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Abstract 

Phase change material (PCM) suspensions have received wide spread attention for increased thermal storage in 

various thermal systems such as heat sinks for electronics and solar thermal applications. To achieve further heat transfer 

enhancement, this paper investigates the effect of focusing micron-sized phase-change particles (PCMs) to a layer near the 

heated wall of a parallel plate channel. A numerical model for fully-developed laminar flow with a constant heat flux 

applied to one wall is developed. Melting of the focused PCMs is incorporated using a temperature-dependent effective 

heat capacity.  The effect of channel height, height of the focused PCM stream, heat flux, and fluid properties on the peak 

local Nusselt number (Nu*) and the averaged Nusselt number over the melting length (Numelt) are investigated. Compared 

to the thermally-developed Nusselt number for this geometry (Nuo = 5.385), Numelt and Nu* enhancements of 8% and 19% 

were determined, respectively. The local heat transfer performance is optimized when the PCMs are confined to within 

30% of the channel height. The present work provides an extended understanding of local heat transfer characteristics 

during melting of flowing PCM suspensions, and offers a new method for enhancing heat transfer performance in various 

thermal-fluidic systems.  

 

Keywords: Phase-change material (PCM), melting, local heat transfer, focusing, particle distribution, 

mini/microchannels. 

Nomenclature 

cp Heat capacity [J/kg-K] 

dp Particle diameter [m] 

Dh Hydraulic diameter (2H for parallel plates) [m] 

DB Brownian diffusion coefficient [m2/s]  

hsf Latent heat of PCMs [kJ/kg] 

H Channel height [m or mm] 

k Thermal conductivity [W/m-K] 

Lth  Thermal entrance length [m] 

m!  Mass flow rate [kg/s] 

ML Dimensionless initial subcooling: (T--Ti)/∆To  [-] 

Mr Dimensionless melting temperature range: ∆Tmelt/∆To [-]  

Nu Nusselt number [-] 

P Pressure [Pa] 

Pe Peclet number: UDh/α [-] 

q” Heat flux [W/m2] 

Re Reynolds number: ρUDh/µ [-] 
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Ste Stefan number: 
osf

fp

Th
c

Δω
,  [-] 

Stem Modified Stefan number: 
meltsf

fp

Th
c
Δω
,  [-] 

T Temperature [K] 

t Time [s] 

u Local velocity [m/s] 

U Mean fluid velocity [m/s] 

x,y Coordinates [m] 

x* Dimensionless position: x/DhPe [-] 

 

Greek Symbols 

α Thermal diffusivity (k/ρcp) [m2/s] 

δ Height of the phase-change stream [m] 

δB PCM Brownian diffusion distance [m] 

µ Viscosity [Pa.s] 

ρ Density [kg/m3] 

ϕ PCM-particle volume fraction [-] 

ω PCM-particle mass fraction: ρp ϕ / ρeff [-] 
 

Superscript 

* Local maximum 

min Minimum 

- Onset of melting 

+ End of melting 
 

Subscripts 

b Bulk 

δ Pertaining to phase-change stream 

eff Effective property of PCM suspension 

f Fluid medium 

i Inlet 

melt Averaged over PCM melt region 

o Thermally-developed 

p Particle (outside of melt region) 
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w Heated wall 

x Local 

 

1. Introduction 

When suspended in a heat transfer fluid, PCMs serve to increase the effective heat capacity of a fluid over a relatively 

small temperature range as the core undergoes melting (i.e., phase change). Since thermal systems are operated with a 

limited temperature difference between inlet and outlet, the enhancement of effective heat capacity resulting from the 

latent heat of fusion increases the energy storage density. Consequently, either thermal performance is improved or the 

pumping power requirement may be reduced. 

Previous studies have developed numerical models to understand the hydrodynamic and heat transfer characteristics 

of PCM suspensions (i.e., slurries). A review by Dutil et al. focuses on numerical studies modeling convective heat 

transfer in PCM suspensions with summaries of methods, model validation steps and main contributions [1]: while, Zhang 

et al. summarizes work addressing material properties and applications of PCM suspensions [2]. Most of the numerical 

studies model the slurry as a bulk fluid using the effective heat capacity model [3-9] originally introduced by Alisetti et al. 

[3]. Alternative approaches treat the latent heat as an additional source term representing the absorbed heat during the 

phase change process in the PCM [10, 11], or describe the carrier fluid and the PCM phases using separate conservation 

equations with appropriate interaction terms [12]. 

Experiments have also been conducted to evaluate the heat transfer characteristics of PCM suspensions [13-23]; 

results from forced convection, constant heat flux experiments with suspensions of microencapsulated PCM particles 

show the effects of the following: Stefan number, PCM mass fraction, flow rate, flow regime, inlet temperature 

subcooling, and particle size. Thermal performance tends to increase as the mass fraction increases, but the optimal mass 

fraction balances both the heat transfer enhancement and the pumping power increase [15, 16, 23]. To improve the 

effective thermal conductivity of slurries, investigators have studied hybrid suspensions of alumina nanoparticles and 

PCMs [21, 22]; however, experiments showed that the viscosity of hybrid suspensions is anomalously high, exceeding 

enhancements in heat transfer. 

Although previous work has focused on enhancing overall thermal performance using PCM suspension fluids, certain 

studies have also considered the effects of PCM suspensions on the local heat transfer characteristics. Local heat transfer 

coefficient variations along the axial direction (hx) have been reported using both numerical models [8, 9] and in 

experiments [17-19]. Sabbah et al. showed that hx increases when the melting interface is near the heated wall and 

decreases when the interface moves toward the tube center [9].  Meanwhile, Zeng et al. investigated the effects of the 

Stefan number (Ste), the PCM melting range (Mr), the flow rate, and the particle diameter on the local heat transfer 

characteristics; the amplitude of the hx variation was observed to increase with decreasing Ste and decreasing Mr, which 

were the dominant parameters in the study. Furthermore, Wang et al. demonstrated local heat transfer enhancements as 

high as 60% compared to the basefluid and suggested a heat transfer correlation to predict the average heat transfer 
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coefficient during PCM melting [18, 19]. The effects of PCMs on local heat transfer, however, have not been investigated 

in detail beyond these studies. In particular, understanding the influence of the distribution of PCM particles inside the 

channel and how it can be used to achieve further heat transfer enhancements was not considered in previous work. 

In this paper, we investigated the effect of focusing micron-sized PCMs to a layer near the heated wall on local heat 

transfer coefficient. Various techniques have been used to focus, separate and sort microparticles demonstrating the 

feasibility of the proposed concept, including: pinched flows (e.g., [24]), where flow asymmetries are used to separate 

particles; inertial focusing, where particles migrate away from the channel center and walls generating continuous particle 

streams due to inertial lift forces (e.g., [25]); magnetophoresis (e.g., [26]), where magnetic particles are manipulated using 

an externally applied magnetic field; and acoustophoresis (e.g., [27]), where particles are driven towards minima of an 

acoustic force field acting perpendicular to the flow direction due to density and compressibility contrast compared with 

the basefluid. The effect of focusing particles on heat transfer, however, has not been investigated.  A numerical model is 

developed which assumes fully-developed laminar flow and a constant heat flux applied to one wall. Melting of the 

focused phase-change particles is incorporated in the model using a temperature-dependent effective heat capacity. Using 

near-wall PCM focusing, we report increases in the averaged and peak Nusselt numbers. 

 

2. Model Formulation 

      We developed a two-dimensional model (x,y) of laminar flow between parallel plates to investigate the effect of 

focusing PCMs near a heated wall. Constant heat flux (q”) is applied to the bottom wall, while the top wall is adiabatic. 

As shown in Figure 1, PCMs are confined to a layer near the bottom wall (δ) which is a fraction of the total channel height 

(H). Pure fluid and PCM streams are introduced upstream such that the flow is assumed to be hydrodynamically fully-

developed by the time it reaches the heated region. The inlet temperature is uniform and well below the onset of melting 

(i.e., ML >> 1). Melting of the PCMs in the phase-change stream is modeled using a temperature-dependent effective heat 

capacity. 

 

Figure 1: Schematic for model formulation of a 2-D parallel plate channel with fully-developed flow and PCMs confined to a layer (δ) 
near the heated bottom wall.  
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In modeling this system, we make the following simplifications in order to focus on the effect of the PCMs: 

• Local temperature differences between the PCMs and the surrounding fluid are neglected. This assumption is 

consistent with bulk fluid treatments [3-6, 8]  and was justified for PCMs on the order of a micron [5]. 

• Temperature dependence of the pure fluid material properties is neglected over the relatively small melting range.  

• Differences in the properties of the solid and the post-melting phase of the PCMs are neglected.  

• The encapsulating/stabilizing shell is assumed to be negligibly thin compared to the phase-changing core. 

• Axial heat conduction and viscous dissipation are neglected. 

• The PCM suspension is considered Newtonian. 

• PCMs are homogenously distributed throughout the phase-change stream. 

• Diffusion of PCMs from the phase-change stream is neglected since it is small relative to the channel height (see 

Appendix A.3). 

 

2.1 Effective Suspension Properties 

In this study, the thermophysical properties of the PCM suspensions are described using effective models. The following 

models hold for spherical, non-agglomerating, micron-sized particles with volume fractions up to ~20%.  

Density 

Considering a simple mechanical mixture of components [28], the effective density of the PCM suspension is equal to: 

 pfeff ( φρρφρ +−= )1   (1) 

where ϕ is the particle volume fraction in the PCM stream. 

Heat Capacity 

The effective heat capacity is represented by a half-period sinusoidal function: 
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where ωδ is the particle mass fraction inside the PCM stream, hsf  is the latent heat of PCMs, T– is the temperature at the 

onset of melting, and ∆Tmelt (= T+-T-) is the melting range. This formulation is consistent with previous effective heat 

capacity models [3-6, 8]. 

Thermal Conductivity 

Maxwell’s effective theory [29] is used to calculate the thermal conductivity of the suspension:  
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This relation agrees with experimental results for spherical microparticles with volume fractions up to 22% [13]. 

Microconvection-related enhancements discussed in studies considering larger particles  are neglected in this study since 

they scale with dp [30]; results from previous studies indicate these effects are negligible for micro/nanoparticles compared 

to the effects of phase change [10, 13, 17]. 

Viscosity 

The dependence of the effective viscosity (µeff) of the PCM stream on the volume fraction of particles is computed using 

Vand’s [31] semi-empirical model: 

 5.22 )16.11( −−−= φφ
µ

µ

f

eff   (4) 

This model holds for non-interacting, hard, uncharged particles and agrees with experimental results for spherical 

microparticles (dp > 0.3 µm) with volume fractions up to 20% [13]. Although several researchers have suggested higher 

enhancement coefficients by fitting their experimentally-measured viscosity (e.g., [18]), Vand’s model has been 

predominantly used in previous PCM studies (e.g., [5, 6, 13]). 

 
2.2 Governing Equations 

Under the above assumptions, the momentum and energy equations for fully-developed laminar flow inside 

asymmetrically-heated parallel plates with a spatial and temperature dependent specific heat, simplify to the following:  
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Eq. 5, along with no-slip boundary conditions, is solved analytically in Appendix A.1 to determine the velocity profile 

(u(y)) which is incorporated into the energy equation. Numerical methods for solving Eq. 6, along with the appropriate 

boundary conditions, are described and validated in Appendix A.  
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3. Results and Discussion 

 

Figure 2: a) Effective heat capacity of the PCM suspension as a function of temperature. b) Temperature profiles at regularly spaced 
intervals (1.7 mm) along the axial direction of the channel. The melting range (∆Tmelt) is bound by T- and T+, represented by the region 
between the dashed lines (U = 5 mm/s, q”= 5 kW/m2, H = 0.5 mm, δ/H = 1, ∆Tmelt = 3 K, ωhsf = 30 kJ/kg, k = 0.624 W/mK, ρ = 992 kg/m3, 

cp,f = 4067 J/kgK). 

In this section, we explore the effects of various geometrical and material parameters on the features of the local 

Nusselt number (Nux): 
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where DH is the hydraulic diameter (=2H), kf is the thermal conductivity of the pure fluid, Tw,x is the local wall 
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 The local heat transfer coefficient profile is rationalized using simple physical arguments in Section 3.1. Based on 

this understanding, the effect of focusing the PCMs near the heated wall is explained (Section 3.2). The effects of the 

PCM-particle mass fraction (ω), mean fluid velocity (U), channel height (H), and heat flux (q”) on Nux are explored in 

Section 3.3, and the results are summarized using three dimensionless groups (Section 3.4).  

To isolate the effects of phase change and particle focusing, the effect of the PCMs on the suspension properties 

(except for cp,eff during melting) are assumed to be negligible in Sections 3.1-3.4. A physically realistic case is discussed in 

Section 3.5 which includes the parasitic effects associated with the dependence of the effective thermal conductivity and 

viscosity on the addition of PCMs.  

 

3.1 Nux Profile 

To illustrate the local heat transfer behavior during melting of a flowing PCM suspension, we present the case of 

PCMs (hsf  = 150 kJ/kg) suspended in water (kf = 0.624 W/mK, cp,f = 4067 J/kgK, ρf = 992 kg/m3, µf = 6.36.10-4 Pa.s) with 

q”= 5 kW/m2, U = 5 mm/s , and H = 0.5 mm. These parameters represent a low heat-flux case with Re numbers 

characteristic of laminar flows in micro/minichannels and high enough Pe numbers (>10) for axial conduction to be 

negligible. 

First, we consider the case when the PCMs are uniformly distributed across the height of the channel (i.e., δ = H) with 

a mass fraction of 0.20, and assumed to melt across a 3 K temperature range (∆Tmelt = 3K) centered about 313 K. The 

effective heat capacity of the suspension is shown in Figure 2a. 

Figure 2b shows the temperature profiles of the fluid as it traverses the melting region. The increased effective 

specific heat over the melting region has the effect of slowing down the rate of temperature rise locally. This observation 

is explicit in Figure 3a where the rate of change of temperature with respect to the axial distance (x) is much lower where 

the PCMs are melting.  

However, the fluid near the heated wall is the first to enter and exit the melting region as shown in Figure 2b. This 

movement of the melting interface away from the heated wall leads to maxima and minima in the local heat transfer as 

shown in Figure 3b. Similar effects on the local heat transfer have been observed in previous studies (e.g., [8, 9, 17-19]). 

The shape of Nux can be more quantitatively understood by partitioning the melting range into the four sub-regions 

(i-iv) shown in Figure 3b. 
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Figure 3: a) Bulk and wall temperatures as a function of length (x) showing a decrease in rate of temperature rise inside melting region and 
b) local Nusselt number as a function of length (x). Melting region divided into sub-regions (i-iv) to clarify thermal behavior (same 

parameters as Figure 2 were used). 

Sub-region (i): 

This sub-region is bound by the onset of melting (x-) and the maximum local heat transfer coefficient (Nu*). At x-, the 

temperature difference between the wall and the bulk is: 
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However, as the fluid near the wall enters the phase-change region, its rate of change of temperature decreases with 

respect to the bulk. To understand this effect, the local heat transfer coefficient is rewritten in terms of the temperatures at 

the onset of melting (x-) and their respective linearized rates of temperature rise as a function of x: 
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When xTxT wb ∂∂>∂∂ , there is an enhancement in the heat transfer coefficient. For the purpose of this simple treatment, 

we assume that the rate of change of temperature is constant in each sub-region and can be approximated using the rate of 

change for the thermally-developed case: 

 
fp

b

cm
q

x
T

,

"
!

≈
∂

∂   (11a) 

 
)(

"

meltsf

w

Thm
q

x
T

Δ
≈

∂

∂

ω!
  (11b) 

Since the rate of temperature rise at the wall (Eq. 11b) is inversely proportional to the effective heat capacity during 

melting of the PCMs (ωhsf /∆Tmelt), it is indeed smaller than the rate of temperature rise of the bulk (Eq. 11a). Thus, the 

temperature difference between the wall and the bulk diminishes over the length of sub-region (i), leading to a maximum 

(Nu*). We approximate the axial length of this sub-region (∆xi) by the distance needed for the bulk temperature to reach 

the original wall temperature (Tw,x-) at a constant rate of temperature rise: 

 
kNu
Dcm
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Hfp
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Δ

≈Δ   (12) 

 

Sub-region (ii): 

The beginning of this sub-region coincides with Nu*. At this point, the difference between the wall and bulk temperatures 

is at a minimum. The bulk and wall regions have approximately the same effective heat capacity (ωhsf /∆Tmelt) since the 

fluid is inside the melting region; hence, the temperature profile re-develops to its pre-melting shape. By analogy with the 

thermal entrance length (Lth), the length of this region is proportional to the Pe number (and in turn, the effective heat 

capacity):  

 meltsfHmeltii ThDPex Δ∝≈Δ ω   (13) 

As compared to the inlet, the thermally diffusivity in sub-region (ii) is relatively low because of the high effective heat 

capacity; this explains why ∆xii is significantly longer than the thermal entrance length.  

 

Sub-region (iii): 

This sub-region begins with a developed profile inside the melt region and ends with the minimum local Nusselt number 

(Numin). The sub-region is physically similar to sub-region (i), except that the specific heat of the wall and the bulk regions 

are interchanged. The fluid near the wall exits the melting region while the bulk of the fluid remains in the region, 

amplifying the temperature difference and leading to deterioration of the local heat transfer. By analogy with sub-region 

(i), we determine that the length of sub-region (iii) is proportional to ωhsf /∆Tmelt: 
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Since ωhsf /∆Tmelt > cp,f , ∆xiii is longer than ∆xi, as evident in Figure 3b.  

 

Sub-region (iv): 

The final sub-region occurs at the exit of the melting region. It begins at the location of Numin, where the temperature 

difference between the wall and bulk is at a maximum. The fully-developed temperature profile re-establishes itself over 

the course of this sub-region.  

Its length (∆xiv) is proportional to the thermal entrance length (Lth), and thus shorter than (∆xii): 

   fpHiv cPeDx ,∝≈Δ   (15) 

Although the above treatment is approximate, it rationalizes the basic features of the local heat transfer and will aid in 

explaining the effect of focusing PCMs near the heated wall. 

 

3.2 Effect of PCM Focusing 

  

Figure 4: a) Local Nusselt number (Nux) and b) Nusselt number averaged over the melting region (Numelt) for δ/H ranging from 0-1. The 
mass fraction inside the phase-change stream is kept constant (ωδhsf = 30 kJ/kg, U = 5 mm/s, q”= 10 kW/m2, H = 1 mm, ∆Tmelt = 3 K, 

k = 0.624 W/mK, ρ = 992 kg/m3, cp,f = 4067 J/kgK). 

The effect of the PCM stream height as a fraction of the channel height is shown in Figure 4a.  As δ decreases, the 

deterioration of the local heat transfer vanishes since regions of complete near-wall melting with incomplete melting in 

the bulk (associated with sub-regions iii-iv) are eliminated. Thus, the Nux degradation can be circumvented by focusing 

the PCMs near the heated wall. For cooling applications, eliminating the degradation of Nux near the channel exit is 

desirable for hot-spot prevention (i.e., to minimize the absolute temperature of the wall near the channel exit). 
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In other applications, the average Nusselt number over the entire melting region (Numelt) could be important if it is 

desired that the PCMs melt fully (i.e., for improved thermal storage). If the mass fraction of PCMs in the phase-change 

stream (ωδ) is kept constant as δ/H decreases, then Numelt has a distinct peak (29% enhancement) when δ/H is 

approximately 0.30, as shown in Figure 4b. δ/H ≈ 0.30 was in general found to optimize Numelt in this geometry (i.e., 

asymmetrical heating between parallel plates with fully-developed flow).   

 

3.3 Parametric Study 

 

Figure 5: Parametric study of Nux for variable latent heat and heat flux: a) U ranging from 1 to 10 mm/s, b) ωhsf ranging from 3 to 12 kJ/kg, 
c) q” ranging from 2.5 to 45 kW/m2, and d) H ranging from 0.2 to 2 mm. The baseline in all of the graphs (solid red) shows the case when 

U = 5 mm/s, q”= 5 kW/m2, H = 0.5 mm, δ/H = 0.4, ∆Tmelt = 3 K, ωhsf = 12 kJ/kg, k = 0.624 W/mK, ρ = 992 kg/m3, cp,f = 4067 J/kgK. 
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In this section, we explore the effects of velocity (U), latent heat (ωhsf), heat flux (q”) and channel height (H) on the 

features of Nux.  The baseline for this parametric study (solid red in Figure 5) shows the case when U = 5 mm/s, 

q”= 5 kW/m2, H = 0.5 mm, δ/H = 0.4, ∆Tmelt = 3 K, ωhsf = 12 kJ/kg. 

The velocity of the fluid (U) prolongs the length of the melt region, as shown in Figure 5a. Nevertheless, it is 

interesting to note that changes in velocity have no impact on the magnitude of Nu*. 

The total mass fraction of PCMs (ω= ωδ δ/H) and the heat of fusion (hsf) have a significant influence on the 

magnitude of heat transfer enhancement since they increase the effective heat capacity during melting. Figure 5b shows 

that the enhancement increases with increasing amount of latent heat in the channel. 

The effect of heat flux (q”) on Nux is shown in Figure 5c. As the heat flux is increased above a threshold value 

(~5 kW/m2 in this case), the magnitude of heat transfer enhancement decreases. Below this threshold value, however, the 

heat flux has little effect on Nu*.  

Although not as apparent as with q”, the height (H) of the channel displays a similar effect as shown in Figure 5d: 

increasing H has a negligible effect for small H values, but Nu* decreases as H increases beyond a threshold value.  The 

results of Figures 5c and 5d suggest the existence of two regimes: a low ∆To (low profile curvature) regime and a high ∆To 

(high profile curvature) regime. The following section will explore this observation further. 

 

3.4 Dimensionless Groups 

Dimensionless groups are presented to generalize the trends discussed above. When the model is simplified to isolate 

for the effect of phase-change, the following dimensionless groups are relevant: Ste (and Stem), a ratio of sensible to latent 

heat; δ/H, a ratio of the PCM-particle stream height to the channel height; and ∆Tmelt/∆To, a ratio of the melting 

temperature range to the thermally-developped temperature difference between the wall and the bulk (typically referred to 

as Mr): 

 
osf

fp

Th
c

Ste
Δ

=
ω

,   (16) 

 
H
δ   (17) 

 
o

melt

T
TMr
Δ

Δ
=   (18) 

According to Figure 6a, Nu* generally decreases as Mr increases but with two distinct slopes. This confirms the 

existence of two regimes, as suggested in the previous section. When Mr<1, the profile curvature does not have a 

significant effect on Nu*. When Mr >1, however, increasing the heat flux or the channel height results in lowering of the 

heat transfer enhancement. 
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Figure 6: Nu* with respect to the following dimensionless groups: a) Mr, ranging from 0.1 to 10 (∆Tmelt varied), b) Ste, ranging from 0.01 to 
30 (cp,f and hsf varied), c) δ/H ranging from 0 to 1 (q”, δ, H varied). 

The existence of these two regimes is also apparent in the Nu* dependency on the Ste (Figure 6b). In both regimes, as 

the ratio of latent to sensible heat increases (decreasing Ste), the enhancement in heat transfer is augmented. However, the 

enhancement scales differently depending on the regime: the effect of Ste is more significant when Mr <1. 

Finally, the ratio of the PCM stream height to the channel height is shown in Figure 6c, where the total mass fraction 

(ω= ωδ δ/H) was kept constant (such that Ste = const.) by increasing ωδ to counteract the decrease in δ/H. In general, Nu* 

increases as the PCMs are focused closer to the heated wall up to δ/H ~ 0.25, at which point focusing the PCMs becomes 

detrimental. This reduction in Nu* is most likely attributed to the increasing importance of heat conduction between the 

focused stream and the pure-fluid at small δ scales, which increases the wall temperature regardless of the phase-change. 

Within the specified limits, results of this study are summarized in the form of correlations relating Nu* to the three 

dimensionless groups presented: 
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Results from 157 unique simulations were fit to obtain the above expressions (see Appendix B). In Eq. 20, defining the 

Stefan number with respect to ∆Tmelt (as opposed to To) improves the quality of the fit significantly, indicating the 

dominance of ∆Tmelt in the Mr > 1 regime. The coefficient of determination (R2) for Eq. 19 and Eq. 20 is 0.99 and 0.86, 

respectively. 

 

3.5 Parasitic effects 

  

Figure 7: Parasitic effects on Nux due to a) increased viscosity (µeff) and b) decreased thermal conductivity (keff) of the focused PCM stream. 
The baseline in all of the graphs (solid red) shows the case when U = 5 mm/s, q”= 5 kW/m2, H = 0.5 mm, δ/H = 0.4, ∆Tmelt = 3 K, 

ωhsf = 12 kJ/kg, k = 0.624 W/mK, ρ = 992 kg/m3, cp,f = 4067 J/kgK. 

It is well known that the addition of PCMs increases the viscosity of fluids and may degrade the overall heat transfer 

performance. Although the overall pressure drop may be reduced by focusing the PCM particles (compared to the δ/H = 1 

case), the presence of a higher viscosity fluid near the heated wall distorts the velocity profile and decreases the local heat 

transfer performance. The degradation of Nux scales approximately linearly with the viscosity ratio of the two streams 

(µeff/ µf), as shown in Figure 7a. 

 Similarly, the effective thermal conductivity of the focused stream typically decreases with the addition of PCM 

particles which further degrades Nux as compared to the original pure fluid performance (note: the definition of Nux is 

written with respect to kf for consistency). As shown in Figure 7b, Nux also scales approximately linearly with the thermal 

conductivity ratio of the two streams (keff/ kf). 

0 0.005 0.01 0.015 0.02 0.025 0.03
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

x (m)

N
u x

 

 

µ
eff/

µ
f = 1

2.4

1.6

0 0.005 0.01 0.015 0.02 0.025 0.03
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

x (m)

N
u x

 

 

0.8

keff/kf = 1

0.9

0.5 1
2

4

6

8

10

keff / kf

 

 

Nuo

Nu*

1 2 3

5

6

7

8

µ
eff / 

µ
f

 

 

Nuo

Nu*



DOI: 10.1016/j.ijheatmasstransfer.2012.09.014  

Source: International Journal of Heat and Mass Transfer 56, no. 1–2, p. 380–389, 2013. 

16 

 

Considering the non-negligible nature of these parasitic effects at higher volume fractions, we relax the assumptions 

of Sections 3.1-3.4 and re-evaluate the idealized enhancements presented in Section 3.2 based on mePCM property data 

measured by Zeng et al. [8]: kp = 0.211 W/mK, cp,p = 1609 J/kgK, ρp = 1045 kg/m3. All other parameters are kept the same 

(i.e., δ/H=0.30, ωδ = 0.20, hsf  = 150 kJ/kg, water, etc.) such that: ϕ = 0.192, ρeff/ ρf = 1.01 (Eq. 1), keff/ kf = 0.845 (Eq. 3), 

and µeff/ µf = 1.952 (Eq. 4).  In this case, Nu* and Numelt enhancements of 18.6% and 7.9% were obtained, respectively. 

Although lower than the idealized results of Section 3.2, this result represents an un-optimized enhancement of local 

heat transfer within the bounds of applicability of the physical models and simplifying assumptions described in Section 

2. In future work, application-dependent optimization should be investigated.  Also, correction factors may be appended to 

Eqs. 19-20 to include the parasitic effects based on measured or predicted properties. 

 

4. Conclusions 

The effect of focusing micron-sized phase-change particles to a layer near the heated wall of a parallel plate channel 

was investigated. A numerical model was developed which models melting of the PCMs using a spatially-dependent and 

temperature-dependent effective heat capacity. In the unfocused case, the melting region was divided into four sub-regions 

based on the major features of the local Nusselt number profile, including the local peak (Nu*) and minimum (Numin) 

Nusselt numbers. Deterioration of the local heat transfer (i.e., Numin) associated with complete near-wall melting with 

incomplete melting in the bulk is eliminated when PCMs are focused to a region near the heated wall. A parametric study 

shows that Nu* increases with increasing particle mass fraction and latent heat as well as with decreasing melting range, 

channel height and heat flux. The existence of two regimes depending on Mr was observed and the results were 

summarized using four dimensionless quantities (Ste, Stem, δ/H and Mr).  The averaged Nusselt number over the melting 

length (Numelt) and Nu* are both optimized when the PCMs are focused to within 30% of the channel closest to the heated 

wall. For a physically realistic case, Numelt and Nu* enhancements of 8% and 19% were obtained, respectively. These 

studies suggest a new strategy to enhance heat transfer with phase change particles for cooling and solar thermal 

applications. 
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APPENDIX A 

Model: Solution Methods, Assumptions and Validation 

A.1 Momentum Equation 

The simplified momentum equation (Eq. 5) is written separately for stream 1 (focused PCM suspension) and stream 2 

(pure fluid): 
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where y2 = H – y1. These two equations are coupled through the following boundary conditions at the walls and at y = δ: 

 0
01

1

1

=
∂

∂

=yy
u   (A.2a) 

 0
02

2

2

=
∂

∂

=yy
u   (A.2b)  

 
δδ

µµ
−==

∂

∂
−=

∂

∂

Hyy y
u

y
u

21
2

2
2

1

1
1   (A.2c) 

 
δδ −==

= Hyy uu
21

21   (A.2d) 

Eqs. 5 and A.1-2 are readily solved to obtain a fully-developed velocity profile depending on the viscosity ratio (µ1/ µ2) 

and height ratio (δ/H), as shown in Figure A.1.   

 

Figure A.1: Fully-developed velocity profile inside two-stream channel for the same mean fluid velocity (U = 5 mm/s) with different viscosity 
ratios (µ1/ µ2) and height ratios (δ/H). 
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A.2 Energy Equation 

The overall energy equation for fully-developed laminar flow inside parallel plates with spatially-dependent and 

temperature-dependent thermophysical properties simplifies to Eq. 6. The fluid is assumed to enter the region of 

consideration at a uniform temperature (Tin). 

 inTyT =),0(   (A.3a) 

The boundary conditions at the walls are incorporated as follows: 
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An analytical solution to Eqs. 6 and A.3 cannot be obtained due the temperature dependent heat capacity. Instead we 

solve the energy equations numerically. A finite difference scheme is used to solve the equations and the boundary 

conditions along the y-direction with thermophysical properties defined at each node according to the nodal spatial 

location and temperature, while the 4th order Runge-Kutta method is used to step explicitly along the x-direction. A mesh 

refinement study along the y-direction was performed until the maximum variance in the Nusselt number is below 0.01%. 

The model is validated against an analytical solution for the developing local Nusselt number below such that it can 

confidently be used to simulate the effect of phase-change particles on the local heat transfer coefficient. 

 

A.3 Brownian Diffusion of PCMs 

Neglecting diffusion of PCMs across the two streams over the characteristic length of PCM melting is justified as 

described below: 

The amount of time needed to fully melt the PCM particles (tmelt) can be approximated from an energy balance by dividing 

the energy required to melt the particles by the heat supplied from the bottom wall. For asymmetrically heated parallel 

plate geometries, this expression simplifies to the following: 

 
"q
hH

t sff
melt

ωρ
≈   (A.4) 

The diffusion length (δB) of PCM microparticles through Brownian (random) motion during the melting time can be 

expressed as: 

 meltBB tD≈δ   (A.5) 

where the Brownian diffusion coefficient, DB, is given by the Einstein-Stokes equation: 
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and kB is the Boltzmann  constant, µf  is the basefluid dynamic viscosity, and dp is the diameter of a PCM microparticle. If 

we compare the PCM diffusion length (δB) to the channel height, H, we obtain the following ratio: 

 
Hqd
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H pf

sffBB

"3πµ
ωρδ

≈   (A.7) 

For typical values used in the manuscript (i.e., ρf = 992 kg/m3, µf = 6.36.10-4 Pa.s, hsf = 150 kJ/kg, ω= 0.10, q”= 5 kW/m2, 

H = 0.5 mm) at a temperature of 313 K and with 1 µm particles, δB/H is approximately 0.002. In other words, the typical 

PCM interdiffusion length considered in the study is approximately 1 µm, which is negligible compared to the channel 

height (0.5 mm). Thus, diffusion between the two streams (i.e., PCM diffusion) can be neglected. 

 

A.4 Validation 

To validate the numerical model, we compare it to a known analytical solution on the basis of local Nusselt number 

(Eq. 7). Figure A.2 shows Nux obtained using the numerical model for a thermally-developing flow between parallel plates 

with constant heat flux from both walls. The result is compared to a correlation recommended by Shah and London which 

is based on the infinite series analytical solution. The numerical model follows the analytical correlation exactly, thus, 

validating the accuracy of the numerical model and its ability to model thermally-developing flows. 

 

 

Figure A.2: Thermally-developing local Nusselt number (Nux) as a function of the dimensionless length (x*); comparing the numerical 
model (this study) with the analytical solution [32]. 
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APPENDIX B 

Prediction Results 

 

 

Figure B.1: Simulation results for Nu* enhancement compared to the predicted values based on: a) Eq. 19 (Mr < 1), b) Eq. 20 (Mr > 1).  

 

Eqs. 19 - 20 were obtained by determining a line of best fit between the simulation results and a power law expression 

involving the appropriate dimensionless quantities. For the low Mr case (Figure B.1a), the prediction (Eq. 19) matches 

well with the results as quantified by the high R2 value (0.99).  In the high Mr range (Figure B.1b), the proposed 

expression (Eq. 20) generally agrees with the numerical results; however, a higher uncertainty is observed (R2 = 0.86) 

which is most likely because the shape of the effective heat capacity has a complex effect on the magnitude of the Nu* 

enhancement in this regime. 
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