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ABSTRACT

We report on Doppler observations of three transiting planet candidates that were detected during Campaign1 of
the K2 mission. The Doppler observations were conducted with FIES, HARPS-N, and HARPS. We measure the
mass of EPIC 201546283b, and provide constraints and upper limits for EPIC 201295312b and EPIC 201577035b.
EPIC 201546283b is a warm Neptune orbiting its host star in 6.77 days and has a radius of R4.45 0.33

0.33
-
+

Å and a mass
of M29.1 7.4

7.5
-
+

Å, which leads to a mean density of1.80 g cm0.55
0.70 3

-
+ - . EPIC 201295312b is smaller than Neptune with

an orbital period of 5.66 days, a radius of R2.75 0.22
0.24

-
+

Å, and we constrain the mass to be below M12 Å at 95%
confidence. We also find a long-term trend indicative of another body in the system. EPIC 201577035b, which was
previously confirmed as the planet K2-10b, is smaller than Neptune, orbiting its host star in 19.3 days, with a radius
of R3.84 0.34

0.35
-
+

Å. We determine its mass to be M27 16
17

-
+

Å, with a 95% confidence upper limit at M57 Å, and a mean
density of 2.6 g cm1.6

2.1 3
-
+ - . These measurements join the relatively small collection of planets smaller than Neptune

with measurements or constraints of the mean density. Our code for performing K2 photometry and detecting
planetary transits is now publicly available.

Key words: planetary systems – stars: fundamental parameters – stars: individual (EPIC 201295312, EPIC
201546283, EPIC 201577035)

1. INTRODUCTION

Although data from the K2 mission (Howell et al. 2014) has
only been available for six months, it has already led to several
notable exoplanet discoveries. For example, a sub-Neptune
orbiting a bright star (using only the nine days of Engineering
Test Data Vanderburg et al. 2015), three super-Earths orbiting a
bright M dwarf star (Crossfield et al. 2015), a disintegrating
rocky planet with a cometary head and tail (Sanchis-Ojeda
et al. 2015), two super-Earth planets orbiting a nearby cool star
(Petigura et al. 2015) and two additional planets orbiting the
known hot-Jupiter host star WASP-47 (Becker et al. 2015).
Based on the Campaign1 photometry, the first lists of

planetary candidates have been produced (Foreman-Mackey
et al. 2015; Montet et al. 2015).
As part of the Equipo de Seguimiento de Planetas Rocosos

INterpretando sus Tránsitos (ESPRINT) project (see Sanchis-
Ojeda et al. 2015), we present our radial velocity (RV) follow-
up measurements of three Campaign1 planet candidates (EPIC
201295312, EPIC 201546283, and EPIC 201577035), making
use of the FIES (Telting et al. 2014), HARPS-N (Cosentino
et al. 2012), and HARPS (Mayor et al. 2003) spectrographs.
Measurements of masses for planets smaller than 4–5 RÅ are
notoriously difficult (Marcy et al. 2014), but are of importance
to constrain interior models for sub-Neptune planets (e.g.,
Rogers 2015).
In the next section, we present our analysis pipeline for K2

photometry, including aperture photometry, light curve
detrending and planet search algorithms (the Python code used
for the analysis is publicly available on GitHub17). We describe
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* Based on observations made with the NOT telescope under programme ID.
50-022/51-503 and 50-213(CAT), the TNG telescope under programme ID.
AOT30.13, OPT15A_33, and CAT14B_121 and ESOs 3.6 m telescope at the
LaSillaParanalObservatory under programme ID 095.C-0718(A).
16 NASA Sagan Fellow. 17 https://github.com/vincentvaneylen
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the planet characterization via spectroscopic observations in
Section 3, the parameter estimation in Section 4, and discuss
the results in Section 5.

2. PHOTOMETRY

Unlike for the primary Kepler mission, K2 photometry is
primarily delivered in the form of pixel files without mission-
defined aperture masks, and the task of finding planet
candidates rests upon the community rather than upon the
mission team. Because the mission operates with only two
functioning reaction wheels (Howell et al. 2014) the pointing
stability is more limited, which affects the photometric
precision. Correction methods make use of the center-of-light
offset (Vanderburg & Johnson 2014; Lund et al. 2015) or use
trends that are common to many stars (Angus et al. 2016;
Foreman-Mackey et al. 2015).

We have developed a photometry pipeline consisting of the
following independent modules: (1) extract aperture photo-
metry, (2) perform light curve detrending, and (3) search for
transits and perform time-domain transit modeling. We
describe these steps in the next sections.

Our analysis starts with K2 pixel mask files, which can be
downloaded from the MAST archive.18 We perform simple
aperture photometry on these pixel masks. First we sum the flux
per pixel over the full time series of the K2 campaign.
Subsequently, the median flux over the different pixels is
calculated. As long as the field is not too crowded, the median
flux is a fairly good estimate of the background flux. The stellar
flux can then be identified as the flux that exceeds the background
flux by some predetermined threshold (typically 1.05×median).
We include the pixels exceeding the threshold and group them
according to whether or not they are spatially adjacent. If two or
more spatially disjoint groups are detected, the largest pixel group
is selected (the other, smaller groups are assumed to be caused by
other stars and are ignored). The results are shown in Figure 1 for
the three stars discussed in this work. Once the aperture is
selected in this way, for each time step, the total flux is calculated
by summing the flux of all pixels in the aperture, and the flux
centroid position is calculated based on the flux-weighted mean X
and Y coordinates of the group of pixels. We also subtract the
background flux, which is estimated as the median of the pixels
after iteratively clipping all 3s outliers.

For the light curve detrending, we use a linear fit to the
centroid positions, a technique first used successfully for
Spitzer transit observations (e.g., Désert et al. 2009, 2015; Van
Eylen et al. 2014), and that is similar to techniques developed
for K2 photometry by others (Vanderburg & Johnson 2014;
Lund et al. 2015; Sanchis-Ojeda et al. 2015). In summary, the
light curve is divided into chunks of specified length (typically
300 data points), and a polynomial function of centroid
position and time is fitted to the flux in each chunk. More
precisely, for centroid coordinates Xc and Yc (calculated relative
to the mean centroid position), time T, and flux F, we fit the
model M:

M t t T t T t T x X x X x X

y Y y Y y Y z X Y ,

c c c

c c c c c

0 1 2
2

3
3

1 2
2

3
3

1 2
2

3
3

1

= + + + + + +

+ + + +

where ti, xi, yi, and z1 are fitting parameters. For each chunk, the
light curve flux is then divided by the model to remove
variability caused by spacecraft pointing variations (which
cause flux variations due to different pixel sensitivities) as well
as long-term astrophysical variations. We have compared this
technique to the ones employed by Sanchis-Ojeda et al. (2015)
and Vanderburg & Johnson (2014), and found the light curve
quality and the transit parameters to be similar.
To search for transit events, we subsequently run a “box least

square” search on the light curves (Kovács et al. 2002), which
detects periodic transit-like events.19 These are then visually
inspected in order to check if they are indeed transit-shaped.
Based on an initial analysis of the light curves and ground-

based imaging, interesting planets were selected for spectro-
scopic follow-up. Bright planet candidates were observed using
the FastCam (FC) lucky imaging camera at the 1.5 m Carlos
Sanchez Telescope in Tenerife. All images were bias subtracted
and then shifted and co-added using FC specific software to
produce a final, high-SNR, high-resolution image. Objects that
appeared to be isolated were then moved forward in the
confirmation process to be observed with FIES. We obtained
observations (45–60 minutes exposures) with the FIES
spectrograph for a first detailed stellar characterization and a
small number of RVs. Systems that show RV scatter less than
20 m s−1 are selected for further observations. For Campaign1,

Figure 1. Pixel masks for EPIC 201295312 (left), EPIC 201546283 (middle), and EPIC 201577035 (right). The colors indicate the electron count, going from high
(red) to low (blue). Pixel masks above a threshold electron count are encircled. We use red for those pixels included in the light curve and green for those assumed to
be caused by other stars.

18 See https://archive.stsci.edu/k2/data_search/search.php.

19 We used an implementation of this algorithm in Python by Ruth Angus and
Dan Foreman-Mackey; see https://github.com/dfm/python-bls.

2

The Astrophysical Journal, 820:56 (8pp), 2016 March 20 Van Eylen et al.

https://archive.stsci.edu/k2/data_search/search.php
https://github.com/dfm/python-bls


these efforts were focused on EPIC201295312,
EPIC201546283, and EPIC201577035.

3. GROUND-BASED FOLLOW-UP OBSERVATIONS

These systems were recently discussed by Montet et al.
(2015). EPIC201577035 was validated as a genuine planet
(also called K2-10b in the NASA Exoplanet Archive20), but
high-resolution Adaptive Optics images conducted by these
authors revealed faint stellar companions for EPIC201295312
and EPIC201546283, at distances of 3 and 8 arcsec respec-
tively. This complicates the planet validation because K2
apertures span many pixels (see Figure 1; each pixel measures
3.98 3.98´ arcsec). Therefore, it can be difficult to be certain
that the target star is truly the host of the transiting planet
candidate. Consequentially, Montet et al. (2015) were unable to
validate the planetary candidates (despite assigning false
positive probabilities below 10−4 in both cases). We measured
RVs using the standard data reduction pipelines for the HARPS
and HARPS-N spectrographs. For the case of FIES, we used
the approach described in Gandolfi et al. (2015).

To derive stellar parameters, to measure stellar reflex motion,
and, finally, to determine the planetary mass, we observed these
three systems throughout Spring 2015 with the HARPS-N
spectrograph mounted on the TNG on La Palma and the
HARPS spectrograph on ESO’s 3.6 m telescope at La Silla.
The exposure times varied between 15 min and 45 min for the
different systems and instruments, and we used standard setups.
All RVs for the three systems are available in electronic form
from the ApJ webpage.

4. PARAMETER ESTIMATION

4.1. Estimation of Stellar Parameters

Before modeling the RVs, we co-added the available spectra
for each system to derive the stellar atmospheric parameters
using the VWA software21 developed by Bruntt et al. (2012).
This approach includes systematic errors in the uncertainty
estimate. For the signal-to-noise ratio in our combined spectra,
the uncertainty in the stellar parameters is dominated by this
systematic noise floor rather than by photon noise, so that the
uncertainties in parameters for different stars are sometimes
very similar. With obtained values of the effective stellar
temperature (Teff ), the stellar surface gravity ( glog ), and

metallicity ([Fe/H]) as input, we then used BaSTI evolution
tracks22 to infer the stellar mass and radius, and obtain an age
estimate. Here we used the SHOTGUN method (Stello
et al. 2009).
In parallel, we also obtained spectra with the High

Dispersion spectrograph (HDS) mounted to the Subaru
telescope, one spectrum for each system. These spectra have
been analyzed following Takeda et al. (2002; see also Hirano
et al. 2012). There is agreement between the set of parameters
obtained with the two different data sets and methods, with one
important exception, i.e., the stellar radius of EPIC 201295312
(the HDS radius is R1.91 0.11  and the VWA radius is

R1.52 0.10 ). This is an important parameter, because any
uncertainty or error in this parameter translates directly into the
planetary radius and the planetary density. However, we have
not been able to determine the cause for this disagreement.
Here we note that the two methods agree well on all other
stellar parameters and for the other systems and that, for
evolved stars (such as EPIC 201295312), different isochrones
can lay close to each other, complicating the stellar
characterization. Because the HDS spectrum has a lower
signal-to-noise ratio than the combined HARPS-N spectrum,
we adopt the VWA values in the analysis.

4.2. Estimation of Orbital and Planetary Parameters

Photometric model—we modeled the K2 light curves
together with the RVs obtained from the FIES, HARPS-N,
and HARPS spectrographs. We use the transit model by
Mandel & Agol (2002) and a simple Keplerian RV model. The
transit model used was binned to 30 minutes, to match the
integration time of the Kepler observations. The model
parameters, mainly constrained by photometry (see Figure 2),
include the orbital Period (P), a particular time of mid-transit
(Tmin), the stellar radius in units of the orbital semimajor axis
(R a ), the planetary radius in units of the stellar radius
(R Rp ), and the cosine of the orbital inclination ( icos o). We
further assumed a quadratic limb-darkening law (with two
parameters, u1 and u2).
RV model—the Keplerian RV model introduces additional

parameters, i.e., the semi-amplitude of the projected stellar
reflex motion (Kå), systemic velocities for each
spectrograph ( specg ), the orbital eccentricity (e), and the
argument of periastron (ω). For our analysis, we use

e cosw and e sinw to avoid boundary issues (see, e.g.,

Figure 2. K2 reduced photometry folded by the best period for EPIC 201295312 (left), EPIC 201546283 (middle), and EPIC 201577035 (right). The best-fitted model
is shown with a solid line as well as the residuals after subtracting the model.

20 http://exoplanetarchive.ipac.caltech.edu/
21 https://sites.google.com/site/vikingpowersoftware/home 22 http://albione.oa-teramo.inaf.it/
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Lucy & Sweeney 1971). For one system (EPIC 201295312),
we found evidence for a long-term drift, which we model with
a second order polynomial function of time.

Prior information—for all parameters in all three systems,
we use a flat prior if not mentioned otherwise in this paragraph.
We use priors on the quadratic limb-darkening parameters u1
and u2, selected from the tables provided by Claret et al. (2013)
appropriate for the Kepler bandpass. In particular, we placed a
Gaussian prior on u u1 2+ with a width of 0.1. The difference
u u1 2- was held fixed at the tabulated value, since this
combination is weakly constrained by the data. The stellar
density obtained from the analysis of the stellar spectra
(Section 4.1) is used as a Gaussian prior in our fit to the
photometric and RV data. This impacts the confidence intervals
we obtain for e and ω (e.g., Van Eylen & Albrecht 2015). We
further assume an eccentricity prior dN

de e

e1

1 24 4( )
µ -

+
as

obtained by Shen & Turner (2008), and require that the planet
and star do not have crossing orbits.

For EPIC 201295312, we found indications of a long-term
drift, using the FIES and HARPS-N data sets. Unfortunately,
the HARPS data points have been taken after the FIES and
HARPS-N campaigns were finished. This complicates the
characterization of the long-term trend, as potential offsets in
the RV zero points of the spectrographs could lead to biases.
However, previous studies, such as López-Morales et al. (2014;
55 Cnc) and Desidera et al. (2013; HIP 11952), found that the
RVs of HARPS and HARPS-N agree within their uncertainties.
In this study, we find the same for EPIC 201546283 (see
below). Therefore, we proceed and impose a Gaussian prior
with zero mean and a σ of 5 m s−1 on the difference in the
systemic velocity of these two spectrographs for
EPIC 201295312. We also assumed the period to be constant
in all three systems because we could detect no sign of
significant Transit Timing Variations.

Parameter estimation—to estimate the uncertainty intervals
for the parameters, we use a Markov Chain Monte Carlo
(MCMC) approach (see, e.g., Tegmark et al. 2004). Before
starting the MCMC chain, we added “stellar jitter” to the
internally estimated uncertainties for FIES, HARPS-N, and
HARPS observations, so that the minimum reduced 2c for each
data set alone is close to unity.

For each system, we run three simple chains with 106 steps
each, using the Metropolis–Hastings sampling algorithm. The
step size was adjusted to obtain a success rate of 0.25» . We
removed the first 104 points from each chain and checked for
convergence via visual inspection of trace plots and employing
the Gelman and Rubin Diagnostic (Gelman & Rubin 1992).
Here we find that for all parameters for all systems R 1.01< .
The uncertainty intervals presented below have been obtained
from the merged chains. In Table 1, we report the results
derived from the posterior, quoting uncertainties excluding
15.85% of all values at both extremes, encompassing 68.3% of
the total probability. The key result is K, which together with
the orbital period, inclination, and stellar mass determines
planetary mass and bulk density.

5. RESULTS

5.1. EPIC 201295312

EPIC 201295312b has an orbital period of 5.66 days. We do
not clearly detect the RV amplitude caused by the planet, but
do find a longer-period trend. Using the procedure described in

Section 4.2, we find the long-term drift to be adequately
described by a second order polynomial, with a linear term of
3.3 cm s−1 d−1 and a quadratic term of 1.83 cm s−1 d−1, while
using 2457099.654 HJD as the constant time of reference.
We speculate that this trend, which is shown in Figure 3,

could be caused by the gravitational influence of an additional
body in the system, such that additional monitoring might
reveal the orbital period and mass function of this presumed
companion. Our current data constrains it poorly, but as one
example of what may be causing it, we find that a circular orbit
with a period of 365 days leads to a good fit with a K
amplitude of 155ms−1. Assuming an inclination of 90
degrees, this implies a mass of 5.9MJup. However, we caution
against overinterpreting these values, as only a small part of
such an orbit is covered with the current data, and longer orbital
periods cannot be excluded.
We furthermore tested if the bisector measurements give any

indication that the observed RV trend is caused by a stellar
companion. The results are inconclusive: the HARPS and
HARPS-N CCFs appear to show a small difference, but it is
possible that this is caused by the atmospheric conditions under
which the stars were observed, or by small differences between
the two instruments. The data are shown in Figure 4.
We place an upper limit on the planetary mass of 12 MÅ,

which together with a measured radius of R2.75 0.22
0.24

-
+

Å, results
in a planet density upper limit of 3.3 gcm−3. These limits are
one-sided 95% confidence intervals. We note that our best
measured mass, M0.5 7.5

7.6- -
+

Å, the median of the distribution, is
negative (see Figure 5). We allow for a negative (unphysical)
mass to avoid positively biasing mass measurements for small
planets. While this can easily be avoided using a prior that
prohibits the unphysical mass regime, we prefer not to do so
because the negative masses are a statistically important
measurement of the planetary mass (see e.g., Marcy
et al. 2014, for a detailed discussion). Allowing negative
masses accounts naturally for the uncertainty in planet mass
due to RV errors, and is key to allow unbiased constraints the
interior structure based on a sample of small planets (see, e.g.,
Rogers 2015; Wolfgang et al. 2015). All parameters are
available in Table 1.

5.2. EPIC 201546283

For EPIC 201546283b, which has an orbital period P of
6.77 days, we obtain a 3s mass detection of M29.1 7.4

7.5
-
+

Å. This
confirms the planetary nature of this candidate. Earlier work
detected the transits of this candidate, but was unable to
confirm the planetary nature on statistical grounds (Montet
et al. 2015). We find a planetary radius of R4.45 0.33

0.33
-
+

Å, which
taken together with the mass measurement leads to a planet
density of 1.80 g cm0.55

0.70 3
-
+ - . This makes this planet rather

similar to Neptune (which has a density of 1.64 g cm 3- ).
As for EPIC 201295312, we allowed for the presence of a
linear drift, but found that it did not significantly change the
results, and therefore we set it to zero. All parameters for this
star and its planet are available in Table 1. The planet is
plotted on a mass–radius diagram in Figure 6. We now check
if the RV signal could be caused by stellar activity. For this,
we calculate the BIS as defined by Queloz et al. (2001) from
the HARPS and HARPS-N CCFs and searched for a
correlation with the measured RVs. If such a correlation
does exist, then this is a sign of a deformation of the stellar
absorption lines by stellar activity instead of a Doppler shift
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of the CCF caused by the gravitational pull of an unseen
companion. However, no such correlation can be found. We
calculate the Pearson correlation coefficient, which is 0.105.
With 23 degrees of freedom, we also find a t-statistic of

0.505, and a two-tailored test leads to a p-value of 0.61. All
these tests indicate that there is no significant evidence for a
correlation between the BIS and RVs. The values are shown
in Figure 7.

Table 1
System Parameters

Parameter EPIC 201295312 EPIC 201546283 EPIC 201577035

Basic Properties

2MASS ID 11360278-0231150 11260363+0113505 11282927+0141264
Right Ascension 11 36 02.790 11 26 03.638 11 28 29.269
Declination −02 31 15.17 +01 13 50.66 +01 41 26.29
Magnitude (Kepler) 12.13 12.43 12.30

Stellar Parameters from Spectroscopy

Effective Temperature, Teff (K) 5830±70 5320±70 5620±70

Surface gravity, glog (cgs) 4.04±0.08 4.60±0.08 4.50±0.08
Metallicity, [Fe/H] 0.13±0.07 0.14±0.07 −0.07±0.07
Microturbulence (km s−1) 1.2±0.07 0.8±0.07 0.9±0.07
Projected rotation speed, v isin  (km s−1) 5±1 1±1 3±1
Assumed Macroturbulence, ζ (km s−1) L 2 L
Stellar Mass, Mp (Me) 1.13±0.07 0.89±0.05 0.92±0.05

Stellar Radius, Rp (Re) 1.52±0.10 0.85±0.06 0.98±0.08

Stellar Density, r (g cm−3)a 0.45±0.14 2.04±0.38 1.38±0.34

Fitting (Prior) Parameters

Limb darkening prior u u1 2+ 0.6752±0.1 0.7009±0.1 0.6876±0.1
Stellar jitter term HARPS (m s−1) 10.5 6 L
Stellar jitter term HARPS-N (m s−1) 6.5 6 7
Stellar jitter term FIES (m s−1) 20 30 5

Adjusted Parameters from RV and Transit Fit

Orbital Period, P (days) 5.65639±0.00075 6.77145±0.00013 19.3044±0.0012
Time of mid-transit, Tmin (BJD−2450000) 6811.7191±0.0049 6812.8451±0.0010 6819.5814±0.0021
Orbital Eccentricity, e 0.12 0.09

0.22
-
+ 0.16 0.09

0.10
-
+ 0.31 0.18

0.16
-
+

Cosine orbital inclination, icos o 0.052 0.032
0.039

-
+ 0.020 0.013

0.013
-
+ 0.018 0.012

0.01
-
+

Scaled Stellar Radius, R a 0.115 0.011
0.022

-
+ 0.0605 0.0038

0.0051
-
+ 0.0349 0.0029

0.0042
-
+

Fractional Planetary Radius, R Rp  0.01654 0.00071
0.00093

-
+ 0.0478 0.0008

0.0013
-
+ 0.03570 0.0009

0.0017
-
+

Linear combination limb-darkening parameters (prior & transit fit), u u1 2+ , 0.668±0.098 0.676±0.082 0.622±0.092
Stellar Density (prior & transit fit), r (g cm−3) 0.39 0.16

0.14
-
+ 1.80 0.55

0.70
-
+ 1.19 0.34

0.35
-
+

Stellar radial velocity amplitude, K (m s−1) 0.18 2.6
2.6- -

+ 10.8 2.7
2.7

-
+ 7.3 4.2

4.6
-
+

Linear RV term, 1f (m s−1/day) −0.03±0.12 L L
Quadratic RV term, 2f (m s−1/day) 0.0183±0.0016 L L
Systemic velocity HARPS-N, HARPS Ng - (km s−1) 44.561±0.002 −37.772±0.002 8.203±0.003

Systemic velocity HARPS, HARPSg (km s−1) 44.560±0.006 −37.776±0.003 L

Systemic velocity FIES, FIESg (km s−1) 44.509±0.010 −37.979±0.014 8.062±0.005

Indirectly Derived Parameters

Impact parameter, b 0.43 0.26
0.25

-
+ 0.30 0.20

0.21
-
+ 0.40 0.27

0.27
-
+

Planetary Mass, Mp (M⊕)
b L 29.1 7.4

7.5
-
+ 27 16

17
-
+

Mass upper limit (95% confidence), Mp (M⊕)
b 12.0 41.5 57

Planetary Radius, Rp (R⊕)
b 2.75 0.22

0.24
-
+ 4.45 0.33

0.33
-
+ 3.84 0.34

0.35
-
+

Planetary Density, pr (g cm−3) 3.3 95%( confidence) 1.80 0.55
0.70

-
+ 2.6 1.6

2.1
-
+

Notes.
a This value is used as a prior during the fitting procedure.
b Adopting an Earth radius of 6371 km and mass of 5.9736 1024´ kg.
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5.3. EPIC 201577035

EPIC 201577035b (K2-10b) was previously validated to be a
true planet by Montet et al. (2015). Here we refine the stellar
and planetary parameters and constrain the planet’s mass. The
planet is smaller than Neptune with an orbital period of 19.3
days and a radius of R3.84 0.34

0.35
-
+

Å. We measure its mass to be
M27 16

17
-
+

Å, resulting in a planetary density of 2.6 g cm1.6
2.1 3

-
+ - .

Within 95% confidence, the planetary mass is below M57 Å.
We found no evidence for a linear drift and set it to zero in the
final fit. We note that, due to uncooperative weather, the
coverage of this system shows a significant phase gap (see
Figure 5). All parameters are listed in Table 1, and the system is
indicated on a mass–radius diagram in Figure 6.

Figure 3. RV observations of EPIC 201295312 as function of time. The best-
fitted model using a quadratic long-term trend is shown along with the data.
Assuming good agreement between the velocity offsets of HARPS and
HARPS-N (see also Section 4.2) the data does require a quadratic term to be
adequately fitted.

Figure 4. BIS from HARPS and HARPS-N CCFs for EPIC 2012995312
plotted vs. the stellar RVs. The color code indicates the signal-to-noise ratio in
the stellar spectra obtained around a wavelength range of 5560 Å. The BIS
values for the low RV points appear slightly shifted from the RV points with
higher values, which would indicate the presence of a self-luminous
companion, but because those data are taken with different telescopes the
results are inconclusive. The uncertainty in the bisector values is taken to be
twice the uncertainty in the RV values.

Figure 5. RV observations over orbital phase for EPIC 201295312 (top), EPIC
201546283 (middle), and EPIC 201577035 (bottom). The best-fitted model is
shown with a solid line as well as the residuals after subtracting the model. The
internal RV uncertainties are indicated by the black error bars, while the gray
error bars include an additional “stellar jitter” term as explained in the text.
Note that for EPIC 201546283, the residual plot does not show all FIES RVs
due to the small RV interval displayed here. For this system, the FIES data does
not carry a lot of weight for the final solution, and the zoom allows for a better
inspection of the HARPS and HARPS-N residual, which do determine our final
solution.
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6. DISCUSSION

We have reported our results for three planet candidates
observed with K2 during Campaign 1. These planets have been
found in the K2 data using two different algorithms and were
also discussed by Montet et al. (2015). We measured the mass
for the largest of these planets (EPIC 201546283b) and obtain
lower significance measurements, or upper limits of the masses
and densities, of the other two systems (EPIC 201295312b and
EPIC 201577035b). The first of these planets is similar to
Neptune, while the other two are smaller than Neptune. For
EPIC 201295312, we also discover a long-period trend
indicative of an additional body. Relatively few mass
measurements are available for sub-Neptunes due to the small
RV amplitudes these planets cause. For example, an extensive
Keck campaign following up on 22 Kepler stars with known
transiting planets recently led to 16 secure mass detections
(Marcy et al. 2014) and 26 more marginal measurements or
upper limits. Despite thousands of planetary candidates found

by the primary Kepler mission, many of those are too faint for
follow-up measurements. Here, K2 has the potential to make a
significant contribution.
Finally, the significant effort required to measure masses for

the planets highlights the need for future missions such as
TESS (Ricker et al. 2014) and PLATO (Rauer et al. 2014),
which will observe even brighter stars.
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