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ABSTRACT 

 

Two-phase slug flow is a common occurrence in wells, riser pipes and pipelines of crude 

oil and natural gas systems. Current predictive tools for two-phase flow are based on 

either the mixture model or the mechanistic two-fluid model. The latter one, also called 

phenomenological model, requires the use of closure relations to solve the transfer of 

mass, momentum and energy between the phases, in the respective conservation 

equations, so that integral flow parameters such as liquid holdup (or void fraction) and 

pressure gradient can be predicted. However, these closure relations carry the highest 

uncertainties in the model, since they are obtained empirically or through the use of 

overly simplified assumptions. In particular, significant discrepancies have been found 

between experimental data and closure relations for the Taylor bubble velocity in slug 
flow, which has been determined through an in-house study to strongly affect the 

pressure gradient and liquid holdup predicted by the mechanistic models of (Orell and 

Rembrand, 1986), (Ansari et al., 1994), and (Petalas and Aziz, 2000). In this work, 

Computational Fluid Dynamics (CFD) and the Level Set (LS) interface tracking method 

(ITM), implemented in the commercial code TransAT®, are employed to simulate the 

motion of Taylor bubbles in slug flow. Therefore, a numerical database is being 

generated to develop a new, high-fidelity closure relation for the Taylor bubble velocity 

as a function of the fluid properties and flow conditions, rendered non-dimensional 

through the use of the Froude, Reynolds, Eötvös and Morton numbers, and pipe 

inclination angle. The simulations suggest that in inclined pipes the Taylor bubble 

velocity is strongly reduced if there is no lubricating liquid film between the bubble and 

the wall. A simple analytical model predicting the drainage of this lubricating film is also 

presented. 

  



1 INTRODUCTION 

 

Two-phase slug flow is a common occurrence in wells, riser pipes and pipelines of crude 

oil and natural gas systems. Current predictive tools for two-phase flow are based on 

either the mixture model or the mechanistic two-fluid model (Brill and Mukherjee, 

1999). In the latter one, slug flow is modeled as a sequence of fundamental units, also 

called slug units. Each unit contains a long bullet-shaped bubble, known as Taylor 

bubble, and a liquid portion with smaller homogeneously distributed bubbles, known as 

liquid slug. This model requires the use of closure relations to solve the transfer of mass, 

momentum and energy between the phases, in the respective conservation equations, so 

that integral flow parameters such as liquid holdup (or void fraction) and pressure 

gradient can be predicted. However, these closure relations carry the highest uncertainties 

in the model, since they are obtained empirically or through the use of overly simplified 

assumptions. In particular, significant discrepancies have been found between 

experimental data and closure relations for the Taylor bubble velocity in slug flow, 

which has been determined through an in-house study to strongly affect the pressure 

gradient and liquid holdup predicted by the mechanistic models of Ansari et al. (1994), 

Orell and Rembrand (1986), and Petalas and Aziz (2000). 

 

Thorough studies about the modeling of two-phase slug flow can be found in Bendiksen 

et al. (1996), Fabre and Liné (1992), and Taitel and Barnea (1990). Taylor bubble’s 

dynamics are influenced by the viscous, inertial, gravitational, and interfacial forces 

acting on it. Dimensional analysis leads to the following dimensional groups:  
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where 𝑢𝑇𝐵 is the Taylor bubble velocity, 𝑔 is the gravity, 𝑑 is the pipe diameter, 𝜌𝐿  is the 

liquid density, 𝜌𝑔 is the gas density, 𝜎 is the surface tension, 𝜇𝐿  is the liquid viscosity 

density, 𝑢𝐿  is the average inlet liquid velocity, 𝜇𝑔 is the gas viscosity, 𝐿𝑇𝐵 is the Taylor 

bubble length, and 𝜃 is the inclination angle with respect to the horizontal. For vertical 

circular tubes, the film thickness and the Taylor bubble velocity are independent of the 

bubble length (Griffith and Wallis, 1961; Llewellin et al., 2012; Mao and Dukler, 1989; 

Nicklin et al., 1962; Tomiyama et al., 2001). Moreover, it has been observed that Taylor 

bubble velocity is also independent of its length for inclined pipes (see Section 2.2.2). 

The density and viscosity are much lower in the gas than in the liquid (𝜌𝑔/𝜌𝐿 ≪

1, 𝜇𝑔/𝜇𝐿 ≪ 1) and over the range of conditions of interest it can be assumed that the 

Taylor bubble velocity will not depend on the density and viscosity ratios. Thus, only 

five non-dimensional numbers (or 𝑃𝑖 groups) describe the motion of a Taylor bubble in a 

circular tube. Using the previous approximations, these are the Froude number 𝐹𝑟 =

𝑢𝑇𝐵/√𝑔𝑑, which is the ratio of the bubble inertia to the gravitational forces; the Eötvös 

number 𝐸𝑜 = 𝑔𝜌𝐿𝑑2/𝜎, which is the ratio of the gravitational to interfacial forces; the 

Morton number 𝑀𝑜 = 𝑔𝜇𝐿
4/𝜌𝐿𝜎3, sometimes called the property group; the liquid 

Reynolds number 𝑅𝑒𝐿 = 𝜌𝐿𝑢𝐿𝑑/𝜇𝐿, which is the ratio of the inertial to viscous forces in 

the liquid phase, and 𝜃. Thus, Buckingham 𝑃𝑖 Theorem assures that the five 𝑃𝑖 groups 

are related by a unique function of the form 𝐹𝑟 = 𝑓(𝐸𝑜, 𝑀𝑜, 𝑅𝑒𝐿, 𝜃). Finding this 

function is the ultimate objective of this study. Note, however, that the choice of 𝑃𝑖 

groups is not unique; for example, the inverse viscosity number 𝑁𝑓 = 𝜌𝐿√𝑔𝑑3/𝜇𝐿, 

which is a combination of the Eötvös and Morton numbers, 𝑁𝑓 = (𝐸𝑜3/𝑀𝑜)1/4; the 

Archimedes number 𝐴𝑟 = 𝜎3/2𝜌𝐿
1/2

/𝜇𝐿
2𝑔1/2, which is 𝐴𝑟 = (1/𝑀𝑜)1/2; the capillary 



number, 𝐶𝑎 = 𝐹𝑟(𝐸𝑜 ∙ 𝑀𝑜)1/4; or the Weber number, 𝑊𝑒 = 𝐹𝑟2 ∙ 𝐸𝑜, are often also 

used. 

 

The literature for Taylor bubbles moving in vertical tubes (𝜃 = 90°) filled with stagnant 

liquid (𝑅𝑒 = 0) is extensive. Davies and Taylor (1950), and Dumitrescu (1943) studied 

analytically the limiting problem of negligible viscous force and surface tension where 

𝐹𝑟 is constant. White and Beardmore (1962) performed a wide range of experiments for 

vertical tubes of stagnant liquid and proposed a general graphical correlation of  𝐹𝑟 as a 

function of 𝐸𝑜 and 𝑀𝑜 identifying regions where some governing forces can be 

neglected (see Figure 1). Furthermore, empirical correlations for this case are given by 

Viana et al. (2003), Wallis (1969), and Zukoski (1966). The motion of Taylor bubble in 

liquid flow, that is 𝑅𝑒 ≠ 0, is more complex. Taylor bubble velocity in two-phase flow is 

modeled based on the approach of Nicklin et al. (1962), 

 

𝒖𝑻𝑩 = 𝑪𝟎𝒖𝒎 + 𝒖𝒅,        ( 1 )  

where 𝑢𝑑 is the drift velocity of the bubble in stagnant liquid, and 𝐶0𝑢𝑚  is the 

contribution of the mixture velocity 𝑢𝑚 which is the sum of the liquid and gas superficial 

velocities 𝑢𝑚 = 𝑢𝑆𝐿 + 𝑢𝑆𝑔, respectively. The coefficient 𝐶0 is a dimensionless coefficient 

that depends on the velocity profile above the bubble, and is approximately the ratio of 

the maximum to the mean profile velocity. Thus, for vertical pipes it is usually accepted 

as a good engineering approximation that 𝐶0~2 for laminar flow in round pipes, and 

𝐶0~1,2 for turbulent flow in round pipes, which is reinforced by experiments 

(Bendiksen, 1984; Nicklin et al., 1962; Polonsky et al., 1999) and theory (Collins et al., 

1978). For the case of a single Taylor bubble inside flowing liquid, the model of Nicklin 

et al. (1962) states that 𝑢𝑇𝐵 = 𝐶0𝑢𝑆𝐿 + 𝑢𝑑 . Expressions for the coefficient 𝐶0 are found 

in the literature: for example, for vertical flow, there are expressions of 𝐶0 as a function 

of 𝑅𝑒𝐿 only (Fréchou, 1986), and of 𝑅𝑒𝐿  and 𝐸𝑜 (Bendiksen, 1984; Tomiyama et al., 

2001). Also, Petalas and Aziz (2000) used in their mechanistic model an expression of 𝐶0 

for inclined pipes that depends on 𝑅𝑒𝐿  and 𝜃. Numerical simulations by Mao and Dukler 

(1991) matched well with the correlation of Fréchou (1986). The motion of Taylor 

bubbles in inclined pipes has also been studied in the literature. For example, Zukoski 

(1966) investigated experimentally the influence of liquid viscosity and surface tension 

on the bubble velocity, proposing a velocity correlation for vertical tubes, and describing 

qualitatively the effect of tube inclination in closed tubes. Bendiksen (1984) was the first 

to propose a correlation for inclined pipes, 

 

𝒖𝒅 = 𝒖𝒅
𝒉 𝐜𝐨𝐬 𝜽 + 𝒖𝒅

𝒗 𝐬𝐢𝐧 𝜽,       ( 2 )  

where 𝑢𝑑
ℎ

 and 𝑢𝑑
𝑣  are the horizontal and vertical drift velocity, respectively. He claimed 

that 𝑢𝑑
ℎ

 is different from zero in some cases: he assumed a system with one pipe end 

opened and partially filled with liquid and gas where liquid leaves and gas enters moving 

the bubble forward inside the pipe due to the liquid level differences at both sides of the 

Taylor bubble. This contradicted previous investigations such as Dukler and Hubbard 

(1975), and Nicklin et al. (1962) who assumed 𝑢𝑑
ℎ = 0 in a closed horizontal pipe. Weber 

et al. (1986) proposed another experimental correlation for 𝐹𝑟𝑑 in closed and inclined 

pipes based on the horizontal and vertical Froude numbers 𝐹𝑟𝑑
ℎ and 𝐹𝑟𝑑

𝑣, respectively, 

and 𝜃, with an extra correction term different from Bendiksen’s correlation. Hasan and 

Kabir (1988) proposed a new experimental correlation for 30° < 𝜃 < 90° based on 𝜃 and 

𝑢𝑑
𝑣  only, assuming 𝑢𝑑

ℎ = 0. Jeyachandra et al. (2012) analyzed experimentally the Taylor 

bubble terminal velocity for high-viscosity oil and slightly modified Bendiksen’s 



correlation. Carew et al. (1995) derived a semi-theoretical expression for the rise velocity 

of air bubbles in inclined pipes of stagnant water. Other experimental studies of inclined 

or slightly inclined tubes of stagnant liquid have been carried out by Alves et al. (1993), 

Bonnecaze et al. (1971), Shosho and Ryan (2001), Spedding and Nguyen (1978), and 

Stanislav et al. (1986).  

 

CFD numerical simulations have also been used to study slug flow. Clarke and Issa 

(1997), and Mao and Dukler (1990) focused on the flow ahead and around the bubble. 

Araújo et al. (2012) provided a wide range of Taylor bubbles in vertical columns of 

stagnant liquid using 2D axisymmetric simulations. Araújo et al. (2013a) and Araújo et 

al. (2013b) studied the hydrodynamics of pairs of consecutive Taylor bubbles in stagnant 

and flowing liquid, respectively. Other 2D vertical axisymmetric studies were done by 

Bugg et al. (1998), and Kang et al. (2010). Taha and Cui (2006) went further and 

performed some 3D inclined pipe simulations. Lakehal et al. (2012) and Caviezel et al. 

(2013) presented “proof of concept” 3D resolved-interface simulations of Taylor bubbles 

in vertical riser flow (reduced length), and reached the conclusion that ITM techniques 

cannot resolve the cloud of small bubbles generated in the wake of the Taylor bubble, 

and need therefore to be coupled with phase-average methods. Furthermore, Lakehal et 

al. (2011) performed 3D simulations to study the transition of gas-liquid stratified flow to 

slug flow in horizontal pipes, where the previously mentioned coefficient 𝐶0 is also 

analyzed. Our current project’s goal is to thoroughly study the inclination effect on the 

Taylor bubble dynamics, including its velocity, through 3D CFD simulations with ITM. 

PIV experimental data is very useful for code validation: Bugg and Saad (2002) provided 

such data for a vertical pipe of stagnant viscous liquid. Nogueira et al. (2006a), and 

Nogueira et al. (2006b) studied the nose region and annular film, and the wake of Taylor 

bubbles, respectively, in vertical pipes of stagnant and flowing liquids. Liu et al. (2013) 

analyzed the wake structure of Taylor bubbles in liquid nitrogen in inclined pipes.  

 

A general theory for the Taylor bubble velocity in inclined pipes is currently lacking. 

Herein, a number of 3D numerical simulations of Taylor bubble motion in stagnant liquid 

for a wide range of liquid properties, pipe diameters and inclinations is presented. 

Successful preliminary simulations of Taylor bubbles in flowing liquid have also been 

performed, although they are not included in this article.  

 

 

2 CFD SIMULATIONS 

 

3-D CFD simulations have been performed with the CMFD code TransAT® (TransAT®, 

2014), a finite-volume software developed at ASCOMP. The code uses structured 

meshes and MPI parallel-based algorithm to solve multi-fluid Navier-Stokes equations. 

Computer resources for this work include the supercomputers Titan and Eos of the Oak 

Ridge Leadership Computing Facility at the Oak Ridge National Laboratory. 

 

2.1 Mathematical model 

TransAT® uses the one-fluid formulation approach, where the flow is described by one 

fluid with variable material properties, which vary according to a color function, which is 

advected by the flow, thus identifying the gas and liquid regions. In the absence of phase 

change phenomena, the mass and momentum conservation equations are 

 
𝝏𝝆

𝝏𝒕
+ 𝛁 ∙ (𝝆𝒖) = 𝟎,           ( 3 )  

 



𝝏(𝝆𝒖)

𝝏𝒕
+ 𝛁 ∙ (𝝆𝒖𝒖) = −𝛁𝒑 + 𝛁 ∙ 𝝈 + 𝝆𝒈 + 𝑭𝒔,     ( 4 )  

where 𝑡 is the time, 𝜌 is the density, 𝒖 is the velocity vector, 𝑝 is the pressure, 𝝈 =
𝜇(𝜵𝒖 + 𝜵𝑻𝒖) is the viscous stress tensor where 𝜇 is the viscosity, 𝒈 is the gravity vector, 

and 𝑭𝑠 = 𝛾𝜅𝒏𝛿(𝜙) is the surface tension term where 𝛾 is the surface tension coefficient, 

𝜅 = −𝛁ϕ/|𝛁ϕ| is the surface curvature, 𝒏 is the vector normal to the interface, and 𝛿 is a 

smoothed delta function centered at the interface. In this work, the color function used is 

based on the Level Set (LS) method (Osher and Sethian, 1988), where the interface is 

represented by a continuous and monotonous function 𝜙 that represents the distance to 

the interface at which 𝜙 = 0. The LS advection equation is given by 

 

𝝏𝝓

𝝏𝒕
+ 𝒖 ∙ 𝛁𝝓 = 𝟎,         ( 5 )  

and material properties such as density and viscosity are updated locally based on 𝜙, and 

smoothed across the interface using a smooth Heaviside function. A mass conservation 

scheme is also employed to avoid scheme-induced losses. Furthermore, the pipe is 

modeled as an embedded surface and represented in the fluid by the so-called Solid Level 

Set function where 𝜙𝑠 = 0 is the fluid-solid interface (i.e. the IST technique). 

 

2.2 Results 

2.2.1 Vertical pipes 

Table 1 shows the test matrix for simulations of Taylor bubble motion in vertical pipes 

(𝜃 = 90) with no imposed flow (𝑅𝑒 = 0) performed with TransAT®, whose cases are 

localized in the experimental map of White and Beardmore (1962) in Figure 1, where the 

𝑥-axis is the 𝐸𝑜 number, and the 𝑦-axis is the 𝑀𝑜 number.  

 

Table 1: Test matrix for simulations of Taylor bubble motion in vertical pipes (𝜽 =
𝟗𝟎°) with no imposed flow (𝑹𝒆 = 𝟎). 

Case 𝑀𝑜 𝐸𝑜 𝑁𝑓 𝐹𝑟 (lit.) 𝐹𝑟 (sim.) ℎ̅ (lit.) ℎ̅ (sim.) 

1 0,328 76,5 34,2 0,210 0,212 0,295 0,288 

2 4,03 ∙ 10−3 187 201 0,324 0,306 0,198 0,189 

3 19,2 31,2 6,31 0,0573* 0,0418 0,305 0,292 

4 1,17 ∙ 10−4 38,6 149 0,276* 0,295 0,212 0,234 

5 1,52 ∙ 10−2 98,4 89,0 0,303* 0,291 0,246* 0,238 

6 1,50 ∙ 10−3 9,88 28,3 0,0411 0,0458 0,192 0,189 

7 4,75 ∙ 10−2 192 111 0,336* 0,322 0,235* 0,218 

8 8,38 747 84,0 0,289* 0,299 0,250 0,261 

9 8,38 181 29,0 0,199 0,216 0,306 0,295 

10 3,73 ∙ 10−11 23,8 4360 0,300* 0,285 0,073 0,102 



*: indicates experimental value in the literature columns. Otherwise, the literature values 

are obtained with correlations. 

The numerically obtained 𝐹𝑟 number is successfully compared to its values found in the 

literature. Six cases are compared with experimental data (cases 3 and 4 with Shosho and 

Ryan (2001); case 5 with Bugg and Saad (2002); case 7 with Nogueira et al. (2006a); 

case 8 with Jeyachandra et al. (2012); and case 10 with Tomiyama et al. (2001)), whereas 

the other four cases are compared with the correlation of Viana et al. (2003). The average 

terminal velocity error of the simulations is -1,4%, with a standard deviation equal to 

10.4%. Using the correlation of Viana et al. (2003) for cases 3 and 4 instead of the 

experimental values of Shosho and Ryan (2001), the error is 0,182+/-6,1%. Figure 2 

shows a graphical comparison between the numerical and the literature 𝐹𝑟 values of 

Table 1. Similarly, the developed non-dimensional film thickness ℎ̅ = ℎ/𝑅, where 𝑅 is 

the pipe radius, compares well with data from the literature. Two cases are compared 

with experimental data (case 5 (Bugg and Saad, 2002); and case 7 (Nogueira et al., 

2006a)). The other eight cases are compared with the correlations provided by Llewellin 

et al. (2012): their so-called Cubic Brown model (equations 2.5 and 2.6 in their article) 

for cases where the flow in the film is laminar (𝑁𝑓 ≤ 1372), and an empirical correlation 

(equation 4.2 in their article) for case 10, where 𝑁𝑓 > 1372. The 𝐹𝑟 needed for these 

correlations are obtained from the expression of Viana et al. (2003). The average film 

thickness error of the simulations is 0,457+/-6,26%. Figure 2 shows a graphical 

comparison between the numerical and the literature ℎ̅ values of Table 1. 

 

 
Figure 1: Test matrix for simulations of Taylor bubble motion (see Table 1) 

localized in the experimental map of White and Beardmore (1962). 



 
Figure 2: Taylor bubble terminal velocity and film thickness numerical results 

compared with the literature values. 

2.2.2 Inclined pipes 

 

3D CFD simulations of inclined pipes have been performed for cases 1, 3, 4, 8 and 9 

from Table 1. The 𝐹𝑟 number obtained numerically is compared with the experimental 

data of Jeyachandra et al. (2012), and Shosho and Ryan (2001), and the correlations from 

Hasan and Kabir (1988), Jeyachandra et al. (2012), and Petalas and Aziz (2000) in Figure 

3 through Figure 5. The correlation of Hasan and Kabir (1988) 𝐹𝑟𝑑 = 𝐹𝑟𝑑
𝑣√sin 𝜃 (1 +

cos 𝜃)1.2, where 𝐹𝑟𝑑
𝑣 = 0.35, has been slightly modified so that it also accounts for the 

surface tension and viscous forces: 𝐹𝑟𝑑
𝑣 is obtained from the correlation of Viana et al. 

(2003) instead. Hasan and Kabir (1988) assumed that horizontal drift velocity is zero. 

Furthermore, the vertical velocity of Petalas and Aziz (2000) slug mechanistic model has 

been calculated using the correct correlation from Wallis (1969). Numerical results 

compare well with the experimental data. Terminal velocity increases as the pipe 

inclines. The maximum value results from the competing effects of drag coefficient 

(lower at lower angles, where most of the liquid “bypasses” the bubble through a larger 

flow area), and buoyancy (higher at higher angle). Furthermore, successful simulations 

have been performed down to an inclination angle of 3 degrees for case 4 (Figure 3, 

right), where a thin film persists between the bubble and the wall and lubricates the 

bubble motion. The existence of the film is confirmed by the simple analytical drainage 

model described later in Section 3. As the inclination angle approaches zero, the bubble 

terminal velocity drops significantly showing a trend towards zero. This would suggest 

that horizontal drift velocity is zero for a closed tube, although more results are needed to 

make a conclusive remark on this aspect. Among the correlations used, the one from 

Hasan and Kabir (1988) captures relatively well the trend of terminal velocity with 

inclination angle, where the maximum occurs close to the experimental and numerical 

values in the five cases. However, we think there is room for improvement in the value 

prediction. 



 
Figure 3: 𝑭𝒓 as a function of 𝜽 for case 3 (left) and 4 (right) compared with 

experiments from Shosho and Ryan (2001), and experimental correlations from 

Hasan and Kabir (1988), Jeyachandra et al. (2012), and Petalas and Aziz (2000). 

 
Figure 4: 𝑭𝒓 as a function of 𝜽 for case 8 compared with experiments from 

Jeyachandra et al. (2012), and experimental correlations from Hasan and Kabir 

(1988), Jeyachandra et al. (2012), and Petalas and Aziz (2000). 

An interesting question that has not been addressed in the literature yet is the effect of 

Taylor bubble length on its velocity in inclined pipes. For the vertical case, the bubble 

velocity is independent of its length (Griffith and Wallis, 1961; Llewellin et al., 2012; 

Mao and Dukler, 1989; Nicklin et al., 1962; Tomiyama et al., 2001). In the literature, the 

bubble volume relative to the pipe diameter is represented by the diameter ratio 𝜆 =
𝑑𝑒/𝑑, where 𝑑𝑒  is the sphere-volume equivalent diameter of the bubble. When 𝜆 > 0,6, 

bubbles are classified as Taylor bubbles (Tomiyama et al., 2001). Simulations are 

performed for case 3 for two bubbles of 𝜆 = 1,17 and 1,05 for 𝜃 = 90°, 60° and 45°. It 
is found that the terminal velocity is equal for both bubbles for each of the inclination 

angles. Furthermore, the shape of the bubbles coincides: Figure 6 shows the vertical case 

(where the film thickness from the correlation of Llewellin et al. (2012) is included), and 

the two inclined cases. 



 
Figure 5: 𝑭𝒓 as a function of 𝜽 for case 1 (left) and 9 (right) compared with 

experimental correlations from Hasan and Kabir (1988), Jeyachandra et al. (2012), 

and Petalas and Aziz (2000). 

 

Figure 6: Comparison of the Taylor bubble shape of case 3 for two different bubble 

volumes of 𝝀 = 𝟏, 𝟏𝟕 and 1,05 for 𝜽 = 𝟗𝟎° (left), 𝟔𝟎° (middle), and 𝟒𝟓° (right). 

3 FILM BREAKUP CRITERION 

 

For the case of vertical pipes, an axisymmetric lubricating film separates the Taylor 

bubble from the pipe wall. For stagnant liquid, the range of the non-dimensional film 

thickness ℎ̅ is approximately ℎ̅ ∈ [0,08, 0,33] (see Llewellin et al. (2012)). As the pipe 

inclination increases, the Taylor bubble approaches the pipe wall under the effect of 

buoyancy, and the lubricating film becomes significantly thinner and non-axisymmetric. 

Moreover, the thickness of the film decreases along the Taylor bubble due to gravity-

driven drainage. If the film breaks up, the surface tension force at the triple contact line 

reduces the velocity of the bubble significantly. The breakup of the film has received 

some attention in the literature; e.g. Ha-Ngoc and Fabre (2004a), and Maneri and Zuber 

(1974), where the velocity of plane bubbles in two-dimensional ducts are numerically 

and experimentally studied, respectively. They observed three different bubble shape 

regimes depending on the duct inclination; (i) the bubble touches the upper wall for 𝜃 ≤
60°, (ii) the lubricating film is stable and the bubble does not touch the duct for 𝜃 ≥ 80°, 

and (iii) an unstable transition region in between. Al-Safran et al. (2013) observed a 

stable thin film at the top of the horizontal pipe in their slug flow experiments with high-

viscosity fluids. However, these results are valid for the limited set of fluid properties and 

flow conditions explored in those studies; a generally-applicable model for the film 

drainage and breakup cannot be found in the literature. After solving the Navier-Stokes 

equations for the film with the lubrication approximation, a generally valid drainage and 

breakup criterion for the lubricating film in slug flow in inclined round pipes has been 

derived. Figure 7 depicts the film drainage and breakup map, where the 𝑦-axis 

corresponds to the non-dimensional film thickness ℎ̅ = ℎ/ℎ𝑐, where ℎ𝑐 is the critical film 



thickness at which the film breaks up, and the 𝑥-axis corresponds to the non-dimensional 

time 𝑡̅ = 𝑡/𝜏, where 𝜏 is the characteristic film drainage time based on the fluid 

properties, pipe geometry, and critical film thickness. As 𝑡̅ increases, all solutions 

collapse on one line independent from the initial thickness ℎ0 due to the fact that an 

initially thicker film drains faster,  

 

�̅�(�̅�) =
𝒉(�̅�)

𝒉𝒄
= ((

𝒉𝒄

𝒉𝟎
)

𝟐
+ �̅�)

−𝟏/𝟐

.     ( 6 )  

Film breakup occurs when ℎ̅ = 1. However, given the uncertainties in the calculation of 

the critical film thickness ℎ𝑐, a conservative assumption is made that film breakup occurs 

at ℎ̅ = 10. The intersection between the film drainage curve and ℎ̅ = 10 occurs at 𝑡̅ =
0,01. This time has to be compared to the non-dimensional bubble’s passage time 𝑡�̅�𝑢𝑏𝑏𝑙𝑒 

through a point in the pipe. Thus, the criterion to avoid film breakup in Taylor flow 

becomes 𝑡�̅�𝑢𝑏𝑏𝑙𝑒 < 0,01. Such criterion can be used to determine under what conditions 

the lubricating film is present, which is a key input for both numerical simulations (Ben-

Mansour et al., 2010; Ha-Ngoc and Fabre, 2004b; Taha and Cui, 2006) and mechanistic 

modeling of slug flow. This criterion has been used in this article’s simulations to verify 

that a lubricating film is present between the Taylor bubble and the wall. 

 

Figure 7: Film drainage and breakup map. The film is conservatively assumed to 

break if the film thickness decreases to 𝒉 < 𝟏𝟎𝒉𝒄.  

4 CONCLUSIONS 

 

The Taylor bubble terminal velocity has been determined through an in-house study to 

strongly affect the pressure gradient and liquid holdup predicted by the slug flow 

mechanistic models. This article presents 3D CFD with Level Set simulations performed 

with the commercial code TransAT® for different liquids in closed tubes. The code is 

validated through the bubble terminal velocity for different inclination angles, its film 

thickness for the vertical pipe, and also the liquid velocity vectors. Thus, it is proven this 

approach’s potential to obtain a general expression for the Taylor bubble terminal 

velocity in inclined pipes, covering the whole range of Newtonian fluids’ properties, 

which is currently lacking in the literature. At this time, a numerical database is being 

generated to develop a new, high-fidelity closure relation for the Taylor bubble velocity 

as a function of the fluid properties, flow conditions, and pipe geometry. Furthermore, it 

is shown that the Taylor bubble length does not affect the terminal velocity in inclined 



pipes. Finally, a model predicting the gravity-drainage of the lubricating liquid film 

between the bubble and the pipe wall in inclined pipes is described, and derived from it a 

criterion for avoidance of film breakup: 𝑡�̅�𝑢𝑏𝑏𝑙𝑒 = 𝑡𝑏𝑢𝑏𝑏𝑙𝑒/𝜏 < 0,01, where 𝑡�̅�𝑢𝑏𝑏𝑙𝑒 is the 

non-dimensional bubble’s passage time, and 𝜏 is the characteristic film drainage time 

based on the fluid properties, pipe geometry, and critical film thickness.  
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A. APPENDIX: CODE VALIDATION 

 

Previously, TransAT® code has been validated using data from the literature for the 

Taylor bubble terminal velocity in inclined pipes, and its film thickness in vertical pipes. 

This section completes the validation: the bubble shape of case 7 is compared with 

experimental data from Nogueira et al. (2006a) (Figure 8), and the velocity vectors of 

case 5 with experimental PIV data from Bugg and Saad (2002) (Figure 9 through Figure 

11).  

 

In Figure 8, the bubble profile in the 𝑌𝑍-plane (where the 𝑧-axis is the vertical) overlaps 

with the bubble profile in the perpendicular 𝑋𝑍-plane, confirming an axisymmetric 

profile. Figure 9 shows the axial velocity component along the tube axis above the tip of 

the bubble on the left subfigure: note that the presence of the bubble does not affect the 

flow beyond one diameter ahead of its tip.  The axial and radial velocity components at 

𝑧/𝑅 = 0,222 above the bubble tip are shown on the right subfigure. The axial velocity is 

positive in the center region of the pipe, and becomes negative in the periphery due to the 

suction of the film around the Taylor bubble. The radial velocity is zero at the tube axis 

due to symmetry and at  𝑧/𝑅 = 1 due to the tube wall, and is positive elsewhere since 

liquid is moving from the center region towards the pipe wall where it is suctioned by the 

liquid film. Figure 10 shows the axial and radial velocity components in the film 

transition region at 𝑧/𝑅 = 1,008 below the bubble nose on the left subfigure. The film is 

still developing since the radial velocity is not zero there. The axial velocity is negative 

in the whole film region. PIV particles are only observed in the liquid region, and the 

absence of them indicates the presence of the gas phase. The right subfigure of Figure 10 

shows the axial velocity profile in the fully developed falling film at a distance 𝑧/𝑅 =
4,64 from the bubble nose. In this fully developed region, the radial velocity is zero as 

expected. Finally, Figure 11 depicts the axial and radial velocity components in the wake 

of the bubble at a distance 𝑧/𝑅 = 0,4 below the bubble tail. The radial velocity is 

negative since the liquid coming from the falling film at the pipe wall moves towards the 

pipe inner core. Furthermore, the axial velocity is positive in the inner core, and negative 

in the outer core due to the falling film, a characteristic of the recirculation taking place 

in this case’s bubble wake. The comparison is successful and provides confidence in the 

use of TransAT® in this study.  



 

Figure 8: The Taylor bubble shape of case 7 obtained numerically is compared with 

the experimental results from Nogueira et al. (2006a). 

 

Figure 9: The velocity profile of case 5 ahead of the bubble in the pipe centerline 

(left) and across the radial axis (right) obtained numerically is compared with the 

experimental data of Bugg and Saad (2002). 

 

Figure 10: The velocity profile of case 5 in the developing region of the falling film 

(left) and in the developed film (right) obtained numerically is compared with the 

experimental data of Bugg and Saad (2002). 



 

Figure 11: The velocity profile of case 5 in the wake of the bubble along the radial 

axis obtained numerically compared with the experimental data of Bugg and Saad 

(2002). 
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