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Abstract

This thesis describes the first use of active control to extend the stable operating range
of a multi-stage axial compressor in the presence of circumferential inlet total pressure
distortion. Three control strategies at different levels of sophistication were examined:

(1) Constant gain control laws, experimentally optimized to obtain the lowest stalling
flow coefficients for circumferentially uniform flow, were found to be effective in the presence
of distortion. Taking into account the coupling between harmonics (which occurs as a result
of distortion) further increased the stable operating range. The range extension was 3% for a
0.8 dynamic head distortion. (ii) A new constant gain control law with a single spatial phase
shift was also examined. This stabilized the compression system at lower flow coefficients
for distorted flow, increasing the operating range by 3.7%. (iii) A theoretical model of
the unsteady flow response of an axial compressor to inlet distortion, developed by Hynes
and Greitzer, was used to design linear quadratic Gaussian controllers. These model based
controllers achieved range extensions of 1.5% and 1.1% for inlet circumferential distortions
of 0.8 and 1.9 dynamic head respectively.

System identification procedures were used to examine the dynamic behavior of the
disturbance modes in the compressor. The dynamics of small velocity perturbations, mea-
sured here for the first time in nonuniform flow, were accurately predicted by the model,
extended to include unsteady viscous effects. Experimentally measured multi-input multi-
output transfer functions confirmed the strong coupling between harmonics of small velocity
perturbations, also as predicted by the model.
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Notation

Overbars and Tildes

Overbars denote averaged quantities, spatial or temporal. Tildes are used to indicate
the (real or complex) spatial Fourier coefficients of the corresponding variable; see Equa-
tion (3.1) p.49.

Subscripts

1  upstream

4  downstream

a AGV

¢  compressor

cn nth cosine Fourier coefficicient, n = 1,2, ...
i inlet, isentropic, imaginary

m axial measurement location

n  harmonic number

r  rotor, real

s  stator, sound

s  steady

sn  nth sine Fourier coefficicient, n = 1,2, ...
t  total or throttle

w  wheel

17



Superscripts

(-)* complex conjugate

()T  transpose

()" complex conjugate transpose

1 far upstream (see Figure 3.1 p.51 for station numbers)
AGV inlet

AGYV exit = compressor inlet

compressor exit

plenum

S G A W N

throttle exit

Vector notation

Vectors will be written as a column and will be denoted by bold lowercase characters. The

n x 1 vector is thus written as

I
T=| : (0.1)

=[xy, ..., a:,,]T. (0.2)

Matrix notation

Uppercase letters will be used to denote matrices, the corresponding lowercase letters with
subscripts 7j will be used to denote the (i, j) entry, so the m x n matrix is written as

an Qin
A= : : . (0.3)
Gm] Qmn
Columns of the matrix will be denoted by the vectors a,, ..., a,. The transpose of the

matrix will be written as AT and the complex conjugate (or Hermitian) transpose as AH.
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Diagonal and block-diagonal matrices will be indicated by
A= diag[Al,Ag, ey An] (04)

where A; is the ith element on the diagonal.
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Symbols

Following is a list of symbols used in the main text. Symbols that are local to the appendices
are not listed.

A,, Equation (3.25) p.55
As,  Equation (3.33) p.57
Asy Equation (3.39) p.57
Ags Equation (3.44) p.58
b chord
bs Equation (3.37) p.57
Dy Fourier spatial derivative matrix, Equation (3.6) p.50
E*™ Equation (3.45) p.59
fer fv  AGV flow coefficient relations, Equation (3.10) p.54
Fy,F, Equations (3.19) and (3.20) p.55
F(-) Fourier convolution matrix, Equation (3.3) p.49 and Appendix A
G(iw) compression system transfer function
i V-1
k controller gain for distributed feedback controller
kn,knn controller gain for nth harmonic
ki throttle constant
K(iw) controller transfer function
l1,14 upstream and downstream duct lengths p.51
l;,ls rotor and stator total pressure losses p.63
l, effective compressor length, Equation (3.36) p.57

p pressure

Table continues on next page.
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Pg: Py

P, P,

ﬂn ? ﬂﬂﬂ

AGYV pressure relations, Equation (3.12) p.54

Equations (3.21) and (3.22) p.55

reaction

mean rotor radius

time

velocity

eigenvectors of A corresponding to eigenvalues Aj, Ao, ....
matrix of eigenvectors, Equation (4.4)

nondimensional axial location

nondimensional upstream sensor location (m=measure)

state vector, Equation (3.42) p.58 and Equation (3.68) p.65

spatial phase shift of distributed controller

spatial phase shift for nth harmonic

perturbation

AGY deflection

eigenvalues of A corresponding to eigenvectors v, va,....
matrix of eigenvalues, Equation (4.5)

fluid inertia, see p.17 for meaning of subscripts

flow coefficient

compressor inlet-total to exit-static pressure rise

density of air

angle around annulus

nondimensionalized time

constant, Equation (3.59) p.63

time constants for loss dynamics, Equations (3.61) and (3.62) p.63
nondimensionalized frequency

cross-over frequency

rotor frequency
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Abbreviations

AGV
DF
DFT
FIR
HF
HFC
IMS
CIMS
LQG
MIMO
MIT
PSD
SISO
SM
SNR
STD
XHG
XHG-Euler

actuator guide vanes

distributed feedback

discrete Fourier transform

finite impulse response

harmonic feedback

harmonic feedback with cross coupling
integrated mean slope

corrected integrated mean slope
linear quadratic Gaussian

multi-input multi-output
Massachusetts Institute of Technology
power density spectrum

single-input single-output

surge margin

signal to noise ratio

standard deviation

extended Hynes-Greitzer model

XHG with nonlinear description for upstream flow field
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1 Introduction

Compression systems are subject to instabilities that limit the range over which safe oper-
ation is possible. As the mass flow through the compressor is decreased, the peak pressure
rise across the compressor increases until a point is reached where the flow through the
compressor becomes unstable. Loss of stability is undesirable, as the amplitudes of the
unstable oscillations are often very large and can cause damage to the engine. In addition,

the loss of stability is accompanied by a significant loss in pressure rise.

Two types of instabilities are commonly observed in compression systems. The first,
called surge, is a system-type instability that is mainly axisymmetric. Sometimes the surge
oscillations are so severe that flow through the compressor reverses. The second, called
rotating stall, has the form of a stall cell that rotates around the annulus at a fraction
of the rotor speed. Often rotating stall starts out as a small perturbation wave travelling
around the annulus, which grows in amplitude, and finally develops into a large amplitude
limit cycle, called rotating stall. Due to hysteresis the only way to stop this limit cycle
oscillation is to increase the mass flow significantly beyond the point where stall occurred.
Whether the compressor surges or stalls depends on the specific system configuration and is
determined by the ratio of the plenum compliance to duct inertia as shown by Greitzer [17].

A review of axial compressor stall phenomena is given by Greitzer [16].

Because of these aerodynamic instabilities operation near the unstable region must be
avoided. However, this margin of safety forces operation at mass flows that deliver lower

than the maximum peak pressure rise. The surge margin (SM) adopted by Aerospace
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Recommended Practice committee [42] is defined by

SM = (R, — Ro)/Ro (1.1)

where R; is the surge pressure ratio and Rp is the operating pressure ratio. A typical value
of SM is in the range 10 — 20%, and 30 — 50% of this number is accounted for by nonuniform

inlet conditions [50] which we discuss next.

If the low through the compressor is nonuniform the pressure rise across the compressor
decreases. In addition, the compression system goes unstable at higher mass flows. This

nonuniform flow is also called distortion.

There are several causes of distortion. During takeoff the flow enters the inlet at an
angle, resulting in nonuniform total pressure around the annulus. If an aircraft is flying
at high angles-of-attack the flow can separate from the inlet lip and this, too, will create
nonuniform flow through the compressor. Nonuniform temperature profiles can exist in the
inlet ducts in very short takeoff and landing aircraft when hot exhaust gases are ingested.

Whatever the cause, distortion adversely affects compressor operation.

The distorted flow can be circumferentially or radially nonuniform. Reid [41] found that
circumferentially nonuniform flow is more severe so we will concentrate on it. Reid found
that if the angular width of low inlet total pressure is increased from zero there is an initial
steep drop in the exit static pressure of the compressor until an angle is reached beyond
which there is little change in the exit static pressure. This angle is called the critical sector
angle and is shown in the graph at the top of Figure 1.1, taken from Reid [41]. Reid also
found that if the distorted region is split into several smaller regions distributed around
the annulus but the cumulative width is kept constant, the biggest loss in pressure rise
occurs when there is only one continuous distorted region. This is shown in the graph at

the bottom of Figure 1.1.
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Figure 1.1: Effect of distortion on exit static pressure. Taken from Reid [41].

The loss in pressure rise can be explained by a very simple model. Assume that
two halves of the compressor annulus are operating at two different pressures as shown in
Figure 1.2. In this figure we see that the mean peak total to static pressure rise yrs is
lower than that of the compressor operating at the same mean mass flow. This model,
proposed by Mazzawy [32], is often called the parallel compressor model. Although the
parallel compressor model explains the loss in peak pressure rise it does not capture all the
dynamics in a compression system. Hynes and Greitzer [22] realized that to take distortion

into account the nonuniformity must enter the dynamics in a nonlinear way and developed a
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Figure 1.2: Parallel Compressor Model. Taken from [29).

model to account for distorted flow. Studies by Hynes and Greitzer [22] found that the model
correctly predicts the trends that were observed by Reid [41]. Hynes and Greitzer [22] and
Chue et al. [5] also found that the mass flow at which the circumferentially integrated mean
slope (IMS) of the compressor characteristic is equal to zero approximately corresponds to
the point where the compression system looses stability. The model by Hynes and Greitzer
is an extension to the distorted flow case of an earlier model by Moore and Greitzer [34).
A review of different models for the analysis of compression system instabilities is given by

Longley [28].

The model by Moore and Greitzer [34] predicts that a small amplitude perturbation
should propagate around the annulus prior to stall. McDougall [33] observed these waves in
2 low speed single-stage axial compressor, and Garnier [12] identified them in both a single-
and a three-stage compressor. Experiments by Day [7] showed that some compressors do
not exhibit travelling waves prior to stall; instead a short length scale perturbation rotated
around the annulus at approximately 70% of the rotor speed. The reason for this behavior
is not known and is currently being researched. Day and Freeman [8] and Tryfonidis et
al. [46] observed that travelling waves are also present in high speed compressor prior to

stall. These are encouraging results as it allows experirents to be conducted on low speed

28



compressors.

called the corrected integrated mean slope (CIMS) criterion, and showed that the ratio of
the plenum compliance to duct inertia derived by Greitzer (17} determines the applicability
of the CIMS. Longley also found that the pressure rise predicted by the model js lower than

the experimentally observed pressure rise, and attributed the discrepancy to the large inter-

concentrate here only on the control of rotating stal]. Working on a low speed multi-stage
compressor Day (6] showed that control scheduling could be used to increase the stable

oOperating range. By sensing velocity perturbations with an array of hot-wires, jets were
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turned on to blow in the tip region for a predetermined time once a stall cell was detected,

lowering the stall point by 6%.

The first active control of rotating stall was done by Paduano [37) and Paduano et
al. [38] on a low speed single stage axial compressor. By taking into account that different
modes of a compression system go unstable independently and one after the other as mass
How decreases, controllers were found, one at a time, to stabilize the modes as they went
unstable. With this approach the stable operating range was increased by 21%. The same
approach was used by Haynes [20] and Haynes et al. [21] on a low-speed three-stage axial
compressor and increased the stable operating range by 7.8%. In addition, Haynes [21]
showed that unsteady viscous effects could be modelled with a simple first order lag model
and identified the associated time constant from experimental data. In both cases flow
perturbations were sensed with a set of hot-wires and movable inlet guide vanes were used

for actuation.

By using aeromechanical feedback Gysling [19] showed that is was possible to lower the
stalling flow coefficient of a single stage low speed axial compressor by 10%. Gysling also
observed acoustic modes in the compression system and showed that these modes can lead

to instability.

All the control experiments discussed above were done for circumferentially uniform
flow. The work presented here extends active control of rotating stall for the first time to
the nonuniform flow case. In addition, the dynamics of small perturbations in the presence
of large distortions have never been measured before and the predictive capabilities of the
Hynes-Greitzer model have not been established. Thus, the objective of this research is to
show that active control can be used to increase the stable operating range in the presence
of large distortions. In addition, we would like to determine the predictive capability of the

model and analyze the effects of distortion on the stability of an experimental compression
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system. We would like to give answers to the following research questions. Docs the
linearized model predict the dynamics of smali perturbations? Is the model accurate enough
for the design of modern controllers? Are controllers designed for circumferentially uniform
flow effective in the presence of distortion? If not, can we find other controllers that will

stabilize the system?

The thesis is structured as follows. In Chapter 2 we discuss the MIT three-stage com-
pressor and experimental procedures. The modelling assumptions are stated in Chapter 3,
and the basic Hynes-Greitzer model is presented in a state-space description. The model
is then extended to include the effects of unsteady viscous effects. Open loop experimental
results are presented in Chapter 4. Active control of rotating stall is discussed in Chapter 5.

A summary and suggestions for future research are given in Chapter 6.
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2 Experimental Compression System

All the experiments were conducted on a low speed three-stage compressor. in this chap-
ter we describe the compressor, distortion generator, instrumentation, and experimental

procedures.

2.1 The MIT Three-Stage Compressor

The experiments were conducted on a low-speed three-stage research compressor originally
designed by Pratt and Whitney. The compressor has been used in the past for various
studies by Garnier who studied the behavior of small perturbations during stall inception,
and Haynes, who modified the compressor for active control by including actuator guide
vanes (AGVs) directly upstream of the compressor. Haynes gives a detailed description of

the design of the AGVs and instrumentation.

To study the effects of inlet total pressure distortion the rig was modified by increasing
the inlet duct length so that a distortion generating screen could be installed far enough
upstream of the compressor to decouple the two components. Flow field perturbations
induced by the compressor decay exponentially as e~"|*l, The upstream ducts were thus
lengthened to 2.5 mean radii to decrease the interaction between the distortion screen and
compressor. This suggestion is due to Longley [27]. Separating the screen and compressor
by a large distance is not a limitation of the theory but did simplify the experimental
procedure because the stagnation pressure distortion, which is the input to the flow field

computation, does not depend on compressor behavior. Section 2.2.

To facilitate steady state measurements around the annulus the distortion screen was
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Table 2.1: MIT Three-Stage Axial Compressor Design Parameters

Tip Diameter (mm.) 610.0
Hub-to-Tip Ratio 0.88
Design Average Reaction 0.75
Design Flow Coefficient 0.59

Pressure Rise Coefficient (design)  2.03
Efficiency (design) 84.3%

Stalling Flow Coefficient 0.460

mounted on a rotating ring driven by a stepper motor. This allows generation of measure-
ments around the annulus at any number of points using fixed instrumentation by rotating
the screen to the desired location. The maximum speed at which the screen can be ro-
tated is 20 rpm. A mounting arrangement was also provided to include a second stationary
screen directly upstream of the first screen (see Figure 2.2). With the rotating and sta-
tionary screen it is possible to create distortions of varying length. A schematic layout of
the complete system is shown in Figure 2.1, and Figure 2.2 shows a part of the upstream
duct and distortion generator. Tables 2.1 and 2.2 list the compressor design and geometric

parameters. See also Table 3.2 on page 66.
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2.2 Distortion Generator

Two factors determined the choice of the distortion screens used in the experiments. First,
the magnitude of the distortion had to be large enough to introduce strong coupling between
different spatial harmonics of perturbations, so that the dynamic behavior with distortion
differed significantly from the undisiorted case. The basic Hynes-Greitzer model (discussed
in Section 3.3) was used to determine the transfer functions between the different harmonics,
and distortion magnitudes were chosen so that the magnitudes of the coupling transfer
functions between the first and second harmonics were the same order as that of the first
harmonic transfer function. (In the absence of distortion the coupling between the first and

second harmonic is zero.)

Modal analysis of the linearized dynamics showed that a distortion extent (the part of
the annulus that is blocked by the screen, see Figure 2.3) of 120 - 240° has strong first,
second and third harmonics, satisfying the coupling requirement. It will be shown that an
extent of approximately 120° is a worst case distortion (defined in Section 3.7). Examples of
the harmonic content is given in Section 3.6. Distortion magnitude and extent are defined

in Figure 2.3.

Second, the distortion should be large enough to give measurable changes in the stalling
flow coefficient and peak pressure rise. The measured change in stalling flow coefficient
turned out to be small for distortions up to about one dynamic head, (defined below) even
though there is strong coupling present between the harmonics. It was thus decided to carry
out experiments at two different distortion magnitudes; one of roughly 0.8 dynamic head,

that is,

£

de

[l
®
1)

i
e
o

2.1)
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Figure 2.3: Distortion magnitude and extent.

where & is the mean axial velocity, Ap; is the drop in total pressure across the screen, and
p the density of air. The second distortion screen had a magnitude of 1.9 dynamic head. In
both cases the distortion extent was 120°. Square-shaped distortions were used as this is a
standard used by engine manufacturers. The screens were designed using the formulations

given by Bruce [3] and Koo and James [24].

In the following pressures will be nondimensionalized by pu? where u,, is the mean
wheel speed, see Section 3.3.1. The distortion magnitude defined above has been nondi-
mensionalized by the inlet dynamic head. The relation between distortion magnitudes is
2d
¢

where d = ’%‘Pzﬁ is the distortion magnitude in dynamic head based on wheel speed, and
w

de, = (2.2)

¢ = cx/uy is the flow coefficient.
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A parameter that is often used to assess the severity of inlet distortion is the DC(60)

descriptor (see Williams [49]) defined by

DC(60) = Ptl3e0° —lpflwom 60° (2.3)
Epcx

In an idealized case where the static pressure is uniforin, DC(60)=1 corresponds to zero-
velocity flow in a2 60° sector of the annulus. This is considered very poor inlet aero-
dynamics {49]. Experiments by Aulehla and Schmitz [2] on the Tornado showed that

0.15 < DC(60) < 0.55 as the angle of attack is varied over the range 3° to 35° degrees.

At the respective stalling flow coefficients, the 0.8 and 1.9 dynamic head distortions
correspond to DC(60)=0.53 and DC(60)=1.31 respectively. Thus, the intensities of the two

distortions used in the experiments represent typical and very poor inlet conditions.

2.3 Instrumentation

The layout of most of the instrumentation is shown in Figure 2.4. Steady state static
pressures were measured with 8 upstream and 8 downstream wall taps on the outer casing
of the compressor. Total-static Pitot probes were also mounted at 8 equally spaced locations
around the annulus upstream of the AGVs, at midspan these were used to determine the
compressor pressure rise and calibrate the hot-wires. The total-static Pitot probes were
mounted 5° degrees away circumferentially from 8 of the hot-wires to ensure that they did

not interfere with the flow at the hot-wire tips.
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Two total-static Pitot probes were mounted downstream of the distortion screen (not
visible in Figure 2.4). All the pressure probes were connected to a 48-channel Scanivalve

that was controlled by a VAXstation.

Mass flow was measured by an orifice plate far downstream of the throttle (see Fig-
ure 2.1). The pressure drop across the orifice plate was measured by an MKS Baratron. The

standard deviation of the flow coefficient measurements reported here is less than 0.08%.

Rotor rotation speed was measured with a magnetic pick-up and 60 tooth gear mounted

on the drive shaft.

Flow velocities were measured at midspan upstream of the AGVs with 16 equally spaced
Dantec 55-P11 hot-wires connected to Dantec 56C17 bridges and CTA 56CO01 units. The
hot-wires were calibrated before each experiment over the range 6 m/s to 60 m/s (equivalent
flow coefficient: 0.08 — 0.8); the calibration procedure is discussed in Section 2.4.1. The hot-
wire signals were filtered with fourth order Bessel filters before they were sampled at 500 Hz.
The filter cut-off frequency was set to 200 Hz. This cut-off frequency was low enough to give
approximately 80 dB attenuation at the rotor blade passing frequency. Analogic HS DAS-16
16-bit A/D converters with AMUX-64-X 64 channel multiplexer were used to discretize the

hot-wire signals. The resolution of the A/D was better than 0.01 m/s.

The 12 AGV servo motors were controlled by DMC 430 servo motion controllers. These
controllers ran at 2 kHz sampling rate asynchronously from the main control loop. AGV

deflections were measured by 4096 pulse per revolution incremental shaft encoders.
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2.4 Experimental Procedures

In this section we outline the hot-wire calibration and measurement of the stalling flow

coefficient procedures.

2.4.1 Hot-wire Calibration

A new hot-wire calibration procedure was developed to deal with the circumferentially
nonuniform flow around the annulus. Eight total-static Pitot probes were used to measure
the velocities around the annulus. There are large gradients in the steady flow profile at
the edges of the distorted region and it was necessary to include the 5° separation between

the hot-wires and total-static probes in the calibration procedure.

The calibration procedure was basically to measure the flow velocity with the total-
static probes and then rotate the screen so that the measured velocities are aligned with
one set of eight hot-wires. The actual procedure used is more involved and is explained
with the aid of Figure 2.5 and the steps below. In the figure we assume the first hot-wire is
at 0° and the first total-static probe at 5°. Recall that the hot-wires are separated by 22.5°

so the angle between a total-static probe and the next hot-wire is 17.5°.

1. Select a mass flow and execute the following four steps.

(a) Measure the velocities with the 8 total-static probes. The measured velocities

are indicated by circles in the graph at the top of Figure 2.5.

(b) Rotate the screen through 5° and measure all the hot-wire voltages. The voltages
of the hot-wires at 0,45°,... correspond to the velocities obtained from the

previous step. This is shown in the second graph from the top in the figure.
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Figure 2.5: Hot-wire calibration. The circles and stars are velocities measured
by total-static probes during various calibration steps — see the discussion. The
grid lines are aligned with the hot-wires.



(c) Rotate the screen through 17.5° and measure the velocities with the total-static
probes. These velocities correspond to the hot-wire voltages at 22.5,67.5°,... in
the previous step. These velocities are indicated by stars in the third graph of

the figure.

(d) Rotate the screen through 5° and measure all the hot-wire voltages. The voltages
of the hot-wires at 0,45°,... correspond to the velocities obtained from the
previous step — these velocities are indicated by stars in the bottom graph in
the figure. In addition, the velocities measured in step 1(a) are now aligned with
the hot-wires at 22.5,67.5°,... and is indicated by the circles in the graph at the

bottom of the figure.

Steps 1(a)-1(d) give two calibration points for each hot-wire.

. Steps 1(a)-1(d) are repeated three more times at 90° intervals, giving a total of eight
calibration points for each hot-wire. This step uses the fact that the flow is nonuniform
around the annulus and, instead of changing the mass flow, we move to a different

point on the profile to get a different velocity.

. Steps 1 and 2 above are repeated at two more flow coefficients to give a total of
24 velocities for each hot-wire. The three different flow coefficients are chosen so
that the absolute minimum to absolute maximum velocity ranges from approximately
6 m/s to 60 m/s. This range covered all the velocities that were encountered during
experiments. King’s law [14] was used to determine a relation between the hot-wire

voltages and corresponding velocities.
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2.4.2 Stalling Flow Coefficient Measurement

It was found that the stall point was sensitive to the rate at which the throttle was closed.
It was thus necessary to develop a procedure by which the stall point could be determined

in a consistent way.

With a rough estimate of the stalling flow coefficient available, the throttle was closed
slowly until the mean flow was about 3% above the stall point. From this point on the throt-
tle was closed at the minimum possible rate until the expected stall point was reached —
this typically took about two minutes. The throttle was then stopped. The system had to
remain stable for at least two minutes at this flow coefficient before it was accepted as the
possible minimum point. If the compressor was still stable after two minutes, the throttle
was again closed at minimum rate until the flow coefficient was reduced by approximately
0.2%. Again the system had to remain stable for at least two minutes at this flow coefficient.
This last step was repeated until a stall point was reached. After a stall the throttle was
opened until the compressor returned to unstalled operation and then the procedure was
repeated from the beginning. If the same flow coefficient was reached three times it was
accepted as the stall point for the particular distortion/controller configuration. In most
cases experiments were repeated on different days and the repeatability of the stalling flow

coefficients was better than 0.2%.
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3 Compression System Model

In this chapter we develop a complete model for a compressor operating in the presence of an
inlet circumferential total pressure distortion. The goal is to obtain a linearized state space
description of the behavior of small perturbations about a circumferentially nonuniform
steady flow. We start by stating the ideas that underlie the model. Most variables are
periodic and it is useful to express them as Fourier series. Manipulating Fourier series
coefficients is convenient if we vectorize the coefficients; the mathematical tools for doing
so are given in Section 3.2. Derivation of the linearized dynamics is done in two steps.
In the first we determine a steady operating point (mean mass flow or throttle setting)
by solving one or more sets of nonlinear partial differential equations. We then linearize
the nonlinear partial differential equations about the operating point. These processes are
described, as is the extension of the basic analysis to include a simpie model of unsteady
blade row response. The model is then used to compare uniform and nonuniform flow mode

shapes, and explain the control theoretic difference betveen uniform and distorted flow.

3.1 Assumptions

In this section we summarize the relevant modelling assumptions. Detailed discussion is

given by Haynes [20].

The flow is incompressible. In the experiment mean blade Mach number was 0.2 and

the modal wave Mach number 0.1.

The flow is two dimensional so that radially averaged description is used. Haynes

showed that this was a good approximation for high hub-to-tip ratio compressors. The
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hub-to-tip ratio of the compressor used is 0.88.

Viscous effects are negligible outside the blade rows. This assumption is valid if inertial
effects are much larger than viscous effects. In the experiment the Reynolds number for the

nth harmonic was on the order of 6 - 10° /n so that this assumption is justified.

The compressor can be modelled as a semi-actuator disk. The compressor is the most
complex component in the system. This assumption allows us to describe the pressure
rise across the compressor in a simple way without describing the detail of the flow in the
individual blade rows. The details of the assumption will be discussed when we present

expressions for the pressure rise across the compressor.

It is important to note that two assumptions used in previous models for the control
of rotating stall have not been included. The first is the assumption that the steady flow is
circumferentially uniform. We are specifically interested here in the behavior of the com-
pressor in the presence of circumferentially nonuniform steady flow. The second assumption
that has been dropped is the unimportance of overall system (surge) dynamics. When the
steady flow is circumferentially uniform and the velocity perturbatious are small there is
no coupling between the surge and rotating stall modes so that the surge dynamics can
be ignored. When the steady flow is circumferentially nonuniform, however, strong cou-
piing can exist between the surge-like and rotating stall modes. It is necessary to include a

description of the overall compression system as well.
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3.2 Spatial Fourier Series

Most variables in the model will be functions of 8 and it is convenient to express them as
Fourier series, that is, any function f(,7) will be written as
£6,7) = fo(r) + Y (fen(7) cos(nb) + fon(7) sin(n6)). (3.1)
n>0
The function ﬁ,(‘r) will be referred to as the zeroth harmonic and will always be included
in the expansion. Harmonics one, two, ... will be referred to as higher harmonics. Note

that we allow for time varying Fourier coefficients.

The development of the model is simplified considerably if we use vectors to represent

Fourier series coefficients. To do so, we stack the Fourier coefficients in a vector f as follows

f= [ﬁh .f::hf:h }::27 f:z, ;ﬁ:m f:n]T' (32)

Multiplication of Fourier series with known coefficients by Fourier series with unknown
coefficients occurs frequently. Let g(@) be a known Fourier series; we would like to write
the coefficient vector p of the product p(f) = g(0)f(0) in terms of the coefficient vector
f. Multiplication of two functions in the spatial domain corresponds to convolution in
the Fourier domain, thus the coefficients of the product can be computed by a matrix
multiplication. Let F(g) be the Fourier convolution matrix corresponding to g(6), then we

can write
p(0) =g(8)f(6) +—  P=F(9)f. (3.3)

The construction of F(g) follows from standard trigonometric identities — the detail is
presented in Appendix A. We will assume that the dimensions of the Fourier convolution
matrices have been selected appropriately so that all multiplications and additions are well

defined in the equations that follow.
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Derivatives with respect to 6 can also be written as a matrix multiplication. With f(6)

defined as before, let

_9
90 =2 (3.4
=0+ Y (nfon(7) c08(nf) — nfn(r)sin(nf)). (3.5)
n>0
Vectorizing this we get
d=Dof (3.6)
where
0 1 0 2
Dy = diag |0, , R (3.7)
-1 0 -2 0

Equations (3.3) and (3.6) allow us to vectorize all the expressions in the model.

3.3 Model With Quasi-Steady Viscous Flow Effects

We will study the compression system shown schematically in Figure 3.1. The system con-
sists of a distortion screen, long upstream duct, actuator guide vanes (AGVs), a compressor,
downstream duct, plenum, and throttle. The experimental compressor has a row of inlet
guide vanes directly upstream of the AGVs (see Figure 2.4) that is not shown in this figure
but will be accounted for in the modelling. Also shown in the figure is the axis system that

will be used. The origin of the axial variable is taken at the face of the compressor.

3.3.1 Introduction

The following parameters will be used to nondimensionalize the various quantities.
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Figure 3.1: Compression System.

f = mean rotor radius
uy = mean wheel speed
pu, = dynamic head based on wheel speed,

p = density of air under operating conditions.

The following nondimensional independent variables are used.

0 = angle around annulus, positive in direction of rotor rotation.
T = nondimensional time = (time)u, /7
z = nondimensional axial position, origin is at compressor face (see Figure 3.1)
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The state of the system is described in terms of the axial and circumferential flow
velocities, and total and static pressure. The model is presented in nondimensional form
only and, to simplify notation, the nondimensionalization will not be shown explicitly, e.g.,

we will write p instead of p/(pu2). The main variables are

ps(0,7,7) = (static pressure - pasmosphere)/(P3)
pu(0,7,z) = (total pressure - pamosphere)/(P3)
¢(0,7,z) = flow coefficient = (axial velocity)/uy
v(8,7) = AGYV deflection angle; we assume a continuum of blades.

The dependence on the independent variables will often be omitted.

The semi-actuator disk model uses the geometry of the compressor and the axisym-

metric compressor characteristic. The parameters are

¥(#,7) = nondimensional steady state axisymmetric total-to-

static pressure rise across the compressor.

¥i(¢) = nondimensional isentropic total-to-static pressure rise
which follows from the torque work done on the air.
Br = rotor fluid inertia = Zj wg’!y'r—j where by; is the nondi-

mensional rotor blade chord at midspan for the jth

stage, and v,; is the corresponding rotor stagger angle.
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is = same as g, but for stators.

ui = same as pu, but for inlet guide vanes. The inlet guide

vanes are not shown in Figure 3.1, see Figure 2.4 in-

stead.
He = W+ ps + pi = compressor fluid inertia.
pa = AGYV fluid inertia = 56'2“7; where s, i8 the circumfer-

ential mean AGV deflection.

T;m, = nondimensional upstream axial location where all ve-

locity and pressures are measured. Note that z,, < 0.

Steady state values will be indicated by a San Serif subscript s to distinguish them
from the Roman subscript s that denotes stators. Station numbers as defined in Figure 3.1
will be denoted by parenthesized superscripts. All variables will be written as the sum of a
steady state value plus a time varying perturbation; for example, the flow at the compressor

face is

¢, 7) = ¢7(6) + 64(6, 7) (3.8)

where 4 indicates perturbation.

3.3.2 Pressure Balances

To derive the equations that express the flow in the compression system, pressure balances
will be written for each component and then combined in an overall pressure balance for

the complete system.
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AGV pressure balance

The flow coefficient and pressure balance relations for the AGV operating under nonuniform

steady flow are derived in Appendix B and are given by

867 = (14 4 T2)56° + pagh o 69
a Fobd™ + frby (3.10)
50— 5") = —al1 + 22 Dy _ 2y Bgy (3.11)
= P06 + p364. (3.12)
The expressions
f'—1+mg? (3.13)
= ua¢550- (3.14)

defined in Equation (3.10) are independent of time and depend on the steady state AGV

deflection s and flow ¢ respectively so that they are functions of 8. The same holds true

for
py = —mall + 220 (3.15)
2 g
P =S (3.16)

defined in Equation (3.12). Vectorizing Equations (3.10) and (3.12) using Equations (3.3)
and (3.6) we get

~(2)

567 = Fy09" + F,65 (3.17)

- - <(3) 2
6@ —B”) = Pid  + Py, (3.18)



where

Fy=F(1+ paa"’) (3.19)
Fy = F(pa¢s)Ds (3:20)
Py = —paF(1+ 2 ‘:;’; (3.21)
Py = J.‘%_nq_;, ", (3.22)

Upstream flow field

By taking the first integral of the axial momentum equation and nondimensionalizing we

obtain [22]

5 — p) = _%5@” ~ 3" (632 cos(n6) + 54 sin(n)) . (3.23)

n>0

The equation is linear in the coefficients of 6¢® so we can vectorize this by constructing a

matrix

] (3.24)

[ A

AZI = —di'dg [l

111
tl’ 1’17 515’ 51

so that
N 2(2)
§@P —p\") = A0 . (3.25)
We will work in terms of §¢®, the flow through the compressor. Substituting the time
derivative of Equation (3.17) into Equation (3.25) gives

£@3) :
§(PP = BV) = AnFyédp + AnFy67. (3.26)
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Compressor Pressure Balance

The total-to-static pressure rise across the compressor has been developed by Hynes and

Greitzer [22]

3)

P — oY = () - #r%‘ — ped® (3.27)

where 1(¢,v) is the steady inlet-total to exit-static pressure rise in axisymmetric flow, pu,
is the rotor fluid inertia, and g, = p; + ps + p; is the total fluid inertia in the compressor.

Linearizing this equation about the nonuniform steady flow ¢s we get

047 ~50") = [ 5 — g 0 + Gy = s (328)

Recall that %'ﬁ and %'72 are functions of 6. Vectorizing the last equation gives

@ - 7) = PG - ueDa] 637 - et + PGS0, (2.29)

Downstream Ducts

Here we assume that the steady state compressor exit flow through a row of high solidity
stators is axial and that there are no downstream obstructions. Under these conditions the

static pressure is circumferentially uniform and will be the same as the plenum pressure [22]
Py = p{®. (3.30)

Using mass conservation through the compressor and the high solidity exit condition, Hynes

and Greitzer [22] have shown that the downstream static pressure perturbations satisfy

50" — ) = ~ 69 — Y = (63 cos(nf) + 643 sin(n)) . (3.31)
ls
n>0
We vectorize this equation in the same way as Equation (3.23) to get

5P — ") = Auibd (3.32)
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where

1 1111
Ay = —diag [l , L1, 33 5,5...,]. (3.33)

Plenum Dynamics

The nonuniform steady flow introduces coupling between the different harmonics, including
the zeroth harmonic, and it is thus necessary to include pressure perturbations in the plenum
in the description. Assuming that the pressure and density changes in the plenum can be

related isentropically and that the flow through the throttle can be described by
Py —pfP = k 1ds (3.34)

where k; is the throttle constant, we obtain

-1
S = ————(6p® — 6p®) + ——b6¢™ 5.35
W = P ) T (5.35)
where

L=+ 14+ pa+ pc (effective compressor length) (3.36)

#y [Plenum volume
= 33
b 2 \/ Duct area x [; (3.37)

and ug is the speed of sound. Note that we assume 6p{> to be nonzero and thus it acts as
an external forcing function. Only the last term on the right hand side of Equation (3.35)
needs vectorization. All we need to do here is construct a matrix that selects the zeroth
harmonic of §¢/®. The matrix has a single row with the first element equal to one and the
rest of the elements zero. Thus

3B = — = (8" — 69%) + A533"

(3.38)
4021k dso

A.5¢ = [m, 0, 0,.. .]. (339)
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This completes the pressure balances for the compression system.
The overall pressure balance for the perturbations is given by
8 — p”) = (8p" — 6p{) + (dp" — 6p{") + (8P — 6p{”)
+(0pt” — op”) + (6p” — op{"). (3.40)

Substituting from the corresponding cquations and simplifying we get

£(3) ] ~
56 AF(GH ~mDe] A7 Ags 56"
5p” Asg ~1/(4b3hkedso) | | 6p4”
ATIF( )‘ A'-I[AmF +P] .
+| ¢ % &+ | ° T 6y
0 0
A 0 op"
+| ¢ ‘ (3.41)
0 1/(4b%ickedso)| | P
£ ASz + B65 + By + G[6p", 6p®|T (3.42)
where
A& = pel — Ay Fy — PJ, — Asy (3.43)
Aps=[1,0,0,...]T (3.44)

and I is the identity matrix. We will denote the state vector [§¢, 5p™]T by éz.

Note th.t we assumed the total pressure perturbation ép{" is nonzero. We thus have

two external sources, Jp{” and 8p{”, that force the system. These sources, called process
noise in the controi and estimation literature, will be used to study the effect of external

noise on the system.
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When we compare with experiments the velocity measurements 65(:'") are taken up-
stream of the AGVs. We must therefore take the decaying potential field into account; the
nth harmonic decays with e"*™ (z is negative upstream). The state vector is defined in

terms of 6¢'® so we also need the relation between d¢® and §¢® given in Equation (3.17).

Thus
EGEm) = diag[l, e*™, €™, e¥m e%m ] (3.45)
567 = Elam)sp® (3.46)
= [E(:...) F, 0] bz + ECm 65 (3.47)
£ Céz + D55. (3.48)

The zero at the end of the matrix in Equation (3.47) multiplies the plenum pressure per-

turbations, the last state in the state vector éz.

Equation (3.42) contains the derivative of the control signal with respect to time so
that it is not in the usuval state space form. It can be converted to the usual form with the

following transformation. Let
0z = bz — Eé~. (3.49)
Applying this transformation to Equations (3.42) and (3.48)we get

6z = Abz + (B + AE)6% + G[6p.", 6p®|T (3.50)

~(zm)

5¢ ™ = Cbz + (D + AE)65 (3.51)

that has the desired form. We note that the final state space description given by Equa-
tions (3.50) and (3.51) is input-output equivalent to Equations (3.42) and (3.48) but not
state equivalent. We can recover the original state vector dz from the relation in Equa-

tion (3.49) if it is needed. However, for the homogeneous system 44 = 0 so that 6z = iz
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and we can use Equation (3.50) for eigenstructure analysis. The model just derived will be

referred to as the basic Hynes-Greitzer model.

Before we can compute the matrices of the state space model we need to find the
nonuniform steady flow ¢s. The equation‘that needs to be solved and solution method are

discussed in the next section.

3.3.3 Steady State

The equation describing the steady state is obtained by writing a pressure balance for the
system as we did in the previous section, but this time the pressure balance is for the steady
variables. Because we are interested in the steady state solution all derivatives with respect

to time can be set to zero to give

d 1, ~
p{” —pl® = —(¢e) + p.-% + Ek@fo- (3.52)

The equation can be vectorized as before; the detail is omitted here. Once we have decided
on an operating point (by specifying either the mean flow 5,0 or throttle constant k), and
the shape, magnitude, and extent of the total pressure distortion p!" (#), Equation (3.52)
can be solved for the remaining unknown variables. Assume, as would be the case in an
experiment, we have specified k; so that all the coefficients of ¢ are unknown. In general we
will need an infinite number of harmonics for ¢;. For practical purposes we approximate the
solution with a finite number of harmonics so that the right hand side of Equation (3.52)
will not equal the left hand side. By defining the error in the approximation as the difference
between the left and right hand side of Equation (3.52) we can find a least squares solution

for ¢s.

We are mainly interested in computing the linearized dynamics although steady state

quantities are also important. We will use the relative error in the dominant poles and zeros
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as a measure to determine the number of harmonics in the steady velocity ¢s(8) and number
harmonics needed for the linearized dynamics §¢. The “exact” values of the deminant poles
and zeros are defined as those values obtained with a large number of harmonics. Once
we have determined the number of harmonics needed to obtain the “exact” values, we
determine the number of harmonics needed to give a desired relative error, for example

0.1%. By its very nature the procedure to determine the number of harmonics is iterative.

The actual number of harmonics needed for a good approximation is quite low. Through
simulations it was found that if we want to compute the first n modes (that is, the eigenvalues
(or poles) and corresponding eigenvectors) of the linearized dynamics accurately we need
approximately 8n harmonics for ¢s. Once we have solved for ¢s we keep only the first 4n
harmonics and use this truncated Fourier series to compute the linearized model. We need
to start with about twice as many harmonics for ¢5 as we are interested in to ensure that
the 4n harmonics that we need are computed accurately. This can be explained as follows.
If we multiply cos pf by cos g8 we get products of the form cos(p + ¢)68 and cos(p — ¢)8 so

that higher harmonics effects the lower harmonics.

Similarly, we need approximately 4n harmonics for the perturbations 6¢® in the state
vector. We will see later that only the first four modes are needed to model the system for
frequencies up to three rotor revolutions so that we need approximately 16 harmonics for
¢ and initially 32 harmonics (plus the zeroth harmonic) for ¢s. Each harmonic needs
two coefficients so that Equation (3.52) represents 41 coupled differential equations and the
order of the state space model is 22. Solving the steady flow and computing the state space
model takes about 2 minutes on an IBM RS6000 work station. The numbers quoted are
conservative and apply to a square wave distortion. For distortions without discontinuities,

e.g., a cosine, all the computations can be done with 4n harmonics.

All the experiments indicated that (for this particular compressor) four modes were
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enough to capture the dynamics up to three rotor revolutions. It thus is possible to reduce
the order of the final state space model from 22 down to eight for controller design. However,
to get to this low number of states we need to start out with a rather large number of

harmonics.

3.4 A Simple Approximation for Unsteady Viscous Behavior

In the semi-actuator disk model an instantaneous change in flow through the compressor
results in an instantaneous change in pressure rise. Experiments by Nagano [35] and Maz-
zawy [32] have shown that total pressure changes lags a change in the flow and that this
lag can be approximated quite well by a simple first order system with time constant one
to two times the flow-through time. For simplicity, all the lags in the rotors will be lumped
together. Similarly, the lags in the stators will also be lumped together. Haynes et al [21]
used this approach with great success. We should note here that Longley [25] has found that
in some compressors it is more important to model deviations rather than losses. Haynes
et al [21] found deviation lags not to be important for this compressor. The absence of
deviations here does not limit the generality of the model or the results and can be added

if the need arises.

The additional dynamics can be included in the basic Hynes-Greitzer model by mak-
ing two changes. First, we modify the expression that describes the pressure rise across
the compressor to include the effect of the lags. Then we add the additional differential

equations to the state space model, see Haynes et al [21].
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The assumption is that the total pressure losses can be modelled by

I=1 +1, (3.53)

=i—¢ (3.54)
where

| = total pressure loss in rotors and stators

=1lp+ Z Ien cos(nf) + len sin(n@) (3.55)
n>0

1); is the ideal inlet-total to exit-static pressure rise, and {; and [ are the losses in rotors and
stators respectively. It is further assumed that the contribution of the losses in the rotors

and stators is in proportion to the reaction r of the compressor blading

I =rl (3.56)
ls=(1-r7) (3.57)

With these definitions we can write
Y=l -1l | (3.58)

The second change is the addition of differential equations for rotor and stator losses. The

lags for the rotor and stator losses can be modelled by first order systems

o, Bl
Tl'( aT + ao) - ll‘ + ll‘S (3-59)
ol
n55=—h+h. (3.60)

The time constants 7 and 73 are proportional to the flow-through times in the rotors and

stators respectively

be

M@=n(m (3.61)
b
M@—fﬂm (3.62)
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where b, and b, are the mean rotor and stator lengths respectively, and 77 is a constant
typically in the range 1.0-1.5. Linearizing Equations (3.59) - (3.62) about the steady state

values ¢s, Irs, and Iz we get

asl, 1. 9 18l 5

= (Tr + 500 + — ¢ (3.63)
aly 1 168lss o)

o = T8513+Ts 5% G (3.64)

These equations can be vectorized and included in the basic analysis. The results are
summarized in Table 3.1 on page 65. This model will be referred to as the extended Hynes-

Greitzer model (XHG).

The parameters of the three-stage compressor is listed in Table 3.2 on page 66.

Steady State

Inclusion of the unsteady loss response also changes the equation for the steady flow and we
discuss the necessary change;; here. As before we need to modify the pressure rise expression
and add a set of differential equations. The expression for the pressure rise modification
has already been given in Equation (3.58). In steady state Equation (3.60) simplifies to a
trivial identity and in Equation (3.59) we simply put the derivative with respect to time
equal to zero. The final set of differential equations that must be solved are also shown in

Table 3.1.

To solve the steady flow equations we need initial estimates for ¢s and ls. A good initial
guess is the steady state solution from the basic model, with zero as an initial estimate for
the losses. Furthermore, it was found that the number of harmonics needed in all the
calculations can be reduced by about 30%. The order of the final state space system is now

about three times as large as the basic model due to the two additional sets of differential
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Table 3.1: Extended Hynes-Greitzer model.

The steady flow ¢s and steady losses l;5 and ls are given by the solution of
9¢

1 ~
PO =P = —ti st hos + o + Sl (3.65)
ol
1,3—5 = —lp + Ips. (3.66)
The complete state space description is given by
§& = Adz + B6¥ + Esy + G[6p(", 6p|T, (3.67)
~ ~ ~ T
bz = [56°, o, & o] (3.68)
A¢ = pcI - A21F¢ - P¢ - A54 (369)
Ags=11,0,0,...07 (3.70)
1
Asy = [m, 0,0,...] (3.71)
S ) i ] ]
A,i,l[F(yg) - I‘_rDO] "A&l _A,;,l —A,;,IA:»S
A= F($s%2)/(ribr)  —[F(¢s)/(rbc) + Do) 0 0
F(d’s%ﬁ,‘)/(ﬂas) 0 _[F(‘Iss)/("'fl-’s) + Dy) 0
] Asy 0 0 —~1/(4b31kedso) |
(3.72)
A;'F(%) A3 [An Fy + Py A3 0
B 0 B 0 a- |0 0
0 0 0 0
.0 | 0 ] | 0 1/(4831kidso)
(3.73)
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Table 3.2: Three-stage compressor model parameters.

Nominal operating speed u,, = 72 m/s at 2400 revolutions per minute.

Geometric parameters.

pr = 0.6792 ps = 0.3335

ta = 0.2863 pi = 0.0709
b = 0.1184 bs = 0.1079
I, =2.9923 Iy = 1.5294

bg = 0.1631 Tm = —0.6
7 = 286 mm

Pressure rise characteristics (measured by Haynes [20]); see Figure 3.2 p.67.

¥ = —10.07¢* + 9.43064 — 1.1849

P = —15.5341¢% + 24.1238¢% — 15.0262¢ + 4.6951

% _ 2.8880¢° — 3.6550¢ + 0.8251
&y
Loss parameters.
r =0.75
=15

(3.74)

equations (typically 60-80 states). As before, only four modes are needed to capture the

dynamics up to three rotor revolutions so that the model can again be reduced to eight

states, but this time significantly more computational work is needed before we can get

down to this number. Solving for the steady flow of the extended model and computing the

state space matrices takes about 5 times as long as with the basic model.
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Figure 3.2: Three-stage compressor pressure rise characteristics.

3.5 Complex Transfer Functions

The state space model derived in the previous section tells us how the system behaves in
the time domain. It is often convenient to analyze the system in the frequency domain
by looking at transfer functions. For rotating systems it is attractive to view the inputs
and outputs as phasors, and phasors are best represented as complex numbers. In this
section we show how to transform the real-input real-output state space description to a
complex-input complex-output description. The resulting transfer function will be called a
complex transfer function. This is a slight misnomer because a transfer function is always
complex — the term complex refers to the fact that we are using complex input and output

signals.
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The nth complex Fourier coefficient of the flow perturbation is defined by
551: (r) = 5$cn(7') + "'Jasn (7)- (3.75)

Coefficients for negative values of n are conjugates of the corresponding positive valued
coefficients. We note that this definition differs from the usual relation between real and
complex Fourier coefficients. This nonstandard definition is used so that the resulting phasor

rotates in the same direction as the rotor. In exactly the same way we define
J:in = J?cn + 10%n (3-76)

for the AGV deflections. The expressions for computing the transfer function from 67,
to Ja,. given the real input-output state description is derived in Appendix C.1. All the

transfer functions shown will be for complex inputs and outputs.

Power density spectra (PSDs) are used quite often to analyze the experimental data and
here, too, we will compute the temporal spectral densities of the complex coefficients defined
in Equation (3.75). The Fourier transform of a complex function does not have conjugate
symmetry so that the PSD at positive frequencies will be different from the corresponding

negative frequencies. See also Paduano [37).

3.6 Modal Analysis

In this section we discuss the distorted flow mode shapes and compare them to the uniform

flow mode shapes.

The pole pattern of the neutrally stable system as predicted by the extended model
is shown in Figure 3.3. The corresponding mode number is shown next to the eigenvalues.

We now explain how the modes were numbered by considering the mode shapes.
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Figure 3.3: Eigenvalues of marginally stable system, 1.9 dynamic head distortion.
The numbers 0, 1, 2, and 3 to the left of the eigenvalues indicate the mode
number. Note that only the eigenvalues close to the origin are shown in this
figure.

The mode shapes and relative strength of the harmonics in the four dominant modes are
shown in Figure 3.4. The dominant modes are defined as those with eigenvalues closest to the
origin. The mode shapes shown in these figures were all computed from the eigenvectors of
the A—matrix (see Chapter 3). This choice was made as the eigenvectors are time invariant
while the mode shapes are time varying. Putting it another way, the mode shapes obtained
from the eigenvectors correspond to the mode shapes at time zero. In these figures the

magnitude of the largest harmonic (or plenum pressure perturbation §p{”) was normalized.

The mode with eigenvalue A = —0.31 + 0.46: (top right hand graph) has a strong first
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Figure 3.4: Mode shapes (left) and corresponding harmonic contribution (right).
The solid and dashed lines show the real and imaginary parts of the mode
shape respectively. The harmonic number indicated by p is the plenum pressure
perturbations 6p{”, 1.9 dynamic head distortion.

harmonic component. However, the large contribution of the plenum pressure perturbation
6p” and presence of the zeroth harmonic suggest that this is a surge-like mode, and we will
therefore refer to it as the zeroth mode. Note that the second harmonic also has significant
presence in the mode. The real and imaginary parts of the corresponding mode shape at

time 7 = 0 is shown in the top left graph.

The neutrally stable mode shown in the second set of graphs from the top in Figare 3.4

also has strong first harmonic content but the magnitude of the plenum pressure perturba-
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tion Jp” is smaller. We thus call this the first mode. The zeroth and second harmonics

also have substantial contributions to this mode.

For the other two modes shown at the bottom of the figure the contributions of the
zeroth harmonic and 6p{® decreased greatly and the modes consist mainly of the dominant
harmonic plus the adjacent harmonics. These two modes will be called the second and
third modes respectively. The higher spatial frequency content is clearly visible in the

mode shapes of the second and third harmonics.

In all four cases the mode shapes are not purely sinusoidal and have large deviations
outside the distorted region 120° < @ < 240°. In Chapter 4 we saw that the wave envelope
was also large outside the distorted region. With distortion, irrespective of the mode that
is excited, the envelope of the small perturbations will be nonuniform around the annulus.
We note that the real and imaginary parts reflect the mode shape at two different points in

time and thus give an idea of how the mode shapes change with time.

Neither the shapes nor the harmonic content of the modes change significantly as the
extent of the distortion is changed to 180°. The magnitude of the distortion has a much
larger effect. Figures 3.5 and 3.6 show the modes and harmonic contribution for 0.8 dynamic
head distertion and for uniform flow respectively. The order of the modes in these figures
is the same as in Figure 3.4. For the 0.8 dynamic head distortion the contribution of the
first harmonic to the zeroth mode is less than half that with the 1.9 dynamic head distortion
because the smaller magnitude distortion introduces less coupling between the harmonics.
Similar arguments hold for the other modes. The mode shapes are also more sinusoidal
compared to 1.9 dynamic head distortion. For uniform flow the mode shapes are purely

sinusoidal with no coupling between the harmonics.
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Figure 3.5: Mode shapes (left) and corresponding harmonic contribution (right).
The solid and dashed lines show the real and imaginary parts of the mode
shape respectively. The harmonic number indicated by p is the plenum pressure
perturbations dpt”, 0.8 dynamic head distortion.

3.7 Why is Distortion a Hard Problem?

In this section we describe the main reasons that make control of rotating stall a harder

problem in the presence of distortion.

Figure 3.7 shows the variation of the real part of the most unstable pole as a function
of the distortion extent. The flow coefficient was held constant av 1% above the uniform

flow open loop stall point while the extent was varied from 0°to 360°.

Without distortion (extent=0) the system is stable, that is, the real part of the eigen-
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Figure 3.6: Mode shapes (left) and corresponding harmonic contribution (rightj.
The solid and dashed lines show the real and imaginary parts of the mode
shape respectively. The harmonic number indicated by p is the plenum pressure
perturbations &p”, uniform flow.

value X is negative. As the extent of the distortion is increased the pole moves closer to
the iw—axis and goes unstable at approximately 70° and remains unstable up to an extent
of 230°. The real part of the pole assumes its maximum positive (most unstable) value
at approximately 135°. This is a worst case situation and was the motivation for using a

distortion with 120° extent.

Also shown in the figure is the real part of the dominant zero. The zero shows a similar

trend but crosses the iw—axis at a smaller extent and stays in the right half plane over
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Figure 3.7: Effect of distortion extent on the most unstable pole and dominant

zero, ¢, = 0.465, 1.9 dynamic head distortion.

a larger range of extents. Zeros in the right half plane (that is, the real part of the zero
is positive) are called nonminimum phase zeros and have an adverse effect on closed loop

system performance.

Nonminimum phase zeros limit the performance of a feedback system in the following
sense. Let the transfer function of the system and controller be denoted by G(iw) and
K (iw) respectively, and let |G(iw)K(iw)] > k > 1 for 0 € w < wc. The gain-bandwidth
product kw, is then limited and the frequency of the nonminimum phase zero is an upper
bound for w,. See Maciejowski [30]. A limit in the gain-bandwidth product often translates
into a limit on the bandwidth of the closed loop system. Therefore, an increase in k will

result in more attenuation of disturbances, but over a smaller range of frequencies.

Systems with nonminimum phase zeros often have poor rejection of measurement noise
[30]. We showed in Section 4.2.2 that the magnitude of the noise was larger for distorted

flow and we can expect that this will have a negative effect on controller performance.
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We saw in Figure 3.7 that the dominant zero is nonminimum phase for a large range
of extents. Further, Figure 3.8 shows the dominant zeros for uniform flow, 0.8 and 1.9
dynamic head distortions (extent=120°). The zero becomes nonminimum phase at higher

mass flows for larger distortions. The zeros of the uniform flow and 0.8 dynamic head

0.2 T T T T

oXx

o Uniform flow
005 x 0.8 dynamic head x
* 1.9 dynamic head I}

0.1 : 2 L n : )
045 0.455 0.48 0.465 047 0.475 048

¢

Figure 3.8: Real part of dominant zeros as function of ¢ for uniform flow, 0.8
and 1.9 dynamic head distortions.

distortion systems become nonminimum phase at approximately ¢ = 0.464 and ¢ = 0.467
respectively. Over the range of flow coefficients shown, the zero of the system with a 1.9

dynamic head distortion is always nonminimum phase.

Whether a zero is minimum or nonminimum phase is strongly affected by the type
and configuration of sensors and actuators. For example, the model predicts that measur-
ing velocity between the first rotor and stator instead of upstream of the compressor will
increase the frequency of the nonminimum phase zero by 50% for the 1.9 dynamic head

distortion. An increased frequency implies an increased gain-bandwidth product, thus we
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expect an increase in the performance of the controller. Whether this resuits in measurable

improvement in performance is investigated in Chapter 5.

In summary, the detrimental effect of distortion is twofold. First, a compressor oper-
ating in the presence of distortion becomes unstable at higher flow coefficients. Second, the
dominant zeros become nonminimum phase at higher flow coefficients, limiting the closed

loop bandwidth and increasing the sensitivity to measurement noise.

76



4 Experimental Results: Open Loop

In this chapter we assess the predictive capability of the extended Hynes-Greitzer model
for steady state and dynamic compressor behavior. Comparison is made with compressor
behavior with distortions of two magnitudes, 0.8 and 1.9 dynamic heads. Because the results
were generally similar, unless stated otherwise, all the discussions in this chapter is for the

1.9 dynamic head distortion.

The chapter is divided into four parts. The first part presents the steady state velocity
and pressure profiles, and pressure rise characteristics. Next, the unforced dynamics of
the compression system is analyzed in the time and frequency domain (spectral analysis).
This is followed by a comparison of the predicted and measured forced response of the

compression system. The chapter ends with a summary.

4.1 Steady State Results

In this section we assess the steady state predictive capability of the model. Steady state
results are important for two reasons. First, the nonlinear model is linearized about the
nonuniform steady velocity so that an accurate estimate of the velocity is desirable. Second,

the steady pressure rise in the presence of distortion is an important measure of performance.

4.1.1 Steady state profiles

The steady flow obtained by solving the nonlinear equations (3.65) and (3.66) gives the flow

at the inlet of the first rotor. Pressure measurements, however, were carried out at a station
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approximately 0.6 mean radii upstream of the compressor face (see Figure 2.4). We therefore
comment first on the relation between these measurements and the flow at the inlet of the
first rotor. The upstream static pressure decays exponentially. We can compute the static
pressure and velocity at the sensor location by multiplying the nth harmonic of the static
pressure at the inlet of the first rotor by e"*~. Predicted and measured static pressures are
shown in Figure 4.1. The experiment and analytical profile (with mean values subtracted)
of the XHG model are shown. The profiles have the same shape and the magnitudes agree

well.

Gong [15] has relaxed the assumption that the upstream flow field can be modelled in
a linearized way and used a full nonlinear Euler model instead; we will refer to this model
as the XHG-Euler model. The result from his calculations is also shown in Figure 4.1 and
again there is good agreement with the experimental results. This shows that the nonlinear
effects in the unsteady flow field are small. In all the figures the extended Hynes-Greitzer

and Euler models will be indicated by XHG and XHG-Euler respectively.

The predicted and measured steady state velocity profiles at the measurement location
T = Zm are shown Figure 4.2. The velocity predicted by the XHG-Euler model matches
the measured profile in magnitude well. The width of the distorted region is slightly wider
than the predicted width. The model predicts a lower velocity in the distorted region.
This can be explained by comparing the predicted and measured total and static pressure
shown in Figure 4.3. In this figure we see that the mean value of the measured static
pressure is lower than the predicted pressure by 10% so that the predicted difference between
total and static pressures in the distorted region is smaller than measured, resulting in a
lower estimated velocity. This is especially true at approximately 200° where the predicted
velocity (Figure 4.2 shows a large drop. The lower static pressure may be due to radial

redistribution upstream of the compressor.
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Figure 4.1: Static oressure at z = xm,{t;., = 0.5, 1.9 dynamic head distortion.
The mean values have been subtracted to show the variation around the annulus.
The distortion screen blocked the flow in the range 120° < 8 < 240° shown by
the dotted lines.

In Figure 4.3 we also show the deviation of the exit static pressure psY. The assump-
tion was made that the exit static pressure is uniforin around the annulus and we see the

measurements support this assumption.

In Figure 4.4 we compare the velocities at the compressor face predicted by the XHG
and XHG-Euler models; no velocity measurements are available at this location. The mag-
nitudes of the velocities agree very well and the only difference between the profiles is due

to the narrowing of the flow field.
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subtracted to reveal the variation around the annulus. The solid and dashed
lines are for the extended Hynes-Greitzer model.
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Velocity contours in the z — 8 plane calculated by the XHG-Euler model are shown in
Figure 4.5. The narrowing of the low stagnation pressure region is clearly visible between
roughly 100° and 220°. We also note the slight asymmetry in the region of the distortion
screen at z = —3.5 suggesting some interaction between the compressor and distortion
generator. (The XHG-Euler model assumes an infinitely long duct upstream of the screen

while the experimental setup has a bellmouth.)

We can also estimate tangential velocity using the following procedure. We assume
that the irrotational part of the velocity equals the difference between the velocities far
upstream and at the sensor location; this is shown in the graph at the top of Figure 4.6. This
gives enough information to solve for the tangential velocity which is compared against the
tangential velocity obtained from the Euler model in the graph at the bottom of Figure 4.6.
Outside the regions where the axial velocity ¢s has large gradients and the assumption thus
not likeiy to be correct, there is good agreement between the experimentally derived and
predicted velocities. This again, is a comparison that shows that nonlinear effects will be

very localized as far as the upstream flow field.

4.1.2 Speed lines

Measured and predicted compressor performance curves for the 0.8 and 1.9 dynamic head
total pressure distortions are shown in Figures 4.7 and 4.8 respectively. For the 0.8 dynamic
head distortion the loss in pressure rise and the increase in stalling flow coefficient are small.
The loss in pressure rise is 1.6% and the stalling flow coefficient increased by 0.4%. Both
these numbers are predicted correctly by the XHG model. The large distortion clearly shows
the detrimental effect of distortion — the pressure rise dropped by 7.6% and the stalling
flow coefficient increased by 4.3%. The model predicted an increase of 2.0% in stalling flow

coefficient and a drop in peak pressure rise of 4.4%. The characteristic that has been used
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was measured by Haynes [20] (see 3.2 on page 66) over the range 0.42 < ¢ < 0.7 and it
has been assumed that the parabola that fits the data over this range of flow cocfficients is
also valid at flow coefficients down to 0.37, see Figure 4.4. The lower predicted stalling flow
coefficient and smaller predicted drop in peak pressure rise suggest that the slope of the
characteristic to the left of the peak (aso = 0.460) may be steeper than that of the parabola.
Currently no method exists to measure the characteristic over the complete range of flow
coefficients needed for the large distortion.

Table 4.1: Open loop stalling flow coefficients. Percentages are computed rela-
tive to ¢ = 0.460.

Uniform flow | 120°, 0.8 120°, 1.9
dstat XHG model 0.460 0.452 0.4% | 0.469 2.0%
¢s1all €Xperiment 0.460 0.462 0.4% | 0.480 4.3%

The extended model was used to obtain the predictions shown. The basic model
predicts the trends but gives a higher stalling flow coefficient than the experiment. Despite
this limitation the basic model will be shown to be a useful tool for designing controllers to

stabilize the flow.

4.2 Dynamics
4.2.1 Time Domain Analysis

In this section we compare the dynamic behavior of the compression system with that
predicted by the XHG model using time domain data. For the data available the signal to
noise ratios (SNRs) of the velocity measurements are less than one so it is often difficult to
distingujsh the signal from the noise. The goal therefore is not so much to find how well the

model predicts the behavior of the compression system but to observe trends of the small

85



2 L I ¥ 7 ' l l l T
15F . P -
: 3x : E
b SRR Y e L L i
: : : 2x
0.5 - ot .................. ....... ........ ...............
: : oxi i 11
~ . : . .
éo Of vt DR RPN RIS ;
é : i X
—05F b SRR X .o o N
: : x
=k e e e RN E
x
B B R O RRREEE R R RN EEEE N CRERERRREE .
x
_2 i 1 1 1 1 L 1 1 L
-1 -09 -08 -07 -06 -05 -04 -03 -02 -0.1 0
Real A\
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perturbation dynamics in the presence of distortion.

The pole pattern of the neutrally stable system as predicted by the extended Hynes-
Greitzer model is shown in Figure 4.9. For reference we list the eigenvalues and correspond-

ing mode number shown in the figure.

Ao = —0.31 + 0.46¢ A1 = —0.00 + 0.38:

A2 = —0.20 + 0.85¢ Az = —0.39 + 1.35:.

In this figure we show only eigenvalues with magnitude less than 1.5w, but a complete set
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of eigenvalues will be shown later. We will refer to the neutrally stable mode with natural
frequency w; = 0.38 as the first mode, similarly for others. The numbering of the modes

was explained in Section 3.6.

We will compare the behavior of the experimental system just prior to stall with that
of the unforced model when only the first mode has nonzero initial conditions. All the
modes of the experimental system will be excited by noise. The marginally stable mode
should dominate the behavior of the system, so it should correspond to the simulation. The

homogeneous system

6z = Abz (4.1)

has the solution

bz = e"oxzy. (4.2)

We will choose the initial state dzg so that only the first mode is excited. The solution can

be simplified if we express the A—matrix in terms of the eigenvalues and eigenvectors. Let

A=VAVL, (4.3)
where V = [v;,v2,...] is the matrix of eigenvectors, (4-4)
and A = diag[\;, Ao,...] is the matrix of eigenvalues. (4.5)

We assume without loss of generality that the first two eigenvalues and eigenvectors corre-

spond to the neutrally stable mode so that A\; = iw;, and A2 = —iw,. With this choice

dx = R(v,) cos(w ) — I(vy) sin(w; 7) (4.6)

where R and S indicate the real and imaginary part respectively. Let the eigenvector be
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v = [vo, Vci, Vs, Vc2, Va2, - - .]T then the reconstructed perturbation is
dp(0, 1) = R(vo) cos(w)7) — I(vp) sin(w7)

+ 3 [R(ven) cos(w1T) — S(ven) sin(wy 7)] cos(nd)

n>0

+ Y [R(ven) cos(w1T) ~ (van) sin(w) 7)) sin(nf) (4.7)
n>0

2 o + Z Oen cos(nf) + Sen sin(n#@). (4.8)

n>0
Notice that the frequency of oscillation of the coefficients 6;1;0, 6$c,,, and 655,. of the nth
harmonic is the same for all the harmonics, see Equations (4.7) and (4.8). The expressions

for the coefficients can be simplified by using standard trigonometric identities to obtain
0¢(8,7) = aco cos(w,T) + asp sin(w,7)

+ z Qcr, c08(nf — w)T) + agp 8in(nd — w) 7)
n>0

+ Z ben cos(nf + wyT) + bgp sin(nd + w,7) (4.9)
n>0

and the amplitudes acg, asg, @cn, @sn, bcn, and bs, depend the elements of the eigenvector;
the exact expressions are not relevant to our discussion. The important point is that a mode
can be decomposed into two waves: one travelling in the direction of rotor rotation and one
travelling in the opposite direction and, in general, these waves have different amplitudes
and phases. Because the amplitudes of the two waves differ the wave shape will change with
time. No assumptions were made about the distortion so Equations (4.8) and (4.5) hold in

general.

An example of the waves predicted by Equation (4.8) (or equivalently Equation (4.9))
is shown in Figure 4.10. Five wave forms approximately equally spaced in time over one

period are shown together with the envelope of the wave. The variation in magnitude of
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the envelope around the annulus can be explained by looking at the slope %‘% shown in Fig-
ure 4.11. The magnitude of the envelope decreases when the slope is negative and increases
when the slope is positive. Therefore, the magnitude of the envelope has a maximum where

the slope changes from positive to negative.
A typical data set of stall inception is shown in Figure 4.12.

The origin of the time axis has been chosen as the point where the velocities exceed
an arbitrary large limit. The exact value of the origin is not important as we are interested
in the period prior to stall. Two properties predicted by the model are presented in the
figure. Two parallel lines drawn through the peaks of the perturbations are used to help
show that the wave is travelling around the annulus. An estimate of the speed at which the
wave rotates can be obtained by counting the number of peaks in the trace at the bottom
of the figure; between 7 = —20 and 7 = —10 there are a little more than four peaks giving

a speed of just over 0.4w, which agrees well with the predicted 0.38 w,.

Second, if we look around the annulus at a fixed time (prior to stall) we see that the
perturbation magnitude is large for small values of 6, decreases as 6 increases, is small for
120° < 6 < 240°, and increases again towards 360°; this is predicted by the model, see

Figure 4.10.

Analysis of the perturbations around the annulus has shown th.at they are not dis-
tributed symmetrically about the mean values. The standard deviations (STDs) for positive
and negative values of the perturbations are shown in Figure 4.13 where we see that for
negative values of the perturbations the STDs match the envelope well, but for positive
values of the perturbations the STD shows little variation around the annulus. This asym-
metric behavior is not predicted by the model and shows either that there are dynamics
not captured by the model or nonlinear behavior. For insight into the prestall behavior

we decompose the perturbations d¢(@, 1) into a Fourier series with complex harmonics as
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Figure 4.12: Circumferential velocity perturbations prior to stall.

91



0.03 T T T T T

0.01F -

-

Envelope of 8¢

-0.01

—— Experiment
-~ =~ Predicted

L L 1 1

0 60 120 180 240 300 3680

0
Figure 4.13: Standard deviation of the perturbations around annulus for ¢ > 0
and 6¢ < 0. The standard deviations obtained from the different hot-wires were
connected by straight lines to show the trend.

92



0.15
0.14
0.13
0.12
0.11

0.1

0.09
B 0.08
= 007
0.06
0.05
0.04
0.03
0.02 :
001} .. RET

Time [rotor revs]

Phase §¢ [radian]

-10 1 1 1
-20 -15 -10 -5 0

Time [rotor revs]

Figure 4.14: Magnitudes (top) and corresponding phases (bottom) of the har-
monics d¢. The magnitudes shown are as seen by the compressor.

93



discussed in Section 3.5. The nth harmonic is indicated by 65,,(1'). The magnitudes of the
zeroth, first, second, and third harmonics are shown in the graph at the top of Figure 4.14.
The nth harmonic has been scaled by e*™#m! g0 the magnitudes shown are those seen by
the compressor. In this figure we see that the magnitudes of the higher harmonics increase

gradually from |6$,,| = 0.035 for approximately 20 rotor revolutions prior to stall.

The unwrapped phases of the harmonics are also shown in Figure 4.14 where the
travelling of the first harmonic at 0.43 w; is clearly visible. The phase of the second harmonic
is more erratic but shows a definitive trend; the corresponding velocity of 0.20 w; is slightly
lower than 0.43/2 = 0.215. The phase speeds prior to stall were computed with least squares
fits over the range —15 < 7 < —5. Poorer estimates for the higher harmonics must be
expected because the higher harmonics decay exponentially and thus have lower SNRs.
Phase unwrapping is sensitive to noise and so the velocities obtained from the phases should
be considered rough estimates. Even so, the velocities for the first and second harmonics

agree well with the predicted values of 0.38 w; and 0.19 w, respectively.

4.2.2 Spectral Analysis

The power density spectrum (PSD) is a powerful tool for analyzing the behavior of the
system. The PSDs used here were computed using Welch’s method [36] with a Hanning

window.

Figure 4.15 show the PSDs of the complex harmonics 650—553. Except for the third
harmonic the first mode shows up strongly at w; = 0.44w, in the PSDs indicating there is a
wave travelling around the annulus at 44% of the rotor speed. The travelling wave and peak
in the PSDs of the harmonics are predicted by the model (see Equations (4.8) and (4.9))

and shows the strong coupling between the different harmonics, including the zeroth. The
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coupling results from the nonuniform steady flow and does not occur with uniform mean
flow; for uniform only the nth harmonic is present in the nth mode. The PSDs for uniform
flow are shown in Figure 4.16. The first mode at 0.28 w, is clearly visible in the PSD for

651 and is barely visible in the PSDs of the other harmonics.

A comparison of the noise floors for distorted flow (Figure 4.15) with the corresponding
uniform flow (Figure 4.16) shows that the magnitude of the noise is bigger for distorted
flow. If the peak at 1w, is excluded from the calculations, the distorted flow SNR for
the zeroth, first, and second harmonics are 0.34(—9.4 dB), 0.63(—4 dB), and 0.29(—10 dB)
respectively. The SNR for the first harmonic for uniform flow is 1.25(1.9 dB) that is better
than the corresponding distorted case. The reason for the lower SNR when distortion is
present is not known. The PSDs were computed ¢v2r a period of 2400 rotor revolutions
prior to stall. Directly prior to stall the magnitudes of the perturbations tend to increase
so that the SNR improves and it becomes possible to distinguish the signal from the noise

without additional signal processing as we have seen in Figure 4.12.

In Figure 4.15 we also see a large peak at exactly 1w,. Comparison with the uniform
flow PSDs in Figure 4.15 shows that the 1w, peak increased by approximciely 20, 10, 40,
and 30 dB for the zeroth to third harmonics respectively when distortion was added. It
thus appears that this disturt: ~ - is related to circumferential nonuniform flow. We note

that the PSDs also have peaks at 2 and 3w, which are not shown.

In Figure 4.15 we also see peaks at 0.56 w; in the graphs for 5$o, ng, and 6(2;2 and
at 1.44w, for 651, 652, and 653. The frequencies 0.56 w; and 1.44w, are exactly w; £+ w)
and shows coupling between the first mode and the disturbance at one rotor revolution.
This coupling has the form of modulation (or multiplication) in the time domain, resulting
in a sum and difference frequency in the frequency domain. The origin of the one rotor

revolution mode and modulation is not known.
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We also note that the PSDs at negative frequencies (shown in dashed lines) differ from
those at the corresponding positive frequencies. Generally there is very little activity at

negative frequencies.

4.3 Process Noise Model

In the previous section we saw that there was substantial noise present in the compression
system. Two external disturbances forcing the system, ép{" (far upstream) and p{® (at
throttle exit), were included in the model (see Chapter 3) as process noise. These noise

sources, however, do not describe the noise seen in the measurements.

Figure 4.17 shows the analytical and measured PSD of the first harmonic with §p{"
as the process noise for the 1.9 dynamic head distortion. A logarithmic frequency axis was
chosen to show the trend. Except for the first mode peak, the magnitude of the PSD has a
slope of 20 dB/decade as indicated by the dashed line. The analytical PSD has a constant
slope at frequencies below 0.1 w; and rolls off very fast for frequencies above that of the first

mode. For the analytical PSD it was assumed the noise 6p{" is white.

The 20 dB/decade slope suggests that the integral of white noise must be used as
process noise. However, this will not give a slope of 20 dB/decade, but 40 dB/decade
because the square of the magnitude of the transfer function is used in the computation
of the PSD. The only way to obtain a 20 dB/decade slope at low frequencies is to assume
that the PSD of the noise has a 1/w slope. If this is the case the discrepancy between the

measurc and analytical PSDs at frequencies above that of the first mode will be larger.

It may be possible that the noise seen at low frequencies is due to process noise while
that at frequencies above w; i3 measurement noise (not included in the mod.:.' Both these

noises will have to have 1/w slocpe. Whether this explanation holds is not known.
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Figure 4.17: Experimental and analytical PSDs, 1.9 dynamic head distortion.

Similar results hold for the other harmonics and process noise p$” and, in summary, the

process noise can at most be in part responsible for the noise seen in the measured PSDs.

4.4 Transfer Functions

The state space description and corresponding time domain analysis is one way of looking
at signals. An alternative way of looking at the system is in the frequency domain. Let the

state space description be given by

6 = Abz + B6Y (4.10)

§¢ = Céz + DG7. (4.11)

We assume that the dependence on 44 has already been accounted for; see discussion

on page 59. Taking the Laplace transforms of these equations and substituting the first
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equation into the second we obtain

8¢(iw) = [Cliwl — A)~'B + D] 67 (iw) (4.12)
=[CV(iwl — A)"'V~!B + D]65(iw)  (from Equation (4.3)) (4.13)
£ G (iw) 67 (iw). (4.14)

The matrix G(iw) is known as the transfer function matrix. The transfer function can be
written in terms of the eigenvalues A and the eigenvectors (or mode shapes) V. Therefore, if
there is good match between the predicted and measured transfer functions we can conclude

there is good match between the predicted and measured mode shapes.

The method used for measuring the transfer function is discussed in Appendix C.2. In
that appendix we also discuss the excellent noise rejection and robustness against nonlinear-
ities of the measuring technique, with the conclusion that examination of transfer functions

is the most reliable way to determine the accuracy of the model.

All the transfer functions shown will be for complex inputs and complex outputs as

discussed in Section 3.5 and Appendix C.1.

We will show transfer functions from the first three harmonics of é to the first three

harmonics of §¢ so that G is a square matrix

)

goo go1 9go2 9JGo3

gio 911 G912 913
G= (4.15)

920 921 922 923

Kgao g31 932 933 )

Gpq = |9pgle’ ), p,g=0,1,2,3.
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Figures 4.18 - 4.21 show the set of transfer functions for the 1.9 dynamic head distortion
at $so = 0.500. This is approximately 17% above the stalling flow coefficient so that we
expect the system to exhibit behavior that is well damped. In these figures the transfer
function gp, from 87, to 55,, is indicated by 67, — 65,,. Four transfer functions are shown
on each page. The magnitude of each transfer function is shown with the corresponding
phase directly below it. The transfer functions along the diagonal of G also include the
measured uniform flow transfer functions (shown with dashed lines); for uniform flow all

off-diagonal transfer functions are zero.

The first harmonic has a strong presence in the first mode so we will concentrate
the discussion on the transfer functions to and from the first harmonic. Peaks in the
transfer function magnitudes indicate lightly damped modes at which the system will tend to
resonate. For example, the measured transfer function from 6%, — 6:2;1 at the bottom right
hand corner of Figure 4.18 has a small peak at approximately 0.38w, while the predicted
peak is at 0.40 w;. The model thus predicted the frequency of the first mode with an error

of only 0.02w, that is, to within 2% of the rotor frequency.

The peak at w; = 0.38w, is also visible in the magnitudes of the transfer functions
goo and gz indicating that these harmonics are also present in the first mode. The smaller
peaks in goo and g2 can be explained by looking at the predicted pole-zero maps of the

individual transfer functions shown in Figure 4.22.

For ggo we see that there is a zero close to the first mode pole so the transfer function
magnitude will not show a large peak in the corresponding frequency range. For g,2 there ic
an almost exact pole-zero cancellation, while g33 has an exact pole-zero cancellation with no
peak in the transfer function magnitude. We also see in these pole-zero maps that the poles
at negative frequencies are cancelled, or almost cancelled, by zeros and thus the transfer

functions at negative frequencies do not have any large resonant peaks and are therefore not
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shown. The lack of strong resonance at negative frequencies was also visible in the PSDs

showed earlier on, see Figure 4.15.

Because of the low SNR, transfer functions with magnitudes below approximately

—40 dB will not be very accurate.

Comparing the uniform and distorted flow transfer functions ggo, 911, 922, and g33 we
see that, except for g;;, the addition of distortion did not change these transfer functions
significantly. The magnitude of gy, for distorted flow is 10 dB larger than the corresponding
uniform flow transfer function, indicating that the eigenvalue of the dominant mode has

moved closer to the iw—axis, that is, distortion has a destabilizing effect.

Valleys in the transfer functions indicate zeros close to the iw—axis. Again this is
visible in the transfer function g¢;;. In this case it appears from the magnitude of g;; that
the predicted frequency of the zero is lower than the measured frequency. The minimum
values of the measured and predicted transfer function magnitudes are at 0.93 w; and 1.03 w;,
respectively, an error of 0.1 w;. The measured and predicted phases of g;; changes abruptly
to within 0.05w,, and we conclude that the frequency of the zero is predicted accurately by

the model.

The predicted zero is minimum phase, that is, the real part of the zero is negative (see
Figure 4.22) so that the phase increases for frequencies close to that of the zero frequency,
while the measured zero is nonminimum phase (real part of the zero is positive) with a
corresponding decrease in the phase. At this flow coefficient the zero is very close to the
iw—axis as is evident by the abrupt change in both the measured and predicted phase. The
predicted and measured zero are just to the left and right of the iw—axis respectively so

that the absolute distance between the zeros is small.

The magnitudes of the transfer functions gg;, 910, 912, and g2 are in the range —30 dB
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to —20 dB for frequencies close to that of the first mode, while the magnitude of g, is
approximately —10 dB at the same frequencies, indicating strong coupling between the
zeroth, first, and second harmonics. Except for the transfer function from the zeroth to the
first harmonic there is good agreement between the magnitudes and phases of the predicted
and measured transfer functions. The transfer function from the zeroth to the first harmonic
appears to have additional zeros not predicted by the model; however, the general trend
of the magnitude and phase still follows the measured transfer function well up to 1w.
In general it was found that transfer functions from the zeroth harmonic to the higher
harmonics were not predicted as well as the other transfer functions; however, the main

trend was always captured well.

We also note in these figures that transfer functions gy for which [p — ¢| < 1 are
predicted better than transfer functions for which |p — g| > 1. This trend can be explained
by the fact that the higher harmonics decay like e"*™ so that the SNR is smaller for higher
harmonics and it is more difficult to measure these transfer functions accurately. In addition,
for higher harmonics the approximation that the 12 AGVs are a continuum also becomes

poorer. This too will decrease the fidelity of the measured transfer functions.

To determine if the model captures the change in dynamic behavior of the compression
system at different flow coefficients, transfer functions were measured at three different
operating points. A subset of this data is shown in Figures 4.23 - 4.26. The graphs at
the top, middle, and bottom show the magnitude (left) and phase (right) at ¢gan + 17%,
dstal + 7%, and ¢gay — 0.4% respectively. In general the trend was captured well by the

model.

At the lowest flow coefficient the frequency of the first mode is under predicted by
approximately 0.1 w;. There are two possible reasons for this discrepancy. First, at ¢gan —

0.4% the steady flow spans the range 0.36 < ¢s < 0.55. The characteristic has been measured
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only for ¢s > 0.42 and thus we are operating on a part of the characteristic that is not
known. For the predicted transfer functions shown in the figure it has been assumed that
the characteristic for flow coefficients less than 0.42 is parabolic, and the actual slope may
be different. Second, when the distortion generator was disassembled after completion of
the experiments it was found that the screen was packed with dirt and thus the distortion
intensity was higher than the value measured initially. The frequency of the modes increase
with incrzasing distortion intensity, so the dirty screen explains, at least in part, the higher

measured frequency of the first mode.

At the lowest flow coefficient shown, ¢gay — 0.4%, the system was open loop unstable
so it was necessary to use active control to stabilize the system. Active control will be

discussed in Chapter 5.

4.5 Suminary

In this chapter we compared the dynamic behavior of smail perturbations in both the time
and frequency domain. All the major trends are predicted by the model. Analysis of
the transfer functions showed the model accurately predicted the frequencies of the most

unstable pole and dominant zero to within 0.02w, and 0.1 w, respectively.
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5 Active Control

5.1 Introduction

In this chapter we present the first experimental results of active control of rotating stall
in the presence of large total pressure inlet distortion. Several questions will be addressed:
Will modern controllers, whose designs are based purely on the model, stabilize the system?
Are harmonic feedback controllers designed for uniform flow (used by Paduano [37] and
Haynes [20]) effective in the presence of distortion? Can the coupling between the different
harmonics due to the distortion be used to stabilize the compression system at lower flow
coefficients? Does the model predict the range of flow coefficients over which the compressior

system can be stabilized?

The figure of merit used to determine the performance of a controller will be the lowest
flow coefficient at which the compression system can be stabilized. This is not the only or
best measure of performance; other factors like disturbance rejection, sensitivity to noise,
and robustness to system uncertainty are of practical importance. Also, the effectiveness of
the controller against unknown, time varying distortions and different operating conditions
are important for real applications. However, for a given compressor, determining the
stalling flow coefficient experimentally is convenient, can be done in a consistent way, and

has been used successfully in the past by Paduano [37), Haynes [20], and Gysling [19].

To answer the questions posed earlier four controllers were tested experimentally. We
start with a discussion of the different controllers. This is followed by a presentation of the

experimental results, an investigation into the loss of stability, and a chapter summary.
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5.2 Control Laws
5.2.1 LQG Controller

The first controller is a linear quadratic Gaussian (LQG) controller. LQG controllers are
usually used in optimal control applications where a quadratic cost function consisting of
weighted sums of the state perturbations and control energy is minimized. For our applica-
tion the LQG design procedure was not used for its optimal properties but simply because it
provides a simple way to design controllers for multi-input multi-output systems. The basic
model was used for the design of the LQG controllers. Because the basic model does not
include any model of unsteady viscous response the predicted compressor slope is steeper
than the effective slope; therefore, the slope of the characteristic at flow coefficients to the
left of the peak of the characteristic was decreased until the predicted stalling flow coeffi-
cient matched the experimental valued. With this change it was found that the frequency

of the first mode was also predicted correctly.

The LQG controllers are designed in two steps. In the first step it is assumed that all
the states of the system are available for feedback and a constant gain is found such that
a cost function, consisting of a weighted sum of the state and control energy, is minimized.
Often all the states are not available for feedback in which case they must be estimated.
In the second stage a steady state Kalman filter {or any other observer) is designad to
estimate the states given a set of measurements. The design of the Kalman filter requires
the specification of process and measurement noise statistics. For the LQG controllers
used here it was assumed that both the process and measurement noise are white. The
intensity of the process noise was assumed to be the identity matrix, and the intensity
of the measurement noise was taken as a constant multiplied by the identity matrix. This
constant was used to adjust the bandwidth of the Kalman filter. It was found experimentally

that the bandwidth of the Kalman filter had to be in the range of 1-2w, for satisfactory
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performance. For larger bandwidths the LQG controllers were very sensitive to noise and
destabilized the compressor. The design of the Kalman filter also requires the specification
of the cross correlation between the process and measurement noise, and this was taken
as zero. This is a crude assumption as there will be correlation between the upstream
measurement noise and process noise. However, because the LQG controller was not used

for its optimal properties this was deemed acceptable.

It was noted in Section 3.3.3 that approximately 4n harmonics were necessary to locate
the poles of the first n modes. A complete set of poles and transmission zeros of the
compression system at @g a1 — 1% is shown in Figure 5.1. The poles and zeros corresponding

to the actuator dynamics are not shown though they are included in the design model.

In this model 32 harmonics were used to compute the steady flow, and 16 harmonics
were included in the state space description. Also shown in the figure are circles (with
centers at the origin) with radii of 2 and 3 w,. There are five modes within the 2w; circle;
these modes dominate the dynamics at frequencies of practical interest. The other modes
are either further into the left half plain, that is, they have fast dynamics so that they can
be approximated by constants at low frequencies, or the modes closer to the iw—axis are
close to zeros and will have little resonance. We also note that there are several poles and
zeros that almost cancel. This near pole-zero cancellation was also observed at other flow

coefficients and distortion magnitudes.

With the full set of modes available the state space model can be reduced so that only
the dominant modes are retained. The approach followed here was to convert the state
space description into modal form and keep only the modes included in the 3w, circle,
typically 15 modes. It was found that the additional modes are necessary to capture the
dominant zeros. If only the first four or five modes were included the zeros were off by as

much as 50%. By keeping all the modes inside the 3w, circles the gains and phases were
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Figure 5.1: Poles and transmission zeros at mass flow ¢y — 1%. The two
semicircles have radii 2 and 3w, respectively.

approximated very well up to 2w,, the bandwidth of the AGV motors. This reduced order
model was then used in the LQG design. The modes of the LQG controller again separated
into slow and fast modes so that model reduction was also applicd to the controller; the
final controllers had between 8 and 10 states. We note that the LQG controller is a dynamic

controller while the controllers discussed below are conatant gain controllers.

We note that an LQG controller is a full multi-input multi-output dynamic controller,
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whereas all the remaining controllers are constant gain (no dynamics) controllers.

5.2.2 Harmonic Feedback

The second controller tested was used by Haynes [20] to control rotating stall with uniform
flow on the same compressor. For uniform flow the modes have a one-to-onz correspondence
with the harmonics and go unstable one at a time. This behavior was used by Haynes [20)
to experimentally find a set of independent optimal (in the sense of achieving lowest stalling
flow coefficient) single-input single-output controllers for the first three harmonics. Because
of the one-to-one correspondence between modes and harmonics each cortroller acted on
only one harmonic. We will refer to this as harmonic feedback (HF). Because each har-
monic feeds back only to itself the (multi-input multi-output) HF controller has a diagonal
structure. The zeroth harmonic was not considered important for uniform flow and was not

used by Haynes [20].

5.2.3 Hurmoenic Feedback with Coupling

As shown in Chapter 4 distortion introduces coupling between the harmonics and one can
argue that the coupling can be used to improve the performance of a controller. For example,
the first harmonic can be fed back to the zeroth and second harmonics, as well as itself. If
we use only the first three harmonics (plus zeroth), we need to find 16 gains and 15 spatial
phases (tkere is no spatial phase shift on the zeroth harmonic). It is very time consuming
to find all these gains and phases experimentally, so it was decided to employ coupling
between the zeroth, first and second harmonics only. The use of first and second harmonics
was based on the strong presence of these two harmonics in the first and second modes

(see Chapter 4 for numberirg of the modes). In the experiments with the distortion it was
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found that the compression system was extremely sensitive to changes in the mean mass
flow (that is, the rate at which the throttle was closed, see Section 2.4.2) so that it was

argued that coupling between the zeroth and first harmonics might have a stabilizing effect.

With this scheme the form of the controller is

/ )

koo ko1 O

kio kn ki2 0 ,
K= ’ kpq = IkPQIG‘ﬁpqt D,qg= 0’ 1a213-

0 ko kx 0

\0 0 0 kaa)

The optimal values determined by Haynes were used for ki1, k22, and k33, and the other
values kqg, ko1, k21 and k;2 were determined experimentally. This controller will be referred

to as harmonic feedback with coupling (HFC).

5.2.4 Distributed Feedback

Instead of decomposing the velocity perturbations into a sum of harmonics and feeding
back the harmonics as we did with HF and HFC, we can view the velocity perturbation as
a spatially distributed error signal which is fed back after it has been multiplied by a gain.
Also, because the perturbation is rotating around the annulus it may be advantageous to
include a spatial phase shift 3 to provide phase lead to compensate for the computational

delay and actuator dynamics. These two simple arguments lead to the control law
§v(6) = k6¢(6 — B). (5.1)
This feedback law will be referred to as distributed feedback (DF). The constant gain k and

spatial phase shift 3 was determined experimentally.
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It is interesting to compare this new control law with the HF controller. We can rewrite

Equation (5.1) in terms of the individual harmonics
69 = ke P8, (5.2)

that is, the nth harmonic 6$,. is rotated through an angle nf8 and multiplied by a gain k
to give nth harmonic 47. In contrast, each harmonic of the HF controller has its own gain

knn and spatial phase shift G,,
89 = knne Pn 5. (5.3)

Another difference between the two control laws is that the spatial phase shifts of the higher
harmonics of the DF controller are constrained to be multiples of that of the first harmonic.
As a result, the phase relation that exists between the harmonics of §¢ is preserved by the

DF controller but not by the HF controller.

5.2.5 Controller Implementation

All the constant gain controllers can be implemented in a computationally efficient way
without computing the harmonics. Let ng be the number of sensors around the annulus and

F,, be the DFT matrix corresponding to ns sensors. Then we can compute the harmonics
6¢p = F,,6¢(05) (5.4)

where §¢(6;) is a vector of velocity perturbation measurements at sensor locations 6y, . .., 0y,

around the annulus. The harmonics of the control signal are now computed as

65 = K¢

= KF,,6¢(05) (from 5.4) (5.5)
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Table 5.1: Gains and spatial phases of the HF, HFC, and DF controllers.

Controller | koo | k11 Bu | ka1 Bo1 | ka2 Ba2 | k3s  Bas

HF 0 |50 36° 41 91° |21 110°
HFC 0 |50 36°|20 45° (41 91°(21 110°
DF 3 |3.0 30° 3.0 60° 3.0 120°

where K is any constant gain controller. Let F,;_ ! be the inverse DFT matrix for synthesizing

the AGV deflections 6(6,) at n, actuator locations 6,...,0,, around the annulus, then
5v(6a) = Fy.'65
=F,'KF,, 6¢(0;) (from 5.5)
A
2 K'6¢(65). (5.6)

All the quantities are known so the matrix K’ can be precomputed and therefore we can
compute the individual actuator signals directly from the individual sensor signals without
computing the harmonics. If the number of sensors is different from the number of actuators
or if the sensors and actuators are at different locations around the annulus, K’ is not a
diagonal matrix even if the controller K is diagonal. The nondiagonal form is due to the

interpolation of the inverse DFT.

5.3 Active Control Experimental Results

5.3.1 LQG Controller

The stalling flow coefficient for the LQG controllers are 0.455 and 0.475 for the 0.8 and

1.9 dynamic head distortions for an increase in stable operating range of 1.5% and 1.1%
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respectively. The stable operating range has been increased by a small amount, but the point

is that controllers based completely on the model can be used to stabilize the compressor.

Because LQG controllers assume that certain phase relations exist between the har-
monics it is interesting to determine how sensitive the stalling flow coefficient is to changes
in the phase relations. This was determined experimentally by turning the screen away
from the position for which the controller was designed. The resulting stalling flow coeffi-

cients are shown in Figure 5.2. We see that for both positive and negative offsets a point is

0.49 T — T .
0485}
© 048F - ----------~ e e T T T

: o Measured stall| points
0.475} o

0.47 L 1 L 1 1
-180 -120 -60 0 60 120 180

Distortion screen offset [Degree]
Figure 5.2: LQG sensitivity to offsets in distortion location. The dashed line
shows the stalling flow coefficient without control.

reached beyond which the stalling flow coefficient increases suddenly above that of the open
loop stall point so that the LQG controller has a destabilizing effect. This clearly shows

the sensitivity of the LQG design to changes in system parameters.

The sensitivity to an offset in the distortion screen can be explainer as follows. Rotating

the screen away from its nominal position is equivalent to rotating both the sensors and
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actuators in the opposite direction through the same angle. We will use the latter approach.
If the angle through which the sensor and actuators are rotated is 8,, that is, the screen is

rotated by —6,, then the rotated input and output harmonics are

J:Y"zo = 6’7,,e"""”°

645 = dnetnle

respectively. Thus, the transfer function corresponding to the rotated configuration is ob-

tained from the nominal transfer function G (see Equation (4.15)) as

G% = diag[l, eti%, ¢t i3] 7 diag[l, e~o, ¢i%o =130 (5.7)
( goo gne ¥ gope=i2o goae™ 30
9106“8" 911 9126'i0° 9136_i29° (5.8)
g2oetio gy etifo 922 goae~ e
\9306+i39° garetie  gaetife 933 )

The transfer functions on the diagonal are unchanged, but the off-diagonal (or coupling)
transfer functions are phase shifted. The LQG controller is a multi-input multi-output
controller and uses all the relations between the different input and output harmonics,
including coupling between different harmonics. By rotating the screen we have changed
the system for which the controller was designed, and the phase change from the coupling
was enough to destabilize the system. The sensitivity of the controiler to changes in the
coupling between the harmonics is not unique to the LQG controller. Any controller that

directly relies on the coupling will be sensitive to offsets in the distortion.
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5.3.2 Harmonic Feedback and Harmonic Feedback with Coupling

One question posed at the beginning of the chapter was whether HF controllers designed
for uniform flow can stabilize the system in the presence of distortion. The answer to this
question is affirmative. The stalling flow coefficients of the HF controller are 0.452 and
0.475 for the 0.8 and 1.9 dynamic head distortions for 2.2% and 1.1% increase in stable
operating range respectively. Because the HF controller does not use any coupling between

the harmonics it is insensitive to changes in the circumferential location of the distortion.

With the HF controller under uniform flow inlet conditions, Haynes [20] achieved an

increase of 7.8% the operating range.

Another question is whether the flow coefficient can be lowered even further if we
take the coupling into account. The HFC controller was used to address this. Spatial
phases for the gains k> and ky; were varied between 0 — 360°. It was found that ki3 = 0
and kp; = 2¢'135° gave the best result, lowering the flow coefficient to 0.448 for the 0.8
dynamic head distortion, a 3% increase in stable operating range. A similar procedure was
followed to determine kp; and kjo but it was found that the addition of these gains led to
no improvement. The HFC controller thus increased the stable operating range 36% more
than the HF controller which had no coupling between the harmonics. This improvement
stems from knowledge of the coupling between the harmonics and thus the HFC controller
will also be sensitive to offsets in the circumferential location of the distortion. The HFC

controller was not used for the 1.9 dynamic head distortion.

5.3.3 Distributed Feedback Controller

The DF controller was experimentally tested under both distortions and uniform flow. In

all cases it was found that a spatial phase shift in the range 30 < 8 < 70° gave the best per-
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formance. Unless stated otherwise 3 = 30° was used. The stalling flow coefficients obtained
with this controller were 0.445 and 0.472 for the 0.8 and 1.9 dynamic head distortions re-
spectively. The corresponding improvement in stable operating ranges are 3.7% and 1.7%.
Both these flow coefficients are lower than the corresponding HF and HFC stalling flow
coefficients. The DF controller does not introduce coupling between the harmonics so that
its performance is invariant under changes in the circumferential location of the distortion.
An analysis comparing the HF and DF controllers will be given after we have discussed the
effectiveness of the DF controller. Finally, we note that for all the controllers the model
predicts that the system should be stable at the flow coefficients where we lose stability.

Possible reasons for the loss of stability are discussed in Section 5.4.

Figure 5.3 shows the PSDs measured under closed loop operation using the DF con-
troller. For reference the open loop PSDs (Chapter 4) are also shown in the graphs. The
figures show frequencies only up to 1.1w; because most of the energy in the perturbations is
below 1w;. The effect of control is seen from the attenuation of the peaks of the first mode
at 0.43w; in the zeroth, first and second harmonics by 15, 23 and 8 dB respectively. The
third harmonic did not show much open loop resonance and control appears to have little
effect. In the PSDs we also see that control had very little, if any, effect on the peak at 1w,
suggesting that the disturbance corresponding to this frequency is (almost) uncontrollable

from the AGVs. This was also true for the other controllers.

The magnitudes of the noise in the first and second harmonics has increased significantly
from the corresponding open loop values for frequencies below 0.1 w;; the situation is worse
for the second harmonic where the noise had increased almost 15 dB for frequencies up to
0.35w;. The PSD is a measure of the energy in the signal at a specific frequency. In all the
closed loop PSDs we see the largest values at very low frequencies and at 1wy, indicating

significant energy at these frequencies and thus may be causes for the system losing stability;
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this will be discussed further in Section 5.4.

5.3.4 Comparison between Harmonic and Distributed Feedback

We now compare the HF and DF controllers. The PSDs prior to stall with the HF controller
look very much like the corresponding DF PSDs and are not shown. To highlight the differ-
ences between the two controllers we show in Figure 5.4 the differences in the magnitudes

of the PSDs, that is,
A|PSD,| = [PSDHF| - |PSDPF| for n=0,1,2,3. (5.9)

In these figures positive values indicate that the DF controller attenuated perturbations
more than the HF controller. For all the harmonics the HF controller attenuated per-
turbations more than the DF controller over the range 0.4 — 0.6w, (approximately). For
the zeroth, second, and third harmonics and for frequencies below 0.3 w, the DF controller

attenuated disturbances more than the HF controller.

Earlier in this section we mentioned that there is a large amount of energy in the
noise at frequencies below 0.1w; where the DF controller generally had better disturbance
rejection than the HF controller. It may thus be that noise at low frequencies contributes
to the loss of stability at higher flow coefficients for the HF controller. For the zeroth,
first, and second harmonics the DF controller attenuated perturbations more than the HF

controller in the range 0.6 — 0.8 w;.

The differences between the controllers can be explained by looking at the predicted
root loci of the two controllers systems shown in Figure 5.5. As the gains are increased
from zero (no control) to 100% (experimental values) the poles trace out the paths shown
by the dots. In this figure we see that the HF controller stabilizes the pole associated with

the first mode slightly more than the DF controller, consistent with the greater attenuation
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of perturbations by the HF controller in the frequency range 0.4 — 0.6 w; seen in Figure 5.4.
The gain of the HF controller on the first harmonic, which is dominant in the first mode,
is 66% larger than the corresponding DF controller gain while the spatial phase shifts are

almost equal, 30° versus 36°.

The biggest difference between the two controllers is seen in the second mode. The
DF controller has moved the pole associated with the second mode essentially horizontally
into the left hand plane while the HF controller moved it almost vertically, offering little
stabilization. The pole associated with the second mode of the DF closed loop system at
approximately wy = 0.75 is in the range 0.6 - 0.8w, over which the DF controller had
more attenuation (Figure 5.4). This is surprising as the gain of the HF controller on the
second harmonic, which is dominant in the second mode, is 37% larger than that of the
DF controller. However, the phases of the two controllers are different, being 91° and 60°
respectively. Thus, we conclude that the better stabilization of the second mode by the DF

controller is due to the difference in the spatial phase shifts.

The third mode is also stabilized more by the DF controller. In this case the HF gain is
approximately 30% smaller than that of the DF controller and the spatial phases, 110° for
HF and 90° for DF, are different. The HF controller moved the pole vertically so that we
again attribute the better stabilization to the difference in the phases of the two controllers.
We have seen in the PSDs that the third harmonic did not show strong resonance. This
is in part due to the fact that the third harmonic is not as strong in the first mode as the
zeroth, first, and second harmonics, and in part due to the exponential decay of the higher
harmonics upstream of the compressor which strongly attenuates the third harmonic. It is

thus hard to determine the importance of the third harmonic.

In Section 3.6 we saw that the zeroth harmonic has a strong presence in the zeroth

mode. It is thus surprising to see that the HF controller moved this mode further to
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the left than the DF controller, even though the gain of the HF controller on the zeroth
harmonic is zero, while that of the DF controller is k = 3. The first harmonic, however, has
strong coupling with the zeroth harmonic. The larger gain on the first harmonic of the HF
controller must have affected stabilization through this coupling. Thus, the model predicts,
and experiments showed, that the DF controller stabilizes the compressor better than the

HF controller.

The model predicts that the DF controller also performs better on distortions with
different magnitudes and extents. The results obtained so far with the DF controller are
promising, but additional experimental results are needed before its superiority can be
established. However, the simplicity and ease of tuning make it a very attractive alternative

to the HF and HFC controllers.

5.3.5 Other Experiments with Distributed Feedback Controller

We end this section by mentioning some variations of the DF controller that were used
in experiments. In the previous discussion emphasis was put on the spatial phase shift
B with little reference to the gain k. The experiments showed there was no measurable
difference in the stalling flow coeflicients for 2.5 < k < 4. For k < 2.5 the stalling flow
coefficient increased and for £ > 4.5 the AGVs were continually driven into saturation
with no decrease in stalling flow coefficient. The value k = 3 was thus used for all the

experiments.

It was mentioned earlier that the compressor was very sensitive to changes in the mean
mass flow (obtained through changes in the throttle setting). It was believed it might be due
to the direct relation between mean mass flow and the zeroth harmonic and experiments

were conducted where the gain on the zeroth harmonic was varied while gains on the
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other harmonics were kept constant. No measurable changes were detected in stalling flow
coefficients or PSDs. The root loci also show little variation when the gain on the zeroth
harmonic is changed. The sensitivity due to changes in the mean mass flow thus remains

unresolved.

The experimental rig had 1€ hot-wires so that it was possible to measure the first
seven harmonics. It was found that feeding back more than the first three harmonics (in
the DF controller) led to no decrease in stalling flow coefficient. Due to the exponential
decay of the upstream flow field the fourth harmonic is attenuated more than 20 dB, and
the fifth, sixth, and seventh harmonics even more, so that the SNR of these harmonics will
be much smaller than one. In addition, the model predicts that these harmonics do not
have a strong presence in the first and second modes so that it is difficult to determine if

they are important for active control.

Experiments were also conducted with eight hot-wires in the usual upstream locations
and eight hot-wires installed downstream between the first rotor and stator. The hot-wires
were at the same circumferential locations (see Figure 2.4, p.41). In this sensor configuration
the DF controller was used to stabilize the system using either eight upstream or eight
downstream hot-wires and the HF controller was used only with the eight upstream hot-

wires. The stalling flow coefficients are listed in Table 5.2 for all the controllers.

For the DF controller, the stalling flow coefficient for using eight upstream hot-wires is
higher than with 16 hot-wires, giving an increase of stable operating range of 1.7% versus
3.7% for 16 hot-wires. The degradation in performance is believed to be a result of the
coarser localization of the wave with the smaller number of hot-wires. The HF controller
performed poorly in this experiment and gave very little stabilization with only eight hot-
wires. With the eight hot-wires behind the first rotor the DF controller had a lower stalling

flow coefficient than the corresponding upstream case, 0.450 (2.6%) versus 0.454 (1.7%).
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Table 5.2: Stalling flow coefficients. The first line shows the stalling flow
coefficients and percentage increase in flow coefficient without control. The
remaining lines list the stalling flow coefficients and percentage increase in
stable operating range. The HF-8 and DF-8 indicate that only 8 hot-wires
were used with these controllers. Percentages are computed with respect to the
uniform flow stalling flow coefficient without control, ¢ = 0.460.

Controller Upstream Upstream Behind rotor 1
1.9 dynamic head | 0.8 dynamic head | 0.8 dynamic head

No control 0.480 4.3% 0462 0.4% 0.462 0.4%
LQG 0475 1.1% 0.455 1.5%

HF 0475 1.1% 0.452 2.2%

HFC 0.448 3.0%

DF 0472 1.7% 0445 3.7%

HF-8 0.460 0.4%

DF-8 0454 1.7% 0.450 2.6% |

This result was unexpected as the hot-wires are in the rotor wakes so the SNR is decreased.
However, this degradation is partly offset because the sensing is closer to the source of the
perturbations so that the signal, especially the higher harmenics, will be captured better.
In addition, analysis of the transmission zeros showed that moving downstream increased
the frequency of the nonminimum phase zero by 50%. Thus, we should expect better

stabilization.

5.4 Investigating Loss of Stability

In the previous section we mentioned that we lose stability at flow coefficients for which
the extended model predicts the system should be stable. In this section we discuss experi-

ments that were also performed to asses some conjectures concerning loss of stability. Two
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simulations were also performed to determine if actuator saturation and nonlinear effects

were causing the loss of stability.

Gysling [19] has found that acoustic modes in compression systems can have a desta-
bilizing effect. To determine if any acoustic modes exist in the experimental compressor,
high response pressure probes were installed in the plenum and the compressor was run at
1500, 1900, 2100 and 2400 revolutions per minute. In all the cases PSD analysis showed
no new peaks and the peak of the first mode scaled with the mean rotor frequency. The
experiments were repeated with the exhaust fan (see Figure 2.1 on p.36) turned on; again
no differences were detected. It thus appears that acoustic modes are not responsible for

the loss of stability.

Day (7] has found that some compressors do not show modal perturbations prior to
stall. Instead, the stall cell developed out of a short length scale perturbation. To determine
if short length scale perturbations were present eight hot-wires were removed from upstream
and installed between the first rotor and stator. The limited experiments conducted with
this sensor arrangement showed no evidence of short length scale perturbations. However, it
was found that the formation of the stall cell was visible approximately one rotor revolution

earlier by the hot-wires behind the rotor.

In the PSDs of Chapter 4 we saw that there is nonlinear interaction between the
disturbance at 1w, and the first mode, resulting in peaks at w; + w;. A similar type of
nonlinear interaction was also observed when the system was excited with a sinusoidal
signal of frequency we by the AGVe — peaks appeared in the PSD at exactly w £ we. In
this experiment the level of excitation was 5°, which is well within the linear operating range
of the AGVs. The linearity of the AGVs was verified by taking a full set of transfer functions
at the same mean mass flow with 5° and 10° excitation levels. The transfer functions were

in excellent agreement so we conclude that the nonlinear coupling is not due to nonlinearity
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in the AGVs and must be due to ancther phenomenon.

Prior to the installation of the distortion screens uniform flow transfer functions were
measured with uniform flow. The model predicts that the harmonics are not coupled and
that the zeroth harmonic i3 not important for uniform flow, but the full multi-input multi-
output transfer functions were measured. The uniform flow transfer functions are shown in
Figure 5.6. The coupling between the different harmonics, including the zeroth, is clearly
visible. Note that the peaks in the off-diagonal transfer functions are at the same frequency
as that of the first mode. This behavior is similar to that we have seen when distortion
is present, and therefore must be due to nonlinear effects. These transfer functions were
measured at ¢ = 0.460, the open loop uniform flow stall point. Uniform flow transfer
functions measured at ¢ = 0.470 showed no coupling between the harmonics. At this
higher flow coefficient the resonant peak of the first mode is significantly smaller than at
¢ = 0.460 and the coupling must therefore be a result of the larger perturbation magnitudes.
This coupling was not expected and led to the determination of the magnitudes of the
perturbations necessary for nonlinear effects to become important. This is discussed in the

next section.

5.4.1 Nonlinear Simulations

Analysis of the actuator deflections showed that the AGVs were often driven into saturation
prior to stall. To determine if this was causing the loss of stability the closed loop was
simulated with the magnitudes of the actuator deflections limited to 15°, the maximum
value allowed in the experiments. These simulations showed that the closed loop system
should be stable at the flow coefficients where the experimental system lost stability. It
was also found experimentally that a decrease in the maximum AGV deflections up to

approximately 20% has little effect on the stalling flow coefficient. Therefore, the saturating

136



Magpnitude [dB]

Magnitude [dB]

Magnitude [dB]

60 - 8o 5%, = 5o

30 T - 30 . T
20t . 20 .
10+ e o 10} .
=
of . P of .
-10[ . 3 -10F .
£
-20f E & -20} 4
(L)
-30} g s -3 L .
-40} -40 4
_m 1 _w P e
0.1 1 0.1 1
550 = oy
30 y—r————ry -
20 -
10f 1 )
=
° ] 3
-10 1 ]
=2
-20 - hl':o
)
-30 - s
-40 4
-50
0.1 1
20t .
o 10f .
= ]
(1]
©
S i
=
[~ -
a0
1]
2 -
1 O
1
61 — ¢
30 et .
201 . 20 s
10 1 o 1o .
i =
0 . u of .
-10f . 3
2
-20( . &
(1]
=30} - s
0 \/\ ]
_50 1 _50 s i " i P |
0.1 1 0.1 1
Frequency [w,] Frequency [w/]

Figure 5.6: Magnitudes of transfer functions, uniform flow, ¢ = 0.460.
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AGVs is not the limiting factor.

In Chapter 4 we saw that the envelopes of the measured velocity perturbations were
not symmetrically distributed about zero, suggesting nonlinear behavior. The PSDs in that
chapter also showed effects characteristic of nonlinear behavior. Earlier in this chapter it
was mentioned that for small levels of AGV forcing nonlinear behavior was also observed.
Nonlinear coupling was also observed in the uniform flow transfer functions in Figure 5.6.
These observations suggest that the magnitudes of the velocity perturbations may be large
enough so that terms ignored during linearization may be significant. In this section we
determine through a simple simulation if this is the case. The analysis presented here is far
from complete and was performed to see if additional research is necessary in this direction.
Detailed nonlinear analysis (using Lyapunov stability theory) was done by Mansoux [31]

for uniform flow, but no such research has been done for distorted flow.

To estimate the effect of nonlinearity terms up to second order were kept in the Tay-
lor series expansion of Equation (3.28). The expression for the pressure rise across the

compressor is

5180 = ) = [ 34 — ey 60 + 3 S E (667 - e (5.10)

We will only analyze the homogeneous system so the AGV forcing term is not included here.
All the other pressure balance equations were kept the same. Calculations were carried out
for the 0.8 dynamic head distortion at a flow coefficient 1% above the open loop stalling

flow coefficient.

It was found that the magnitude |d¢(T = 0)| of the initial velocity perturbation above
which the system goes unstable was |6¢| = 0.029. In Chapter 4 we saw that the magnitude of

the pre-stall perturbations exceeded this value. Although this is a highly simplified analysis
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it makes plausible the case that nonlinear effects may be important in determining loss of

stability, but more research is necessary in this area.

5.5 Summary

In this chapter we presented the first experimental evidence that active control can be
used to increase the stable operating range of a compressor operating with circumferential
inlet distortion. The stable operating range was increased by 3.7% and 1.7% for the two
120° distortions of magnitude 0.8 and 1.9 dynamic head respectively by the distributed
feedback controller. It was also shown experimentally that the harmonic feedback controllers
optimized for uniform flow were effective in the presence of these distortions, although
the corresponding stall flow coefficients were higher than that of the distributed feedback
controller. By using the coupling between the harmonics it was possible to lower stalling flow
coefficient. LQG cortrollers based completely on the model also stabilized the compression

system at open loop unstable points.

The reason for loss of stability is not known, but experimental evidence and analysis
of the model suggest that the pre-stall perturbations are large enough for nonlinear effects

to become significant.
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6 Summary

An analytic and experimental study were carried out on a low speed three-stage axial
compressor to assess the use of active control for increasing the stable operating range of
a compressor in the presence of circumferential inlet total pressure distortion. A set of
movable guide vanes was used for actuation. Steady state and dynamic response behavior,

under open and closed loop conditions, were examined.

Linear quadratic Gaussian controllers based completely on the model stabilized the
system at open loop unstable operating points. This is the first experimental assessment of
tke application of modern control design methodologies to the control of rotating stall in
the presence of total pressure inlet distortion. The range extension was 1.5% and 1.1% for

0.8 and 1.9 dynamic head distortions respectively.

Constant gain harmonic controllers optimized for uniform flow were also able to stabilize
the compressor in the presence of distortion, extending the operating range by 2.2% and
1.1% for distortions of 0.8 and 1.9 dynamic heads 120° extent respectively. Taking into
account the coupling between harmonics of the perturbations increased the stable o). ..o.ing

range by 3% for the 0.8 dynamic head distortion.

A new control law, called distributed feedback, was introduced and was found experi-
mentally to have superior performance in the presence of distortion. This control law has a
single gain and spatial phase shift. The distributed feedback controller increased the stable
operating range by 3.7% and 1.7% for 0.8 and 1.9 dynamic head 120° distortions respec-
tively. Analysis has shown that the improved performance results from better stabilization

of the second mode and better suppression of low frequency noise. The extended Hynes-
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Table 6.1: Comparison between Uniform and Distorted Flow

Uniform Flow

Harmonics are decoupled. Section 3.6

Mode shapes are sinusoidal and time invari-
ant. Section 3.6

Envelope of velocity perturbations uniform
around annulus. Section 4.2.1

Disturbance at 1 w; present only in first har-
monics. Section 4.2.2

SNR = 1.25 for the first harmonic. Sec-
tion 4.2.2

Stalling flow coefficient = 0.460. Sec-
tions 4.1.2 and 5.3.

System becomes nonminimum phase at ¢ =
0.464(+0.9%). Section 3.7.

7.8% increase in operating range with active
control. Section 5.3

Distorted Flow

Strong coupling between harmonics, includ-
ing zeroth.

Mode shapes are nonsinusoidal, change
with time as wave propagates around the
annulus.

Envelope of velocity perturbations non-
uniform around annulus.

Disturbance at 1w, stronger and present in
all harmonics.

SNR = 0.34, 0.63, 0.29 for zeroth, first, and
second harmonics.

Stalling flow coefficients: 0.462 (+0.4%)
and 0.480 (+4.3%) for 0.8 and 1.9 dynamic
head distortions respectively.

System becomes nonminimum phase at ¢ =
0.467(+1.5%) and ¢ = 0.486(+5.6%) for 0.8
and 1.9 dynamic head distortions.

3.7% and 1.7% increase in operating range
for 0.8 and 1.9 dynamic head distortions
with active control.

Greitzer model for compressor response to inlet distortion predicts that this controller would

also perform better for other distortions with different magnitudes and extents.

Transfer functions from the actuator guide vanes to the hot-wires measured at several

mass flows were in good agreement with those predicted by the extensions of the Hynes-



Greitzer model. This is the first experimental evidence that quantitatively establishes the
ability of the model to predict the dynamics of small perturbations in the presence of
distortion. The transfer functions clearly showed the coupling between harmonics which is
characteristic of the modes that occur in the presence of inlet distortion. The open loop
stalling flow coefficient for the 0.8 dynamic head distortion was correctly predicted by the
model, but was over estimated for the 1.9 dynamic head distortion. This discrepancy is
probably due to the fact that the compressor pressure rise characteristic is not known over

the complete range of the velocities present for the large distortion.

The experimental results revealed nonlinear dynamic behavior connected with stall
inception. The envelope of the velocity perturbations follows the trend predicted by the
model, but is not symmetrically distributed about the mean. Power density spectra revealed
an interaction between the first mode and the disturbance at one rotor revolution, and a
nonlinear simulation showed that, at the magnitudes of perturbations observed prior to

stall, nonlinear effects may be significant.

Future Research

Several questions remain unsolved and need additional investigation. The most impcrtant,
loss of stability under active control, is not understood. Spectral analysis has shown that
all the controllers suppressed perturbations of the most unstable mode well, but there is
a significant amount of energy in low frequency noise as well as at one rotor revolution.
The noise far upstream and at the throttle exit does not follow the trends observed in
the experiments, and it is not known if the low frequency noise contributes to the loss of
stability. In addition, experimental data showed various forms of nonlinear behavior, and
it is not known whether it is driving the system unstable. The disturbance at one rotor

revolution is significantly stronger in the presence of distortion and interacted in a nonlinear
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way with the first mode. The cause of this disturbance is not known, and it is also not

known if it contributes to the loss of stability.

The extent and intensity of the distortions have been assumed known and time invariant
but this is not a realistic assumption under all circumstances. The effectiveness of the
controllers must be verified in the presence of unknown, time varying distortions. If the
rate at which the distortion changes is slow compared to the dynamics of rotating stall,
the distortion can be approximated as steady, and it may be possible to find controllers,

optimized for the instantaneous distortion, in real time using recursive algorithms.

Schulmeyer [43] showed that restaggering inlet guide vanes by 10° decreased the nonuni-
formity in the flow by 50% and gave an increase in pressure rise of 5.3%. By combining
restaggering inlet guide vanes with active control we should be able to achieve a larger
increase in the stable operating range. If the distortion is changing slowly the restaggering
can be done dynamically in real time. This combined approach is promising and warrants

further investigation.
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Appendix A Fourier Convolution Matrix

Let two Fourier series be given by

ny

£8) = fo+ ) (fepcospd + fopsinph) (A.1)
p=1

9(8) = go + Y _(eq 03 g0 + goqsin gh). (A2)
q=1

Multiplying the Fourier series f(@) with ny harmonics with g(#) with n, harmonics
gives another Fourier series p(#) with ny + ny harmonics. Note that a Fourier series with n

harmonics has 2n + 1 Fourier coefficients.

We would like to compute the product p(8) = f(#)g(6) and write it in the form p =
F(f)g where F(f) is the (2(ny + ng) + 1) x (2ny + 1) Fourier convolution matrix with
elements that are functions of the coefficients of f{6), g is a 2n, + 1 vector with elements

the coefficients of g(#) stored in the format

9 = [9c0, 91, G815 9c2) Gs2 -+ -» Gengs gsn,]T, (A.3)

and p is a 2(ny +ny) + 1 vector with elements the coefficients of the product p(6) stored in
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a format similar to that of g. Write the product as

£(0)9(6) = fogo + fo Y (9cq C03 G0 + geq sin ) (A.4)
q=1
ny
+ Z (fep cospd + fspsinph) go (A.5)
p=1

ny Ny ny ng
+ z Jepcospf Z Gcq €OS g0 + Z Jep cos pf Z gsq Singl (A.6)
g=1 p=1 q=1

p=1
ns Ny ny Ny
+ Zf,p sinpozgc,, cosql + ng,, sianZgW sin g@ (A.7)
p=1 q=1 p=1 q=1

The coefficients of the expressions in (A.4) and (A.5) are easy to handle. The expressions
in (A.6) and (A.7) have products of the form cospf cos g8, cos pfsin g8, sinpé cos g6, and

sin pf sin gf. From standard trigonometric identities these are given by
feptea 03900800 = L2 {cos(p + 00 + cos(p ~ bleq (A8
Jep9sq cOS pO8in gb = %[sin(p + )0 — sin(p — q)0)gs,
= L2 sinp + 9)0 — sign(p - g) sin(lp - a1)Blon (A9)

opSq 8in 00840 = 22 lsn(p + 4)0 + sinp — )y

= %g[s“‘(” + q)0 + sign(p — q) sin(|p — q])8)gcq (A.10)
Jor9sq 8inpOsingd = — fyy2[cos(p + q)6 — cos(p — )f]gsq (A.11)

where | - | denotes absolute value and

(+l ifp>q,

sign(p — q) = J 0 ifp=gq, (A.12)

;—l ifp<g.
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The sign and absolute value modifications are included to simplify software implementation.
Therefore, for each of the four products and for each combination of p and ¢, we get two
entries in the matrix: one corresponding to p + ¢ and one to p — q. This brute force method
is not the most efficient way to construct the Fourier convolution matrix but works quite

well for practical sized problems.
We illustrate the use of the Fourier convolution matrix with an example. Let
f(0) =1+2cosf + 4sinb
g(0) = —2 + 6cos 6 — 8sinb, (A.13)

then p(6) = —12 + 2cos @ — 168in 6 + 22 cos 20 + 4sin 20. Vectorizing we get

(1 1 2\
21 0
F(f)=140 1 |- (A.14)
01 -2
\0 2 1)

and g = [—-2,6,—8]T. Multiplying the matrix F(f) with the vector g we get
p=[-12,2,-16,22,4] . (A.15)
The elements of p are exactly the coefficients of p(8).

This example also illustrates the increase in the number of harmonics that we get when
we multiply two Fourier series. For software implementation we need to take care of this
increase in the number of harmonics. This is especially true for the least squares minimiza-
tion routine that uses an iterative algorithm to solve for the steady flow. The approach

adopted here was to truncate the order of the Fourier series after every multiplication to a
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predetermined number of harmonics. The number of harmonics that is needed was found

through simulations and is discussed in Section 3.3.3.
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Appendix B AGV Dynamics

Expressions for the pressure rise across and flow perturbations through nonuniformly stag-
gered AGVs for uniform steady flow were derived by Longley [26]. In this appendix we
extend the results to the nonuniform steady flow case. In contrast to the chapters in the
thesis the derivation in this appendix uses absolute values of some variables and we will
nondimensionalize the expression as we proceed. In particular, the variables b,, p;, and z

are not nondimensionalized; the remaining variables have their usual meaning.

Consider two vanes at circumferential locations # and 8 + A0 with deflections v and
v + A+ respectively as shown in the figure below. The widths between the vanes at station

2 (inlet) and station 3 (outlet) are given by

9+ 467
7+4Y

ot _—1—
- 7

w® =FAf - %‘5[(‘7 + A7) -]

w® =FAQ + b;“[('r +A4y) -]
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respectively. Dividing through by 7A@ and taking the limit A9 — 0 we get

w? ba
FAO 2F
w® _ ba I}
S T

where we used a prime to indicate derivative with respect to 8. Mass conservation requires

that w@¢® = w®¢®, go that, to first order,

¢? = (1+ pay')p® (B.1)

where we have used the definition u, = b, /7. Linearizing this equation about the nonuniform

steady flow ¢s and steady deviation 5 we get

0 = 1+ I‘a'Ys’)J‘ﬁ(a) + I‘a¢s‘s7l- (B.2)

Next we find an expression for the total pressure across the AGVs. Along a streamline

P, 9% _
p + i constant (B.3)
Cx = ¢uw
_ 9%
=3 (B.4)

Assuming a linear axial velocity distribution between stations (2) and (3) we can write
=@ 4 Z (.3 _
c,,(:c) =c; + b_(cz —C )
a

With this velocity relation we have from Equation (B.4)
Lid
2b,

19 1 dc(t) , 9 2% 8
o b R R L

(e - )

o(z,t) = c(t) + zc? +
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From Equation (B.3) we get

P —p” _ 90 9o
p Ot at -

Simplifying and nondimensionalizing this equation gives
(3) (2)
pe =P __ 91 e e

From Equation (B.1) we get the first order approximation
1 @ (2) 1 o
5(#% =) = (1+ Spay')8™.

Substituting this into Equation (B.5) and simplifying gives

(3) (2)
P — P d 1 " (3)
R (14 = .
% #aa‘r( 2"‘37 )¢

Linearizing this equation about the nonuniform steady flow gives
§p® — §p® 1 . 2 .
PP o pa(L pay )60 — ERgesy. (B.6)
pus, 2 2

Equations (B.2) and (B.6) are the equations needed for the linearized dynamics.
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Appendix C Transfer Functions

C.1 Complex Input-Output Transfer Functions

In this appendix we derive expressions to comp'’ the complex-input to complex-output
harmonic trarsfer functions given the real-input to real-output harmonic transfer functions.
The complex-input to complex-output transfer functions will be referred to as complex

transfer functions.

For simplicity we derive the results for one harmonic plus the zeroth harmonic and
use the subscripts c, s, and 0 to refer to the cosine, sine and zeroth harmonic coefficients
respectively. The results hold for all harmonics n > 0 and the input and output harmonic
numbers do not have to be the same. Consider the real-input real-output transfer function

defined by

Yo(iw) Goo(tw)  Goc(iw) gos(iw) (uo(iw)

-

Ye(iw) | = |geo(iw) Gec(iw) ges(iw) | |uc(iw) (C.1)

L‘yu(i“’)_ _gso(i“’) sc (iw) gss(iw)_ _Us(iw)_

To keep the notation uncluttered we will omit the dependency of the transfer functions on

iw in most of the expressions. Define the complex harmonic output

y(t) = ye(t) +iys(t)  y(iw) = ye(iw) + iys(iw) (C.2)

¥ (1) = ye(t) —iva(t)  Y(iw) = ycliw) — iys(iw) (C.3)

where y* is the complex conjugate of y. Note that y*(iw) # ;/r(iw). Similarly, for the complex
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harmonic input u we have
u(t) = uc(t) +iug(t)  u(iw) = uc(iw) + fug(iw)
w(t) = uc(t) —iug(t)  U(iw) = uc(iw) — fug(iw).

As noted in Section C.1 the definitions of the complex harmonics do not correspond to the
standard relation between real and complex Fourier coefficients. The two variables y* and
u* are introduced to simplify the similarity transformation. The similarity transformation

matrix and its inverse that corresponds to these definitions are

100 2 0 0
]

T=lo1 i|] T'=3l0o 1 1

0 1 —i 0 i i

Applying the similarity transformation to Equation (C.1) we get the complex transfer func-

tions
ryo(iw)- [ 9oo 3(90c — 790s) 5(9oc + 3g0s) W .uo(iw)-
Y(iw) | = |gco +igs0  3[(cc + gus) — i(9cs — 9ac)]  3((9cc — Gas) +1(ges + gsc)] | | uliw)
$iw) | [0~ g0 Hl(Gec — gus) — i(9es + 9sc)]  3(9cc + Gas) +i(ges — 9uc)]| | uliw) |

(C.4)
9oo(iw)  Gou(iw) g z(iw)| |uoliw)
2 o) gpuliv) g g6w)| [uti) |- (€3)
950()  g;,(iw) gy3(iw) | | liw) |

We are especially interested in the transfer functions goo(iw), gou(iw), gyo(iw), and gy (iw).
For positive values of w these give the complex traunsfer functions between the different
harmonics and a peak in the magnitude of the transfer function will indicate a wave travel-

ling in the same direction as the rotor. Because the input and output signals are complex
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these transfer functions do not satisfy the complex conjugate symmetry property and the
transfer functions at negative frequencies look completely different from those at positive
frequencies. Therefore, if we want to have a complete picture of the system, we need to
look at both positive and negative frequencies. Fortunately we do not have to re-evaluate
the transfer functions at negative frequencies (which is computationally expensive) — they
can be computed from the real transfer functions by using a few simple relations that we

derive next.

From Fourier transform properties we know that the Fourier transforms of real val-
ued functions have complex conjugate symmetry, that is, if f(t) is a real function with
Fourier transform f(iw) then f*(iw) = f(—iw). Applying this to the transfer function of
Equation (C.1) we get

9ee(iw) = gec(—iw)

9os(iw) = ges(—iw)

Using these relations we find

Gou( i) = 3lg3c(i)  igiai)] ()
yo(—iw) = geo(iw) + g, (iw) (C.7)
gyu(—iw) = 3[(62() + g (iw)) — i(g3(w)) ~ ()] (c8)

Equations (C.4), (C.5), and (C.6)-(C.8) are all we need to compute the complex transfer

functions at all frequencies given the real transfer functions at positive frequencies.

Other interesting relations can be derived by applying the conjugate symmetry to the
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other transfer functions in Equation (C.4). The following relations are easy to derive

gyu(_u") = 9;1;‘ (iw)

9,4(-i) = g (iw).

C.2 Measurement of Real Transfer Functions

Various time and frequency domain methods exist for identifying multivariable systems;
see for example [45]. A major consideration for measuring the compression system transfer
functions was the quality of the measurements at low signal to noise ratios. Of all the
available methods the nonparametric frequency domain correlation method is considered the
most robust method for measuring transfer functions in noisy environments (see Rake [40]
and Wellstead [47]). In addition, it is also robust against even ordered nonlinearities and
methods exist to eliminate odd-ordered nonlinear effects [11]. It is interesting to note that
this is one of the oldest identification methods and has been available in commercial transfer
function analyzers since the Sixties [9]. We first present the method for a single-input single-

output system and then we generalize it to the multivariable and closed loop cases.

Consider a single-input single-output system with transfer function g(s) as shown in
Figure C.1. If the input to the system is a cosine with constant amplitude ug and frequency

wp the output y(t) of the system is
y(t) = |g(iwo)] cos(wot + p)up + n(t) + transients

where n(t) represents the noise in the measurement. If the system is stable the transients

will go to zero and the system will reach steady state — we assume that this is the case.
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Figure C.1: Open loop transfer function measurement.

Multiplying the output by coswyt and integrating over k periods tp = 2mw/wp we get

1 kto
po= g || vt)coswotiat
kto Jo

1 kto
= |g(iwp)| cos(p)uo/2 + E./(; n(t) cos(wot)dt. (C.9)

If the noise is zero mean and independent from the input cosine or if the noise covariance is
bounded by an exponential function (a weak assumption for stationary processes) the last
integral goes to zero as k goes to infinity [45]). Similarly, forming the product between the

output and sinwyt we get

1 kto
=g [ uOsinnt)de
kto Jo

1 kto
= |g(iwo)| sinl)ug /2 + —/ n(t) sin(wpt)dt. (C.10)
kto Jo

From Equations (C.9) and (C.10) we can compute the magnitude and phase of the transfer

function at wg from
. 2
g(iwo)|? = (%)2(?? + pf) (C.11)

p = arg g(iwo)

= arctan(p; /pr). (C.12)
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There are various ways of viewing this procedure. One view is that of correlating out

the known signal at the output of the system as shown in Figure C.2. An alternative view

up COs wot

G(iw)

cos wot

k
ke

—— P

kto
0

T
‘(?—

sinwot

Figure C.2: Transfer function measurement: correlation.

is that of filtering the output y(¢) with two finite impulse response (FIR) filters [9] as shown

in Figure C.3. The filter impulse responses and transfer functions are

Uug COS Wt

| G(iw)

P

Figure C.3: Transfer function measurement: FIR filtering.
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4

A <t< )

he(t) = 4 kto cos(wpt) 0<t<tp —  he(iw) = _—_l_ﬂs_'l‘("k“"—/“’"g —imkw/wo
mk wp 1 — (w/wp)

0 otherwise

.

-1 ..
7 Sin(wot) 0<t<tp . —isin(mkw/wo) _irkujwe
h.(t) = 4 — hl(‘IW) — EW .

0 otherwise

\

The magnitudes of the transfer functions corresponding to the impulse responses are
shown in Figure C.4 for two values of k. For the figures the magnitudes of the transfer
functions have been multiplied by two to compensate for the factor two in Equation (C.11).
Note further that the bandwidths are quite narrow so that only £10% of the frequency
axis about the normalized center frequency w/wp is shown. Only a few of the side lobes
are shown and the dotted lines in the graphs indicate the envelopes of the side lobes. If
we define the bandwidth Aw/wy of the filter as the width between the first zeros of the
side lobes then Aw/wy = 2/k. Nondimensionalized frequencies in the range 0.1 < wp < 3.0
rotor revolutions correspond to absolute frequencies in the range 4-120 Hz, so that for an
integration time of 10 seconds, 40 < k < 1200 and 0.05 < Aw/wp < 0.0017. The standard

deviation of the transfer function estimate G is (see [40))

s _ 2 PSD;, (wp)
STD(G (iwp)) = ™ G(iwo)”/ Fio 9 (C.13)

where PSD;,(wp) is the value of the noise power density spectrum at wp.

The method can be generalized to the multi-input multi-output case in several ways.
One way is to excite one input at a time and measure all the outputs, that is, we are
measuring a single-input multi-output transfer function. By using linearity we can measure
the complete transfey function by repeating the procedure for the other inputs one at a time.
A significant amount of time can be saved by exciting an input with different frequencies

(and appropriately selected phases) at the same time. Alternatively, we can excite the
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Figure C.4: FIR filter transfer functions. Top=h,, bottom=h;.
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different inputs with different frequencies. Procedures exist for constructing these signals,
called multisines, so as to minimize the maximum amplitude of the excitation signal, see {13].
A disadvantage of multisines is that the control power needed goes up with the square of the
number of sines. For the current actuators it was found that with two or more frequencies
at a time the AGV motor currents exceeded their maximum values and were electronically
limited. This was considered undesirable as it causes distortion of the excitation signal so

that only one frequency and one input was used at a time.

It is possible to generate the input signal so that the resulting wave travels in any
direction. Although it is tempting to generate a wave rotating in the same direction as the
rotor it was found that this would easily destabilize the system for excitation frequencies
close to that of the first and second modes. Even if the compressor stayed stable the
perturbations were too large to be considered linear operation so that corotating excitation

signals were avoided during transfer function identification experiments.

The above method can also be extended to closed loop transfer function measurements
provided that proper care is taken to prevent the method from giving biased results. The
bias arises because, under closed loop operation, the noise is being fed back so that the
noise at the input of the system is correlated with the noise at the output of the system.
Unbiased measurements can be obtained if the system is excited with an external signal r
that is uncorrelated with the noise as shown in Figure C.5. In this figure K (s) represent the
controller, M(s) the motors and amplifiers, and G(s) the compressor and anti-alias filters.
We are interested in measuring G(s). This is done by measuring the transfer functions from

r to &y and T to §¢ at the same time and recovering G(s) from these two transfer functions.

The detailed closed loop system is shown in Figure C.6 where we indicated transfer
function measurements to the velocity as well as to the plenum pressure perturbations.

Ap(s) and Ay(s) are known anti-alias filters. First, assume the loop is not closed 3o that
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Figure C.5: Closed loop transfer function measurement.

the transfer function from r to the AGV deflections v is

r

*’é}— M(s)

i}—J K(s)

A

Ap(s)

— op3”

Gs

As(s)

o¢

Figure C.6: Detail transfer function measurement.

&y = Mr

A
= G11'.

(C.14)

The open loop transfer function from r to the velocity perturbations d¢ is

5¢ = A¢G¢MT

= A¢G¢G11‘

A
= Gor,
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and the open loop transfer function to the plenum pressure perturbations is

= A,G,Gir (C.17)
2 Gar. (C.18)
From Equations (C.14)-(C.18) we get
Gy = A, GGy (C.19)
Gp = A;'G3G1. (C.20)

Under closed locp operation the transfer function from r to dv is
0y = Mr — MK AyG 4oy
= (I + MKAyGy) ' Mr
26, (C.21)

and the closed loop transfer function from r to d¢ is

6¢ = A¢G¢5’7
= A¢G¢Gl1' (0.22)
2 Gyr, (C.23)

and the closed loop transfer function from r to p{” is

Pt(;ﬁ) = ApGpdy
= A,G,G7 (C.24)

£ Gur. (C.25)
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From Equations (C.21)-(C.25) we get
Gy = A;ngGl'l (C.26)
G, = A;'G5G7 . (C.27)

We note that the transfer functions G, G2, and G3 defined in Equations (C.14)-(C.18)
are different from the ones defined in Equations (C.21)—(C.25) respectively even though
they have been defined with the same symbols — the former ones are open loop transfer
functions while the latter ones are closed loop transfer functions. The form of the final
expressions for G4 and G, are exactly the same for the open and closed loop cases so that

the same program can be used to compute the required open loop transfer functions.

We note an interesting feature of this approach — it does not require the controller
to be “square,” that is, the number of inputs to the controller ¢ does not have to equal
the number of outputs from the controller §-y. However, we do require the transfer function
from r to Jy to be square. Measuring the transfer functions as outlined above has an
additional advantage that we do not need to know the transfer functions of the individual
building blocks, including the transfer function of the controller. Everything that is needed is
included in the transfer function G, from r to §v that is measured. The transfer function G,
can be measured accurately because the AGV deflections can be measured accurately with
the shaft encoders. This method further does not require the motor-amplifier channels to
be identical; even though matching was not required for the transfer function measurements
the individual amplifiers were all adjusted so that their bandwidths matched to better than

3% as a mismatch between the channels will affect control.

In all the transfer function measurements the system was excited for 5 seconds before
data collection was started to ensure that all transients died out and that the system has

reached steady state. The integration time was set to 10 seconds for all frequencies and
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excitation frequencies were always selected so that a full number of periods would fit into
the integration time. The magnitude of the excitation signal was varied between 2° for
frequencies close to those of the first and second modes, to 5° for frequencies far away
from the first and second modes. This small level of excitation ensured linear operation of
the AGVs and kept the amplifiers from saturating at frequencies up to about three times
the rotor frequency. Furthermore, frequencies at one half, one, and two times the rotor

frequencies were not used during transfer function measurements.
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Appendix D System ldentification

This appendix outlines a procedure to identify the state space matrices from a set of mea-

sured transfer functions.

For simplicity the presentation is given for single-input single-output (SISO) system,
and extension to multi-input multi-output (MIMO) systems is briefly commented on. A

brief description of parameterization is also given.

Let g(s) be the measured transfer function. We would like to find a corresponding state
space description. The procedure followed here is first to fit a transfer function of the form
b(s)/a(s) to the measured transfer function, and then find a state space description for it,

keeping in mind that we are interested in the MIMO case.

Though we use s = iw as frequency variable, the method is directly applicable to

sampled data systems by replacing s with z = €.

D.1 SISO System Identification

We fit a model of the form b(s)/a(s) to the measured transfer function g(s) by minimizing

the nonlinear least squares (NLS) criterion

=%

w

2

5e) _ g(s) (D.1)

Levy’s method (see [48]) is often used to turn the NLS problem into a linear least

squares problem with cost function

d =) Ib(s) — als)g(s)* (D.2)
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that is easy to solve. This method often gives poor results as we are ignoring a factor 1/a(s)

in the last equation; the correct expression for the cost function is

1 2
a3) [b(s) — a(s)g(s)]} - (D.3)

Levy’s mecthod can be improved by iterating the procedure as follows. We start the
procedure by assuming an initial estimate ag(s) = 1 and solving the linear problem Equa-
tion (D.3) to obtain the first iterates a;(s) and b;(s). The new a;(s) is then used to solve

for az(s) and by(s) in

>

) [b2(e) - az(s)g(s)] (D.4)

a(s

etc. This method, due to Sanathanan and Koerner, is often called the SK-iteration. The SK-
iteration is not guaranteed to converge. Whitfield (48] has shown that even if it converges,
it converges to values that are not the true minimum of the NLS problem. However, the

SK-iteration is useful to obtain an initial estinate for the minimization of Equation (D.1).

A positive frequency weighting functions w(s) can be included in the cost function to
emphasize certain frequency ranges. In addition, it is useful to allow for known dynamics
9x(s) in the measured transfer function. Known dynamics include sensor and actuator
dynamics, computational delays, and estimates of poles and zeros determined from Bode

plots. The final cost function thus has the form

(D.5)

c= Zw(s)

9k(3)-ﬂ —9(s)

Instead of using this cost function, a criterion due to Sidman [44] can be used. Sidman
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suggests fitting the log of the transfer function

2
cig = 2‘; log 2—% — log g(s)
b(s 2
=) [log II;(-%! +i [arg(%) - arg(y(s))] (D.6)

that is, we are minimizing a cost function consisting of the sum of the ratio of the magni-
tudes and phase difference of the transfer functions. Pintelon [39] has shown that this is a
consistent estimator, that it is not sensitive to plant model errors, (that is, the plant does

not belong to the model set), and that it is robust to outliers in the measurements.

The log-criterion cg is not without problems. The phase is in the range [—m, 7] and
thus “wraps around,” resulting in discontinuities that complicates the optimization step. A
way around this is to unwrap the phase, but this, too, has its own complications. This cost
function can be extended to include frequency weighting and known dynamics as before. In

addition, one can also include relative weighting between the magnitude and phase.

D.2 Parameterization

If the structure of the system is known, e.g. simple real poles/zeros, complex poles/zeros,
delay elements, etc., the polynomials can be written in factored form. For example, we can

parameterize the numerator polynomial as

b(s) = ) _ bjs’ (D.7)
j=0
= H(s + zj) H(82 + 2(pwis + w,f) (D.S)
j k

The factored form has better numerical properties than the polynomial form [39]. However,

if the structure is not know it is better to use the polynomial representation because it is
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general.

Numerical problems arise because the standard polynomials s!,s2,s3,... ,s™ become

self-similar, see Adcock [1]. An example of the self-similarity of the standard pelynomials
is shown in Figure D.1 for orders of practical interest. The higher degree polynomials have
very similar shapes. To improve the numerical properties of the standard polynomials the
frequency range is usually scaled to the range [0,1], as was done in Figure D.1. The self-
similarity problem can be solved by using orthogonal Chebychev polynomials instead of the
standard polynomials. In Figure .2 we show the corresponding Chebychev polynomials.
The SK-iteration typically converged 2-6 times faster for the same problems when orthogonal
polynomials were used instead of the standard polynomials. For discrete time systems it
is not necessary to use Chebychev polynomials as the complex exponentials are orthogonal

on the unit circle.

1 T T T
osf
08}
07f S
06}
05}
04f
03f
02

or

0 1 1 L
0 0.1 0.2 03

Figure D.1: Self-similarity of standard polynomials.
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Figure D.2: Chebychev polynomials.

Once we have the numerator and denominator polynomials we must find a state space
representation. This is done by computing the Markov parameters (or impulse response)
from the identified numerator and denominator coefficients, constructing Hankel matrices,
and using the singular value decomposition to find a minimal balanced realization. This is
a well known procedure and is discussed in detail by Chen [4]. This step only works if the
system is stable. For unstable systems the impulse response diverges and causes numerical
problems. The procedure developed by Jacques [23] was found to work well for unstable

systems, even though it is only guaranteed to work for stable systems.
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D.3 MIMO System ldentification

The MIMO case follows the same procedure as outlined above. All we need is find a
parameterization for the MIMO transfer function. There are many ways to do this, see
Chen [4]. The approach followed here is simply a direct extension of the SISO description,

that is

B(s)
a(s)

where B(s) is a matrix of polynomials. Like the SISO case, the polynomials can also be

G(s) = (D.9)

written in factored form if desired. The Markov parameters and state space matrices are

computed as before.

System identification is typically done in several iterations. A typical iteration is as

follows.

- 1. Select a parameterization and solve the nonlinear minimization Equation (D.5) or
D.6. This step can be repeated with different orders for the numerator and denomi-
nator polynomials. Poles and zeros obtained from earlier iterations may be fixed (by

including them in gy), thereby reducing the dimension of the minimization problem.
2. Compute the state space description as discussed at the end of Appendix D.2.

3. Compare transfer functions computed from the state space description with the mea-
sured transfer functions. Model reductions can be applied in this step if the dimension

of the state vector is too high, else, repeat step 1 with lower orders for the polynomials.




Appendix E Parameter |dentification

The parameters in the extended model can be grouped into four sets

Geometric parameters Bry Hsy Ba, Bis by lg, bgy Tm,
Pressure rise characteristic ¥, ¥, %, %,

Total pressure loss parameters T, Tf, g—f;, g—f;,

Steady state operating point &s, Irs, lss, ki, distortion.

The axial measurement location z, has been included in the list of geometric param-
eters although it is, strictly speaking, not part of the model but part of the measurement
relation. However, the sensor location has a strong influence on the magnitudes of the
harmonics, and therefore on the magnitudes of the transfer functions, so that it has been

included here.

In Chapter 4 we have seen that the dynamics are captured well by the extended model
but there were small differences in transfer function magnitudes, and pole and zero fre-
quencies. Some parameters used in the mode! are first order approximations or based on
prior experimental results. For example, the rotor and stator fluid inertias u, and ug take
into account only fluid that are in the rotors and stators respectively, while it is reasonable
to assume that at least some fluid in the gaps between the rotors and stators will also be
accelerated and needs to be included in these inertias. The proportionality constant 7¢ used
in the total pressure loss model was determined by Haynes [20] by fitting the individual

harmonic transfer functions to experimental data.
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The parameters that we would like to determine are ., ps, pa, Tm, 7, 71, g%, %{?, ky.
The actuator fluid inertia gz, and slope g% have a strong influence on the dominant zero.
In modelling the unsteady viscous effects it was assumed that the losses divide between
the rotors and stators in proportion to the reaction r. The time constants associated with
the loss dynamics were assumed to equal the corresponding flow-through times multiplied
by the proportionality constant 7, see Equations (3.61) and (3.62). By estimating these
two parameters we can verify our assumptions. Even though the slope g—:ﬁ is available
from the characteristic, it was found that it is better to estimate it as well. The poles
are very sensitive to the slope and small errors in it leads to biased results for the other
parameters. The throttle constant k; is not known and must also be estimated. Initially,

the parameter bg was also estimated and was found to agree with the geometrical value so

it is not estimated. We will denote the list of parameters to be estimated by the vector

oY 0
£ = [Prr, Hsy Bay Tmy T, Tf, %1 a_:l;a kt]T° (El)

Instead of using steady state measurements to identify the required parameters, we
will determine them directly from the transfer functions. In Appendix C.1 we saw that
the transfer functions can be measured with high accuracy and thus we believe that the

approach proposed here will result in better estimates of the parameters.

The linearized model depends on the steady state flow ¢{”(6) which we do not have, so

all the quantities, e.g., the slope 3_1,b and steady state losses ;s and /g, are unknown. If we

¢
restrict ourselves to the uniform flow case these quantities are known or can be computed
for the specific operating point, so we will use the uniform flow transfer functions to do the

parameter identification.

The same set of parameters must fit all the individual transfer functions, not just one, so

instead of using the transfer function of an individual harmonic to identify the parameters,
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we will use all the transfer functions simuitaneously. Using all the transfer functions provide
us with more independent data points and thus the standard deviations of the estimates

are reduced.

A standard least squares procedure is used. The cost function ¢ to be minimized is
3
c=Y"Y" w(Gnn(iw; §) — gnn(iw))® (E-2)
n=0 i
where gnn(iw; £) is the transfer function form 67, to Jan and depends on the parameter
vector £, and gp,(iw) is the measured transfer function. Because we are using the uniform
flow transfer functions only the diagonal elements of the transfer function matrix are used,
the others are zero. The transfer functions g,,(iw;£) is highiy nonlinear in the argument
€ and a good initial estimate is necessary to ensure successful minimization of the cost

function. The nominal geometric and steady state values were found to be suitable for this

purpose.

The nominal and identified parameters are listed in the table below. In this table the
first row shows the elements of the initial estimate £, and the second row the identified

elements §.

Br Ps  Pa  Tm T T 5 ¥ k

§& (068 033 029 -0.60 075 1.50 -0.04 -0.26 8.00

§ |058 068 0.15 -0.47 076 153 -0.12 -0.16 6.25

Figure E.1 shows the experimentally measured gn,(iw), nominal g, (iw; &;), and iden-
tified gpn(iw; €) transfer functions. All the magnitudes of the nominal transfer functions
(dashed lines) are larger than the measured magnitudes (dots), and the peaks (poles) of the

nominal transfer function magnitudes are at slightly higher frequencies. Both these differ-
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ences are absent in the identified transfer functions (solid lines) and the identified transfer

functions clearly have a better fit.

The estimated rotor fluid inertia p, is 15% smaller than the geometrical value while
the estimated stator fluid inertia pu, is almost twice as large as the geometrical value. This
suggests that the fluid in the gaps should be lumped with those in the stators. If the lengths
of the gaps between the rotors and stators and between consecutive stages are added to that
of the stators, we get an effective stator fluid inertia equal to 0.676. This agrees very well

with the identified value 0.68.

Longley [25] used the basic steady state model (no losses) to compute u, and find it
should be approximately twice the geometrical value. Hynes modelled losses by modifying
the effective rotor fluid inertia. All these are based on steady state measurements. The
transfer functions are a direct measurement of the dynamic behavior, the parameters of
which we are trying to identify, so the estimates obtained from the transfer functions are

superior.

The actuator fluid inertia pu, is smaller than the geometrical value. A possible expla-

nation may be the low solidity of the AGVs.

The estimated measurement location z., is smaller than the geometrical value and
puts the source of the perturbations towards the end of the first stage. This agrees with
measurements by Haynes [20] who found that the different harmonics were strongest in the
first stage. The geometrical value was obtained by measuring the distance between the inlet

of the first rotor and the sensors.

The reaction r and constant of proportionality 7; used in the model of the unsteady
viscous effects agree well with the nominal values. Haynes [20] estimated 77 on the same

compressor and his estimate was used as the nominal value.
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The estimated slope % = —0.12 corresponds to ¢ = 0.473 on the constant speed line

o¢
(nominal ¢ = 0.470) and is within measurement error. The smaller value of %f_ indicates
that the actuators are less effective than the model predicts and may be a result of the
simplified modelling of the AGVs. In the derivation of AGV relations we have assumed a

continuum of blades while there are only 12 around the annulus.

We could follow this parameter identification step with a second step during which
we use the geometric parameters that we have just identified and estimate the pressure
rise characteristic 1(¢) over the full range of the distorted flow ¢(6). However, to do so
we need ¢{”(6), the steady flow through the compressor, but we only have the upstream
measurement ¢¢” (6). One solution is to identify ¢{(8) as well. Estimating both 1(¢) and
#:¥(9) led to divergence of the least squares minimization step. This is probably because all
the steady state and pressure rise parameters are now free variables and the optimization
problem may not be well posed any more. Therefore, determination of the characteristic

over the full range of the nonuniform flow is still an open problem.
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