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Power Balance in Aerodynamic Flows

Mark Drela

MIT Dept. of Aeronautics and Astronautics, Cambridge, MA, 02139

Abstract

A control volume analysis of the compressible viscous flow about an aircraft is performed, including integrated

propulsors and flow control systems. In contrast to most past analyses which have focused on forces and

momentum flow, in particular thrust and drag, the present analysis focuses on mechanical power and kinetic

energy flow. The result is a clear identification and quantification of all the power sources, power sinks, and

their interactions which are present in any aerodynamic flow. The formulation does not require any separate

definitions of thrust and drag, and hence it is especially useful for analysis and optimization of aerodynamic

configurations which have tightly integrated propulsion and boundary layer control systems.

Nomenclature

ρ, µ fluid density, viscosity

b, c wing span and chord

p, pt static pressure, total pressure

n̂ unit normal vector, out of control volume

t time

u, v, w perturbation velocities

u,w shear layer velocities (in shear layer section)

x, y, z cartesian axes

~V fluid velocity (= (V∞+u)x̂+ vŷ + wẑ)

V 2 fluid speed squared (= ~V · ~V )
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Vn Side Cylinder normal velocity (= vny + wnz)

¯̄τ viscous stress tensor

~τ surface viscous stress vector (= ¯̄τ · n̂)

Cf skin friction coefficient

CD dissipation coefficient

H boundary layer shape parameter (= δ∗/θ)

H∗ kinetic energy shape parameter (= θ∗/θ)

θ , δ∗ momentum, displacement thicknesses

θ∗, δ∗∗ kinetic energy, density-flux thicknesses

δK wake kinetic energy excess thickness

Reθ mom. thickness Reynolds number (= ueθ/ν)

Rec chord Reynolds number (= V∞c/ν)

ṁ mass flow

Fx, Fz total streamwise, normal aerodynamic forces

Fu streamwise force from axial velocity u

Fv streamwise force from transverse velocities v, w

Fn streamwise force from lateral outflow velocity Vn

Dp profile drag

Di induced drag

Dw wave drag

Ėa axial kinetic energy deposition rate

Ėv transverse (vortex) kinetic energy deposition rate

Ėp pressure-work deposition rate

Ėw lateral wave-outflow energy deposition rate

PS shaft power

PV volumetric power
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PK kinetic energy inflow rate

T thrust

Ė mechanical energy outflow rate

Φ dissipation rate

Γ airfoil circulation

dS surface element of control volume

dV volume element of control volume

W aircraft weight

γ climb angle

ḣ climb rate (= V∞ sin γ)

Subscripts

( )∞ freestream quantity

( )B quantity on body surface

( )O quantity on outer boundary

( )SC
O

quantity on Side Cylinder

( )TP

O
quantity on Trefftz Plane

( )e shear layer edge quantity

1 Introduction

Numerous previous workers have analyzed the flow about an aerodynamic body via a Control Volume

approach, in order to relate the body forces to the wake and the flow farfield. The early work of Betz [1],

Jones [2] and Oswatisch [3] focused on drag, while Maskell [4] considered both lift and drag for incompressible

flow, and Kroo [5] reviewed various techniques for induced drag prediction and reduction. The recent efforts
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of VanDam [6], Giles and Cummings [7], and Kusunose [8] have treated the general compressible case, also

with enthalpy addition from engines. More recently, Méheut and Bailly [9] have done an overview and

comparison of most of the previous analyses and approaches for the drag component, and introduce their

own refinement. Spalart [10] performs an even more detailed analysis for the incompressible case using inner

and outer expansions of the far wake, and identifies a higher-order farfield term in the overall axial force

which has been previously neglected.

The goals of the previous developments have been to allow accurate wind tunnel drag measurements from

wake surveys, with or without wind tunnel wall interference, and also to allow accurate drag computation

from CFD results despite the presence of imperfect freestream boundary conditions and numerical errors.

Additional benefits have been the clear identification of drag-producing sources in the flow, and relation of

experiments and CFD results to other classical analyses such as lifting-line theory.

All the previous work has focused almost exclusively on momentum-equation analysis, giving relations

for the aerodynamic lift and drag forces. The implied propulsive power was then simply defined to be drag ×

velocity. Thermodynamic and state relations were also introduced, but only as a means to relate velocity and

pressure to enthalpy and entropy in the downstream wake. In contrast, the present analysis will begin with

the mechanical-energy equation from the outset, giving relations between mechanical power and dissipation

in the flowfield. The result is especially applicable for evaluation of complex aerodynamic configurations,

especially ones with tightly-integrated propulsion and boundary layer control systems.

It is worthwhile here to mention related work done for turbomachinery applications. Denton and Cumpsty

[11] and also Denton [12] examined the dissipation and associated entropy and loss generation mechanisms

on turbomachinery blading, wakes, and tip gaps. Greitzer et al [13] also did an overview and further analyses

of various flow situations. In the context of the present work, the previous turbomachinery work would be

particularly relevant for estimating the losses of flow control systems and associated ducts and impellers.
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2 Control Volume Definition

Figure 1 shows the Control Volume (CV) surrounding the flow around an aerodynamic body. The CV

boundary S is partitioned into an inner boundary SB lying on the body surface, and an outer boundary SO

lying in the flowfield. Together with Gauss’s Theorem we therefore have

∫∫∫

∇·( ) dV = ©

∫∫

( )·n̂ dS

= ©

∫∫

( )·n̂ dSB + ©

∫∫

( )·n̂ dSO (1)

where ( ) is any field vector quantity. The outer boundary SO portions will be assumed to be oriented so

that

1a) The downstream Trefftz Plane portion STP

O
is oriented perpendicular to ~V∞, and

1b) The Side Cylinder portion SSC

O
is parallel to ~V∞.

These restrictions will considerably simplify most of the integral expressions to be derived.

The distance to the outer boundaries is completely arbitrary. However, it will be highly advantageous to

place them so that

2a) All vortical fluid leaves via STP

O
, while any supersonic oblique waves which are present leave via SSC

O
,

and

2b) The distance to the Side Cylinder is at least several times the wing span of the configuration.

Unlike 1a) and 1b), these 2a) and 2b) are not hard requirements, but they do bring the great advantage of

isolating different physical flow processes in separate terms in the equations.

3 Periodic-Unsteady Treatment

The present work will address steady or periodic-unsteady aerodynamic flows. The latter case must be

addressed, because mechanical propulsors, impellers, or even flapping wings are treated as part of the
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Figure 1: 2D cutaway view of 3D Control Volume surrounding an aerodynamic body. The inner boundary

SB lies on the body, and may cover moving elements (top propulsor), or hide them inside (bottom propulsor).

Vortex-wake velocities v, w on Trefftz Plane are not shown.

flowfield. Their periodic unsteadiness produces nonzero nonlinear-term contributions to the time-averaged

flow.

Consider the periodic unsteady velocity components ũ, ṽ, which can be expanded about their mean values

ū, v̄ in the form

ũ(x, y, z, t) = ū(x, y, z) +

∞
∑

k=1

uk(x, y, z) sin
2πkt

tp
(2)

ṽ(x, y, z, t) = v̄(x, y, z) +

∞
∑

k=1

vk(x, y, z) sin
2πkt

tp
(3)

where tp is the period. Time-averaging the velocities and their quadratic products then gives

u(x, y, z) ≡
1

tp

∫ tp

0

ũ dt = ū (4)

uv(x, y, z) ≡
1

tp

∫ tp

0

ũṽ dt = ūv̄ +

∞
∑

k=1

1
2
ukvk (5)

6



which mimics the Reynolds-averaging procedure for turbulent flows. Similar expressions can be obtained for

cubic or higher products. Also, phase differences can be introduced by adding cosine-expansion sums, which

will also result in additional coefficient-product sums.

In brief, product quantities such as “uv” imply the presence of unsteady-coefficient product sums such as

∑

1
2
ukvk, etc, which will be omitted for brevity in the expressions. These omitted sums are expected to be

important only for cases with large-scale unsteadiness, such as flapping wings. For such cases, the missing

sums can then always be added to the various CV quantity spatial integrands in order to obtain the exact

time-average form.

4 Mass and Momentum Analysis

Although this work will focus primarily on a mechanical energy analysis, a brief mass and force analysis is

necessary to simplify the later results.

4.1 Mass relation

The time-averaged mass continuity equation for fluid flow is as follows.

∇ ·
(

ρ~V
)

= 0 (6)

As described in the previous section, the unsteady-coefficient product sum
∑

1
2
ρk~Vk is implicitly present

inside the divergence, but has been omitted for clarity. Forming the volume integral
∫∫∫

{equation (6)} dV

over the CV and invoking relation (1) then gives the following integral mass equation.

ṁB = ṁO
(7)

ṁB = −©

∫∫

ρ~V · n̂ dSB = ṁfuel ≃ 0 (8)

ṁO = ©

∫∫

ρ~V · n̂ dSO = ṁfuel ≃ 0 (9)
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These will be used only to manipulate and simplify other subsequent integral relations. As indicated, the

fuel mass flow will be considered negligible.

4.2 Momentum and force relations

The time-averaged momentum equation in divergence form is as follows.

∇ ·
(

ρ~V ~V
)

= −∇p + ∇ · ¯̄τ (10)

Forming the volume integral
∫∫∫

{equation (10)} dV over the CV and invoking relation (1) then gives the

integral momentum equation

~FB = ~FO
(11)

where the following definitions have been made.

Net force on body, including propulsors:

~FB = ©

∫∫

[

(p n̂− ~τ ) + ~V ρ~V · n̂
]

dSB (12)

Outer-boundary force, momentum flow:

~FO = ©

∫∫

−
[

(p−p∞) n̂ +
(

~V−~V∞

)

ρ~V · n̂
]

dSO (13)

In the ~FB definition, the surface shear stress vector ~τ=¯̄τ ·n̂ has been introduced for convenience. In the ~FO

definition, p has been replaced with p−p∞, which is permissible because of the general relation

©

∫∫

n̂ dS = 0 (14)

for any closed surface. Also, ~V has been replaced with ~V − ~V∞ which is permissible because of the mass

relation (9).

The x-axis is now chosen to lie along the flight path. Then for steady unbanked flight at some climb

angle γ, in a still atmosphere, we have

~FB = ~FO = Fx x̂ + 0 ŷ + Fz ẑ (15)
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−Fx = W sin γ (16)

Fz = W cos γ (17)

where Fx is the net streamwise aerodynamic force, Fz is the net normal aerodynamic force, and W is the

weight. Fx will now be related to the outer-boundary integral in the ~FO definition.

4.3 Streamwise Force Decomposition

With the Trefftz Plane and Side Cylinder boundaries defined perpendicular and parallel to ~V∞, the streamwise

x-component of the outer force (13) reduces to the following.

Fx =

∫∫

−
[

(p−p∞) + ρu (V∞ + u)
]

dSTP

O

+

∫∫

−ρu Vn dSSC

O

(18)

To put the first integral above into a more convenient form for later use with the kinetic energy analysis, we

make the exact substitution

V∞ u = 1
2

(

V 2−V 2
∞

)

− 1
2

(

u2+v2+w2
)

(19)

which gives a natural decomposition of the net streamwise force into three components:

Fx = Fu + Fv + Fn (20)

Fu =

∫∫

[

(p∞−p) + 1
2
ρ
(

V 2
∞
−V 2

)

− 1
2
ρu2

]

dSTP

O
(21)

Fv =

∫∫

1
2
ρ
(

v2+w2
)

dSTP

O
(22)

Fn =

∫∫

−ρu Vn dSSC

O
(23)

The Fu component is the net “profile drag – thrust” force associated with the axial perturbation velocity u.

For low speed flow and small u ≪ V∞, it is effectively a total pressure defect

Fu ≃

∫∫

[

pt∞−pt

]

dSTP

O
− O

(

ρu2
)

(24)

whose integrand is negligible outside the viscous wakes and propulsion plumes. In contrast, the bulk of the

Fv integrand in (22) comes from the trailing-vortex potential crossflow over the entire Trefftz Plane, and
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hence is closely related to the induced drag Di which will be discussed later. The remaining Fn term is zero

for a sufficiently distant Side Cylinder in subsonic flow, and equal to the farfield wave drag Dw in supersonic

flow which will also be discussed later.

In most force analyses of aircraft, Fu is typically separated into profile drag and thrust.

Fu = Dp − T (25)

However, this decomposition is often ambiguous for aircraft whose propulsion system is closely integrated

with the airframe, and for aircraft which employ powered lift or boundary layer control systems. It will be

seen that in the present power-based analysis, decomposition (25) is entirely unnecessary.

Most of the previous workers mentioned in the Introduction have further manipulated the Fu expression

into equivalent forms in terms of entropy and total enthalpy. The Fv or Di expression has also been

manipulated into an equivalent form in terms of the crossflow streamfunction and the streamwise vorticity.

Here these alternative forms will not be used, since they are not particularly useful in the subsequent

mechanical energy analysis.

5 Mechanical Energy Analysis

Forming the dot product {equation (10)}· ~V gives the mechanical (kinetic) energy equation in divergence

form.

∇ ·
(

ρ~V 1
2
V 2

)

= −∇p · ~V + (∇ · ¯̄τ) · ~V (26)

Using the general vector identities

∇ ·
(

p~V
)

= ∇p · ~V + p∇·~V (27)

∇ ·
(

¯̄τ · ~V
)

= (∇ · ¯̄τ ) · ~V + (¯̄τ · ∇) · ~V (28)

the right side of equation (26) is expanded as follows.

∇·
(

ρ~V 1
2
V 2

)

= −∇·
(

p~V
)

+ p∇·~V
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+ ∇·
(

¯̄τ · ~V
)

− (¯̄τ · ∇) · ~V (29)

We now form the integral
∫∫∫

{equation (29)} dV over the entire CV, and apply relation (1) to give the

following integral mechanical power balance equation

PS + PV + PK = Ė + Φ (30)

where the five terms are defined below. The substitutions p → p−p∞ and V 2 → V 2−V 2
∞

have been made as

in the momentum equation analysis.

The three terms on the left side of (30) represent the total mechanical power supply, production, or inflow,

ultimately from fuel, batteries, or other source. The two terms on the right represent power consumption

or outflow, via various physical processes. The balance holds instantaneously in steady flow, or as a period-

average in unsteady periodic flow. A major goal of the present paper is the determination of the total power

required for flight, via the prediction and estimation of the righthand side terms in equation (30) or its

equivalents to be derived later.

Net propulsor shaft power:

PS = ©

∫∫

[−(p− p∞) n̂ + ~τ ] · ~V dSB
(31)

This is the integrated (force)·(velocity) on all moving body surfaces, and hence is the net total propulsor

shaft power or wing-flapping power for all the components on the aircraft which are covered by the body

control volume surface SB . If individual turbomachinery component blading is defined to be covered by SB,

such as for the upper propulsor in Figure 1, then PS will include positive contributions from a compressor,

and negative contributions from a turbine. If the aircraft has powered lift or other boundary layer control

systems whose impeller blades are covered by SB , then PS will also include the shaft power of the impellers.

Net pressure-volume “P dV” power:

PV =

∫∫∫

(p− p∞)∇ · ~V dV (32)
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This is a volumetric (or “P dV”) mechanical power, provided by the fluid expanding against atmospheric

pressure. Its integrand will have strong net contributions at locations wherever heat is added at a pressure

far from ambient, for example if a turbomachinery combustor is chosen to be inside the CV, or if external

combustion is present as in some hypersonic vehicles. In supersonic wave regions the PV integrand may be

nonzero, but will cancel when integrated over all points whose streamlines reversibly return to the freestream

state before exiting the CV. Obtaining this cancellation is the main motivation behind defining the CV such

that the wave system exits through the Side Cylinder, and ahead of the Trefftz Plane.

Net propulsor mechanical energy flow rate into the CV:

PK = ©

∫∫

[

(p−p∞) + 1
2
ρ
(

V 2−V 2
∞

)

]

~V · n̂ dSB
(33)

This is the net pressure-work and kinetic energy flow rate across SB and into the CV. This accounts for

power sources whose moving blading is not covered by SB, or whose combustors are outside the CV, such as

the bottom propulsor in Figure 1. Note that n̂ points into the propulsor, so that the nozzle has ~V · n̂ < 0,

and PK > 0 for a propulsor with net thrust, as expected.

Mechanical energy flow rate out of the CV:

Ė =

∫∫

[

(p−p∞) + 1
2
ρ
(

V 2−V 2
∞

)

]

(V∞+u) dSTP

O

+

∫∫

[

(p−p∞) + 1
2
ρ
(

V 2−V 2
∞

)

]

Vn dSSC

O

(34)

This is the net pressure-work rate and kinetic energy flow rate out of the CV, through the Trefftz Plane and

Side Cylinder boundaries.

Viscous dissipation rate:

Φ =

∫∫∫

(¯̄τ ·∇) ·~V dV (35)

This measures the rate at which kinetic energy of the flow is converted into heat inside the CV. The

dissipation mechanism is the viscous stresses ¯̄τ working against fluid deformation, the latter related to the

velocity gradients ∇~V . In practice, most of the dissipation occurs in the thin boundary layers on the aircraft

surface, including the propulsion elements, and also in shock waves. If powered lift or boundary layer control
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systems are present, then the air in the suction or blowing plumbing can be considered as part of the flowfield,

and the dissipation inside the plumbing would contribute to the overall Φ. Additional dissipation also occurs

in the downstream wakes and jets, as shown in Figure 2, and discussed later.

Φsurface
Φwake

Φvortex

Φvortex
ΦjetΦprop

     Surface 
boundary layer
   dissipation

      Free 
shear layer
dissipation

     Free 
   vortex
dissipation

Figure 2: Dissipation in various flow regions inside the CV. Not shown is additional dissipation which may

occur inside any flow control system ducting. Also not shown is dissipation in shock waves.

5.1 Energy outflow rate decomposition

The total energy rate Ė definition (34) captures the outflow of all mechanical energy regardless of type or

origin, making the power balance equation (30) somewhat difficult to apply and interpret. To clarify the

situation, we now use the Fx definition (18), the weight relation (16), and the velocity relation (19), and

exactly decompose Ė into five separate components,

Ė = Wḣ+ Ėa + Ėv + Ėp + Ėw (36)

each of which has a relatively clear physical origin. The result is the following alternative and equivalent

form of the integral power balance equation,

PS + PV + PK = Wḣ+ Ėa + Ėv + Ėp + Ėw +Φ (37)

where the five Ė components are defined below.
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Potential energy rate:

Wḣ = −FxV∞ = WV∞ sin γ (38)

This is simply the power consumption needed to increase the aircraft’s potential energy, and becomes a

power source during descent. The decomposition (37) therefore isolates this reversible Ė component, leaving

the remaining four components to capture all the irreversible outflow losses.

Wake streamwise kinetic energy deposition rate:

Ėa =

∫∫

1
2
ρ u2 (V∞ + u) dSTP

O
(39)

This is the rate of streamwise kinetic energy being deposited in the flow out of the CV, through the Trefftz

Plane. Note that this is always positive, both in the case of a propulsive jet where the axial perturbation

velocity u is positive, and also for a wake where u is negative (assuming no reverse flow in the Trefftz Plane,

or V∞+u > 0).

Wake transverse kinetic energy deposition rate:

Ėv =

∫∫

1
2
ρ
(

v2 + w2
)

(V∞ + u) dSTP

O
(40)

This is the rate of transverse kinetic energy being deposited in the flow out of the CV. For u≪V∞, v, w, this

is in fact the same as V∞ times the induced drag Di, for the case of a relatively nearby Trefftz Plane where

the vortex wake has not yet dissipated significantly.

Wake pressure-defect work rate:

Ėp =

∫∫

(p− p∞) u dSTP

O
(41)

This is the rate of pressure work done of the fluid crossing the Trefftz Plane at some pressure p different

from the ambient p∞.

Wave pressure-work and kinetic energy outflow rate:

Ėw =

∫∫

[

p−p∞ + 1
2
ρ
(

u2+v2+w2
)

]

Vn dSSC

O
(42)
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This is the pressure work rate and kinetic energy deposition rate of the fluid crossing the Side Cylinder.

Normally this will be significant only in supersonic flows, in which the Ėw integrand on SSC

O
is dominated

by the oblique wave system, whose integrated contribution to Ėw is equal to the wave-drag power.

For subsonic 3D flows, the Ėw integrand for a lifting wing rapidly decays as 1/r4 and hence becomes

negligible for a sufficiently distant Side Cylinder. For a relatively nearby Side Cylinder the Ėw integral is

nonzero for a subsonic wing, but in this case it merely accounts for the transverse kinetic energy not fully

captured in Ėv because of the small Trefftz Plane which accompanies a nearby Side Cylinder.

6 Energy-Outflow Estimation and Characterization

The power balance relation (37), together with the Ė component definitions above, is exact as written, and

does not require identification of rotational and irrotational regions over the Trefftz Plane. However, it is

useful to briefly identify such regions in order to compare relation (37) to previous force-based analyses.

6.1 Potential-flow regions in low speed flow

Outside of the viscous wakes and propulsion plumes, the pressure defect in low speed flow is given by the

Bernoulli relation.

p− p∞ = − 1
2
ρ
(

V 2 − V 2
∞

)

= ρV∞u − 1
2
ρ
(

u2+v2+w2
)

(43)

The sum of the three Trefftz Plane Ė components then reduces exactly to the standard induced drag

expression times V∞.

Ėa+Ėv+Ėp =

∫∫

1
2
ρ
(

v2+w2−u2
)

V∞ dSTP

O
(44)

= Di V∞ (pot. flow only) (45)

This sheds further light on the somewhat perplexing −u2 term in the Di integrand, which seems to run

counter to kinetic energy arguments. The negative sign originates from the pressure-work term Ėp, which is
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negative and twice as large as the true axial kinetic energy loss term Ėa. The same pressure-work mechanism

was recently identified by Spalart [10] via his entirely different force-based analysis.

6.2 Wave system

For any small-disturbance Mach wave, the following relations can be obtained from oblique-shock theory.

p− p∞ = −ρuV∞ − 1
2
ρu2M2

∞
(46)

u2M2
∞

= u2 + v2 + w2 (47)

The Ėw component then becomes

Ėw =

∫∫

−ρuVn V∞ dSSC

O
(48)

= Dw V∞ (49)

and as expected, the energy loss rate from the outgoing wave system is simply the power needed to overcome

the farfield wave drag.

6.3 Inviscid flow examples – 2D airfoil and 3D wing

For the simple case of an inviscid low-speed 2D airfoil, the perturbation velocities at distances greater than

the chord rapidly asymptote to those of a point vortex having the airfoil’s circulation Γ. The energy rate

integrals can then be readily evaluated for an infinite Trefftz Plane at some location x > O(c),

Ėa =
ρV∞Γ2

8π

b

x
(50)

Ėv =
ρV∞Γ2

8π

b

x
(51)

Ėp = −
ρV∞Γ2

4π

b

x
(52)

Ėa + Ėv + Ėp = 0 (2D airfoil) (53)

where b is the arbitrary span of the integration. Although the individual Ė components are quite large near

the airfoil due to their 1/x behavior, they sum up exactly to zero. This can also be seen from the original
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total Ė definition (34), in which the integrand is zero for this constant total pressure case. This inviscid case

also has Φ=0, so the net required power as given by (37) is zero as well, as expected.

Figure 3 compares the variation of the three Trefftz Plane Ė components (50)–(52) for the 2D airfoil,

with the corresponding components for a lifting inviscid 3D wing, the latter integrated numerically for a

rigid wake with spanwise elliptical loading.

x

x

.
Ep

.
Ep

E
.
v

E
.
v

.
Ea

.
Ea

b0.1b b0.2

E
.

E
.

+E
.

+a v p= 0

VDiE
.

E
.

+E
.

+a v p= 3D wing

2D airfoil

b0.3 0.4

Figure 3: Energy loss rate components versus position of Trefftz Plane, for inviscid 2D airfoil and inviscid

3D wing. For 2D airfoil, the total loss rate is zero. For 3D wing, the total loss rate is constant and equal to

DiV∞. The individual Ėa, Ėv, Ėp terms asymptote very rapidly in the 3D case.

In the 3D wing case the total energy loss rate is also constant, but equal to DiV∞ rather than zero. In 3D

the individual Ė components also decay much faster than in the 2D case, with each component very nearly

reaching its final value within a fraction of the span b.

Ėa + Ėv + Ėp = DiV∞ ∼ ρV∞Γ2 (3D wing) (54)
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In the subsequent discussions, these 2D and 3D potential-nearfield “transients” in the individual Ėa, Ėv, Ėp

components will be excluded, because they cancel in the overall Ė sum.

6.4 Viscous flow power balance versus Trefftz Plane location

It’s important to note that equation (37) holds for any position of the Side Cylinder and Trefftz Plane

boundaries, provided Φ is defined as only the dissipation inside the CV. Figure 4 shows how the individual

terms in equation (37) vary as the Trefftz Plane is progressively moved downstream.

VDi

Φ
Φ

Φ

x

u −u ∼ 0−u ∼ 0

−∼ 0

Φsurface

Φvortex

Φwake+ Φjet

.
~ u2E

E
.

~ 2+v2 wE
.

−P
.

Wh

v, wv, w

a

v v

v, w

Figure 4: Variation in power balance terms in equation (37), versus position of Trefftz Plane. Transverse

velocities of trailing vortices diffuse much later than the axial velocities of propulsors and wakes. Total

dissipated power sum is unchanged. The potential-nearfield contributions to Ėa, Ėv are excluded, Ėp is not

shown, and Ėw is assumed to be zero.

The Ėa term defined by (39), intially equal to some fraction of the net axial-force power FuV∞, decays

relatively quickly as the axial velocity perturbation u decays by mixing and diffusion, with the lost energy

appearing as the Φwake + Φjet part of the overall dissipation Φ. After a much greater distance downstream

the transverse velocities v, w of the trailing vortices also eventually diffuse, and the transverse kinetic energy
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integral Ėv, initially equal to DiV∞, decays accordingly. Again, the dissipation Φ is correspondingly increased

by the Φvortex part, so that the total power remains unchanged.

7 Dissipation Estimation and Characterization

7.1 Dissipation in Trailing Vortices

As indicated by Figures 2 and 4, all power sources PP ,PV ,PK in excess of the potential energy rate Wḣ are

eventually balanced by the dissipation Φ if the Trefftz Plane is extended sufficiently far downstream. In

practice it is advantageous to place the Trefftz Plane close enough so that Ėv ≃ DiV∞ contribution from

the dissipation of trailing vortices can be kept separate in the power balance in (37). The reason is that Di

can be reliably estimated by other relations, such as the classical result for a planar elliptically-loaded wing

without thrust vectoring, for which Fz = L.

Di =
L2

1
2
ρV 2

∞
π b2

(55)

Hence, with such alternative Ėv calculation methods being available, Ėv or Φvortex do not need to be

calculated directly from their definitions.

7.2 Dissipation in Propulsor Jets

The jet dissipation Φjet of the isolated propulsor indicated in Figure 2 represents the Froude propulsive

(in)efficiency, and hence can be calculated from the disk loading and actuator-disk theory, or from propeller

theory, or simply from known propulsor performance.

Φjet = PS (1− ηfroude) (56)

As with Φvortex, such alternative models eliminate the need to calculate Φjet directly. If (56) is used, then

it’s simplest to lump it into the left side of equation (37) by replacing PS with ηfroudePS.
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7.3 Dissipation on Propulsor Blading

The Φprop in Figure 2 represents the dissipation in the propulsor’s blading boundary layers, and is otherwise

known as “profile losses”. This can be computed directly via integration over the blade surface using the

dissipation coefficient (discussed later), or by radial blade-element integration using the blade profile drag

coefficients, or simply by a known overall profile efficiency if that’s available.

Φprop = PS (1− ηprofile) (57)

7.4 Dissipation and Power Loss in Shock Waves

The presence of shock waves will make the various terms in the power balance relation (37) have additional

contributions. Figure 5 shows the various shocks which might be present on a transonic or supersonic aircraft.

The losses of the nearby strong shocks are best added via the dissipation term Φ, while the losses of the

distant waves are best added via the Ėw term.

Φshock Φshock

V

shockn

dSO

dSshock

u, v, w

V

.
E

SC

w p p−

Figure 5: Dissipation in strong shocks near aircraft, and wave pressure-work and kinetic energy outflow

through the Side Cylinder.
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7.4.1 Nearby strong-shock losses:

The dissipation of a shock is given by

Φshock ≃

∫∫

∆pt ~V · n̂shock dSshock (58)

where the integration is over the shock surface, with unit normal n̂shock. The total pressure drop ∆pt depends

on the normal Mach number M⊥ via standard normal-shock relations.

7.4.2 Outer wave system losses:

The integrand in (58) scales as ∆pt∼(M⊥−1)3, which becomes very small as the waves propagate away from

the aircraft, where M⊥ → 1. The dissipation therefore requires a great distance to run to completion, and

hence is better represented by the Ėw term in the power balance (37), as discussed previously, and estimated

by (48). This Ėw can be determined by various wave drag Dw estimation methods, such as those of Jones

[14] for linearized supersonic flow.

7.5 Dissipation in Shear Layers and Wakes

Since the components of Φ and Ė associated with induced drag, propulsion losses, and shock waves can

be expressed or estimated as discussed above, we then only need to consider the remaining dissipation

components Φsurface and Φwake, due to the surface boundary layers and trailing wakes.

For the remainder of the paper we define x, y, z to be the traditional locally-Cartesian shear layer coor-

dinates, where x, z lie on the surface and y is normal to the surface and across the shear layer, as shown in

Figure 6. Also, u,w will denote the total x,z velocity components.

The dissipation integrand, which in full contains nine terms, reduces to only two dominant terms in a

3D shear layer, or just one term in a 2D shear layer.

Φ =

∫∫∫

(¯̄τ · ∇) · ~V dV
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≃

∫∫∫
(

τxy
∂u

∂y
+ τzy

∂w

∂y

)

dx dy dz (3D) (59)

≃

∫∫∫

τxy
∂u

∂y
dx dy dz (2D) (60)

A 2D shear layer is defined as one with a planar velocity profile, or w = 0. For brevity in the subsequent

discussion, the 2D form will be assumed. The w term can always be added if needed to give the 3D form.

The shear stress consists of the laminar plus turbulent Reynolds stress.

τxy = µ
∂u

∂y
− ρu′v′ (61)

Φ =

∫∫∫

[

µ

(

∂u

∂y

)2

− ρu′v′
∂u

∂y

]

dx dy dz (62)

Since −ρu′v′ in conventional shear layers has the same sign as ∂u/∂y, the dissipation integrand is strictly

positive, as expected.

7.5.1 Dissipation Coefficient:

For a shear layer, it is convenient to express Φsurface, Φprop, or Φwake in terms of a dissipation coefficient

CD(x, z) defined for each point on the shear layer.

Φ =

∫∫

ρeu
3
e CD dx dz (63)

This is directly analogous to defining friction drag in terms of a skin friction coefficient,

Df =

∫∫

1
2
ρeu

2
e Cf dx dz (64)

except that CD is nonzero on a wake.

Using CD rather than Cf has a number of advantages:

• CD and Φ capture all drag-producing loss mechanisms. In contrast, Cf and Df still leave out the

pressure-drag contribution.

• CD and Φ are scalars, so the orientation of the dx dz surface element in the (63) integral is immaterial.

In contrast, (64) represents a force vector integral, and as written is strictly correct only for flat-plate

surfaces aligned with the freestream flow.
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• CD is strictly positive, so there are no force-cancellation problems which often occur with nearfield

force integration.

7.5.2 Boundary Layer and Wake Thicknesses

Various shear layer properties can be given in terms of the following integral thicknesses and defects.

Mass defect: ρeue δ
∗ =

∫ ye

0

(ρeue−ρu) dy (65)

Momentum defect: ρeu
2
e θ =

∫ ye

0

(ue−u)ρu dy (66)

K.E. defect: ρeu
3
e θ

∗ =

∫ ye

0

(

u2
e−u2

)

ρu dy (67)

Density defect: ρeue δ
∗∗ =

∫ ye

0

(ρe−ρ)u dy (68)

Wake K.E. excess: ρeu
3
e δK =

∫ ye

0

(ue−u)
2
ρu dy (69)

We also note the following useful identity.

δK = 2θ − θ∗ (70)

Both θ and θ∗ obey the von Karman integral momentum equation and the corresponding integral K.E.

equation.

d(ρeu
2
eθ)

dx
= ρeu

2
e

1

2
Cf − ρeueδ

∗
due

dx
(71)

d(1
2
ρeu

3
eθ

∗)

dx
= ρeu

3
e CD − ρeu

2
eδ

∗∗
due

dx
(72)

The density flux thickness δ∗∗ term in (72) represents “ramjet thrust” effects, and is significant only in very

high speed or non-adiabatic boundary layers with strong pressure gradients. If this term is negligible, as

with most external aerodynamic flows, from (72) we see that in 2D flow of unit span, ρeu
3
eθ

∗ at any location

measures all the upstream dissipation.

1
2
ρeu

3
eθ

∗(x) =

∫ x

0

ρeu
3
eCD dx = Φ(x) (73)

The various thicknesses can also be used to specify the various integral quantities at the Trefftz Plane,

Fu =

∫ zmax

zmin

ρeu
2
eθ dz (74)
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Ėa =

∫ zmax

zmin

1
2
ρeu

3
eδK dz (75)

where the z integration would be over the spanwise extent of the wake.

8 Power Balance in Simple Cases

We now examine the various terms in equation (37) for simple cases, in order to relate these to more familiar

drag-related quantities.

8.1 2D Airfoil

In this case we assume that the airfoil is propelled at a steady speed by an isolated ideal propulsor which does

not interact with the airfoil’s immediate flowfield. The propulsor provides only the thrust T necessary to

oppose the drag D ( = profile drag in this 2D case). If the ideal propulsor works against the same freestream

velocity as the airfoil, it will expend power Pisolated=TV∞ to sustain the thrust. Since there is no induced

drag in this 2D flow, equation (37) reads

TV∞ = Pisolated = Ėa + Φ (76)

We now choose the Trefftz Plane to be sufficiently far downstream so that Ėa effectively disappears, and we

also replace T with D.

DV∞ = Pisolated = Φtotal (77)

Hence, the total dissipation in the flowfield in this case is simply equal to the drag power DV∞, which is also

the power expended by the isolated propulsor.

8.2 2D Airfoil with wake ingestion

This case is the same as above, except that the ideal propulsor is now placed at the airfoil trailing edge,

and generates a “perfect” filled-in wake with u=0 everywhere. This is consistent with equation (21), which
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indicates a zero net axial force Fu=0 if u=0. We note that in this case Ėa=0 everywhere, so that the same

Φ is obtained for any Trefftz Plane location, and in particular all contributions to Φ occur only on the airfoil

surface. Equation (37) then gives the wake-ingesting propulsor power as

Pingest = Φsurface (78)

where Φsurface denotes the dissipation occurring in the airfoil surface boundary layers. Note that there is no

need to consider or even define “thrust” or “drag”, which are not even well-defined for this case. Nevertheless,

the propulsive power remains well defined.

It is of particular interest to compare the non-ingesting power from (77) with the ingesting power from

(78).

Pisolated − Pingest = Φtotal − Φsurface (79)

Referring to Figures 4 or 7, it is evident that this power difference is simply Φwake, which is the additional

Φ contribution of the non-ingested airfoil wake, which is also equal to the kinetic energy flux off the trailing

edge.

Pisolated − Pingest = ĖaTE
(80)

Hence, the benefit of wake ingestion is that it eliminates the downstream dissipation in the wake, equal to

Ėa at that location, which would otherwise occur. For maximum benefit the ingestion must be done at the

point of maximum Ėa, which is at or near the trailing edge for most airfoils.

8.3 Flat plate with boundary layer and wake

We now compute the drag on a laminar flat plate of unit span and chord c in three ways, summarized below.

In this case the edge velocity ue=V∞ is constant, and the surface Cf and CD coefficients are known in terms

of the x-based Reynolds number.

1
2
Cf = 0.332 (uex/ν)

−1/2
(81)

CD = 0.261 (uex/ν)
−1/2

(82)
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1) Skin friction integration.

D =

∫ c

0

ρeu
2
e

1
2
Cf dx (83)

= 0.664 ρ∞V 2
∞
cRe−1/2

c (84)

2) Dissipation integration on surface and wake (Trefftz Plane far downstream).

DV∞ =

∫ c

0

ρeu
3
e CD dx +

∫

∞

c

ρeu
3
e CD dx (85)

= 0.522 ρ∞V 3
∞
cRe−1/2

c + Φwake (86)

3) Dissipation integration on surface, plus wake kinetic energy flux (Trefftz Plane at trailing edge).

DV∞ =

∫ c

0

ρeu
3
e CD dx +

(

1
2
ρeu

3
e δK

)

x=c
(87)

= 0.522 ρ∞V 3
∞
cRe−1/2

c + ĖaTE
(88)

Relations (86) and (88) are clearly the same, since Φwake = (Ėa)TE as diagrammed by Figure 7. They

must also be consistent with (84). Setting the two drag results (84) and (88) equal, we get a numerical value

for (Ėa)TE, or equivalently for Φwake

0.522 ρ∞V 3
∞
cRe−1/2

c + Ėa = 0.664 ρ∞V 3
∞
cRe−1/2

c (89)

Ėa = 0.142 ρ∞V 3
∞
cRe−1/2

c (90)

For the general airfoil case, it may be more convenient to compute or estimate Ėa using the identity (70),

Ėa = 1
2
ρeu

3
eδK = ρeu

3
eθ − 1

2
ρeu

3
eθ

∗

= 1
2
ρeu

3
eθ

∗

(

2

H∗
− 1

)

(91)

and an assumed value of H∗, which takes on the following typical narrow range of values.

H∗ ≃































1.50 , lam. or turb. separated flow

1.60 , laminar attached flow

1.75 , turbulent attached flow

(92)
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The trailing edge Ėa value (90) indicates that for a laminar flat plate, a quite substantial fraction

0.142/0.664= 21% of the energy losses occur in the wake. This can be seen in Figure 8, which shows the

kinetic energy defect ρeu
3
eθ

∗ distribution along the plate, which measures the accumulated dissipation via

(73). The implication is that an ideal wake-ingesting propulsor for a laminar flat plate could have up to 21%

less power consumption than a non-ingesting propulsor.

8.4 2D Airfoil

In the case of an airfoil, the skin friction integration (84) must now be extended to include the pressure drag,

and must now be carried into the wake.

D =

∫ c

0

ρeu
2
e

1
2
Cf dx +

∫

∞

0

−ρeueδ
∗
due

dx
dx (93)

In contrast, the dissipation integrals (86) or (88) still have exactly the same form.

DV∞ =

∫ c

0

ρeu
3
e CD dx +

∫

∞

c

ρeu
3
e CD dx (94)

Figure 9 shows the ρeu
3
eθ

∗ distributions for the top and bottom surface and wake of a transonic airfoil at

high Reynolds number. In this case the wake dissipation is about 13% of the total, which is still large enough

to make wake recovery an attractive possibility. The airfoil also has laminar flow up to x=0.7 on the bottom

surface, which is responsible for the very low ρeu
3
eθ

∗ growth up to that point.

8.5 Dissipation and Skin Friction Coefficients in Shear Layers

8.5.1 Dependence on Shape Parameter, Reynolds Number

The boundary layer shape parameter H = δ∗/θ directly indicates the state of the boundary layer, and in

particular how close the boundary layer is to separation. Figure 10 shows CD and Cf/2 dependence on H for

laminar boundary layers. These scale as 1/Reθ, so the ReθCD and ReθCf/2 values are independent of Reθ.

Note that the laminar CD is very nearly independent of H , meaning that laminar boundary layer losses are

almost entirely dependent on the Reynolds number, and nearly independent of pressure gradient.

27



Figure 11 shows the CD and Cf/2 dependence on H for turbulent boundary layers. The CD now has

a clear minimum, close to the H value corresponding to a constant-pressure flow, and increases for both

accelerating and decelerating flow. The rapid increase with H essentially represents pressure drag, which in

the profile-drag expression (93) is captured by the second term. It should also be noted that the dependence

of CD on Reθ for turbulent flow is much weaker than the CD ∼ 1/Reθ dependence for laminar flow.

The approximate spreading half-angle of 7◦ observed for a free shear layer [15] implies a dissipation

coefficient of approximately

CD ≃ 0.02 (free shear layer). (95)

This corresponds to an asymptotic value of CD for H ≫ 1 in Figure 11.

8.5.2 Dependence On Flow Velocity

The dissipation expression (63) shows that for any given CD value, the physical boundary layer losses scale

as u3
e. This implies that “overspeeds”, or regions of high local ue are very costly. Conversely, in regions of

low velocity, such as in slat coves which have a fully separated recirculating flow, the losses are quite modest

because of the small u3
e factor.

8.6 Dissipation-Based Drag Build-Up

The u3
e factor in (63) has significant implications for excrescence and interference drag. Traditional excres-

cence drag estimates, as discussed by Hoerner [16] for example, scale the individual drag contributions with

u2
e, in accordance with a local dynamic-pressure argument. Any discrepancy it typically attributed to some

uncertain additional “interference drag”. However, (63) clearly shows that a u3
e scaling is more appropriate.

Furthermore, if no additional dissipation-causing flow structures (e.g. flow separation) are created, there

should be no additional uncertain interference drag.

To illustrate the difference between force-based and dissipation-based drag build-up, consider a configu-

ration consisting of a large and a small body, shown in Figure 12. Their relative sizes are such that when
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the bodies far apart, the drags are 100 and 1, for a total drag of D = 101.

When the small body is placed near the large body where the local velocity is V2 = 2, the force-based

drag build-up gives

D =
∑

Dk = 100 + 4 = 104 (96)

while the dissipation-based build-up gives

D =
1

V∞

∑

Φk = 100 + 8 = 108 (97)

which is a rather different result.

Viscous CFD calculations indicate that the dissipation-based build-up (97) is far more accurate than

the force-based build-up (96). The reason is that (96) neglects the additional pressure drag on the large

body, due to the potential source flow created by the viscous displacement on the small body. Traditionally

this might be labeled “interference drag” of some possibly uncertain origin, but the mechanism and effect is

captured quite well by the dissipation-based drag build up (97).

8.7 Evaluation of Alternative Propulsion Systems

The efficiency benefit of wake ingestion is almost universally exploited in marine propulsion, and has also

been considered for aeronautical applications. The previous analyses, such as that of Smith [17], have

typically computed the propulsor power reduction with the assumption that the ingested airframe boundary

layer is given. However, computing or estimating the benefit of integrated/ingesting propulsion systems is

far more complex, since the airframe flow is itself modified. An attractive feature of the present energy-

based analysis is that comparison of such alternative propulsion systems is considerably simplified, and the

competing effects are clearly identified.

Figure 14 shows a traditional isolated propulsor and an alternative integrated propulsor driving a wing.

The situation is a more complex version of the one in Figure 7, for two reasons: 1) the integrated propulsor

now changes the airframe losses, and 2) there is now an excess thrust for both cases, typically needed to
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balance the induced drag and profile drag from other parts of the aircraft. The upper right drawing in Figure

14 shows the “pros”, or the loss mechanisms which were eliminated or reduced in switching to the integrated

system. These gains consist of removal of the two shear layers and their dissipation, and reduction of the

excess wake kinetic energy by filling in of the large upper-surface boundary layer momentum defect. The

lower right drawing shows the “cons”, or the loss mechanisms which were added in the switch. Quantitative

evaluation or estimation of all the pro and con changes shown in Figure 14 would then give the net resulting

change in the flight power.

∆P =
∑

∆Ė +
∑

∆Φ (98)

The sums on the righthand side can in principle be carried out to any level of detail deemed appropriate.

In addition to the first-level changes shown in Figure 14, one could also account for changes in dissipation

Φprof on the fan blading (e.g. fan profile efficiency), change in the total weight or span loading and resulting

change in induced power Ėv, changes in shock losses Φshock if any, modification to the upper-cowl boundary

layer dissipation, etc.

9 Conclusions

A control volume analysis of the flow about an aircraft has been performed, focusing on mechanical energy.

The result is a concise relation between all the power sources and sinks in a flowfield, which has a number

of useful applications:

• The quantities which directly influence flight power requirements are clearly identified.

• It is fully consistent with previous analyses based on momentum.

• There is no need to define the rather ambiguous ”thrust” or ”drag” in configurations with tightly

integrated propulsion systems.

• The wake energy loss is clearly decomposed into independent contributions due to axial and transverse

wake velocities, without the need to separately identify treat rotational and irrotational regions of
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the Trefftz-Plane. This eliminates the ambiguity between thrust, profile drag, and induced drag in

configurations where the viscous wakes and the vortex wakes are not distinct.

• For traditional drag build-up analyses, using the power approach appears to be more reliable in that

it accounts for interference effects which are not captured by the force approach.

The author would like to thank one of the reviewers for the suggestions to examine the issue of unsteady

flows, and the energy-term cancellations in the 2D inviscid airfoil case.
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Figure 6: Boundary layer profile on surface, with locally-cartesian x, y, z axes. The x-axis is defined to lie

along edge velocity ue.
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Figure 7: Comparison of dissipation in isolated and wake-ingesting propulsors for 2D airfoil.
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Figure 8: Kinetic energy defect ρeu
3
eθ

∗ distribution on a laminar flat plate. This shows the accumulating

dissipation on the surface, and in the wake which starts at x=1.
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Figure 9: Transonic airfoil ρeu
3
eθ

∗ distributions on top and bottom surfaces and wake halves, and for wake

total (dashed line).
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summation (bottom). The small body is in the large body’s nearfield, and sees a doubled local velocity.
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Figure 14: Changes resulting from switch from isolated to distributed propulsion, while keeping the same net

streamwise momentum defect and force. Power change ∆P is the net result of negative (pro) and positive

(con) ∆Φ and ∆Ė changes.
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