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ABSTRACT 

Improvements in solar-to-thermal energy conversion will accelerate the development of efficient concentrated solar 

power systems. Nanofluid volumetric receivers, where nanoparticles in a liquid medium directly absorb solar 

radiation, promise increased performance over surface receivers by minimizing temperature differences between the 

absorber and the fluid, which consequently reduces emissive losses. We present a combined modeling and 

experimental study to optimize the efficiency of liquid-based solar receivers seeded with carbon-coated absorbing 

nanoparticles. A one-dimensional transient heat transfer model was developed to investigate the effect of solar 

concentration, nanofluid height, and optical thickness on receiver performance. Simultaneously, we experimentally 

investigated a cylindrical nanofluid volumetric receiver, and showed good agreement with the model for varying 

optical thicknesses of the nanofluid. Based on the model, the efficiency of nanofluid volumetric receivers increases 

with increasing solar concentration and nanofluid height. The total receiver-side efficiencies are predicted to exceed 

35% when nanofluid volumetric receivers are coupled to a power cycle and optimized with respect to the optical 

thickness and solar exposure time. This work provides insights as to how nanofluids can be best utilized as 

volumetric receivers in solar applications, such as receivers with integrated storage for beam-down CSP and future 

high concentration solar thermal energy conversion systems.  
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1. INTRODUCTION 

The use of concentrated sunlight as a thermal energy source for production of electricity promises to be one of the 

most viable options to replace fossil fuel power plants.  However, the peak efficiencies of existing fossil fuel 

combined cycle power plants exceed 50% (Langston, 2009) while those of concentrated solar power (CSP) plants 

are below 20% (Pacheco, 2001; Romero et al., 2002). The relatively poor CSP performance is a result of a low 

solar-to-thermal efficiency (a combination of receiver and field efficiencies) and moderately low operational 

temperatures in the power cycle. Improving the conversion of incoming solar radiation to thermal energy at high 

temperatures is essential to improving the overall power conversion efficiency of CSP plants.  

Most concentrated solar thermal technologies today use receivers with absorbing surfaces to convert solar 

energy from its radiative form into thermal energy. These surfaces are typically black or spectrally selective such 

that high absorptivity in the solar spectrum is coupled with low emissivity in the infrared (Bogaerts and Lampert, 

1983). Although surface-based receivers are efficient at solar to thermal conversion, they are not well suited for 

transferring heat to a carrier fluid. In particular, at high levels of solar concentration, a large temperature difference 

between the absorber and the fluid arises. The temperature difference leads to significant emissive losses owing to 

the quartic dependence of thermal re-radiation on the absorber temperature, and correspondingly, a lowering of the 

overall conversion efficiency of solar energy. Moreover, the material stability of selective surfaces at temperatures 

above 800 K has not yet been demonstrated (Pitz-Paal and Trevor, 2008). Alternatively, in a volumetric receiver 

design, concentrated solar radiation is directly absorbed and more uniformly distributed in the surrounding fluid, 

which decreases the temperature difference between the absorber and the fluid.   

 Researchers have suggested various configurations for volumetric receiver designs, including: gas-particle 

suspensions (Bertocchi et al., 2004; Miller and Koenigsdorff, 1991), liquid films (Bohn and Wang, 1988; Caouris et 

al., 1978), and metal foams (Fend et al., 2004; Pitz-Paal et al., 1997). In this study, we focus on liquid-based 

volumetric receivers with integrated storage for central receiver CSP systems with beam-down optics (Epstein et al., 

1999; Kribus et al., 1998; Yogev et al., 1998); an example configuration was recently described by Slocum et al. 

(2011) where hillside heliostats focus light onto a molten salt volumetric receiver. The potential advantage of such 

volumetric receivers (VR) compared to ideal selective surface receivers (SS) is illustrated in the representative 

schematic temperature profiles of Figure 1. The exact temperature profiles will depend on the flow characteristics in 

the receivers, but for the same mean fluid temperature (Tf) and solar heat flux (CGs), the temperature profile in the 

VR (Figure 1a) can be favorable because the temperature associated with emissive loss is lower than that of the 

mean fluid temperature (by ∆T).  This behavior is referred to as “thermal trapping” in solar thermal literature (Arai 

et al., 1984; Wijeysundera and Thevendran, 1988), but is physically similar to the “greenhouse effect” (Harries, 

2000). On the other hand, the unfavorable temperature profile in the SS (Figure 1b) leads to higher emissive losses. 

Figure 1c highlights the difference in emissive loss (∆e) between an ideal selective surface with an ideal cutoff 

wavelength equal to 2 µm (purple) and a non-selective volumetric receiver (black) for the case when the mean fluid 

temperature is equal to 1000 K and ∆T is equal to 250 K.  Thus, volumetric receivers, despite being non-selective, 

can trap thermal energy more effectively and lead to higher receiver efficiencies. 
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Figure 1. Schematic temperature profiles in a a) non-selective volumetric receiver (VR) compared to a b) surface-
based receiver (SS) for the same incoming concentrated solar flux (CGS) and height (H). The VR has a favorable 
temperature profile with an inverse ∆T between the mean fluid temperature (Tf) and surface temperature (TVR, TSS). 
c) The black and purple lines show the emissive loss for a black body (ε=1 at the VR surface) and an ideal selective 
emitter with a sharp cutoff at 2 µm (ε=ε(Tss) for the SS), respectively. For the case when Tf=1000 K and ∆T=250 K, 
the emissive loss (εσT4) decreases by ∆e for the VR.   

 

In particular, volumetric receivers with absorbing small particles in suspension have a high surface-to-volume 

ratio which minimizes the temperature difference between the absorber and the fluid (Hunt, 1978; Miller and 

Koenigsdorff, 2000). When the particle size is smaller than the characteristic wavelength of sunlight, less material is 

required to achieve the same amount of absorption (Hunt, 1978), and challenges related to clogging, sedimentation 

and erosion can be alleviated.  

Past research on small-particle liquid suspensions as VRs has focused on thin liquid films and micro/mini-

channel designs. Kumar and Tien (1990) developed a model for particle-laden falling liquid films (1-5 mm thick) 

incorporating the spectral and directional radiative properties of the particles, and provided a framework for future 

modeling studies. More recently, Tyagi et al. (2009) numerically investigated a low temperature nanofluid receiver 

inside a mini-channel; while, Otanicar et al. (2009b) extended this model to include multiple and dependent 

scattering, and size-dependent optical properties. Otanicar et al. (2010) also experimentally demonstrated the use of 

different nanofluids in a micro-channel solar collector. However, in these previous studies, the effect of increasing 

height of the absorbing liquid (H in Figure 1a) beyond the millimeter-scale which can lead to lower emissive loss 

due to the favorable temperature profile was not considered. Arai et al. (1984) investigated transient radiative 

heating of a static semi-transparent liquid suspension in a taller receiver design (3 cm) and suggested that such a VR 
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can be highly efficient. Nevertheless, an optimization of small-particle volumetric receivers with respect to particle 

loading, solar exposure time and nanofluid height has yet to be conducted. As the height of the nanofluid increases, 

the transient response, representing the thermal charging of these stationary volumetric receivers, becomes a 

significant portion of the daily operation because of their large thermal inertia. 

In this paper, nano-sized (10-100 nm) solid particles are added to a liquid heat transfer fluid (i.e., nanofluid) to 

volumetrically absorb concentrated solar radiation. We investigate the design of these nanofluid volumetric 

receivers with nanofluid heights above 1 mm and develop a transient one-dimensional numerical model that 

examines the effect of solar concentration, nanofluid height, and nanofluid optical thickness on the temperature 

distribution inside the receiver (Section 2). We studied the effects of varying the optical thickness and validated the 

numerical model through experiments with a cylindrical nanofluid volumetric receiver, where the radiative and 

thermophysical properties of the nanofluid were experimentally characterized (Section 3). The model was 

subsequently used to determine the optimal exposure time and temperature at which point the nanofluid volumetric 

receiver should be thermally connected to a power generation cycle (Section 4). Throughout this study, a suspension 

of carbon-coated nanoparticles in Therminol® VP-1 is used as a model system for nanofluid receivers, but the results 

can also apply to other nanofluid VRs.  The outcomes of the work suggest that nanofluids have significant potential 

as receivers with integrated storage for beam-down CSP systems and future high concentration solar thermal 

applications. 

2. NUMERICAL MODEL 

We developed a one-dimensional numerical model to investigate a stationary volumetric receiver undergoing 

transient heat conduction in the absence of free convection inside the receiver. A schematic of the volumetric 

receiver concept is shown in Figure 2a. The nanofluid is contained between two parallel plates separated by a 

variable height (H); the length of the receiver in the horizontal direction is assumed to be large compared to the 

height. The incident solar heat flux (CGs), where C represents concentration of solar radiation, is transmitted through 

the transparent enclosing window and absorbed volumetrically by the suspended nanoparticles. The absorbed 

radiation results in volumetric heat generation (qgen). The bottom of the receiver is assumed to be adiabatic and 

specularly-reflective to incident radiation. Radiative heat loss is modeled separately for spectral Band I and II (see 

Figure 2b). Convective and conductive heat losses are assumed to be negligible in the high temperature regime of 

interest where radiative loss dominates (Kumar and Tien, 1990). 
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Figure 2. a) Schematic for the model formulation of a 1-D volumetric solar receiver with a transparent top (y = 0) 
where τr = 1 and a specularly reflective adiabatic bottom (y = H) where ρr = 1; b) Distribution of concentrated solar 
irradiation IS (C = 100) and of black body thermal emission Ebb at T = 1200 K where the radiative properties are 
separately approximated in two spectral bands, Band I (λ < 2 µm) and Band II (λ > 2 µm). 

2.1 RADIATIVE PROPERTIES 

An ideal carrier fluid would be completely transparent to the incoming solar radiation so that the radiative properties 

can be tuned via the nanoparticles by adjusting their volume fraction. Although they are not currently used as 

volumetric receivers, high temperature heat transfer fluids in existing solar thermal plants such as Therminol® VP-1 

(Solutia Inc.) and certain molten salts have solar-weighted absorption below 10% (Drotning, 1978; Otanicar et al., 

2009a). For this reason, we assume that the absorptive index (kf) of the carrier fluid in Band I is much smaller than 

its refractive index (i.e., Nf ≈ nf) in the following treatment.  

Suspended nanoparticles with a complex refractive index Np are utilized to absorb solar radiation in a tunable 

manner. When the diameter (D) of a nanoparticle is small compared to the wavelength of light inside the medium 

(x = πDnf /λ << 1), the nanoparticle has radiative properties which are well-described by the Rayleigh scattering 

regime (Bohren and Huffman, 1998). This regime also applies for low volume fraction (fv << 0.006) suspensions of 

polydisperse particles (Brewster and Tien, 1982). If the terms with a higher order of the size parameter are neglected 
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(since x << 1), the particle absorption coefficient (κp,λ) increases linearly with increasing volume fraction for a given 

particle material according to:  

  
λ
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where m = Np/nf (Bohren and Huffman, 1998; Modest, 2003). Thus, as long as the overall absorption coefficient of 

the nanofluid is dominated by the nanoparticles, the optical thickness (τH = κλ H) for any given nanofluid height (H) 

can be tuned by adjusting the volume fraction (fv) such that most of the solar radiation is absorbed. 

 For this study, the radiative properties of the nanofluid are approximated using a two-band model. In spectral 

Band I (λ < 2 µm in Figure 2b), the nanofluid is approximated as a gray medium (κλ ≈ κI) with a tunable optical 

thickness and a refractive index equal to one (nI = 1). The gray medium simplification is consistent with the 

experimental results presented in Section 3.1. In spectral Band II (λ > 2 µm), the nanofluid is modeled as fully 

absorptive (εII = 1) because the broad vibrational and rotational absorption bands of the liquid are assumed to 

overlap and dominate the infrared properties (κIIH >> 1); this treatment is consistent with previous optical 

measurements and models of liquids used for direct absorption receivers (Webb and Viskanta, 1985).  

2.2 GOVERNING EQUATIONS 

To model this physical situation in Figure 2a, the radiative transport and transient heat equation are coupled and 

solved for a large range of temperatures. The thermophysical properties (k, ρ, cp) of the nanofluid are assumed to be 

the same as the bulk fluid based on effective medium theory (Nan et al., 1997) for the low volume fractions 

considered in this study (fv << 0.01). Moreover, because the high surface-to-volume ratio of the particles leads to 

instant heat transfer to the surrounding medium (Hunt, 1978; Miller and Koenigsdorff, 2000), the particles and the 

fluid are assumed to be at the same temperature and the nanofluid is modeled as a single-phase isotropic fluid. To 

simplify the model further, we assume that the material properties of the nanofluid are independent of temperature. 

(The validity of this assumption will depend on the choice of carrier fluid; for example, over the working 

temperature range of VP-1, k, ρ, and cp do not vary by more than a factor of two). 

 The radiative transfer equation (RTE) along the y-direction for spectral Band I (see Figure 2) is described by: 

  )( , λλ
λ κµ II
dy
dI

bbI −=   (2) 

where I is the radiative intensity and µ (= cos θ) defines the direction of the propagating radiation with respect to the 

y-axis (Modest, 2003).  The RTE simultaneously describes how the spectral intensity exponentially decays due to 

absorption and is augmented by thermal re-emission at high temperatures (Ibb). The scattering terms are assumed to 

be negligible because x << 1.  

 Solar radiation is assumed to be normally incident (µ = 1) on the receiver and approximated using Planck’s 

black body distribution (Ibb,λ) at an estimated sun’s temperature of 5800 K (Ts); ΩS is the solid angle of the sun as 

seen from the Earth (Modest, 2003), and 0.73 accounts for the average attenuation of sunlight through the Earth’s 
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atmosphere such that the nominal solar flux (Gs) is 1000 W/m2 (1 sun). The top of the receiver is assumed to be 

transparent (τr = 1) to the incident radiation as well as thermal re-emission from inside the receiver, while the bottom 

of the receiver is assumed to specularly reflective (ρr = 1); hence, the boundary conditions of the RTE are: 

  1 0             
2

)1(730)0 ≤≤
−

== µ
π
µδ)(TICΩτ.,µ(yI sbb,λsrλ   (3-a) 

  0 1-                    <≤−==+= µµ)   H,(yIρµ)H,(yI λrλ  (3-b) 

where δ is the Dirac-delta function (Modest, 2003). We couple the RTE to the thermal model through the divergence 

of the radiative heat flux. The radiative heat flux inside the receiver is determined by integrating the radiative 

intensity over all of the possible propagation directions and wavelengths in spectral Band I: 
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where the azimuthal component of the solid angle has been integrated to give the 2π pre-factor. Eq. 4 is 

differentiated with respect to y to obtain the divergence of the radiative heat flux, which is easily incorporated as a 

volumetric heating term into the heat transfer equation describing unsteady heat conduction: 
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The initial condition and boundary conditions of Eq. 5 are: 
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We model radiative losses in spectral Band II using the boundary condition at the top of the receiver (Eq. 6-b). For 

fluid temperatures less than ~800 K, most of the emissive losses are dependent on the fluid properties above 2 µm 

where it acts as a black body; thus, the surface temperature of the volumetric receiver dominates the amount of heat 

loss in this regime. At high temperatures, however, thermal re-radiation from within the receiver, captured using the 

RTE equations, becomes important.  

2.3 SOLUTION METHODOLOGY 

An analytical solution to Eqs. 2-6 cannot be obtained due to the quartic dependence of radiation on the temperature 

profile. Instead we solve this set of equations numerically by separating them into two steps. First, we explicitly 



DOI: 10.1016/j.solener.2011.09.029.  

Publication source: Solar Energy 86, no. 1, p. 253–265, 2012. 

9 
 

solve the RTE equations (Eqs. 2-4) by separating the intensity into the collimated part (i.e., incident radiation) and 

the diffuse part (i.e., re-emission), and determining the radiative heat flux through numerical integration of Eq. 4 for 

given a temperature profile at time ti. Second, the divergence of the radiative heat flux is found by differentiating 

Eq. 4 with respect to y, which is then incorporated into the energy equations (Eqs. 5-6) to determine the temperature 

profile at a subsequent time ti+1. This new temperature profile is subsequently re-introduced into the first step, and 

the two-step procedure is repeated; the methodology is similar to the one described by Kumar and Tien (1990). To 

solve Eqs. 5-6, a finite difference scheme is used to solve the equations and the boundary conditions along the 

y-direction, while the 4th order Runge-Kutta method is used to step explicitly in time. A mesh refinement study 

along the y-direction is performed until the maximum variance in the temperature profile is below 0.01 K. An 

energy balance is performed for each solution to ensure energy conservation. 

2.4 TEMPERATURE PROFILES 

Figure 3 shows transient temperature profiles of the nanofluid obtained with the numerical model. In all three cases 

and throughout this study, typical values for the thermophysical properties of Therminol® VP-1 at room temperature 

were used (k = 0.1357 W/mK; ρ = 1060 kg/m3; cp = 1570 J/kgK); for simplicity, they are assumed not to vary with 

temperature. Although VP-1 begins to break down around 650 K (Moens and Blake, 2008), we extrapolate the 

material properties of VP-1 to higher temperatures, assuming that molten salts can replace VP-1 as the carrier fluid 

without significantly altering our model because they have similar radiative properties (Drotning, 1978; Webb and 

Viskanta, 1985).   The initial temperature of the nanofluid is set to room temperature (300 K). With these parameters 

fixed, the numerical model is used to investigate the effect of solar concentration (C), nanofluid height (H), and 

optical thickness (τH).  
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Figure 3. Developing temperature profiles for volumetric receivers from the model with τH = 1.7 and varying solar 
concentrations and nanofluid heights: a) C = 25, H = 2.5 cm, b) C = 100, H = 2.5 cm, c) C = 100, H = 10 cm.  The 
profiles were obtained at regular time intervals: a,c) 5 mins, b) 1.25 mins. The red profiles indicate inverted 
temperature profiles (i.e., the bulk mean temperature exceeds the top surface temperature) 
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In this sub-section, we explore the effects of H and C on the developing temperature profiles while maintaining 

a constant τH = 1.7 (the reason for this choice of τH will become apparent in Section 4). Figure 3a shows temperature 

profiles in a 2.5 cm receiver with 25 suns of incident solar radiation (CGs = 25 kW/m2); in Figure 3b, H remains the 

same while C is quadrupled (CGs = 100 kW/m2); and lastly, in Figure 3c, the height is quadrupled (H = 10 cm) while 

C is maintained at 100. 

 The results in all three cases show that, initially, the temperature at the top of the receiver is higher than the 

bulk. However, as the temperature profiles develop, the top surface becomes nearly fixed at a temperature while the 

mean fluid temperature continues to increase leading to inverted temperature profiles (i.e., the bulk mean 

temperature exceeds the top surface temperature). This temperature profile inversion, characteristic of all three sets 

of developing profiles, occurs between 600-800 K because the radiative losses from the top surface begin to balance 

the local solar heat generation in that area, while the rest of the fluid continues to absorb solar radiation and rise in 

temperature. As temperatures above 1000 K are reached locally in the profile, thermal re-radiation from within the 

volumetric receiver becomes more important. The radiative mechanism of heat exchange between the relatively 

hotter and colder spots inside the receiver is more effective than pure conduction, leading to near isothermal profiles 

at high temperatures in the lower regions of the receiver (0.2 < y/H < 1).  

A comparison of Figure 3a with 3b shows that increasing the incident solar heat flux (by increasing C) results in 

increased curvature in the temperature profiles; furthermore, the profiles begin to approach steady state at shorter 

exposure times and at higher mean temperatures. Similarly, when the nanofluid height is quadrupled (from 3b to 3c), 

the profile curvature is even more pronounced; however, the exposure time needed to reach the same temperatures 

as before is inversely proportional to the height.  Thus, with increasing C and decreasing H, higher temperatures are 

achieved in shorter periods of time. This result is intuitive if we approximate the behavior of the nanofluid with a 

lumped capacitance model.  

The numerical results also indicate that the profile inversion is more pronounced for taller receivers. Based on 

the magnitude of the profile inversion and Figure 1, the results suggest that the receiver efficiency increases with 

increasing C and H. These effects will be explored further in Section 4, but first, the numerical model is compared to 

experiments in Section 3. 

3. EXPERIMENTAL STUDY 

3.1 NANOFLUID PREPARATION AND PROPERTIES 

Carbon-coated cobalt nanoparticles (NanoAmor Inc.) suspended in Therminol® VP-1 were prepared and studied in 

this work. C-Co nanoparticles were chosen because graphite has a predictable broadband absorption in the visible 

and near-IR spectrum. The magnetic (cobalt) core of the nanoparticles could potentially be utilized to control the 

distribution of the particles inside the receiver; this topic, however, is beyond the scope of this study. Therminol® 

VP-1 was chosen because of its optical transparency and widespread use in solar thermal power plants.  
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Figure 4. a) Scanning electron micrograph (SEM) and b) Transmission electron micrograph (TEM) of carbon-coated 
cobalt nanoparticles (NPs) with an average diameter of 28 nm. c) Image of C-Co/VP-1 nanofluid at varying volume 
fractions (fv) compared to pure Therminol® VP-1. d) Spectral absorption coefficient (κp,λ) of NPs in suspension at 
corresponding volume fractions (fv). Inset shows the linear dependence of κp,λ with fv for two wavelengths, λ=0.55µm 
and λ=1.5µm. 

 Figure 4 shows images of the nanoparticles (NPs) obtained in a high-resolution SEM (Figure 4a) and TEM 

(Figure 4b). The average diameter of the predominantly spherical nanoparticles is 28 nm according to the 

manufacturer. The nanoparticles readily dispersed and suspended in Therminol® VP-1 after 30 minutes in a 

sonicating bath. The suspensions did not require any surfactant to achieve stability exceeding several days. 

To determine the radiative properties of the nanoparticles, a differential measurement technique was performed 

using a spectrophotometer (Cary 500i, Varian Inc.). For this measurement, cuvettes of equal pathlengths (10 mm) 

were used, and the difference in transmission between a sample of nanofluid and a reference of pure VP-1 was 

determined. The measurement technique is similar to the one recently described by (Sani et al., 2010). The effects of 

scattering and multiple reflections through media of different optical thickness are assumed to be negligible.  

 Suspensions of the carbon-coated NPs in VP-1 (C-Co/VP-1) with varying volume fractions were prepared, 

ranging from 2.5 ppm (fv = 2.5E-6) to 10 ppm (fv = 10E-6). The experimental results for the spectral absorption 

coefficient at three different volume fractions are plotted in Figure 4d showing a slight decay in absorption over the 

range of wavelengths and a general increase in absorption coefficient with increasing fv. Since the resulting 

volumetric heat generation is obtained through an integration over the wavelength range of incident solar radiation 
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and the absorption characteristics of the C-Co NPs in suspension are not a strong function of wavelength over this 

range, a solar-weighted absorption coefficient can be used to approximate the resulting volumetric heat generation. 

This approximation agrees well with the two-band model suggested in Section 2.1. A line of best fit was determined 

relating each spectral absorption coefficient to the volume fraction, as shown in the inset of Figure 4d for two 

particular wavelengths. The experimentally determined linear relationship between fv and κp,λ agrees with Eq. 1 and 

the simplifications made in Section 2.1. The absorption coefficient of Therminol® VP-1 (κf,λ) was deduced from 

measurements taken by Otanicar et al. (2009a). Using the experimentally determined slope of best fit at each 

wavelength (bλ), the effective absorption coefficient of the nanofluid (κλ) is predicted as a function of the volume 

fraction according to Eq. 7. 

  vf fbλλλ κκ    , +=  (7) 

To determine the volume fraction needed for a particular optical thickness (τH), a simple iterative algorithm 

using the semi-empirical approach described above was used in this study. For example, for the 6 cm tall receiver 

studied in Section 3.2 and the spectrum illustrated in Figure 5b, the corresponding volume fraction is 4.3 ppm for 

τH = 4.  A relatively high volume fraction suspension was initially prepared (fv = 0.001); then, it was diluted in 

multiple steps with VP-1 to obtain the needed volume fraction.  

 

Table 1. Thermophysical properties of C-Co/VP-1 nanofluid at varying volume fractions (fv) 

 
 Table 1 shows the volume fractions needed to achieve several optical thicknesses of the C-Co/ VP-1 nanofluid, 

as well as their corresponding experimentally determined thermophysical properties. The thermal conductivity (k) of 

the nanofluids was obtained using the Hot Wire Method (Healy et al., 1976), whereas, the ASTM standard test 

method (E1269-05) was followed to obtain specific heat (cp) using a differential scanning calorimeter (Polymer 

DSC823, Mettler-Toledo). Within the experimental uncertainty, the data suggests that the thermophysical properties 

are not significantly affected by the addition of NPs, as expected for such low volume fractions.  

3.2 EXPERIMENTAL SETUP 

The goal of this experimental study was not to replicate the environmental conditions and solar concentration levels 

that would be typical of a central-receiver design in the field, but to experimentally demonstrate the concept of a 

Target Opt. Thick. (τH) fv (ppm) k (mW/mK) * cp  (kJ/kgK) ** 

Pure Therminol® VP-1 0 144.2  +/- 1.4 1.68  +/- .03 

1 0.94 +/- .1 145.2  +/- 0.7 1.70  +/- .01 

2 2.1  +/-.1 145.1  +/- 0.8 1.67  +/- .03 

4 4.3  +/-.1 145.0  +/- 0.7 1.67  +/- .03 
 

*   at 30 +/- 5 oC, measured using Hot Wire Method 

** at 31 +/- 1 oC, measured using a differential scanning calorimeter (DSC823 Polymer DSC, Mettler-Toledo) 
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nanofluid volumetric receiver, study the effect of optical thickness and compare the results to the numerical model 

developed in Section 2. Figure 5a and c show the main components of the setup, including the solar simulator, 

beam-down mirror, volumetric receiver, thermocouple array and data acquisition system. 

 

Figure 5. a) Schematic of the experimental setup including a solar simulator (SIM), beam-down mirror, nanofluid 
receiver, thermocouples (TCs), and data acquisition system (DAQ). b) Spectral intensity of the solar simulator with 
predicted attenuation along the y-direction of the nanofluid volumetric receiver for τH = 4.  Image of c) experimental 
setup with d) volumetric receiver containing C-Co/VP-1 nanofluid. 

 A 1.6 kW solar simulator (SS 1600W Fully Reflective, Sciencetech Inc.) was used as the radiative source for 

the experiments. The spectral power output of the solar simulator is shown in Figure 5b, as well as the spectral 

attenuation due to absorption along a receiver with τH = 4. The solar simulator matches with the AM1.5 spectrum 

well and meets ASTM Class A standards for spectral match, temporal stability and spatial uniformity. Before the 

experiments, the average radiative heat flux incident on the receiver was measured with a power meter and 

thermopile detector (1918-C and 818p, Newport Optical) to be 2460 ± 163 W/m2. 

 A custom thin-walled cylinder was machined to hold the nanofluid, shown in Figure 5d. The chamber was 

fabricated using stainless steel because of its relatively low thermal conductivity (15 W/mK) considering its high 

structural rigidity and high temperature stability.  The chamber was insulated using low-density foam. 

Two flanges were used to secure the interchangeable optics to the top and bottom of the cylinder and seal the 

nanofluid inside.  A high-purity quartz window (1357T33, McMaster) sealed the top of the cylinder; while the 

bottom surface was sealed using an enhanced aluminum mirror (NT46-616, Edmund Optics), acting as a reflector. 
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The solar simulator weighted transmissivity (0.926) of the quartz window was measured using a spectrophotometer 

(Cary 5E, Varian Inc.). During the experiments, the radiation from the solar simulator was beamed down to the 

receiver using an enhanced aluminum mirror (NT32-666, Edmund Optics); a laser-cut piece of reflective plastic was 

used to shield the thermocouples from direct radiation in order to more accurately measure the surrounding fluid 

temperature. 

Temperature measurements were taken using type-K thermocouple probes (KMQXL-062G-6, Omega); the 

probes extended to the centerline of the receiver and were spaced 1 cm apart along the height of the receiver. Seven 

temperature measurements along the 6 cm height were measured simultaneously for 12 minutes, beginning at the 

instant the simulated solar radiation reached the receiver.  

 A data acquisition system was used to record the temperature of each thermocouple averaged over one second. 

The thermocouple probes were calibrated using a temperature-controlled bath with 0.05 K resolution (RE-207, 

Lauda-Brinkmann). Measurements of temperature close to the wall of the chamber were typically 1-2 K lower than 

at the centerline, but the vertical profile was determined to be a weak function of the radial distance away from the 

centerline. 

3.3 RESULTS AND COMPARISON WITH NUMERICAL MODEL 

Figure 6a, b, and c show experimentally obtained developing temperatures profiles at increments of 100 seconds 

(triangular symbols) for C-Co/VP-1 nanofluids studied in the test chamber described above with target optical 

thicknesses of 1, 2 and 4, respectively; the total uncertainty in the temperature measurements is ± 1.7 K for 6a, 

± 0.6 K for 6b and ± 0.7 K for 6c. To predict the heat generation profiles (Figure 6 insets), Equation 2 was solved 

numerically in the cold medium limit (Modest, 2003) using the experimentally determined absorption coefficients 

(Figure 4d) and the solar simulator spectrum (Figure 5b). 
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Figure 6. Comparison of the experimentally obtained temperature profiles with numerical results at 100 s intervals 
for receivers of varying optical thickness: a) τH = 1, b) τH = 2, c) τH = 4. Insets show predicted heat generation 
profiles based on radiative properties from Figure 4d and solar simulator spectra from Figure 5b. 
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For all three cases, the shape and decaying nature of the heat generation profile is reflected in the shape of the 

temperature profiles. With increasing optical thickness, the heat generation profile is increasingly localized to the 

top of receiver where most of the losses occur.  

The numerically predicted temperature profiles (black lines) are shown for the same time increments as the 

experimental data. To predict these profiles, the numerical model (described in Section 2) was solved using the solar 

simulator spectrum as the input radiation and the experimental thermophysical properties and absorption 

coefficients. A convective heat loss coefficient from the top surface (hNC = 5 W/m2K) was calculated analytically 

and added because the experiments were conducted at temperatures below 350 K where the relative importance of 

natural convection cannot be neglected as compared to radiative loss. Also, because of the transient nature of the 

experiment and the comparable vertical (H = 6 cm) and horizontal lengths (6.35 cm inner diameter) of the receiver, 

our 1-D numerical model was modified for comparison with the experimental results. By design, the walls and 

optics directly in contact with the nanofluid are thin enough (Bi << 1/6) to be approximated as being at the same 

temperature as the fluid. Based on a measured weight and heat capacity, the total heat capacitance of the walls is 222 

J/K, while that of the nanofluid is 288 J/K. Thus, a significant portion of the thermal energy is stored in the 

sidewalls. Using a lumped capacitance model, we estimated that 56.5 % of the incident energy results in heating the 

nanofluid, while the rest of the energy is stored in the sidewalls. By incorporating this scaling factor (which can be 

estimated a priori), the model and experimental results show good agreement. These types of application-dependent 

improvements on the basic model from Section 2 can be obtained and implemented.  

 The main discrepancy between the model and experimental results is evident in the temperature profiles near 

the top surface for τH = 4 (6c); the experimental results show a smaller temperature gradient than that of the model 

prediction. We attribute the discrepancy to the relatively large difference in temperature between the top and the 

bottom of the receiver which induces a re-distribution of heat via the conductive side-walls; this conjugate heat 

transfer is not captured in our model. In general, the good agreement between the model and experiment (within a 

20% difference) suggests that the developed model can be used to investigate volumetric receiver efficiency.   

4. RECEIVER OPTIMIZATION 

In this section, the volumetric receiver design is optimized on the basis of two important metrics for solar thermal 

applications: receiver efficiency (ηrec), and receiver-side net system efficiency (ηsys). The efficiency of a solar 

thermal receiver is the ratio of collected thermal energy to the total incident energy (Tyagi et al., 2009): 

  
expEnergySolar Incident 

StoredEnergy  Thermal 
tACG
)TT(mc

recs

ifp
rec

−
==η  (8) 

The metric in the above form applies to stationary receivers undergoing transient heating, where m is the mass of the 

nanofluid, texp is the total amount of time exposed to solar radiation and Arec is the top surface area of the receiver.  

However, the aim of a solar thermal receiver is not only to convert concentrated solar radiation into thermal 

energy as efficiently as possible, but also, to achieve the highest possible temperatures while retaining this high 
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efficiency. The reason to achieve high fluid temperatures becomes evident when a power conversion cycle is placed 

in series with the solar thermal receiver. Thermal coupling of a stationary volumetric receiver with integrated 

storage to a power generation system can potentially be achieved through heat exchange with the walls of the 

nanofluid volumetric chamber or utilizing a flow heat exchanger and a separate cold-storage tank. For simplicity, we 

assume that this coupling can be accomplished such that there is minimal effect on receiver efficiency. A logical 

choice to quantify this increase in power conversion efficiency with increasing final mean fluid temperature is the 

Carnot efficiency:  

  
f

amb
c T

T −= 1η  (9) 

The total receiver-side efficiency of the solar thermal power generation system becomes: 

  IIcrecsys ηηηη  =  (10) 

which incorporates a constant second-law efficiency (ηII) to account for irreversibilities of the power generation 

cycle, which we assume to be ηII = 0.66 (Singh et al., 2000).  

 The opposing trends of the receiver efficiency and the Carnot efficiency with increasing temperature give rise to 

an optimum system efficiency ( opt
sysη ) (Pitz-Paal and Trevor, 2008). We study the effects of the following parameters 

on the receiver and system efficiency: concentration (C), nanofluid height (H), and optical thickness (τH).  

 

Effect of optical thickness: Figure 7a shows the effect of optical thickness on the receiver efficiency (Eq. 8). As 

discussed previously, the optical thickness of a nanofluid volumetric receiver can be adjusted by varying the volume 

fraction of the nanoparticles. With increasing optical thickness, volumetric absorption will more closely resemble 

surface absorption because the photon penetration depth will decrease. With shorter penetration depths, the heat 

release is localized to the top of the receiver where most of the losses occur; hence, a volumetric receiver with τH = 4 

is less efficient than one with τH = 1.7. On the other hand, if the optical thickness is too small (as is the case when 

τH = 1), the receiver is unable to absorb all of the incident solar radiation. Using the maximum system efficiency as a 

metric ( opt
sysη ), the optimum optical thickness was determined to be 1.7 (± 0.1), as shown in the inset of Figure 7a.  

The optical thickness was fixed to this optimum value for the remainder of the study.  
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Figure 7. Parametric study of receiver efficiency with mean fluid temperature for variable optical thickness, solar 
concentration, and nanofluid height: a) τH ranging from 0.5 to 4. Inset shows system efficiency with varying optical 
thickness with the optimum at τH = 1.7. b) C ranging from 10 to 100, and c) H ranging from 0.1 to 25 cm. The 
baseline in all of the graphs (solid black) shows the case when τH = 1.7, C = 50, and H = 2.5 cm. 
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Effect of solar concentration:  

Increasing the concentration (C) of solar radiation incident on a volumetric receiver has the effect of increasing the 

steady state or stagnation temperature. Higher concentration levels allow the receiver to maintain a high efficiency 

over a wider range of temperatures and delay the sharp decrease in efficiency as the receiver asymptotes to its 

stagnation temperature, as seen in Figure 7b. Therefore, receiver efficiency increases with C for the range 

considered.  

 A surface plot showing optimum system efficiency in the parameter space of C and H for a nanofluid 

volumetric receiver with τH = 1.7 coupled to an idealized power cycle is shown in Figure 8a. The results show that 

the optimum system efficiency increases with concentration level. 

 

Effect of nanofluid height:  

When the emissive loss is dominated by the top surface temperature, the effect of nanofluid height may be 

understood by considering that increasing H will amplify the temperature difference between the mean fluid 

temperature and the surface temperature (as shown in Figure 3). Figure 7c shows how ηrec decreases with increasing 

nanofluid height for temperatures below 700 K, which corresponds to a region where the surface temperature is 

higher than the mean fluid temperature. For higher temperatures (800-1200 K), ηrec increases with increasing 

nanofluid height because the profile inversion has occurred.  At very high temperatures (above 1300 K), H has no 

effect on receiver efficiency because the dominant volumetric losses (spectral Band I) are only affected by the 

optical thickness, since they are governed by the RTE (Eq. 2). 

 In the temperature range where net system efficiency is maximized (800-1200 K), taller nanofluid VRs achieve 

improved receiver efficiencies because of the profile inversion. Thus, the optimum system efficiency of nanofluid 

volumetric receiver increases as the volume (i.e., nanofluid height) is increased, as shown in Figure 8a. An upper 

limit on the nanofluid height is determined by the optical clarity of the carrier fluid since the radiative properties and 

the optical thickness of the nanofluid need to be dominated by the nanoparticles for this analysis to be valid. 

 

Optimal exposure time and temperature: 

With the efficiency of the nanofluid volumetric receiver optimized with respect to optical thickness, we investigate 

the effects of concentration and nanofluid height on the exposure time and temperature at the optimum system 

efficiency. Each opt
sysη  determined in Figure 8a corresponds to a specific final mean temperature (Figure 8b) and 

exposure time (Figure 8c). 

 The optimal final mean temperatures are shown in Figure 8b. The trends for optimal temperature follow very 

closely the trends for optimum system efficiency (Figure 8a) because the system efficiency is strongly dependent on 

the temperature due to the power cycle efficiency. This analysis shows that nanofluid volumetric receivers need to 

be stable at very high temperatures in order to reach the predicted optimum system efficiencies. In future work, the 

material durability at such high temperature needs to be addressed. 
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Figure 8. Surface plots showing: a) optimum system efficiency in the parameter space of C and H for nanofluid VRs 
(τH = 1.7), b) optimal final mean temperature, and c) optimal exposure time corresponding to the optimum system 
efficiency in (a). 
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  As shown in Figure 8c, the amount of exposure time (texp) needed to achieve optimum system efficiency 

decreases with increasing concentration and decreasing nanofluid height for nanofluid VRs with τH = 1.7. Exposure 

time is an important quantity in solar thermal plants because a shorter exposure time translates to the capability to 

store more thermal energy for a limited amount of hours of sunlight. 

 The results indicate that volumetric receivers are advantageous for applications with high levels of solar 

concentration such as central receiver designs. Furthermore, because of the increasing efficiency with nanofluid 

height, nanofluid VRs are well-suited for ground-based liquid receiver tanks with integrated storage where a 

“reflective tower” (Epstein et al., 1999) or hillside mounted heliostats (Slocum et al., 2011) are used to beam down 

concentrated solar radiation. 

 This study provides an important starting point for system-level studies that can extend this analysis to more 

specific applications by incorporating non-idealities associated with optical concentration, pumping, and storage. As 

shown in Figure 8a, nanofluid VRs can achieve high ideal system efficiencies exceeding 35% in the parametric 

space considered.  

5. CONCLUSIONS 

Nanofluid volumetric receivers for high solar flux and high temperature solar thermal applications were 

investigated. A 1-D numerical model was developed to predict temperature profiles based on direct absorption by 

the nanoparticles and thermal re-emission at high temperatures. The radiative properties of the nanofluid were tuned 

by adjusting the particle loading to achieve a desired optical thickness. An experimental setup was used to measure 

temperature profiles in suspensions of 28 nm carbon-coated cobalt nanoparticles in Therminol® VP-1 for varying 

nanofluid optical thicknesses; the experimental results are in good agreement with the numerical modeling results 

(within a 20% difference). The model shows that receiver efficiency increases with increasing nanofluid height and 

incident solar flux, and that the optimum optical thickness for a non-selective volumetric receiver is 1.7 ± 0.1. When 

connected to a power cycle, optimum system efficiencies exceeding 35 % are predicted when C > 100 and 

H > 5 cm. The outcomes of the study provide an important perspective as to how nanofluids can be best utilized as 

volumetric receivers in concentrated solar applications.   

 
NOMENCLATURE 

A Total surface area exposed to solar radiation [m2] 
b Slope of best fit between κ p,λ and fv [m-1] 
Bi Biot number  
C Solar concentration factor [-] 
cp Heat capacity [J/kg-K] 
D Particle diameter [m] 
e Emissive power [W/m2] 
Ebb Black body emission [W/m2-m] 
fv Particle volume fraction [-] 
G Incident radiative heat flux [W/m2] 
H Nanofluid height [m] 
I Radiative intensity [W/m2-m-sr] 
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k Thermal conductivity [W/m-K] / Absorptive index [-] 
m Relative refractive index (Np/nf) [-] / Mass of the nanofluid [kg] 
n Refractive index [-] 
N Complex refractive index of a medium (n + ik) [-] 
q Heat flux [W/ m2] 
qgen Heat generation inside receiver [W/ m3] 
Ωs Solid angle of sun as seen from Earth = 6.80 (10-5) sr 
T Temperature [K] 
t Time [s] 
x Size parameter: πDnf /λ [-] 
y Coordinate [m] 
 
Greek Symbols 
δ Dirac-delta function 
ε Emissivity [-] 
η Efficiency [-] 
θ Polar angle inside volumetric receiver [rad] 
κ Absorption coefficient [m-1] 
λ  Wavelength of light in vacuum [m] 
µ Directional cosine w.r.t. to y-axis (cosθ) [-] 
ρ Density [kg/m3] 
ρr Specular reflectivity [-] 
σ Stefan-Boltzmann constant = 5.670 (10-8) W/m2-K4 
τH Optical thickness [-] 
τr Transmissivity [-] 
 
Superscript 
¯ Mean or average value 
opt Optimum value 
 
Subscripts 
I for λ < 2µm 
II for λ > 2µm 
bb Black body 
exp Exposure to solar radiation 
f Fluid medium 
i Initial (t = 0) 
λ Spectral 
p Particle 
rec Receiver 
r Radiative 
s Solar / solar simulator 
SS Ideal selective surface-based receiver 
VR Volumetric receiver 
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