between the fixed effect and the covariates. If the median
restriction holds for a given ¢ but there is correlation between the fixed effect and the
covariates, the estimate ﬂtM RC described above will be inconsistent. Then, a x2-test

of the difference between £, (or ﬂ[) and AMRC serves as a specification test.
Let 3, = BMRC. Define

T(y,v) = Przly, > Yilz8 = v] — Przly: < Yilz,8 = v).
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Then, for Bl = B,,
Ayp = E(AZ — AZ,) (£, — %40)H(y1, Y2, AzB)T (31, 7,.8),
and for Bl = [3.:,

Alg = E(Af — Afi’o)l(jg - :i:'t,,)l(Ay > O)T(yt, 1L't,3)

Estimation when T > 2: For simplicity, we consider T = 3 and the “leapfrog”
estimator. Extension to T > 3 and the “change” estimator follows trivially. The
idea is to consistently estimate 3 with the “leapfrog” estimator in periods 1 and 2,
yielding A}2, and in periods 1 and 3, yielding B1. To improve efficiency, we can take
a linear combination of 3} and 3}3.% For these two estimates,

Arz = B(AZ'? - Az?) (AT - AZ;%)g;% (A2 B)g;* (Az™ B)H (y1, 92, A" B) H'® (31, 3, Az'?),

where the superscripts indicate the time-period pair and g3(-) and H*!(-) are defined
analogously to Sections 1.3 and 1.4.

1.7 An Empirical Example

Panel data has been used extensively in the study of consumption patterns in macroe-
conomics and public finance. The standard approach is to assume some form for the
utility function so that an Euler equation can be derived and estimated. Hall and
Mishkin (1982), in their paper on the sensitivity of consumption to transitory income,
were the first to use panel data at the micro level tc study changes in consumption
over time. Many papers since Hall and Mishkin (1982) have studied the effect of cer-
tain covariates on changes in consumption. Two examples are Hausman and Paque-
tte (1987), which looks at the effect of involuntary unemployment, and Zeldes (1989),
which loois at the effect of liquidity constraints.

Food consumption is the usual measure of consumption used in empirical work.
For a utility-maximization model to have implications about food consumption, one
needs to assume separability of the utility function. Following Hausman and Paque-
tte (1987), we specify the utility function for individual ¢ at time ¢ as

Uit(Chit, Caity Lit) = fi(Crir)e”¥hie 1 f£5(Cou, Lut), (1.30)

where C; is food consumption, C, is non-food consumption, L is leisure, and the
multiplicative term reflects the taste for food consumption relative to non-food con-
sumption. So that the utility-maximization problem yields a closed-form solution, it is

®For T = 3, one can also use ﬁfa in the combination. Note that this is different from the linear
panel model, where one of the first-differencing estimates would be redundant (since y3 — y2 =

(y3 — 1) — (y2 — 1))
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generally assumed that f;(-) exhibits either constant absolute risk aversion (CARA),
AH(C) =7,

or constant relative risk aversion (CRRA),

c'-+

h(C)=1= P

The CARA formulation has an implication about the expected change in the level of
consumption,
E(Ct+l - Cg) = Tt+1 + .'L'H.[ﬂ, (131)

where r reflects the effect of the interest rate and the z’s are changes in covariates
which affect consumption. The CRRA formulation, on the other hand, has an impli-
cation about the expected growth of consumption,

E(IH(CH.l) - ln(Cg)) = Tt+1 + $¢+1ﬂ. (132)

Either (1.31) or (1.32) can be estimated using OLS within regression so that any
fixed effects will be wiped out. In this section, we will estimate a consumption-change
model using the linear transformation panel model. We try this approach for two
reasons. The first reason is that different utility functions give different implications
about how consumption changes, as can be seen from (1.31) and (1.32). Allowing for
an unspecified transformation of C in the estimation offers flexibility so that there is
less concern that the results are being driven by reliance on a specific functional form
for the utility function.!® The second reason is that consumption is well-known to be
poorly reported (see Zeldes (1989) for a discussion and references). There is reason
to expect that the rank-type estimators developed in this paper are more robust to
such mismeasurement of the dependent variable than the least-squares estimator is.
In Chapter 3 of this thesis, we find this to be the case in non-panel models; the panel
analogue is currently being pursued in a separate paper.

We use our estimation techniques on data from a study by Gruber (1994) on
the consumption smoothing benefits of unemployment insurance (UI). Using data
from the Panel Study of Income Dynamics (PSID) and information on UI benefits
across states and over time, Gruber finds that the fall in food consumption for the
unemployed is three times smaller than it would be in the absence of UI. The equation
estimated (for individuals becoming unemployed at time t) is

In(Ci41) = In(Ciy) = z:8 + YUI; + ¢, (1.33)

1%Even though the “change” and “leapfrog” estimators offer more flexibility, it's not clear what
the implications for the utility function are if the estimates differ from the within estimates. The
problem is that it’s quite difficult to find closed-form solutions for the utlity-maximization problem,
so even a parametrization of A(C) doesn’t necessarily translate into something readily interpretable
about f,(C).
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where C' is food consumption, U is tke “replacement rate” (ratio of benefits to past
wages) for which an individual is eligible, and z is a vector of individual characteristics.
The parameter of interest here is -y since positive -y is evidence of the consumption
smoothing effect of UI eligibility. We relax the formulation in (1.33) by substituting
an unknown h for the log function:

h(Cip1) — h(Cip) = 2.8+ UL + €. (1.34)

The sample, drawn from between 1968 and 1987, consists of 1,605 household
heads who become unemployed. The U[ variable is constructed from the wage data
and state-specific information using a simulation program described in Gruber (1994).
The covariates used in z include dummies for race, sex, and marital status in addition
to age, number of kids, wage, education, and the growth in “food needs.” Even
though many of these variables are time-invariant, we include them in the analysis
to compare with the results from Gruber (1994) and to allow for different impacts
upon consumption across different demographic characteristics. “Food needs,” as
constructed in Zeldes (1989), is a weighted average of food costs for the family (as
estimated by the Department of Agriculture for different age categories), adjusted for
the size of the family (due to economies of scale).

30



Table 1.2: Estimation Results for Consumption Equation (normalized)
n @ ©® @ 0
OLS MRC Be Be MSE
(logs) (logs)
White 0.4943 0.3813 0.2968 0.3636  1.0688
(0.2867) (0.3372) (0.4162) (0.3884)
Black 0.3655  0.3203  0.3488  0.2972  1.3096
(0.2635) (0.3400) (0.4072) (0.3707)
Female 0.3348  0.2111  0.1512  0.1356 0.6739
(0.1924) (0.1813) (0.1385) (0.1493)
Married 0.1111  -0.0393 -0.0768 -0.0941 0.1301
(0.1504) (0.0385) (0.1127) (0.0973)
Age -0.0060 -0.0134 -0.0169 -0.0104 -0.0193
(0.0052) (0.0080) (0.0129) (0.0103)
# Kids 0.6749  0.0937 0.0554 0.1068 0.2259
(0.0488) (0.0697) (0.0746) (0.1310)
After-Tax Wage (x 10%) -0.0007 -0.0018 -0.0017 -0.0022 -0.0011
(0.0015) (0.0031) (0.0039) (0.0048)
Education 0.0249 0.0162 0.0188 0.0144 0.0405
(0.0206) (0.0162) (0.0346) (0.0252)
UI Replacement Rate 1.2543 14105 1.3116  1.5172  4.2989
(0.5799) (0.9229) (0.9722) (0.8786)
Growth in Food Needs 1.0000  1.0000 1.0000 1.0000 1.0000
# obs . 1605 1605 1605 1605 1605
x? test vs. OLS (d.f.=12) —— 8.26 19.70 15.42 —
(p-value) (0.765)  (0.073) (0.219)
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The estimation results using the within estimator and semiparametric alternatives
are reported in Table 1.2.'! So that we may compare the results, we have normalized
all of the coefficients by dividing by the coefficient on the growth in food needs. This
variable is a natural choice since we can see the effect of consumption on the other
covariates relative to actual consumption needs. Time variables (entering linearly,
quadratically, and cubically) are included for the each of the estimations to capture
any discount-rate effects. A constant term is also included for the least squares and
maximum score estimators. These coefficients are not reported in the interest of
saving space.

The first two columns estimate the model in (1.33), restricting A(:) to be In(:),
by least squares and maximum rank correlation, respectively. Column (1) simply
replicates the results from Gruber (1994). Under the assumption that ¢ is i.i.d., the
x? test between OLS and MRC does not reject that € is distributed normally (in which
case OLS is efficient). The final three columns of Table 1.2 estimate the more flexible
model of (1.34). The maximum score estimates are reported without standard errors.
Under the assumption of i.i.d. normal errors, a Hausman (1978) specification test of
OLS versus an alternative is appropriate. The test against the “change” estimator
of column (3) rejects with a p-value of 7.3%, while the test against the “leapfrog”
estimator has a p-value of 21.9%. Even with this moderate size data set, there is
some evidence of misspecification of the change-in-logs model. The bottom line in
terms of the effect of unemployment insurance, however, remains unchanged. The
coefficient on the replacement rate is positive for all of the estimators and significant
at the 10% level for the “leapfrog” estimator. The “leapfrog” estimate is about 20%
higher than the OLS estimate.

Our semiparametric estimates suggest a greater relative consumption-smoothing
effect of UI than the within estimates. Gruber (1994) finds that a difference of 30-
40% in the consumption-smoothing effect of Ul can have large implications for the
optimal replacement rate.

""The covariance matrices for columns (2)-(4) were computed using kernel estimation of the
appropriate primitives. A window width of dn~!/5 was used, where & is the empirical standard
error of the estimated index. The numerical derivatives needed to estimate the Vs were somewhat
sensitive to the window choice for the gradient, but bootstrapping the derivatives resulted in more
stable estimates.
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Table 1.3: Optimal Replacement Rates

p 4 from 4/0.7 | 0.7x%
Gruber (1994)

1 0 0 0
1.5 0 0.091 0

2 0.035 0.286 0
2.5 0.202 0.403 0

3 0.314 0.481 | 0.076
3.5 0.394 0.537 | 0.190

4 0.453 0.579 | 0.275

Source: Gruber (1994), Table 6.
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In Table 1.3, we replicate a table from Gruber (1994) that gives optimal replace-
ment rate calculations for different values of the relative risk aversion parameter.
The first column of replacement rates are imputed from Gruber’s estimate <y of the
consumption-smoothing effect. The next two columns show the optimal replacement
rates imputed from /0.7 (larger effect) and 0.7 x v (smaller effect). Since our esti-
mate is only relative to the food-needs coefficient, our estimates are only suggestive
of the implications for the optimal replacement rate calculation.

1.8 Conclusions and Extensions

The estimators proposed in this paper represent a first step in the semiparametric
approach to the linear transformation panel model. The most obvious open question
is, given estimates of 3, how can we nonparametrically estimate the transformation
function A? Cne possible approach is to use series estimation of h via polynomial
and spline approximations. It would be preferable to have a more efficient estimation
strategy as is the case for the non-panel case, where Horowitz (1996) and Ye and
Duan (1995) obtain /n-consistent estimates of h.

Another possible extension of this work is to allow more flexibility with respect
to the independent variables. There is a bit of a dichotomy in the model since the
dependent variable is subject to a completely unspecified transformation whereas the
functional forms of the independent variables are assumed to be known. One way of
dealing with this dichotomy is to allow for parametrized transformations of the inde-
pendent variables as well. For instance, we could subject each z to a Box-Cox trans-
formation, where the transformation parameters would be estimated along with /3.
Our conjecture is that the “change” and “leapfrog” estimators can be modified in a
natural way to accommodate this flexibility. As a simple example, consider a panel
model having only a single independent variable subject to a power transformation,

h(ya) = 2 + 7 + 0 + €. (1.35)

The suitable objective functions for “change” and “leapfrog” estimation of the trans-
formation parameter A would be

> 1(zf, — zf, > 1';2 - '—’le)l(Ayi > 0)
i#]
and
> 1(zf, — zf) > 1';2 - I;;)l(yu < yjn Yi2 > Yj2)
1#]
Allowing for multiple transformed independent variables would result in similar ob-
jective functions. The normalization of the parameter vector (3, A\) needed for iden-
tification would apply to 3, the coefficients on the additive terms of the right-hand
side of the model.!?

12This same idea could be used to extend the non-panel MRC estimator, an extension which has

34



Finally, the issue of efficiency has been mostly ignored in this paper. Since effi-
ciency is being sacrificed for flexibility, it’s important to try and re-weight estimators
to “squeeze” as much efficiency out of them as possible. For “change” estimation,
Cavanagh and Sherman (1993) have shown that a one-step correction of the MRC es-
timator achieves the semiparametric efficiency bound. Perhaps there is an analogous
result for “leapfrog” estimation. Even a naive re-weighting strategy, though, would
improve matters. The intuition for re-weighting is that observation-pairs (,j) with
larger |Az;3 — Az;[3| should be weighted more heavily in the objective function since
the direction of leapfrogging for these pairs should be more predictable than for pairs
with lower |Az;3 — Az;3|. A Monte Carlo investigation of the efficiency gains from
using such re-weighting would be interesting.

Appendix A: Computational Issues

Estimation of [ic or B¢ requires maximization of a non-smooth objective function, making
standard optimization techniques ineffective. Instead, we suggest the use of the Nelder-
Mead simplex method since it avoids gradient techniques.!® The Nelder-Mead method will
find local optima on occasion, so one needs to iterate the method several times to check that
the optimum is global. This problem is more prevalent when the parameter space being
searched has higher dimension.

Although the objective functions S.(-) and Sy(-) have a similar form, their computational
characteristics differ for large n. From (1.11), computing S(b) requires ranking (sorting)
the observations by Az and taking a dot product. The fastest sorting algorithms require
O(nlogn) operations, so computation of Sc(b) also requires O(n log n) operations. Unfor-
tunately, no sorting technique can be used to compute S;(b), meaning that computation
of Sy(b) requires O(n?) operations. To speed up computation of Sy(b), store an array of
pairs (i,j) for which i leapfrogs j. Each time the objective function is calculated, simply
look up the value of 1(yi1 < yj1,¥i2 > yj2) rather than re-checking for leapfrogging among
the n(n — 1)/2 observation-pairs.

Kernel methods are not necessary for finding B, or 3, but they need to be used to obtain
consistent estimates for any of covariance matrices from Sections 1.3-1.6. For instance, A,
Ve, A¢, and V; are consistently estimated by

~

A, = _Z(Az: A.’L‘,o "(AZ; - Azw)go(Al‘lﬂc) (A-Ttﬂc)[l - Aztﬂc ], (1.36)

o~ 1— n — —— o~ ~ ~

Ve = —o-3 (Adi - Adio) (Adi — Adio) F'(AziBe)Gol Azife), (1.37)
i=1

- 1S, . — - IR )

Ay = — 3 (A% — Afy,) (Ad; — Adio)do(AziBe) H(yir, viz, AziBe)?, (1.38)

i=1

not been considered in the literature.

13MATLAB has a built-in function for the simplex method. Numerical Recipes also has a program
for implementing the simplex method. A GAUSS version, along with code for the objective functions,
is available from the author upon request.
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~

1 &0 = . B 2y~ A
Vi = o D (A% — A%i,) (AT — Aip) Hayir, yiz, AziBr) o (D), (1.39)
i=1

where B. and B, are the “change” and “leapfrog” estimates, respectively, and Azo, 9o(*),
F (-), and H (-) denote kernel estimates of their underlying primitives.

An alternative to the kernel approach is to employ bootstrapping to estimate V;, A,
Ve, and A,. This alternative is time-intensive, especially when used in conjunction with
“leapfrog” estimation, but computers have become fast enough to make bootstrap estima-
tion feasible.

Appendix B: Proofs of Theorems

Proof of Theorem 1: See Theorem 4 of Sherman (1993).
Proof of Theorem 2: See Section 6 of Sherman (1993).

Proof of Theorem 3: Since 74(-,-) satisfies the same technical assumptions as 7.(-, ), the
proof is nearly identical to Theorem 4 of Sherman (1993). Here, we consider the class of
functions

F={f(-b):be B},
where, for each (z1,29) € S x § (for z; = (yi1, ¥i2, Ax;)) and b € B,
f(z1,22,0) = 1(y12 > ya2, y11 < y21) - 1(Ax1b > Azob).

To apply Theorem 4 of Sherman (1993), we need only check that F is Euclidean for the
constant envelope 1. The details are similar to Section 5 of Sherman (1993).
Consider t,v,v11, T2, 721, 722 € R and §;, 8, € R*. For each (21,22) € S x S, define

9(z1, 22, 7, 1, M2, Y21, 722, 01, 02) = Y+ v11y11 + Ti2vi2 + v21y21 + Y22y22 + Az 6y + Azady

and

= {9(11 :7a7111’71217211722’61162) YL Y12, Y21, Y22 € R161162 € Rk}

Then, G is a (2k + 5)-dimensional vector space of real-valued functions on S x S x R.
Consider the set of subgraphs of functions belonging to F. For each b € B,

subgraph(f(-, 1b)) = {(211 szt) 0<t< f(zlvz21b)}
= {yi2 —y22 > 0}H{y11 — y2a1 < O0}{Axb— Axab > 0}{t > 1}°{t > 0}
= {g1 > 0}{g2 > 0}{gs > 0}{gs > 1}*{gs > 0}

where g1, 92,93, 94,95 € G. By Lemma 2.4 of Pakes and Pollard (1989), we know that the
class of sets of the form {g > ¢} and {g > ¢}, with g € G and c € R, is a VC class (or a
“polynomial class”). So, the subgraph of f(-,-,b) is the intersection of five sets, four be-
longing to a VC class and the fifth being the complement of a set belonging to a VC class.
Then, {subgraph(f): f € F} is a VC class of sets (Pakes and Pollard (1989), Lemma 2.5),
which implies F is Euclidean for every envelope (Pakes and Pollard (1989), Lemma 2.12).
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Proof of Theorem 4: The results of Section 6 of Sherman (1993) apply. Note that
rab)= [ Hue AXOGEAX) + [ o2, AXHGELX),
AXb<Azb

where G(-) is the distribution of Az and p(y1,y2,v) = Prz{y1 > 1,92 < Y2]AX 3 = v]. The
second integral does not depend on b, so V17,(z,8) = (AZ — AZ,)g,(AzB)H (y1,y2, Azf).
Taking an outer product and taking expectations gives A,. Also,

Wy = E(AE - M%) (A8 — AZ,) c[H(y1,uz,v)g0(v)

v=Azf
E(AZ - Az,)'(AZ — AZo)[Ha(y1,y2, AzP)g90(AzP) + H(y1,y2, Azf)go(Azf)]
= E(Az - Aia)'(Ai — AZ,)H3(y1,y2, AzB)go(Az ).

Proof of Theorem 5: Let

(g0 ) = P + Panr.
2

By definition, ( o1 ) maximizes ', (-). Also, ( 0

02 0
[, (-) since expectation is a linear operator.

Uniformly over Op(1/+/n) neighborhoods of ( g ), we have

) maximizes the sample analogue of

1

1 1 1
r, ( o ) = S61Vi61 + =0 Win + 36,V + —=6;Wan + 0p(1/n)

9, /n 2 /n

1{o,\ (v o 9 1 {6\ [ Wi
-2 (a) (8 w)(8) () (W) roum

Since EV,7,(-,0) = EV,75(-,0) = 0 and 7,(2,-) and 73(z,-) are Taylor-expandable, we
have
Win ) d Ay Ay
— N {0, .
(w) =~ (e(& 2))

‘(/)‘ v, is negative definite since V| and V;, are. Applying Theorem 2 of Sher-

man (1993) and multiplying out gives the desired result.

Also,

Proof of Theorem 6: Similar to proof of Theorem 4.
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Chapter 2

Maximum Score Estimation of
Linear Index Panel Models

2.1 Introduction

Much has been written about the difficulties in consistently estimating the parameters
of nonlinear fixed-effects panel data models. The standard first-differencing trick
which eliminates the fixed effect from a linear model extends to only certain nonlinear
models, including the conditional logit model for binary data, the Poisson model for
count data, and certain parametric models for duration data. Each of these models
share an expconential form which allows for cancellation of the fixed effect akin to
first differencing in the linear panel model. Semiparametric methods, which do not
require any parametric assumptions on the error term, exist for consistent estimation
of the binary choice model (Manski (1987)) and the linear censored and truncated
models (Honoré (1992)). The basic insight of this paper is that Manski’s maximum
score estimator can be used to consistently estimate (up to scale) the parameters of
interest in a wide class of nonlinear panel data models.
We consider a general linear index panel model of the following form:

¥y = g9(zba)+é, (2.1)
n = dy) (2.2)

where z, is a k-dimensional vector of explanatory variables, a is a vector of fixed
effects, g is unknown and strictly increasing in the index (i.e., gy > 0 Va), and
d: R = R is a known (nondegenerate) weakly increasing function. Without loss of
generality, we congider the case of two time periods (¢t = 1,2).!

The linear model, binary and ordered choice models, proportional hazard model,
and censored model (linear or nonlinear) are all special cases of this general model.

—

!Extension to T > 2 is straightforward. Maximum score estimation can be done for each possible
pair of time periods. The pairwise estimates can then be combined to form a more efficient estimate.
Unbalanced panels present no additional difficulties since only pairwise estimates are used. See
Charlier et. al. (1995) for more details.
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The model doesn’t require that the fixed effects enter additively, nor does it require
that y; be a linear function of z,8. For instance, maximum score estimation will still
be consistent even when the true model has complicated interactions with the fixed
effects, as in

y; = o (z:0)* + 03 + €,

where a; > 0 and a; > 0 (to ensure g; > 0). Not surprisingly, efficiency must be
sacrificed in order to gain this generality.

The transformation d describes the form in which the dependent variable is ob-
served. When d is a strictly increasing function, the data are uncensored — that is, we
directly observe the latent variable y; (cr, equivalently for our purposes, some strictly
increasing transformation of the y;). When y; is not always directly observable, we
say the data are censored. In this terminology, the binary choice model is a censored
model having d(v) = 1(v > 0). The traditional censored model has d(v) = v-1(v > 0).

We say that the data are truncated when y; and y, are observed if and only if
Y5, ¥3 € T C R. The set (R — T) is the region where truncation occurs. In the
traditional truncated model (as studied by Honoré (1992)), we have T = [0, 00) and
(R—T) = (—00,0). Our classification of truncated data allows for more general forms
of truncation.?

In Section 2.2, we define the maximum score estimator. In Section 2.3, we show
that the maximum score estimator applied to our model is consistent for uncensored
data, censored data, and truncated data. The three cases require slightly different
assumptions on the distribution of Ae. Uncensored data require only a median restric-
tion. Censored and truncated data require a symmetry restriction, with truncated
data also requiring a unimodality restriction. In Section 2.4, we extend the smoothing
technique of Horowitz (1992), allowing for a smoothed version of ‘he maximum score
estimator having convergence rate between n~%/% and n~1/2.

2.2 The Maximum Score Estimator

The estimator is a form of the maximum score estimator (MSE) developed by Man-
ski (1975, 1987) for the binary choice model in non-panel and panel settings. The
objective function is

§|'—‘

n

E n(Ay)1(Azb > 0), (2.3)

where n is the number of observational units and the sign function is given by
sgn(v) = 1(v > 0) — 1(v < 0).

The only information from the dependent variables which is used is whether the
observable dependent variable has gone up or gone down. Observations for which

2We require that the form of censoring and/or truncation remains the same through time. This
restriction is not substantive, though, since the econometrician can censor and/or truncate the data
herself so that the function d(-) and/or the region 7 does not change over time.
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there has been no change in the observable dependent variable have sgn(Ay) = 0 and

do not contribute to the objective function.
The MSE is

f = arg max S,(b).
bijby|=1

The coefficient vector is normalized since scale does not affect the sign of the index
(i.e., Su(b) = Sn(kd) for k > 0). When there is any form of censoring, the MSE is
a conditional estimator since only observational units having non-zero Ay contribute
to the objective function. The correction for this conditioning is discussed below
in Section 2.4. When there is no censoring, all the observational units are used
in the estimation since {Ay = 0} is a zero-probability event. The covariates Az
should include a constant term, wkich corresponds to a time trend (i.e., the difference
between the constant term at + = 2 and the constant term at t = 1).

2.3 Consistency of the MSE

The assumpiions needed for strong consistency are basically those used by Man-
ski (1987), except for the slightly stronger restrictions needed on the error distribu-
tion.

The follewing sampling assumption covers both the non-truncated case (7 = R)
and the truncated case (7 C R).

Assumption 1 (Sampling) An i.i.d. sample of n observational units is generated
according to (1) conditional on y},y; € T C R. The observables are {(yi,Zi) : i =
1,...,n;t=1,2}.

To guarantee identification of the parameter vector, we need the following as-
sumption on the regressors.

Assumption 2 (Continuous Regressors with Full Rank) (a) The support of Az is
not contained in any proper linear subspace of R*; (b) ' # 0 and for almost every
A7 = (Ax?,...,Ax), the distribution of Az conditional on AL has everywhere pos-
itive density with respect to Lebesque measure.

Assumption 2(a) is the usual full-rank condition. Assumption 2(b), standard in semi-
parametric estimation, ensures that Azb has everywhere positive density when b' # 0.
Our normalization convention (]3!| = 1) requires a compactness assumption.”?

Assumption 3 (Compact Parameter Space) |3'| =1, and B=(B,...,0") is con-
tained in o compact subset B of RF~!.

3The normalization made by Manski (1987) is ||8|| = 1, which directly implies that J lies in a
compact subset of R,
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To ensure that Pr(Ay > 0|z,,z,, a] and Pr[Ay < 0|z, z9, ] are both positive,
we assume that the errors have infinite support.

Assumption 4 (Continuous Errors) Conditional on (z,, zo, a), €; and €, are con-
tinuously distributed on R.

The following alternative assumptions on Ae correspond, respectively, to uncen-
sored data, censored data, and truncated data. Assumptions 5.2 and 5.3 are the same
assumptions as those made by Honoré (1992) for the linear censored and truncated
panel models, respectively.

Assumption 5.1 (Zero Median) The distribution of Ae conditional on (z,, 1), c)
has median zero.

Assumption 5.2 (Symmetry) The distribution of Ae conditional on (z1, T2, @, €1 +
€2) is symmetric around zero.

Assumption 5.3 (Symmetry and Unimodality) The distribution of A€ conditional
on (z,, 2, a, €, + €) 1s symmetric around zero and strictly unimodal.

Similar to Powell (1986), we say that a continuous distribution is strictly unimodal if
it achieves a unique maximum (which must be at zero to also satisfy symmetry) and
is monotone on either side of the maximum.

The following lemma (Lemma 1 from Honoré (1992)) gives sufficient conditions
for Assumptions 5.2 and 5.3 to hold.

Lemma 1 If, conditional on (z,,1,, &), €; and €, are independent, and identically
and continuously distributed, then Assumption 5.2 holds. If the (common) marginal
density of €, and ¢, is also strictly log-concave, then Assumption 5.3 holds.

The conditions of Lemma 1 allow for heteroskedasticity across observational units,
but require homoskedasticity over time for each observational unit. As Honoré (1992)
points out, some form of serial dependence of the error terms can be captured in
an additive fixed effect (e.g., if ¢; and €, are jointly normal with equal variance
and arbitrary positive correlation). Also, many of the usual distributions used in
economics, including the normal and logistic distributions, satisfy the log-concavity
sufficiency condition for Assumption 5.3.4
The key condition driving consistency of the MSE is

Azfi >0 <= Pr(Ay > 0|z, z,) > Pr(Ay < 0z}, z5)
Azf3=0 <= Pr(Ay > 0|z, z;) = Pr(Ay < 0|z,, z5) (2.4)
Az <0 <= Pr(Ay > 0|z, z2) < Pr(Ay < 0|z, T2),

*The uniform distribution is also log-concave, but doesn't satisfy the continuity of Assumption 4.
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which can be written more concisely as

sgn(E[sgn(Ay)|z1, 72]) = sgn(Azp)

or
Med(sgn(Ay)|z1, 22, Ay # 0] = sgn(Azf).

The following lemma formally states that the aforementioned assumptions are
sufficient for (2.4) to hold.

Lemmna 2 Assume Assumptions 1-4 hold. Then, (2.4) holds when either (a) the
data are uncensored and Assumption 5.1 holds, (b) the date are censored and As-
sumption 5.2 holds, or (c) the data are truncated (and possibly censored) and As-
sumption 5.8 holds.

The proof of Lemma 2 is given in the Appendix. The uncensored case is trivial.
The censored and truncated cases can be seen graphically. The idea is to consider
any realization of (z;, 2, @) and (€; + €2). This realization is associated with some
value of ¥} + y3. On a graph with 3] and y; on the axes, y; + y3 = K is a line along
which we can determine the relative likelihood of Ay being positive or negative.

We look first at the case of censored data. Figures 2.1 and 2.2 show the binary
choice model and the traditional censored model, respectively. A particular y; +y5 =
K line is shown in Figure 2.1 as well. For censored data, the region of positive Ay
is simply a mirror image of the region of negative Ay through the 45°-line passing
through the origin. The formula for the line through the origin is Ae = g(z:6, a) —
g(z20, ). The Ae = 0 locus is parallel to this line and will be below and to the right
of it for positive Az (above and to the left for negative Azf).

Figure 2.3 shows, for positive and negative Azf, the cross-section of a censored
data graph along a y} + y; = K line (e.g., the cross-section along the line pictured in
Figure 2.1). Following Assumption 5.2 for the censored case, a symmetric distribution
for Ae is drawn. The figure illustrates that positive Ay is more likely than negative
Ay when Azp is positive, and vice versa when Azf is negative. For positive Azf,
the area underneath the right tail (labeled “Ay > 0” in the figure) is larger thap the
area underneath the left tail (labeled “Ay < 0” in the figure). The opposite is true
for negative Azf.

The case of truncated data is similar. Figure 2.4 shows the traditional truncated
model. Again, the positive Ay and negative Ay regions are mirror images of each
other. Figure 2.5 shows the cross-section along a y} + y3 = K line. The dotted por-
tion of the axes in Figure 2.5 shows the region where Ae can not possibly lie (due to
truncation). Notice that, unlike the censored case, the positive Ay and negative Ay
regions need not extend indefinitely. This feature necessitates the additional assump-
tion of unimodality for truncated data. Figure 2.6 shows a situation where (2.4) fails
for a symmetric, but non-unimodal, Ae distribution. In Figure 2.6, the area under
the density in the Ay < 0 region is larger than the area under the density in the
Ay > 0 region even though Azf is positive.
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Figure 2.1: Binary Choice Model

Ae=g(xf a) - g(xf a)

yr+y; =K

Figure 2.2: Censored Model
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Figure 2.3: Cross-Section for Censored Data

Positive A X B Negative A X B

Ay*=0 Az =0 Az =0 Ay*=0

pdf. of Ae

Ay<0 Ay=0 ay>0 Ay<0 Ay=0 Ay>0
(censored) (censored)

Figure 2.4: Truncated Model
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Figure 2.5: Cross-Section for Truncated Data
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Figure 2.6: Symmetric, Non-Unimodal Distribution for Truncated Data
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This graphical intuition still works when the data are both censored and trun-
cated. Figure 2.7 shows a line representing a possible cross-section for such a model.
Unimodality is still needed to avoid a situation like Figure 2.6.

Figure 2.7: Cross-Section for Censored, Truncated Data

Ay*=0

e T r prosmms >

(truncated) Ay<0 Ay=0 Ay>0 (truncated)
(censored)

Lemma 2 directly yields consistency.

Theorem 1 (Consistency of the MSE) If Assumptions 1-4 and the appropriate error
assumption (Assumption 5.1, 5.2, or 5.3 as in Lemma 2) hold, and

B, = arg max_ Sp(b),
biiby|=1, beB

where b= (b2,...,b%), then limy_,o0 Bn = B almost surely.

Finally, we note the difference between the assumptions on the error distribution
made here and the stationarity assumption of Manski (1987). Stationarity of the
errors across time for a given individual implies

sgn(E[Ay|z, 7)) = sgn(AzpB).
In the binary choice model, this condition is equivalent to the one used here since
Ay = sgn(Ay) => Med(sgn(Ay)|z1, 72] = sgn(E[Ay|z1, 22)).

In general, though, the conditions need not be equivalent.

2.4 Smoothed MSE and Asymptotic Normality

The MSE’s objective function is a step function and difficult to analyze using tradi-
tional asymptotic methods. Kim and Pollard (1990) show that the binary choice MSE
converges at a rate of n~'/3 to a random variable that maximizes a certain Gaussian
process. Unfortunately, the properties of the limiting distribution are largely un-
known, making inference impossible. Horowitz (1992) has developed a smoothed
(differentiable) version of the MSE for the non-panel binary choice model. Under
certain distributional assumptions, the smoothed MSE is asymptotically normal with
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a convergence rate that is at least n=%/% and can be made arbitrarily close to n='/2,
depending on the strength of the smoothness assumptions. Kyriazidou (1994) and
Charlier et. al. (1995) have extended this smoothing method to the panel version of
the binary choice model. With hardly any modification, the smoothing method also
extends to the general MSE of this paper.

We follcw closely the notation of Horowitz (1992) in this section. First, we let
K : R = R be a continuous function such that

(K1) |[K(v)| < M for some finite M and all v € R
(K2) lim,, o K(v) = 0 and lim,_,,, K(v) =1

Let {0, :0, > 0,n=1,2,...} be a sequence satisfying o, — 0. Define the smoothed
objective function as

Sn(b;00) = %isgn (Ay)K(Azb/o,). (2.5)

i=1

The smoothed MSE X
ﬂ.’

arg max Sy, (b;0y,).
by |=1

is consistent under the same assumptions as those in Section 2.2.

Theorem 2 (Consistency of Smoothed MSE) If Assumptions 1-4 and the appropriate
error assumption (Assumption 5.1, 5.2, or 5.8 as in Lemma 2) hold, and

,"1 = arg max S,(b;ay,),
b:|by|=1, be B
where b = (b%,...,b%), then lim,_ B; = f almost surely.

Analyzing the asymptotic normality of the smoothed MSE requires snme addi-
tional notation and several technical assumptions. The only differences from Horowitz
(1992) are that we consider first differences and condition on the event {Ay # 0}. To
start, define

To(b; 0,) = 8Sn(b; 0,)/0b (2.6)

and o
Qn(b; ) = 0S;(b; 0,)/BbOV'. (2.7)

Let z = Azf3. By Assumptions 2 and 4, the distribution of z conditional on Az
and on the event {Ay # 0} has everywhere positive density with respect to Lebesgue
measure for almost every Az. Let p(z|AZ, Ay # 0) denote this conditional density,
and for each positive integer i, define

p(2|AZ, Ay # 0) = &'p(2]AZ, Ay # 0)/02*

whenever the derivative exists, and, for notational purposes, define p{®(z|A%, Ay #
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0) = p(z|AzZ, Ay # 0). Let F(-|z,AZ, Ay # 0) denote the c.d.f. of Ae conditional on
z, Az, and the event {Ay # 0}. For each positive integer i, define

FW9(=z|z,A%, Ay # 0) = 8'F(—2|z, A%, Ay # 0)/07
whenever the derivative exists. Define the scalar constants a4 and ap by
ay = /m V"K' (v)dv
and o
ap = / [K'(v))*dv
—00
whenever these quantities exist. For each integer h > 2, define the (k — 1) x 1 vector
A and the (k — 1) x (k — 1) matrices D and Q by
h
A= =20, Y {[i'(h—3)!|"E[FP (0|0, AZ, Ay # 0)p*~)(0|AZ, Ay # 0)AZ']} Pr(Ay # 0),
i=1

D = apE[AT'AZp(0|AZ, Ay # 0)] Pr(Ay # 0),
and
Q = 2E[AF AZF(M(0[0, AF, Ay # 0)p(0|AE, Ay # 0)] Pr(Ay # 0),

whenever these quantities exist.
The following assumptions are needed for the asymptotic results.

Assumption 6 The components of AZ and of the matrices AT' Az and AT'ATAT' Az
have finite first absolute moments.

Assumption 7 (logn)/(nol) - 0 as n — oo.

Assumption 8 (a) K is twice differentiable everywhere, |K'(-)| and |K"(-)| are uni-

formly bounded, and each of the following integrals over (—oo, 00) is finite: [[K'(v)]'dv,
J[K"(v))?dv, [|v2K"(v)|dv; (b) For some integer h > 2 and each integer i (1 < i <

h), [ |v'K'(v)|dv < oo, and

[ vk )y = { 0 Yi<h (2.8)

—o0 r(nonzero) ifi=h;

(c) For any integer i between 0 and h, any 6 > 0, and any sequence {0,} converging
to 0,

lim af,"'/l 55 [v'K'(v)|dv =0 (2.9)
n—00 Ignt|>
and
. -1 " _
lim o; /Imw |K"(v)|dv = 0. (2.10)

51



Assumption 9 For each integer i such that 1 < i < h—1, all z in a neigh-
borhood of 0, almost every Az, and some M < oo, p¥)(z|AZ, Ay # 0) erists and
is a continuous function of z satisfying |p)(z|AZ, Ay # 0)] < M. In addition,
|p(z|AZ, Ay # 0)| < M for all z and almost every AZ.

Assumption 10 For each integer i such that 1 < i < h, all z in a neighborhood
of 0, almost every Az, and some M < oo, F)(—z|z, A%, Ay # 0) ezists and is a
continuous function of z satisfying |F)(—z|z, A%, Ay # 0)| < M. (This assumption
is satisfied if [0 F(Ae|z, Az, Ay # 0)/OA€' 0w | pe=—. is bounded and continuous in
a neighborhood of z = O for almost every AZ whenever i+ j < h.)

Assumption 11 5 is an interior point of B.
Assumption 12 The matriz Q) is negative definite.

The only additional condition needed to apply the results of Horowitz (1992) is
F(0]|0,Az,Ay #0) = 1/2. (2.11)

Horowitz (1992) makes the explicit assumption that the median of the error term is
zero. This assumption is equivalent to F'(0|0,Z) = 1/2, the analogous condition for
the non-panel binary choice model. Here, (2.11) holds if the appropriate assumptions
needed for Lemma 2 hold:

E[sgn(Ay)|z = 0,Az] = 0 by Lemma 2

E[sgn(Ay)|z =0,Az,Ay # 0] =0

E[2-1(Ae < g(z28, @) — g(z10, @) — 1|2 = 0,AZ, Ay # 0] = 0
E(2-1(Ae <0) - 1|z =0,AZ,Ay #0] =0

F0|0, AZ, Ay # 0) = 1/2

I

The main results are embodied in the following two theorems. Theorem 3 gives
the asymptotic distribution of the smoothed MSE. Theorem 4 shows how A, D, and
Q@ can be consistently estimated from the observed data.

Theorem 3 If Assumptions 1-4, 6-12, and the appropriate version of Assumption
5 hold for some h > 2, and {3} is a sequence of solutions to the mazrimization of
Sn(b;0y,), then: )

(a) If no**! o oc as n = oc, o3, — 3) £ -Q7'A.

(b) If no®**+! has a finite limit A\ as n — oo,

VAgn (B — A) ~5 N(-VAQ'4,Q7'DQ).

(c) Let 0, = (A/n)P*! with 0 < X < oo, Q be any nonstochastic, positive semidefinite
matriz such that A'Q™'QQ'A # 0, E4 denote the expectation with respect to the
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asymptotic distribution of n®@*+)(3_ — f), and mean square error equal to E4(B, —
- <8 -
B)'UB,, — B). Then, mean square error is minimized by setting

A = \* = [trace(Q!1QQ ' D)]/(2hA'Q@T'QQ ! A),
in which case

nh/(2h+l)(ﬂ: _ B) __d+ N(—(/\')h/(2h+l)Q_lA, (/\')_l/(2h+l)Q_lDQ—l).
Theorem 4 Let 35 be a consistent smoothed MSE based on gy, oc n™"/(h+1). For
be {-1,1} x B and j =1,...,n, define
tj(b,0) = sgn(Ay)(AZj/o)K'(zb/0).

Let o}, oc n=4/ (1) where 0 < 6 < 1. Let n, = T, 1(Ay # 0). Then,
(a) An = L:.“(U;)-th( ‘:nar‘u) 25 4;

(b) l?n = ":,"(o'n/;n) 2}‘:1 tj(ﬁﬁyan)tj( Ar‘na'n)' £ D; and,
(c) Qn = ":,“Qn(ﬂ:u On) -y Q.

Multiplying by n,/n achieves the necessary conditicning correction in Theorem 4
since n,/n is an estimate of Pr(Ay # 0). (Alternatively, one could do the asymptotics
in terms of n, and rewrite Theorem 3 accordingly.)

Horowitz (1992) discusses how to choose the bandwidth for estimation and how
to correct the small-sample bias. The same techniques can be used here as well.

Appendix

Proof of Lemma 1: See Lemma 1 of Honoré (1992).

Proof of Lemma 2: We consider each of the three cases separately.
(a) d is strictly increasing, which implies

sgn(Ay) = sgn(d(g(z2B,a) + €2) — d(g(z18, @) + 1))
= Sgﬂ(g(.’tzﬁ,d) - g(zlﬂa a) + AG)

Then, positive Az implies g(z208, a) — g(z16,a) > 0 for any a, which means Pr(Ay >
0|zy,z2) > 1/2 > Pr(Ay < 0|z), z2) since Med(Ae|zy, 2, a) = 0. Similar for negative Az/.

(b) Consider any realization of (z;,z2,a) and (¢; + €2). Let L = J[(9(z18,a) + ;) +
(9(z28, ) + €2)]. Since d is nondegenerate, there exists at least one place on the real line
where d is nonconstant (i.e., 3v s.t. d(v) > d(v — 4) V6 > 0). Pick the closest such point
to L:

vt = a.rg;g{/lL -,
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where V = {v : d(v) > d(v — 8) V6 > 0}. Let ¢* = 2|L — v*|. Then,
Pr(Ay > 0|z, z2, a, €) + €2) = Pr(Ay® > c*|11, T2, 0, €1 + €2)
and
Pr(Ay < 0|z, 22, a, €1 + €2) = Pr(Ay* < —c*|z1, 72, , €1 + €2).
Since Ay* = g(z28, a) — g(x1 8, a) + Ae, we have

Pr(Ay > 0|z, 2, €) + €2) =
Pr(Ae > ¢* — [9(z28, @) — g(z16, @)]|T1, T2, @, €1 + €2)

and

Pr(Ay < Olzy, 22,61 + €2) =
PI'(—AE >c - [g(ﬂ:lﬂ, a) - 9(323,0)”-’51,12-0,51 + 62)'

Then, since g is strictly increasing in its first argument, the desired result follows from
symmetry of Ae conditional on (z;, 2, ) and (e; + €2). (3) holds since the result is true
for any such realization, allowing us to condition only on z; and z,.

(c) Consider any realization of (z;,z2,c) and (€; + €2), and define L as above. We first
map the non-truncated region 7 into a set P of “possible” values for Ay* given L. Defining
h(v) = V2(v — L) and j(v) = —h(v), we have P = h(T) U j(T) by some simple geometry.
Define P* = {veP:v >0} and P~ = {veEP:v<0}. Then

Pr(Ay* € P\, T2, )
Pr(Ay* € P|z;, 12, )

Pr(Ay > 0|z, 22, @) =

and

Pr(Ay* € P~ |z}, 12, )
Pl‘(Ay' € PIII,IQ,Q) .

Pr(Ay < 0|z, z2, ) =

Let g(-) denote the p.d.f. of Ay* conditional on (z;,z2,a) and (e; + €2). We show that for
any v in P* (meaning —v is in P~), we have g(v) > gq(—v) for positive Azf. Note that
Ay* = v < Ae = g(z,0,a) — g(z208,a) + v. Let f(-) denote the p.d.f. of Ae. Consider
positive Azf. If v > g(z28,a) — g(z, 5, a), we have

gv) = f(g(z18,a) - g(z26, ) +v)

= f(9(z28, @) — g(z1 5, @) — v) by symmetry
f(g(x18, @) — g(z28, @) — v) by unimodality
= g(-v).

\Y

If v < g(z288, @) — g(z, 8, a), we have

qg(v) = flg(z1f,a) - g(z20,a) +v)
> f(g9(z18, a) — g(z28, a) — v) by unimodality
= q(-v).
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So, g{v) > g(—v) for all v in P*. Since Pr(Ay* € S) = [,cs q(v)dv, we have

Pr(Ay® € Pt|zy, 22,0, €1 + €2) > Pr(Ay® € P7|z1, 72,0, €1 + €2)
= Pr(Ay > 0|z),z2, a, €1 + €2) > Pr(Ay < 0|z, T2, cx, €1 + €2)

Again, (3) holds since the result is true for any realization of (zy,z2,a) and (¢ + €3), al-
lowing us to condition only on z; and z,.

Proof of Theorem 1: See Lemma 1 of Manski (1987). Replace (2 — z,) by sgn(Ay) to
make the proof applicable.

Proof of Theorem 2: Using weights in the objective function has no effect on consistency.
See Theorem 1 of Horowitz (1992) for details.

Proof of Theorems 3 and 4: See Theorems 2 and 3 of Horowitz (1992).
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Chapter 3

Estimation in the Presence of
Mismeasured Dependent Variables
(joint with Jerry Hausman)

3.1 Introduction

The issue of measurement error has been studied extensively in econometrics but
almost exclusively with respect to the independent variables. The studies that have
considered mismeasurement of the dependent variable have focused on misclassifica-
tion of responses in qualitative choice models (e.g., Hausman and Scott-Morton (1994)
and Poterba and Summers (1995)). Strangely enough, mismeasurement of continuous
dependent variables has received almost no attention (aside from the passing remark
in econometrics textbooks that additive errors in the classical linear model do not
affect the consistency of OLS).

This paper provides a treatment of mismeasured dependent variables in a more
general model, which includes qualitative choice models, proportional and additive
hazard models, and censored models as special cases. The emphasis is on measure-
ment error which is independent of the covariates, although extensions to covariate-
dependent measurement error are also considered.

Parametric techniques are discussed first. The general conclusion is that para-
metric estimation results in inconsistent estimates of the parameters of interest if
the mismeasurement is incorrectly modeled (or ignored altogether). Once one moves
away from a simple model of misclassification (as in the binary choice model), para-
metric estimation becomes quite cumbersome; moreover, the likelihood of correctly
modeling the mismeasurement is greatly reduced.

Semiparametric estimation, using the monotone rank estimator developed by Ca-
vanagh and Sherman (1992), is proposed as an attractive alternative to parametric
estimation. The advantage of the semiparametric approach is that the mismeasure-
ment need not be modeled at all. The basic insight is that the monotone rank esti-
mates of the coefficient parameters remain consistent as long as an intuitive sufficient
condition is satisfied.
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One way of thinking about the measurement error is that the observed dependent
variable is a realization from a random variable that depends on the true underly-
ing dependent variable (the “latent dependent variable”). A sufficient condition for
consistency of monotone rank estimation is that the random variable associated with
a higher latent dependent variable first-order stochastically dominates the random
variable associated with a lower latent dependent variable.

The paper is organized as follows. Section 3.2 describes the general model of
interest, formalizes the mismeasurement process, and introduces three illustrative
examples. Section 3.3 describes maximum likelihood estimation methods in the pres-
ence of mismeasurement, focusing on the examples from Section 3.2. Section 3.4
introduces the semiparametric approach, formalizes the sufficient condition for con-
sistency, and interprets the condition in the context of the examples. Section 3.5
extends the semiparametric approach to situations in which the measurement error
in the dependent variable is dependent upon covariates. Section 3.6 considers the
proportional hazard model in detail. Existing parametric and semiparametric esti-
mation techniques are inconsistent when durations are mismeasured, as illustrated
by Monte Carlo simulations. The monotone rank estimator is used to estimate an
unemployment duration model using data from the Survey of Income and Program
Participation (SIPP) and the results are compared to those obtained using traditional
techniques. Finally, Section 3.7 concludes.

3.2 The Model

Consider the following model, which is an extension of the generalized regression
model studied by Han (1987). The latent dependent variable is described by

y* = g(2f,,€), €i.id, (3.1)

where g is an unknown function with strictly positive partial derivatives everywhere.!
The model given by (3.1) is quite general. For instance, it includes models with
nonlinearity on the left-hand-side,

fy") =zf +e, (3.2)

and models with nonlinearity on the right-hand-side,

y' = f(zfh,) +¢, (3.3)

where f is strictly increasing. Both of these models have € entering additively, though
that is not a restriction made in (3.1).

If there is no mismeasuremen’, of the dependent variable, the observed dependent
variable y would be a deterministic function of y*. Let d : R — R be the (weakly)

! Additional disturbances may be included in (3.1). As an example, such a specification would
allow for unobserved heterogeneity, as will be discussed in more detail in Section 3.6.
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increasing function defining y in terms of y°. For instance, the binary choice model
has d(z) = 1(z > 0), the traditional censored model has d(z) = z - 1(z > 0), and
a model with no censoring has d(z) = z. This deterministic specification is the one
considered by Han (1987).

To introduce the possibility of mismeasurement, one can instead model y as a
stochastic function of the underlying y*, where the distribution of y has the conditional
c.d.f. given by

Fyy-(vt) = Pr(y < vly* = 11). (3.4)

For most of this paper, it is assumed that the mismeasurement is independent of z:
Pr(y <oly" =t,z) = Pr(y < vly" =1).

Extension to covariate-dependent measurement error is considered in a later section.
The case of perfectly measured dependent variables corresponds to a c.d.f. with a
single jump from zero to one. If d denotes the deterministic function described above,
then
Fy- (v]t) = 1(v > d(t)).

We consider three simple models of mismeasurement below. In each example, the
observed dependent variable takes on a different form. The first and second examples
consider the case of discrete-valued dependent variables, with the first example focus-
ing on the 0-1 case. The third example considers the case of a continuous dependent
variable. The duration model application considered in Section 3.6 can be thought
of as a hybrid of the second and third examples. The unemployment duratious take
on integer values (corresponding to the number of weeks of unemployment), but the
range of possible durations is large enough that viewing the dependent variable as
continuous is a good approximation.

Ezample 1: Binary Choice with Misclassification

Following Hausman and Scott-Morton (1993), assume there is some probability
(independent of z) that the binary response will be misclassified. The latent depen-
dent variable is y* = z3, + €, and the misclassification errors ag and «; are

ap = Pr(y=1ly° <0) (3.5)
a; = Pr(y=0[y" >0). (3.6)
In the traditional binary response model, ag = a; = 0 since zeros are never misre-

ported as ones and vice-versa.
With misreporting, the conditional c.d.f. F,,- is

0 ifv<o0
Fy-(vft) = l-—ay ifve(0,1) ift<0 (3.7)
1 ifv>1



0 ifv<0
Fyly-(v|t) = gy ifve [0, 1) ift>0. (3.8)
1 ifv>1

No matter how negative y” is, there is a positive probability (equal to ag) that the
response will be misclassified as a one. Thus, for negative y*, Fy,- jumps from 0
to 1l — g at 0 and from 1 — ag to 1 at 1. The conditional c.d.f. for positive y* also
has two jumps.

This model is a bit simplistic since one might want to allow the probability of
misclassification to depend on the level of y*. In addition, the model has a disconti-
nuity at y* = 0 for ag # a;. The misclassification could instead be modeled with the
function o : R — [0, 1], defined by

alt) =Pr(y=1ly" =t) fort € R. (3.9)
Ezample 2: Mismeasured Discrete Dependent Variable

The binary choice framework can be extended to handle (ordered) discrete de-
pendent variables with more than two possible values. Without loss of generality,
assume that the dependent variable can take on any integer value between 1 and K.
The (continuous) latent variable y* will belong to one of K sul sets S, S5,,..., Sk of
the real line. In the absence of mismeasurement, the value of y corresponds to the
subscript of the subset containing y*; i.e., y =t if and only if y* € S,.

To introduce mismeasurement, parametrize the misclassification probabilities by
a,, for each s and tin {1,..., K}, where

as, = Pr(y =tly* € S,). (3.10)

Then, a,, is the probability that a response is correctly classified, and 3", a,, = 1 by
definition. We can represent this misclassification with a (transition) matrix

[ a1, a2 - aLg |
02'1 a2'2 P e a?,K
A= : : (3.11)
L agy 0 0 Gk K-l QKK

with the elements of each row adding up to one.
The conditional c.d.f. F,. is

0 ifv<l
Fyy- (v]t) = Yoo, ifve(l,K] forteS,. (3.12)
1 ifv>K

As in Example 1, a more complicated model could allow the misclassification
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probabilities to depend on the actual leve of y* rather than just the subset S, to
which it belongs.

Ezample 3: Mismeasured Continuous Dependent Variable

Consider a setting in which the dependent variable is continuous and can take
on any real value. Assume that the observed dependent variable is a function of the
latent dependent variable and a random disturbance,

y = h(y*,n), (3.13)

where 7 is i.i.d. (independent of z and €) and h is an unknown function satisfying
h,- > 0 and h, > 0. This model is quite general, including additive and multiplicative
i.i.d. measurement errors as special cases.

The conditional c.d.f. Fy,- is

Fyy- (v]t) = Pr(h(t,n) < v). (3.14)

Under the further assumptions that h, is continuous and 7 has positive density ev-
erywhere along the real line, there exists a function h such that

Pr(h(t,n) < v) = Pr(n < h(v,1)). (3.15)
Combining (3.14) and (3.15) gives
Fyy- (v]t) = G(h(v,1)), (3.16)

where G is the c.d.f. of 7.

3.3 Parametric Estimation

In this section, the focus will be on parametrization of the measurement model and
maximum likelihood estimation of the parametrized model. The basic assumption
needed for this approach is that the mismeasurement can be modeled in terms of
a finite-dimensional parameter. At the true value of the parameter, the underlying
conditional c.d.f. Fy,- will be modeled correctly; for all other values, the c.d.f. will be
modeled incorrectly. Technicalities concerning identification will be avoided for the
most part, though some issues will be considered in the examples below.

Fzample 1 continued

Consider the binary response model of the previous section. If H is the c.d.f.
of —e,

Priy=1) = (1-ou)H(zh,)+ ao(l — H(zf,)) (3.17)
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= ao+ (1 -—ao—a)H(z5,).

When ap = a; = 0 (no misclassification), equation (3.17) collapses to Pr(y = 1) =
d\13,).

Parametric estimation of the binary response model proceeds by assuming the
form of F (usual normal or logistic) and specifying a likelihood function. In the
absence of misclassification, the log-likelihood is

InL(b) = Z {yiln H(z;b) + (1 — y;) In(1 — H(z:b)]} . (3.18)

Taking misclassification into account, the log-likelihood becomes
InC(b) =3, {wminfao + (1 — a0 — a1)H(zib)] + (1 — yi) In[(1 — ao) — (1 — a0 — a1 )H(z,b)]}. (3.19)

If misclassification exists but (3.18) is maximized instead of (3.19), the resulting esti-
mate of 3, will be biased and inconsistent. Maximization of (3.19) yields a consistent,
estimate of 3, if ap and «, are known. If the misclassification probabilities are un-
known, they can be estimated using

InL(b,a0,a1) = 3, {iIn[ao + (1 — ao — ar) H(zib)] + (1 - yi) In[(1 —a0) — (1 —ao — ay)H(z:b))}.  (3.20)

If the mismeasurement has been modeled correctly, maximization of (3.20) yields
consistent estimates of ag, ay, and 3,. If the mismeasurement has been modeled
incorrectly (e.g., if the misclassification probabilities also depend on the level of y*
rather than just the sign of y*), maximization of (3.20) will not yield consistent esti-
mates. A more complicated likelihood function would need to be specified.

Ezample 2 continued

The parametric approach for mismeasured discrete dependent variables is similar
to the approach for Example 1. The probability for the observed dependent variables
is

-
-t
@

]

1l
M=

Pr(y =t|y* € S,) Pr(y* € S,) (3.21)

)
1l
—_

Il
M=

a,. Pr(y® € S,).

]
Il
—_

We assume that the cutoff points for the sets S),S5,,..., Sk are known by the re-
searcher (e.g., S} = {v:v < 10}, S, = {v: 10 < v < 20}, and S3 = {v : v > 20}).
Denote the cutoff points by —oc = ¢y, ¢y, ...,¢cx_1,cx = 00 so that S, = (¢,_1,¢,). In

situations where the cutoff points are unknown (e.g., an ordered qualitative variable
having values “poor,” “good,” and “excellent”), they can be jointly estimated in the
likelihood function.

In order to form a likelihood function, a parametrization of the distribution of ¢

62



is needed, so that Pr(y® € S,) can be written in terms of estimable parameters. We
assume a parametrized distribution for H, the c.d.f. of —e. For simplicity, assume
that H is the c.d.f. of a normal random variable having a standard deviation of o.2
Then, the likelihood function is

InL(b,d,{as:}) =3%; E{‘;l I(yi=t)In {Zf=1 ay ¢ [H(zib — ¢c,) — H(zib - c,_l)]} , (3.22)

subject to the constraints ) ,a,, = 1 for each s. If no other restrictions are placed
on the misclassification probabilities, there are K(K — 1) parameters to be estimated
in addition to 3, and o. For large K, this approach is cumbersome and will result
in inefficient estimates. Depending on prior knowledge about the misclassification,
though, one might be willing to impose further restrictions on the misclassification
probabilities. An example would be that the observable variable is at worst misclas-
sified into an adjacent cell (i.e., a,; = 0 if [s — t| > 1), in which case only 2(K — 1)
additional parameters are estimated.

As in the binary choice case, consistency depends on the correct specification of
the misclassification process. If the misclassification depends on the level of y* and
not just the subset S, to which it belongs, maximization of the above likelihood func-
tion will yield inconsistent estimates.

Ezample 3 continued

Recall that G denotes the c.d.f. of n and define f,-; as the conditional density
of y*. Then, the c.d.f. of the observable dependent variable y can be written as

Pr(y <vlz) = [ Fype(olt)fyrieltla) dt
= / G(h(v, 1)) f,-12(t]z) dt by (3.16). (3.23)

To form a parametrized likelihood function, we need to parametrize both G and f,. |-,
which boils down to making parametric assumptions on the distributions of n and e,
respectively. The parametrization of f,. . also requires knowledge of the function g
from (3.1). For simplicity, assume that the parametric assumptions are fully de-
scribed by the parameters o, and o.. The further assumptions needed are that h
(and therefore h) is known (e.g., it is known whether the mismeasurement is additive
or multiplicative), h is differentiable with respect to its second argument, and G is
differentiable.
Then, differentiation of (3.23) yields the likelihood function

In £(b, 6,5 = Y In { [ Py )G ((ws, ) Sy 1ol dt} | (3.24)

Equation (3.24) is similar to likelinoods used to capture heterogeneity, in which mix-

2The standard deviation of the error can be estimated here since the cutoff points are known,
allowing 3, and o to be estimated. In the binary choice case, only the ratio 3,/¢ is identified.
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ing distributions are used to model random effects. Maximization of (3.24) requires
numerical integration.

In general, consistency of the estimates of 3, requires that h, G, and fy-iz are
correctly specified.

3.4 Semiparametric Estimation

In this section, we discuss semiparametric estimation in the presence of mismeasured
dependent variables. The approach described is extremely useful when the researcher
suspects mismeasurement but lacks any additional prior information for forming a re-
liable model of mismeasurement. Even if the researcher is confident of the underlying
mismeasurement process, the semiparametric approach can, at the very least, serve
as a useful specification check of the model.

The section is organized as follows. First, we discuss the monotone rank estimator
developed by Cavanagh and Sherman (1992). Second, we describe an intuitive suffi-
cient condition for the consistency of the estimator in the presence of mismeasured
dependent variables. The key insight is that the consistency of the semiparametric
estimator does not require a model of the measurement error. Third, we interpret
the sufficient condition in the context of our examples.

3.4.1 The Monotone Rank Estimator

The MRE, as defined by Cavanagh and Sherman (1992), is the estimator SMRE that
maximizes the objective function

SMRE(b) = Z M(y,-)Rank(xl-b), (325)

over the set B = {b € R?: |bg| = 1}, where M : {y;,...,y,} — R is some increasing
function (i.e., y; > y; = M(y;) > M(y;)). There are d covariates contained in ,
which does not include a constant. The Rank(-) function is defined as follows:?

z;,b < zi,b < ... <z;,b = Rank(z;_b) = m.

Since the ranking of z;b is unaffected by the scale of b (i.e., Rank(z;b) = Rank(z;(cb))
for ¢ > 0), B, is only identified up to scale using the MRE and a normalization
(|ba| = 1) is required. )

The key condition needed for consistency of SMRE is

H(z) = E[M(y)|zf, = 2] increasing in z. (3.26)

The monotonicity condition (3.26) says that, on average, higher =3, are associated
with higher y. This “correlation” is maximized by the objective function (3.25).

31t is innocuous to consider strict inequalities here due to a continuity assumption on z needed
for consistency; see the proof of Theorem 1 in the appendix.
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3.4.2 Sufficient Condition for Consistency

The monotonicity condition is satisfied for the latent variable y* in the model given
by (3.1). That is,

(3.1) = H*(z) = E[M(y")|zf3, = z] increasing in z. (3.27)

To have the monotonicity condition hold for the observed dependent variable y when
there is mismeasurement, it suffices to have

E[M(y)|y* = t] increasing in t. (3.28)

A sufficient condition for (3.28), and thus for (3.26), is that the distribution of y for
a higher y* first-order stochastically dominates the distribution of y for a lower y*.
This result is analogous to the result in microeconomics that a portfolio having returns
which first-order stochastically dominate the returns of another portfolio results in
higher expected utility. The “returns” here correspond to the distribution of y (con-
ditional on y*) and the “utility function” corresponds to the increasing function M(:).

We now state the basic consistency theorem. The additional technical assumptions
and proof are in the appendix.

Theorem 7 Under standard assumptions needed for consistency of semiparametric
estimators, BMRE (for any choice of increasing M) is an asymptotically normal, \/n-
consistent estimate of 3, in the model described by (3.1) if

(1) t1 > ta =>~ wa- ('Ultl) < Fyhl' (U'tg) Vv (329)
(u) 3t s.t. L >t>t, = Ju s.t. Fyly' ('Ultl) < FH:J' (’U|t2). (330)

Condition (i) corresponds to first-order stochastic dominance in the weak sense for ¢, >
t,. Condition (i) combined with condition (ii) corresponds to first-order stochastic
dominance in the strong sense for t, > t > t,. The asymptotic distribution for AMRE
is derived in Cavanagh and Sherman (1992).

The usefulness of this theorem is that the stochastic dominance conditions have an
intuitive interpretation when mismeasurement of the dependent variable is a potential
problem. The question that the researcher needs to ask herself is, “Are observational
units with larger ‘true’ values for their dependent variable more likely to report larger
values than observational units with smaller ‘true’ values?” For the application dis-
cussed later in this paper, that of unemployment duration, we expect that the answer
to this question is “yes.”

3.4.3 The Examples Revisited

In this section, we discuss the stochastic-dominance conditions of Theorem 1 in the
context of the examples that were introduced in Section 3.2.

Ezample 1 continued
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From the conditional c¢.d.f.’s in (3.7) and (3.8), the stochastic-dominance condi-
tions require (1 — ag) > a) or, equivalently, (ag + o)) < 1. If (g + 1) > 1, the
responses are so badly misreported that the MRE would actually estimate —/3, rather
than /3,.

Unlike the parametric approach of Section 3.3, the MRE estimator remains con-
sistent if the misclassification probabilities are functions of the level of y*. With the
function a(t) given by (3.9), the stochastic-dominance conditions of Theorem 1 are
satisfied if a(t) is weakly increasing everywhere and strictly increasing along some
region having positive probability.

Ezample 2 continued

In this setting, the stochastic-dominance conditions have discretized representa-
tions. Condition (i) from Theorem 1 is equivalent to

K K
S1>8=>) 0> a,, Vke{l,...,K}
i=k i=k

and condition (ii) is equivalent to

K K
35y > 53 s.t. Y0y, > Y ay,,; forsomek e {1,...,K}.
i=k i=k

Looking at the transition matrix A defined in (3.11), the first condition means that
the elements of the first column must be weakly decreasing as you go down row-bv-
row, the sum of the elements of the first two columns must be weakly decreasing as
you go down row-by-row, and so on. Alternatively, the elements of the K-th column
must be weakly increasing as you go down row-by-row, the sum of the elements of
the last two columns must be weaklv increasing as you go down row-by-row, and so
on. The second condition has a similar interpretation.

As in Example 1, the MRE will be robust to situations in which the misclassi-
fication probabilities are functions of the level of y*. Conditions analogous to those
above can be derived rather easily.

FEzample 3 continued

The model of mismeasurement given by (3.13) satisfies the stochastic-dominance
conditions. To see this, write the conditional c¢.d.f. as

Fyy(vit) = Pr(h(t,n) <v)
- /l(h(t,u)gv) dG (u),
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where G is the c.d.f. of . Differentiating with respect to t yields
OF - (v|t)/0t = /h,,-(t,u)l(h(t, u) < v) dG(u),

which is positive for all v since h,- is positive. Thus, conditions (i) and (ii) hold.

Unlike the parametric approach, there is no need to specify the function h or
the distribution G. As long as h has positive partial derivatives and 7 is i.i.d., the
MRE will be consistent. This result is rather strong considering the wide range of
mismeasurement models described by (3.13).

3.5 Covariate-Dependent Measurement Error

In this section, we modify the MRE to handle measurement error in the dependent
variable that is not independent of the covariates. We limit our attention to depen-
dence upon a single covariate, ;. We consider two cases below.

The first case covers discrete z;, where the stochastic-dominance conditions of
Theorem 1 hold for each subgroup of observations having the same value for z; but
not necessarily across different values of z,. For instance, if measurement error differs
systematically for union workers and non-union workers, then the conditions may not
hold for the whole sample but will hold for the subsample of union workers and the
subsample of non-union workers.

The second case covers continuous z;, where some cutoff S exists such that those
observations having z; < S and those having z, > S satisfy the conditions, but the
whole sample doesn’t necessarily satisfy them.

3.5.1 Dependence upon a Discrete Covariate

Let the range of z; be {1,...,K}. Then, the basic idea is to use the MRE on
each subgroup for which the stochastic-dominance conditions apply. Since all the
observations in a subgroup have the same value for z,, we lose identification of /.
Note that 3, = z,8;, + z_,3_1, where “—1" iadicates all components but the first.
Within a subgroup, z,/3, is the same for all the observations and has no effect on the
rankings of 3, within the subgroup. The focus, then, is to estimate 3_; up to scale.

The MRE can be used to estimate _, consistently within each subgroup. For

each j € {1,...,K}, let A, maximize the objective function
Ti(b-y) = Y 1(za = j)M;(y:)Rank;(z, —,b,), (3.31)
i
over the set B_, = {b_, € R4 : |b_;4-1| = 1}, where the subscript j indicates

that the function applies to the observations within the subgroup defined by x; = j.

1Extension to more covariates is straightforward, but there is a large loss in efficiency if the
measurement error is allowed to be a function of too many covariates. If the measurement crror
truly is a function of nearly all the covariates, there is little hope of identifying 3, semiparametrically.
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Then, we can take a linear combination of the subgroup estimates to yield a consistent
estimator §_, for the whole sample. For instance,

K
B, = L > n;f,. (3.32)
n i

Since the asymptotic distribution of each B’_l is known, the asymptotic distribution
of A_, follows simply.?

Having estimated _,, one can do a specification test of this model for measure-
ment error against the alternative of covariate-independent measurement error. The
latter allows for consistent estimation of 3, using MRE on the whole sample. The
covariance of these estimators can be derived using results from Chapter 1 of this

thesis, allowing for a x2-test of their difference.®

3.5.2 Dependence upon a Continuous Covariate with Cutoff

The basic idea here is the same as for the discrete case. The difference is that
continuity of z, retains the identification of 3, since even within subgroups z,3, will
differ across observations due to the continuity. We consider a single cutoff point S,
so that the observations are split into two subgroups, defined by z, < S and 7, > S.
Then, let the estimators 3; and B, maximize (over the set B) the objective functions

Tl(b) = Z[l(l‘,’l < S)Ml(y,-)Rankl(x,-b)] (333)

Tz(b) = Z [1(.’12,'1 > S)Mg(y,')Rankz(Iib)] (334)

respectively, where the subscript indicates the subgroup to which the function applies.
Then, a consistent estimator J is

B = (nlﬂl +(n— nl)ﬂz) (3.35)

where n; is the number of observations having z; < S.
A specification test can be constructed here in the same manner as above. Also,
multiple cutoff points can be handled by defining additional subgroups appropriately.

5The key for the asymptotic argument is that each n; = 0o as n —+ oo.

8Rejection based on the y2-test statistic may be caused by something otner than the behavior
of the measurement error. For instance, the same estimators and specification test apply when
z,-dependent heteroskedasticity is suspected (violation of equation (3.1)). That is, the observa-
tions within the subgroups partitioned by z, are homoskedastic but possibly heteroskedastic acrogs
subgroups.
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3.6 Application to Duration Models

In this section, we consider dependent variable mismeasurement in the context of
duration models. Beginning with a brief review of the proportional hazard model,
we discuss the potential problem of unspecified heterogeneity and its equivalence to
mismeasured durations for a certain class of models. We consider several paramet-
ric and semiparametric estimation techniques, including the Cox partial likelihood
and the Han-Hausman-Meyer flexible MLE. We demonstrate inconsistency of these
estimators when durations are mismeasured. The MRE remains consistent when
the mismeasurement follows the form discussed in the previous section. Our results
are illustrated in Monte Carlo simulations under different specification.. Finally, we
estimate an unemplcyment duration medel using data from the Survey of Income
and Program Participation (SIPP) to see the effects of mismeasured durations. Few
studies have taken into account mismeasurement of unemployment spells in estimat-
ing a duration model. One exception is Romeo (1995), which explicitly models the
measurement error (using cross-validation data) and forms a parametric likelihood
incorporating the errors-in-variables and a flexibie hazard specification. Since the
MRE doesn't recuire an explicit model of the measurement error, the consistency of
the coefficient parameters using our approach does not depend on correct specifica-
tion of the errors-in-variables. Also, the likelihood approach of Romeo (1995) is quite
cumbersome since the likelihood is complicated and requires numerical integration.

3.6.1 The Proportional Hazard Model

We briefly review the proportional hazard model, which has been used extensively in
empirical analysis of duration data in economics; for a more complete treatment, sec
Kalbfleisch and Prentice (1980) or Lancaster (1990).

We consider a standard proportional hazard model with exponential index, where
the hazard function is

h(t) = ho(t)e*P,

with h,(-) called the “baseline hazard function.” Then, the “integrated bascline
hazard function” H,(t) = ' h,(T)dr satisfies

—In Hy(t) =z, + ¢,

where ¢ follows an extreme value distribution (with p.d.f. f(u) = ¢" exp(—¢e*)). When
the baseline hazard is strictly positive, the integrated baseline hazard H,(t) is strictly
increasing with well-defined inverse. We can then write the duration t as a closed-form
function of z3,:

t = H;'(exp(--zf3, — €)). (3.36)

Negating (3.36) puts the proportional hazard model into the latent variable context
of equation (3.1):
y' = —t=—H; (exp(-zf, — €)),
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so that
9(zBo,€) = —H, ' (exp(—zf, — ¢))
has g1 > 0 Ve.

Unobserved Heterogeneity

We can introduce unobserved heterogeneity into the proportional hazard model by
specifying the hazard function as

h(t) = ho(t)ePot,
where the heterogeneity term u is independent of . This model‘satisﬁes (3.1) with

g (37.301 (u + 5)) = —Ho_l(exp(—.’l:ﬂo — (u+¢))).

Parametric Estimation: Weibull model

The most widely used parametrization of the proportional hazard model is the Weibull
model where the baseline hazard is specified as

ho(t) = at®™!.

For the Weibull model, the integrated baseline hazard is H,(t) = t*, so that equa-
tion (3.36) simplifies to
—alnt=1z0, +e. (3.37)

This simple model can be estimated using either OLS or MLE. The latter is gen-
erally used if there is right-censoring (the censoring point is observed rather than a
completed duration) or if the right-hand-side variables change over time.

When unobserved heterogeneity is included, the Weibu!l model becomes

—alnt=z0,+u+e. (3.38)

Lancaster (1985) notes that this heterogeneity can arise from multiplicative mea-
surement error in the dependent variable. If ¢ = e"t is the observed (mismeasured)
duration and the true duratiown ¢ satisfies (3.37), then

—alnt = —aln(e")
= —alnt-on
= ‘Tﬁo + (C - 0”7),

so that the observed duration ¢ can be thought of as arising from a Weibull model with
heterogeneity, as in equation (3.38). Without censoring, least-squares regression of
— Int on z yields consistent estimates of (3,/a) if n is independent of z. The mean of 5
can be non-zero since it will be absorbed in the constant term of the regression. If the
value of « is assumed (e.g., @ = 1 is the “unit exponential model”) and the assumed
value is correct, then the OLS estimate of 3, is consistent. Usually, though, we are
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interested in estimating c. In the model without heterogeneity, one can estimate the
variance of (¢/a) using the residuals from the regression of — Int on z. An estimate of
« can be imputed since € is known to have an extreme-value distribution. Using the
same method when durations are mismeasured but the mismeasurement is ignored,
the residuals are used to estimate the variance of (¢/a — 1). Since the variance of
(¢/a — 7) is larger than the variance of (¢/ca), the imputed estimate of a will be too
low.” The resulting estimate of 3,, then, will be biased toward zero even though the
estimates of the ratios of the coefficients are consistent.

Lancaster (1985) reaches the same conclusions looking at MLE estimation of /3, for
the Weibull model without censoring. The results for consistency of the parameter
ratios using OLS or MLE are specific to the Weibull model with uncensored data
and i.i.d. measurement errors across observations.® This point is important since
most applied duration work has moved away from Weibull-type specifications (which
restrict the baseline hazard to be monotonic) in order to allow for more flexible hazard
specifications. Unlike the MLE, the MRE will yield consistent ratios for 3, in the
presence of censoring and more general measurement error (as in Example 3 of the
previous sections) in a proportional hazard model with arbitrary baseline hazard.

Semiparametric Estimation

We discuss two approaches, the Cox partial likelihood and the Han-Hausman-Meyer
flexible MLE, that estimate proportional hazard models without parametrizing the
baseline hazard. Both approaches have the virtue of flexibility, but both are incon-
sistent in the presence of mismeasured durations.

The Cox (1972) partial-likelihood approach estimates 3, without specifying the
baseline hazard. The estimation uses only information about the ordering of the
durations and maximizes the partial likelihood function

InL(b) =) _ [J:.-b—ln Y e:,b] , (3.39)

i JER()

where R(i), the “risk set” of observation i, contains all observations that survive at
least until time t;:

R(i) = {jlt; > t:}.
The estimator works in the presence of right censoring but does not handle ties (equal
durations) in a natural way.

In a Monte Carlo study, Ridder and Verbakel (1983) show that neglected hetero-
geneity results in inconsistent partial likelihood estimates that are attenuated toward
zero. Our results for mismeasured durations are similar. The intuitive reason for
inconsistency is straightforward: mismeasurement causes durations to be ordered in-
correctly. As a result, the risk sets used in the partial likelihood function are wrong.

"We assume 7 is also independent of e.
8L ancaster (1985) shows that the ratios remain consistent when n ~ N(z4, o;‘,) so that dependence
on z is allowed if the heterogeneity is normally distributed.
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We can write the first-order conditions resulting from (3.39):
1 1 Zjeﬂ(i) z,—exib
A=y | T
n nT L Xjerg e

Letting n — oo and evaluating at the true parameter B, yields

2jen(i) $jeI‘ﬂ°J
2 jen(i) €%

E[z;] = E [ (3.40)

The problem is that we observe incorrect risk sets R(z’) rather than R(7), and in
general, we’'ll have

E [Eieﬂ(i) “”'ezjﬂaJ E i Te™

2 jergi) €%iPe Y jer €
so that the MLE estimate does not correspond to the first-order condition given
by (3.40).

Another approach, developed by Han and Hausman (1990) and Meyer (1990),
has similar difficulties when durations are mismeasured. Unlike partial likelihood
estimation, the Han-Hausman-Meyer (HHM hereafter) approach handles ties in a
natural way and also extends easily to unobserved heterogeneity. The basic idea of
the HHM estimator is to group the observed durations into K intervals {(—o0,t,],
(t1,t2), ..., (tk—1,00)}, so that we observe

d = 1 t; € [tk—l;tk)
ik 0 otherwise

and maximize the likelihood function

InL(b, {8c}) = 33 dux In[F (8 + z:b) — F(8-, + z,b)],

where F is the extreme value c.d.f. The &’s are jointly estimated, with their true
value being In H,(t;) for each k. The result is a step function estimate of the baseline
hazard along with the estimates of 3,. For the extension to unobserved gamma
heterogeneity, see Han and Hausman (1990).

Mismeasurement in the HHM framework causes durations to be classified in in-
correct intervals. This misclassification results in misspecification of the likelihood
function and inconsistent estimation. The extent of the problem will depend on the
form of the mismeasurement (i.e., how often the observed durations fall into the wrong
interval).
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3.6.2 Monte Carlo results

We consider two Monte Carlo designs for the proportional hazard model to compare
the performance of the Weibull MLE, Cox partial likelihood, HHM flexible MLE,
and the MRE. The first design specifies a Weibull model with a = 1, yielding a unit
exponential baseline hazard. The second design specifies a non-monotonic baseline
hazard, having

H:'(v) = v — ksin(yv)

and
ho(t) = [1 — vk cos(yYH,(t))] " .

|vk| < 1 ensures a positive non-monotonic baseline hazard; in our simulations, we usc
v=4and £k =0.2.

To model mismeasured durations, we introduce multiplicative lognormal noise
with unit mean. Observed durations are generated as = e"t, where n ~ N(-02/2,02).
(As discussed in Section 3.6.1, multiplicative lognormal noise is equivalent to unob-
served heterogeneity when the model is Weibull.) Each simulation uses two covariates,
created by drawing (2, 22) from a bivariate normal distribution with correlation of
—0.5 truncated at 2.5 standard deviations and then setting z; = e* and z, = €**.

For each experiment, we generate 10,000 observations and run 100 simulations for
Weibull MLE, Cox partial likelihood, and MRE and 25 simulations for HHM flexible
MLE. For the MRE estimates, we use the Rank(-) function for M(-) in the objective
function (3.25). We use 12 intervals for the HHM estimates. The results are reported
in Tables 3.1 and 3.2, where the true coefficient vector is 8, = (1, —1)" and 0,2, =0
(no measurement error) or o2 = 1 (measurement error). Since the MRE estimates
only the ratio of the coefficients, we have scaled the MRE estimates to have vector
length equal to one.

Table 3.1 gives results for the unit exponential baseline hazard. Without mismea-
surement, all of the estimators are consistent as expected. When noise is added to the
dependent variable, the coefficient estimates of the non-MRE estimators are attenu-
ated toward zero. The attenuation for the Weibull MLE, partial likelihood, and stan-
dard HHM estimates is around 30%. We also report results for the HHM estimator
which allows for unobserved gamma heterogeneity. The estimates (—0.8828, 0.8887)
have attenuation of just over 11%. As explained in Section 3.6.1, the ratios of the
estimates for the Weibull MLE are consistent even though the absolute values are
attenuated toward zero. The ratios of the estimates diverge from the true value of
—1 for the Cox partial likelihood and regular HHM estimator. The extension of the
HHM MLE to allow for gamma heterogeneity does well in estimating the ratio as
well.

73



Table 3.1: Unit Exponential Baseline Hazard

0,2’ =0 0,27 =1
(no measurement error) (measurement error)
B Pa |B2/ 51 B P2 B2/ B
True -1.0000  1.0000 1.00 -1.0000  1.0000 1.00
Weibull | -0.9979  0.9991 1.00 | -0.6846  0.6862 1.00

(0.0096) (0.0101) (0.014) | (0.0089) (0.0090)  (0.018)

Cox 0.9983 0.9990 1.00 | -0.6353  0.7222 1.14
(0.0132) (0.0120) (0.018) | (0.0132) (0.0106)  (0.029)

HHM -0.9962  0.9991 1.00 -0.6714  0.7098 1.06
(0.0156) (0.0164) (0.023) | (0.0116) (0.0157) (0.030)
HHM E— — — | -0.8828  0.8887 1.01
(gamma) (0.0217) (0.0200) (0.034)
MRE -0.7059  0.7081 1.00 -0.7052  0.7086 1.00

(0.0118) (0.0118) (0.024) | (0.0153) (0.0152)  (0.031)

The estimates are sample averages over 100 simulations (25 simulations for
Han-Hausman) for 10,000 observations. Sample s.e.’s are in parentheses.

74



Table 3.2 gives results for the non-monotonic baseline hazard. The Weibull MLE
is biased even without mismeasurement since the model is misspecified. The mean
of the Weibull MLE estimates is (—0.8138,0.9069). The Cox partial likelihood and
HHM estimates are consistent since they allow for a flexible baseline hazard. When
there is mismeasurement, however, all of the esimates are again attenuated toward
zero. Since the measurement error no longer reduces to additive heterogeneity as it
did in the first design, none of the non-MRE estimators yield consistent estimates
of the coefficient ratios. The HHM estimator allowing for gamma heterogeneity has
|B2/B1| of 1.05, which is biased by 5%. The MRE estimates are again consistent
for the ratios of the coefficients and, as in Table 3.1, the sample standard errors are
higher due to the additional noise present in the Monte Carlo design.
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Table 3.2: Non-Monotonic Baseline Hazard

0,2’ =0 ag =1
(no measurement error) (measurement error)
b B B2/ 5] A P2 182/ 1]
True -1.0000  1.0000 1.00 | -1.0000 1.0000 1.00
Weibull -0.8138  0.9069 1.11 -0.6352  0.7120 1.12
(0.0072) (0.0108) (0.017) | (0.0076) (0.0092) (0.020)
Cox -0.9994  0.9995 1.00 | -0.6599  0.7773 1.18
(0.0131) (0.0123) (0.018) { (0.0116) (0.0111) (0.027)
HHM -1.0003  0.9908 0.99 -0.7021  0.7830 1.12
(0.0152) (0.0132) (0.020) | (0.0119) (0.0124) (0.026)
HHM — —_ —— | -0.9070  0.9546 1.05
(gamma) (0.0228) (0.0228) (0.036)
MRE -0.7073  0.7067 1.00 -0.7089  0.7049 0.99

(0.0130) (0.0131) (0.026) | (0.0155) (0.0155)  (0.031)

The estimates are sample averages over 100 simulations (25 simulations for
Han-Hausman) for 10,000 observations. Sample s.e.’s are in parentheses.
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3.6.3 Mismeasured Duration Data in the SIPP

Several studies have examined the extent of measurement error in reporting of un-
employment durations, particularly in the Current Population Survey (CPS) and the
Panel Study of Income Dynamics (PSID). While we use the Survey of Income and
Program Participation (SIPP), the same stylized facts should apply. We highlight a
few of the regularities that have been found:

Reporting errors are widespread. Poterba and Summers (1984), using Reinterview
Surveys for the CPS, compare month-to-month questionnaires and find that 37%
of unemployed workers overstated unemployment duration (i.e., their estimate in a
given month was more than five weeks larger than their estimate in the preceding
month). This percentage counts only those responses which are inconsistent, which
is a lower bound on the percentage of responses which are incorrect. Mathiowetz and
Duncan (1988), using a validation study of the PSID, find that the average absolute
difference between interview response and company records for reporting of unem-
ployment hours was 45 hours (per year) in 1981 and 52 hours (per year) in 1982. A
more disturbing finding by Mathiowetz and Duncan (1988) is that many unemploy-
ment spells, particularly those lasting less than three months, are not reported at all
in the PSID.

Longer spells have more reporting errors. The evidence supports the conventional
wisdom that people have trouble accurately recalling events which occurred long ago.
Bowers and Horvath (1984) find that only 8-20% of workers who are unemployed for
over a year give consistent responses in the CPS. Poterba and Summers (1984) have
a similar finding.

Responses tend to be focal. Since people don’t always keep detailed records of their
unemployment spells, they tend to give “focal responses” when questioned about their
unemployment duration. For instance, people are more likely to say that they were
unemployed for two months rather than seven weeks or nine weeks. Sider (1985) finds
that modes in the PSID data occur at durations corresponding to monthly, quarterly,
half-yearly, and yearly points. One explanation that has been given to account for
certain spikes is that unemployment benefits usually run out after 26 weeks (half a
year) or 39 weeks (three-quarters of a year) so that many people go back to work at
these times. This explanation can only account for a fraction of the focal responses
since spikes appear at other regular intervals and the same 26-week and 39-weck
spikes are also seen among workers who have not yet completed their unemployment
spells.

Demographic variables do not ezplain the mismeasurement. There has been no cvi-
dence that individual characteristics have an effect on the likelihood of reporting crror.
Three of the aforementioned studies (Bowers and Horvath (1984), Mathiowetz and
Duncan (1988), and Poterba and Summers (1984)) regress some function of reporting
error on demographic variables including age, education, race, and sex. In each in-
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stance, the coefficients on the demographic variables are insignificant.® Factors which
are significant in explaining reporting errors include the length of the unemployment
spell, the time between the spell and the interview, and the reason for unemployment
(layoff, temporary layoff, voluntary leave, etc.).

Studies of measurement error in the SIPP have focused on whether or not people
correctly report participation in government transfer programs. The SIPP is a lon-
gitudinal panel study that interviews people eight times at four-month intervals and
collects monthly data on earnings, participation in government transfer programs,
assets and liabilities, and employment history. Marquis and Moore (1990) match re-
sponses in the SIPP against federal and state administrative records to determine the
extent of reporting errors. They find that reporting error for participation is quite
small (about 1.5% for unemployment insurance participation). The reporting error
for change in participation is also small (about 0.6% for unemployment insurance par-
ticipation). An interesting finding is that people are twice as likely to report change
in participation “on seam” as they are to report change in participation “off seam.”
(*On seam” means that the change in participation occurs in two adjacents months
that fall in different interview periods.) This “seam bias” is akin to the focal response
errors discussed above. People tend to over-report participation change “on seam”
since it is a focal response to say that the change has occurred just recently rather
than recalling when in the last four months it actually occurred.

Unlike Marquis and Moore (1990), our primary concern is with the mismeasure-
ment of unemployment durations in the SIPP and not the mismeasurement of par-
ticipation in the Ul program. Our sample consists of 15,103 males between the ages
of 21 and 55 who experience an unemployment spell between 1986 and 1992 and are
eligible for UI benefits.!® In our sample, 4,205 (27.8%) receive Ul benefits at some
point during their spell. There are 2,237 (14.8%) people whose unemployment spell
is right-censored, meaning that the spell was ongoing when the interviewee left the
SIPP.

“The sole exception is that Poterba and Summers (1984) find that teenage women tend to un-
derreport their duration increment. Qur analysis of the SIPP does not include teenage workers.
19For those with multiple spells, we consider only the first spell.
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Table 3.3: Summary Statistics for SIPP Sample

Number of spells

Censored spells
(percentage)

Uncensored spell
length (in weeks)

Censored spell
length (in weeks)

Age

HS grad/no college
Some college
College grad

# children

White
Married

Prev. weekly wage

Weekly bhenefit (eligible)

All
15,103

2,237
(14.8%)

10.92
(13.28)

37.05
(31.15)

34.30
(9.67)

0.37
0.25
0.18

0.66
(1.04)

0.86
0.60

389.4
(264.8)

164.3
(65.8)

Ul
4,205

667
(15.9%)

15.71
(15.89)

40.19
(29.42)

35.76
(9.34)

0.40
0.24
0.17

0.72
(1.06)

0.88
0.67

441.2
(269.5)

183.0
(63.9)

Non-UI
10,898

1,570
(14.4%)

9.10
(11.65)

35.72
(31.77)

33.74
(9.74)

0.36
0.26
0.18

0.64
(1.03)

0.85
0.57

369.4
(260.2)

157.1
(65.1)
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Table 3.3 reports summary statistics for the full sample and the subsamples of Ul
recipients and non-recipients. The uncensored spells of UI recipients last an average
of 6.61 weeks longer than the uncensored spells of non-recipients. A higher percentage
of Ul recipients are married (67%) than are non-recipients (57%). Previous weekly
wage and, in turn, benefit eligibility is higher for those receiving Ul. Many of the
other characteristics are similar across Ul recipients and non-recipients.

To highlight the focal response phenomenon in the data, we show several his-
tograms of unemployment duration. Figures 3.1 and 3.2 graph durations for all
right-censored spells and all uncensored spells, respectively. The x-axis is labeled at
four-month intervals, corresponding to the time between successive interviews. The
spikes for the right-censored sample are quite noticeable. The spikes for the uncen-
sored sample are also present, but they are less noticeable due to the large number
of spells that last fewer than four months.

Figure 3.1:

Reported Durations for Rignt-Censored Spells

116227
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17 35 52 69 87 104 121
no wore« -- total sep uime

Figures 3.3 and 3.4 give more detailed histograms for the uncensored spells, fo-
cusing on the subsample unemployed between 25 and 75 weeks. Figure 3.3 graphs
durations for Ul recipients, and Figure 3.4 graphs durations for non-recipients. The
four-month spikes (at 35, 52, and 69 weeks) are evident. In Figure 3.3, there are
also spikes at 26 and 39 weeks since benefits generally elapse at those times. The
histograms unfortunately don’t tell us much about the overall mismeasurement of
unemployment durations; they just serve to highlight the extent of focal responses.
The MRE, though, handles mismeasurement beyond focal responses as long as the
mismeasurement satisfies the stochastic dominance condition of Section 3.4.
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Figure 3.2:

Reported Ourations for Uncensored Spells
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Figure 3.3:

Reported Ourations for Uncensored UI Spells (25-75 Weeks)
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Figure 3.4:

Reported Durations for Uncensored non-Ul Spells (25-75 Weeks)

.167647
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We estimate a proportional hazard model using the aforementioned estimation
techniques. In Table 3.4, we report coefficient estimates obtained from Weibull MLE,
Cox partial likelihood, HHM MLE, and HHM MLE with gamma heterogeneity.'!

1 For the HHM estimates, monthly bins were used for estimation of the underlying baseline hazard
function. The estimates were not very sensitive to alternative bin sizes,
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Table 3.4: Duration Results for SIPP Sample

AGE31T040

AGE41TO50

AGES1uUP

HSGRAD

SOMECOLL

COLLGRAD

KIDS

WHITE

MARRIED

In(WAGE) x Ul

In(BENEFIT) x Ul

In(WAGE) x (1-u1)

In(BENEFIT) x (1-UI)

CONSTANT

Weibull

0.1761
(0.0226)

0.2711
(0.0267)

0.5978
(0.0381)

-0.0892
(0.0237,

-0.0909
(0.0289)

-0.0320
(0.0262)

-0.0294
(0.0086)

-0.3523
(0.0272)

-0.2725
(0.0219)

-0.1573
(0.0330)

0.1318
(0.0413)

-0.2200
(0.0251)

0.1134
(0.0355)

3.1034
(0.0993)

0.5979
(0.0068)

Cox

0.1406
(0.0226)

0.2234
(0.0268)

0.4879
(0.0379)

-0.0694
(0.0252)

-0.0736
(0.0271)

-0.0126
(0.0303)

-0.0277
(0.0094)

-0.3112
(0.0264)

-0.2458
(0.0218)

-0.1383
(0.0423)

0.1396
(0.0519)

-0.2100
(0.0257)

0.1406
(0.0363)
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HHM

0.1968
(0.0222)

0.3208
(0.0260)

0.6456
(0.0347)

-0.0809
(0.0252)

-0.1184
(0.0271)

-0.0106
(0.0309)

-0.0416
(0.0089)

-0.4606
(0.0288)

-0.3105
(0.0217)

-0.3967
(0.0413)

0.1330
(0.0516)

-0.3585
(0.0237)

0.0104
(0.0351)

HHM het

0.1781
(0.0405)

0.3306
(0.0475)

0.6462
(0.0617)

-0.1222
(0.0438)

-0.1157
(0.0475)

0.0807
(0.0536)

-0.0566
(0.0174)

-0.5817
(0.0441)

-0.4352
(0.0385)

-0.1657
(0.0771)

0.1700
(0.0943)

-0.4108
(0.0468)

0.2573
(0.0660)

0.8703
(0.0123)



The variable names are fairly self-explanatory. The demographic variables are all
dummy variables with the exception of KIDS, which is the number of children. The
age dummies (AGE31T040, AGE41T050, AGE51UP) are all zero for men between
the age of 21 and 30. The education dummies (HSGRAD, SOMECOLL, COLLGRAD;
are al! zero for high school dropouts. As a result, the coefficient estimates on these
dummies should be interpreted as comparisons to the excluded groups. The variables
WAGE and BENEFIT correspond to the pre-unemployment weekly wage and weekly
unemployment benefit eligibility, respectively.'? We allow for the possibility that
Ul recipients and non-recipients behave differently by having separate coeflicients on
In(WAGE) and In(BENEFIT) for the two groups. In the table, the variable ul indicates
that the worker received Ul benefits at some point during his unemployment spell.

A positive (negative) coefficient indicates that the associated variable causes longer
(shorter) unemployment spells. The results are quite similar across the columns of
Table 3.4. None of the signs on the coefficients are too surprising. The estimatcs
indicate that the following groups (all other things being equal) have longer un-
employment spells: older workers, workers with fewer children, single workers, high
school dropouts, and non-white workers. The effects of previous wage and level of un-
employment benefits also have the predicted signs. Those with higher previous wage
(and, thus, higher opportunity cost of remaining unemployed) have shorter spells.
Those with higher UI benefits have longer spells.

The Weibull estimate of a (the variable parametrizing the hazard in (3.37)) is
0.5979 (with a standard error of 0.0068), indicating a decreasing baseline hazard.
There is evidence of heterogeneity from the HHM estimates in the final coluran ot
Table 3.4. The unobserved heterogeneity is assumed to be a gamma distribution with
mean 1 and variance 1/6. Using the delta method, the estimate of 8 yields a variance
estimate of 1.1490 (with standard error of 0.0187) which is significantly different from
Z€ero.

LCue to the presence of mismeasured durations and the evidence of heterogeneity,
the MRE is the appropriate estimator for this data. In Table 3.5, we report the results
from estimation of the proportional hazard model using the MRE with AM(y) = y,
the identity function.!3

I2Eligibility rather than actual receipt is used to deal with selection issues and possible misreport-
ing. The benefit eligibility was calculated using a Ul simulator created by Jon Gruber which takes
into account the Ul laws pertaining to the given worker and the reported quarterly wages before
unemployment.

13The results are very similar using other choices for M{(-), such as Rank(-) and In(-).
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Table 3.5: Normalized Results for SIPP Sample

AGE31T040

AGE41T050

AGES51uUP

HSGRAD

SOMECOLL

COLLGRAD

KIDS

WHITE

MARRIED

In(WAGE) x Ul

In(BENEFIT) X UI

In(WAGE) x (1-ui)

In(BENEFIT) x(1-Ul)

Weibull

0.1991
(0.0280)

0.3066
(0.0307)

0.6762
(0.0272)

-0.1008
(0.0305)

-0.1028
(0.0369)

-0.0362
(0.0334)

-0.0332
(0.0112)

-0.3985
(0.0339)

-0.3082
(0.0247)

-0.1779
(0.0415)

0.1491
(0.0515)

-0.2489
(0.0308)

0.1282
(0.0440)

Cox

0.1849
(0.0381)

0.2937
(0.0425)

0.6413
(0.0427)

-0.0913
(0.0437)

-0.0967
(0.0468)

-0.0166
(0.0524)

-0.0364
(0.0165)

-0.4092
(0.0435)

-0.3231
(0.0334)

-0.1818
(0.0713)

0.1836
(0.0859)

-0.2761
(0.0426)

0.1848
(0.0597)

HHM

0.1801
(0.0179)

0.2937
(0.0192)

0.5911
(0.0166)

-0.0741
(0.0213)

-0.1084
(0.0227)

-0.0097
(0.0259)

-0.0381
(0.0076)

-0.4216
(0.0223)

-0.2843
(0.0164)

-0.3632
(0.0309)

0.1217
(0.0411)

-0.3282
(0.0197)

0.0095
(0.0294)

HHM het

0.1497
(0.0278)

0.2779
(0.0299)

0.5431
(0.0262)

-0.1027
(0.0312)

-0.0973
(0.0336)

0.0678
(0.0378)

-0.0476
(0.0126)

-0.4889
(0.0288)

-0.3658
(0.0233)

-0.1392
(0.0533)

0.1428
(0.0640)

-0.3452
(0.0317)

0.2162
(0.0420)

MRE

0.1741
(0.0285)
(0.1099, 0.2245)
0.2974
(0.0305)
0.2395, 0.3480]
0.7394
(0.0319)
(0.6740, 0.7914]
-0.1167
(0.0329)
[-0.1860, -0.0458]
-0.0930
(0.0309)
[-0.1511, -0.0269)]
-0.0603
(0.0374)
[-0.1346, 0.0102)
-0.0207
(0.0095)
[-0.0363, -0.0003)
-0.3658
(0.0388)
[-0.4448, -0.2995)
-0.2813
(0.0332)
[-0.3593, -0.2239)
-0.1947
(0.0564)
[-0.2441, -0.0245)
0.0894
(0.0666)
[-0.1276, 0.1436]
-0.2220
(0.0361)
[-0.2993, -0.1617)
0.0044
(0.0454)
(-0.0929, 0.0909)

Standard errors are in parentheses. The MRE s.e.'s are standard errors
of the bootstrap estimates. The 95% confidence intervals for the MRE

are shown in brackets.
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As a comparison, we also list the results from the Weibull, Cox, HHM, and HHM
with gamma heterogeneity. Since the MRE only identifies the parameters up to scale,
all of the coefficient estimates have been rescaled so that each estimate vector has
length one. The standard errors and 95% confidence intervals for the MRE were
constructed using bootstrap estimates.!* The standard errors for the other estimates
were derived using the delta method.

The first important point about the MRE results concerns their precision. Semi-
parametric estimation always involves a tradeoff between precision and flexibility.
Oftentimes, allowing for too much flexibility of the model results in estimates which
are too imprecise to be meaningful in practice. In our application, though, the esti-
mates remain statistically significant. Almost all of the demographic variables retain
the predicted sign and the 95% confidence intervals imply statistical significance since
they do not contain zero (except for college graduates).

The MRE coefficient estimates of the demographic variables are generally in agree-
ment with the estimates of the other techniques. The striking difference between the
MRE results and the other estimates is the effect of UI benefit levels on unemploy-
ment duration. The benefit coefficients for both Ul recipients and non-recipients are
not significantly different from zero. For a given wage, the variation in benefit levels
has little eifect on the length of unemployment. This is not to say that benefits have
no effect or. unemployment duration; benefit eligibility, after all, is a function of pre-
vious wage. The HHM estimates for the benefit coefficients are the only ones that
fall within the 95% confidence interval of the MRE estimates. The HHM allowing for
gamma heterogeneity, though, has significantly positive estimates, with the coefficient
for Ul recipients at the boundary of the MRE confidence interval.

While consistency of the MRE estimates does not require a model of the unem-
ployment spell mismeasurement, estimation of the underlying baseline hazard (or,
equivalently, the underlying survival function) will require sorae specification of the
mismeasurement. To estimate the survival function, we use a variant of the Kaplan-
Meier procedure that takes the linear index /3, into account by weighting observa-
tions by an appropriate function of z;/3. Since consistency of this procedure requires
consistency of B, the MRE estimates are used. Figures 3.5 and 3.6 are the estimated
survival function and baseline hazard function at the mean index value.  These
figures tell much the same story as the histograms in Figures 3.1-3.4. The survival
function has a noticeable drop at both four months and eight months, and the haz-
ard function has spikes at four month intervals. These spikes are certainly special to
the SIPP and do not represent a general feature about unemployment in the United
States. Any inferences based on these estimates would be misleading.

As a first step in dealing with the mismeasurement, we pool durations into 5-wecek
groupings (1 to 5 weeks, 6 to 10 weeks, 11 to 15 weeks, etc.) and apply Kaplan-Meier,
The Kaplan-Meier estimates will be consistent if durations are mismeasured, hut

14Cavanagh and Sherman (1992) provide formulas which can be used in conjunction with kernel
techniques to compute consistent estimates of the standard errors. In this application, however,
these estimates were sensitive to the choice of kernel windows. As a result, we are far more confident
in the bootstrap results.
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always fall into the correct five-week interval. Of course, this hypothesis is not likely
to be true; if it were, the HHM technique would result in consistent estimates of 3,
and the MRE would not be needed at all. As shown in Figures 3.7 and 3.8, though,
even this simplistic view of the mismeasurement smooths out the survival and hazard
functions. The pooling of durations here is akin to fixed-window kernel smoothing.

Figure 3.7:

A more realistic model of the mismeasurement would directly consider the focal
response phenomenon. For instance, an observed duration of four months is likely
mismeasured and one can specify a probability distribution of the true duration (e.g.,
equal weights placed on all durations between three and five months). Once a com-
plete description of the mismeasurement is formed, the Kaplan-Meier estimator can
be applied to a new sample which consists of several replications of the original sam-
ple, where the durations depend on the observed duration and the specified model
of mismeasurement. Several different models can be considered and compared to
gauge the sensitivity of the results to alternative assumptions. Pursuit of this topic
is beyond the scope of this paper but is worthy of future research.

3.7 Conclusion

This paper has proposed semiparametric estimation in the presence of mismeasured
dependent variables in a general linear index model. The stochastic-dominance con-
dition of Section 3.4 is a strong result in that it applies to many (.rms of mismeasure-
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Figure 3.8:

ment and is easy for the researcher to interpret. In addition, use of the MRE doesn’t
require any prior model of the mismeasurement.

This work was motivated by the fact that unemployment duration data is known
to be poorly mismeasured. The proportional hazard model used to analyze such data
fits nicely into the general framework in which semiparametric estimation remains
consistent. The results of Section 3.6 show that the seriparametric approach has
different implications for the effect of previous wages and unemployment benefits on
the length of unemployment spells. Section 3.6 also suggests ways in which the nn-
derlying hazard function may be estimated through modeling of the mismeasurement
process.

Appendix

Proof of Theorem 1:

The consistency proof in Sherman and Cavanagh (1992) requires the following assump-
tions: ‘

(A1) The support of z is not contained in any proper linear subspace of RY.

(A2) The d'th component of z has everywhere positive Lebesgue density, conditional on the
other components.

(A3) The parameter space B is a compact subset of {b € R? : by = 1}.
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(A4) The function H(z) = E[M(y)|zf8, = ] is increasing.

(A5) The random variables M (y) and z3, have nonzero correlation.

(A6) E[M(y)?] < oo.

We make one additional technical assumption:

(iii) lim; 00 9(2,€) = 00 and lim,_,_ g(2,€) = —00 Ve.

We assume (A1)-(A3) and (A6) and show that conditions (i), (ii), and (iii) imply (A4)

and (A5).
Let H(-) be the c.d.f. of —e. We write E[M(y)|zf, = 2| as

EM(Izbo =2 = [EM@)s, = 2 ¢ = —uldH(w)
= [EMOIy = gz -wldH (W)
= [ [ M@)aFy- gz, —w)eH (w).
Then, dg(z, —u)/dz > 0 and condition (i) yield

OE[M (y}|zf, = 2] >0
dz -

The continuity assumption on z (assumption (A2)), assumption (ii), and condition (iii)
ensure that the inequality will be strict for some 2. Thus, (A4) and (A5) hold, and the
MRE is consistent.

Additional assumptions are needed for asymptotic normality of BMRE (gee Cavanagh
and Sherman (1992)).
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