Stereoselective Ring-Opening Metathesis Polymerization (ROMP) of Methyl-N-(1-phenylethyl)-2-azabicyclo[2.2.1]hept-5-ene-3-carboxylate by Molybdenum and Tungsten Initiators

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://pubs.acs.org/doi/abs/10.1021/acs.macromol.5b00264</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Chemical Society (ACS)</td>
</tr>
<tr>
<td>Version</td>
<td>Author’s final manuscript</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://hdl.handle.net/1721.1/108581</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
</tbody>
</table>
Stereoselective Ring-Opening Metathesis Polymerization (ROMP) of Methyl-N-(1-phenylethyl)-2-azabicyclo[2.2.1]hept-5-ene-3-carboxylate by Molybdenum and Tungsten Initiators

Hyangsoo Jeong, Victor W. L. Ng, Janna Börner, and Richard R. Schrock*

Department of Chemistry, Massachusetts Institute of Technology 6-331, Cambridge, Massachusetts 02139

Email: rrs@mit.edu

Abstract

Ring-opening metathesis polymerization (ROMP) of methyl-N-(1-phenylethyl)-2-azabicyclo[2.2.1]hept-5-ene-3-carboxylate (PhEtNNBE; (S) and racemic) was investigated employing six molybdenum and tungsten imido alkylidene initiators and two tungsten oxo alkylidene initiators. Of the six initiators that we proposed should yield cis,syndiotactic-poly[(S)-PhEtNNBE], two molybdenum OHMT alkylidene initiators, Mo(NR)(CHMe2Ph)(pyr)(OHMT) (R = Ad or 2,6-Me2C6H3; OHMT = O-2,6-MesitylC6H3; pyr = pyrrolide) and two tungsten oxo alkylidene initiators, W(O)(CHMe2Ph)(2,5-dimethylpyrrolide)(PMe2Ph)(OR) (OR = OHMT or (R)-OB2Bitet where (R)-Br2BitetOH = (R)-3,3'-Dibromo-2'-(tert-butyldimethylsilyloxy)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl-2-ol) produced essentially pure cis,syndiotactic-poly[(S)-PhEtNNBE]. Essentially pure cis,isotactic-poly[(S)-PhEtNNBE] was formed when (S)-PhEtNNBE was polymerized by Mo(NAr')(CHCMe2Ph)(OBiphen_CF3)(thf) or W(NAr')(CHCMe2Ph)((S)-OBiphenMe) (OBiphen_CF3 = 3,3'-di-tert-butyl-5,5'-bistrifluoromethyl-6,6'-dimethyl-1,1'-biphenyl-2,2'-diolate; (S)-OBiphenMe = 3,3'-di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diolate). The best initiator for ROMP of rac-PhEtNNBE was Mo(NAd)(CHMe2Ph)(pyr)(OHMT) at 0 °C, which led to a polymer that is biased (~80%) toward a cis,syndiotactic structure and that contains alternating enantiomers in the chain (cis,syndio,alt-poly[(rac)-PhEtNNBE]).
INTRODUCTION

The development of "well-defined" alkylidene complexes of Mo,1 W,1 or Ru,2 in the last two decades has been of great benefit to the field of Ring-Opening Metathesis Polymerization (ROMP),3 since the nature of the initiator can be altered systematically and fundamental mechanistic issues can be addressed directly. In the last several years we have been developing molybdenum and tungsten catalysts for stereospecific ROMP, i.e., those that yield polymers with all cis C=C bonds and that have an isotactic or syndiotactic relationship between neighboring monomer units (dyads) in the polymer.4 Stereospecific polymerization of cyclic olefins is an important step toward controlling the bulk properties of a polymer as well as they can be.

Molybdenum and tungsten alkylidene initiators that contain a racemic chiral biphenolate ligand (M(NR)(CHR')(Biphen)) produce cis,isotactic polymers through enantiomorphic site control, while MonoAlkoxidePyrrrolide (MAP) initiators of Mo and W (M(NR)(CHR')(pyrroliode)(aryloxide)) produce cis,syndiotactic polymers.5 In MAP species the configuration of the metal usually inverts with every insertion of monomer, thereby causing the monomer to approach one side of the M=C bond and then the other.4 This "stereogenic metal control" has also allowed the synthesis of AB copolymers prepared from racemic monomers in which enantiomers are incorporated in an alternating fashion into the polymer chain.6 So far only Mo MAP catalysts have been successful in forming alternating polymers from endo,exo-2,3-dicarbomethoxynorbornene, endo,exo-2,3-dicyanonorbornene, and 1-methyl-2,3-dicarbomethoxy-7-oxanorbornene.6

At this stage, the tacticity of a highly tactic polymer prepared through ROMP can only be proven for polymers prepared from enantiomerically pure monomers.4 In that case the tacticity usually can be assigned readily through proton NMR spectroscopy. For example, stereoregular polymers have been prepared made from 2,3-dicarbomethoxynorbornadiene (or the pantolactonyl ester analog) or enantiomerically pure 5,6-dicarbomethoxynorbornene. With the aim of expanding the number of proofs of stereoregularity, we turned to examination of methyl-N-(1-phenylethyl)-2-azabicyclo[2.2.1]hept-5-ene-3-carboxylate (PhEtNNBE),7 a monomer that
can be prepared in both enantiomerically pure and racemic forms readily. (The \((R)\) or \((S)\) label refers to the chirality of the phenethyl \((CHMePh)\) group on \(N\), which dictates the chirality in the entire monomer; Figure 1). The four regular structures for \(\text{poly}[\text{(S)-PhEtNNBE}]\) are shown in Figure 2. IR spectroscopy usually can establish whether a polymer contains \textit{trans} \(C=C\) configurations on the basis of a strong absorption near \(980 \text{ cm}^{-1}\). The tacticity can then be assigned readily on the basis of whether the two inequivalent olefinic protons are on one \(C=C\) bond (isotactic), and therefore coupled to one another, or two different \(C=C\) bonds (syndiotactic). The \(^3J_{HH}\) coupling between inequivalent protons in an isotactic structure will confirm that the configuration is \textit{cis}.

Polymerization of \(\text{rac-PhEtNNBE}\) was first explored with \(\text{Mo(NAr)(CHCMe}_2\text{Ph)}[\text{OCMe(CF}_3]_2\text{)}_2\) and \(\text{Mo(NAr)(CHCMe}_2\text{Ph)}(\text{OCMe}_3)_2\) \((\text{Ar} = 2,6-i-\text{Pr}_2\text{C}_6\text{H}_3)\) as initiators,\(^8\) but only atactic polymers were obtained. Polymerization of \((R)\)-\(\text{PhEtNNBE}\) with \(\text{Mo(NAr)(CHCMe}_2\text{Ph)}[\text{OCMe(CF}_3]_2\text{)}_2\) gave a polymer with a structure that is largely \textit{cis,isotactic} through what must be chain end control. In this paper we report the polymerization of \(\text{rac-PhEtNNBE}\) and \((S)\)-\(\text{PhEtNNBE}\) with a selection of molybdenum and tungsten initiators that have been used to prepare \textit{cis,isotactic}, \textit{cis,syndiotactic}, and \textit{cis,syndiotactic,alt} polymers in the last several years.\(^4,9\)

RESULTS

The Mo and W initiators that were explored as initiators for polymerization of \((S)\)-\(\text{PhEtNNBE}\) are shown in Figure 3. On the basis of past behavior, MAP complexes \((1 \text{ and } 3)\) would be expected to yield \textit{cis,syndiotactic} structures, while \(2a\) and \(2b\) should yield \textit{cis,isotactic} structures. Complex \(3b\) is the only initiator that has not been reported. It was prepared through addition of one equivalent of \((R)\)-\(\text{Br}_2\text{BitetOH}\)\(((R)\text{-3,3\text{'}-Dibromo-2\text{-}(\text{tert-butylidimethylsilyloxy)-5,5\text{,6,6,7,7,8,8\text{'-octahydro-1,1\text{'-binaphthyl-2-ol)}}}\) to \(\text{W(O)(CHCMe}_2\text{Ph)}(\text{Me}_2\text{Pyr})_2(\text{PMe}_2\text{Ph})\), which is a standard method of preparing MAP complexes.\(^10\) Two diastereomers of \(3b\) were observed (through \(^1\text{H NMR spectroscopy in C}_6\text{D}_6\) at \(22 \degree\)C) in a ratio of 83:17.
The most successful initiators for preparing *cis,syndiotactic*-poly[(S)-PhEtNNBE] (>95%; Table 1) were found to be 1a, 1b, 3a, and 3b. Addition of 50 equiv of (S)-PhEtNNBE to either initiator in toluene led to the complete consumption of monomer within one hour. Polymers were precipitated through addition of the reaction mixture to methanol. The white polymers were found to be relatively soluble in toluene, tetrahydrofuran, dichloromethane, and chloroform.

Proton and carbon NMR spectra in CDCl₃ revealed that the olefinic protons in ¹H NMR spectra of *cis,syndiotactic*-poly[(S)-PhEtNNBE] appear as two doublets with second order characteristics (Figures 4a and 5a), typical of a *cis,syndiotactic* polymer prepared from an enantiomerically pure monomer (Figure 2) in which the two olefinic protons are found on different double bonds; no coupling between olefinic protons was confirmed through ¹H-¹H COSY NMR experiments. An IR spectrum of *cis,syndiotactic*-poly[(S)-PhEtNNBE] (see Figure S5 in the Supporting Information) does not contain a strong absorption in the 970 to 980 cm⁻¹ characteristic of *trans* internal C=C bonds. Polymerization of (S)-PhEtNNBE with 1c yielded only atactic polymer. The difference between an initiator that contains a hexaisopropylterphenoxide (OHIPT, 1c) or a hexamethylterphenoxide (OHMT, 1a) can be significant and has been noted in other circumstances.⁶ The sterically more demanding OHIPT derivative can create an environment that is too crowded for the stereoselective polymerization of sterically demanding monomers. Addition of (S)-PhEtNNBE to a toluene solution of 1d led to consumption of the monomer within one hour, but the resulting polymer is only ~90% *cis,syndiotactic*.

A sample of poly[(S)-PhEtNNBE] prepared from 50 equivalents of monomer employing initiator 1a in toluene was shown by gel permeation chromatography (in THF versus polystyrene) to have a unimodal distribution with a PDI of 1.10 (MW theory =12850; found 13890). A new doublet alkylidene proton resonance was observed in the ¹H NMR spectrum for the propagating species at 10.96 ppm (³J_HH = 5.5 Hz). Because this paper focuses on polymer structures, molecular weights and dispersities of all polymers were not determined.
Polymerization of (S)-PhEtNNBE by 2a or 2b in toluene in one hour led to formation of cis,isotactic-poly[(S)-PhEtNNBE] (see Figure 2). The off-white polymers were soluble in most organic solvents. The olefinic protons appear in the 1H NMR spectrum as two sets of pseudo triplets with $^3J_{HH} \sim 9.6$ Hz (Figure 4b), consistent with cis olefinic protons on a given double bond being magnetically inequivalent and coupled to one another and to the methine protons, as confirmed through 1H-1H COSY NMR studies. The degree of stereoselectivity is estimated to be >95% for both 2a and 2b. This cis,isotactic content is higher than that in the polymer made through polymerization of (R)-PhEtNNBE with Mo(NAr)(CHCMe$_2$Ph)[OCMe(CF$_3$)$_2$]$_2$ (~90%), most likely because the polymerization is under enantioemorphic site control for 2a and 2b and only end group control for Mo(NAr)(CHCMe$_2$Ph)[OCMe(CF$_3$)$_2$]$_2$.

Addition of 50 equiv of rac-PhEtNNBE to 1a or 1b in toluene led to complete consumption of the monomer within one hour. The polymers were precipitated through addition of the reaction mixture to a solution of methanol and found to be insoluble in most non-polar solvents and slightly soluble in halogenated solvents. Proton NMR spectra in CDCl$_3$ revealed that the polymers have a bias (80%) toward a cis,syndiotactic,alt structure (equation 1).

\[
\text{rac-PhEtNCMNBE} \rightarrow \begin{array}{c}
R' \\
N \\
H_A \\
H_B \\
R' \\
N \\
H_A \\
H_B \\
R' \\
\end{array} \\
\text{cis,syndiotactic,alt}
\]

The $^3J_{HH}$ value (10.0 Hz) is consistent with a cis-configuration. At 0 °C with 1a as the initiator, the polymerization was complete within 1 h and the percentage of cis,syndiotactic,alt dyads was ~80% (Figure 4c). Results were similar at temperatures between -78 °C and 20 °C. When initiator 1d was employed to polymerize rac-PhEtNNBE, the resulting polymer had a much lower percentage of cis,syndiotactic,alt dyads than found when 1a was employed (see Supporting Information).

Tosyl hydrazide has been employed often to hydrogenate polymers obtained through
ROMP reactions in order to eliminate cis/trans isomers and focus on tacticity.3 Attempted hydrogenation of \textit{cis,syndiotactic}-poly[(\textit{S})-PhEtNNBE] yielded a polymer, \textit{cis,syndiotactic}-poly[(\textit{H})-(\textit{S})-PhEtNNBE], in which only half of the double bonds (the \textit{H}A\textsubscript{C}=\textit{CH}B bonds in \textit{cis,syndiotactic}-poly[(\textit{S})-PhEtNNBE]) were hydrogenated (eq 2, Figure 5, and Figure S12 in the SI). One of two aliphatic proton resonances derived from hydrogenation of the \textit{H}B\textsubscript{C}=\textit{CH}B bonds is found at 1.40 ppm, while the second must overlap with the doublet for the phenethyl methyl group at 1.25 ppm, because that resonance is broadened at the base and integrates as four protons (see SI and Figure 5b). The \textit{H}A\textsubscript{C} proton resonance in \textit{cis,syndiotactic}-poly[\textit{H}-(\textit{S})-PhEtNNBE] is found at 4.8 ppm. These results are supported by 1H, 13C, and 1H-1H COSY NMR spectra. "Half hydrogenation" of \textit{cis,syndiotactic}-poly[(\textit{S})-PhEtNNBE] (Figure 2) is consistent with the \textit{H}A\textsubscript{C}=\textit{CH}A bonds being relatively well-protected by the NCHMePh groups on each face of that C=C bond and apparently, therefore, being resistant to hydrogenation by \textit{HN}=\textit{NH}; the \textit{H}B\textsubscript{C}=\textit{CH}B bonds are clearly the more accessible. \textit{Cis,isotactic}-poly[(\textit{S})-PhEtNNBE] could be hydrogenated only very slowly and incompletely, which is consistent with each \textit{H}A\textsubscript{C}=\textit{CH}B bond (Figure 1) being more resistant to hydrogenation than the \textit{H}B\textsubscript{C}=\textit{CH}B bonds, but not as resistant as the \textit{H}A\textsubscript{C}=\textit{CH}A bonds, in \textit{cis,syndiotactic}-poly[(\textit{S})-PhEtNNBE].

\textbf{DISCUSSION}

Polymerizations of (\textit{S})-PhEtNNBE to give \textit{cis,syndiotactic}-poly[(\textit{S})-PhEtNNBE] by Mo MAP initiators are proposed to proceed in a manner analogous to that proposed for most other
norbornenes and norbornadienes, *i.e.*, the monomer adds to the metal *trans* to the pyrrolide ligand and the metal's configuration that is found in the new alkylidene is opposite to that in the previous alkylidene.\(^{11}\) Most likely the configuration of the metal inverts through Berry-type processes\(^{12}\) in five-coordinate olefin/alkylidene or metallacyclobutane intermediates when rearrangement is rapid relative to formation of the new alkylidene (ring-opening). Formation of *cis,syndiotactic*-poly[(S)-PhEtNNBE] requires that each chiral metal center produce the same stereochemical result in terms of the basic structure of the resulting polymer chain (*cis,syndiotactic*) upon reaction with (S)-PhEtNNBE. If the configuration at the metal does *not* invert with each propagation step, which is what has been found recently for a polymer made from 7-isopropylidene-2,3-dicarbomethoxynorbornadiene made with W(O)(CH-t-Bu)(OHMT)(Me\(_2\)Pyr), a close relative of 3a,\(^{13}\) then the resulting structure will be *cis, isotactic*. Therefore, we conclude that both diastereomeric 5-coordinate intermediates (olefin/alkylidene or metallacyclobutane complexes) invert before forming the next alkylidene in the *cis,syndiotactic*-poly[(S)-PhEtNNBE] product.

It has been reported that polymerization of (R)-PhEtNNBE', a *diastereomer* of (R)-PhEtNNBE, with "Umicore M31" ([1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro-(3-phenyl-1H-inden-1-ylidene)(pyridyl)ruthenium(II), yields *cis,syndiotactic*-poly[(R)-PhEtNNBE'] that has "a high degree of *cis*-TT stereoregularity" (*cis*-TT = *cis* tail-to-tail = *cis,syndiotactic*).\(^{14}\) The published proton NMR spectrum of the polymer has an extremely broad olefinic resonance extending between 5.20 and 5.86 ppm (in CDCl\(_3\)), in contrast to the sharp olefinic proton resonances at 5.32 and 4.92 in the proton NMR spectrum in CDCl\(_3\) of *cis,syndiotactic*-poly[(S)-PhEtNNBE] that we have prepared (Figure 4a and 5a). All \(^{13}\)C resonances at 133.3, 132.9, 57.6, 57.2, 40.2, and 39.4 ppm in the \(^{13}\)C NMR spectrum of *cis,syndiotactic*-poly[(S)-PhEtNNBE] (see SI) are also much sharper and more intense than those for *cis,syndiotactic*-poly[(R)-PhEtNNBE']. Therefore, although *cis,syndiotactic*-poly[(R)-PhEtNNBE'] and *cis,syndiotactic*-poly[(S)-PhEtNNBE] technically are diastereomers and therefore cannot be compared directly with one another, it seems unlikely to us that the
cis,syndiotactic-poly[(S)-PhEtNNBE'] prepared with "Umicore M31" has a structure as regular as we have found here for cis,syndiotactic-poly[(S)-PhEtNNBE].

We expected that polymerization of (S)-PhEtNNBE by 2a or 2b would yield a cis,isotactic structure, because 2 and similar initiators of this type are known to yield cis,isotactic polymers from achiral norbornenes and norbornadienes through enantiomorphic site control.\(^6\)\(^8\) In initiators that contain a C\(_2\) symmetric ligand the monomer should approach one of the two CNO faces of the pseudotetrahedral initiator preferentially and repeatedly; chain end control is likely to play a minor role. The biphenolate ligand in 2b is enantiomerically pure. In contrast, the biphenolate ligand in 2a is racemic. Therefore, the two enantiomers of 2a both must produce cis,isotactic-poly[(S)-PhEtNNBE] in spite of the fact that the pathways for their reaction with (S)-PhEtNNBE are energetically different. It is not possible that only one enantiomer of 2a initiates and polymerizes (S)-PhEtNNBE, because addition of 10 equiv of (S)-PhEtNNBE to 2a consumes 72% of 2a.

Rac-PhEtNNBE could be polymerized by 1a or 1b to give a cis,syndio,alt structure because both enantiomers of the monomer are present (Scheme 2) and the metal can invert its configuration with each insertion.\(^8\) Therefore, a single diastereomeric propagation step is available to yield a cis,syndio,alt-poly(rac-PhEtNNBE). However, the fact that only 80% of the final structure (at best) is cis,syndio,alt suggests that the rates of the "matched" and "mismatched" propagation steps are not different enough in energy at room temperature to yield a purely alternating enantiomer structure. This result is consistent with others here that suggest that the chirality in (S)-PhEtNNBE does not strongly influence formation of the basic cis,syndiotactic or cis,isotactic structures.

CONCLUSION

This study extends the class of enantiomerically pure monomers that can be polymerized by Mo or W catalysts to yield essentially pure cis,isotactic structures (from MAP initiators) or cis,syndiotactic structures (from biphenolate initiators) in spite of what are technically
"mismatched" propagation steps when the enantiomerically pure monomer is involved. *Cis,syndio,alt* structures cannot form readily from racemic monomer because a single diastereomeric pathway does not dominate the polymerization process.

Experimental Section

General Details. All air-sensitive manipulations were performed under nitrogen in a drybox or using Schlenk techniques. All glassware was oven-dried and allowed to cool under vacuum or nitrogen before use. NMR spectra were obtained on Bruker 400 MHz and Varian 500 MHz spectrometers, reported in δ (parts per million), and referenced to residual 1H/13C signals of the deuterated solvent (1H(δ) benzene 7.16, chloroform 7.26, methylene chloride 5.32, toluene 2.08; 13C(δ) benzene 128.06, chloroform 77.16, methylene chloride 53.84, toluene 20.43. Elemental analyses were performed by CENTC Elemental Analysis Facility at the University of Rochester. All reagents were used without further purification unless noted otherwise. Pentane was washed with H_2SO_4, followed by water, and saturated aqueous NaHCO$_3$, and dried over CaCl$_2$ pellets over at least two weeks prior to use in the solvent purification system. HPLC grade diethyl ether, toluene, tetrahydrofuran, pentane, and methylene chloride were sparged with nitrogen and passed through activated alumina. In addition, benzene was passed through a copper catalyst. Organic solvents were then stored over activated 4 Å Linde-type molecular sieves. Deuterated solvents were degassed and stored over activated 4 Å Linde-type molecular sieves. Benzaldehyde was distilled and stored under nitrogen. Mo(NAd)(CHCMe$_2$Ph)(pyr)(OHMT)$_5$ (1a) (HMT = 2,6-(2,4,6-Me$_3$C$_6$H$_2$)$_2$C$_6$H$_3$), Mo(NAr')(CHCMe$_2$Ph)(pyr)(OHMT)$_5$ (1b) (Ar' = 2,6-Me$_2$C$_6$H$_3$), Mo(NAd)(CHCMe$_2$Ph)(pyr)(OH)PT (1c) (HIPT = 2,6-(2,4,6-i-Pr$_3$C$_6$H$_2$)$_2$C$_6$H$_3$), W(N-t-Bu)(CHCMe$_3$)(pyr)(OHMT)$_5$ (1d), Mo(NAr')(CHCMe$_2$Ph)(OBiphen$_{CF_3}$)(thf) (OBiphen$_{CF_3}$ = 3,3'-di-tert-butyl-5,5'-bistri fluoromethyl-6,6'-dimethyl-1,1'-biphenyl-2,2'-diolate) (2a), W(NAr')(CHCMe$_2$Ph)((S)-OBiphen$_{Me}$) ((S)-OBiphen$_{Me}$ = 3,3'-di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diolate) (2b), W(O)(CHCMe$_2$Ph)(Me$_2$Pyr)(OHMT)(PMe$_2$Ph)$_2$ (R)-Br$_2$BitetOH (R)-3,3'-Dibromo-2'-((tert-
butyldimethylsilyloxy)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl-2-ol),\(^{21}\) (S)-PhEtNNBE, (R)-PhEtNNBE, and rac-PhEtNNBE were prepared according to literature procedures.\(^{22}\) Unless otherwise noted, all other reagents were obtained from commercial sources and used as received.

W(O)(CHCMe\(_2\)Ph)(Me\(_2\)Pyr)\((R)-OBr\(_2\)Bitet\)(PMe\(_2\)Ph) (3b). A 100 mL Schlenk tube was charged with 390 mg of W(O)(CHCMe\(_2\)Ph)(Me\(_2\)Pyr)\(_2\)(PMe\(_2\)Ph) (0.593 mmol, 1.0 equiv), 336 mg of (R)-Br\(_2\)BitetOH (0.593 mmol, 1.0 equiv), a stir bar, and 30 mL of benzene. The tube was closed, and the mixture was stirred at 70 °C for 3 h. The volatiles were removed in vacuo and the residue was triturated with 5 mL of pentane for 30 min to give a yellow powder, which was collected by filtration; yield 345 mg (0.306 mmol, 52%). The product is a mixture of two diastereomers (83:17): \(^1\)H NMR (500 MHz, C\(_6\)D\(_6\), 20 °C) \(\delta\) 12.21 (s, 1H, CHCMe\(_2\)Ph, minor), 11.22 (s, 1H, CHCMe\(_2\)Ph, \(^1\)J\(_{\text{CH}}\) = 122 Hz, major), 7.25 – 6.79 (m, 12H, aryl), 6.18 (br, 2H, Me\(_2\)Pyr), 2.63 – 0.76 (overlapping signals, 43H, Me\(_2\)Pyr, PMe\(_2\)Ph, CHCMe\(_2\)Ph, and OBr\(_2\)Bitet ligand), 0.47 (s, 3H), 0.21 (s, 3H), -0.14 (s, 3H), -0.75 (s, 3H); \(^{13}\)C-NMR (125 MHz, CD\(_2\)Cl\(_2\), 20 °C): \(\delta\) 291.4 (CHCMe\(_2\)Ph), 288.2 (CHCMe\(_2\)Ph), 157.0, 156.8, 150.0, 149.5, 148.6, 148.3, 138.2, 137.8, 137.5, 136.0, 135.2, 134.9, 133.8, 133.4, 133.3, 131.5, 131.4, 131.2, 131.1, 131.0, 130.8, 130.3, 130.1, 129.0, 128.8, 128.7, 128.6, 127.5, 126.5, 126.4, 126.3, 113.4, 112.6, 111.7, 106.8, 106.0, 53.37, 33.28, 29.55, 29.45, 29.40, 29.32, 28.75, 28.64, 28.52, 27.87, 27.38, 27.09, 26.21, 23.65, 23.48, 23.30, 23.13, 22.89, 22.61, 20.33, 18.59, 16.23, 15.50, 15.34, 15.13, 14.24, 13.02, -1.90, -2.54, -2.92, -5.17; \(^{31}\)P NMR (202 MHz, C\(_6\)D\(_6\), 20 °C) \(\delta\) 8.77 (s, \(^1\)J\(_{\text{WP}}\) = 319 Hz), 2.21 (s), -5.89 (broad s). Anal. Calcd for C\(_{50}\)H\(_{64}\)Br\(_2\)NO\(_3\)PSiW: C, 53.16; H, 5.71; N, 1.24. Found: C, 53.32; H, 5.76; N, 1.14.

Acknowledgments. We are grateful to the Department of Energy (DE-FG02-86ER13564) for research support. V.W.L.N. thanks the Agency for Science, Technology and Research (Singapore) for the A*STAR International Fellowship. J.B. thanks the Alexander von Humboldt Foundation for a Feodor Lynen Research Fellowship.
Supporting Information Available. Experimental details for the synthesis of 3b and various polymers and NMR spectra of all polymers. This material is available free of charge via the Internet at http://pubs.acs.org.
Figure 1. PhEtNNBE Monomers employed in this study.

Figure 2. The four possible regular structures for poly[(S)-PhEtNNBE] (R = (S)-CHMePh, R' = CO₂Me).
Figure 3. Molybdenum and tungsten catalysts used for the polymerization of PhEtNNBE.
Figure 4. 1H NMR spectra of poly[(S)-PhEtNNBE] prepared from (a) 3a (in CDCl$_3$, 400 MHz) and (b) 2b (in CDCl$_3$, 400 MHz); (c) 1H NMR spectrum of poly[rac-PhEtNNBE] prepared from 1a at 0 °C (in CDCl$_3$, 500 MHz).
Figure 5. 1H NMR spectra of (a) cis,syndiotactic-poly[(S)-PhEtNNBE] (in CDCl$_3$, 400 MHz) and (b) cis,syndiotactic-poly[H-(S)-PhEtNNBE] (in CDCl$_3$, 400 MHz). (* Residual water resonance in CDCl$_3$; # # new aliphatic proton resonances.)
<table>
<thead>
<tr>
<th>Initiator</th>
<th>Monomer</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo(NAd)(CHCMe₂Ph)(Pyr)(OHMT) (1a)</td>
<td>(S)-PhEtNNBE</td>
<td>> 95% cis,syndio</td>
</tr>
<tr>
<td>Mo(NAr')(CHCMe₂Ph)(Pyr)(OHMT) (1b)</td>
<td>(S)-PhEtNNBE</td>
<td>> 95% cis,syndio</td>
</tr>
<tr>
<td>Mo(NAd)(CHCMe₂Ph)(Pyr)(OHIPT) (1c)</td>
<td>(S)-PhEtNNBE</td>
<td>mixture; atactic</td>
</tr>
<tr>
<td>W(N-t-Bu)(CHCMe₃)(Pyr)(OHMT) (1d)</td>
<td>(S)-PhEtNNBE</td>
<td>~ 90% cis,syndio</td>
</tr>
<tr>
<td>W(O)(CHCMe₂Ph)(Me₂Pyr)(OHMT)(PMe₂Ph) (3a)</td>
<td>(S)-PhEtNNBE</td>
<td>> 95% cis,syndio</td>
</tr>
<tr>
<td>W(O)(CHCMe₂Ph)(Me₂Pyr)((R)-OB₂Bitet)(PMe₂Ph) (3b)</td>
<td>(S)-PhEtNNBE</td>
<td>> 95% cis,syndio</td>
</tr>
<tr>
<td>Mo(NAr')(CHCMe₂Ph)(OBiphenCF₃)(thf) (2a)</td>
<td>(S)-PhEtNNBE</td>
<td>> 95% cis,iso</td>
</tr>
<tr>
<td>W(NAr')(CHCMe₂Ph)((S)-OBiphenMe₂) (2b)</td>
<td>(S)-PhEtNNBE</td>
<td>> 95% cis,iso</td>
</tr>
<tr>
<td>Mo(NAd)(CHCMe₂Ph)(Pyr)(OHMT) (1a)</td>
<td>(rac)-PhEtNNBE</td>
<td>~ 80% cis,syndio,alt</td>
</tr>
<tr>
<td>W(N-t-Bu)(CHCMe₃)(Pyr)(OHMT) (1d)</td>
<td>(rac)-PhEtNNBE</td>
<td>~ 50% cis,syndio,alt</td>
</tr>
</tbody>
</table>

Table 1. The structures of poly[(S)-PhEtNNBE] and poly[(rac)-PhEtNNBE] formed with initiators 1-3.
References

2009, 131, 7770. (c) Schrock, R. R.; Jiang, A. J.; Marinescu, S. C.; Simpson, J. H.; Müller, P.
Organometallics 2010, 29, 5241.

15 Lichtscheidl, A. G.; Ng, V. W.; Müller, P.; Takase, M. K.; Schrock, R. R. Organometallics 2007, 26, 2528.

TOC

![Chemical Structure](image)

* cis,syndiotactic-polymer cis,isotactic-polymer*