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Reducing Phase Noise in Multi-phase Oscillators
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Abstract— This paper investigates phase noise mechanism in pearance of spurious peaks [5], [6]. This anomalous behavio

arrays of resonant LC oscillators. Such arrays represent tday
a promising solution for the generation of multi-phase sigals
needed in several advanced applications. The analysis perged
in this paper relies on consolidated phase-domain macromas
as well as on the original concept of noise transfer function
illustrated herein. The proposed analysis sheds new lightronoise
generation in oscillator arrays and is able to explain certén noise
degradation effects observed in nonreciprocal coupling rnevorks.
Phase-domain simulation together with noise transfer funtion
concept provide a very efficient computational tool for rapid
calculations of phase response and output noise. Thanks this
efficient tool and to the gained qualitative understandingwe are
able to propose a chain array configuration enhanced by the
injection of a clean, low-noise, signal. In this paper, it isshown
how the injected chain array can provide the prescribed phas
separation while significantly reducing output phase noise

Index Terms— Multi-phase oscillators, noise reduction, noise
transfer function.

|I. INTRODUCTION

Arrays of weakly coupled resonant oscillators can be em-

ployed to generate multi-phase harmonic signals, i.e ssiitis

with the same oscillating frequency and with prescribedspha
separations. Multi-phase signals are now indispensable in
many advanced emerging applications, such as in extremely-
high frequency synthesis and multiphase clock distrilvutio
[1]-[3], as well as in brain-inspired parallel computingr fo 3)

data analysis [4]. For such applications, stringent phresse
specifications are required.

Previous studies and experimental evidences have shown
how coupled oscillators can exhibit a reduction of theirgeha
noise compared to the free-running case [5], [6]. More $peci

and performance limitations call for further investigato

In this paper, we use the phase-domain macromodel pre-
sented in [6] and the concept of Noise Transfer Function
(NTF) to shed new light on phase-noise mechanism in oscilla-
tor arrays. Thanks to this understanding, we demonstrate th
the noise performance of the multi-phase chain array can be
definitely enhanced, even at low frequencies, by propeHy in
jecting an externatlean low-noisesignal. Such a clean signal
is in fact available in the majority of frequency synthesize
and clock generation systems and is obtained by locking one
oscillator (within a PLL or with a pulsed injection) to a skab
low-frequency reference (i.e., the output of a crystal ltztoir).

The problem with an external injection is that it may disrupt
the correct phase separation if not properly dimensioned. |
this paper, we show how injection strength can be set so as to
reduce noise while preserving the prescribed phase separat

The novel contributions of this paper may be summarized
as follows:

1) We investigate the form of the NTFs that describe how
the noise sources internal to oscillators are transferred
to the output phase noise. We derive how such NTFs
depend on the specific choices of array topologies.

A behavioral method is provided that allows modeling
internal noise sources in locked oscillators through a
single macro noise source.

A chain array topology enhanced by the injection of a
clean, low-noise, signal is presented. It is shown that the
proposed array provides multi-phase signals wihV
phase separation while improving noise spectrum over a
wide frequency band. Results are checked, in a few test
cases, via comparisons with SpectreRF simulations.

ically, the phase noise spectrum near the carrier is redoged The topics listed above are organized in the paper as

a factor proportional to the numbé¥ of stages in the array,

follows: Sec. Il describes oscillator array structure agnew

while the noise spectrum far from the carrier remains almq% phase-domain model. In Sec. Ill, we illustrate phases@oi
unchanged. Such a noise reduction effect is commonly rF%deling for individual free-running or locked oscillasoaind

enough to meet noise specifications. In fact, the noise spact

near the carrier continues to be shaped g€ (or 1/f3 down

to the corner frequency where flicker noise gets domina%

then we describe array phase noise analysis and NTF concept.
In Sec. IV, we focus on the relevant case of a chain array
d derive the conditions under which an external injection

even if reduced compared to the free-running case. In auditi o -, mes effective in noise reduction. Finally, Sec. V isodest

it has been shown that certain array configurations, such

nonreciprocal unilaterally coupled chain arrays, may ltdau

unexpected deterioration of the noise spectrum with the ap-
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t8Shumerical experiments and validation.

Il. OSCILLATOR ARRAY

We consider an array composed witN identical LC
resonant CMOS oscillators, as shown in Fig. 1(Top). Each
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angular frequency, and its output voltage, measured at the
LC tank nodes, is purely harmonic

Vo(t) = Vs cos(wot), Q)



with Vi, being the voltage amplitude. To construct the array,
oscillators are coupled by a transconductance, implerddnte
differential-pair transistors. Fig. 1(Top) shows, the piing =~ = °
circuit between two oscillator stages of the array with kde

k andj. In this example, a differential-pair circuit reads the 7.(t)
voltageV; () at thekth-stage output and injects a proportional
differential current K

I;(t) = gjr Vi(t) 2

into the tank nodes of thgth oscillator. The module of
parameterg;, corresponds to the transconductance of the
associated differential-pair transistor while its sigifiers to
the way differential currenf;(¢) is injected into the nodes
nj andn; . In this paper, it is conventionally assumed that a
positiveg;;, corresponds td; (t) exiting nodenj and entering

.nj , @s it is the case shown Ir.] _Flg. 1(T0p2' A negatgﬁ’ Fig. 1. (Top) Circuit of two of the oscillators forming theray and coupling
instead, corresponds tQ(t) exiting nOdenj and entering transistors. (Bottom) Schematic representation.

nj and can be implemented by switching the way differential-
pair drains are connected to the injected nodes. In the array
Fig. 1(top) coupling is bilateral since a second differalrtiair
transistor reads the voltadé (¢) of the jth stage and injects

a proportional currently(t) = gi; V;(¢) into the kth stage.
The array topology can be schematically represented by the
system shown in Fig. 1(Bottom) where couplings are inditate

N
by oriented arches of strengiy.. Array topology can be Ii(t) = ngj Vit + a;(t)). (6b)
j=1

G (t) = Ti(t + o (b)) I (2) (6a)

described by the conductance mat@k = {g;.} € RV*VN
that collects all coupling strength coefficients;.

It is known that for resonant oscillators with well matched\rray synchronization is achieved if, asymptotically for
free-running frequency, weak coupling (e.g. with the tcams ¢ — oo, the time-shift variablea (¢t) approach the waveforms
ductance of coupling transistors one order of magnitude.(¢) such that the associated phasgét) = woay(t) satisfy
smaller than that of oscillator transistors) is enough tepke
oscillators synchronized. Under this hypothesis, the yarra lim ¢ (t) — ¢;(t) = Pyj, @)
response can be realistically simulated with a phase-domai troo
macromodel [7]-{12]. According to this method, the outpYpy 4| k and j, where®,; is a constant [13]. In other terms,
voltage of thekth oscillator in the array is written as the phase difference (or phase separation) between any two

oscillators converges to a constant value and the osaillato
Vi(t) = Vo(t + ax(t)) = Vs cos(wot +woak(t)) (3) array generates a multi-phase harmonic signal. Numerical
integration of (6) allows us to efficiently verify whether
where «(t) represents the time-dependent time shift of th&ynchronization condition (7) is satisfied and to calcutat
perturbed response with respect to the free-running one asteady-state phase separatidng in case of synchronization.
or(t) = woay(t) is the associated excess phase variable. Then,
the time-shift variable and injected currdp(t) are related by
the scalar differential equation [7], [8] I1l. PHASE-NOISE ANALYSIS

e (t) = Tr(t + ag(t) I (t) 4) Phase-domain model (3) is suitable to analyze phase-noise
effects in oscillator arrays. Noise sources internal tcheas:

) o . . cillator produce random fluctuations of the time shift valéa
where F_k(_t) is the periodic phase-sensitivity function toak(ﬁ) and of the associated phagg() (referred to as phase
current injection at the tank. It has been found that for Lgise). When many oscillators are coupled to form an array,
resonant oscillator$ (¢) is sinusoidal and delayed by7/2  {he internal noise sources of oscillators interact amomgnth
phase angle with respect to the output response [16], i-e. {hrough a complex mechanism that results in the final output

phase noise. Such a mechanism can be investigated via a two
[k (t) = Tas cos(wot — 7/2). (5) step procedure that consists in modeling noise in the iddadi
uncoupled oscillator through a macro noise source, and then
The phase response of the whole chain array is governedusing the phase macromodel (6), augmented with such macro
the following set of nonlinear differential-algebraic edions noise sources, to evaluate array phase noise.
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Fig. 3. (Solid line) Output noise spectrui>°*(f) of a locked oscillator,

Fig. 2. (Solid line) Output noise spectru&£7'ee(f) for a free-running
(Dashed line) spectrurs’o°*(f) of the associated macro noise source.

oscillator, (Dashed line) spectruis),”““(f) of the associated macro noise
source.

reference (i.e. a crystal oscillator) within a control gyst
A. Individual free-running oscillator such as a Phase-Locked-Loop (PLL) or a Pulsed-Injection-
L cked-Oscillator (PILO) [14]. The control system perfam
a low-pass filtering of the oscillator phase noise. Hencepte
ing fp the filter pole frequency (i.e. the control bandwidth),

For a free-running oscillator, phase noise can be describ
in a compact way, by the average stochastic equation

a(t) = n(t), (8) the output spectrum of the locked oscillator results of et

where n(t) is a macro noise source, with Power Spectral Slock(f) = (K n ﬁ) 1 (12)
Density (PSD)S,,(f), that accounts for all of the device noise ¢ YO ) lif+ fel?
sources internal to the oscillator circuit [17], [18]. Th&F a5 it is qualitatively shown in Fig. 3 under the realistic
of the phase-noise variablgt) = woa(t) is given by hypothesis thatfz >> fc. In view of (9), we derive that

12 ) the macro noise source’*°*(t) to be associated to a clean

Ss(f) = Izh Sn(f) = NTF(f) wg Sn(f), (9 low-noise oscillator has the PSD
_ _ _ , Kp\ 1 f?

where NT 1/]i2x f|? is the noise transfer function Slock(f) = (Kw + —f) —— 13

(normalized taw,) that describes how the power noise of the

sourcen(t) is transferred to the output, whereas in this pap#¢hich vanishes forf << fz, as shown in Fig. 3.

we denotei = \/—1 the imaginary unit.

For a given oscillator (i.e. with given circuit parametersf. Oscillator array

working in free-running mode the output phase-noise spettr  The oscillator array is formed by coupliny free-running

SJ7°(f) is a known data. In fact, it can be determined eitheic oscillators as shown in Fig. 1. In addition, one low-

via detailed circuit-level simulations or through lab@mt noise oscillator (whose noise model has been described in

measurements. Such a spectrum is formed of two contritaitiafybsection 111-B) may be present in the system. An example

free K, Ky of such an array topology is investigated in the next section

Sh (f) = ? F’ (10) and is shown in Fig. 6. The low-noise oscillator is supposed

to inject unilaterally into the other stages of the array rsat t

it2 behavior (and its low noise output) is not affected bygrr

operation.

due to white and flicker noise sources, respectively, as it
qualitatively portrayed in Fig. 2. In this figure, verticahd

horizontal axis are scaled logarithmically arfdrepresents To study phase noise in the oscillator array, the macro

.Oﬁset frequency. The values_of the parametés and K5 poise sourceny(t) associated to théth oscillator is added
in (10) can be extracted by fitting the shape of the avallaql equation (6a), i.e

output spectrum. In view of (9), the PSD of the associate
macro noise source/™*(t) is deduced to be ag(t) = Ti(t + ag () I (t) + ny(t). (14)
K Kr1l
S,,]:Tee f = —w + _f_, 11
=T R an
as reported in Fig. 2, wherg: represents the corner frequenc
down which flicker noise becomes relevant.

For oscillators that were running in free mode before being
coupled, the noise soureeg,(t) in (14) has PSD of the type
>§11), whereas for the low-noise oscillator, the associatdde
sourceny(t) has PSD of the type (13).

Combining (14) with (6b), we are led to the following set
of stochastic differential equations

N

A clean, low-noise and high-frequency oscillator can bedk(t) =T5(t + ax(t)) - ngj V;(t + a;(t)) + nx(t). (15)

obtained by locking one oscillator to a stable low-frequenc =1

B. Oscillator locked to a reference



The presence of noise sources induces extra random fluctte following qualitative observations are in order.
ationsy, (t) of Val‘iab|68ak(t) around their noiseless regime 1) Coupling oscillators to form an array resultsfilbering
valuesay(t), i.e. the macro noise souree,(t) through transfer functions
tr; (f) whose poles are the eigenvalugsof matrix A..

o (t) = ak(t) + i (t). (16) 2) If eigenvalues\, are complex conjugate (i.e. they have
Exploiting the fact thatr,(t) << ax(t), in the Appendix a nonzero imaginary part), these transfer functions may
it is shown that the PSD of the noise-induced excess phase give resonance effects with unwanted spikes in the out-
0,(t) = woTk(t) for the kth oscillator in the array is given by put phase noise spectrum. This phenomenon, which was

observed in previous studies [5] and [6], becomes more

N
9 pronounced when the numb#af of stages is increased.
So.(f) = ZNTF’“j(f)wo Sn; (f), (17) Such spikes in the output spectrum are removed if the
=t conductance matritz = g;;, iS made symmetric, i.e. if
where coupling is bilateral withg,; = g;i. In this case in fact
NTFw; (f) = [trg (F)I. (18) A is symmetric and thus its eigenvalugs are purely

real, which eliminates any resonance effect. For these
reasons, from now on our analysis will be focused on
symmetric arrays.

3) The first term in expansion (23) is the most critical one
since its transfer functiomx 1/f, which corresponds
to integrating noise in time, produces large phase noise
components at low frequencies.

In the expression above, the complex coefficignt /) repre-
sents the signal transfer function from inpyt(t) of jth oscil-
lator to output phaséy(t) of kth oscillator, while NTE; (f) is
the associated noise transfer function in terms of noiseepow

Furthermore, transfer functiorig; (f) are the entries of the
complex matrix

T(f) = {tr;} = (i27fIn — A)_l, (19) 4) Nonzero elements of vectdi; tell us which noise
) ] ) ) ) sources in the array are actually integrated through
where Iy is the identity matrix of sizeN, "—1" denotes transfer function, in other words the noise souncgt)
inverse operator, whilA. = {a);} € RV*" is defined as associated tth oscillator is integrated in time if and
follows only if the pth element in vectoiV; is non zero. As
N a result, in order to minimize output noise, veciﬁf’rl
agk, = B Z iy cos(Pp;) should have non zero elements only in correspondence
j=1,j#k (20) to low-noise oscillators.
axj = —B gij cos(Pg;) for k # j, We conclude this section by observing that vedtoy is the
eigenvector ofA” associated td; = 0 and thus it spans the
with B = wol', Vs /2, as derived in the Appendix. null space of mgtrixAT. This is easily_ seen by transposing
In the remainder of this section, we better investigate t#é1) and observing tha ™ = V~1, which yields
form of the signal transfer functiortg; (f). As underlined in AT =W.D, - WL (24)
the Appendix, for any phase separatidp; that corresponds
to a stable solution of (6), the eigenvalugs of A are such IV. CHAIN ARRAYS WITH CLEAN SIGNAL INJECTION

that: A\; = 0, while remaining ones have negative real part An array topology of particular importance is thuain
R(Ax) < 0 for k = 2,..., N. For exposition simplicity, in array where only nearest neighbor oscillators are coupled,
what follows we suppose that such eigenvalues are all distine. grj # 0 only for j € (k— 1,k + 1). Chain arrays
(this is in fact the case for the chain array topologies thate interesting for implementation reasons since theyirequ
we will consider later). Under this hypothesis, matAxhas a limited number of coupling stages. More importantly, it
eigenvalue decomposition as follows: has been proved that for a synchronized chain array only
. T one steady-state phase separatign corresponds to atable
A=V-Dy- W7, @D solution of (6) and thus it is observable in practice [6],][15
where the diagonal matriD, collects the)\; eigenvalues, This stable phase separation only depends on array topology
whereas the columns of matr are the related eigenvectorsand coupling strengths, i.e. on conductance matixwhile
Vi In particular, eigenvectoV; associated to\; = 0 spans it does not depend on initial phase conditions.

the null space of matriq, i.e. A-V, =0.The columng/f/j of In this paper, in particular, we will focus on the chain array
matrix W defined asw? = V1! are the rows of the inversetopology portrayed in Fig. 4 where neighboring oscillatare
matrix matrix V—1. From (19), it results connected by a symmetric bilateral coupling of strengtih
- (with g being the differential-pair transistor transconductance
T(f) =V Din- W7, (22) The chain array is closed at the ends with the first and

where the diagonal matrixD;, collects the elements last stages that are bilaterally coupled with strengthThe

(i2rf — A\x)~'. Expression (22) can be further expanded int@ssociat_ed conductanc_e matfix is reported in Fig. 5(Top).
For this chain array, it has been proved that when synchro-

nization is achieved, steady-state phase variables ahetlsat

| N 1
T(f) = MWWl — VW ———. 23
() =" i2n f - kZZQ LR Y W (23) Ppy1k = r+1(t) — P (t) = £m/N. (25)



Fig. 4. Chain array topology.
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G- 0 -9 09 i Fig. 6. Chain array injected by the low-noise oscillatoy.O
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Fig. 5. (Top) Conductance matri& for the array in Fig. 4. (Bottom) Matrix S
AT and its null spacéV;. ey oz
0 -z 0 0 z x| [0 | o]
_ . : i t
Thus, denotingr = g B cos(Pxt1 k), the symmetric matrix AT -
’ W1

A = AT exhibits the structure shown in Fig. 5(Bottom) and

Its _m'!” space is spanned by t_he vechuy formed by all ones. Fig. 7. (Top) Conductance matrig for the array with injection in Fig. 6.

This implies that all of the noise sources(t) in the array are (gottom) Matrix A7 and its null spacéV;.

transferred to the outputs through the critical networkction

1/i2x f. We thus expect that for the chain array in Fig. 4 the

output power spectra, even if reduced compared to the frestries) is shown in Fig. 7(Bottom). The null-space spagnin

running case, will continue to be shapedigds? (and1/f3 vector W, has a one in the first position and all zeros in

at the very low frequencies down ifx). the others. This means that in the injected array the only
To improve the noise performance, in what follows waoise source which is transferred through the critical oetw

investigate the enhanced array arrangement shown in Figfuiction1/:2x f is that of the clean source, (¢) associated to

in this arrangement the oscillators in the chain array af@e locked oscillator. This is expected to improve signifiba

injected unilaterally with the clean signal provided by ao the array noise performance at the low frequencies.

noise oscillator labelled © The macro noise source; (t)

associated to Qhas the PSD described in (11) which vanishes V. NUMERICAL RESULTS

for f < fp. Signal injection from @ should reduce the small- In this section, we present numerical results for chain

signal phase fluctuations induced by noise while minimallgrrays formed withNV = 5 identical LC oscillators and for

affecting the large-signal phases;(f) and related phase configurations without external injection and with injecti

separations. To achieve this goal, the injection strength The circuit of each LC oscillator is shown in Fig. 1 with the

fixed to a valueg, << g¢. The conductance matri& for device parameters reported in table I. A single oscillator i

the injected chain is augmented by an all-zero row (oscilléirst simulated with the periodic steady state (pss) anslysi

tor 1 is not injected by others) and one column collectingf SpectreRF and then thE(¢) function is extracted with

injection strength coefficientg, as shown in Fig. 7(Top). the method described in [16]. The circuit oscillatesfgt=

Supposing that (25) remains unchanged, and adopting th@261 GHz and its output voltagé,(¢) and I'(¢) function

notationsz = g B cos(Px+1.%), Tr = gr B cos(Pr4+1,%), and are harmonic as in (1) and (5) with peak valigg = 3.45V,

y = —2z + ., the structure of th” matrix (i.e. its non zero I'y; = 151.8 A~', respectively.



TABLE |
PARAMETERS OF THELC OSCILLATOR

[ Parametef Value || 3
Voo |25V -

I, 640 A o

C 0.3pF -g

L 40nH i

R 11K 2
(W/L) | 30 T

Oscillator stages are coupled as in Fig. 4, to form a cha
array with no injection. A fixed differential-pair transaitunc-

tance parametey = ¢° = 107°Q~! is chosen. The phase AT e s s 35 s s
response of the chain array is then simulated with the moc Time [s] x107
(6), starting from initial random phase values. Fig. 8 shows

the time evolution of thep(t) phase variables: the phasq:.

. . ig. 8. Phase response of the array with no injection.
difference among nearby oscillators converges to the aahst

valueA¢ = 7/5 ~ 0.628 rad meaning that the oscillator array
is synchronized.

Hence, the array with unilateral external injection as dt 1
scribed in Fig. 6 is considered: the low-noise oscillatgri® [\ 61(0)
jects unilaterally in the chain stages, numbered ftota N +
1 = 6, with transconductance strenggh = g = 10 Q 1.

Fig. 9 shows the simulated time evolution of thg(t) phase
variables for the array with injection: compared to the cas

Phase Variables [rad]

with no injection, array synchronization takes a longeetiput - $2(t)
eventually phase separations among chgin array gtage‘s;ri.e b3(t) ¢ Ag
k=2,...,N+1, converge taA¢ ~ = /5 with a relative error sl )

which is smaller tha2%. Besides that, chain array oscillators ;
synchronize with the external signal in the way that ostila b ¢5(t)

Oy, in the center of the chain array, is almost in antiphase wi %6(t)

Oy, i.e. ¢1(t) — ¢4(t) =~ w. This behavior is fully confirmed = ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
by detailed circuit-level simulations with SpectreRF. .Fig) et 2 “Timels) © ' ° X“’lo,e

reports the oscillators output voltages derived with thaggh
domain simulation and model (3) and those obtained through
simulation with SpectreRF: the waveforms (after being propig. 9. Phase response of the array with external injection.
erly delayed) match with great accuracy. We thus conclude
that, for the selected coupling strengths, the prescrithede
separation is preserved in the presence of external injecti iS Well approximated by

We pass now to analyze noise. To this aim, the output phase 100
noise of the individual free-running oscillator is compuiteith S, (f) = e (27)
the pnoise analysis of SpectreRF [19]. For the considered P
oscillator device, phase noise is dominated by the thernyéith control bandwidthfs = 10 MHz. From (11), we deduce
white noise down to a corner frequengy of some hundreds that macro noise souree (t) has PSD
hertz. Over the frequency range of interest, the spectrum of

. . . _ 100 f2
the free-running oscillator is well approximated b Sn, =" 28
g o pp y (f) PRSI (28)
Sy(f) ~ T2 radf /Hz. (26) First, we focus on the array with no injection and, starting

from the simulated phase separatidng shown in Fig. 8 and
which corresponds to (10) witk; = 0. In view of (9) or using (19) and (20), we calculate the NTFs. Fig. 11 shows
(11), the associated macro noise soun¢e) has a constant NTF,,(f) describing self-noise transfer from souneg(t) to
PSD S,,(f) = S, = 10~'%rad’/Hz. Noise in each oscillator output 6,(t) for oscillator number 2 (the same curves are
in the chain array is thus modelled with a macro noise sourfmund for the other oscillators in the chain). It also shows
n;(t) having constant PSI3,,, (f) = Sy. NTF;(f), with j € (1,3,4,5), describing noise transfer

For the array configuration with external injection, ogtilr from other oscillators. We conclude that, even though such
O, is a locked low-noise oscillator whose PSD of the type (1N TFs are attenuated compared to NFF = 1/]i2rf|? for
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Fig. 10. Output voltages for the array with injection: (8dine) waveforms Fig. 12. (i) NTHf) for the free-running oscillator, (i) NT&(f) in the
obtained with the phase-domain model, (Square marker)faams simulated array with injection, (i) NTR;(f) with j € (3,4,5,6) in the array with

with SpectreRF. injection, (iv) NTR1(f)
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Fig. 11. (i) NTHf) for the free-running oscillator, (i) NT&2(f) in the  rig 13 () Phase-nois&,(f) in the free-running oscillator. (i) Output

array with no injection, (iii) NTk; (f) with j € (1,3,4,5) in the array with phase-noiseSg, (f) in the array without injection. (iii) Output phase-noise

no injection. Sp, (f) in the array with injection. Solid lines refer to phase-dinmsimula-
tions, square markers refer to simulations with SpectreRF.

the free-running oscillator, they still vary ag f? at the low
frequencies. SpectreRF as reported in Fig. 13 for comparison. Detailed
Second, we calculate the NTFs for the array with injectioBpectreRF simulation is indeed time consuming, (e.g. fer th
using the simulated phase separatidng shown in Fig. 9. relatively simple case ofV = 5 with external injection,
In this case, we see from Fig. 12 how self-noise functidine single simulation requires about 20 minutes on a quad
NTF22(f) and transfer functions NTE(f) for j € (3,4,5,6) core) and thus it is used only for verification purpose. By
are significantly reduced down ts 1 MHz where they tend contrast, phase domain analysis requires only a few seconds
to constant values. The only NTF that keeps varyind 48 and thus it allows extensive exploration of array perforoen
is the NTh; (f) that weights clean noise soureg(t¢). This as a function of parameters values. In the remainder of this
should reduce the total output phase noise. Fig. 13 shows #eetion, we exploit the efficiency of the phase domain mazlel t
total output phase noiséy,(f) computed with the phase-investigate two issues that are relevant for practical @mgn-
domain model for the cases of array without injection anghtions. A first issue is connected to the variability of clingp
with injection. External injection is seen to yield a remarkcoefficients due to fabrication uncertainty. To study thfed,
able noise reduction at the low frequencies. This result vge assume that coupling transconductagcand injection
fully confirmed by circuit-level phase noise simulationgtwi strengthg, undergo random variations around their nhominal



values ¢° and ¢?, according tog = ¢° - [1 + U(—a,a)] and
gr = g%+ [1 +U(—a,a)], respectively. The symbdl(—a,a)
denotes a stochastic variable uniformly distributed over t
interval (—a, a). Hence, we perform Monte Carlo simulations
where for each randomly generategdand g, values, we
simulated the phase-domain response of the injected arre
and determine the steady-state phase-difference valiged.4~
shows the statistical distribution of the asymptotic phaife
ferencegs (t) — ¢3(t) = ®o3 (very similar curves are obtained
for the other differences) calculated witid0 Monte Carlo
iterations and for+2% coupling variability, i.e.a = 0.02:
the resulting phase difference tends to be normally disteith
around its mean valué.625rad with standard deviatior:
1%. Thus, the assumed variability of coupling coefficients
does not significantly affect the array phase response. W
also verify that the associated phase-noise spectra raragin
close to the curve (iii) in Fig. 13 calculated in the absentce o}
variability. It is worth underlining that the whole Monte @& 4,
simulation with the phase-domain model is accomplished in
only 25 minutes while it would require more than one week
if it were performed with detailed SpectreRF simulations.
The second issue is related to the importance of tightly
matching the frequencw,; of the locked low-noise oscil-
lator O, to the free-running frequency, = 2xf, of the
oscillators in the array. To investigate this aspect, weirags
wy Fwp =wp fork=2,..., N+ 1, and we study the effect
of a small frequency detuning, —w; = Aw = 27 x (1 MHz).
In the presence of frequency detuning, synchronizatiomohe
oscillator in the array with the low-noise one requires tfiat

t — oo, the following condition holds [13]
wit + wiaq (t) — wit + wrag(t) = Pk, (29)

with ®,;, being a constant. This means that, at synchonization
the phase differences

D1(t) — pr(t) = wpt —wit + @1 = Awt + Py, (30)
for k = 2,...,N + 1 should contain a tern\wt¢ growing Fig.

Variable Distribution

0.618 0.62 0.622 0.624 0.626

Do3 [rad]

0.628 0.63 0.632

g. 14. Statistical distribution of the phase differeregs = ¢2(t) — ¢3(t)

to coupling coefficients variability.
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15. Phase response of the array in the presence of freguetuning

linearly with time that compensates for frequency detuningw and for couplingg = 107° Q=" andg, = 1070 Q1.

For oscillators within the array, instead, mutual syncizan
tion condition remains as in (7) fak,j € (2,...,N + 1).

Fig. 15 shows the phase response of the injected arra
in the presence of the assumed frequency detuning and fc
the coupling parameterg = 10°°Q~! andg, = 1075Q~!
considered so far. With these parameters, condition (309tis
met and the oscillators within the arrays do not synchronize
with O;. As a result, the phase differences among nearby
oscillators, do not reach constant values but exhibit flatdns
(£10 %) with period27/Aw, as shown in Fig. 16.

Array synchronization with © is completely recov-
ered if coupling coefficients values are increased
g=25-107°Q"! andg, = 2.5-1076Q~!. With these pa-
rameters, the array phase response shown in Fig. 17 satisfi
synchronization condition (30) and phase differences amon
nearby oscillators reach the prescribed constant phaseasep
tions. We also verified that, in this condition, the resujtin
phase-noise spectra are still very similar to the curvg (i
shown in Fig. 13.

to

Fig.
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16. Phase differencel¢y, i1 (t) = ¢r(t) — ¢r+1(t) among nearby

Wscillators in the array when they do not synchronize with O



In view of (3) and (5), that are valid for harmonic oscillapr
(32) is transformed into

Tk(t) = {FMVMwO COS[WQ(t+ &k)]

-ngj cos[wo(t + ;)] } 7 (t)

Phase Variables [rad]

+T 0 Viarwo cos[wo (t + ay, — 7/2)]

N

-ngj cos[wo(t + ;) + 7/2] 7;(t) + ng(t).
j=1
S PN I ! (33)
Time[s] <107 .
We then use averaging [21], [22] and keep only the low-
frequency terms arising from the cosine products in (33),

Fig. 17. Phase response of the array in the presence of freguetetuning  obtaining
Aw and for couplingg = 2.5-10"°Q~1, g, =2.5-107 QL.

#(t) & B> gkjcos(®r;) | - Tr(t)
VI. CONCLUSION Jj=1 (34)
N

Phase-noise generation mechanism in arrays of multi-phase k
LC oscillators I?as been studied using the c}(/)ncept of I:)mise 7Bzg"j co8(@rs) - 7 (£) + 1y (1)
transfer function. We have shown how such functions admit
fraction expansions with poles that are the eingevalues ofabere B = woI'y Vs /2 and whered,; are defined in (7).
matrix A only dependent on the coupling coefficients and Denoting A(t) the vector that collects all excess phase
achieved steady-state phase separations. The propodgsiginavariablesdy (t) = woTi(t) and7i(t) the vector of macro noise
allows handling the case of chain arrays enhanced by the-injgources, from (34) we deduce

tion of a clean low-noise signal. By exploiting phase-damai d

simulations and noise transfer functions we have shown how —0(t) = A - 6(t) + wo i(t) (35)

a properly dimensioned chain array with external injection dt

can provide the prescribed phase separation while significa where the elements of matrix €¢ RV*" are given by
improving the output phase noise of the oscillators in therch
Some results have been presented for LC oscillators in CMOS
technology, and they can be applied to the wider family of Ukk = B‘ Z grj €08(Lk;) (36)
resonant oscillators, which includes resonant nanolatmis =Li#k

j=1

N

fabricated in emerging technologies such as MEMS resonant @ = =B gij cos(Prs) for & 7 J.
body transistor [23], [24]. Finally, Fourier transforming (35) and passing to powesegi
the closed-form expression (17) is obtained with marixf)
APPENDIX defined as in (19)

We also observe how entries of matrikX are decided

Starting from (15), we sketch here the steps leading to ph%y the array topology, which is described ly; coupling
noise expressions (17), (19) and (20). Interested readars Coefﬂments and by th'e phase-difference val@ég (7) that

find more details in [6]. To this aim, we substitute (16) int§
(15) and, exploiting the fact that,(t) << d(t), we linearize are reached at synchronization. MatAxis singular with rank

equations using Taylor expansion truncated to first ordenge N —1 and thus has a null eigenvalue, lets say = 0. In
q g lay P addition, from (35) we see that the eigenvaluesdofjovern

Tk (t4 ap(t) + () ~T% (t + ar(t)) + Tk (t + ax(t)) 7(t) the dynamics induced by any perturbation of the steadg-stat

~ ~ : ~ solution of (6) [20]. As a result, for any phase separatign
t t (1)) =~Vi (t (T t t t)
Vie (¢ + @ (8) +7(0)) =V (¢ + @k (8)) + Vie (¢ + @ () 7 (?) that corresponds to atable solution of (6), i.e. that can be

(31)  obtained by numerically simulating (6) in time, the eigdnes
This results into Ak fork = 2,..., N should necessarily have negative real part,
i.e. R(\g) < 0.
() = | Tr(t + ap(t ngj (t+a; (1) | m(t)
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