
MIT Open Access Articles

Efficient Uncertainty Quantification for the Periodic 
Steady State of Forced and Autonomous Circuits

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Zhang, Zheng; El-Moselhy, Tarek A.; Maffezzoni, Paolo; Elfadel, Ibrahim M. and 
Daniel, Luca. “Efficient Uncertainty Quantification for the Periodic Steady State of Forced and 
Autonomous Circuits.” IEEE Trans. Circuits Syst. II 60, no. 10 (October 2013): 687–691. © 2013 
Institute of Electrical and Electronics Engineers (IEEE)

As Published: http://dx.doi.org/10.1109/TCSII.2013.2278110

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/108267

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/108267
http://creativecommons.org/licenses/by-nc-sa/4.0/


IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS, VOL. XX, NO. XX, XX 2013 1

Efficient Uncertainty Quantification for the Periodic
Steady State of Forced and Autonomous Circuits

Zheng Zhang, Tarek A. El-Moselhy, Paolo Maffezzoni, Ibrahim (Abe) M. Elfadel, and Luca Daniel

Abstract—This brief paper proposes an uncertainty quantifica-
tion method for the periodic steady-state (PSS) analysis with both
Gaussian and non-Gaussian variations. Our stochastic testing
formulation for the PSS problem provides superior efficiency
over both Monte Carlo methods and existing spectral methods.
The numerical implementation of a stochastic shooting Newton
solver is presented for both forced and autonomous circuits.
Simulation results on some analog/RF circuits are reported to
show the effectiveness of our proposed algorithms.

Index Terms—Uncertainty quantification, stochastic testing,
periodic steady state, circuit simulation.

I. I NTRODUCTION

DESIGNERS are interested in periodic steady-state (PSS)
analysis when designing analog/RF circuits or power

electronic systems. Such circuits include both forced (e.g.,
amplifiers, mixers, power converters) and autonomous cases
(also called unforced circuits, e.g., oscillators). Popular PSS
simulation algorithms include shooting Newton, finite differ-
ence, harmonic balance, and their variants [1]–[4].

As device sizes scale down, almost all performance met-
rics are influenced by manufacturing process variations. This
work focuses on the uncertainty quantification (UQ) of PSS
solutions under process variations. Previous perturbation tech-
niques can be used for the sensitivity analysis of circuits
with small variations [5]–[7]. However, none of them can
capture the statistical information that is important for yield
analysis. In order to obtain the underlying statistical infor-
mation, existing mainstream circuit simulators employ Monte
Carlo (MC) algorithms. MC must run a huge number of
repeated simulations due to its slow convergence rate, leading
to prohibitively expensive computational cost.

Exploiting the previous development of various basis func-
tions [8]–[10], UQ can be accelerated by stochastic spectral
methods in many applications. Due to the high convergence
rate, spectral methods can be much faster over MC when
the number of parameters is small or medium [10]. In [11],
polynomial chaos (PC) and harmonic balance are used to
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analyze forced circuits with Gaussian parameters. Generalized
polynomial chaos (gPC) and stochastic Galerkin (SG) are
further applied to simulate oscillators with non-Gaussianpa-
rameters [12]. However, the resulting coupled equation causes
substantial computational overhead.

This work proposes a simulator for the UQ of PSS solutions
based on stochastic testing (ST) method. In [13], ST was pro-
posed to simulate the DC and transient problems of transistor-
level circuits. However, directly using the simulator in [13] for
PSS analysis can cause long-term integration errors. This paper
employs ST to directly construct the stochastic PSS equations.
We further present an efficient implementation to solve the
resulting UQ equations. With our formulation, the resulting
coupled PSS equation can be solved in a decoupled manner
to extract the underlying statistical information, leading to
substantial computational savings. This work focuses on the
shooting Newton method, but extending our ideas to other
types of PSS solvers is straightforward.

II. BACKGROUND& RELATED WORK

A. Shooting Newton Method

Consider a general nonlinear circuit equation:

d~q (~x (t))

dt
+ ~f (~x (t)) = B~u (t) (1)

where~u(t) is the input signal,~x ∈ R
n denotes nodal voltages

and branch currents,~q ∈ R
n and ~f ∈ R

n represent the
charge/flux and current/voltage terms, respectively.

Under a periodic input~u(t), there exists a PSS solution
~x(t) = ~x(t+T ), where the smallest scalarT > 0 is the period
known from the input. Shooting Newton method computes
y = ~x(0) by solving the Boundary Value Problem (BVP)

~ψ(y) = ~φ(y, 0, T )− y = 0. (2)

Here ~φ(y, t0, t) is the state transition function, which actually
is the state vector~x(t+ t0) evolving from the initial condition
~x(t0) = y. Obviously,~φ(y, 0, T ) = ~x(T ) wheny = ~x(0). To
computey, Newton’s iterations can be applied.

For autonomous circuits,~u(t) = ~u is constant andT is
unknown, thus a phase condition must be added. For example,
by fixing the j-th element of~x(0), one uses the BVP

φ̄ (y, T ) =

[

~ψ (y, T )
χ (y)

]

=

[

~φ (y, 0, T )− y
yj − λ

]

= 0 (3)

to computey = ~x(0) andT . Hereyj is thej-th element ofy,
andλ is a properly selected scalar constant.

More details on shooting Newton can be found in [1]–[4].



B. Generalized Polynomial Chaos (gPC) Expansion

When uncertainties are involved, (1) is modified to

d~q(~x(t, ~ξ), ~ξ)

dt
+ ~f(~x(t, ~ξ), ~ξ) = B~u(t). (4)

Here ~ξ ∈Rd denotesd independent Gaussian and/or non-
Gaussian parameters in the stochastic spaceΩ. If ~x(t, ~ξ) is
a second-order stochastic process, it can be approximated by
a truncated gPC expansion:

~x(t, ~ξ) ≈ x̃(t, ~ξ) =
K
∑

k=1

x̂k(t)Hk(~ξ), (5)

wherex̂k(t) is a coefficient vector, andHk(~ξ) is a multivariate
gPC basis function satisfying

〈

Hk(~ξ), Hj(~ξ)
〉

=

∫

Ω

ρ(~ξ)Hk(~ξ)Hj(~ξ)d~ξ = δk,j . (6)

Hereρ(~ξ) is the joint probability density function (PDF) of~ξ.
Details on gPC basis construction can be found in [9], [10].
If the highest total order of the gPC bases in (5) isp, then the
total number of basis functions is

K =

(

p+ d
p

)

=
(p+ d)!

p!d!
, (7)

whered is the number of random parameters.
Several spectral methods can be applied to solve (4), includ-

ing the stochastic collocation (SC), stochastic Galerkin (SG)
and stochastic testing (ST) methods. ST uses a collocation
testing scheme to set up a coupled equation with fewer nodes
than the mainstream SC and then directly computes the gPC
coefficients by an intrusive solver. It is called StochasticTest-
ing to distinguish it from the non-intrusive SC methods that
compute the gPC coefficients indirectly. Detailed comparisons
of ST, SC and SG can be found in [13].

Stochastic Galerkin (SG) was employed in [12] for the
UQ of oscillators. The SG-based solver consists of three
steps: 1) similar to [7], the time axis is scaled such that
the scaled waveforms have a constant oscillation period; 2)
the state vector and period are approximated by a truncated
gPC expansion, and a coupled deterministic DAE is set up
by Galerkin testing; 3)K phase conditions are added, and
the gPC coefficients are computed by Newton’s iterations.
The shortcoming of [12] is the computational cost growing
cubically w.r.t. the number of basis functionK.

III. PROPOSEDST-BASED PSS SOLVER

Notation. Let H={H1(~ξ), · · · , HK(~ξ)} represent the gPC
basis functions, and̂w = [ŵ1; · · · ; ŵK ] denote the collection
of gPC coefficients, we define an operator:

M(H, ŵ, ~ξ) := w̃(~ξ) =

K
∑

k=1

ŵ
k
Hk(~ξ)

which convertsŵ to a gPC approximatioñw(~ξ). Given a set
of testing nodesS = {~ξ1, · · · , ~ξK}, V ∈ R

K×K denotes a
Vandermonde-like matrix, the(i, j) element of which is

Vi,j = Hj(~ξi), for 1 ≤ i, j ≤ K. (8)

Finally we denoteWn = V ⊗ In, where⊗ is the Kronecker
product operator andIn is an identity matrix of sizen.

A. Formulation for Forced Circuits

For a forced circuit, we directly perform UQ based on the
following coupled DAE formed by ST

dQ(x̂(t))
dt

+ F (x̂(t), t) = 0. (9)

Here x̂(t) = [x̂1(t); · · · ; x̂K(t)]∈RnK collects the gPC coef-
ficients of~x(t, ξ). Let x̃(t, ~ξ) := M(H, x̂(t), ~ξ) and

~qk(x̂(t)) = ~q(x̃(t, ~ξk), ~ξk),
~fk(x̂(t), t) = ~f(x̃(t, ~ξk), ~ξk)−B~u(t),

then (9) is obtained by the following column stacking:

Q(x̂(t)) = [~q1(x̂(t)); · · · ; ~qK(x̂(t))] ,

F (x̂(t), t) =
[

~f1(x̂(t), t); · · · ; ~fK(x̂(t), t)
]

.

ST first generates a set of multivariate quadrature nodes, then
only a small port of those nodes are selected as testing nodes
such thatV is invertible and well conditioned [13].

The state vector~x(t, ~ξ) is periodic for any~ξ ∈ Ω if and
only if x̂(t) is periodic. Therefore, we have

g(ŷ) = Φ(ŷ, 0, T )− ŷ = 0. (10)

In this equation,̂y = x̂(0), andΦ(ŷ, 0, T ) is the state transition
function of (9).

B. Formulation for Autonomous Circuits

For unforced cases, we cannot directly use (9) for PSS
analysis since no PSS solution exists. Instead, we modify (9)
by scaling the time axis as done in [7]. LetT0 be the oscillation
period for the nominal case, we writeT (~ξ) as

T (~ξ) = T0a(~ξ) ≈ T0M(H, â, ~ξ)

where â=[â1; · · · ; âK ] collects the gPC coefficients ofa(~ξ).
Define a new time variableτ such that

t = a(~ξ)τ ≈ M(H, â, ~ξ)τ,

then~z(τ, ~ξ) = ~x(t, ~ξ) solves the following DAE:

d~q(~z(τ, ~ξ), ~ξ)

dτ
+ a(~ξ)~f(~z(τ, ~ξ), ~ξ) = a(~ξ)B~u. (11)

Replacing~z(τ, ~ξ) anda(~ξ) in (11) with their gPC approxima-
tions z̃(τ, ~ξ) andã(~ξ), respectively, and enforcing the resulting
residual to zero for any~ξk ∈ S, we get

dQ(ẑ(τ))
dτ

+ F (ẑ(τ), â) = 0. (12)

Here ẑ(τ)=[ẑ1(τ); · · · ; ẑK(τ)] denotes the gPC coefficients
of ~z(τ, ξ). The nonlinear functions are decided by

Q(ẑ(τ)) = [~q1(ẑ(τ)); · · · ; ~qK(ẑ(τ))]

F (ẑ(τ), â) =
[

~f1(ẑ(τ)); · · · ; ~fK(ẑ(τ))
]

,



with

~qk(ẑ(τ)) = ~q(z̃(τ, ~ξk), ~ξk),
~fk(ẑ(τ)) = ã(~ξk)(~f(z̃(τ, ~ξk), ~ξk)−B~u).

Let ŷ := [ẑ(0); â] and fix thej-th component of~z(0) at λ,
then we have the following BVP equation

g(ŷ) =
[

Ψ(ẑ(0), â)
χ(ẑ(0))

]

=

[

Φ(ẑ(0), 0, T0, â)− ẑ(0)
χ(ẑ(0))

]

= 0. (13)

Here the state transition functionΦ(ẑ(0), 0, T0, â) depends on
â, and the phase constraintχ(ẑ(0)) = 0∈RK is

χ(ẑ(0)) =
[

ẑj(0)− λ; ẑj+n(0); · · · ; ẑj+(K−1)n(0)
]

= 0.

IV. N UMERICAL SOLVERS

A. Coupled Solver

To solve (10) and (13), we use Newton’s iteration

solve ∆ŷ = J−1(ŷj)g(ŷj), update ŷj+1 = ŷj −∆ŷ (14)

until convergence.g(ŷ) can be evaluated by running a transient
simulation of (9) or (12) for one period. The main problem is
how to evaluate the JacobianJ(ŷ) and how to solve the linear
system equation in (14).

Forced Case.For a forced case, the Jacobian of (10) is

Jforced = M ŷ − I , with M ŷ =
∂Φ(ŷ, 0, T )

∂ŷ
. (15)

Here M ŷ is the Monodromy matrix of (9), which can be
obtained from linearizations along the trajectory starting from
x̂(0) = ŷ to x̂(T ). This step is the same as the deterministic
case detailed in [3] and thus skipped here.

Autonomous Case.The Jacobian of (13) reads

Josc =
[

J11 J12
J21 0

]

. (16)

SubmatrixJ11=
∂Ψ(ẑ(0),â)

∂ẑ(0) can be calculated in the same way

of computingJforced; J21=
∂χ(ẑ(0))
∂ẑ(0) is easy to calculate since

χ(ẑ(0)) is linear w.r.t.ẑ(0). SubmatrixJ12 is

J12 =
∂Ψ(ẑ(0), â)

∂â
=
∂Φ(ẑ(0), 0, T0, â)

∂â
=
∂ẑ(T0)
∂â

. (17)

Let τ0=0<τ1<· · ·<τN=T0 be the time points and
hk=τk−τk−1 be the step size in the transient simulation of
(12). We denote the discretized trajectory byẑ(k) = ẑ(τk). At
τk, we have

Q(ẑ(k))−Q(ẑ(k−1)) =
(

γ1F (ẑ(k), â) + γ2F (ẑ(k−1), â)
)

hk

with γ1=γ2=0.5 for Trapezoidal rule andγ1=1, γ2=0 for
backward Euler. Taking derivatives on both sides of the above
equation yields

∂ẑ(k)

∂â = (Ek − γ1Akhk)
−1(Ek−1 + γ2Ak−1hk)

∂ẑ(k−1)

∂â
+(Ek − γ1Akhk)

−1hk(γ1Pk + γ2Pk−1)
(18)

with Ek=
∂Q(ẑ(k))

∂ẑ(k)
, Ak=

∂F (ẑ(k),â)
∂ẑ(k)

andPk=
∂F (ẑ(k),â)

∂â . Starting

from
∂ẑ(0)
∂â = 0, one getsJ12 =

∂ẑ(N)

∂â by iterating (18).
Similar to the deterministic cases [1]–[4], the Jacobian is

a dense matrix due to the matrix chain operations. Therefore,
solving the linear system in (14) costsO(n3K3) if a direct
matrix solver is applied, similar to the cost in [12].

B. Decoupled Matrix Solver

By properly choosing a transformation matrixP, Equations
(10) and (13) can be converted to

Pg(ŷ) =







g1(ỹ(~ξ1))
...

gK(ỹ(~ξK))






, with







ỹ(~ξ1)
...

ỹ(~ξK)






= Pŷ. (19)

Consequently, the Jacobian in (14) can be rewritten as

J(ŷ) = P−1







J1
. . .

JK






P, with Jk =

∂g
k
(ỹ(~ξk))

∂ỹ(~ξk)
. (20)

Forced Case.We setP=Wn and ỹ(~ξk)=x̃(0, ~ξk), then

gk
(

ỹ(~ξk)
)

= ~φ
(

x̃(0, ~ξk), 0, T
)

− x̃(0, ~ξk) = 0 (21)

is a shooting Newton equation for (4), with~ξ fixed at ~ξk.
In (21), x̃(0, ~ξk)∈Rn is unknown,x̃(t, ~ξk)=~φ

(

x̃(0, ~ξk), 0, t
)

is the state transition function, andJk can be formed using
existing techniques [2].

Autonomous Case.Let ỹ(~ξk)=[z̃(0, ~ξk); ã(ξk)], and P =
Wn+1Θ whereΘ is a proper permutation matrix, then

gk
(

ỹ(~ξk)
)

=

[

~φ
(

z̃(0, ~ξk), 0, T0, ã(~ξk)
)

− z̃(0, ~ξk)

z̃j(0, ~ξk)

]

= 0

is a shooting Newton equation for (11), with the parameter~ξ
fixed at ~ξk. Here z̃(0, ~ξk) and ã(~ξk) are the unknowns, and

z̃(τ, ~ξk)=~φ
(

z̃(0, ~ξk), 0, τ, ã(~ξk)
)

is a state transition function

dependent ona(~ξ)=ã(~ξk). The small JacobianJk can also be
formed by existing techniques [4], [7].

Intrusive Solver. We directly compute the gPC coefficients
by solving (10) or (13), with decouplinginside the Newton’s
iterations (14). Specifically, inside each iteration, Eq. (9) or
(12) is first integrated for one period, and the state trajectories
are converted to the gPC approximations [i.e.,x̃(t, ~ξk)’s in
forced circuits, or̃z(τ, ~ξk)’s and ã(~ξk)’s in unforced circuits].
Then Jk’s are formed as done in existing deterministic PSS
solvers [1]–[4]. Finally, based on (20) each small block is
solved independently to updateŷj . Doing so allows simulating
(9) or (12) with flexible time stepping controls inside the
intrusive transient solver [13], such that all components of
x̂(t) [or ẑ(τ)] are located on the same adaptive time grid. This
allows us to directly extract the statistical information of the
time-domain waveforms and other performance metrics (e.g.,
statistical transient power).

Complexity. SinceΘ−1=ΘT , W−1
n =V−1⊗In andV−1 can

be easily computed [13], the cost of decoupling in (20) is
negligible. After decoupling, one can solve each small linear
system equation as done in deterministic PSS solvers [1]–[4].
The total cost isO(Kn3) if a direct matrix solver is used. For
large-scale circuits, one can use matrix-free iterative meth-
ods [3] at the cost ofO(Knβ) whereβ is normally 1.5∼2.
This intrusive decoupled solver could be easily parallelized
potentially leading to further speedup.
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Fig. 2. Periodic steady-state waveforms for the LNA. (a)& (b): mean and
s.t.d ofVout; (c) & (d): mean and s.t.d ofI(Vdd).

V. NUMERICAL RESULTS

Our algorithm was implemented in a Matlab circuit simula-
tor. All experiments were run on a workstation with 3.3GHz
4-GB RAM.

A. Low-Noise Amplifier (LNA)

The LNA in Fig. 1 is used as an example of forced circuits.
The ratios of the transistors areW1/L1=W2/L2=500/0.35
andW3/L3=50/0.35. The design parameters are:Vdd=1.5 V,
R1=50Ω, R2=2 kΩ, C1=10 pF,CL=0.5 pF,L1=20 nH and
L3=7 nH. We introduce four random parameters. Temperature
T=300 + N (0, 1600) K is a Gaussian variable influencing
transistor threshold voltage;R3=1 + U(−0.1, 0.1) kΩ and
L2=1.4 + U(0.6, 0.6) nH have uniform distributions; the
threshold voltage under zeroVbs is VT=0.4238 +N (0, 0.01)
V. The input isVin = 0.1sin(4π × 108t) V.

In our ST-based PSS solver, an order-3 gPC expansion
(with 35 basis functions) are used to represent the state
variables. The computed gPC coefficients are then used to
extract statistical information at a negligible cost. The means
and standard deviations (s.t.d) ofVout and I(Vdd) (current
from Vdd) are plotted in Fig. 2. Using standard MC,8000
samples are required to achieve the similar level of accuracy
(<1% relative errors for the mean and standard deviation).
Fig. 3 plots the probability density functions (PDF) of the total
harmonic distortion (THD) and power consumption from our
proposed PSS solver and MC, respectively. The PDFs from
both methods are graphically indistinguishable. The totalcost
of our decoupled ST solver is3.4 seconds, which is42× faster
over the coupled ST solver,71× faster over the SG-based PSS
solver, and220× faster over MC.
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Fig. 3. Probability density functions. (a)THD and (b) powerdissipation.
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Fig. 4. Schematic of the BJT Colpitts oscillator.

B. BJT Colpitts Oscillator

The BJT Colpitts oscillator in Fig. 4 is a typical example
of autonomous circuits. The design parameters of this circuit
areR1=2.2 kΩ, R2=R3=10 kΩ, C2=100 pF,C3=0.1µF, and
α=0.992 for the BJT. The oscillation frequency is mainly de-
termined byL1,C1 andC2. We assume thatL1=150+N (0, 9)
nH andC1=100 + U(−10, 10) pF are random variables with
Gaussian and uniform distributions, respectively.

Setting the gPC order to3, the results from our proposed
solver and the SG-based solver [12] are indistinguishable.
Fig. 5 shows some realizations ofVout obtained by our solver.
The variation looks small on the scaled time axis, but it is
significant on the original time axis due to the uncertainties of
the oscillation frequency. The CPU time of our decoupled ST-
based solver is4.9 seconds, which is2× and5× faster over
the coupled ST-based solver and the SG-based solver [12],
respectively. Finally, our solver is compared with standard
MC. The computed mean and standard deviation (both in
nanosecond) of the oscillation period are shown in Table I.
To achieve the similar level of accuracy, MC must use5000
samples, which is about507× slower than using our ST-based
simulator. The distributions of the oscillation period from both
methods are consistent, as shown in Fig. 6.

C. Accuracy and Efficiency

We increased the gPC order from1 to 6, and treated
the results from the6th-order gPC expansion as the “exact”
solutions. Fig. 7 plots the relative errors ofŷ and the speedup
factors caused by decoupling. The errors rapidly reduce to
below10−4, and the convergence slows down when the errors
approach10−5, i.e., the threshold for the Newton’s iterations
which dominates the accuracy. In Fig. 7(b), the speedup curve
for the LNA has the same slope asK2 on a logarithmic
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TABLE I
SIMULATION RESULTS OF THE OSCILLATION PERIOD BY OUR PROPOSED

METHOD AND MONTE CARLO.

Monte Carlo Proposed
# samples 500 2000 5000 10

mean value (ns) 17.194 17.203 17.205 17.205
s.t.d value (ns) 2.995 3.018 3.026 3.028
CPU time (s) 252 1013 2486 4.9

scale, implying anO(K2) speedup caused by decoupling. The
speedup for the Colpitts oscillator is however not significant,
since device evaluations dominate the total cost for this small
circuit. Generally, theO(K2) speedup is more obvious for
large-scale circuits.

VI. CONCLUSION

This paper has proposed an intrusive periodic steady-state
simulator for the uncertainty quantification of analog/RF cir-
cuits. The main advantage of our proposed method is that
the Jacobian can be decoupled to accelerate numerical com-
putations. Numerical results show that our approach obtains
results consistent with Monte Carlo simulation, with2∼3
orders of magnitude speedup. Our method is significantly
faster over existing SG-based PSS solver, and the speedup
factor is expected to be more significant as the circuit size
and the number of basis functions increase.
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