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Meg Byron4, Xiaochun Zhu1, Alex K Shalek5,10,6,7, Aviv Regev6,11,8,
Jeanne B Lawrence4, Eduardo M Torres1, Lihua J Zhu1,9, Oliver J Rando3,
Ingolf Bach1*

1Department of Molecular, Cell and Cancer Biology, University of Massachusetts
Medical School, Worcester, United States; 2Department of Cell Biology, College of
Medicine, Konyang University, Daejeon, Korea; 3Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, Worcester,
United States; 4Department of Cell and Developmental Biology, University of
Massachusetts Medical School, Worcester, United States; 5Department of
Chemistry, Massachusetts Institute of Technology, Cambridge, United States;
6Broad Institute of MIT and Harvard, Cambridge, United States; 7Ragon Institute of
MGH, MIT and Harvard, Cambridge, United States; 8Howard Hughes Medical
Institute, Massachusetts Institute of Technology, Cambridge, United States;
9Program in Bioinformatics and Integrative Biology, University of Massachusetts
Medical School, Worcester, United States; 10Institute for Medical Engineering and
Science, Massachusetts Institute of Technology, Cambridge, United States;
11Department of Biology, Massachusetts Institute of Technology , Cambridge,
United States

Abstract Mammalian X-linked gene expression is highly regulated as female cells contain two

and male one X chromosome (X). To adjust the X gene dosage between genders, female mouse

preimplantation embryos undergo an imprinted form of X chromosome inactivation (iXCI) that

requires both Rlim (also known as Rnf12) and the long non-coding RNA Xist. Moreover, it is

thought that gene expression from the single active X is upregulated to correct for bi-allelic

autosomal (A) gene expression. We have combined mouse genetics with RNA-seq on single mouse

embryos to investigate functions of Rlim on the temporal regulation of iXCI and Xist. Our results

reveal crucial roles of Rlim for the maintenance of high Xist RNA levels, Xist clouds and X-silencing

in female embryos at blastocyst stages, while initial Xist expression appears Rlim-independent. We

find further that X/A upregulation is initiated in early male and female preimplantation embryos.

DOI: 10.7554/eLife.19127.001

Introduction
Most mammalian cells contain two transcriptionally active copies of autosomal chromosomes but

only one active X chromosome (X). This is due to the fact that female cells inactivate one X in a pro-

cess known as X chromosome inactivation (XCI), to correct for male/female (F/M) gene dosage

imbalances caused by the presence of two X chromosomes. In addition, to adjust for X/autosomal

(X/A) imbalances arising from transcription of both autosomal copies of most genes, it is thought

that male and female cells upregulate gene expression from the single active X two-fold.

Beginning at the 4-cell stage in female mouse embryos, imprinted XCI (iXCI) exclusively silences

the paternally inherited X (Xp), and this pattern of XCI is maintained in extraembryonic trophoblast
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cells. In contrast, epiblast cells in the inner cell mass (ICM) of blastocysts that will give rise to the

embryo reactivate the Xp and undergo a random form of XCI (rXCI) around implantation (E5-E5.5)

(Disteche, 2012; Payer and Lee, 2014; Galupa and Heard, 2015). During XCI the long non-coding

RNA Xist progressively paints the X chromosome from which it is synthesized, thereby triggering

repressive histone modifications including H3K27me3 (Plath et al., 2003) and transcriptional silenc-

ing of X-linked genes (Disteche, 2012; Payer and Lee, 2014; Galupa and Heard, 2015). Xist is

required both for iXCI and rXCI (Marahrens et al., 1997; Penny et al., 1996). The X-linked gene

Rlim encodes a ubiquitin ligase (Ostendorff et al., 2002) that shuttles between the nucleus and

cytoplasm (Jiao et al., 2013) and modulates transcription via regulating nuclear multiprotein com-

plexes (Bach et al., 1999; Güngör et al., 2007). Rlim promotes the formation of Xist clouds both

during iXCI in female mice (Shin et al., 2010) and in female embryonic stem cells (ESCs) undergoing

rXCI in culture (van Bemmel et al., 2016). In mice, however, Rlim is dispensable for rXCI in epiblast

cells (Shin et al., 2014). While both Rlim and Xist play essential roles during iXCI in mice

(Marahrens et al., 1997; Shin et al., 2010), questions remain with regards to their functions on the

general kinetics of X-linked gene expression, their functional interconnection and the contribution of

maternally vs embryonically expressed RLIM for iXCI. Moreover, while evidence for X/A upregulation

was observed not only in adult mouse tissues but also in mouse ES cells and epiblast cells at blasto-

cyst stages (Deng et al., 2013, 2011, 2007), details on the developmental X upregulation are

lacking.

We have carried out RNA-seq on single mouse embryos to investigate the regulation of X-linked

gene expression during pre- and peri-implantation development by Rlim. Analyses of WT, Rlim-

knockout (KO) or Xist-KO embryos reveal that Rlim is required for maintenance of Xist clouds and

iXCI in female embryos at blastocyst stages. In addition, our data uncover that X dosage compensa-

tion via iXCI in female mice occurs concurrently with a general X/A upregulation in both male and

female preimplantation embryos. These results represent a comprehensive view on the regulation of

X-linked gene expression during early mouse embryogenesis by Rlim and Xist.

Results

Elucidation of the mouse preimplantation transcriptome by single
embryo RNA-seq
Several studies have investigated the dynamics of XCI and X-silencing in female ES cells (Lin et al.,

2007; Marks et al., 2015) or trophoblasts (Calabrese et al., 2012) using RNA-seq. To assess the

general dynamics of X-linked gene expression and iXCI in vivo, we have adapted single cell RNA-seq

technology (Shalek et al., 2013; Jaitin et al., 2014) to elucidate the pre- and peri-implantation tran-

scriptome using single mouse embryos (Sharma et al., 2016). This is a valid strategy because (1)

early embryos consist of a limited number of cell types: essentially one totipotent cell type up to E3,

and three cell types at blastocyst stages - epiblast, trophoblast and primitive endoderm cells - that

express known marker genes (2) cells of preimplantation embryos undergo iXCI that exclusively

silences the Xp and (3) in mice there is only a relatively small number of genes that escape XCI

(Yang et al., 2010; Finn et al., 2014). Thus, using RNA-seq we examined embryos at the 4- and 8-

cell stages, early and late morula (E2.5 and E3.0), and blastocyst stages (E3.5, E4.0 and E4.5), com-

paring global changes in gene expression. We also included trophoblasts isolated from blastocyst

outgrowths of cultured E4.0 embryos in our analyses. In contrast to previous studies on single cells

of preimplantation embryos that were performed in a mixed genetic background (Deng et al.,

2014), embryos were generated in a C57BL/6 background to exclude potential background influen-

ces on the general kinetics of iXCI and/or X upregulation. Moreover, because the known functions of

Rlim during mouse embryogenesis are restricted to XCI in females (Shin et al., 2010, 2014), RNA-

seq experiments were performed on WT and RlimKO embryos. Based on a mouse model allowing a

conditional KO (cKO) of the Rlim gene, we have previously generated females carrying a maternally

transmitted Sox2-Cre-mediated cKO allele and a paternally transmitted germline KO allele

(RlimcKOm/Dp-SC). These females appear healthy, fertile and lack RLIM in all somatic tissues as well as

their germline (Figure 1A,B) (Shin et al., 2014). Thus, to efficiently generate male and female germ-

line Rlim KO embryos (D/Y, D/D) and to eliminate potential influences of maternal RLIM in oocytes on

the iXCI process, all Rlim KO embryos were generated by crossing RlimcKOm/Dp-SC females with
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Figure 1. Elucidating the transcriptome of mouse pre/peri-implantation development via RNA-seq of single embryos WT and KO for Rlim. All Rlim

germline KO (D) embryos were generated by RlimcKO/D-SC x RlimD/Y crosses. Embryonic stages are indicated, troph = trophoblasts. (A, B) Lack of RLIM in

oocytes of RlimcKO/D-SC females. Immunohistochemical stainings of representative ovarian sections of adult RlimWT/WT (A) and RlimcKO/D-SC (B) females

(n = 3, each) using antibodies directed against RLIM. Scale bars, 60 mm. Boxed regions are shown in higher magnification below. Note the lack of RLIM

immunoreactivity in nuclei and pronuclei of both somatic cell types and oocytes in RlimcKO/D-SC females, respectively. (C, D) Gender determination of

embryos in RNA-seq on whole preimplantation embryos WT and KO for Rlim. As example, the distributions of reads at the 8-cell stage normalized to

autosomes of Y-linked genes (C) and Xist (D) are shown in box-plots. Note that embryos with high levels of Y-linked genes display low levels of Xist and

were therefore categorized as males, whereas those with low and high levels of Y-linked genes and Xist, respectively, were categorized as females. cpm

= counts per million mapped reads. (E) Modified from the UCSC Genome Browser: Cumulative mapped raw reads on the Rlim locus of pooled

embryos WT/WT or D/D for Rlim (females only) at all developmental stages (variable scales). Structure of the Rlim gene is shown below in blue with

boxed exon regions. Protein coding regions are indicated in thicker stroke. Arrow indicates direction of transcription. Floxed area deleted in the Rlim

cKO is indicated. Note the lack of reads in the floxed area of RlimD/D females. This was also true for male RlimD/Y embryos (data not shown). (F)

Developmental profile of relative expression of selected single genes in WT embryos. Data representing Oct4/Pou5f1 and Nanog (ES cell markers) and

Krt8 (trophoblast) were pooled from WT females and males. Rlim data were collected from WT/WT females only. Reads were normalized to those at

stage E3.5, because all of the selected genes are expected to be active at this stage.

DOI: 10.7554/eLife.19127.002

The following figure supplement is available for figure 1:

Figure 1 continued on next page
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germline KO males (RlimD/Y) (Figure 1—figure supplement 1A). RNA was prepared and barcoded

RNA-seq libraries were constructed from 187 samples that were distributed between two 96-well

plates, each with similar numbers of embryos from each stage and mating. Libraries were pooled

and sequenced to an average read depth of 2.95 million reads. This read depth lies within the range

typically obtained by using single-cell technology (Shalek et al., 2013). The gender of each embryo

was determined by assessing expression of Y-linked genes, which occurs only in male embryos, and

Xist, which is expressed only in females (Figure 1C,D). 12 samples for which gender could not be

assigned or displayed less than 280,000 total reads were removed, leaving 175 samples for further

analysis (Figure 1—figure supplement 1B; Supplementary file 1). Mapping reads from WT and KO

embryos to the Rlim locus showed that the deleted region in KO embryos was not represented

(Figure 1E; data not shown), validating both the mating strategy and the specificity of the data

obtained via whole embryo RNA-seq. Because of expected differences in expression of X-linked

genes during preimplantation development between genders and between females WT and KO for

Rlim, each library was normalized to its total autosomal gene expression rather than expression of all

genes on chromosomes. As expected, comparing Log2-transformed data of 10552 annotated genes

that are expressed at all examined developmental stages revealed no significant differences in gene

expression at the chromosome level between RlimD/Y and WT/Y males (Figure 1—figure supple-

ment 1C), consistent with the finding that male mice lacking Rlim develop normally (Shin et al.,

2010). Analyses of WT embryos (pooled male and female embryos for each stage), showed that the

developmental transcript profiles matched well with expression of epiblast markers Pou5f1 (Oct4)

(Rosner et al., 1990; Schöler et al., 1990) and Nanog (Chambers et al., 2003; Mitsui et al., 2003)

and trophoblast marker Krt8 (Troma1) (Brûlet and Jacob, 1982) (Figure 1F). The observed varia-

tions between replicates were well within margins previously observed for single cell RNA-seq tech-

nology (Jaitin et al., 2014; Shalek et al., 2013), and comparison of expression levels of these cell

markers between RlimD/D and WT/WT females suggested that the general cell type specification

events that occur at blastocyst stages were similar in embryos of both genotypes (Figure 1—figure

supplement 1D). Because Rlim is X-linked and its functions appear restricted to females (Shin et al.,

2010; Jiao et al., 2012), expression of this gene was evaluated in female WT/WT embryos only.

Rlim RNA levels decreased from the 4-cell to the 8-cell stage, possibly due to depletion of maternal

pools, then gradually increased up to E3.5, and decreased thereafter (Figure 1F). High relative levels

of Rlim were detected in trophoblasts, suggesting that the cells of the ICM are mostly responsible

for the diminished Rlim levels in E4.5 embryos, consistent with a drop in RLIM protein levels specifi-

cally in epiblast cells (Shin et al., 2014). Random subsampling of libraries to 200,000 reads per

embryo (Robinson and Storey, 2014) showed similar results (Figure 1—figure supplement 1E),

indicating that the sequencing depth was not a limiting factor in our data analyses.

Rlim is required for upregulation of Xist and maintenance of Xist clouds
in female embryos
Xist RNA levels were very low in males at all stages (Figure 2A), as expected. Much higher levels of

Xist were measured in females, although variations among replicates at each stage were high rela-

tive to those obtained for Pou5f1 (Oct4), Nanog and Krt8, likely reflecting biological variations in

individual animals in addition to the technical variability of single-embryo RNA-seq (compare

Figures 1F and 2A). Because the Xist gene is located within the Tsix gene, which is transcribed in

the antisense orientation (Lee and Lu, 1999), we examined the locations of reads mapping to this

locus. We detected a high read density located precisely within the Xist transcription unit (>90% of

reads) and very few reads in introns or exons specific to Tsix (Figure 2—figure supplement 1A),

indicating that the detected reads mostly correspond to Xist RNA. Xist levels in WT female embryos

increased dramatically from the 4-cell to the 8-cell stages and peaked around E3.5 (Figure 2A). Con-

sistent with the detection of Xist transcription foci in early Rlim KO female embryos (Shin et al.,

2010), the developmental onset of Xist was similar in RlimD/D females, but significantly lower levels

Figure 1 continued

Figure supplement 1. Details of RNA-seq experiments on single embryos WT and KO for Rlim.

DOI: 10.7554/eLife.19127.003
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of Xist were measured only after E3.5 (Figure 2A). Random subsampling of libraries to 200,000

reads per embryo (Robinson and Storey, 2014) showed a similar Xist expression profile (Figure 2—

figure supplement 1B). Moreover, strand-specific RT-qPCR confirmed that RlimD/D females

expressed similar levels of Xist when compared to WT/WT at E2.5, but much lower levels at E3.5
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Figure 2. Rlim is required for the maintenance of Xist expression and Xist clouds at blastocyst stages. (A)

Expression profiles from the Xist locus in preimplantation embryos WT and KO for Rlim. Error bars indicate

standard error of the mean (SEM). Significant differences of Xist levels in WT and KO females P<0.01 are indicated

(Student’s t-test). (B) WT and RlimKO embryos at E2.5 were co-stained with probes recognizing Xist (red) and Rlim

(green) via RNA FISH. Two representative RlimD/D embryos are shown. The boxed area is magnified in the panel

below. Arrows point at Xist cloud and Rlim transcription focus. (C) RNA FISH on WT and RlimKO embryos at E3.5.

The boxed area is magnified in the panels below. Arrows point at Xist and Rlim transcription foci. (D) Tabular

summary of Xist clouds detected in B and C.

DOI: 10.7554/eLife.19127.004

The following figure supplement is available for figure 2:

Figure supplement 1. Rlim regulates Xist levels and Xist clouds at blastocyst stages.

DOI: 10.7554/eLife.19127.005
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and thereafter (Figure 2—figure supplement 1C). These results prompted us to examine Xist clouds

in females at E2.5 morula and E3.5 blastocyst stages, comparing RlimD/D with WT/WT embryos. This

was done via RNA FISH, co-staining with probes against Rlim, which recognizes both the WT and

KO transcripts (Shin et al., 2010), and Xist. As expected, Xist clouds were detected in WT embryos

of both embryonic stages (Figure 2B–D). In these female embryos most/all cells exhibited clouds

except those undergoing mitosis. Xist clouds were also detected in a significant number of Rlim KO

embryos at both developmental stages. In contrast to WT/WT, however, in Xist cloud-positive RlimD/

D embryos at E2.5, the number of cells displaying clouds was highly variable, ranging between 1 cell

to most cells (Figure 2B,D). As few cells of 8-cell staged female embryos lacking RLIM display Xist

clouds (Shin et al., 2010), these results indicate that RlimD/D females develop Xist clouds at morula

stages, but likely with a slower kinetics when compared to WT/WT females. As expected, at E3.5 the

vast majority of cells exhibited transcription foci for Xist and only few cells displayed Xist clouds in

RlimD/D embryos (Figure 2C,D). Combined, these data reveal that Rlim is dispensable for initial Xist

expression in 4-cell stage embryos but required for upregulation/maintenance of Xist expression

after E3. They further show that Xist clouds transiently form in RlimD/D female morulae, which cannot

be maintained at blastocyst stages.

Rlim regulates X-silencing during blastocyst stages
To examine the function of Rlim on global X-silencing during iXCI we compared normalized reads

(FPKM) of all annotated X-linked genes from WT/WT or RlimD/D female embryos with all male

embryos generated in this dataset. In female WT/WT embryos the gene dosage was close to two-

fold that of males at early developmental stages (likely due to two active X chromosomes) and then,

starting at morula stages, gradually decreased to a gene dosage similar to that of males by late blas-

tocyst stages, consistent with Xp silencing (Figure 3A). These results are in agreement with recent

data obtained from allele-specific RNA-seq on single cells both from early mouse preimplantation

embryos with a mixed genetic background (Deng et al., 2014; Chen et al., 2016) and human preim-

plantation embryos (Petropoulos et al., 2016). Consistent with the formation of transient Xist clouds

(Figure 2) the X gene dosage in female RlimD/D embryos was not significantly different from that of

WT/WT females up to E3, revealing a partial silencing of X-linked genes at these early stages in the

absence of RLIM. However, the continued further silencing of X-linked genes observed in WT/WT

during blastocyst stages was significantly inhibited in RlimD/D females (Figure 3A). Again, random

subsampling of libraries for each embryo to 200.000 reads showed similar results (Figure 3—figure

supplement 1A, and data not shown), demonstrating that these libraries are sequenced to a depth

sufficient to accurately measure X-silencing. Considering an estimated average half-life of around

10 hr for mRNAs in mammalian cells (Yang et al., 2003) including mouse preimplantation embryos

(Kidder and Pedersen, 1982), the detection of initial X-silencing at late morula/early blastocyst

stages via RNA-seq on whole embryos (Figure 3A) fits well with published data obtained by RNA

FISH that show diminished transcription foci of X-linked protein-encoding genes generally starting

between the 8-cell and morula stages (Patrat et al., 2009; Namekawa et al., 2010). Moreover, the

gradual X-silencing from the 8-cell stage to E4.5 in WT/WT females as determined by whole embryo

RNA-seq (Figure 3A) is consistent with the existence of long-lived mRNAs in mouse preimplantation

embryos (Kidder and Pedersen, 1982).

We next analyzed Log2-transformed data of 10552 annotated genes that are expressed at all

examined developmental stages. Comparing the developmental expression pattern between female

RlimD/D and male embryos revealed very few changes in autosomal gene expression due to the Rlim

mutation, suggesting that the main function of Rlim in early embryonic gene regulation is in X-silenc-

ing (Figures 3B, Figure 3—figure supplement 1B). Indeed, examination of the silencing pattern of

351 annotated X-linked genes in WT females showed that gene silencing occurs within most regions

on the X chromosome both during the early (8-cell to E3) and late phase (E3 to E4.5) of iXCI

(Figure 3C). However, expression of several genes located in a region on the XqE3/F1 border is

notably higher at early preimplantation stages in females WT and KO for Rlim when compared to

males. Interestingly, this region overlaps a 1.1 Mb region that has been involved with meiotic regula-

tion during spermatogenesis (Zhou et al., 2013). Moreover, levels of genes known to escape

X-silencing during rXCI including Kdm6a and Kdm5c (Berletch et al., 2010) were also not signifi-

cantly down-regulated during iXCI (not shown). As we are not able to distinguish mRNAs transcribed

from the Xm or Xp, we cannot exclude the contribution of developmental transcriptional regulation
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and/or effects of differential parental imprinting in these regions. To further examine X expression

profiles in females, we compared the distributions of female E3/8-cell and E4.5/8-cell expression

ratios of 755 X-linked genes that are expressed in at least 3 embryos. Results showed that there are

little differences in expression profiles between E3/8-cell ratios of WT/WT and RlimD/D females (Fig-

ure 3—figure supplement 1C), whereas E4.5/8-cell ratios in RlimD/D females are generally two-fold

higher when compared to WT/WT (Figure 3—figure supplement 1D). To verify global Xp silencing
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Figure 3. Rlim is required for X-silencing in females during blastocyst stages. Female expression data collected from RlimWT/WTor RlimD/D were

compared with those of male (pooled KO and WT) embryos (F/M). Embryonic stages are indicated, troph = trophoblasts. (A) Developmental profile of

X-silencing during iXCI in vivo as determined by comparing mean female/male (F/M) expression ratios of X-linked transcripts (minus Xist; in Fragments

per kilobase of exon per million reads mapped (FPKM)). Error bars indicate SEM. Significant p values p<0.01 are indicated (Student’s t-test). (B) Heat

map representing Log2 transformed data comparing global F/M mRNA expression level ratios from chromosomes (excluding the Y) of WT and KO

embryos. Chromosomes corresponding to gene expression are indicated. (C) Gene silencing during iXCI occurs within most regions on the X

chromosome. Log2 F/M ratios of 351 X-linked genes at the 8-cell stage, E3 and E4.5 in WT and RlimKO are shown (values within 4.5 and -2). Horizontal

dotted lines indicate Log2 values of 1. The mouse X chromosome is shown below. Arrowheads indicate locations of the most centromeric (Nudt11) and

most telomeric (Med1) genes included in this analysis. Expression and location of Xist is indicated. Expression of genes within a region indicated by

vertical black lines is silenced late at blastocyst stages during iXCI.

DOI: 10.7554/eLife.19127.006

The following figure supplements are available for figure 3:

Figure supplement 1. Rlim is required for X-silencing in female blastocysts.

DOI: 10.7554/eLife.19127.007

Figure supplement 2. Comparison of X dosage compensation using F/M or allelic approach.

DOI: 10.7554/eLife.19127.008
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we performed an independent RNA-seq experiment on 3 male and 3 female WT embryos with a het-

erozygous C57Bl/6 (B6) and castaneus/Eij (CAST) background (Figure 3—figure supplement 2A)

allowing a direct comparison of data processed via F/M or by an allele-specific analysis. We chose

embryos at E3.5 because at this stage about half of the X is silenced in female embryos (Figure 3A;

Figure 3—figure supplement 2B). Indeed, in B6m/CASTp embryos we measured only around 50%

of X-linked CAST transcripts when compared to transcripts originating from the B6 X chromosome

(Figure 3—figure supplement 2C). These results provide independent confirmation that the decline

in F/M values of X-linked transcripts in females (Figure 3A) is due to Xp-silencing. These data corrob-

orate our previous results and are consistent with (1) partial silencing of overall X-linked genes in

female E3 embryos of both genotypes, and (2) the general silencing of one X chromosome in E4.5

WT/WT but not RlimD/D females. Thus, our combined results distinguish an early Rlim-independent

phase of iXCI in totipotent cells up to around E3 that leads to partial Xp-silencing, and a late phase

after E3 that is Rlim-dependent and leads to robust Xp-silencing. These data further confirm that the

process of iXCI progressively adjusts the X-linked gene dosage from the 8-cell stage to E4.5 during

early female development.

Embryonic Rlim is required for iXCI in female mice
Because RLIM protein is rapidly turned-over during early development (Becker et al., 2003;

Ostendorff et al., 2002), if RLIM is required for X-silencing only after E3, this predicts that maternal

stores of RLIM will not be sufficient for iXCI but that RLIM synthesized by the embryo is required for

later stages of the iXCI process. To confirm that embryonic RLIM plays a crucial role for iXCI after E3

we targeted the maternally transmitted conditional Rlim allele via a paternally transmitted Rosa26-

Cre (R26C) transgene (Soriano, 1999), from which Cre is induced after zygotic genome activation

(ZGA). Indeed, an R26C-mediated deletion of the Rlim allele on the Xm led to embryonic lethality in

a female-specific parent-of-origin effect (Figure 4A,B), similar to the germline Rlim KO (Shin et al.,

2010). This deletion proved highly penetrant, as a maternally transmitted floxed Rlim allele was no

longer detectable at early stages of the second iXCI phase (E3.5; Figure 4C). RNA FISH experiments

showed that Xist cloud formation was strongly diminished in trophoblasts of female R26C-mediated

cKOm blastocysts isolated at E4 and cultured ex vivo for 2 days (Figure 4D). Moreover, the detection

of transcription foci of Xist adjacent to Rlim in these trophoblasts indicated defects in Xp silencing

(Figure 4E), consistent with previously published results (Shin et al., 2010). These data provide

genetic confirmation that embryonic RLIM expressed from the maternal allele plays crucial roles for

the maintenance of Xist clouds during iXCI.

Xist is crucial for iXCI throughout female preimplantation development
Our results show that cells of female pre/peri-implantation embryos that lack Rlim do not upregulate

Xist expression and cannot maintain Xist clouds around stage E3.5 (Figure 2), and ultimately fail to

silence X-linked genes at blastocyst stages (Figure 3). To functionally connect Rlim and Xist during

iXCI we next examined female embryos that carry a germline Xist mutation on the paternally inher-

ited X (XistWT/Dp). These females are devoid of functional Xist RNA because during iXCI, the Xp is

exclusively silenced and Xist is not expressed from the Xm. We used a floxed Xist mouse line

(Csankovszki et al., 1999) to generate males with a Sox2-Cre-mediated cKO of Xist (XistcKO/Y-SC).

XistcKO/Y males were mated with WT/WT females (Figure 5—figure supplement 1A) and, confirming

the previously observed sex-specific parent-of-origin embryonic lethality (Marahrens et al., 1997),

only male but no female pups were born (Figure 5—figure supplement 1B). Using single embryo

RNA-seq, we analyzed 141 embryos generated by this cross in a similar manner as described for the

RlimKO/WT dataset (Figure 5—figure supplement 1C; Supplementary file 2). Consistent with the

fact that the floxed region in these mice encompasses parts of the promoter, reads in Xist were low

in all embryos of all developmental stages (not shown). Therefore, the gender of each embryo was

determined by assessing expression of Y-linked genes (Figure 5A). Data obtained for each embryo

were processed and normalized to autosomal gene expression as described for the WT/RlimKO

dataset. The global F/M expression profiles of 8127 genes in this dataset with mapped reads across

all developmental stages, showed increased expression specifically of X-linked transcripts in XistWT/D

p embryos, while general gene expression from autosomes was similar (Figure 5B). Confirming a

central role for the Xist lncRNA during iXCI, the F/M expression profiles of X-linked genes were high
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in XistWT/Dp embryos of all stages (Figure 5C). Comparisons with WT/WT revealed significant defects

in X dosage compensation in XistWT/Dp females at around E3.5 blastocyst stages (Figure 5D), consis-

tent with published findings (Namekawa et al., 2010).

Regulation of X-linked gene expression in pre/peri-implantation
embryos
Studies of various adult somatic cell types have revealed general X/A expression ratios of around 1,

indicating that gene expression from the active X is upregulated around two-fold. Indeed, male

mouse ES cells and epiblast cells in blastocysts display X/A values of around 0.8 (Deng et al., 2013,

2011, 2007). While these results indicate incomplete X upregulation they nonetheless suggest that

this upregulation might be initiated during preimplantation development. To assess alterations in

the X/A ratio during preimplantation development we calculated the average total expression

(FPKM) of X-linked versus total autosomal genes within each embryo. This approach removes the

possibility that low expressing genes, which are more frequent on the X chromosome when com-

pared to autosomes and vary in different cell types, influence or bias the results (Deng et al., 2011).

Because of XCI in females, this analysis was first carried out on males. Our results revealed gradually

increasing levels of transcription from the X relative to autosomes (Figure 6A) and the total increase

between the 4-cell stage to E4.5 was 1.58 fold (P<10–11; Students t-test). Calculating X/A values

using a previously published RNA-seq dataset (GSE45719 in GEO repository) on single mouse pre-

implantation cells (Deng et al., 2014), generally confirms these data (Figure 6—figure supplement

1). When we examined average expression from single chromosomes (normalized against 4-cell
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stage levels) we observed that, among all chromosomes, gene expression from the X displayed the

highest increase (Figure 6B). Next, we compared the contribution of chromosomes towards total

gene expression in males of each developmental stage by taking into account the numbers of anno-

tated genes located on each chromosome. These analyses showed that, consistent with the pres-

ence of one X chromosome, at the earliest time point measured, the contribution of the X was much

lower than that of any autosome, only around 0.5 fold of the average autosome (Figure 6C). This
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(C) Developmental profile of X-silencing during iXCI in XistWT/Dp females as determined by comparing F/M expression of X-linked transcripts. Data were

processed as described for those obtained for the WT/RlimKO dataset which were incorporated for comparison as dotted lines (see Figure 3A). (D)

Comparison of F/M values for XistWT/Dp and RlimD/D with those obtained for WT/WT (set to 1). P values of P<0.05 are indicated (paired t-test).

DOI: 10.7554/eLife.19127.010

The following figure supplement is available for figure 5:

Figure supplement 1. Details of RNA-seq analyses of single embryos lacking Xist at pre/peri-implantation stages.

DOI: 10.7554/eLife.19127.011
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DOI: 10.7554/eLife.19127.012

The following figure supplement is available for figure 6:

Figure supplement 1. X/A profile in male mouse embryos comparing data obtained by single embryo RNA-seq (see Figure 6A) with data obtained by

single-cell RNA-seq (Deng et al., 2014).

DOI: 10.7554/eLife.19127.013
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contribution gradually increased to around 0.77 fold measured at E4.5, which was the 14th most

highly expressed of the 20 chromosomes. These results are in general agreement with X/A levels

previously measured in male murine ES cells as well as epiblast cells (Lin et al., 2007), and indicate

that X upregulation is initiated during preimplantation development. Including female embryos in

these analyses (Figure 6D), our data reveal that X/A upregulation is initiated both during male and

female preimplantation development, as female RlimD/D and XistWT/Dp embryos, which are defective

in iXCI, display high E4.5/4-cell ratios of 1.58 and 1.75, respectively, similar to those of males

(Figure 6E). Upon examination of early developmental stages, we found that all females start out

with high X/A ratios compared to those measured in males (between 1.58–1.87 at the 4-cell stage;

Figure 6F). However, by E4.5, whereas X/A ratios of RlimD/D and XistWT/Dp females are still high com-

pared to males (around 1.8 fold), those of WT/WT females have decreased to levels close to 1

(Figure 6F). Combined, these results indicate that X upregulation occurs during preimplantation

development in males and females. In WT/WT females, X upregulation takes place concurrently with

iXCI that compensates the general X gene dosage to that of males.

Discussion

Accuracy of single embryo RNA-seq data
Based on single cell technology, we have used single embryo RNA-seq to elucidate the mouse pre-

and peri-implantation transcriptome. This approach has been recently established (Sharma et al.,

2016) and we provide several lines of evidence for high accuracy of RNA-seq datasets at multiple

levels including single genes as well as chromosome-wide: (1) Mapping reads to single genes dem-

onstrates high fidelity of reads within the Rlim regions that are present on the genome (Figure 1E),

as well as reads within the Tsix/Xist genomic region which allows a quantitative distinction between

expression of Xist vs Tsix (Figure 2—figure supplement 1A). (2) The developmental expression pro-

files of single genes correspond to those published in the literature. This is true for cell markers

(Figure 1F) as well as for Xist that is highly expressed in females but not males (Figure 2A). (3) Our

results obtained by RNA-seq on Xist expression (Figure 2A) have been confirmed using alternative

methods such as strand-specific RT-qPCR (Figure 2—figure supplement 1C) and RNA-FISH

(Figure 2B,C). Analyzing chromosome-wide gene expression of WT mouse embryos reveals that the

X dosage in females is around two-fold that of males at early embryonic stages and is subsequently

adjusted to those in males at late stages (Figure 3A), in agreement with recent findings in mouse

and human embryos (Petropoulos et al., 2016; Chen et al., 2016). Analysis of XistKO females that

cannot undergo iXCI shows, as expected, around two-fold higher X-linked gene dosages when com-

pared to males throughout preimplantation development. These data combined with results

obtained by subsampling of library sizes (Figure 1—figure supplement 1E; Figure 2—figure sup-

plement 1B; Figure 3—figure supplement 1A,B) and direct comparisons of various genotypes (WT

vs RlimKO; female and male; e.g. Figure 3—figure supplements 1C, D; 2; not shown) confirm the

high overall robustness and accuracy of our RNA-seq data. However, likely reflecting technical vari-

ability of single-embryo RNA-seq, variations of single gene expression levels among replicates were

generally higher when compared to those of chromosome/genome-wide data, where hundreds/

thousands of genes are averaged.

Chromosome-wide X-linked gene expression
While crucial functions of Rlim and Xist for iXCI in mice are known (Marahrens et al., 1997;

Shin et al., 2010), the influence of both genes on the general kinetics of X-linked gene expression

are not. To study iXCI, X upregulation and the effects of Xist and Rlim on X-linked gene expression

we have used embryos with congenic genetic background because this approach allows for simpler

mouse genetics and excludes influences of the genetic background on X-linked gene expression.

The facts that (1) females have two and males have one X chromosome and (2) Xist is crucial for

iXCI, comparing females to males combined with the inclusion of the XistKO mouse model allows for

an overall chromosome-wide assessment of the dynamics of X-linked gene expression via compari-

sons of gene expression profiles between the genders and/or between females with different geno-

types. This is because XistKO female embryos display around two-fold higher F/M levels throughout

early development (Figure 5A), thereby providing genetic evidence that the global X profile
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differences between XistKO and WT/WT females is the direct consequence of iXCI and that there is

no other, major female-specific mechanism in preimplantation embryos that significantly influences

the global X-linked gene dosage. Concerning allele-specific X-chromosome-wide gene expression,

as males have a single maternally inherited X combined with the fact that iXCI in females silences

exclusively the Xp (Deng et al., 2014), indicates that the steady decline in F/M values seen in WT/

WT females is mostly due to decreased Xp expression levels, and using B6m/CASTp hybrid embryos

we have confirmed this for stage E3.5 (Figure 3—figure supplement 2). However, in contrast to

chromosome-wide X-linked gene expression, at the gene level we cannot resolve the parental origin

of single RNAs, as our RNA-seq data do not reveal an allele-specific resolution.

In agreement with published results (Deng et al., 2014; Marks et al., 2015), we show that silenc-

ing of X-linked genes in females occurs across the entire X chromosome (Figure 3C). Such spatial

concordance of silencing is consistent with studies in ESCs which show that Xist does not spread lin-

early along the X chromosome, but rather spreads to multiple loci on the X simultaneously, due to

the three dimensional folding of the chromosome (Engreitz et al., 2013). The finding that the aver-

age F/M ratios of females of all genotypes (WT/WT, RlimD/D and XistWT/Dp) remained below 2 even

at early developmental stages (Figures 2A; 5C) is likely explained by a previously reported Xist-inde-

pendent partial silencing of some X-linked transcripts (Kalantry et al., 2009). Thus, by integrating X

upregulation and iXCI, our results represent a comprehensive view on X-linked gene expression in

early mouse embryos, and its regulation by Rlim and Xist.

Our results reveal that the general pre/peri-implantation profile of X dosage compensation

between genders as observed in WT female mice (Figure 3A) is remarkably similar to that measured

in early female human embryos (Petropoulos et al., 2016), even though mice but not humans

undergo iXCI (Okamoto et al., 2011). This suggests strong evolutionary pressure on X dosage com-

pensation before implantation. It is thus surprising that unlike in mice (Figure 6) there is no sign of X

upregulation in human preimplantation embryos (Petropoulos et al., 2016) (not shown). Because X/

A values in adult human somatic tissues are close to 1 (Deng et al., 2011), this suggests that

X-linked gene expression is upregulated at post-implantation stages.

Regulation of iXCI by Rlim
Our analyses of global gene expression profiles in females shows that the KO of Rlim or Xist affects

global expression levels of X-linked transcripts but not those expressed from autosomes

(Figures 3B; 5B). This combined with the fact that males lacking either Xist or Rlim appear healthy

and are fertile indicates that crucial roles for both genes are restricted to X dosage compensation in

females. Indeed, our results reveal that high levels of Xist, the maintenance of Xist clouds and X-dos-

age compensation in female blastocysts depend on Rlim. Combined, these results imply that RLIM’s

function on iXCI is exerted through regulation of Xist. Moreover, because only iXCI globally and sig-

nificantly influences X-linked gene expression specifically in females, the development of temporary

Xist clouds in RlimKO females (Figure 2) and a similar silencing pattern at E3 between WT/WT and

RlimKO females (Figure 3; Figure 3—figure supplement 1C) suggests that initiation of the iXCI pro-

cess might occur normally at early stages in RlimKO females. However, at blastocyst stages X-silenc-

ing and iXCI cannot be maintained leading to a failure in X dosage compensation (Figure 3;

Figure 3—figure supplement 1D). This is further corroborated by our results targeting the Rlim

cKO via Rosa26-Cre early during female embryogenesis (Figure 4), confirming crucial roles for the

maintenance of iXCI in blastocyst-staged female embryos. In this context, it is important to note that

RLIM protein levels are down-regulated specifically in epiblast cells of E4.5 blastocyst embryos

(Shin et al., 2014), at a time point when these cells start to reactivate the Xp (Mak et al., 2004;

Okamoto et al., 2004) before undergoing rXCI. Thus, because RLIM is crucial for the maintenance

of iXCI at peri-implantation stages (Figures 2–4), this down-regulation provides an attractive molec-

ular mechanism for triggering the Xp reactivation process.

In summary, by elucidating the mouse pre- and peri-implantation transcriptome, this study pro-

vides a comprehensive view on X linked gene expression during early mouse development. Our anal-

yses uncover that upregulation of X-linked transcripts is initiated in early male and female mouse

embryos. In females X upregulation occurs concomitant with iXCI, which progressively leads to X

gene dosage compensation between genders in an Rlim and Xist-dependent manner.
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Materials and methods

Mice
Mice used in this study and genotyping have been described; Rlim fl/fl (Shin et al., 2010), Xist fl/fl

(Csankovszki et al., 1999), Sox2-Cre (Hayashi et al., 2002; Shin et al., 2014) and Rosa26-Cre (Sor-

iano, 1999). The Xistfl/fl mouse strain 129-Xisttm2Jae/Mmnc, identification number 29172-UNC, was

obtained from the Mutant Mouse Regional Resource Center, a NIH funded strain repository, and

was donated to the MMRRC by Rudolf Jaenisch, Ph.D., Whitehead Institute. CAST/Eij mice were

purchased from The Jackson Laboratories. Rlimfl/fl mice were generally bred and maintained on a

C57BL/6 background. All mice were housed in the animal facility of UMMS, and utilized according to

NIH guidelines and those established by the UMMS Institute of Animal Care and Usage Committee.

Single-embryo RNA-seq
All embryos were generated by natural mating. Whole embryos were dissected at the indicated time

points and the correct stage was verified under the binocular. Single-Embryo RNA-seq was essen-

tially performed as described (Sharma et al., 2016). Briefly, single embryos/trophoblast cells were

placed in 10ul TCL Buffer (Qiagen) supplemented with 1% BME, and snap frozen. A total of 187

samples representing WT and RlimKO embryos were distributed on two 96-well plates (plus 5 mock

wells) and thawed at RT for 10 min prior to RNA purification using Ampure RNA beads (Beckman-

Coulter, Brea, CA). RNA samples were resuspended in solution containing 3’ RT primer (5’-AAG-

CAGTGGTATCAACGCAGAGTACT(30)VN-3’) and dNTPs. Reverse transcription was performed with

SSII (Life Technologies), whose terminal transferase activity allows incorporation of a PCR binding

site at the 3’ end of the cDNA using a template-switching oligonucleotide (5’-AAGCAGTGGTA

TCAACGCAGAGTACATrGrG G-3’; custom synthesized from Exiqon) as a template. Subsequently,

cDNA was amplified using 12 cycles of PCR, followed by tagmentation with Nextera kit (Illumina).

Final libraries were amplified by 12 cycles of PCR (5’-AAGCAGTGGTATCAACGCAGAGT-3’) and

sequenced on a NextSeq 500. Single-embryo RNA-seq of XistKO or B6/CAST hybrid embryos was

performed as described above.

RNA-seq data analyses
Reads (paired end 35 bp) were aligned to the mouse genome (mm10) using TopHat (version 2.0.12)

(Trapnell et al., 2009), with default setting except set parameter read-mismatches to 2, followed by

running HTSeq (version 0.6.1p1) (Anders et al., 2015), Bioconductor packages edgeR (version

3.10.0 ) (Robinson et al., 2010; Robinson and Smyth, 2007) and ChIPpeakAnno (version 3.2.0)

(Zhu, 2013, 2010) for transcriptome quantification, differential gene expression analysis, and anno-

tation. For edgeR, we followed the workflow as described in (Anders et al., 2013), except that the

library size of each embryo was set as the total number of the effective counts of the autosomal

genes. Specifically, edgeR was used for the removal of the unmapped, ambiguous, and not anno-

tated reads as well as reads in rRNA and the filtering out of low expression genes after regrouping

samples according to developmental stage, as the X chromosome contains many reproduction-

related genes that are not expressed in somatic tissues (Khil et al., 2004; Mueller et al., 2008) and

genes with no or low expression may influence the X/A expression ratios (Deng et al., 2011). There-

fore, genes that were not expressed or lowly expressed genes as determined for embryos at each

stage were filtered out before normalization, via removal of genes without at least 1 read per million

in n of the samples, where n is the size of the smallest group of biological replicates within each

developmental stage (Anders et al., 2013). The library size was then reset as the total number of

the effective counts of autosomal genes. The TMM method (Trimmed Mean of M-value) was used to

calculate normalization factors between samples of the same stage (Robinson and Oshlack, 2010).

Fragments per kilobase of exon per million reads mapped (FPKM) (Supplementary files 1, 2) and

LogFC were calculated using edgeR. For gender assessment counts per million (cpm) of mapped

reads in Xist and the seven Y-linked genes Ddx3y, Eif2s3y, Kdm5d, Usp9y, Uty, Zfy1 and Zfy2 were

evaluated. 12 samples out of 187 sequenced in the combined RlimKO/WT RNA-seq experiment, and

33 samples out of 174 sequenced in the XistKO RNA-seq experiment were disregarded due to low

reads or because gender could not be clearly determined. Random subsampling of library sizes to

200.000 reads per embryo was performed as described (Robinson and Storey, 2014). Analyses of
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the subsampled datasets were carried out as described above. F/M analyses were carried out by

averaging ratios per gene within each developmental stage using females of defined genotype and

pooled males (WT and KO). For calculations in Figure 3—figure supplement 1C,D, 755 X-linked

genes with cpms>1 (before normalization) in at least three embryos at each stage were included.

The dataset was then normalized against autosomal gene expression and Log2 fold change was cal-

culated using edgeR. For the allele-specific expression analysis of X-linked transcripts in B6/CAST

heterozygous females, the SNPs were called with mpileup and bcftools in the SAMtools package

(Li, 2011) using the aligned BAM files. A python program allelecounter was used to obtain the allele

counts (https://github.com/secastel/allelecounter). SNPs called in females were verified by compari-

sons to sequences in males (C57BL/6). Data analysis was carried out by comparing SNPs with refer-

ence genomes C57BL/6 (mm10; UCSC) and CAST/Eij (http://csbio.unc.edu/CCstatus/index.py?run=

Pseudo).

Blastocyst outgrowths, RNA fluorescence in situ hybridization (RNA
FISH), Immunohistochemistry and RT-qPCR
All embryos were generated by natural mating and harvested at the indicated embryonic stages. For

blastocyst outgrowths, embryos were harvested at E4, cultured for 48 hr and genotyped after image

recording. RNA FISH was performed essentially as previously reported (Shin et al., 2010;

Byron et al., 2013). For the synthesis of specific Xist probes, we used plasmids containing mouse

Xist exon 1 and 6 that recognize Xist and Tsix (Panning, 2004). For the Rlim probe, we used a plas-

mid containing genomic Rlim sequences upstream of the KO site that detects specific Rlim mRNAs

transcribed from both wild type and KO alleles (Shin et al., 2010). Ovaries of three 8-weeks old WT/

WT and SC-RlimcKO/D females each were dissected, fixed and stained with an RLIM antibody as

described previously (Shin et al., 2010). RT-qPCR on whole embryos using primers that detect RNA

transcribed from Xist and actin as control, were performed as previously reported (Shin et al.,

2010).
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