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We investigate compressibility of the dimension of positive semidefinite matrices while approx-
imately preserving their pairwise inner products. This can either be regarded as compression of
positive semidefinite factorizations of nonnegative matrices or (if the matrices are subject to ad-
ditional normalization constraints) as compression of quantum models. We derive both lower and
upper bounds on compressibility. Applications are broad and range from the statistical analysis of
experimental data to bounding the one-way quantum communication complexity of Boolean func-
tions.

I. INTRODUCTION

The following situation is ubiquitous in quantum in-
formation: a d-dimensional state ρx is prepared and
a measurement Ey is performed with POVM elements
Ey,z, with x ∈ [X], y ∈ [Y ], z ∈ [Z]. The resulting
conditional probability distribution of these outcomes
p(z|x, y) = tr(ρxEy,z) can be expressed as a matrix D
with Dx;y,z = p(z|x, y). The forward problem of comput-
ing D given {ρx}, {Ey} is straightforward, but often we
need to solve the inverse problem of finding states and
measurements compatible with a given D. This problem
of finding quantum models is in general underdetermined,
but we can constrain the problem by minimizing the di-
mension d of the model. Similarly, if given an accuracy
parameter ε, we could ask for the minimum d for which
a d-dimensional quantum model can approximate each
entry of D to additive error ε.

Two important examples where this problem occurs
are:

• Inferring quantum models. Suppose we perform an
experiment where x and y are classical inputs (e.g.
x selects the state and y the measurement) and z is
classical observable. We will sample from the dis-
tributions p(z|x, y) and thereby learn an approxi-
mation of D. However, we do not have direct access
to the underlying quantum states or measurements.
In reconstructing these states and measurements, it
is natural (e.g., to prevent overfitting) to posit the
simplest model consistent with the data, which in
the absence of other information would mean the
quantum model of lowest dimension.

• One-way quantum communication complexity.
Suppose that Alice and Bob would like to jointly
compute a function f : [X]× [Y ] 7→ [Z] when Alice
is given input x and Bob is given input y. The
most general protocol consists of Alice sending
ρx to Bob who performs POVM Ey and outputs
the outcome z that he obtains. The log of the
minimum dimension achieving p(z|x, y) = δz,f(x,y)

(resp. p(z|x, y) ≈ δz,f(x,y)) is the exact (resp.
approximate) one-way quantum communication
complexity of f .

Quantum models for conditional probability distribu-
tions are an example of the more general idea of a psd
(positive semidefinite) factorization. If M is a matrix
with nonnegative entries, then a psd factorization of M
is a collection of d-dimensional psd matrices {Ax}, {By}
such that Mxy = tr(AxBy). The psd-rank of M is the
minimum d for which this is possible; approximate ver-
sions can also be defined [6, 8]. See [5] for a recent re-
view of psd-rank. One application of psd-rank is to the
case when M is the slack matrix of a polytope, in which
case the psd-rank is the smallest possible dimension of
a semidefinite program representing the polytope; here
too approximate versions of this relation are known [8].
Our problem of finding low-dimensional quantum models
is a special case of the general psd-rank problem which
differs in our requirements for normalization: ρx should
not only be psd but also trace 1, and Eyz should not only
be psd but should satisfy

∑
z Eyz = I for all y.

In this paper we study the question of when a quantum
model can be compressed to a smaller dimension. We
give conditions under which compression is, or is not,
possible.

Main results. We present one theorem demonstrat-
ing incompressibility (Theorem 1) and three theorems
describing compressibility (Theorems 2, 3 and 4). A com-
mon theme will be that measurement operators with high
trace are a barrier to compressibility.

Theorem 1. Let D ∈ RX×Y Z , let
(
Eyz

)Z
z=1

be a

d-dimensional POVMs and let ρx, x ∈ [X], be d-
dimensional quantum states. Assume that Dx,yz =
tr
(
ρxEyz

)
for all x ∈ [X], y ∈ [Y ] and z ∈ [Z]. Fix

y. For all z ∈ [Z], set c∗z = max{Dx;yz}Xx=1. Then,

d ≥
∑Z
z=1 c

∗
z. Moreover, if D′ ∈ RX×Y Z is a set of obser-

vations coming from d′-dimensional states that satisfies

‖D −D′‖∞ ≤ ε, then we have that d′ ≥ −Zε+
∑Z
z=1 c

∗
z.

1

ar
X

iv
:1

41
2.

74
37

v1
  [

qu
an

t-
ph

] 
 2

3 
D

ec
 2

01
4



2

Theorem 1 is proven in section II. Theorem 1 was ob-
tained independently in [14] (Theorem 24).

Note that the lower bound from Theorem 1 cannot ex-
ceed Z, i.e., the number of measurement outcomes. Con-
sequently, Theorem 1 leaves open the possibility to com-
press quantum models of dimension D > Z into models
of dimension Z. This is indeed possible if for each mea-
surement Ey all but one POVM element have trace norm
constant in D. To approach this conclusion we first con-
sider the compression of psd factorizations of D.

Theorem 2. Let M1, . . . ,MJ be psd matrices on CD let
ε ∈ (0, 1/2] and fix d ∈ N such that

d >
16

ε2
ln
(
2JD

)
. (1)

Then there exist psd matrices M ′j on Cd such that for all
i, j ∈ [J ]

tr(MiMj)− tr(Mi)tr(Mj)192ε

≤ tr
(
M ′iM

′
j

)
≤ tr(MiMj) + tr(Mi)tr(Mj)192ε.

(2)

The matrices M ′j can be computed in randomized polyno-
mial time in J and D.

Theorem 2 is proven in section III. It can be used to
compress psd factorizations of D into approximate psd
factorizations of D. In particular, it can be used to com-
press quantum models for D into approximate psd fac-
torizations of D. However, we have no guarantee that the
compression satisfies the normalization conditions which
played the key role in the derivation of Theorem 1. This
problem is addressed in Theorem 3.

Theorem 3. For each x ∈ [X], let ρx be a D-
dimensional quantum state and for all y ∈ [Y ] let(
Eyz

)Z
z=1

be a D-dimensional POVM. Set J = X + Y Z.

Let ε ∈ (0, 1/2] and fix d ∈ N such that for all y

d >
32

ε2
ln(4JD)

d >
32

ε2
rank

(Z−1∑
z=1

Eyz

) (3)

Then, there exist d-dimensional quantum states ρ′x and

d-dimensional POVMs
(
E′yz

)Z
z=1

such that

• for all x ∈ [X], y ∈ [Y ], z ∈ [Z − 1],∣∣tr(ρ′xE′yz)− tr
(
ρxEyz

)∣∣ ≤ 200ε tr(Eyz).

• For all x ∈ [X], y ∈ [Y ] and z = Z,∣∣tr(ρ′xE′yz)− tr
(
ρxEyz

)∣∣ ≤ 200ε tr(I − EyZ).

The compressed quantum model
(
ρ′x
)
x
,
(
E′yz

)
yz

can be

computed in randomized polynomial time in X,Y, Z and
D.

Similar approximation guarantees hold for overlaps be-
tween pairs of states and pairs of measurements (see sec-
tion IV C).

In the above theorem the outcome z = Z is special, and
our bounds are adapted to the case when EyZ has much
larger rank than the other POVM elements. The prac-
tical relevance of measurements of that kind is discussed
in section IV E in the context of different applications of
Theorem 3.

Theorem 3 is proven in section IV A to section IV D.
Note that the main difference between the conditions in
Theorem 3 and the conditions in Theorem 2 is the new
rank-based constraint in (3). It is the direct consequence
of the normalization conditions for quantum models. As
an example consider one particular measurement Ey of
the form Eyz = |z〉〈z| for z ∈ [Z − 1] and EyZ = I −∑Z−1
z=1 Eyz. Assume that the experimental states ρx are

approximately equal to |x〉〈x|. Then, by Theorem 1, d ≥
Z. On the other hand, by Theorem 3, there exists an
approximate quantum model with

d =
32

ε2
ln(JD) +

32

ε2
Z (4)

i.e., the lower bound is almost achieved.

Condition (3) is phrased in terms of the rank of POVM
elements. This is the main caveat of Theorem 3 because
in experimental systems we expect POVM elements to
be full rank with light spectral tails. The following The-
orem 4 is another version of Theorem 3 which tolerates
POVM elements with high rank if their spectrum is de-
caying exponentially. See section V for its proof.

Theorem 4. Let ρx, Eyz and J be as in Theorem 3.

Denote by
(
ε

(y)
n

)
n

the spectrum (ordered descendingly) of∑Z−1
z=1 Eyz. To describe potentially thin spectral tails we

assume that for some j∗, b > 0 and for all j > 0,

εj∗+j ≤ e−bj . (5)

Let ε ∈ (0, 1/2] and fix d ∈ N such that

d ≥ 128

ε2
ln(4JD) (6)

d ≥ 128

ε2

(
j∗ +

1

b
ln

8

ε

)
(7)

Then, there exist d-dimensional quantum states ρ′x and

d-dimensional POVMs
(
E′yz

)Z
z=1

with the same approx-
imation promises as Theorem 3. Again, the compressed
quantum model

(
ρ′x
)
x
,
(
E′yz

)
yz

can be computed in ran-

domized polynomial time in X,Y, Z and D.

Implications. Bounding the approximate psd-rank of
identity matrices is a problem addressed in [14] (sec-
tion 6.2) and a lower bound was derived. Theorem 2 on
the other hand provides upper bounds for general matri-
ces.



3

Theorem 3 and 4 have the potential to alter our per-
spective in quantum tomography in that it reveals an
equivalence between high-dimensional models and low-
dimensional models if the measurements are low rank and
have few outcomes. This is discussed in section IV E 1.

Another lesson to be learned here is that whether we
interpret measurement outcomes as part of a single mea-
surement or whether we summarize small groups of mea-
surement outcomes to individual measurements hugely
affects the compressibility of the model. To illustrate
this point, let {|j〉}Dj=1 denote an orthonormal basis in

the Hilbert space CD, let X = D with ρx = |x〉〈x|,
and let Y = 1, Z = D with E1z = |z〉〈z|. It follows
that

(
tr(ρxEyz)

)
xyz

equals the identity matrix of size D.

Then, by Theorem 1, the dimension of each model de-
scribing

(
tr(ρxEyz)

)
xyz

is lower bounded by D and can-

not be compressed. Even allowing an error of ≤ δ in each
entry cannot change the lower bound by more than Dδ
which implies that the dimension must be ≥ (1 − δ)D.
Indeed this demonstrates that the dependence of d on
the rank of the sum of the POVM operators in The-
orem 3 cannot in general be removed. On the other
hand, if instead we performed D individual measure-
ments

(
|z〉〈z|, I−|z〉〈z|

)
to test for each of the D possible

inputs then the model can be compressed exponentially.
Consequently, it becomes impossible to resolve any high
complexity of the considered physical system.

The two models described in the last paragraph corre-
spond to the communication tasks of sending and iden-
tifying, respectively, a log(D)-bit classical message. For
these models Winter’s 2004 paper [17] observed the same
exponential compression that we describe. Our work can
be thought of as a generalization of [17] in that it replaces
the simulation of orthonormal states and binary measure-
ments {|z〉〈z|, I − |z〉〈z|} with the simulation of general
states and measurements. It is qualitatively similar in
that it works best when compressing low-rank measure-
ments.

Further applications of Theorem 3 involve a Corol-
lary of Theorem 3 (see Section IV E 3) that allows for
shrinkage of upper bounds on the one-way quantum
communication complexity Q1(f) if the upper bound is
based on high-rank measurements. Moreover, we dis-
cuss fundamental limitations on robust dimension wit-
nessing [1, 4, 7, 10, 15, 16] in Section IV E 2.

II. INCOMPRESSIBILITY

Consider a D-dimensional quantum model for D. Due
to normalization of measurements,

∑
z Eyz = I. On a D-

dimensional Hilbert space the identity matrix has trace-
norm D. Therefore, if D implies lower bounds on ‖I‖1
then these bounds can be used as lower bounds on D.
Indeed the derivation of lower bounds on ‖I‖1 using D
is straightforward: Consider data D ∈ RX×Z generated
by quantum states (ρx)Xx=1 and a single POVM (Ez)

Z
z=1

on Cd, i.e., Dxz = tr
(
ρxEz

)
. For each z ∈ [Z] let c∗z :=

max{Dxz}Xx=1 and x′ := argmax{Dxz}Xx=1. Then,

c∗z = tr
(
ρx′Ez

)
≤ ‖ρx′‖‖Ez‖1

and therefore, ‖Ez‖1 ≥ c∗z because ‖ρ‖ ≤ 1 for all quan-
tum states ρ. Here, ‖ · ‖ denotes the operator norm
(i.e. largest singular value) and ‖ · ‖1 the trace norm
(i.e. sum of singular values). It follows that for all z ∈ [Z],
tr(Ez) ≥ c∗z and consequently,

tr
( Z∑
z=1

Ez

)
≥

Z∑
z=1

c∗z.

By assumption
(
Ez
)Z
z=1

is a POVM. So in particular,∑Z
z=1Ez = Id and therefore,

d = tr(Id) = tr
( Z∑
z=1

Ez

)
≥

Z∑
z=1

c∗z. (8)

This is a lower bound on the dimension of any quantum
model describing D. It has been found independently
in [14] (Theorem 24).

It is straightforward to see how the dimension lower

bound l(D) :=
∑Z
z=1 c

∗
z reacts to noise in D. Assume

that D′ is a noisy approximation of D in the sense that
‖D − D′‖∞ ≤ ε. Here, ‖D − D′‖ denotes the maximum
norm associated to the vectorization of D −D′. Then,

|l(D)− l(D′)|

≤
Z∑
z=1

∣∣∣max{Dxz}Xx=1 −max{D′xz}Xx=1

∣∣∣
=

Z∑
z=1

max
{

max{Dxz}Xx=1 −max{D′xz}Xx=1,

max{D′xz}Xx=1 −max{Dxz}Xx=1

}
≤

Z∑
z=1

max
{

max{D′xz + ε}Xx=1 −max{D′xz}Xx=1,

max{Dxz + ε}Xx=1 −max{Dxz}Xx=1

}
= Zε.

In other words, if we measure D′ with accuracy ‖D −
D′‖∞ ≤ ε, then we know that d ≥ l(D′)− Zε.

As an example, we consider data generated by Ez =
|z〉〈z|, ρz = |π(z)〉〈π(z)| with z ∈ [D], π ∈ SD a per-
mutation and with (|z〉)Dz=1 being an orthonormal basis
in CD. It follows that for all z ∈ [D], c∗z = 1. By (8),
d ≥ D, i.e., the considered quantum system generating
the considered data cannot be compressed into a lower-
dimensional quantum system. This example generalizes
in obvious manners: if for each measurement outcome
there exists a state that can be measured with approx-
imate certainty, then roughly, the considered quantum
system cannot be compressed into another quantum sys-
tem whose dimension exceeds Z.
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We conclude that general D-dimensional quantum
models cannot be compressed into d-dimensional quan-
tum models with d� D. However, this still leaves room
for the existence of compression schemes that can com-
press specific classes of models. This is what we are going
to explore next.

III. COMPRESSION OF POSITIVE
SEMIDEFINITE FACTORIZATION

Let M ∈ RN×M+ , let J := N + M and let S+(CD)

denote the set of psd matrices on CD. The psd matrices(
An
)N
n=1

and
(
Bm
)M
m=1

from S+(CD) are said to provide
a D-dimensional psd factorization of M if for all entries
Mnm = tr

(
AnBm

)
. The psd-rank of M is defined to be

the dimension of the lowest-dimensional psd factorization
of M. See [5] for a recent review of psd-rank.

A. The compression scheme

Assume
(
An
)N
n=1

and
(
Bm
)M
m=1

form a D-dimensional
psd factorization of M and set Mn = An for 1 ≤ n ≤ N
and MN+n = Bn for 1 ≤ n ≤ M . Now and in the

remainder we assume that Π = G/
√

2d ∈ Cd×D with
Gij = Sij + iTij where Sij , Tij ∼ N (0, 1) independent
and identically distributed (iid). This normalization is
chosen so that E[Π] = 0 and E[Π†Π] = ID. In this section
we show that for all n,m ∈ [J ], the map

Mj 7→ ΠMjΠ
† (9)

has the property that

tr
(
ΠMnΠ†ΠMmΠ†

)
≈ tr

(
MnMm

)
. (10)

Thus, it approximately preserves all of the Gram matrix
(i.e., not just M) associated to the considered psd fac-
torization. Since d < D, the map (9) can be regarded as
a compression of the psd factorization we started with.
The compression errors are additive. The additive error
associated to tr(AnBm) scales with tr

(
An
)
tr
(
Bm
)
.

This proof is divided into two pieces. First we ar-
gue that (10) holds for rank-1 matrices Mm,Mn in sec-
tion III B and then we extend to general psd matrices
Mm,Mn in section III C.

B. Compression errors for vectors

The errors of the compression of pure states correspond
to the famous Johnson-Lindenstrauss Lemma, which has
the following formulation for complex vector spaces:

Theorem 5 (complex Johnson-Lindenstrauss [12]). As-

sume that Π = G/
√

2d ∈ Cd×D with Gij = Aij + iBij

where Aij , Bij ∼ N (0, 1) iid. Let v1, ..., vS be arbitrary
vectors in CD and ε ∈ (0, 1). Then,

P
[
∀i ‖Πvi‖2 ∈ [1− ε, 1 + ε]‖vi‖2

]
≥ 1− 2Sedε

2/8 (11)

The proof is simple enough that we reproduce it here.

Proof. Fix a particular v := vi. By linearity of Π, we
can assume without loss of generality that ‖v‖2 = 1.
Let U denote a unitary matrix with the property v =
Ue1, where e1 denotes the vector with a one in the first
position and zeroes elsewhere. By unitary invariance of
the complex Gaussian measure on CD, Π ∼ ΠU (i.e. the
two random variables are identically distributed) and so

‖Πv‖22 = ‖ΠUe1‖22 ∼ ‖Πe1‖22 =

d∑
j=1

A2
1j +B2

1j

2d
(12)

This average of the square of 2d standard normal random
variables is known as the χ2 distribution, and its concen-
tration of measure properties are standard. Indeed, by
Corollary 5.5 in [2],

P
[
‖Πv‖22 ≥ 1 + 2ε

]
≤ e− 1

2 ε
2d

P
[
‖Πv‖22 ≤ 1− ε

]
≤ e− 1

2 ε
2d

so that

P
[
‖Πz‖22 ∈ [1− ε, 1 + ε]

]
≥ 1− 2e−

1
8 ε

2d.

Eq. (11) follows by the union bound:

P
[ ⋃
i∈[S]

{
‖Πvi‖22 6∈ [(1− ε)‖vi‖2, (1 + ε)‖vi‖2]

}]
≤ S · 2e− 1

8 ε
2d

The usual Johnson-Lindenstrauss Lemma shows that
Π preserves (with high probability) not only the lengths
of a collection of vectors, but also their pairwise dis-
tances. In fact, we will demand slightly more.

Corollary 6. Let v1, . . . , vS, Π, ε be as in Theorem 5.

Then with probabilty ≥ 1− 4S2e−dε
2/8 we have

‖Πvi‖2 ∈ [1− ε, 1 + ε]‖vi‖2 (13a)

‖Π(vi + vj)‖2 ∈ [1− ε, 1 + ε]‖vi + vj‖2 (13b)

‖Π(vi + ivj)‖2 ∈ [1− ε, 1 + ε]‖vi + ivj‖2 (13c)

‖Π(vi − vj)‖2 ∈ [1− ε, 1 + ε]‖vi − vj‖2 (13d)

‖Π(vi − ivj)‖2 ∈ [1− ε, 1 + ε]‖vi − ivj‖2 (13e)

Proof. Apply Theorem 5 to the S + 4
(
S
2

)
≤ 2S2 vectors

{vi}i∈[S] ∪ {vi ± vj , vi ± ivj}1≤i<j≤S .

Matrices Π satisfying (13) for some set of vectors
{v1, . . . , vS} are said to be ε-JL matrices.
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C. Compression errors for positive semidefinite
matrices

In this section we extend Theorem 5 to show that
general psd matrices have their inner products approxi-
mately preserved by a random compression map.

First we show that ε-JL matrices also approximately
preserve inner products between rank-1 psd matrices (re-
call that tr(|v〉〈v||w〉〈w|) = |〈v|w〉|2).

Lemma 7. If Π is an ε-JL matrix for the set {v1, . . . , vS}
(i.e. satisfies (13)), then∣∣|〈vi|Π†Π|vj〉|2 − |〈vi|vj〉|2∣∣ ≤ 192ε‖vi‖22‖vj‖22. (14)

While a direct analysis of the Gaussian probability dis-
tribution would yield a sharper constant, our approach
highlights the fact that it is only the ε-JL property that
is needed.

Proof. Since (14) is homogenous, we can assume that
vi, vj are unit vectors. By the polarization identity,

〈vi|Π†Π|vj〉 =
1

4

(
x1 − x2 + ix3 − ix4)

)
(15)

with

x1 =
∥∥Π(vi + vj)

∥∥2

2
x2 =

∥∥Π(vi − vj)
∥∥2

2

x3 =
∥∥Π(vi + ivj)

∥∥2

2
x4 =

∥∥Π(vi − ivj)
∥∥2

2

Thus

|〈vi|Π†Π|vj〉|2 =
1

16

(
(x1 − x2)2 + (x3 − x4)2

)
=: f(~x)

(16)
Define as well

y1 =
∥∥vi + vj

∥∥2

2
y2 =

∥∥vi − vj∥∥2

2

y3 =
∥∥vi + ivj

∥∥2

2
y4 =

∥∥vi − ivj∥∥2

2

Observe that each yi ≤ 4 and that

〈vi|vj〉 =
1

4

(
y1 − y2 + iy3 − iy4)

)
(17)

By the ε-JL property of Π, we have that for j ∈ [4],
xj ∈ [(1− ε)2, (1 + ε)2]yj . Set

K :=[(1− ε)2y1, (1 + ε)2y1]× [(1− ε)2y2, (1 + ε)2y2]×
[(1− ε)2y3, (1 + ε)2y3]× [(1− ε)2y4, (1 + ε)2y4].

We are going to apply

|f(~x)− f(~y)| ≤ ‖∇f‖K‖~x− ~y‖∞ (18)

where ‖∇f‖K = max
{
‖∇f‖1| ~x ∈ K

}
. By definition of

f(~x),

‖∇f‖K =
1

4
max
~x∈K

{
|x1 − x2|+ |x3 − x4|

}
≤ 1

4
max
~x∈K

{
|x1|+ |x2|+ |x3|+ |x4|

}
≤ (1 + ε)2

4

{
|y1|+ |y2|+ |y3|+ |y4|

}
≤ 4(1 + ε)2 ≤ 16,

(19)

using ε ≤ 1 in the last step. We also bound

‖~x− ~y‖∞ = max
j
|xj − yj |

≤ (2ε+ ε2) max
j
yj

≤ 12ε.

(20)

Thus by Eq. (18),

|f(~x)− f(~y)| ≤ 192ε (21)

Armed with this fact, we can prove (10).

Theorem 2 (restatement). Let M1, . . . ,MJ be psd
matrices on CD let ε ∈ (0, 1/2] and fix d ∈ N such that

d >
16

ε2
ln
(
2JD

)
. (22)

Then there exist psd matrices M ′j on Cd such that for all
i, j ∈ [J ]

tr(MiMj)− tr(Mi)tr(Mj)192ε

≤ tr
(
M ′iM

′
j

)
≤ tr(MiMj) + tr(Mi)tr(Mj)192ε.

(23)

The matrices M ′j can be computed in randomized polyno-
mial time in J and D.

Proof. For each i ∈ [J ], let the eigendecomposition of Mi

be

Mi =

D∑
a=1

λia|ψia〉〈ψia|.

Observe that ‖Mi‖1 =
∑D
a=1 λ

i
a.

Choose Π ∈ Cd×D according to a Gaussian distribution
as in Theorem 5 (i.e. such that E[Π] = 0 and E[Π†Π] =
ID). By Corollary 6, Π is an ε-JL matrix for the vectors
{|ψia〉} with probability

≥ 1− 4J2D2e−dε
2/8. (24)

By (22), this is > 0, thus implying that there exists some
Π with this property. Fix this choice of Π for the rest of
the proof.
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Define

M ′i := ΠMiΠ
†. (25)

We now compute

tr(M ′iM
′
j) = tr(ΠMiΠ

†ΠMjΠ
†)

=

D∑
a,b=1

λiaλ
j
b|〈ψ

i
a|Π†Π|ψ

j
b〉|

2

By Lemma 7, we have∣∣∣|〈ψia|Π†Π|ψjb〉|2 − |〈ψia|ψjb〉|2∣∣∣ ≤ 192ε, (26)

for each i, j, a, b. Thus

|tr(M ′iM ′j)− tr(MiMj)| ≤
D∑

a,b=1

λiaλ
j
b192ε

= ‖Mi‖1‖Mj‖1192ε (27)

We remark that this proof would work equally well
with general matrices, with the error terms scaling as
‖Mi‖1‖Mj‖1 instead of tr(Mi)tr(Mj). However, if we
are willing to abandon the psd condition, a much tighter
bound is possible simply by treating {Mi} as vectors

in Cd2 and using Theorem 5. This would result in er-
rors proportional instead to ‖Mi − Mj‖22 (or option-
ally ‖Mi‖2‖Mj‖2), both of which can be smaller than
‖Mi‖1‖Mj‖1 by as much as D.

More generally, one might ask whether a nonlinear
compression map can remove this dependence on the ma-
trix norm. However, the absolute error cannot be invari-
ant under Mn 7→ λMn (λ > 0). This can be understood

as follows. Assume that Ĉ is a compression with the prop-
erty that there exist functions c(ε) and d(ε) such that

tr(Ĉ(Mn)Ĉ(Mm)) = c(ε)tr(MnMm) + d(ε)

for all positive semidefinite matrices Mn,Mm and which
are invariant under Mn 7→ λMn. Then,

tr(Ĉ(λ|n〉〈n|)Ĉ(λ|m〉〈m|)) = c(ε)λ2δnm + d(ε)

where (|n〉)n denotes the canonical basis in CD. Set

ηn(λ) :=
√
c(ε)λ2 + d(ε). It follows that∥∥∥∥ 1

ηn
Ĉ(λ|n〉〈n|)

∥∥∥∥
2

= 1

and for m 6= n

tr

(
1

ηn
Ĉ(λ|n〉〈n|) 1

ηm
Ĉ(λ|m〉〈m|)

)
=

d(ε)

ηnηm
→ 0

as λ→∞ because, by assumption, d(ε) is invariant under
Mn 7→ λMn. Assuming D > d2, we would be able to
construct an overcomplete orthonormal basis of positive
semidefinite matrices. This is impossible and we conclude
that necessarily, d(ε) = Ω(λ2).

IV. COMPRESSION OF QUANTUM MODELS
WITH FEW MEASUREMENT OUTCOMES

The purpose of this section is the definition and the
analysis of a scheme to compress quantum models. The
discussion in section II shows that the compressibility of
quantum models is limited by the number of measure-
ment outcomes. This will be reflected in the conditions
for the compression to be applicable.

Hence, given D generated by arbitrary quantum states

ρx and POVMs
(
Eyz

)Z
z=1

on CD, our goal is to find low-

dimensional states and POVMs on Cd which reproduce
D approximately (d < D). To treat the states and the
POVMs all at once, we define Mx := ρx for x ∈ [X] and
MX+(y−1)Z+z := Eyz for y ∈ [Y ] and z ∈ [Z]. So the

matrices (Mn)Jn=1 form a list of matrices describing the
states and POVMs. Then, the matrix Gnm = tr

(
MnMm

)
is the Gram matrix generated by all of the states and all
of the measurement operators. Hence, G describes the

Euclidean geometry of the set
(
Mn

)J
n=1

.
The transition from the high-dimensional states and

POVMs to their low-dimensional counterparts will be de-
scribed in terms of a compression map C : S+(CD)×J →
S+(Cd)×J ,

C :
(
Mn

)J
n=1
7→ C

((
Mn

)J
n=1

)
=
(
Cn(Mn)

)J
n=1

.

We will see that the proposed compression scheme C ap-
proximately preserves not only the inner productsMn,m

but also the entire Gram matrix G. The compression er-
rors are additive. They scale with the trace norm of the
measurement operators. In the remainder we are going
to suppress the index n of Cn(·).

A. The compression scheme

Let ε > 0 and set J = X + Y Z. Assume that Π =
G/
√

2d ∈ Cd×D with Gij = Aij + iBij where Aij , Bij ∼
N (0, 1) iid. Set

C(ρx) =
1

tr(ΠρxΠ†)
ΠρxΠ† (28)

for all x ∈ [X],

C(Eyz) =
1

1 + ε
ΠEyzΠ

† (29)

for all y ∈ [Y ] and z ∈ [Z − 1] and set

C(EyZ) = I −
Z−1∑
z=1

C(Eyz) (30)

for all y ∈ [Y ]. Note that the map C is non-linear. Ob-
viously, C(ρx) are valid quantum states. In section IV B,
we are going to show that with non-vanishing probabil-

ity, the matrices
(
C(Eyz)

)Z
z=1

form a valid POVM and
therefore, the image of C gives valid quantum states and
measurements on Cd.
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B. Probability that compression of a POVM is psd
and normalized

It is not a priori obvious that
(
C(Eyz)

)Z
z=1

is indeed

a valid POVM. While C(Eyz) ≥ 0 for z < Z and∑Z
z=1 C(Eyz) = I hold automatically, it is not always

true that

C(EyZ) ≥ 0 ⇔ Π

Z−1∑
z=1

EyzΠ
† ≤ (1 + ε)I (31)

However, for appropriate choice of ε, we will see that (31)
holds with high probability. Let P be a projector onto the

support of
∑Z−1
z=1 Eyz. Let r = rankP = rank

∑Z−1
z=1 Eyz.

Then ‖ΠPΠ†‖ = σmax(ΠP )2, where σmax(·) denotes the
largest singular value. Because of the unitary invari-
ance of the Gaussian measure, A := ΠP is distributed
identically to a d× r matrix of complex i.i.d. Gaussians
with mean 0 and variance 1/d. Specifically observe that
E[AA†] = Ir.

We now appeal to a standard result in random matrix
theory.

Theorem 8 ([9]). Let A be a r×d Gaussian matrix with
iid entries satisfying E[Aij ] = 0,E[|Aij |2] = 1/d. Then
for 0 ≤ t ≤ d/2 and 0 ≤ δ ≤ 2 we have

E[exp(t‖AA†‖)] ≤ d exp

(
t(1 +

√
r/d)2 +

t2

d
(1 + r/d)

)
(32)

P
[
‖AA†‖ ≥ (1 +

√
r/d)2 + δ

]
≤ de−dδ

2/8 (33)

Proof. (32) is Lemma 7.2 of [9] and (33) follows by set-
ting t = dδ/4, and using the bound P

[
‖AA†‖ ≥ λ

]
≤

E[exp(t‖AA†‖)]e−tλ and the fact that r ≤ d.

This implies that our dimension-reduction strategy
does not significantly blow up the POVM normalization
as long as the rank of the measurement operators is much
less than d.

Lemma 9. Let Π = G/
√

2d ∈ Cd×D with Gij = Aij +
iBij where Aij , Bij ∼ N (0, 1) iid. Assume E ∈ CD×D
psd with ‖E‖ ≤ 1. Then,

P
[
‖ΠEΠ†‖ ≤ 1 + ε

]
≥ 1− de− ε2

32 d (34)

if

d ≥ 32

ε2
rank(E). (35)

Proof. Let r = rankE. Since E ≤ I, then E ≤ P for some
rank-r projector P . Then, according to the discussion
earlier in this section, ‖ΠEΠ†‖ ≤ ‖AA†‖ for some matrix
A satisfying the conditions of Theorem 8. If (66) holds

then with probability ≥ 1− de−dε2/32 we have

‖ΠEΠ†‖ ≤ ‖AA†‖ ≤ (1 +
√
r/d)2 + ε/2. (36)

From (66) and ε ≤ 1/2 we have

(1 +
√
r/d)2 ≤ (1 + ε/

√
32)2

≤ 1 + ε

(
2√
32

+
1

64

)
≤ 1 + 0.37ε.

(37)

Together this implies that ‖ΠEΠ†‖ ≤ 1 + ε.

We now apply this to dimension reduction. For each
y ∈ [Y ] set

Ey = {Π | ‖Π
( ∑
z∈[Z−1]

Eyz

)
Π†‖ ≤ 1 + ε}. (38)

By Lemma 9 and the union bound

P
[ ⋂
y∈[Y ]

Ey
]
≥ 1− Y e− ε2

32 d (39)

if

d >
32

ε2
rank

(Z−1∑
z=1

Eyz

)
. (40)

C. Tail bounds on compression errors

We use (23) to separately list the compression errors
for inner products tr

[
ρxρx′

]
, tr
[
ρxEyz

]
and tr

[
EyzEy′z′

]
.

Let J denote the event where Π satisfies the ε-JL prop-
erty for the eigenstates of all the ρx and Eyz.

This event implies the following bounds.

tr
[
ΠρxΠ†

]
=

D∑
j=1

pjtr
[
Π|ψxj 〉〈ψxj |Π†

]
=

D∑
j=1

pj‖Π|ψxj 〉‖22

∈ [(1− ε)2, (1 + ε)2].
(41)

State-state error. For n,m ∈ [X], (23) implies (us-
ing (41))

1

(1 + ε)4

(
tr(ρxρx′)− 192ε

)
≤ tr

(
C(ρx)C(ρx′)

)
≤ 1

(1− ε)4

(
tr(ρxρx′) + 192ε

) (42)

State-measurement error. Let z ∈ [Z − 1]. By (23),

1

(1 + ε)3

(
tr(ρxEyz)− tr(Eyz)192ε

)
≤ tr

(
C(ρx)C(Eyz)

)
≤ 1

(1− ε)2(1 + ε)

(
tr(ρxEyz) + tr(Eyz)192ε

) (43)
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Let z = Z. By (28), (29) and (30),

tr
[
C(ρx)C(EyZ)

]
= tr

[ ΠρxΠ†

tr[ΠρxΠ†]

(
I −Π

(Z−1∑
z=1

Eyz

)
Π†
)]

= 1−
(Z−1∑
z=1

tr
[
C(ρx)C(Eyz)

]) (44)

All the summands in (44) can be bounded by (43).
Measurement-measurement error. Let z, z′ ∈ [Z − 1].

By (23),

1

(1 + ε)2

(
tr(EyzEy′z′)− tr(Eyz)tr(Ey′z′)192ε

)
≤ tr

(
C(tr(Evk))C(Ey′z′)

)
≤ 1

(1 + ε)2

(
tr(EvkEy′z′) + tr(Evk)tr(Ey′z′)192ε

) (45)

For z = Z we get bounds similar to (44).
In each case the denominators can be absorbed by

rounding up 192ε to 200ε. This is a straightforward cal-
culation in the case when ε ≤ 1/200 and when ε > 1/200
the error bound is vacuously true.

Here, we are able to avoid the no-go Theorem from [11]
(already for the factorization of the identity matrix) be-
cause C is not completely positive, or even linear. In-
deed, generically each row of Π will have norm

√
D/d

and so we will have ‖Π‖ ≈
√
D/d with high probability.

Thus there will almost always exist matrices E such that
‖ΠEΠ†‖ � ‖E‖. However, our compression scheme can
work because ‖ΠEΠ†‖ is small for most E (or more pre-
cisely, for all E it is small for most Π). This feature of be-
ing able to achieve something for a small number of vec-
tors that is impossible to extend to all vectors can be seen
already in the original Johnson-Lindenstrauss Lemma.

D. Proof of Theorem 3

Proof. Recall the definitions of the events Ey and J
from (38) and Section IV C, respectively. By (39) and
Corollary 6 the probability that these all hold simultane-
ously is

P
[
J ∩

⋂
y∈[Y ]

Ey
]
≥ 1− Y e− ε2

32 d − 4J2D2e−
ε2

8 d. (46)

If d satisfies (3) and J,D ≥ 2, then this is

≥ 1− Y

JD
− 4J2D2

(4JD)2
≥ 1

4
.

Fix a Π for which J and
⋂
y Ey hold. Let C be

the corresponding compression scheme described in Sec-
tion IV A. Then by the arguments in Sections IV B and
IV C, C satisfies the bounds in Theorem 3.

E. Implications

1. Quantum tomography

Every empirical observation can be captured in the
form of data tables D,

D =


f1|11 · · · fZ|11 · · · f1|1Y · · · fZ|1Y
f1|21 · · · fZ|21 · · · f1|2Y · · · fZ|2Y

...
...

...
...

f1|X1 · · · fZ|X1 · · · f1|XY · · · fZ|XY

 .

(47)
Here, fz|xy describes the empirical relative frequency for
measuring the measurement outcome z given that the
considered system is in a state labelled by x and given
that we have performed the measurement y. If the ob-
served system is quantum mechanical, then the states are

described in terms of density matrices
(
ρx
)X
x=1

and each
measurement y is described in terms of measurement op-

erators
(
Eyz

)Z
z=1

. Note that the indices x, y, z are not
restricted to be scalar but can be multidimensional. For
instance x = (x1, x2, x3) ∈ R3 if ρx is associated with
a state preparation at spatial coordinates (x1, x2, x3), or
y = t ∈ R if a measurement is repeated at different times
t.

Of course, in practice, fz|xy only approximates

tr
(
ρxEyz

)
. One way to model our uncertainty is by as-

suming that

‖
(
fz|xy − tr(ρxEyz)

)
xyz
‖∞ ≤ δ (48)

for δ > 0, i.e., |fz|xy − tr(ρxEyz)| ≤ δ for all (x, y, z).
Ideally we would be able to characterize the set Q[D] of
all quantum models that are compatible with D given the
uncertainty (48). The set Q[D] is a subset of cartesian
products of state space and measurement space. One
practical characteristic of Q[D] is the dimension dmin of
the lowest dimensional model in Q[D]. For instance, if
our guiding principle is Occam’s razor (e.g., to counteract
overfitting) then, to describe D theoretically, we should
report a model from Q[D] whose dimension equals dmin.

Denote by ~Dyz the column of D corresponding to the
measurement operator Eyz. The dimension dmin can be
trivially upper bounded by X because, as already pointed
out in [10], the choices ρx on CX with

ρx = |x〉 〈x|

and Eyz on CX with(
Eyz

)
i,j

=
(
~Dyz
)
i
δi,j

(corresponding to the factorization D = ID) is a valid
model for D, i.e.,(

ρ1, ..., ρX , E11, ..., EY Z
)
∈ Q[D].

To see this, recall that due to normalization within D,∑
z
~Dyz = (1, ..., 1)T and consequently, not only are the
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proposed states normalized and psd but we also have that∑
z Eyz = I.
Finding non-trivial upper bounds on dmin is genuinely

difficult. This is why here we address the following ques-
tion: given a D-dimensional model in Q[D], can we—
while respecting (48)—find a d-dimensional model in
Q[D] with d � D? In other words, is it possible to
compress the given D-dimensional model into a lower-
dimensional model?

The results from sections II and IV D show that the
answer is yes and no. It is affirmative for models whose
measurements have few outcomes and small trace norm
(see section IV D) and it is negative for measurements
whose POVM elements are too long to be compressed
into a compressed measurement space (see section II).

We already discussed an example for the incompress-
ibility of quantum models in section II. Now we consider a
closely related quantum model which admits exponential
compression. Assume ρx areD-dimensional states, Z = 2
and assume that for all y ∈ [Y ] we have tr(Ey1) = 1. This
example is of practical relevance because carefully cali-
brated measurements are often believed to be clean in the
sense that their POVM elements have trace norm O(1)
(e.g., rank-1 projectors). In this setting, the compression
C allows us to compress these states and measurements
into a quantum model of dimension d = O(log(D)/ε2)
while ∣∣tr(C(ρx)C(Ey1)

)
− tr(ρxEy1)

∣∣ ≤ 200ε

(recall (43)). It follows that∥∥∥(tr(ρxEyz)− tr
(
C(ρx)C(Eyz)

))
xyz

∥∥∥
∞
≤ 200ε (49)

because tr(ρxEy2) = 1 − tr(ρxEy1). Let D denote the
measurement data associated to the states ρx and the
binary measurements Eyz.

By (48),
(
tr(ρxEyz)

)
xyz

satisfies ‖(tr[ρxEyz])xyz −
D‖∞ ≤ δ. However, the precise values tr[ρxEyz] are un-
known to the experimentalist. Set ε = δ/200. Then,
for this choice for ε, the compressed states C(ρx) and
measurements C(Exy) satisfy (48) and thus, they form
a valid and exponentially smaller quantum model on Cd
with d = O(log(D)/ε2).

2. Limits of robust dimension witnessing

A function f : D 7→ f(D) ∈ R is a so-called quantum
dimension witness [3] if for some QD ∈ R,

f
(
(tr[ρxEyz])xyz

)
≤ QD (50)

for all quantum states ρx and measurements Eyz whose
dimension is ≤ D. Dimension witnesses were introduced
in the context of Bell inequalities [1]. In the prepare-and-
measure scenario we are considering here, they have been

studied extensively in the past years (see for instance [7,
10, 15, 16]). Assume ρ′x and Eyz′ are such that

f
(
(tr[ρ′xE

′
yz])xyz

)
> Qk.

By (50), the dimension D of ρ′x and Eyz′ satisfies D > k.
Hence, dimension witnesses yield lower bounds on the
Hilbert space dimension. Indeed, the search for di-
mension witnesses is motivated by the need to certify
high-dimensionality of quantum systems in a device-
independent manner, i.e., by only looking at the mea-
sured data D. In the following, f∗

(
(tr[ρ′xE

′
yz])xyz

)
de-

notes the dimension lower bound that is implied by the
dimension witness f .

Robustness of dimension witnesses with respect to loss
has been studied in [4]. A more general objective is
the analysis of the dimension witness’ robustness against
more general noise Dxyz 6= tr[ρ′xE

′
yz]. Here, we quan-

tify noise in the measured data D in terms of l∞-norm
on RX×Y Z+ . One approach to define robustness of dimen-
sion witnesses is the demand that there exists L > 0 such
that for all δ > 0

|f∗
(
(tr[ρ′xE

′
yz])xyz

)
− f∗

(
D
)
| ≤ L‖(tr[ρ′xE′yz])xyz −D‖∞.

(51)
In other words, the function f∗ is Lipschitz-continuous.

Recall the binary example from section IV E 1. There,
the compressed model has dimension O(log(D)/ε2) even
though the original model is D-dimensional. By (49) and
(51),∣∣∣f∗((tr[ρxEyz])xyz)−f∗((tr[C(ρx)C(Eyz)]

)
xyz

)∣∣∣ ≤ L·200ε

(52)
if f∗ is Lipschitz-continuous. Since f∗ provides a lower
bound on the dimension,

f∗
((

tr[C(ρx)C(Eyz)]
)
xyz

)
= O(log(D)/ε2).

From (52), we have

f∗
(

(tr[ρxEyz])xyz

)
= O(log(D)ε−2 + Lε)

= O(max(log(D), L2/3 log(D)1/3)),
(53)

where in the second step we have chosen ε =
min(1/2, L−1/3(logD)1/3).

We conclude the following for experiments whose mea-
surements have few outcomes and small trace norm: For
all Lipschitz-continuous lower bounds f∗ there will be an
exponential gap (53) between the dimension of the un-
derlying Hilbert space and the dimension lower bound
certified by the lower bound f∗ and f respectively.

3. Consequences for one-way quantum communication
complexity

Let f : {0, 1}n × {0, 1}m → {0, 1} be a Boolean func-
tion. Assume Alice gets the input x ∈ {0, 1}n and Bob
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gets y ∈ {0, 1}m. In one-way quantum communication
protocols [13], Alice is allowed to send a single quan-
tum state ρx to Bob. After receiving ρx, Bob tries to
output f(x, y). For that purpose, he chooses a POVM
(Ey, I −Ey) and measures ρx. If he measures Ey he sets
a = 1. Otherwise, he sets a = 0. The one-way quantum
bounded error communication complexity of f , denoted
Q1(f), is the minimal number of qubits Alice needs to
send to Bob so that a = f(x, y) with probability 2/3.

To understand the connection to psd factorizations,
let A ∈ R2n×2m

such that Axy = f(x, y). Hence, A is a
0/1-matrix describing f . Alice and Bob try to find the
smallest d such that for every x, y there exists a state ρx
and a POVM element Ey such that tr(ρxEy) ≥ 2/3 if
Axy = 1 and tr(ρxEy) ≤ 1/3 if Axy = 0. Recalling (47),
we note that this is equivalent to finding an approximate
low-dimensional quantum model for the (2n×2m+1)-data
table

D(A) :=
(
( ~Ay|~1− ~Ay) : y ∈ {0, 1}m

)
where ~Ay denotes the column of A associated the input y

on Bob’s side. In D(A), the two column vectors ( ~Ay|~1−
~Ay) correspond to the binary POVM

(Ey1, Ey2) := (Ey, I − Ey).

Let P be a D-dimensional protocol to solve the one-
way quantum communication task associated to a specific
boolean function f . Hence, Q1(f) ≤ log2(D). Being a
protocol, P specifies mappings x 7→ ρx and y 7→ Ey for
all inputs x, y.

We would like to apply Theorem 3 to reduce the di-
mension of the states and measurements used by P . This
can result in significant savings whenever Bob’s measure-
ments are sufficiently unbalanced; that is, for each y, ei-
ther rankEy1 or rankEy2 is small. Specifically define

r := max
y∈{0,1}m

min
z∈{0,1}

rankEyz. (54)

Then we will show that any bounded-error one-way pro-
tocol can be compressed to reduce the communication
cost to O(log(nmr log(D))).

Corollary 10. Let x ∈ {0, 1}n and y ∈ {0, 1}m. Assume
that x 7→ ρx and y 7→ Ey is a D-dimensional protocol to
solve the one-way quantum communication task associ-
ated to a Boolean function f : {0, 1}n ×{0, 1}m → {0, 1}
with error ε0. Suppose that

d ≥ 1280000r2

ε2
1

max
(
ln(4(2n + 2m+1)D), r

)
(55)

Then there exists a protocol that transmits a d-
dimensional state from Alice to Bob and achieves a
worst-case error of ≤ ε0 + ε1.

Proof. Assume WLOG that for each y, rankEy1 ≤
rankEy2, so that r = maxy rank(Ey1). Let ε = ε1/200r.

Observe that trEy1 ≤ r for each y. We would like to ap-
ply Theorem 3 to this collection of measurements. Here
J = 2n + 2m · 2. Thus we we obtain d-dimensional com-
pressed states {ρ′x} and measurements {E′yz} such that

∣∣tr(ρ′xE′yz)− tr(ρxEyz)
∣∣ ≤ ε1 (56)

Here we also used the fact that tr(ρ′xE
′
y2) = 1−tr(ρ′xE

′
y1),

so we can extend the error bounds for the z = 1 measure-
ments to z = 2 measurements.

4. Quantum message identification

The problem of quantum message identification (intro-
duced by Winter in [17]) can be thought of as a quan-
tum generalization of the problem of testing whether two
bit strings are equal. Alice and Bob get descriptions of
D-dimensional pure states τ = |φ〉〈φ| and π = |θ〉〈θ|, re-
spectively. The goal is for Bob to output a bit that equals
1 with probability close to tr(τπ), which we think of pri-
marily as guessing whether τ and π are approximately
equal or approximately orthogonal. The problem would
be trivial if Alice could send Bob the state τ , but instead
she is restricted to transmitting only a d-dimensional sys-
tem. (Winter considered a more general setting in which
the parties can also use entanglement and/or shared or
private randomness.)

Alice can use a channel T : A1 → A2 to send quantum
states to Bob. In quantum message identification, Bob
needs to decide (up to some error) whether or not τ ≈
π. The map E : τ 7→ E(π) ∈ A⊗n1 describes Alice’s
encoding of her state π before she uses the channel T n-
times to send her encoded state to Bob. Upon receiving
T⊗n

(
E(π)

)
, Bob applies a binary measurement (Dτ , I −

Dτ ) to decide whether or not he should reject that τ ≈ π.
Hence, D maps τ to a POVM element, i.e., 0 ≤ Dτ ≤ I.
The maps (E ,D) provide an (n, λ)-quantum-ID code [17]
if

∀π, τ
∣∣tr(πτ)− tr

(
T⊗n

(
E(π)

)
Dτ
)∣∣ ≤ λ/2. (57)

Let now T = id : Cd → Cd be the identity channel and
therefore, fix n = 1. Given d and λ, how large can D (i.e.,
the dimension of the message space) be? The following
Theorem is the main result of [17].

Theorem 11 (Proposition 17 in [17]). For 0 < λ < 1,
there exists on Cd a quantum-ID code of error λ such

that D =
⌊
d2 (λ/100)4

4 log(100/λ)

⌋
.

Equation (57) can be reinterpreted as the task to find
mappings E and D to “compress” quantum states and
rank-1 measurements such that the inner products be-
tween states and measurements are preserved approxi-
mately. This observation provides the link between the
study of quantum message identification and the com-
pression of quantum models. On a technical level, the
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results from [17] and our results differ in two regards.
Firstly, Theorem 11 does not take into account situations
where both Alice and Bob get mixed quantum states as
inputs. These situations are covered by our considera-
tions. Secondly, the definition in (57) demands approxi-
mate preservation of the inner product between all pos-
sible pure states whereas we consider finite families of
states and measurements. For finite sets we get expo-
nential instead of quadratic compression. For example in
case of pure quantum messages, Alice and Bob agree on
a family of pure quantum messages F = {|ψj〉〈ψj |}j ⊆
CD×D. Then, Alice gets π ∈ F and Bob gets τ ∈ F . Due
to the purity of π and τ , the rank constraints in (40) are
not a bottleneck. Thus, we can compress into a Hilbert
space with dimension O

(
log(|F|)/ε2

)
. The compression

error is controlled by (42).

V. COMPRESSION OF A POVM WITH
EXPONENTIALLY DECAYING SPECTRUM

The previous discussion assumed that with the excep-
tion of a single POVM element per measurement, all
POVM elements have small rank. This constraint might
be unnatural when we are asking for the compression of
experimental states and measurements. It is more nat-
ural to expect that experimental measurements are full
rank with thin spectral tails. The purpose of this sec-
tion is to go beyond the strict low-rank assumption by
assuming instead that the spectrum admits an exponen-
tially decaying upper bound. The main result of this
section is a proof of Theorem 4.

Theorem 4 (restatement). Let ρx, Eyz and J be as

in Theorem 3. Denote by
(
ε

(y)
n

)
n

the spectrum (ordered

descendingly) of
∑Z−1
z=1 Eyz. To describe potentially thin

spectral tails we assume that for some j∗, b > 0 and for
all j > 0,

εj∗+j ≤ e−bj . (58)

Let ε ∈ (0, 1/2] and fix d ∈ N such that

d ≥ 128

ε2
ln(4JD) (59)

d ≥ 128

ε2

(
j∗ +

1

b
ln

8

ε

)
(60)

Then, there exist d-dimensional quantum states ρ′x and

d-dimensional POVMs
(
E′yz

)Z
z=1

with the same approx-
imation promises as Theorem 3. Again, the compressed
quantum model

(
ρ′x
)
x
,
(
E′yz

)
yz

can be computed in ran-

domized polynomial time in X,Y, Z and D.

Proof. We will use the same compression scheme as in
previous sections. As with Theorem 3, we use Corol-
lary 6 to argue that the ε-JL property (i.e. J ) holds

with probability ≥ 1− 4J2D2e−
ε2

8 d.

We will also recall the same definition of Ey from (38),
and attempt to prove that it holds with high probability
for each y. To this end, fix a particular choice of y and
set E := I − EyZ . Let the spectral decomposition of E
be

E =

rank(E)∑
j=1

εj |εj〉〈εj |,

with ε1 ≥ ε2 ≥ . . .. By our assumption in (58)), after
the first j∗ eigenvalues, the remaining eigenvalues decay
exponentially. Specifically εj∗+j ≤ e−bj .

Previously we used the low rank of the original POVM
elements to control the fluctuations in the spectrum of
the compressed POVM elements. Now our POVM ele-
ments will in general be full rank. Moreover, we cannot
simply divide them into a low-rank piece and a low-norm
piece, since in the worst case ‖ΠEΠ‖ can be much large
than ‖E‖. Instead we split the exponentially decaying
part of E into components each of rank

r :=
1

b
ln

8

ε
. (61)

(We will see later the reason for this choice.)

E =
∑
i≥0

E(i) (62)

E(0) =
∑

j≤j∗+r

εj |εj〉 〈εj | (63)

E(i) =
∑

j∈j∗+ri+[r]

εj |εj〉 〈εj | for i > 0, (64)

where j∗ + ri+ [r] denotes the set {j∗ + ri+ 1, . . . , j∗ +
ri+ r}.

We will control the norm ‖ΠEΠ†‖ by bounding each
block separately

‖ΠEΠ†‖ ≤
∑
i≥0

‖ΠE(i)Π†‖ (65)

Now combining (60) and (61) we have

d ≥ 128

ε2
(j∗ + r). (66)

By Lemma 9,

P
[
‖ΠE(0)Π‖ ≥ 1 + ε/2

]
≤ de−dε

2/128. (67)

We will complete the proof by arguing that the re-
maining terms in (65) have norm ≤ ε/2 with high
probability. Using the operator inequality E(i) ≤
e−bri

∑
j∈j∗+ri+[r] |εj〉 〈εj |, we have∥∥∥∥∥∥

∑
i≥1

E(i)

∥∥∥∥∥∥ ≤
∑
i≥1

e−bri

∥∥∥∥∥∥Π
∑

j∈j∗+ri+[r]

|εj〉 〈εj |Π†
∥∥∥∥∥∥ .

=:
∑
i≥1

e−bri
∥∥∥GiG†i∥∥∥ =: X

(68)
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In the second line, we have defined complex d × r-
dimensional matrices Gi which are i.i.d. and each com-
prised of i.i.d. complex Gaussians with variance 1/d, i.e.
as in Theorem 8. Define

X̄ =
e−br

1− e−br
(1 +

√
r/d)2 (69)

Now we bound the moment-generating function of X (as-
suming t ≤ d/2) by

E[etX ] =
∏
i≥1

E[exp(te−bri‖GiG†i‖]

≤
∏
i≥1

E[exp(t‖GiG†i‖]
e−bri

≤
∏
i≥1

[
d exp(t(1 +

√
r/d)2 +

t2

d
(1 + r/d))

]e−bri

=

[
d exp(t(1 +

√
r/d)2 +

t2

d
(1 + r/d))

] e−br

1−e−br

= etX̄d
e−br

1−e−br exp

(
t2

d
(1 + r/d)

e−br

1− e−br

)
We have used here first the independence of each Gi,
then the bound E[xα] ≤ E[x]α for x ≥ 0, 0 ≤ α ≤ 1, then
Theorem 8 and the definition of X̄. From (61) we have

e−br = ε/8 and thus e−br

1−e−br ≤ ε/4. Using also (66) we

have (1+r/d) e−br

1−e−br ≤ ε/4 and X̄ ≤ ε/4. Now we choose

t = d/2 and use Markov’s inequality to bound

P
[
X ≥ X̄ +

ε

4

]
≤ E [exp(tX)] e−t(X̄+ ε

4 )

≤ dε/4 exp

(
tX̄ +

t2

d

ε

4

)
e−t(X̄+ ε

4 )

≤ dε/4 exp[−dε/16]

= exp[−dε/20].

Since X̄ ≤ ε/4 we conclude that∥∥∥∥∥∥
∑
i≥1

E(i)

∥∥∥∥∥∥ ≤ ε/2, (70)

with probability ≥ 1 − exp[−dε/20] ≥ 1 −
d exp[−dε2/128]. By the union bound, both (70) and
‖ΠE(0)Π†‖ ≤ 1 + ε/2 hold with probability

≥ 1− 2d exp[−dε2/128] ≥ 1− 2d

4JD
. (71)

This lower bounds the probability of a single Ey holding.
By the union bound, we have

P
[
J ∪

⋃
y∈Y
Ey
]
≥ 1− 4J2D2e−d

ε2

8 − 2dY

4JD
> 0. (72)

The rest of the proof is the same as in Theorem 3.

VI. CONCLUSION

Nonnegative matrices D ∈ RX×Y Z can be described in
terms of positive semidefinite factorizations or, in some
cases, in terms of quantum models. The number of de-
grees of freedom in both of these models is a function of
their dimension D. In practice it is often not necessary
to describe D in terms of an exact psd or quantum fac-
torization but it is sufficient to describe some matrix D′
with ‖D − D′‖∞ ≤ δ. It is then natural to ask for the
minimal dimension of such approximate factorizations of
D.

Assume Ai and Bj constitute a D-dimensional psd fac-
torization of D. In this paper we showed that in ran-
domized polynomial time we can find d-dimensional psd
matrices A′i and B′j such that∣∣Di,j − tr(A′iB

′
j)
∣∣ ≤ 192ε tr(Ai)tr(Bj)

d =
⌈32

ε2
ln
(
2JD

)⌉ (73)

where J = X + Y Z (cf. Theorem 2). Hence, psd fac-
torizations with bounded trace norm admit exponential
compression.

Quantum models are psd factorizations with addi-
tional normalization constraints. These normalization
constraints can affect compressibility dramatically. Con-
sider for instance D = I ∈ RD×D with the property
Dij = tr

(
|i〉〈i||j〉〈j|

)
. This factorization is both psd and

quantum (Y = 1; E1z = |z〉〈z|). As a psd factoriza-
tion, it admits exponential compression. However, re-
garded as a quantum factorization, every δ-approximate,
d-dimensional quantum factorization of D satisfies

d ≥ D − Zδ = (1− δ)D.

This is an application of the lower bound derived in sec-
tion II (cf. Theorem 1). Aiming for the compression of
quantum models, this observation might seem discourag-
ing.

However, this lower bound from Theorem 1 only pre-
vents compression below Z. It thus remains to investi-
gate compressibility of quantum models with Z = O(1)
in D. Introducing a compression scheme which runs in
randomized polynomial time in X,Y and Z, we showed
(cf. Theorem 3) that there exist d-dimensional states ρ′x
and POVMs E′y with approximation promises analogous
to (73) and

d = max
{16

ε2
ln(4JD),

32

ε2
rank

(Z−1∑
z=1

Eyz

)}
. (74)

Note that this compression scheme thus almost achieves

the lower bound if rank
(∑Z−1

z=1 Eyz
)
∼ Z.

Equation (74) is only meaningful if the relevant mea-
surements are low rank. Experimental measurements are
however expected to only be approximately low rank. To
cover these scenarios we derived a version of Theorem 3
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which can handle measurements that are only approxi-
mately low rank in the sense that their spectrum decays
exponentially (cf. Theorem 4).

In this paper we only started the exploration of appli-
cations of these results. We briefly commented on their
implications in the fields quantum tomography, dimen-
sion witnessing, one-way quantum communication com-
plexity and quantum message identification. In particu-
lar our results imply that

• high-dimensional models whose measurements are
low rank and

• low-dimensional models

are equivalent from an operational perspective if the
number of outcomes per measurement is small.

On a less technical and more philosophical side,
our results open up a path towards demystification
of the apparent miracle that our inherently complex,
high-dimensional world sometimes admits simple, low-
dimensional descriptions which form the basis of sci-
ence. Since our compression schemes are essentially just

random projections, these low-dimensional descriptions
can potentially be regarded as random projections. If
that is the case then it should not be surprising that
simple, effective, low-dimensional models can be found
if the measurements data stems from few-outcome and
sharp/clean measurements, i.e., measurements which are
approximately low rank.
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witnesses and quantum state discrimination. Physical
Review Letters, 110(15):150501, 2013.

[4] M. Dall Arno, E. Passaro, R. Gallego, and A. Aćın.
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