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Abstract

A major mechanism for electrochemical aging of Li-ion batteries is the growth of a solid electrolyte interphase
(SEI) layer on the surface of anode particles, which leads to capacity fade and also results in a rise in cell
resistance. We have formulated a continuum theory for the growth of an SEI layer — a theory which accounts
for the generation of the attendant growth stresses. The theory has been numerically implemented in a
finite-element program. This simulation capability for SEI growth is coupled with our previously published
chemo-mechanical simulation capability for intercalation of Li-ions in electrode particles. Using this new
combined capability we have simulated the formation and growth of an SEI layer during cyclic lithiation and
delithiation of an anode particle, and predicted the evolution of the growth stresses in the SEI layer. The
evolution of the stress state within the SEI layer and at the SEI/anode-particle interface for spherical- and
spheroidal-shaped graphite particles is studied. This knowledge of the local interfacial stresses provides a
good estimate for the propensity of potential delamination of an SEI layer from an anode particle.

Keywords: Solid electrolyte interphase (SEI), Li-ion battery, Continuum mechanics, Finite element method

1 Introduction

Li-ion batteries are slated to play an increasingly prominent role in large-scale stationary energy storage
systems in renewable energy plants, as well as in power systems for sustainable electric transportation
vehicles. In these applications a battery must tolerate large numbers of cycles at high rates of charge and
discharge, and continue to serve its function without any degradation in performance. Much remains to
be done to improve upon the performance of the current generation of Li-ion batteries to meet the desired
performance levels. One of the major concerns is the mitigation of “aging” of batteries — which refers to
electro-chemo-mechanical degradation, capacity fade, and power loss of the batteries.

Amongst the many mechanisms which cause aging in Li-ion batteries, a major mechanism is the formation,
due to decomposition of the electrolyte, of a thin solid electrolyte interphase (SEI) layer on the surface of
anode particles. The SEI layer is electronically insulating which prevents further decomposition of the
electrolyte, but it is ionically conductive and allows the diffusion of Li ions through it. However, the
formation of SEI consumes Li-ions, which competes with the desired amount of Li for intercalation in the
active anode material, and this causes capacity fade. In addition, since Li-ions must diffuse through the SEI
layer, the formation of a SEI layer is accompanied by an increase of cell resistance. Often, the cyclic volume
changes of an anode particle during Li-ion intercalation and deintercalation can cause the SEI layer to crack,
delaminate, and spall from the surface of the anode particle. New SEI is then formed on the freshly exposed
particle surface, which consumes more Li-ions and causes additional capacity fade. Both the chemical and
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mechanical integrity of the SEI are critical to the safety and performance of Li-ion batteries (cf., e.g., Lee et
al., 2007; Verma et al., 2010; Barré et al., 2013).

The purpose of this paper is to report on a new theory and a finite-element-based capability for the
simulation of growth of a solid electrolyte interphase layer at an anode particle in a Li-ion battery. The
theory attempts to account for the generation of stress due to the growth of a SEI layer, as well as the
stress that arises due to the lithiation and delithiation of the anode particle. In the literature, the stress
generated due to the growth of the SEI layer is often called “irreversible” while the stress related to the
swelling/de-swelling of the anode particles during lithiation/delithiation is called “reversible.”

In a recent novel paper, Mukhopadhyay et al. (2012) presented experimental measurements of the re-
versible and irreversible stresses during SEI formation on a thin-film graphite anode. In their experiments
they used a 250µm thick, 1 in diameter quartz substrate on which, using chemical vapor deposition (CVD)
techniques, they deposited (i) a 15 nm thick Ti layer; (ii) a 200 nm thick Ni layer; and finally (iii) a 200 nm
layer of c-axis oriented graphite. The Ti and Ni were deposited to act as a catalyst for graphitization and
as a current collector. This multilayered plate was then assembled into an electrochemical cell which was
charged and discharged under galvanostatic conditions against a Li-metal cathode to develop a SEI layer
on the graphite anode. The TEM micrograph in Fig. 1, taken from Mukhopadhyay et al. (2012), shows
a ≈ 100nm-thick SEI layer which has formed on the graphite (CVD C) anode after 50 cycles of charging
and discharging. After the initial deposition of the graphite layer, as well as during electrochemical cycling
during which the SEI layer was formed, Mukhopadhyay et al. measured the curvature of the plate using
an array of parallel laser beams focused on the back side of the quartz substrate. The results from their
experiments are schematically shown in Fig. 2:

• Fig. 2 (a) shows the undeformed quartz substrate.

• After CVD deposition of the graphite layer at 1000◦C and cool-down to room temperature, the graphite
contracts more than the substrate and this results in a positive curvature, Fig. 2 (b).

• At the end of the first half-cycle of charging the authors observed a reduction in the positive curvature
of the plate; cf. Fig. 2 (c) relative to Fig. 2 (b). This reduction in curvature occurs due to the expansion
of the graphite upon lithiation, and also due to the growth of the SEI layer.

• After the first complete lithiation/delithiation cycle, the graphite contracts to its initial delithiated
state. However, the authors observed a reduction in the curvature of the plate with respect to the
curvature at the beginning of the first lithiation, cf. Fig. 2 (d) relative to Fig. 2 (b). This reduction in
curvature is an important indicator of the expansion strain during the growth of the SEI layer.

• At the end of the second charging half-cycle the authors observed a further decrease of curvature due
to expansion of the graphite and the SEI, cf. Fig. 2 (e) relative to Fig. 2 (d).

• After the second complete lithiation/delithiation cycle, they observed an increase in curvature, cf.
Fig. 2 (f) relative to Fig. 2 (e). This slight increase in curvature is driven by the contraction of the
graphite, while the continued formation and expansion of the SEI layer counteracts the graphite con-
traction. Note that due to the growth strain in the SEI, the observed curvature at the end of the second
cycle was lower than the curvature at the end of the first cycle, cf. Fig. 2 (f) relative to Fig. 2 (d).

In subsequent cycles the authors observed a steady decrease in curvature due to the formation of SEI,
superimposed by cyclic curvature changes due to the lithiation/delithiation of the graphite.

From their experimental measurements of the curvature changes of their multi-layered plate, Mukhopad-
hyay et al. calculated the changes in a nominal equi-biaxial stress, σn, in the combined graphite/SEI “film”
on the quartz substrate using the classical Stoney formula (Stoney, 1909),

σn =

(
1

6

EQ
(1− νQ)

h2Q
hG

)
κ; (1.1)

here, κ is the curvature of the plate, EQ and νQ are the Young’s modulus and the Poisson’s ratio of the
quartz substrate, and hQ and hG are the thicknesses of the quartz and graphite layers. Fig. 3 from their
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paper shows the cyclic electrical potential which was imposed in their battery for the first 20 cycles of
charging/discharging, together with the results for the nominal stress that they inferred from their curva-
ture measurements. The stress levels corresponding to the peaks of the cyclic stress profile represent the
“irreversible” stress generation due to the growth of the SEI layer, while the stress levels during cycling
represent the “reversible” stress due to lithiation and delithiation. Fig. 3 shows that in the course of 20
charge/discharge cycles the initially high ∼ 0.9 GPa tensile nominal-stress, which is introduced due to the
deposition of the graphite on the quartz, reduces by a factor of two to ∼ 0.4 GPa due to the growth of the
SEI and the attendant generation of compressive stresses in this layer. Reversible stresses in anodes due
to lithiation/delithiation have been extensively addressed in the literature — however, to the best of our
knowledge, Mukhopadhyay et al. are the first group to report on experimental measurements of “irreversible”
stresses due to growth of SEI on an anode.

As mentioned above, the purpose of this paper is to report on our new continuum-mechanical theory
and a finite-element-based capability for the simulation of growth of a solid electrolyte interphase layer at
an anode particle in a Li-ion battery. In formulating our theory we attempt to account for (i) the stress
generation due to the lithiation and delithiation of anode particles, and (ii) the stress-generation due to the
growth of an SEI layer. We also report on the results from the use of our theory for:

1. A study of the problem of SEI formation on the surface of a flat anode undergoing cyclic lithiation and
delithiation, as in the study of Mukhopadhyay et al. (2012). We demonstrate that we can reproduce
their experimental results with reasonable quantitative accuracy.

2. A study of the problem of SEI formation on the surface of spherical and spheroidal graphite particles
undergoing cyclic lithiation and delithiation. The stress state in the SEI layer and at the SEI-particle
interface are calculated and the propensity of potential delamination of the SEI layer from the particle
is identified. We show that the interplay between reversible particle swelling/deswelling and irreversible
SEI growth has a crucial effect on the magnitude of the stress levels that are generated, and consequently
on the mechanical integrity of the SEI layer.

2 Modeling of lithiation/delithiation of anode particles

In order to properly simulate the growth of an SEI layer on the surface of an anode particle of a Li-ion
battery, we must of course account for the chemo-mechanical deformation during charging and discharging
of the anode itself — a process during which commonly used anode materials undergo substantial volume
changes. As we shall show, such volumetric changes of an anode particle can have a significant effect on the
stress distribution that is developed within the SEI layer. In order to model the intercalation of Li in an
anode we will use our recently published theory for species diffusion coupled with large elastic deformations
(Di Leo et al., 2014). Since this Li intercalation theory is not the main subject of the present paper, we
defer a brief summary of this theory to Section 6, and in the next section we turn our attention to the main
subject, viz., modeling the growth of an SEI layer.

3 Modeling of SEI growth

The process of growth of an SEI layer involves the addition of new mass onto the surface of an anode particle
which is accompanied by a growth strain in the SEI — as a result, the newly-deposited SEI layer and the
anode contain balanced residual stresses. Although the deposition of the layer and the associated strain
generation occur simultaneously, we conceptually idealize the growth of an SEI layer on a surface of interest
as a two-step process shown schematically in Fig. 4:

• The first step, which we refer to as deposition, results in the formation of a strain-free layer of
SEI on the surface of interest, cf. Fig. 4 (a) to (b). This process controls the rate of increase of the
thickness of the SEI layer perpendicular to the surface of interest.

• The second step, which we refer to as in-plane expansion, models the evolution of strain mismatch
between the SEI layer and the substrate, cf. Fig. 4 (b) to (c). Note that the reference configuration for
the start of the expansion process is the “strain-free” layer created during the deposition step.
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Taken together, this idealized two-step process serves to model the experimentally observed growth of a SEI
layer on a substrate.

In the next two sections we detail the theory and the numerical modeling of each of these two conceptually-
separated sub-processes.

Remark. The intrinsic mechanism for the growth strains in the SEI and the attendant large growth stresses
(of the order of -1 GPa) is not completely clear. Based on their recent experimental study on the chemical
and morphological changes, and stress generation during SEI formation on c-axis oriented graphitic carbon
electrodes, Tokranov et al. (2014) have suggested that it is the disruption of the surface of the graphite
caused by solvated ions during the initial stages of formation of the SEI which is the dominant cause of
stress at high potentials (above 0.5 V).

Our continuum model for SEI growth does not explicitly account for any specific mechanism for the
formation and growth of the SEI. Rather, it assumes only that SEI formation occurs and is accompanied by
growth strains which can results in stress generation at the SEI/anode interface.

4 Numerical modeling of SEI deposition

Fig. 5 shows a schematic of our numerical simulation scheme for modeling the deposition of an SEI layer by
the sequential conversion of multiple layers of finite elements — from elements with properties representing
the electrolyte, to elements with properties representing the SEI. Fig. 5(a) shows three rows of elements
representing the electrolyte (colored blue) adjacent to three rows of elements representing the graphite
(colored gray); the electrolyte elements are sequentially converted to strain-free SEI elements (colored pink)

at three prescribed times (t
(1)
dep, t

(2)
dep, t

(3)
dep). Fig. 5 (b) shows the resulting profile of the total SEI layer thickness

h versus time t. In our numerical simulations we will choose the conversion times t ∈ [t
(1)
dep, t

(2)
dep, t

(3)
dep, . . . , t

(N)
dep ]

for the different electrolyte layers so that the resulting thickness h(t) of the total SEI layer approximates the
experimentally-observed square-root growth profile (Smith et al., 2011). That is, we will choose the times
when the electrolyte layers convert to SEI such that SEI total thickness growth approximates

h(t) ∝
√
t. (4.1)

We emphasize that this square-root growth profile is something that we shall prescribe — it is not an outcome
of a diffusion-controlled chemical reaction model.

The electrolyte is modeled as a linear elastic material with a very low Young’s modulus of E = 0.5 MPa,
and a zero-valued Poisson’s ratio, ν = 0. Thus, any deformation of the graphite/electrolyte system produces
stresses in the graphite which are essentially unaffected by the presence of the electrolyte elements. The
specific constitutive behavior of the newly-formed strain-free SEI layer for times t > tdep is described in the
next section.

Prior to the conversion of an electrolyte element to an SEI element, that is for t < tdep, the standard
deformation gradient F(t) is used for the constitutive calculations for an electrolyte element. The stress-free
reference configuration for an SEI element of interest is its configuration at the time t = tdep, when it is
first converted from an element representing electrolyte to an element representing SEI. Thus, to model the
subsequent in-plane expansion of a newly-deposited SEI element, the appropriate deformation gradient that
is to be used for constitutive calculations is the relative deformation gradient,

FSEI(τ)
def
= Ftdep

(τ) = F(τ)F(tdep)−1 for τ > tdep. (4.2)
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5 Modeling of in-plane expansion of SEI

In this section we detail our constitutive theory for modeling the in-plane expansion of the SEI layer once
it has been deposited on the surface of an anode. This theory is based — in major part — on the theory
of “growing matter in living systems” (cf., e.g., Kuhl, 2014, for a recent review of the substantial literature
on this topic), which employs the widely-used Kroner (1960)-Lee (1969) multiplicative decomposition of the
deformation gradient,

F = FeFg. (5.1)

Here, for modeling the in-plane expansion of the SEI,

• The deformation gradient in (5.1) is to be interpreted as the deformation gradient FSEI defined in
(4.2),

F ≡ FSEI. (5.2)

• Also, we shall take Fg to be of the specific form given in eq. (5.12), which restricts the “growth” to
an in-plane expansion (more on this below).

For economy of notation we shall continue to use the standard notation in (5.1), with the understanding that
the deformation gradient F in what follows in this section is FSEI, and that Fg will have the form (5.12), so
that the “growth” represented by Fg refers only to in-plane expansion of the SEI.

5.1 Kinematics

We denote by B the reference configuration for the SEI. An arbitrary material point of B is denoted by X,
and a motion of B is a smooth one-to-one mapping x = χ(X, t) with deformation gradient, velocity, and
velocity gradient given by1

F = ∇χ, v = χ̇, L = grad v = ḞF−1. (5.3)

Following modern developments of large-deformation plasticity theory (cf., e.g., Gurtin et al., 2010) and
growth theory (cf., e.g., Kuhl, 2014), we base our theory on the multiplicative decomposition (5.1) of the
deformation gradient. Where, suppressing the argument t:

(i) Fg(X) represents the local distortion of the material neighborhood of X due to growth; and

(ii) Fe(X) represents the subsequent stretching and rotation of this coherent but distorted material neigh-
borhood, and thereby represents a corresponding elastic distortion.

We refer to Fg and Fe as the growth and elastic distortions, respectively, and we refer to the local space at
X represented by the range of Fg(X), as the intermediate space at X.

As is standard, we assume that

J
def
= det F > 0, (5.4)

and hence, using (5.1),

J = JeJg, where Je
def
= det Fe > 0 and Jg

def
= det Fg > 0, (5.5)

so that Fe and Fg are invertible.
The right polar decomposition of Fe is given by

Fe = ReUe, (5.6)

1Notation: We use standard notation of modern continuum mechanics Gurtin et al. (2010). Specifically: ∇ and Div denote
the gradient and divergence with respect to the material point X in the reference configuration; grad and div denote these
operators with respect to the point x = χ(X, t) in the deformed body; a superposed dot denotes the material time-derivative.
Throughout, we write Fe−1 = (Fe)−1, Fe−> = (Fe)−>, etc. We write trA, symA, skwA, A0, and sym0A respectively, for
the trace, symmetric, skew, deviatoric, and symmetric-deviatoric parts of a tensor A. Also, the inner product of tensors A and
B is denoted by A :B, and the magnitude of A by |A| =

√
A :A.
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where Re is a rotation, while Ue is a symmetric, positive-definite tensor with

Ue =
√

Fe>Fe. (5.7)

As is standard, we define the elastic right Cauchy-Green tensor by

Ce = Ue2 = Fe>Fe. (5.8)

By (5.3)3 and (5.1),
L = Le + FeLgFe−1, (5.9)

with
Le = ḞeFe−1, Lg = ḞgFg−1. (5.10)

We define the elastic and growth stretching and spin tensors through

De = sym Le, We = skw Le,

Dg = sym Lg, Wg = skw Lg,

}
(5.11)

so that Le = De + We and Lg = Dg + Wg.
Since an increase in thickness of the SEI layer in a direction perpendicular to the anode surface does not

result in generation of “growth stresses”, we have modeled SEI growth as two separate processes (cf. Section
3): (a) deposition, which results in a stress-free increase in thickness, and (b) area growth which gives rise
to growth stresses because of the constraint of the substrate. Accordingly, we make the following additional
kinematical assumptions concerning SEI growth. Let ΠR(X) denote a plane through an infinitesimal neigh-
borhood of X on the surface of the anode oriented by a unit normal vector mR(X). Then, as a specific model
for Fg we consider isotropic area growth, described by

Fg = mR ⊗mR + λg⊥ (1−mR ⊗mR), (5.12)

where λg⊥ represents the growth stretch in the plane ΠR perpendicular to mR. Futher, we define

εg⊥
def
= lnλg⊥, (5.13)

as a corresponding growth strain, and introduce an

area growth ratio Θg,

which represents the ratio of the area normal to mR in the intermediate configuration to the area normal to
mR in the reference configuration. Due to our assumption of pure in-plane growth, Θg is identically equal
to Jg and related to λg⊥ as follows:

Θg ≡ Jg = (λg⊥)2. (5.14)

Thus, note that
Θ̇g = 2Θg ε̇g⊥. (5.15)

Since,
Ḟg = λ̇g⊥ (1−mR ⊗mR), (5.16)

and

Fg−1 = mR ⊗mR +
1

λg⊥
(1−mR ⊗mR), (5.17)

using (5.10)2, (5.17), and (5.13) we obtain

Lg = ε̇g⊥ (1−mR ⊗mR). (5.18)

Upon using (5.15) in (5.18) gives
Lg = (Θ̇gΘg−1) Sg, (5.19)

6



where

Sg
def
=

1

2
(1−mR ⊗mR). (5.20)

We restrict attention to circumstances in which

Θ̇g ≥ 0, (5.21)

so that in-plane growth is irreversible. Note that Lg is symmetric, so that

Lg ≡ Dg, (5.22)

and
Wg = 0. (5.23)

5.2 Free energy imbalance

Introducing the Helmholtz free energy ψR per unit reference volume, the classical local free-energy imbalance
under isothermal conditions is (Gurtin et al., 2010),

ψ̇R −TR : Ḟ ≤ 0 , (5.24)

where, with TR denoting the standard Piola stress, the term TR : Ḟ in (5.24) represents the stress-power per
unit reference volume.

Recall that the Piola stress TR is related to the symmetric Cauchy stress T by

TR = J T F−>. (5.25)

Thus, using (5.1), (5.10)2, (5.14), and (5.25), the stress-power may be written as

TR : Ḟ = TR : (ḞeFg + FeḞg),

= (TRFg>) : Ḟe + (Fe>TR) : Ḟg,

= Θg
(

(JeFe−1TFe−>) : (Fe>Ḟe) + (CeJeFe−1TFe−>) : Lg
)
. (5.26)

In view of (5.26), we introduce two new stress measures:

• The elastic second Piola stress,

Te def
= JeFe−1TFe−>, (5.27)

which is symmetric on account of the symmetry of the Cauchy stress T.

• The Mandel stress,

Me def
= CeTe, (5.28)

which in general is not symmetric.

Further, from (5.8)
Ċe = Ḟe>Fe + Fe>Ḟe . (5.29)

Thus, using the definitions (5.27), (5.28) and the relation (5.29), the stress-power (5.26) may be written as

TR : Ḟ = Θg
(

1
2Te : Ċe + Me : Lg

)
. (5.30)

Using (5.30) in (5.24), and using (5.19) allows us to write the free energy imbalance as

ψ̇R −Θg
(
1
2Te : Ċe

)
− Θ̇gMe : Sg ≤ 0 . (5.31)

Remark. For brevity we have not discussed invariance properties of the various fields appearing in our
theory. However, such considerations are straight-forward and extensively elaborated upon in the context
of plasticity theories, which have a similar structure, by Gurtin et al. (2010). Here, we simply note that all
quantities in the free energy imbalance (5.31) are invariant under a change in frame.
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5.3 Energetic constitutive equations

Guided by the free-energy imbalance (5.31), we first consider the following set of constitutive equations for
the free energy ψR and the stress Te:

ψR = ψ̄R(Ce,Θg),

Te = T̄e(Ce,Θg).

}
(5.32)

Substituting the constitutive equations (5.32) into the dissipation inequality, we find that the free-energy
imbalance (5.31) may then be written as

(∂ψ̄R(Ce,Θg)

∂Ce
−Θg

(
1
2 T̄e(Ce,Θg)

))
: Ċe −

(
−∂ψ̄R(Ce,Θg)

∂Θg
+ Me : Sg

)
Θ̇g ≤ 0 . (5.33)

This inequality is satisfied provided that the free energy determines the stress Te through the “state relation”

Te = Θg−1
(

2
∂ψ̄R(Ce,Θg)

∂Ce

)
, (5.34)

together with the dissipation inequality
FΘ̇g ≥ 0, (5.35)

where
F def

= A+ Me : Sg (5.36)

represents a thermodynamic force conjugate to Θ̇g, with

A(Ce,Θg)
def
= −∂ψ̄R(Ce,Θg)

∂Θg
, (5.37)

representing an energetic constitutive contribution to F — called the affinity (cf., e.g., Loeffel and Anand,
2011).

5.4 Dissipative constitutive equation

Guided by (5.35), we presume that the area expansion rate Θ̇g is given by a constitutive equation

Θ̇g = ˆ̇Θg(Θg,F) ≥ 0, (5.38)

such that F Θ̇g > 0 holds whenever Θ̇g > 0.

5.5 Specialization of the constitutive equations

5.5.1 Free energy

Next, restricting ourselves to an isotropic elastic response for the SEI, the free energy function ψ̄R(Ce,Θg) is
taken as an isotropic function of its arguments. An immediate consequence is that the free energy function
has the representation

ψ̄R(Ce,Θg) = ψ̆R(ICe ,Θg), (5.39)

with
ICe =

(
I1(Ce), I2(Ce), I3(Ce)

)

the list of principal invariants of Ce. Next, the spectral representation of Ce is

Ce =

3∑

i=1

ωei r
e
i ⊗ rei , with ωei = λe 2i , (5.40)
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where (re1, r
e
2, r

e
2) are the orthonormal eigenvectors of Ce and Ue, and (λe1, λ

e
2, λ

e
3) are the positive eigenvalues

of Ue. Let

Ee def
= ln Ue =

3∑

i=1

Eei rei ⊗ rei , with Eei
def
= lnλei , (5.41)

denote the logarithmic elastic strain. With the logarithmic elastic strain defined by (5.41), for isotropic
materials we henceforth consider a free energy of the form

ψR = ψ̂R(IEe ,Θg), (5.42)

with IEe a list of principal invariants of Ee, or equivalently a list of principal values of Ee. Then, straight-
forward calculations (cf., e.g., Anand and Su, 2005, Section 7.2) show that the Mandel stress is symmetric
and given by

Me = Θg−1

(
∂ψ̂R(IEe ,Θg)

∂Ee

)
, (5.43)

and the corresponding Cauchy stress is given by

T = Je−1ReMeRe>. (5.44)

Next, we consider the free energy to be a separable function of the form

ψ̂R(IEe ,Θg) = ψe(IEe ,Θg) + ψchem(Θg). (5.45)

Here:

(i) ψe is an elastic energy given by

ψe(IEe ,Θg) = Θg
(
1
2Ee :CEe

)
︸ ︷︷ ︸

ψe
0

, C def
= 2GI +

(
K − 2

3
G
)
1⊗ 1, (5.46)

where C is the elasticity tensor, with I and 1 the fourth- and second-order identity tensors, and the
parameters

G > 0, K > 0, (5.47)

are the shear modulus and bulk modulus, respectively. The term ψe0 in (5.46) is an elastic energy
measured per unit volume of the intermediate space; multiplication by Θg converts it to an energy
measured per unit volume of the reference space. This is a simple generalization of the classical strain
energy function of infinitesimal isotropic elasticity to moderately large elastic strains (Anand, 1979,
1986).

(ii) ψchem is a chemical energy related to the SEI reaction. We assume the following simple linear relation
(cf., e.g., Loeffel and Anand, 2011)

ψchem = H(1−Θg), (5.48)

where the parameter H > 0 represents a chemistry modulus. Thus, as Θg increases from unity the
free-energy decreases, which implies that area growth is energetically favorable.

Thus
ψR = Θg

[
1
2Ee :CEe

]
+H(1−Θg). (5.49)

Then, by (5.43), (5.37), and (5.46), the Mandel stress and the affinity are given by

Me = CEe = 2GEe
0 +K(trEe)1,

A = H −
[
1
2Ee :CEe

]
.

(5.50)

Using (5.50)1, (5.44), and (5.41) the Cauchy stress T is given by

T = Je−1 (2GEe
H + (K − (2/3)G)(tr Ee

H)1) with Ee
H

def
= ReEeRe>, (5.51)

where Ee
H is Hencky’s spatial logarithmic strain.

Also, from (5.50)2 and (5.36) the “driving force” F for Θ̇g is

F = H + Me : Sg − 1
2Ee :CEe. (5.52)
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5.5.2 Evolution equation for Θg

Guided by Kuhl (2014), we choose a simple special form for (5.38),

Θ̇g =




k

(
1− Θg

Θg
max

)
F if F > 0,

0 otherwise,
(5.53)

where, k > 0 is a positive-valued (possibly temperature-dependent) parameter with units of m3/(J·sec), and
Θg

max is the maximum area growth.
This completes the constitutive theory for modeling the in-plane expansion of the SEI.

6 Summary of a theory for lithium intercalation coupled with
large elastic deformation

In order to model the diffusion of Li in the anode, and the resulting volumetric expansion/contraction of
the anode due to Li intercalation, we make use of our recently published theory for species diffusion coupled
with large elastic deformations (Di Leo et al., 2014). The theory of Di Leo et al. (2014) was formulated to
also account for phase separation. Here we restrict our attention to a simplified version of the theory which
neglects phase separation. The simplified version of the theory, using notation and terminology essentially
identical to that of the previous section, is summarized below:

6.1 Constitutive equations

1. Kinematics. The deformation gradient is multiplicatively decomposed into an elastic distortion Fe,
and a chemical distortion Fc through

F = FeFc , J = JeJc. (6.1)

2. Chemical distortion. We take the chemical distortion to be spherical and to depend on the Li
concentration,

Fc = (Jc)
1/3

1 with Jc = 1 + Ω(c− c0) > 0, (6.2)

where Ω is a constant partial molar volume of the intercalating Li in the body, with c0 the initial
concentration.

3. Stress. The Mandel and Cauchy stress tensors are given by

Me = 2GEe + (K − (2/3)G)(trEe)1,

T = Je−1 (2GEe
H + (K − (2/3)G)(trEe

H)1) , with Ee
H

def
= ReEeRe>.

(6.3)

4. Chemical Potential. The chemical potential of the Li in the anode is given by

µ = µ0 +Rϑ ln

(
c̄

1− c̄

)
− Ω

1

3
trMe, (6.4)

where c̄
def
= c/cmax is the normalized Li concentration, with cmax the maximum Li concentration, R

is the gas constant, ϑ is the temperature, and µ0 is a constant reference chemical potential. In our
calculations we consider only isothermal conditions at ϑ = 300K.

5. Species flux. The flux jR of the intercalating Li is taken to be linear in the gradient of the chemical
potential,

jR = −m∇µ, (6.5)

where the mobility m of the Li is a function of the concentration given by

m =
D0

Rϑ
c(1− c̄), (6.6)

with D0 a constant diffusion coefficient.
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7 Governing partial differential equations. Boundary conditions

In the absence of non-inertial body forces and neglect of inertial forces, standard considerations of balance
of forces, when expressed spatially in the deformed body B = χ(B), give that the symmetric Cauchy stress
tensor T satisfies the force balance

div T = 0. (7.1)

With Su and St denoting complementary subsurfaces of the boundary ∂B of the deformed body, we consider
a pair of boundary conditions in which the displacement u = x−X is specified on Su and the surface traction
on St for a time interval t ∈ [0, T ]:

u = ŭ on Su × [0, T ],

Tn = t̆ on St × [0, T ].

}
(7.2)

Then (7.1), the constitutive equations for T expressed in terms of the deformation, together with (7.2)
yields a boundary value problem for the displacement field u(x, t). The field equation (7.1) and boundary
conditions (7.2) are taken to hold for the anode, the electrolyte, and the SEI, with the stress T given by
their respective constitutive equations.

We neglect diffusion of Li in the SEI. Mass balance for diffusion of Li in the anode requires that the
balance equation

ċ = −Div(jR) (7.3)

hold in the anode, with the flux given by (6.5). The initial condition for c is taken as

c(X, 0) = c0. (7.4)

Letting Sµ and SjR denote complementary subsurfaces of the boundary ∂B of the reference body B describing
the anode material, we consider a pair of simple boundary conditions in which the chemical potential is
specified on Sµ and the species flux on SjR :

µ = µ̆ on Sµ × [0, T ],

jR · nR = j̆ on SjR × [0, T ].

}
(7.5)

7.1 Numerical implementation of the theory

We have implemented our SEI growth theory, described above in Sections 4 and 5, in the implicit finite
element program Abaqus/Standard (2013) by writing a a 2D axisymmetric 4-node linear isoparametric
quadrilateral user element subroutine (UEL).2 We have coupled this numerical capability for SEI growth
with our previously developed user element subroutine (UEL) for simulation of lithiation and delithiation of
electrode particles, Section 6. For brevity, we omit all details of our numerical implementation.

In the next two sections we report on the results from our numerical simulations for the following two
case studies:

1. A study of SEI formation on the surface of a flat anode undergoing cyclic lithiation and delithiation,
as in the paper of Mukhopadhyay et al. (2012).

2. A study of SEI formation on the surface of spherical and spheroidal graphite particles undergoing cyclic
lithiation and delithiation.

2We have also implemented a 2D plane-strain 4-node linear isoparametric quadrilateral element, and a 3D 8-node linear
isoparametric brick; however, we do not show any simulations using these elements in this paper.
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8 SEI formation on the surface of a flat anode undergoing cyclic
lithiation and delithiation

The purpose of this section is to use the novel experimental results of Mukhopadhyay et al. (2012) to
calibrate the material parameters in our theory and to verify whether our theory is able to reproduce their
experimental results with reasonable quantitative accuracy.

In their experiments Mukhopadhyay et al. (2012) did not continuously monitor the thickness of the SEI
layer as it grows, they only reported that the thickness of the SEI layer after 811 hours of cyclic lithiation was
h ≈ 100nm. Thus, guided by the experimental results of Smith et al. (2011) who showed that the loss of Li
in the battery (capacity fade) is proportional to the square root of time, we assume (as discussed previously
in Section 4) that

h(t) = h(tf )
√
t/tf , with tf = 811 hours and h(tf ) = 100 nm. (8.1)

In order to estimate the material parameters in our in-plane SEI growth model, we carried out a finite-
element simulation of the experiments of Mukhopadhyay et al. (2012), which we describe below. Their
physical experiment was performed on a 1 in-diameter quartz substrate, as shown schematically in Fig. 6(a).
In order to minimize the computational effort, we considered a small section of the axisymmetric plate
immediately adjacent to the axis of radial symmetry as our simulation domain, and meshed it with a
single column of elements, as shown schematically in Fig. 6(b). The electrolyte/SEI layer was meshed with
150 elements whose constituve behavior is described by the deposition and expansion model developed in
Sects. 4 and 5. The graphite layer was meshed with 40 elements whose constitutive behavior is described by
the coupled deformation-diffusion theory summarized in Sect. 6. Finally, the quartz layer was meshed with
30 elements which are prescribed a simple linear isotropic elastic constitutive behavior.

In our simulations we neglect the diffusion of Li-ions through the SEI, which effectively means that we
neglect any resistance offered by the SEI to the diffusion of Li in the graphite. Henceforth, for brevity, we
will use the terms “fully delithiated” and “fully lithiated” to describe the graphite layer when it has an
average normalized Li concentration of c̄ = 0.05 and c̄ = 0.95, respectively.

The boundary/initial conditions that we used in our simulations are as follows:

• Mechanical boundary conditions: Consistent with the radial symmetry of the problem, the nodes
along the edge AD in Fig. 6(b) are constrained to have zero radial displacement. All nodes on the edge
EH are constrained to remain on a straight line as defined by the nodes at points E and H. The line
formed by the nodes along edge EH is free to move and rotate, and it is from the rotation of this line
with respect to its initial vertical position that we computed the curvature of the plate.

• Initial concentration of Li in the graphite: The initial concentration of lithium in the graphite
layer is taken as a low value of c̄0 = 0.05. In order to model the experimentally-observed stress
generated during the chemical vapor deposition of the graphite, we use an alternative form of (6.2),
viz.,

Jc = 1 + Ω(c− c0) + Jc0 , (8.2)

where Jc0 accounts for the initial strain mismatch in the graphite. This is used purely as a numerically-
expedient tool for achieving a residual stress mimicking the stress developed during the chemical vapor
deposition of the graphite layer on the quartz substrate in the experiments.

• Chemical boundary conditions for the graphite: The nodes on the edges BC, CF, and GF in
Fig. 6 are prescribed to have zero outwards flux, i.e. j̆ = 0 (cf. eq. (7.5)2). As mentioned above, we
neglect the diffusion of Li-ions through the SEI and directly prescribe a constant flux of Li on the edge
BG. Further, in order to study the effect of the lithiation/delithiation of the graphite on the process
of SEI deposition and growth, in this particular geometry, we consider two separate cases:

(a) Simulation with lithiation/delithiation of the graphite: In their experiments, Mukhopad-
hyay et al. used a charge rate (C-rate) of C/10, which in the absence of capacity fade would
yield a lithiation/delithiation cycle with a duration of 10 hours. Due to the capacity fade, the
duration was shorter and changed from cycle to cycle. Since we do not model capacity fade in
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the graphite, we adjusted the C-rate to C/8.1, which corresponds to 50 cycles over the entire 811
hours of their experiment. The magnitude of the flux was then computed accordingly to get from
the fully delithiated state to the fully lithiated state in a time thc = 8.1 hours. That is,

j̆ =

{
−1.8 · 10−7 mol/(m2sec) 2n− 2 ≤ t/thc < 2n− 1,

1.8 · 10−7 mol/(m2sec) 2n− 1 ≤ t/thc < 2n,
(8.3)

where n ∈ [1, . . . ,N] is the cycle number. Such an idealized square-cyclic value for the boundary
flux is schematcally shown in Fig. 7.

(b) Simulation without lithiation/delithiation of the graphite: In this case we ignored the
lithiation and delithiation of the graphite and simply prescribed

j̆ = 0 (8.4)

along the edge BG. Without any changes in Li concentration, the graphite responds as a purely
elastic solid.

8.1 Material parameters

Using (5.52) in (5.53) we recall next the evolution equation for the area ratio Θg:

Θ̇g =





k

(
1− Θg

Θg
max

)
(H + Me : Sg − 1

2Ee :CEe)︸ ︷︷ ︸
F

if F > 0,

0 otherwise.

(8.5)

At this stage of research in the field, not enough is known to fully characterize the material parameters
appearing in such an evolution equation. In our simulations, for pragmatic reasons, we choose a sufficiently
large value of the chemical modulus H so that H � (Me : Sg − 1

2Ee : CEe), and the steady state at which
the evolution of Θg stops, occurs when Θg = Θg

max. Thus, the rate at which the evolution of area growth
strains occurs within the SEI is then primarily controlled by 1/(kH), which represents a characteristic time
for the evolution of Θg. Specifically, we choose values of

H = 8× 106 MJ/m3 and k = 10−7 m3/(MJ · sec), (8.6)

so that the characteristic time is
1/(kH) = 1.25 sec. (8.7)

With this choice for the parameter pair (k,H), the area swelling ratio Θg in a particular layer of SEI
elements reaches its maximum value Θg

max, before the next layer of SEI elements is deposited according to
the deposition scheme described by (8.1).

With k and H fixed at the values in (8.6) above, the rest of the material parameters for the SEI, as well
as the parameters for the graphite and the quartz that we have used to fit the experiments of Mukhopadhyay
et al. (2012), are summarized in Table 1.
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Table 1: Material parameters for SEI, graphite, and quartz used to fit the experiments of Mukhopadhyay et
al. (2012)

Layer Parameter Value Source

SEI
ES 25 GPa

FittedνS 0.3

Θg
max 1.088

Graphite

EG 100 GPa
Qi et al. (2010)νG 0.3

Ω 1.249 · 10−7 m3/mol

cmax 2.914 · 104 mol/m3

Christensen and Newman (2006)D0 10−13 m2/s

Quartz
EQ 72 GPa

De Jong et al. (2000)
νQ 0.165

Remark. The values for EG and Ω for graphite used here are an adaptation of the results from a density
functional theory (DFT) calculations by Qi et al. (2010). In their density functional theory analysis, Qi
et al. (2010) predicted a 1.2% stretch of all material fibers in the basal plane. A corresponding value for
isotropic swelling which yields 1.2% stretch of all material fibers is Ωcmax = 3.63 · 10−2. Further, they found
the stiffness in the basal-plane to vary with respect to composition, with an average of C11 ∼ 1047 GPa.
However, we find these DFT-based calculated values to be too high, and inconsistent with the experimental
results of Mukhopadhyay et al. (2012). Accordingly, in our simulations we have chosen substantially reduced
values for the stiffness EG and the total swelling Ωcmax — values which, when compared to those based on
Qi et al. (2010), are lower by a factor of ten.

8.2 Simulation results

As summarized in Section 1, Mukhopadhyay et al. (2012) interpreted their experimentally-measured cur-
vatures in terms of a nominal stress which was calculated using Stoney’s formula (1.1); cf. Fig. 3. Since
our numerical simulations directly give us the results for the curvature changes, we have converted their
reported stress values back to curvature values by using (1.1), the material parameters for the quartz in
Table 1, and the thicknesses of the quartz and graphite layers presented in Fig. 6. Their experimental cur-
vature versus time results are shown as a blue line in Fig. 8 (a). The corresponding curvature versus time
from our finite element simulation results are also plotted in this figure as a red line. The two important
experimentally-observed phenomena are clearly captured by our numerical simulations:

(i) First, there as an overall decrease of the curvature κ as a function of time — this is due to the growth
of the SEI layer.

(ii) Second, overlaid on the overall decrease in curvature, there is a cyclic oscillation of the curvature —
this is due to the lithiation/delithiation cycles of the graphite layer.

Highlighted in Fig. 8 (a) by blue dots are the experimental curvature measurements after a complete
lithiation/delithiation cycle. These points correspond to instances when the graphite layer is essentially free
of Li. These experimental curvature measurments after full lithiation/delithiation cycles are replotted in
Fig. 8(b) as blue dots. In this figure we also show the results of our numerical simulations without the
lithiation/delithiation of the graphite, that is, the case corresponding to the boundary condition (8.4); this
result is shown as a red line. The drop in curvature with time in the numerical results in Fig. 8 (b) is due
entirely to the growth of the SEI layer. This numerically-predicted curvature history agrees well with the
experimental curvature measurements taken after full lithiation/delithiation cycles.
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In in Fig. 8 (a) the experimental results show an increase in the amplitude of the cyclic oscillations of the
curvature which, as noted by Mukhopadhyay et al. (2012), are consistent with an increase in the capacity of
the graphite. In our simulations, we have not considered any variation in the capacity of the graphite during
cycling. Thus, the amplitude of the oscillations in the stress in our simulations remain constant during
cycling.

The results in Fig. 8 are extremely encouraging, they show that our theory and numerical simulation ca-
pability — with suitable choices for the material parameters — can reproduce the sophisticated experimental
results of Mukhopadhyay et al. (2012) with reasonable quantitative accuracy.

9 SEI formation on the surface of spherical and spheroidal graphite
particles undergoing cyclic lithiation and delithiation

In this section we numerically simulate SEI growth on a spherical-shaped anode particle during cyclic lithi-
ation/delithiation, and compare the results obtained for a spherical particle against those for a particle
geometry which is spheroidal rather than perfectly spherical.

Andersson et al. (2003) have reported on their measurements of SEI growth on graphite particles with an
average diameter of ≈ 3µm. In their experiments they performed two full lithiation/delithiation cycles at a
C-rate of C/7. After cycling and washing of the anode, they measured an SEI thickness of ≈ 45 nm. Guided
by the experiments of these authors, in our simulations we choose the dimensions of the graphite particles
to have a diameter of ≈ 3µm. Specifically, we consider the spherical- and spheroidal-shaped particles
schematically shown in Fig. 9: the spherical particle is taken to have a radius of 1.5µm, and the spheroidal
particle to have a major axis of 2µm and a minor axis of 1µm. Due to the symmetries in the geometry,
we mesh only one-half of the axisymmetric profile of each particle. Both particles are meshed using 7500
elements, together with an electrolyte/SEI layer which is meshed using 5000 elements — with 50 elements
in the direction normal to the anode surface and 100 elements along the surface of the anode particle. The
properties for the SEI are taken as those calibrated in Section 8 and listed in Table 1. However, following
Christensen and Newman (2006), for an “isotropic” graphite anode we use,

EG = 15GPa, νG = 0.3, Ω = 2.745 · 10−6 m3/mol, cmax = 2.914 · 104mol/m
3
, D0 = 10−13 m2/s. (9.1)

Further, based on the work of Andersson et al. (2003), we prescribe the thickness of the SEI to evolve
according to (cf., eq. (8.1))

h(t) = h(tf )
√
t/tf , with tf = 28h and h(tf ) = 45 nm, (9.2)

With reference to Fig. 9, the boundary and initial conditions that we used in our simulations are as
follows:

• Mechanical boundary conditions: Symmetry conditions are prescribed on edges BE and BD, where
the nodes along BE are constrained to have zero radial displacement while the nodes along BD are
constrained to have zero vertical displacement. The exterior boundary DE is taken to be traction-free.

• Chemical initial conditions: The initial concentration of Li in the graphite particles is taken to
have a low value of c̄0 = 0.05.

• Chemical boundary conditions: In accordance with the symmetry conditions on edges BA and
BC, the nodes along these edges are prescribed to have zero outwards flux, i.e. j̆ = 0. As in Sect. 8,
we neglect diffusion of Li-ions through the electrolyte/SEI layer, and prescribe a constant flux of Li
ions on the edge AC. We consider the following two cases:

(a) Simulations with lithiation/delithiation of the graphite particle: First, we account for
the lithiation and delithiation of the graphite anode particle, concurrently with SEI growth, by
considering a non-zero value of the flux prescribed on the anode edge AC. Specifically, consistent
with the experiments of Andersson et al. (2003) we prescribe a flux according to a C-rate of C/7;
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viz., a flux which takes the particle from a fully delithiated state into a fully lithiated state in 7
hours and vice verse:

j̆ =

{
−5.20 · 10−7 mol/(m2sec) 2n− 2 ≤ t/thc < 2n− 1

5.20 · 10−7 mol/(m2sec) 2n− 1 ≤ t/thc < 2n
(9.3)

for the spherical particle, and

j̆ =

{
−4.26 · 10−7 mol/(m2sec) 2n− 2 ≤ t/thc < 2n− 1

4.26 · 10−7 mol/(m2sec) 2n− 1 ≤ t/thc < 2n
(9.4)

for the spheroidal particle, with thc = 7 hours. The difference in the prescribed fluxes for the
spherical and spheroidal particles is due to their different surface-area-to-volume ratios. As in the
experiments of Andersson et al., in our simulations we carry out two full lithiation/delithiation
cycles.

(b) Simulations without lithiation/delithiation of the graphite particle: In order to study
the effect of graphite swelling on the stresses in the SEI layer we have also performed simulations
with no lithiation of the graphite by simply prescribing a zero normal flux along the edge AC,

j̆ = 0.

We have applied the same SEI growth rates in order to have results comparable to the simulations
with lithiation/delithiation.

The results from the numerical simulations for the spherical and spheroidal-shaped particles are discussed
in the next two subsections.

9.1 Simulation results for SEI growth on a spherical anode particle

As described above, the simulations were run for two complete cycles of lithiation and delithiation of
the anode particle, with simultaneous deposition and expansion of the SEI. The two full cycles of lithi-
ation/delithiation are of course equivalent to four half-cycles — each half-cycle consisting of either fully
lithiating or fully delithiating the anode particle. Figs. 10(a) and (b) show plots of the variation of the hoop
stress Tθθ = eθ ·Teθ (in a cylindrical coordinate system, cf. Fig. 10) within the SEI layer at the north-pole
of the particle, as a function of the outward distance from the surface of the anode; cf. the schematic on the
left of Fig. 10(a). These figures thus show the variation of the “hoop-stress” in the SEI as a function of the
outward distance from the surface of the anode.

Fig. 10(a) compares the result for the hoop stress variation in the SEI for a simulation with two complete
(or four half-cycles) of lithiation/delithiation of the graphite (solid line), against the result for a simulation in
which the graphite is not lithiated (dashed line). At the end of the two full-cycles the graphite is delithiated,
as it is in the case when the graphite is never lithiated. In the case of no lithiation of the graphite the hoop
stress in the SEI layer is almost uniform at a value of approximately −1.5 GPa, whereas with cyclic lithiation
the hoop stress varies in the approximate range −2.3 GPa to −1.5 GPa across the thickness of the SEI layer.

The variation in hoop stress within the SEI thickness for the case of cyclic lithiation arises due to the
fact that as the SEI deposition and growth is occurring, the underlying graphite is also undergoing relatively
large volumetric changes due to the intercalation of Li. This result is easily understood using the schematic
shown in Fig. 11. Consider a fully lithiated particle shown in Fig. 11(a) onto which an SEI layer forms,
Fig. 11(b). The SEI layer which forms will be in compression due to the inherent growth hoop stress which
arises during the process of SEI expansion. Once the particle delithiates, see Fig. 11(c), the SEI layer will
develop higher compressive stresses due to volumetric shrinking of the graphite particle onto which the
SEI layer is attached. The regions of the SEI in Fig. 10(a) which have the largest compressive stresses of
∼ −2.3 GPa thus correspond to layers of SEI which were formed when the particle was fully lithiated.

To further illustrate the importance of accounting for stress generation due to both the SEI growth and
the lithiation/delithiation of the underlying graphite particle, Fig. 10(b) shows the results of the simulation
with cyclic lithiation of the graphite at two different times: (i) at the end of 4 half-cycles when the anode
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is delithiated (solid line), and (ii) at the end of 3 half-cycles when the anode is fully lithiated (dashed line).
As expected, when the graphite is fully lithiated, the overall hoop stress profile through the thickness of the
SEI exhibits lower levels of compressive hoop stress than at the state when it is fully delithiated, since some
of the compressive stress is relieved by the volumetric swelling of the graphite anode when it is lithiated.

Of significant interest for judging the tendency for the SEI layer to delaminate from the anode particle
is the normal component of the traction, Tn = n ·Tn, where n is the outward unit normal to the anode/SEI
interface; cf. schematic on the left of Fig. 10(c). Figs. 10(c) and (d) show the variation of Tn at the
anode/SEI interface as a function of the normalized distance along the circumference of the particle, starting
from the north-pole of the particle. As before, Fig. 10(c) shows the result from a simulation with cyclic
lithiation/delithiation of the graphite (solid line) versus the result from a simulation in which the graphite
is not lithiated (dashed line). The normal stress profiles in this figure are computed at the end of four
half-cycles when the graphite is equally devoid of Li in both simulations. Note that the addition of cyclic
lithiation/delithiation of the graphite leads to the development of larger tensile normal stress Tn at the
anode/SEI interface. The larger value of Tn in the simulation with cyclic lithiation of the graphite is
consistent with the observation of the larger compressive hoop stress in the SEI layer for the same simulation,
cf. Fig. 10(a).

Finally, Fig. 10(d) shows the results for Tn for the simulation with cyclic lithiation of the graphite at two
different times: (i) at the end of 4 half-cycles when the anode is delithiatated (solid line), and (ii) at the end
of 3 half-cycle when the anode is fully lithiated (dashed line). When the particle is lithiated (dashed line)
the normal interface stress is ∼ 55 MPa, whereas at when the particle is delithiated (solid line) the normal
stress is ∼ 115 MPa. This illustrates the contribution of the delithiation of graphite anode to the formation
of additional normal stress along the anode/SEI interface.

9.2 Simulation results for SEI growth on a spheroidal anode particle

In this section we present the results of our simulations for a spheroidal graphite particle and compare (i)
the hoop stress distribution in the SEI layer, as well as (ii) the normal stress distribution at the anode/SEI
interface, against the corresponding results for a spherical particle. The results in this section are presented
in the same fashion as was done in Sect. 9.1 for the case of a spherical particle.

Figs. 12(a) and (b) show plots of the variation of the hoop stress at the north-pole of the spheroidal
particle in the SEI layer as a function of the distance from the surface of the anode. These results are similar
to those in Figs. 10(a) and (b) for a spherical particle.

Figs. 12(c) and (d) show the normal traction Tn at the anode/SEI interface as a function of the normalized
distance along the circumference of the particle. These results differ significantly from those obtained using a
spherical particle; compare with Figs. 10(c) and (d). In the spheroidal particle the normal traction along the
anode/SEI interface in the vicinity of the north-pole of the particle, is substantially higher than the normal
traction in a spherical particle. Focusing on the normal traction after 4 half-cycles — when the particle
is fully delithiated — we see that the normal traction for the spheroidal particle, Fig. 12(d) (solid line),
reaches a maximum value of ∼ 320 MPa at the north-pole. In contrast, the normal traction in the sphere,
Fig. 10(d) (solid line), reaches a maximum value of ∼ 120 MPa, which is constant along the circumference
of the particle.

The substantial increase in normal tensile traction at the anode/SEI interface for a spheroidal (non-
spherical) particle — as compared to a spherical particle — is important in developing a more complete
understanding of the role of particle shape in increasing (or decreasing) the potential for delamination of a
SEI layer from an anode particle.

Remark. In order to determine whether the SEI delaminates from the anode, the maximum calculated value
of Tn must be compared with the cohesive strength of the interface. However, to the best of our knowledge,
measurements of cohesive strengths of SEI/anode interfaces have not been reported in the literature. Still,
examining the evolution of the normal stress Tn at the interface provides some insight as to when the SEI
might delaminate. Fig. 13 shows the evolution of Tn near the north pole of the spheroidal particle for two
full lithiation/delithiation cycles. In the first half-cycle of lithiation the normal stress Tn increases, while in
the second half-cycle of lithiation Tn decreases. However Tn increases during both delithiation half-cycles
— which is to be expected because the graphite shrinks away from the SEI layer during delithiation. Thus,
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once an SEI layer has been formed, delamination of this layer from the anode is most likeley to occur during
delithiation.
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10 Concluding Remarks

We have formulated a new continuum-mechanical theory and a finite-element-based capability for the simu-
lation of growth of a solid electrolyte interphase layer at an anode particle in a Li-ion battery. Our simulation
capability accounts for the stress-generation due to the growth of a SEI layer, as well as the cyclic stresses
that are generated due to the lithiation and delithiation of the anode particle.

We have calibrated the material parameters in our theory by using available data from the literature, and
by using results from the substrate curvature experiments of Mukhopadhyay et al. (2012). The results that we
have presented in Section 8 are extremely encouraging; they show that our theory and numerical simulation
capability — with suitable choices for the material parameters — can reproduce the novel experimental
results of Mukhopadhyay et al. (2012) with reasonable quantitative accuracy.

The calibrated theory has been used to simulate SEI growth on a spherical and a spheroidal graphite
anode particle. Our simulations show that large non-uniform compressive hoop stresses are generated within
the SEI due to both the growth of the SEI and the lithiation/delithiation of the anode particle. Our study
shows that SEI layers which are formed on the anode while it is in an expanded/lithiated state will develop
higher compressive hoop stresses once the anode is subsequently delithiated. These findings are especially
important since they in turn affect the large normal tensile tractions which develop along the anode/SEI
interface — tractions which can lead to the delamination-type failure of the SEI and thus to accelerated
capacity fade. Our study of spheroidal versus spherical particles shows that spheroidal particles develop much
larger (order 3 times larger) normal tractions at certain points at the anode/SEI interface than spherical
particles do. As such, spheroidal particles are at a higher risk for potential delamination failure of the SEI.

Our work presents a first step in the modeling of SEI growth at active anode particles, and carrying out a
detailed stress analysis of the process. Much remains to be done; some important items that need attention
in the future include:

• The square-root of time growth for the thickening of the SEI in our model is something that has been
prescribed a-priori. In a more complete future theory the square-root of time growth might be the
outcome of more completely modeled diffusion-limited chemical reaction processes which involve the
electrolyte, electrons, and the resulting SEI (cf., e.g., Pinson and Bazant, 2013).

• Diffusion of Li through the SEI needs to be accounted for.

• Effects of anisotropic elasticity and anisotropic diffusion in the anode particles need to be accounted
for.

• Arbitrary three-dimensional particle shapes need to be studied.

• SEI growth on other types of anode particles, such as those made from silicon — which exhibits
significantly larger volume changes — needs to be studied.

Finally, there is a pressing need for the direct experimental measurement of the material properies of the
anode particles, the SEI layers, and the SEI/anode interfaces. This statement regarding experimental mea-
surement of material properies is true also for all other microscopic (and macrscopic) components of Li-ion
batteries.
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Figure 1: TEM micrograph of a SEI layer on a graphite anode. From Mukhopadhyay et al. (2012).
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Figure 2: A schematic of the observed plate-curvature changes in the experiments of Mukhopadhyay et al.
(2012): (a) the initially straight plate; (b) the curved plate after carbon deposition; (c) the curved plate,
with the charged graphite at the end of the first half-cycle; (d) the curved plate at the end of the first
charging/discharging cycle; (e) the curved plate, charged graphite after one and a half cycles; and (f) the
curved plate, discharged at the end of two cycles.
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Figure 3: Variation of electrical potential and nominal stress with time for the first 20 cycles of lithiation
and delithiation, as reported by Mukhopadhyay et al. (2012).

 SolidWorks Student License
 Academic Use Only
 SolidWorks Student License
 Academic Use Only
 SolidWorks Student License
 Academic Use Only
 SolidWorks Student License
 Academic Use Only
 SolidWorks Student License
 Academic Use Only
 SolidWorks Student License
 Academic Use Only
 SolidWorks Student License
 Academic Use Only
 SolidWorks Student License
 Academic Use Only
 SolidWorks Student License
 Academic Use Only
 SolidWorks Student License
 Academic Use Only
 SolidWorks Student License
 Academic Use Only
 SolidWorks Student License
 Academic Use Only
 SolidWorks Student License
 Academic Use Only
 SolidWorks Student License
 Academic Use Only
 SolidWorks Student License
 Academic Use Only
 SolidWorks Student License
 Academic Use Onlyer

ez
(b) (c)(a)

substrate

deposition

strain-free SEI

in-plane expansion

Figure 4: Idealization of SEI growth as a two-step process: (i) A “deposition” process in the direction normal
to the substrate, from (a) to (b), which involves the addition of mass to the system to create a “strain-free”
SEI layer. (ii) The “in-plane expansion” of the newly-deposited SEI layer, from (b) to (c).
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Figure 5: Schematic of the numerical simulation scheme for the deposition of an SEI layer.
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Figure 6: Plate geometry and a schematic of the single-column finite element mesh used in the simulations.
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Figure 7: Schematic of the prescribed flux used in simulating galvanostatic charging/discharging. Here thc
denotes the time for a half cycle of charging/discharging.
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Figure 8: Experimental curvature versus time data of Mukhopadhyay et al. (2012) compared with corre-
sponding results from finite element simulation: (a) Experimental data and simulations including lithia-
tion/delithiation of the graphite layer. (b) Experimental data for curvatures measured only at the end of
a complete lithiation/delithiation cycle compared against a numerical simulation without lithiation of the
graphite.
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Figure 9: Geometry and finite-element mesh of the spherical and spheroidal particles used in the simulations.
Due to the symmetry of the problem, only a quarter of the cross-section is meshed with axisymmetric
elements.
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Figure 10: Simulation results for a spherical anode particle: (a) and (b) show the hoop stress Tθθ in the SEI
layer as a function of the distance from the anode surface. (c) and (d) show the normal stress Tn at the
anode/SEI interface as a function of the normalized distance along the circumference of the interface. (a) and
(c) show results after 4 half-cycles (two full-cycles) for simulations including the cyclic lithiation/delithiation
of the anode (solid lines) and for simulations without lithiation of the graphite anode (dashed lines). (b)
and (d) show simulations with cycling of the anode after 3 half-cycles (dashed lines) when the graphite is
lithiated and after 4 half-cycles (solid lines) when the graphite is delithiated.
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Figure 11: Schematic of SEI growth on a lithiated graphite anode followed by delithiation of the anode. The
development of a compressive growth hoop stress, (a) to (b), is followed by further compression of the SEI
layer due to delithiation of the graphite, (b) to (c).

28



(a) (b)

0 15 30 45
−3

−2.5

−2

−1.5

−1

−0.5

0

distance from anode surface (nm)

ra
d
ia

l
st

re
ss

T
r
r

(G
P
a
)

 

 
Sim. w/ anode cycling
Sim. w/out anode cycling

0 15 30 45
−3

−2.5

−2

−1.5

−1

−0.5

0

distance from anode surface (nm)

ra
d
ia

l
st

re
ss

T
r
r

(G
P
a
)

 

 
4 half-cycles
3 half-cycles

0 15 30 45
−3

−2.5

−2

−1.5

−1

−0.5

0

distance from anode surface (nm)

ra
d
ia

l
st

re
ss

T
r
r

(G
P
a)

 

 
Sim. w/ anode cycling
Sim. w/out anode cycling

0 15 30 45
−3

−2.5

−2

−1.5

−1

−0.5

0

distance from anode surface (nm)

ra
d
ia

l
st

re
ss

T
r
r

(G
P
a)

 

 
4 half-cycles
3 half-cycles

(c) (d)

0 15 30 45
−3

−2.5

−2

−1.5

−1

−0.5

0

h
o
op

st
re

ss
T

θ
θ

(G
P
a
)

distance from anode surface (nm)
0 15 30 45

−3

−2.5

−2

−1.5

−1

−0.5

0

h
o
op

st
re

ss
T

θ
θ

(G
P
a
)

distance from anode surface (nm)

0 0.25 0.5 0.75 1
0

100

200

300

400

n
or

m
al

st
re

ss
T

n
(M

P
a)

normalized distance along circumference

0 0.25 0.5 0.75 1
0

100

200

300

400

n
or

m
al

st
re

ss
T

n
(M

P
a)

normalized distance along circumference

Figure 12: Simulation results for a spheroidal anode particle: (a) and (b) show the hoop stress Tθθ in the
SEI layer as a function of the distance from the anode surface. (c) and (d) show the normal stress Tn at
the anode/SEI interface as a function of the normalized distance along the circumference of the interface.
(a) and (c) show results after 4 half-cycles for simulations including the cyclic lithiation/delithiation of the
anode (solid lines) and for simulations without lithiation of the graphite anode (dashed lines). (b) and (d)
show simulations with cycling of the anode after 3 half-cycles (dashed lines) when the graphite is lithiated
and after 4 half-cycles (solid lines) when the graphite is delithiated.
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Figure 13: Variation of the normal interface traction Tn near the north pole of the spheroidal particle versus
time.
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