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Efficient Uncertainty Quantification for the Periodic
Steady State of Forced and Autonomous Circuits

Zheng Zhang, Tarek A. EI-Moselhy, Paolo Maffezzoni, IbrahinbéA\M. Elfadel, and Luca Daniel

~ Abstract—This brief paper proposes an uncertainty quantifica- - analyze forced circuits with Gaussian parameters. Geredal
tion mgthod for the perlodlq steady'-st.ate (PSS) analysis ywth bqth polynomial chaos (gPC) and stochastic Galerkin (SG) are
Gaussian and non-Gaussian variations. Our stochastic testing further applied to simulate oscillators with non-Gaussian

formulation for the PSS problem provides superior efficiency t 121 H th i led fi
over both Monte Carlo methods and existing spectral methods. rameters [12]. However, the resulting coupled equatiorseau

The numerical implementation of a stochastic shooting Newton Substantial computational overhead.
solver is presented for both forced and autonomous circuits.  This work proposes a simulator for the UQ of PSS solutions

Simulation resu]ts on some analog/RF circuiFs are reported t0 pased on stochastic testing (ST) method. In [13], ST was pro-
show the effectiveness of our proposed algorithms. posed to simulate the DC and transient problems of tramsisto
Index Terms—Uncertainty quantification, stochastic testing, level circuits. However, directly using the simulator ir8]¥or
periodic steady state, circuit simulation. PSS analysis can cause long-term integration errors. Hpierp
employs ST to directly construct the stochastic PSS equstio
We further present an efficient implementation to solve the
resulting UQ equations. With our formulation, the resugtin
. i o coupled PSS equation can be solved in a decoupled manner
D ESIGNERS are interested in periodic steady-state (PSg) extract the underlying statistical information, leaglito
analysis when designing analog/RF circuits or powefpstantial computational savings. This work focuses @n th

electronic systems. Such circuits include both forced.(e.gnooting Newton method, but extending our ideas to other
amplifiers, mixers, power converters) and autonomous cas@ses of PSS solvers is straightforward.
(also called unforced circuits, e.g., oscillators). Papu®SS

simulation algorithms include shooting Newton, finite iff I
ence, harmonic balance, and their variants [1]-[4]. )

As device sizes scale down, almost all performance mét= Shooting Newton Method
rics are influenced by manufacturing process variationss Th Consider a general nonlinear circuit equation:
work focuses on the uncertainty quantification (UQ) of PSS g (# (1)
solutions under process variations. Previous pertunbaéoh- 7
niques can be used for the sensitivity analysis of circuits ) o
with small variations [5]-[7]. However, none of them cafvhered(t) is the input signaly € R™ denotes nodal voltages
capture the statistical information that is important feely and branch currents; € R"™ and f € R" represent the
analysis. In order to obtain the underlying statisticaloinf charge/flux and current/voltage terms, respectively.
mation, existing mainstream circuit simulators employ Mon Under a periodic inputi(t), there exists a PSS solution
Carlo (MC) algorithms. MC must run a huge number of () = Z(t+1T), where the smallest scaldr> 0 is the period
repeated simulations due to its slow convergence rateingadknown from the input. Shooting Newton method computes
to prohibitively expensive computational cost. y = Z(0) by solving the Boundary Value Problem (BVP)

_ Exploiting the previous development of various bgsis func- J(y) _ $(y,O,T) —y=0. @)
tions [8]-[10], UQ can be accelerated by stochastic spectra
methods in many applications. Due to the high convergenkre ¢(y, to,t) is the state transition function, which actually
rate, spectral methods can be much faster over MC whignthe state vector(t +t) evolving from the initial condition
the number of parameters is small or medium [10]. In [11}(¢y) = y. Obviously,¢(y,0,7) = #(T) wheny = #(0). To
polynomial chaos (PC) and harmonic balance are useddemputey, Newton's iterations can be applied.

. ) by the MI-MIT Collaborative P . For autonomous circuitsi(t) = « is constant andl’ is
N e ) 1 M ojaboraie Frogrferenee unknown, thus a phase condition must be added. For example

SRC under the MEES |, MEES II, and AGE programs, and by ATIC under DY fixing the j-th element ofz(0), one uses the BVP
the TwinLab program. . N
Z. Zhang, T. A. El-Moselhy and L. Daniel are with the Massasits 5 (0. T) — v(y,T) | | ¢y,0,T)—y | _ 0 3
Institute of Technology, Cambridge, MA, USA (e-mail: zhang@mit.edu, ¢ (y’ ) - % (y) - yi — A - ( )
tmoselhy@mit.edu, luca@mit.edu). J
'P. Maﬁgzzoni _is with Dipartim_ento di Elettronica e _Infqrmazé, Politec- g computey = f(O) andT. Hereyj is the j-th element ofy,
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I. INTRODUCTION

. BACKGROUND & RELATED WORK

+ f(#(t)) = Bi(t) @



B. Generalized Polynomial Chaos (gPC) Expansion Finally we denoteW,, =V ® |,,, where® is the Kronecker

When uncertainties are involved, (1) is modified to product operator antl, is an identity matrix of sizex.
dg(Z(t,€),8) - . « = .
w + f(&(t,£),§) = Bu(t). (4) A Formulation for Forced Circuits

Heref R’ denotesd independent Gaussian and/or non; For a forced circuit, we directly perform UQ based on the

Gaussian parameters in the stochastic spacef (¢, <) is following coupled DAE formed by ST
a second-order stochastic process, it can be approximated b dQ(x(t))

a truncated gPC expansion: @ F(x(t),t) =0. ©)
. . K . Herex(t) = [#1(t);--- ;2K (t)]e €R"K collects the gPC coef-
#(t,8) ~ #(t,6) = Y #* () Hi(©), ®) ficients of (¢, ). Let #(t,€) := M(H, x(t),€) and
k=1

wherez* (t) is a coefficient vector, andl, (€) is a multivariate ( (£)) = i(ji(t $k), & )
gPC basis function satisfying Fe(®(),1) = f@(t, ). &) — Bi(1),

- - - - Lo then (9) is obtained by the following column stacking:

(1@ 1,©) = [ HO @ H G =505 6
Q

QX(1)) = g1 (x(1));- ,qK(())}
(X

- . F(x(t f e fR(R(E), )]

Herep(¢) is the joint probability density function (PDF) @t (%(),8) = [f ®).1) fK( (¥ )}

Details on gPC basis construction can be found in [9], [10FT first generates a set of multivariate quadrature nodes, th

If the highest total order of the gPC bases in (5p,ishen the only a small port of those nodes are selected as testing nodes

total number of basis functions is such thatV is invertible and well conditioned [13].
(Pt d\  (p+d) ; Thg state vect_on?(_t,f) is periodic for any¢ € Q if and
- P T pldl 7 only if X(¢) is periodic. Therefore, we have
whered is the number of random parameters. gy) = ®(y,0,7) —y=0. (20)

Several spectral methods can be applied to solve (4), includ o . ] -
ing the stochastic collocation (SC), stochastic Galerg@g) N this equationy = %(0), and®(y,0,T) is the state transition
and stochastic testing (ST) methods. ST uses a collocatf§fction of (9).
testing scheme to set up a coupled equation with fewer nodes
than the mainstream SC and then directly computes the gBC Formulation for Autonomous Circuits
coefficients by an intrusive solver. It is called Stocha3tst-
ing to distinguish it from the non-intrusive SC methods that
compute the gPC coefficients indirectly. Detailed companss b
of ST, SC and SG can be found in [13].

Stochastic Galerkin (SG) was employed in [12] for th

For unforced cases, we cannot directly use (9) for PSS
analysis since no PSS solution exists. Instead, we modjfy (9
y scaling the time axis as done in [7]. LB be the oscillation
geriod for the nominal case, we wri(¢) as

UQ of oscillators. The SG-based solver consists of three T() = Toa(E) ~ TyM(H, &, €)
steps: 1) similar to [7], the time axis is scaled such that .
the scaled waveforms have a constant oscillation period; \@herea=[a';- - - ;a’] collects the gPC coefficients af(¢).

the state vector and period are approximated by a truncateefine a new time variable such that

gPC expansion, and a coupled deterministic DAE is set up - .=

by Galerkin testing; 3)K phase conditions are added, and t=a(&)r~ M, 8,7,

the gPC coefficients are computed by Newton'’s |terat|on§]enz( ﬁ):a‘;’(t 3solves the following DAE:
The shortcoming of [12] is the computational cost growing
cubically w.r.t. the number of basis functids. dq(Z(7,¢),¢€) n a({)f(,?(T 5) ~) _ a(f)Bﬁ (11)
[1l. PROPOSEDST-BASED PSS ®LVER

Notation. Let H—{H, @7 - ,HK(E)} represent the gPC RepIaC|ngf(T, £) agda(g) in (11) with their gPC approxima-

basis functions, and/ — [t - - - : %] denote the collection tlon_s,%(T, ¢) anda(§), respectively, and enforcing the resulting
of gPC coefficients, we define an operator: residual to zero for any; € S, we get

R LK } dQ(z()) 50 &) —

M(H,W, ) = (&) = S @F Hi (&) 4 T @), =0 (12)
= ) Here 2(7)=[2'(7);--- ; 2% (7)] denotes the gPC coefficients

which convertsi to a gPC apprOX|mat|om;(§) Given a set ¢ Z(r,€). The nonlinear functions are decided by
of testing nodesS = {&;,---,&x}, V € REXK denotes a X o o
Vandermonde-like matrix, théi, j) element of which is Q(2(7)) = [q(2(7)); -+ 5 Gr (2(7))]

Vij=H;(€), for 1 <ij < K. ®) F(2(r),8) = [fi@m)- fe@(r)]



with B. Decoupled Matrix Solver

7o (2(7)) = q(2(, &), &), By properly choosing a transformation matfx Equations
Fo(2(7)) = a(&) (F(3(1, &), &) — B). (10) and (13) can be converted to
Lety := [2(0); 4 d fix thej-th t of7(0) at \, ~( ~(
ther(1a V\)//e havc(a t)hz] fglrllowilzg Be\j/P e%%gt?c?r?en oF(0) = o) 91 (9(&1)) . g(&) o o)
o . . a(y) = : . wi : — Py.
oy | P(z(0),a) | _ | ©(2(0),0,Tp,a) —2(0) | _ - ;
9F) = { x(2(0)) ] = { X(2(0)) =0- (13) O (7)) 7(Ex)

Here the state transition functio(z(0), 0, 7, &) depends on Consequently, the Jacobian in (14) can be rewritten as
&, and the phase constraigfz(0)) = 0€R¥ is

J1 o
x(2(0)) = [2;(0) = A; Zj4n(0); -+ 5 Zj4 (k—1)n(0)] = 0. 3(g) = P! N P, with Jy = 09; (G(&r)) 20)
g 97(&k)
IV. NUMERICAL SOLVERS K
A. Coupled Solver Forced Case.We setP=W,, and§(¢,)=%(0, ), then
To solve (10) and (13), we use Newton’s iteration = = B B
solve Ay = J—l(yj)g(yj)7 update yj+1 _ yj — Ay (14) O (y(fk)) =¢ <x(07§k)aOaT) —(0,6) =0 (21)

until convergenceg(y) can be evaIuaFed by running atransieng a shooting Newton equation for (4), with fixed at &j..
simulation of (9) or (12) for one period. The main problem igy (21), (0, &,)eR™ is unknown, i (t, &)= (#(0,&,), 0, ¢
how to evalua_te the Jacobid(y) and how to solve the linear is the state transition function, ank, can be formed using
system equation in (14). _ . existing techniques [2].

Forced Case.For a forced case, the Jacobian of (10) is Autonomous Case.Let g(fk)z[i(() 5k)'d(§k)] andP —
0% (y,0,7) (15) Wn+16 where® is a proper permutation matrix, then

oy '

Here My is the Monodromy matrix of (9), which can be 4 (37(@)) _
obtained from linearizations along the trajectory startirom '
X(0) =y to X(T'). This step is the same as the deterministic

Jtorced = My — 1, with My =

—

6 (2(0,60),0,To, a(&) ) - 2(0.6) ] 0
’gj (Oa gk)

case detailed in [3] and thus skipped here. is a shooting Newton equation for (11), with the paraméter
Autonomous Case.The Jacobian of (13) reads fixed at,. Here 2(0,¢,) and a(&) are the unknowns, and
] Jii i 16 Z(1,&k)=0 (2(0, &k), 0,1, é({k)) is a state transition function
o { Jn 0 } ' (16) dependent om(¢)=a(¢;,). The small Jacobiaf, can also be
SubmatrixJH:%Egg’é) can be calculated in the same Wa}l;ormed by existing techniques [4], [7].

Intrusive Solver. We directly compute the gPC coefficients

of computingJsorced; 32120)5(22(83)) is easy to calculate sincepy solving (10) or (13), with decouplinipside the Newton’s
x(2(0)) is linear w.rt.z(0). SubmatrixJi» is iterations (14). Specifically, inside each iteration, E) 6r
0v(2(0),a) 09(2(0),0,Tp,a) 02(Tp) (12) is first integrated for one period, and the state trajies

Jiz = oa - oa -~ 9a a7 are converted to the gPC approximations [iﬁ(t,fk)’s in

Let 7o=0<m<---<ry=T, be the time points and forced circuits, or3(7,&,)'s anda(&,)'s in unforced circuits].
h=Tr—Ts_1 be the step size in the transient simulation ofhenJi’s are formed as done in existing deterministic PSS

(12). We denote the discretized trajectory &y, = z(r;,). At solvers [1}-[4]. Finally, based on (20) each small block is
., We have solved independently to updagé. Doing so allows simulating
. . o . . (9) or (12) with flexible time stepping controls inside the
Q(2w) — Q(Zk-1)) = (MF(Z1), @) +72F (2(6-1):8) "k intrusive transient solver [13], such that all components o
with 71 =7.=0.5 for Trapezoidal rule andy=1, v.=0 for X(t) [or z(7)] are located on the same adaptive time grid. This
backward Euler. Taking derivatives on both sides of the abogllows us to directly extract the statistical informatiohthe

equation yields time-domain waveforms and other performance metrics,(e.g.
021 , 92_1) statistical transient power).
25 = (Ek - '71Akhk)_1 (Ek71 + 'YQAkflhk) GEY Complexity. Since@)*l:@T, W;1:V—1®In andv—l can
+(Bx — 1ARhk) ™ i (11Pr + 72Pr—1) 18) be easily computed [13], the cost of decoupling in (20) is
. Q) _ OF (2(1),8)  OF(201),8) ) negligible. After decoupling, one can solve each smalldme
With Bx="35500 A=z, _ andPy="—53"=. Starting system equation as done in deterministic PSS solvers [1]-[4

from 82‘52) =0, one getsly, = 826%“ by iterating (18). The total cost isD(Kn?) if a direct matrix solver is used. For

Similar to the deterministic cases [1]-[4], the Jacobian large-scale circuits, one can use matrix-free iterativehme
a dense matrix due to the matrix chain operations. Thergfooels [3] at the cost of)(Kn®) where 3 is normally 1.5~2.
solving the linear system in (14) cost(n*K?) if a direct This intrusive decoupled solver could be easily paraksliz
matrix solver is applied, similar to the cost in [12]. potentially leading to further speedup.
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Fig. 1. Schematic of the LNA.
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Fig. 2. Periodic steady-state waveforms for the LNA. §a)b): mean and
s.t.d of Vout; (€) & (d): mean and s.t.d of (Vgq). . )
B. BJT Colpitts Oscillator
The BJT Colpitts oscillator in Fig. 4 is a typical example
V. NUMERICAL RESULTS of autonomous circuits. The design parameters of this itircu
Our algorithm was implemented in a Matlab circuit simulaare R1=2.2 k2, Ro=R3=10 k2, C2=100 pF, C3=0.1uF, and
tor. All experiments were run on a workstation with 3.3GHzv=0.992 for the BJT. The oscillation frequency is mainly de-

4-GB RAM. termined byL,, C; andCs. We assume that; =150+N (0, 9)
nH andC,=100 + ¢/(—10, 10) pF are random variables with
A. Low-Noise Amplifier (LNA) Gaussian and uniform distributions, respectively.

The LNA in Fig. 1 is used as an example of forced circuits, Setting the gPC order 18, the resuits from our proposed
The ratios of the transistors ai&; /L, =Ws/Lo=500/0.35 solver and the SG-based solver [12] are indistinguishable.

andW3/L3=50/0.35. The design parameters aféj=1.5 V, ?r? 5 sho;{vs slomlt(a real'zﬁt'oni?“ ot)ltaénsd by our sgl\;e.rt. .
Ry=50, Ry=2 kQ, Cy=10 pF, C;,=0.5 pF, L, =20 nH and e variation looks small on the scaled time axis, but it is

L3=7 nH. We introduce four random parameters. Temperatu?@niﬁcam on the original time axis dye {0 the uncertaibé
T=300 + N(0,1600) K is a Gaussian variable influencingthe oscillation frequency. The CPU time of our decoupled ST-

transistor threshold voltage;=1 + #/(—0.1,0.1) k2 and :)hased SOIIVSrS'QT'% sec(;)ndsl, Wh'Chd'?hX asng5bx fa;ter lover 12
Ly=1.4 + 1(0.6,0.6) nH have uniform distributions; the "¢ COUP'€ -based solver and the SG-based solver [12],

: respectively. Finally, our solver is compared with staxddar

threshold voltage under zeiid,s is Vr=0.4238 0,0.01 . .
V. The input is?/- —0 lsin(ﬁ’:x mgt) V. +N(, ) MC. The computed mean and standard deviation (both in
‘In our ST-based PSS solver an ofdegPC expansion Nanosecond) of the oscillation period are shown in Table I.

(with 35 basis functions) are used to represent the sta-Eg achieve the _S|m|lar level of accuracy, MC must 4seo
variables. The computed gPC coefficients are then useds%nples, which IS qbo@ﬂ?x S thgn using our ST-based
extract statistical information at a negligible cost. Theams simulator. The d|str|but|ons of the o;cﬂlqnon periodriidoth
and standard deviations (s.t.d) ®f,; and I(Vaq) (current methods are consistent, as shown in Fig. 6.

from Vyq) are plotted in Fig. 2. Using standard M&)00 o

samples are required to achieve the similar level of acgurae- Accuracy and Efficiency

(<1% relative errors for the mean and standard deviation). We increased the gPC order from to 6, and treated
Fig. 3 plots the probability density functions (PDF) of tléal the results from theth-order gPC expansion as the “exact”
harmonic distortion (THD) and power consumption from ousolutions. Fig. 7 plots the relative errorsyfind the speedup
proposed PSS solver and MC, respectively. The PDFs frdacttors caused by decoupling. The errors rapidly reduce to
both methods are graphically indistinguishable. The totst below10~4, and the convergence slows down when the errors
of our decoupled ST solver &4 seconds, which ig2 x faster approachi0~>, i.e., the threshold for the Newton’s iterations
over the coupled ST solver] x faster over the SG-based PSSvhich dominates the accuracy. In Fig. 7(b), the speedupecurv
solver, and220x faster over MC. for the LNA has the same slope d§2 on a logarithmic
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TABLE | 1
SIMULATION RESULTS OF THE OSCILLATION PERIOD BY OUR PROPOSED 10°
METHOD AND MONTE CARLO. ¢
Monte Carlo Proposed 10° 10
# samples 500 2000 5000 10
mean value (ns)| 17.194 | 17.203 | 17.205 17.205 . )
s.t.d value (ns) | 2.995 3.018 3.026 3.028 105 , 105 T
CPU time (5) 252 1013 2486 7.9 10 0 ok 10 10 10 0« 1 10’

Fig. 7. (a) Relative error of our solver. (b) Speedup factaused by
. . . decoupling.
scale, implying arO (K ?) speedup caused by decoupling. The
speedup for the Colpitts oscillator is however not signiftca
since device evaluations dominate the total cost for thiallsm [7] |. vytyaz, D. C. Lee, P. K. Hanumolu, U.-K. Moon, and K. Mayan,

circuit. Genera”y, theO(K2) speedup is more obvious for “Sensitivity analysis for oscillatorsJEEE Trans. Computer-Aided De-
Iarge-scale circuits sign Integr. Circuits Systvol. 27, no. 9, pp. 1521-1534, Sept. 2008.
' [8] N. Wiener, “The homogeneous chao#mer. J. Math. vol. 60, no. 4,
pp. 897936, Oct 1938.
VI. CONCLUSION [9] D. Xiu and G. E. Karniadakis, “The Wiener-Askey polynomidlaos for
. i . - stochastic differential equations3IAM J. Sci. Computvol. 24, no. 2,
This paper has proposed an intrusive periodic steady-state pp. 619-644, Feb 2002.
simulator for the uncertainty quantification of analog/RF c [10] O. Le Maitre and O. KnioSpectral methods for uncertainty quantifi-

cuits. The main advantage of our proposed method is that ggti%n: with application to computational fluid dynamics Springer,
: 1

the Jacobian can be decoupled to accelerate numerical cemy J. Tao, X. Zeng, W. Cai, Y. Su, D. Zhou, and C. Chiang, t®@stic
putations. Numerical results show that our approach obtain sparse-grid collocation algorithm (SSCA) for periodicasty-state anal-

; : ; : ; ysis of nonlinear system with process variations,’Proc. Asia South
results consistent with Monte Carlo simulation, wigh-3 Pacific Design Auto. Conf2007. pp. 474-479.

orders of magnitude speedup. Our method is significantlyp] r. Pulch, “Polynomial chaos expansions for analysingiliasors with
faster over existing SG-based PSS solver, and the speeduF uncertainties,” inProc. MATHMOD 2009.

factor is expected to be more significant as the circuit siz Z Zhang, T. A. El-Moselny, I. M. Elfadel, and L. Daniet5tochastic
testing method for transistor-level uncertainty quantifaa based on

and the number of basis functions increase. generalized polynomial chaos|EEE Trans. Computer-Aided Design
Integr. Circuits Systvol. 32, no. 10, Oct 2013.
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