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Abstract—A crucial challenge in robotics is achieving reliable
results in spite of sensing and control uncertainty. In this work,
we explore the conformant planning approach to robot manipu-
lation. In particular, we tackle the problem of pushing multiple
objects simultaneously to achieve a specified arrangement without
external sensing. Conformant planning is a belief-state planning
problem. A belief state is the set of all possible states of the world,
and the goal is to find a sequence of actions that will bring an
initial belief state to a goal belief state. To do forward belief-state
planning, we created a deterministic belief-state transition model
from supervised learning based on off-line physics simulations.
We demonstrate the success of this approach in simulations and
physical robot experiments.

I. INTRODUCTION

Assembly of multi-part structures is a crucial application for
robots and remains a significant challenge. The fundamental
goal in an assembly problem is to achieve a set of relative
position constraints among a set of parts; in general, these
constraints require contact. These contacts are difficult or
impossible to perceive visually and difficult or impossible to
achieve via open-loop positioning actions.

A key strategy for robustly constructing assemblies is to use
actions, such as pushing and compliant motions, that achieve
desired contact relationships between objects by exploiting the
task mechanics. For example, the robot can achieve contact
between two object faces by pushing one up against the other,
or achieve an insertion by using a remote-center compliance
strategy. These actions have a tendency to act as “funnels,” [16,
14] which can map a large set of possible initial configurations
into a more compact set.

In general, the result of these actions is non-deterministic,
depending on the actual (unobserved) initial state of the world
and (unobserved) properties of the robot and objects. Given
this setting, we are faced with the question of how to plan
sequences of actions that can achieve a desired goal state
without the ability to sense the precise outcome of each action.
We frame this problem as one of conformant planning: given
a set of possible initial object configurations, a set of actions
with non-deterministic outcomes, a set of possible initial object
configurations, and a set of goal configurations, the objective
is to find a sequence of actions that is guaranteed to drive the
objects into a configuration satisfying the goal.

The problem of conformant planning can be seen as a search
through a space of belief states, which are sets of possible
configurations of the objects in the assembly. Each primitive
action is modeled using a transition function that maps an
initial belief state into a resulting belief state; the resulting
belief state is the union of the possible configurations resulting

Fig. 1. Robust execution of 7 block assembly on a real robot; results shown
for 1000 noisy simulated executions and 5 executions on a real robot.

from applying that action primitive to each configuration in the
initial belief state.

For all but the simplest primitive actions in the most
ideal circumstances, it is very difficult to directly model
this transition function, which may be affected by detailed
physical properties of the objects and robot in question. For
these reasons, we use machine-learning methods to acquire
belief-space transition models from simulations. Instead of
attempting to learn action transitions for individual objects
or sets of objects and aggregating these to derive a belief-
state transition function, we learn transitions for the belief state
of individual objects, given local context. We then compose
the overall belief state transition from those of the individual
objects.

Our focus in this paper is developing an approach to learning
belief-space transition models. Although we demonstrate the
learned model in the context of conformant planning, with
no external sensing, it could also be used to implement a
belief-space replanning strategy [21] that would incorporate
intermediate sensing. The conformant setting offers a simpler,
cleaner framework for evaluating the effectiveness of the
model.

In this paper, we begin by describing a very general class
of conformant assembly planning problems and outlining a
generic search-based solution strategy for them. We then
describe a particular instance of this problem class, in which
the robot pushes objects resting on a table into a specified con-
figuration, as shown in Figure 1. This task requires interaction
between the robot and the pushed objects and also among



multiple objects. We present methods for learning the com-
positional transition model from a physics-based simulation.
We finish by describing experiments and on both simulated
and physical robots, which demonstrate effective planning and
execution for assemblies of up to nine objects.

Related work A key challenge in the “exploit task me-
chanics” approach to manipulation is to understand the task
mechanics well enough to be able to choose actions to
achieve the desired outcomes. A number of operations, notably
pushing, have been the subject of extensive study, and analytic
models have been derived for the task mechanics; Mason [17]
provides a helpful overview. In many cases, however, the
outcomes of actions depend on physical properties that we do
not have access to, such as pressure distributions or frictional
coefficients. Nevertheless, the understanding of task mechanics
can in some cases be exploited to plan robust manipulation.
For example, Lynch and Mason [15] showed how to exploit
multiple contacts to produce stable pushing trajectories and
Dogar and Srinivasa [3] showed how to reliably funnel a range
of initial locations of an object with known shape into a target
location in the hand.

Recently, there have been a number of examples of
“physics-based manipulation,” which exploit the availability of
physics simulation engines, originally developed for computer
games, to predict the effect of actions in situations where
analytic methods would be cumbersome at best. Most relevant
to our work is the work on rearrangement planning [8], which
tackles pushing an object to a target location in the presence
of clutter, objects that are allowed to be pushed out of the
way. Planning these operations relies on being able to predict,
using physics simulations, the motion of multiple interacting
objects being pushed by the robot. Related work on grasping
through clutter also relies on such simulations [2, 9]. Note
that this work is generally focused on placing or grasping a
single-object, even though several objects (clutter) will need
to be moved in the process; it does not address the goal of
achieving a final arrangement of multiple objects.

An alternative to using analytical models or on-line simu-
lation for physics-based planning is to learn compact models
from experience (real or simulated). In the observable case,
where the state of the world after an action can be determined,
this is a simple regression problem: given many observations
of (state, action, next state) learn a function to predict the
next state given (state, action). Given such a learned function,
planning proceeds as before. A number of instances of this
approach exist [22, 4, 18]. It is also possible to try to learn
a policy directly and bypass planning; for example, Laskey et
al. [12] learn a policy for grasping in clutter. However, such
learned policies tend not to generalize as well as learning a
model and then planning.

The work described above typically assumes that the initial
state is known and the actions are reliable. In the presence
of uncertainty in the initial placements of objects or in the
outcome of the actions, we are interested in finding actions,
such as pushing and compliant motions, that reliably achieve
the goal state in spite of this uncertainty and without as-

suming the availability of additional observations. This class
of problems is known as conformant planning; it has been
explored in robotics for planning compliant motions [14] and
sequences of tray tilting operations [5], and, more recently, for
rearrangement planning [10, 7].

More broadly, the notion of conformant planning has been
explored in the AI community, starting with Kushmerick et
al. [11] who addressed it within the framework of probabilistic
planning and Goldman and Boddy [6] who used expressions in
a logic of knowledge to characterize belief states. Early work
from theoretical computer science [19] shows that finding a
finite-horizon optimal policy for a completely unobservable
MDP is NP-complete, making this class of problems more
efficient to solve than POMDPs in general. Yu et al. [23] find
that conformant planning is an effective strategy for a multi-
robot “tag” domain.

In this paper we address a problem that is related to the
physics-based rearrangement planning problem of [8, 10] but
is substantially different; in particular, it requires assembling
a number of objects into a specified pattern. A sequence of
distinct trajectories, some placing, some pushing, must be
planned to achieve the goal. Our approach involves learning
a transition model for planning, but we learn a model for
transitions in the belief-space, rather than for transitions in
the underlying state space.

II. CONFORMANT ASSEMBLY PLANNING

A conformant assembly planning problem is specified by
(Ω, CF , AΩ, Am, T , G), where
• Ω is a set of n known rigid objects;
• CF is a set of collision-free complete configurations of all
n objects, a subset of the whole configuration space C;
we additionally define CO, where O ⊆ Ω, to be the space
of collision-free configurations of the subset of objects O
(assuming the objects in Ω \O are not present).

• for each o ∈ Ω, Ao is a set of actions that introduce
object o into the assembly; we let AΩ = ∪o∈ΩAo;

• Am is a set of actions that manipulate (change the
configurations) of some or all objects currently in the
assembly;

• for each o ∈ Ω, each a ∈ Ao, and each subset of existing
objects O ⊆ Ω \ {o}, τa,o,O : CO → P(CO∪{o}) is a
transition function characterizing the addition of object
o to the assembly currently consisting of objects in O
by mapping an initial configuration in CO to a set of
configurations that is a subset of CO∪{o} (P denotes the
powerset operator); for each a ∈ Am and O ⊆ Ω, τa,O :
CO → P(CO) is a transition function characterizing the
effects of manipulation action a on objects in the current
assembly; let T be the union of these τa,o,O and τa,O;

• G ⊂ CF is the set of configurations that are successful
assemblies.

The actions in AΩ add a new object to the assembly (or,
for example, place it on a surface near other elements of
the assembly). The actions in Am can be any sort of feed-
back strategy (for example, position, force, or impedance



controllers) that control the robot for some period of time and
are guaranteed to terminate. In the most general case, these
actions may affect the configurations of all of the objects in
the assembly.

Our approach is to convert this problem into a for-
ward search in belief space; a belief space (or information
space [13]) is a space of elements that characterize the robot’s
information or uncertainty about its domain. Elements in a be-
lief space are typically subsets of, or probability distributions
over, the underlying world state space. In this work, we will
let the belief space B = P(CF ), that is, the set of all subsets of
CF , and BO = P(CO) be the restriction to subset of objects
O. The methods described here could be easily modified to
work with a distributional definition of belief, but we restrict
the discussion to subsets for clarity.

We have defined the transition models τ as mappings from
a single configuration to a set of configurations; in some cases
it may be more convenient to specify τ ′ : B → B, mapping
a set of configurations into the set of possible resulting
configurations; such a model can be directly constructed from
τ as:

τ ′(b) =
⋃
c∈b

τ(c) .

In a continuous configuration space, it will be impossible
to finitely represent all possible subsets of CF , and so given
any concrete domain we will have to make a choice about
how to represent elements of B and therefore which subset
will be usable during the search. Let B̂ be a set of compactly
representable elements of B; then we can define a transition
model τ̂ : B̂ → B̂, such that τ̂(b) is a smallest element b̂ ∈ B̂
such that b ⊆ b̂. This is a conservative approximation to the
original τ ′ in that it generates belief states that are correct
(they contain all possible true configurations) but may not be
as small as possible.

The size of the configuration space grows exponentially with
the number of objects in the assembly, and the size of the belief
space grows exponentially with the size of the configuration
space (in the discrete case). In order to fight this curse of
dimensionality it is generally necessary to use a factored
representation of belief states. If we think of a configuration
c = 〈c1, . . . , cn〉, where ci ∈ Ci is the configuration of
object i, then C = C1 × . . . × Cn is the Cartesian product of
the configuration spaces of the individual objects. We cannot
generally represent CF as a Cartesian product, however, due
to collisions between the objects.

This decomposition leads us to the idea of representing
the belief space as the product of independent beliefs about
the configuration of each individual object, so that B̂ =
B̂1×. . .×B̂n, where B̂i ⊂ P(Ci). Representing sets of possible
configurations of each object rather than sets of possible
complete configurations is much more compact, although it
is not as expressive. For example, it is necessary to augment
such a factored representation with a constraint that the entire
configuration must be collision free, so we will in general
define

B̂ = (B̂1 × . . .× B̂n) ∩ CF .

This structuring also offers opportunities for compact rep-
resentation of the transition functions; in most cases, there is
a strong principle of locality, so that only some dimensions
of the belief are changed by taking an action. Given a belief
state 〈b̂1, . . . , b̂n〉 and an action τa,O, there will only be a set
O∗ ⊆ O of objects that could possibly be affected by the
action, so

τa,O(b̂) = 〈f(b̂1), . . . , f(b̂n)〉
where f(b̂i) = τa,i(b̂i) if i ∈ O∗ and f(b̂i) = b̂i otherwise.

The fewer objects that are potentially affected by any given
action, the simpler the transition model is to apply. A transition
model may be highly local when many of the objects are not
yet placed near the objects being manipulated or when objects
are already largely in a rigid formation (against one another
or fixed objects in the world) so they do not move when they
are contacted by other objects. It will generally be difficult to
hand-specify the transition models sufficiently accurately; in
our example implementation we learned the τ̂a,i models from
simulated data.

Given a conformant assembly planning problem specifica-
tion (Ω, CF , AΩ, Am, T , G) and a belief-state representation
B̂, we can straightforwardly use the A∗ (or other forward
search) algorithm to solve it, if we restrict the action sets
AΩ and Am to be finite. There may be sample-based search
strategies that are effective in infinite action spaces but we do
not consider them here. The search problem given to A∗ is:
• Initial state: the belief state containing a single element,

which is the empty configuration {〈 〉};
• Successor function:

succ(b̂) = {τ̂a,O(b̂) | a ∈ Am} ∪
{τ̂a,o,O(b̂) | o ∈ Ω \O, a ∈ Ao}

where b̂ contains the set of objects O;
• Goal test: g(b̂) = b̂ ⊆ G.
We illustrate the general class of conformant assembly

planning problems with two related example domains, im-
plemented in simulation and on a real robot, both of which
use a manipulator arm to place and push objects into planar
arrangements.

III. ASSEMBLY BY PUSHING

In this section, we formalize two related concrete robotics
problems as instances of conformant assembly planning. The
goal is to create planar arrangements of objects in contact with
one another and with fixed obstacles using a combination of
“gross” and “fine” motions [14]. The gross motions use a PR2
robot hand to place objects near their target poses, but there
is considerable error in object placement due to control and
calibration error in the arm and to the objects often sticking
slightly to the fingers when they are released. In addition,
the robot’s fingers are large and so objects cannot be placed
directly next to other objects. The fine motions use the PR2
robot hand, holding a paddle, to push objects up against one
another and the fixed obstacles, effectively aligning them and



Fig. 2. Execution of a sample 8-step plan; in each pair, the left figure shows the results of 1000 simulations of the plan (gray blocks) as well as the predicted
workspace bounding boxes from the transition model (in red and blue) and the right figure shows execution on the real robot.

moving them into place. In the first version of this problem,
the fine motions only allow the paddle to contact a single-
object; in the second version, we allow multiple objects to be
pushed simultaneously with the paddle.

We can describe these problems as instances of the general
conformant assembly planning problem as follows:

• The objects Ω are wooden cubes, 1 inch on a side, that can
be placed on a planar surface, which has fixed obstacles
in a “u” shape as shown in figure 1.

• The configuration space of each individual object Ci
consists of its position and orientation in SO2, bounded
by the workspace area; the free configuration space CF of
the whole system is the product of the Ci together with
the constraint that the objects are not in collision with
each other or the walls.

• The actions AΩ add an object to the assembly by using a
robot gripper to place an object into free space. Objects
may be introduced into the assembly by placing them
at a selected (x, y) position; the robot attempts to place
the object so that it is rotationally aligned with the
workspace, but there is significant error in the calibration,
resulting in errors that are well bounded by ±0.2 in in
x and y and ±15◦ in θ; in our current implementation
we consider 9 possible values for (x, y) corresponding to
constant offsets from the object’s target position (xg, yg)
in the goal.

• The actions Am manipulate one or more objects already
in the assembly through push actions, in which the robot
holds a 2.5-inch paddle, places it at pose (xp, yp, θp) just
above the surface of the table and attempts to move in
the direction orthogonal to the face of the paddle; the
controller has a low gain so that if it encounters obstacles
during the motion they remain on the table and are pushed
until they can move no further. In our implementation,
the pushing angle θ is selected to be either 0 or π/2
(down or to the right) because the set of goals we consider
is limited to arrangements of objects that are supported
by the bottom and right walls. Our search strategy is
currently limited to a discrete set of action choices, but
it is important to choose these discrete values in a state-
dependent way.

• The transition models τ are complex and will be the

subject of section III-A.
• The goal test G is specified in terms of a workspace

bounding-box 〈xg, yg,∆xg,∆yg, 〉 for each object and is
satisfied if each object can be guaranteed to be inside its
bounding box.

The representable belief space for each object i,
B̂i, is a “box” in SO2, represented with parameters
〈x, y, θ,∆x,∆y,∆θ〉 specifying the center and dimensions of
the box; typically θ = 0. We will often denote the center
of a belief box by q = 〈x, y, θ〉 and its dimensions (the
“uncertainty”) as ∆q = 〈∆x,∆y,∆θ〉. The representation of
beliefs as boxes in the configuration space was chosen for
compactness and computational efficiency, but it is clearly
significantly restricted in the belief states it can represent. The
complete belief space is the product of B̂i for each object,
together with the non-collision constraint.

We will frequently also make use of a conservative bounding
box in the workspace 〈x, y,∆wx,∆wy〉, which can be com-
puted from the configuration-space belief, where for a square
block of dimension 2r, we define

BB(〈x, y, θ,∆x,∆y,∆θ〉) =
〈x, y, r + ∆x+ r sin(θ + ∆θ), r + ∆y + r sin(θ + ∆θ)〉
A belief state b satisfies the goal G if BB(b) is entirely

contained in 〈xg, yg,∆xg,∆yg, 〉.
The parameters of possible push actions are selected de-

pending on the current belief state. So, for a downward push,
given a current belief state b, for each object i currently
in the assembly, with workspace bounding box BB(bi) =
(x, y,∆y,∆x), we let θp = 0, xp = x + ∆x + ε and we
consider several possible yP values, corresponding to y + δ
for δ ∈ {−1.0,−0.5, 0.0, 0.5, 1.0}. For a rightward push,
θp = π/2, xp = x+ δ, and yp = y + δy + ε.

The transition model for object placement is straightfor-
ward, simply appending the belief for the object being placed
to the existing belief representation:

τ(x,y,θ),o,O(〈b1, . . . , bm〉) = 〈b1, . . . , bm, 〈x, y, θ, dx, dy, dθ〉〉
where m = |O| and (dx, dy, dθ) are bounds on the error in
the placement operation.

The transition model for push actions is significantly more
complex, both because the results of pushing a single-object



Fig. 3. Swept volumes and bounding boxes for computing contact graph.

are difficult to predict given variability in quantities such as
surface texture and force applied by the robot, and because the
robot may in general affect the state of several objects with a
single push action. We discuss transition models for pushing
in detail in the next section.

A. Structured transition model for pushing

The transition model for the push action has a structured
decomposition and a local quantitative model that is learned
from simulated data. Intuitively, the strategy is to find one
or more sequences of blocks that will be pushed up against
one another, constrained on one side by the robot paddle and
on the other side by a wall (see Figure 2). Given such a
sequence, we apply a learned quantitative local uncertainty
model to compute the final center and delta values for the
resulting object beliefs, starting from the object closest to the
wall and working back toward the paddle.

Because we are ultimately going to use this model to search
for a plan with reliable effects, it is only necessary to make
predictions for actions for which we can confidently predict
the posterior belief state. Thus, the transition model will be
partial, in some situations declining to make a prediction.
This partiality will allow us to maintain the correctness of
the planner, but may cause it to be incomplete (in the sense
that there may be problem instances for which a legal plan
exists, but our system is unable to find it.)

The first step is to determine which objects are affected
by the pushing operation. To do this, we construct a contact
graph and extract contact paths of objects that are mutually
constraining. The contact graph has a node R for the robot, a
node W for the wall, and nodes for objects that are potentially
moved by this operation. Figure 3 illustrates a belief state
and the process of determining possible contacts. It contains
6 objects, the robot paddle on the left and a wall on the right.
For each object, we draw 8 copies of the object’s shape, each
of which represents a vertex of the belief box in configuration
space; the green box is the workspace bounding box, BB,
associated with each object. Note that the bounding boxes for
objects E and F overlap; this is allowed and makes sense if
we recall the implicit non-collision constraint. Uncertainty in
the robot’s position and orientation are represented by a green
workspace bounding box.

MAKECG((x, y, θ), b):
agenda = {robot}; V = {robot}; E = { }; E′ = { }
while not EMPTY(agenda):

o = agenda.pop()
vol = sweptVol(BB(b[o]), (x, y, θ))
for o′ ∈ Ω ∪ {wall}:

if BB(b[o′]) ∩ vol 6= ∅:
if o′ 6∈ V : agenda.ADD(o′)
V.procadd(o′)
E.ADD((o, o′))

return V,E,E′

PUSHTRANS(b, (x, y, θ)):
V,E,E′ = MAKECG((x, y, θ), b)
P = MAXIMALPATHS(V,E ∪ E′)
b′ = copy(b)
maxPaddleX = None; maxBlocks = None
for p ∈ SORTEDLONGESTFIRST(P ):

if maxPaddleX == None:
maxPaddleX = wall .x − (len)(p) · d
maxBlocks = len(p)

if len(p) < maxBlocks:
firstObjB = b[p[1]]
if firstObjB .x− firstObjB .∆x > maxPaddleX :

pass // Objects sure not to be moved
else

return None // Objects moved unpredictably
if p ∩ E′ 6= ∅:

return None
for i = LEN(p)− 1 downto 1:

b′[p[i]] = PUSHTRANSOBJ(p[i− 1], p[i], p[i+ 1], b′, θ)
return b′

PUSHTRANSOBJ(b, prev , cur ,next , θ):
// Just handling case of push to right
∆x′,∆y′,∆θ′ = PREDICT(b[prev ], b[cur ], b[next ])
x′ = b[next ].x− d−∆x′/2
return (x′, b[cur ].y, 0,∆x′,∆y′,∆θ′)

Fig. 4. Pseudo code for computing the transition function on belief states
for the push (x, y, θ) action.

The procedure MAKECG shown in figure 4 outlines the
process formally. For simplicity, we just describe the case for
a push toward the right; for other axis-aligned pushes it is
essentially the same, up to changing signs and/or swapping x
and y coordinates.

In the example of figure 3, execution would go as follows:

• We begin with the robot and compute the volume of the
workspace it would sweep through if it was able to move
all the way to the wall; this is shown in light red in the
figure.

• We add each object whose bounding box overlaps this
swept volume to the graph, and add an edge from the
robot node to the object to the set E. In this case, we
add edges to objects A, through F .

• Now, we take each of these objects in turn, computing
their swept volume and adding arcs to objects they will
contact.

• The swept volume for A is shown in green. It overlaps
with objects B and C.

• The swept volume for B is shown in blue. It overlaps
with object C.

• Similar processing is done on D, E, and F .



Fig. 5. Example contact graph; for clarity some arcs are omitted: nodes R
and W are connected to all other nodes.

Figure 5 shows the resulting contact graph.
The next step is to find maximal contact paths between

nodes R and W . A contact path p is maximal if there is no
other path p′ between R and W such that p ⊂ p′. These paths
represent “trains” of objects that will end up nearly in contact
with one another, pushed between the hand and the wall. In
this example, there are two maximal paths: RABCW and
RDEFW . If the paths are not of the same length, then the
prediction process also fails. Consider the case in which object
D is not present in this example; the robot hand will compress
objects A, B, and C against the wall but leave E and F
unaffected. However, if D were present, but E and/or F were
missing, then D would be pushed, but without a constraint
on its right, we are unable to reliably predict its resulting
position and uncertainty; in this case, the prediction model
returns None, indicating that this operation cannot be used to
construct a plan.

For each valid contact path, we use a local predictive
model compositionally to compute the posterior belief for each
object. The predictive model takes as input the belief states of
three objects that occur sequentially in the contact path. In
the single-object pushing model, we disallow any operations
in which there is more than one path of influence between the
robot and the wall.

B. Learning a quantitative model for pushing

We will work with a factored version of τ ′, which maps the
belief state of an object and its neighbors on either side to its
resulting belief state. In the transition model for a push to the
right, we begin by predicting the uncertainties in the resulting
object position, using a function PREDICT, which is learned
from data. It has inputs and outputs in the form:

∆q′ = 〈∆x′,∆y′,∆θ′〉 = PREDICT(b[prev ], b[cur ], b[next ]) ,

where the inputs to the procedure are the current beliefs about
three sequential objects in a pushing sequence. We assume
that the center of the resulting uncertainty box has the same
y coordinate as before and that the median rotation is 0. The
median x coordinate is computed by finding the median x
coordinate of the object to its right, subtracting the dimension
of an object, d, and then subtracting the resulting x uncertainty,
∆x′/2.

The problem of learning the PREDICT function can be
treated as a supervised regression problem with three output
dimensions. Again, for simplicity of exposition, we limit our
attention to the push-right action. The inputs to the PREDICT
procedure are (qp,∆qp, qc,∆qc, qn,∆qn). We compute from

these inputs a feature vector φ:

〈∆qp,∆qc,∆qn, qp.y − qc.y, qn.y − qc.y, ct〉
For a fixed object, such as a wall, which can only appear as the
last object, we assume ∆qn = (0, 0, 0), and that qn.y−qc.y =
0. The last feature in this vector, ct , encodes the types of the
objects involved in this contact; it can take on the values in
{row , roo, ooo, oow} where r stands for robot , o for object
and w .

Because generating training data on the real robot would
be prohibitively costly in time, we generate training data
using a Box2D simulation [1]. We construct a data set of
1800 examples, using the following process to construct each
example:
• An initial belief state b is randomly constructed, with

∆x and ∆y values drawn uniformly in the interval
[0.0, 0.4] inches and ∆θ values drawn uniformly in the
interval [0, 15]◦; b may contain 1, 2, or 3 blocks.

• For 1000 iterations, an initial state is drawn uniformly
from b and constructed in Box2D, with the robot paddle
offset to the left and a fixed wall, parallel to the paddle,
to the right of all the objects. The paddle’s y coordinate is
randomly varied to generate a variety of offset values. The
static and kinetic friction coefficients for the simulation of
robot, table, and objects are drawn uniformly in the range
[0.25, 0.55]. The robot’s paddle is moved in the desired
direction using a position controller to a distant set-point
with gains of 1.0 for position and angular error; the
controller is run for 50 simulation steps with ∆t = 0.01 s.
The final pose of the each object (xi, yi, θi), together with
its contact type, is recorded.

• The resulting belief state dimensions are computed as:

〈xmax −min
i
xi,max

i
yi −min

i
yi,max

i
θi −min

i
θi〉

where xmax is the maximum possible x coordinate for
this object, if all the objects to its right were perfectly
aligned and as far to the right as possible.

This data is then used to train a multi-output random-
forest regressor using the Scikit-Learn toolkit [20] using hyper-
parameters that were found using a grid search with 8-fold
cross-validation. We used 90% of the data for training and
hyper-parameter optimization and held out 10% for final
evaluation, in which we found a root-mean-squared test error
of 0.509 in ∆x, 0.079 in ∆y and 2.799 in ∆θ.

C. Search

In section II we described a generic forward-search problem
that could be solved using A∗ and in the previous section we
specified the necessary state space and successor function for
our example assembly-by-pushing domain. We assign a cost
of 1 to every action.

In order to make the A∗ search process tractable, we spec-
ify two additional components: a dominance-based pruning
method and a search heuristic.



We begin by observing that some belief states are contained
by others: given two belief states, b and b′, we say that b
dominates b′ if and only if:
• b and b′ are both defined on the same set of objects O;
• for all o ∈ O: the configuration space cube b[o] is a subset

of the configuration space cube b′[o], that is b[o] ⊆ b′[o].
Intuitively, if b dominates b′, then b may be a more useful
state in the search: the objects have overlapping possible states
and less uncertainty in b than in b′. Therefore, we consider a
pruning strategy in which, during the process of A∗ search,
whenever it reaches a state b′ that is dominated by some state b
that has already been visited, then b′ is not added to the agenda.
This strategy can result in computational improvements but it
does risk pruning out correct solution paths.

In addition, we experimented with two heuristics. The first,
which is admissible, effectively acts as a binary filter on
states, assigning infinite cost to any state in which the objects
in a horizontal or vertical contact path are not in the order
specified by the goal. It is not possible, given the operations
in this space, to reach the goal from such a state. This
heuristic provides some useful search guidance but is not very
strong. We define an additional heuristic that is inadmissible
in general, but highly effective at improving the speed of the
search without much reduction in the solution quality. We
define:

H(b, g) =
∑
o∈Ω

H(BB(b[o]), g[o])

where

H(bo, go) =



2 if bo == None
2 if bo.x 6⊆ go.x and bo.y 6⊆ go.y
1 if bo.x ⊆ go.x and bo.y 6⊆ go.y
1 if bo.x 6⊆ go.x and bo.y ⊆ go.y
0 otherwise

This heuristic estimates that it will take one place action and
one push action to add a new object to the assembly and
one push per object dimension that is not currently contained
within its goal interval. It is inadmissible because it is possible
to push multiple blocks at once.

IV. RESULTS

In this section we present quantitative results of our ap-
proach in the assembly-by-pushing domain.

Planner performance We tested the planner for six assem-
blies with (1, 2, 3, 4, 7 and 9 blocks). We varied the goal
tolerances (the dimension of the goal regions) between ±0.1
inches and ±0.5 inches. The initial placement uncertainty was,
unless stated otherwise, ±0.2 inches in x and y and ±15
degrees rotation. When a plan was obtained, we simulated
it 1000 times. We found that whenever a plan was found,
all the simulations satisfied the goal. However, for tight goal
conditions, especially for larger assemblies, the search can
exceed our limit of 5000 search nodes. Figure 6 shows the goal
tolerances for which plans were found within the search limit;
note that the vertical axis shows decreasing goal tolerance. The

single-object-push setting requires longer plans and therefore
fails to find plans for the larger assemblies within the search
budget.

Fig. 6. Range of goal tolerances for plans found within 5000 node limit.

The search performance, as measured by number of search
nodes expanded, is affected primarily by the quality of the
heuristic used. In this experiment, the search node limit was
50,000. In the table in Figure 7, we see that using the
“inadmissible” heuristic cuts the number of expanded nodes
substantially, at the cost of longer plans. The domination test
has a small beneficial effect given this heuristic, but a very
large effect when a weaker or no heuristic is used.

Fig. 7. Search Results Table.

The effect of uncertainty The learned transition function
captures the “funnelling” behavior that is key to the success
of the conformant plans. Figure 8 illustrates the reduction
in uncertainty from pushing a block against the wall. Note
that while the resulting uncertainty in x and θ are relatively
insensitive to the magnitude of the initial uncertainty, the
resulting uncertainty in the y direction is directly related to
the initial uncertainty.

In Figure 9 we see that with small uncertainty in the
place action (top row) and larger uncertainty (bottom row) we
obtain comparable tight final placements; the gray blocks show
results from 1000 simulations. Note that our learned model is
conservative and predicts larger final uncertainty (the colored
boxes) than was actually observed.

Figures 10 and 11 show the effects of goal tolerance and
initial placement uncertainty on plan length. Tighter goals
and higher initial uncertainty both increase the length of the
required plans. Once the required plans exceed a length of



(a) (b)

Fig. 8. The effect of input uncertainty on output uncertainty: these images
depict the results of 1000 physics simulations, where the initial location is
drawn in the light colored box.

(a) small initial unc. (b) final configuration

(c) large initial unc. (d) final configuration

Fig. 9. The effect of initial placement uncertainty on the resulting assemblies.

Fig. 10. The effect of multiple-push and goal tolerance on solution length.
Tight goal is ±0.15 in, loose goal is ±0.5 in.

Fig. 11. The effect of multiple-push and initial place uncertainty on solution
length. Small uncertainty is ±0.05 in, large uncertainty is ±0.2 in; angle
uncertainty is ±15 deg.

Fig. 12. The effect of varying goal tolerances on goal deviation.

around 16, the search process exceeds the allowed number of
search nodes (5000); in such cases there is no corresponding
result plotted in the graphs. Multi-push plans are generally
shorter than single-push plans. Figure 12 shows that multi-
push plans generally place the objects closer to their target
locations, as measured by the sum of the absolute deviations
in x and y. This is due to the fact that a multiple-object push
tends to move more than one object towards its goal, often
“patting” them into place.

Real robot experiments An example of a simple assembly
sequence found by the planner, as well as its execution, can be
seen in Figure 2; the accompanying video shows many more
examples.

We obtained plans for 5 different assemblies (with 2, 3, 4,
7 and 9 blocks) and executed each one on the robot 5 times.
The placement uncertainty was set at ±0.2 inches and ±15
degrees rotation; the goal tolerance was set to ±0.2 inches.
We saw one execution failure (in a 2-block assembly) during
the 25 assemblies, for a 96% success rate.

Execution failures appear to be due to initial placements out-
side of the modelled placement uncertainty bounds. Increasing
the modelled placement uncertainty could decrease this type of
failure, at the expense of increasing the planning and execution
times for the typical case. This is an unavoidable trade-off in
conformant planning that could be ameliorated by moving to
a belief-space replanning paradigm that adds some sensing,
such as the final position of the paddle after a push.

V. CONCLUSION AND FUTURE WORK

We have shown how a belief-space transition model can
be acquired from off-line physics-based simulations and used
to plan reliable planar push-assemblies in the presence of
substantial uncertainty.

We believe that this approach can be extended to a variety of
other settings, including the use of compliant motions instead
of pushing and to assembling (simple) three-dimensional parts.
We are also interested in exploring the use of the robot’s other
hand to create ad-hoc “jigs” to enable funneling actions. As we
indicated above, it should be relatively easy to add observation
actions and, under assumption of most-likely observations,
implement a belief-space replanning approach along the lines
of Platt et al. [21].
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