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Sharing brain mapping statistical
results with the neuroimaging
data model
Camille Maumet1, Tibor Auer2, Alexander Bowring1, Gang Chen3, Samir Das4,
Guillaume Flandin5, Satrajit Ghosh6, Tristan Glatard4,7, Krzysztof J. Gorgolewski8,
Karl G. Helmer9, Mark Jenkinson10, David B. Keator11, B. Nolan Nichols12,
Jean-Baptiste Poline13, Richard Reynolds3, Vanessa Sochat8, Jessica Turner14 &
Thomas E. Nichols1,15

Only a tiny fraction of the data and metadata produced by an fMRI study is finally conveyed to the
community. This lack of transparency not only hinders the reproducibility of neuroimaging results but
also impairs future meta-analyses. In this work we introduce NIDM-Results, a format specification
providing a machine-readable description of neuroimaging statistical results along with key image data
summarising the experiment. NIDM-Results provides a unified representation of mass univariate
analyses including a level of detail consistent with available best practices. This standardized
representation allows authors to relay methods and results in a platform-independent regularized
format that is not tied to a particular neuroimaging software package. Tools are available to export
NIDM-Result graphs and associated files from the widely used SPM and FSL software packages, and
the NeuroVault repository can import NIDM-Results archives. The specification is publically available
at: http://nidm.nidash.org/specs/nidm-results.html.
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Introduction
A neuroimaging technique like functional Magnetic Resonance Imaging (fMRI) generates hundreds of
gigabytes of data, yet only a tiny fraction of that information is finally conveyed to the community. In a
typical paper, the entire results report consists of 1) a list of significant local maxima, i.e., locations in the
brain defined in a standard atlas space inferred to be distinct from noise, and 2) a graphical
representation of the activations as an image figure.

This practice is unsatisfactory for three reasons. First, because it represents a massive loss of
information from the raw and even the derived data used to draw the conclusion of the study. For
example, a meta-analysis (in settings other than neuroimaging) combines estimates of effects of interest
and their uncertainty across studies. In brain imaging, the locations of local maxima have no measures of
uncertainty reported. While neuroimaging meta-analysis methods for coordinate data exist1–3 they
are a poor approximation to the meta-analysis that would be obtained if the image data were available4.
Even though there are emerging infrastructures to support sharing of neuroimaging data
(e.g., NeuroVault RRID:SCR_003806 (refs 5,6)), these are still rarely utilised due to a number of ethical,
psychological and technical barriers7.

Second, despite the availability of guidelines8–10, ambiguous or incomplete methodological reporting
in papers is still commonplace11 hindering the robustness and reproducibility of scientific results11,12.

Finally, key methodological details of the study are described in free-form text in a paper and not
available in machine-readable form, making these metadata essentially unsearchable. Databases
have been built to provide metadata associated with published papers, either manually curated
(e.g., BrainMap13,14) or automatically-populated using text-mining algorithms (e.g., NeuroSynth15,16),
but, ideally, these metadata should be made available by the authors themselves at the time of the
publication, together with the data. Additionally, searchable metadata, could help identify potential
confounding factors that are currently being overlooked (e.g., how different smoothing kernels impact the
meta-analysis, or the influence of different processing strategies on the outcome of the analysis).

In order to make neuroimaging results available in a machine-readable form a number of key technical
issues have to be addressed. First, the scope of the metadata to be shared must be defined. The space
of possible metadata to report is extremely large encompassing experimental design, acquisition, pre-
processing, statistical analysis, etc. The optimal set of metadata is highly dependant on the application of
interest and possible applications of shared data are broad. For example, in a meta-analysis, the contrast
standard error map is required, while a comparison across neuroimaging processing pipelines would
require a complete description of the analysis pipeline including software-specific parameterization.

Another technical issue is the need to define a common representation across neuroimaging software
packages. While the three main neuroimaging software packages, SPM (RRID:SCR_007037)17,18,
FSL (RRID:SCR_002823)19,20 and AFNI (RRID:SCR_005927)21,22, all implement similar analyses,
they often use different terms to refer to the same concept. For example, FSL’s parameter estimate maps
(e.g., pe1.nii.gz) are the equivalent of SPM’s beta maps (e.g., beta_0001.nii). They can also use the same
term when referring to different concepts. For example, SPM and FSL both use a global scaling of the data
to get ‘percent BOLD signal change’, but due to differences in how the brain mask and mean signal are
computed, the data are scaled quite differently23 and are not comparable. In order to fully describe an
analysis, the sharing of software-specific batch scripts (e.g., SPM matlabbatch files, FSL fsf files, or history
stored in AFNI brick headers) would be a simple solution to provide all the parameters from an analysis,
but the ability to compare and query across software would still be lacking. Pipeline systems like NiPype24,
LONI Pipeline25 and CBRAIN26 do explicitly model analysis steps, but a large volume of research is still
conducted directly with tools not embedded in pipelines. Ideally, one should be able to identify all studies
corresponding to a set of criteria of interest regardless of the software used. This will only be possible
if information about results across software can be represented using common data elements and structures.

A machine-readable representation of neuroimaging data and results, using a common descriptive
standard across neuroimaging software packages, would address these issues of comparability and
transparency.

A previous effort in this direction was the XML-based Clinical and Experimental Data Exchange
(XCEDE) schema27, developed in the context of the Biomedical Informatics Research Network
(BIRN)28,29. XCEDE modelled information about both the experimental design and results (peaks and
clusters) in neuroimaging studies. This XML schema was defined to be independent from any particular
neuroimaging analysis software and was made openly available30. XCEDE has been used by multiple sites
across the United States and the United Kingdom in the context of the fBIRN project and is still in use by
the Human Imaging Database28,31. An implementation was provided for SPM32,33 as well as a set of
tools34. However, the XCEDE model was not implemented by other imaging software, supported limited
provenance information, and did not offer the ability to jointly share image data summarising the
experiment.

Beyond neuroimaging, encoding of provenance, i.e., keeping track of the processes that were applied to
the data, encompassing a description of the tools, data flow and workflow parameterization, is a topic of
growing interest in science in general. A number of solutions have been proposed in order to support
better documentation of research studies. Among them, the PROV data model35 is a W3C specification to
describe provenance on the web. PROV is defined in a generic fashion that is not tied to a domain in
particular (cf. (ref. 36) for examples of implementations).

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160102 | DOI: 10.1038/sdata.2016.102 2



The NeuroImaging Data Model (NIDM)37,38 was created to expand upon the initial development of
XCEDE, introducing a domain-specific extension of PROV using semantic web technologies and the
Resource Description Framework (RDF). The goal of NIDM is to provide a complete description of
provenance for neuroimaging studies, from raw data to the final results including all the steps in-between.
The core motivation of NIDM is to support data sharing and data reuse in neuroimaging by providing
rich machine-readable metadata. Since its first developments in 2011, NIDM has been an ongoing effort
and is currently comprised of three complementary projects: NIDM-Experiment, NIDM-Workflows and
NIDM-Results. NIDM-Experiment targets the representation of raw data generated by the scanner and
information on the participants. NIDM-Workflows focuses on the description of data analysis
parameterization, including detailed software-specific variations. NIDM-Results, presented here, deals
with the representation of mass-univariate neuroimaging results using a common descriptive standard
across neuroimaging software packages.

A motivating use case for NIDM-Results was neuroimaging meta-analysis, but the format also
produces a detailed machine-readable report of many facets of an analysis. The implementation of
NIDM-Results within SPM and FSL, two of the main neuroimaging software packages, provides an
automated solution to share maps generated by neuroimaging studies along with their metadata. While
NIDM-Results focuses on mass-univariate studies and is mostly targeted at fMRI, the standard is also
suitable for anatomical MRI (with Voxel-Based Morphometry), and Positron Emission Tomography
(PET). It was developed under the auspices of the International Neuroinformatics Coordinating Facility
(INCF) Neuroimaging data sharing Task Force (NIDASH) which comprises a core group of experts
representing more than ten labs involved in various facets of neuroimaging (including statistical analysis,
informatics, software development, ontologies). It also involved close collaboration with the main
neuroimaging software developers. The format is natively implemented in SPM and a NIDM-Results
exporter is available for FSL and will be integrated in a future version of FSL. Both NeuroVault and
CBRAIN support export to NIDM-Results and NeuroVault additionally can import NIDM-Results
archives.

Results
Model
Definitions. The definitions provided below are used throughout the manuscript:

● NIDM-Results graph: A particular instance of a representation of data and metadata complying with
the NIDM-Results specification.

● NIDM-Results serialization: A text file rendering of a NIDM-Results graph.
● NIDM-Results pack: A compressed file containing a NIDM-Results serialization and some or all of the

referenced image data files.

Overview. The NIDM-Results standard is defined by a W3C-style specification, publicly available at
http://nidm.nidash.org/specs/nidm-results.html and by an ontology (owl) file available at http://bioportal.
bioontology.org/ontologies/NIDM-RESULTS. It is comprised of a controlled vocabulary, as well as
instructions of how to use PROV to represent mass-univariate neuroimaging results. The model provides
terms to describe key elements of neuroimaging methods using a common framework across
neuroimaging software packages. For example, as illustrated in Fig. 1, error models are described in terms
of assumed variance (homoscedastic, heteroscedastic) and assumed covariance structure (independent,
spatially correlated, etc.) and how these structures vary in space (defined independently at each voxel,
globally throughout the brain or spatially regularised).
The current version, NIDM-Results 1.3.0, defines 214 terms (140 classes and 74 attributes) of which 45 terms

are re-used from external vocabularies and ontologies. All terms are defined as specialisations of the PROV
terms. Three namespaces are defined: http://purl.org/nidash/nidm# (‘nidm:’), http://purl.org/nidash/spm#
(‘spm:’) and http://purl.org/nidash/fsl# (‘fsl:’). Anything that could be represented across software or that is a
generic concept is defined in the ‘nidm:’ namespace. Software-specific namespaces: (‘spm:’, ‘fsl:’) are reserved
for the description of functionality unique to one software (e.g., global null inference for conjunction testing
in SPM).
Figure 2 provides an overview of NIDM-Results. In the description below, terms in single quote correspond

to elements defined by the model, identifiers for those terms are provided in Table 1.
The main entity is a ‘NIDM-Results bundle’, a specialisation of a ‘Bundle’ as defined in PROV, i.e., an entity

gathering a set of entities, activities and agents. A ‘NIDM-Results bundle’ contains a description of the mass
univariate results provenance and is typically made up of:

● 3 activities representing the main steps of statistical hypothesis testing: ‘model parameter estimation’,
‘contrast estimation’ and ‘inference’.

● 26 types of entities (of which 6 are optional) representing inputs and outputs of the activities;
● 3 agents representing the ‘neuroimaging analysis software’, the ‘person’ or ‘study group population’ who

participated in the study and the type of ‘imaging instrument’ used.
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The statistical model is described in the ‘design matrix’ and ‘error model’ entities that are both used by the
‘model parameter estimation’ activity. The ‘data’ entity describes the scaling applied to the data before model
fitting (especially relevant for first-level fMRI experiments) and links to the participants (as a ‘person’ or a
group) and the ‘imaging instrument’ used to acquire the data (e.g., a magnetic resonance imaging scanner or an
electroencephalography machine). A set of ‘parameter estimate maps’ is generated by the ‘model parameter
estimation’ activity along with the analysis ‘mask map’, a ‘residual mean squares map’ and a ‘grand mean map’
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Figure 1. Description of the error models with NIDM-Results. Excerpt of the NIDM-Results 1.3.0

specification describing a nidm:’Error Model’ and its attributes (a). Examples of model implementations for

subject-level (b) and group-level (c) analyses for SPM, FSL and AFNI.
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that can be used to check the performance of the data scaling. Optionally, a ‘resels per voxel map’ can also be
generated to record local variations in noise smoothness.
The ‘contrast estimation’ activity uses a subset of the ‘parameter estimate maps’, the ‘residual mean squares

map’ and the analysis ‘mask map’ and combine them according to a ‘contrast weight matrix’ to generate a
‘statistic map’. For T-tests, a ‘contrast map’ along with its ‘contrast standard error map’ are also generated
while for F-tests a ‘contrast explained mean square map’ (i.e., the numerator of an F-statistic) is provided.

Figure 2. NIDM-Results objects. Color-coding indicates the type as defined in PROV (blue: Entity,

red: Activity, green: Agent).
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Finally, the ‘inference’ activity uses a ‘statistic map’ and generates an ‘excursion set map’ given a ‘height
threshold’ and an ‘extent threshold’. The ‘peak definition criteria’ and ‘cluster definition criteria’ entities, used
by ‘inference’, provide the connectivity criterion and minimal distance between peaks (e.g., default is set to
8 mm for SPM and 0mm for FSL). The ‘inference’ activity can be replaced by a ‘conjunction inference’ which
uses more than one statistic map. An optional ‘display mask map’ entity can be used to represent contrast
masking, i.e., to restrict the display without affecting the correction for multiple comparisons. The ‘inference’
activity also generates the ‘search space mask map’ that represents the search region in which the inference
was performed (i.e., the intersection of all input mask maps, except for the display mask map). A set of
‘supra-threshold clusters’ is derived from the ‘excursion set map’ and a set of ‘peaks’ is derived from each
cluster. Those are the clusters and peaks that are typically reported in the results of a neuroimaging study.
A ‘neuroimaging analysis software’ agent represents the software package used to compute the analysis. This

agent is associated with all activities within the bundle.
Provenance of the ‘NIDM-Results bundle’ is also recorded: the bundle was generated by a 'NIDM-Results

Export' activity which was performed by a 'NIDM-Results Exporter' software agent corresponding to the
software used to create the NIDM-Results document (e.g., FSL’s Python scripts, named ‘nidmfsl’ or SPM’s

PROV type Term Qualified name

Entity NIDM-Results bundle nidm:NIDM_0000027

Bundle prov:Bundle

Design Matrix nidm:NIDM_0000019

Error Model nidm:NIDM_0000023

Data nidm:NIDM_0000169

Parameter Estimate Map(s) nidm:NIDM_0000061

Mask Map nidm:NIDM_0000054

Residual Mean Squares Map nidm:NIDM_0000066

Resels Per Voxel Map nidm:NIDM_0000144

Grand Mean Map nidm:NIDM_0000033

contrast weight matrix obo:STATO_0000323

Statistic Map nidm:NIDM_0000076

Contrast Map nidm:NIDM_0000002

Contrast Standard Error Map nidm:NIDM_0000013

Contrast Explained Mean Square Map nidm:NIDM_0000163

Excursion Set Map nidm:NIDM_0000025

Height Threshold nidm:NIDM_0000034

Extent Threshold nidm:NIDM_0000026

Peak Definition Criteria nidm:NIDM_0000063

Cluster Definition Criteria nidm:NIDM_0000007

Display Mask Map nidm:NIDM_0000020

Search Space Mask Map nidm:NIDM_0000068

Supra-Threshold Cluster(s) nidm:NIDM_0000070

Peak(s) nidm:NIDM_0000062

Activity Model Parameter Estimation nidm:NIDM_0000056

Contrast Estimation nidm:NIDM_0000001

Inference nidm:NIDM_0000049

Conjunction Inference nidm:NIDM_0000011

NIDM-Results Export nidm:NIDM_0000166

Agent Neuroimaging Analysis Software nidm:NIDM_0000164

Person prov:Person

study group population obo:STATO_0000193

Imaging Instrument nif:birnlex_2094

NIDM-Results Exporter nidm:NIDM_0000165

nidmfsl nidm:NIDM_0000167

spm_results_nidm nidm:NIDM_0000168

Table 1. PROV type, label and identifier of the NIDM-Results terms mentioned in single quotes in
this manuscript.
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exporter named ‘spm_results_nidm’). The bundle is associated with a version number corresponding to the
version of NIDM-Results model in use.
Each activity, entity and agent has a number of predefined attributes. For instance, the list of attributes of an

‘error model’ entity is provided in Fig. 1.

Updates. Each release of NIDM-Results is associated with a version number. Comments on the current
version as well as suggestions of extension can be provided on the GitHub nidm repository: https://
github.com/incf-nidash/nidm. Each extension or proposition of update will be reviewed and discussed
with the members of the INCF NIDASH task force.

Implementation
SPM12 natively supports export of its results into a NIDM-Results pack, either by the use of a contextual
menu in the results table or non-interactively via the batch interface as illustrated in Fig. 3. Export of
FEAT results from FSL into a NIDM-results pack can be performed using the Python module nidmfsl
(https://pypi.python.org/pypi/nidmfsl), as also illustrated in Fig. 3. nidmfsl was integrated in NeuroVault
and as a plugin39 of the CBRAIN web platform for high-performance computing (RRID:SCR_005513)26.
As a result, any FSL FEAT analysis uploaded to NeuroVault or performed in CBRAIN can be exported as
a NIDM-Results pack. NeuroVault also accepts NIDM-Results packs as a mean to upload new data to a
collection. The nidmresults Python library (https://pypi.python.org/pypi/nidmresults) and the prove-
nance MATLAB toolbox (http://www.artefact.tk/software/matlab/provenance/) provide higher-level
functions to interact with NIDM-Results packs.

Publically available NIDM-results packs
A set of 244 NIDM-Results packs has been made publically available on NeuroVault at http://neurovault.
org/collections/1435/. Those packs describe the results of fMRI analyses performed at the subject (232
packs) and group (12 packs) levels on six datasets downloaded from OpenfMRI (RRID:SCR_005031)40,41

$ nidmfsl fsl_ds107_group 49 -g Control

Figure 3. NIDM-Results export in SPM12 (a) and FSL v5.0 (b).
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([Data Citation 1] version 1.1.0, [Data Citation 2] version 1.1.1, [Data Citation 3] unrevisioned,
[Data Citation 4] unrevisioned, [Data Citation 5] unrevisioned, [Data Citation 6] unrevisioned).

Examples of usage
Meta-analysis. From 21 pain studies (10 analysed in SPM and 11 in FSL) represented in NIDM-
Results we performed group coordinate-based and image-based meta-analyses contrasting the effect of
pain. The data and Python script used to perform these meta-analyses are available on NeuroVault
(http://neurovault.org/collections/1425/) and GitHub42 respectively.
Figure 4 provides a schematic overview of the different steps involved to compute the meta-analyses. A set of

NIDM-Results packs is queried in order to retrieve the information of interest that is then combined to
perform the meta-analysis. Because the studies included in this meta-analysis are from a curated collection of
pain studies from one laboratory, no manual filtering was needed for study or participant selection, and
contrast selection was performed based on the contrast name.
The image-based meta-analysis was performed by combining the contrast estimate maps, along with their

standard error, in a third-level mixed-effects general linear model (GLM). Each NIDM-Results pack was

Statistic images

Query

Query

Coordinate-based 
meta-analysis

Image-based
meta-analysis

NIDM-Results

NIDM-Results
Peak 

coordinates

Figure 4. Image-based and coordinate-based meta-analyses using NIDM-Results. Each NIDM-Results pack

is queried to retrieve the data and metadata of interest for each type of meta-analysis. These data are then

combined in a meta-analysis.

prefix prov: <http://www.w3.org/ns/prov#>
prefix nidm: <http://purl.org/nidash/nidm#>
prefix contrast_estimation: <http://purl.org/nidash/nidm#NIDM_0000001>
prefix contrast_map: <http://purl.org/nidash/nidm#NIDM_0000002>
prefix stderr_map: <http://purl.org/nidash/nidm#NIDM_0000013>
prefix contrast_name: <http://purl.org/nidash/nidm#NIDM_0000085>
prefix statistic_map: <http://purl.org/nidash/nidm#NIDM_0000076>
prefix mask_map: <http://purl.org/nidash/nidm#NIDM_0000054>

SELECT ?contrastName ?con_file ?std_file ?mask_file ?software
WHERE {

?con_id a contrast_map: ;
contrast_name: ?contrastName ;
prov:atLocation ?con_file ;
prov:wasGeneratedBy ?con_est .
?std_id a stderr_map: ;
prov:atLocation ?std_file ;
prov:wasGeneratedBy ?con_est .
?mask_id a mask_map: ;
prov:atLocation ?mask_file .
?soft_id a ?software .
?con_est a contrast_estimation: ;

prov:wasAssociatedWith ?soft_id ;
prov:used ?mask_id .

FILTER(?software NOT IN (prov:SoftwareAgent, prov:Agent))
}

Figure 5. SPARQL query to retrieve data and metadata needed for image-based meta-analysis (syntax was

highlighted using CodeMirror73).
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queried to retrieve the image data needed for the meta-analysis (i.e., the contrast image and contrast standard
error image) along with the analysis mask. The query used to extract these data is displayed in Fig. 5. The name
of the corresponding contrast was associated to each map to allow for the selection of the appropriate contrast.
The neuroimaging software package used for the analysis was also extracted in order to identify which study
estimates would need re-scaling. Second, the contrast and standard error estimates were selected according to
the contrast name, re-scaled if needed and combined in a mixed-effects GLM. Areas of significant activation
(Po0.05 FWE cluster-wise with a cluster-forming threshold of Po0.001 uncorrected) found by the pain
meta-analysis are displayed in Fig. 6. Results are also available on NeuroVault at http://neurovault.org/
collections/1432/.
The coordinate-based meta-analysis was performed using a Multilevel Kernel Density Analysis (MKDA)2.

Each NIDM-Results pack was queried to retrieve the coordinates of the local maxima, the reference space in
use and the number of subjects for each contrast. Areas of significant activation (Po0.05 FWE cluster-wise
with a cluster-forming threshold of Po0.001 uncorrected) found by the pain meta-analysis are displayed
in Fig. 6.
In line with previous results from the literature4, the detections for the coordinate-based and image-based

meta-analysis appear consistent with a lower sensibility of the coordinate-based meta-analysis.

-14 6 26 46 66
L R

Figure 6. One-sample meta-analysis of 21 studies investigating the effect of pain. Areas of significant

activation with an FWE-corrected cluster-wise threshold Po0.05 (cluster-forming threshold Po0.001

uncorrected) for the image-based (a) and the coordinate-based (b) meta-analyses.

Group-level analysis was performed with FSL (version 5.0.x). A linear regression was computed at each voxel, using weighted least squares 
(assuming unequal variances) with a local variance estimate. 
Cluster-wise inference was performed with correction for multiple comparisons using a threshold P <= 0.050 (FWER adjusted) with a cluster defining 
threshold Z-statistic >= 2.300. The search volume was 1522 cm^3 (190327 voxels).

FSL group analysis

Group-level analysis was performed with SPM (version 12.6685). A linear regression was computed at each voxel, using ordinary least squares 
(assuming equal variances) with a local variance estimate. 
Voxel-wise inference was performed with correction for multiple comparisons using a threshold P <= 0.050 (FWER adjusted). The search volume was 
949 cm^3 (118626 voxels).

SPM group analysis

Subject-level analysis was performed with FSL (version 5.0.x). A linear regression was computed at each voxel, using generalized least squares 
(assuming equal variances) with a local variance estimate and a spatially regularized Toeplitz covariance structure. Drift was fit with a gaussian 
running line drift model (60.0s FWHM).
Voxel-wise inference was performed using a threshold P <= 0.001 (Uncorrected). The search volume was 1539 cm^3 (57029 voxels).

FSL single-subject analysis

Subject-level analysis was performed with SPM (version 12.6685). A linear regression was computed at each voxel, using generalized least squares 
(assuming equal variances) with a local variance estimate and a global Toeplitz covariance structure. Drift was fit with a discrete cosine transform 
basis drift model (128.0s cut-off).
Voxel-wise inference was performed using a threshold P <= 0.001 (Uncorrected). The search volume was 1791 cm^3 (223883 voxels).

SPM single-subject analysis

Figure 7. Examples of reports generated from NIDM-Results packs for group (a,b) and single-subject

(c,d) analyses performed in FSL (a,c) and SPM (b,d).
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Reporting of neuroimaging results. Supplementary File 1 provides a mapping between the guidelines
provided in ref. 8 to report neuroimaging results and the fields available in a NIDM-Results serialisation.
NIDM-Results cover all elements from the ‘Statistical modelling’ checklist that could be automatically
retrieved within the neuroimaging software package.
Examples of reports generated from a NIDM-Results export of group and single-subject analyses performed

in SPM and FSL are provided in Fig. 7. The data and Python script used to generate those report are available
on NeuroVault (http://neurovault.org/collections/1435/) and GitHub42 respectively.

Discussion
Data sharing in the neuroimaging community is still restrained by a number of psychological and ethical
factors that are beyond the scope of the current paper (see (refs 7,43) for a review). Those will have to be
addressed in order for data sharing to become common practice in the neuroimaging community. In an
effort to address the technological barriers that make data sharing challenging, here we have proposed a
solution to share neuroimaging results of mass univariate analyses.

As a first step to provide machine-readable metadata, we restricted our scope to information that was
automatically extractable and attributes that were crucial for meta-analysis (e.g., number of subjects).
This limited the amount of information that could be represented. For instance, the description of the
paradigm was limited to the design matrix and a list of regressor names. Ideally, to be able to
automatically query for studies of interest, one would need a more thorough description of the paradigm
and of the cognitive constructs involved. While vocabularies are becoming available (e.g., Cognitive
Atlas44,45 and CogPO46,47), description of fMRI paradigms is still a topic of active research. Some level of
manual interaction to select contrasts of interest is therefore needed to compute a meta-analysis based on
NIDM-Results packs. Nevertheless, NIDM-Results allows for the automation of part of the meta-analysis
as described in our results. In the future, as a consensus develops on the description of paradigms,
NIDM-Results could easily be extended to include this information. Similarly, NIDM-Results could be
extended to match emerging best practices (such as ref. 10).

NIDM-Results currently focuses on the representation of parametric mass-univariate analyses. Thanks
to the intrinsic extensibility of RDF models, variants could be proposed to broaden its scope. For
example, an extension for non-parametric statistics is under discussion48. Mass-univariate results, as the
most well established approach for fMRI analysis, was an obvious choice to start a cross-software
modelling effort. But neuroimaging cannot be limited to mass-univariate analyses and future work will
focus on providing extensions for other types of analyses (e.g., analysis of resting state fMRI).

We based our modelling effort on PROV, a specification endorsed by the W3C, to model provenance
on the web. Other efforts have been proposed to model provenance including families of ontologies like
the OBO foundry49 or DOLCE50. We chose PROV as it is lightweight, focused only on provenance, and is
easily extensible to provide domain-specific knowledge.

Another recent effort to provide structured organisation of neuroimaging data is the Brain Imaging
Data Structure (BIDS)51. While NIDM-Results and BIDS both concern the organisation and description
of neuroimaging data, they operate at very distinct domains of the analysis path. BIDS provides a
mechanism for organising only the original raw data, and it does not cover any derived data nor the
definition of particular statistical models or the outputs of those models. NIDM-Results, in contrast,
works at the other end of the analysis pipeline, defining a framework to describe the statistical model, the
statistical ‘contrasts’ that interrogate the model, and the resulting statistical maps and inferences obtained
from each contrast. Whereas BIDS was designed so that an end-user could manually create the files and
directories of a BIDS-compliant data structure, NIDM-Results is intended to be automatically generated
from analysis software and was therefore created using more expressive semantic web technologies.
Of the larger NIDM project, it is the NIDM-Experiment portion that will have the greatest overlap with
BIDS. By making the experimental metadata available as linked data, NIDM-Experiment will enable
querying across the full neuroimaging data lifecycle, interrogating data possibly hosted on distributed
resources.

NIDM-Results is based on RDF and semantic web technologies. While a number of ontologies have
been developed in relation with neuroimaging (e.g., Cognitive Atlas44, CogPO46, OntoNeurolog52), the
use of controlled vocabularies and of linked data is not yet common practice in our community. As more
and more data become available online and as standardisation effort like the RII develops, we believe that
these technologies will become more widespread. RDF was chosen as a basis for NIDM for the
expressivity of its graph-based structures, the possibility to form intricate queries across datasets37, as well
as for the extensibility of the created data models and the possibility to interconnect across knowledge
domains (cf. ref. 53 for a review).

One limitation of NIDM-Results is that only limited provenance is represented. For instance,
computational environment, which has been shown to be source of undesired variability in neuroimaging
results54, is not part of our model. NIDM-Results is part of a broader effort (NIDM) that aims at
representing different levels of provenance in neuroimaging experiments. While those efforts are still
under development, our goal is to keep a link between those components to eventually provide a
complete representation of neuroimaging provenance.

As for the definition of any new model, gaining acceptance within the neuroimaging community will
be crucial for NIDM-Results. To insure a level of consensus, including the point-of-view of different
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actors in the field, NIDM-Results was built as part of a collaborative effort. More feedback from the
community is welcome and can be submitted as issues in our GitHub repository or by email at
nidm-users@googlegroups.com. We also made a strong commitment to make implementations available.
Taking advantage of the fact that most functional MRI studies are performed using a limited number
of software packages (>75% for SPM or FSL,>90% for SPM, FSL or AFNI according to ref. 55),
we developed implementations for SPM and FSL, and are currently working with AFNI developers to
further extend the coverage of NIDM-Results export.

While we have focused our implementation efforts on the generation of NIDM-Results packs,
the development of applications processing NIDM-Results is also crucial, to serve as incentives
for neuroimaging users. As an example, we liaised with NeuroVault to propose a one-click upload of
NIDM-Results. Here, users can benefit from all NeuroVault features including state-of-the-art
visualisations but also sharing, either privately or publicly depending on the stage of the project. This
process can ease communication between researchers working on different platforms or used to a
different set of neuroimaging tools. In the future, we plan to offer a one-click upload of NIDM-Results
packs from the neuroimaging software packages (SPM, FSL, AFNI) into NeuroVault. A wider ecosystem
is also under development (including a standalone viewer).

Future work will focus on developing extensions for NIDM-Results to cover a larger spectrum of
neuroimaging studies (e.g., non-parametric analyses) as well as to stay up-to-date with emerging
best practices. We will also sustain our effort on the development of tools that can read and write
NIDM-Results. Finally we will focus on the specification of the other NIDM components to enable
modelling of a complete fMRI experiment from raw data to statistical results.

We believe NIDM-Results is an essential tool for the future of transparent, reproducible science using
neuroimaging. If all research publications were accompanied by such a machine-readable description of
the experiment, debates on the exact methodology used would be compressed or eliminated, and any
replication efforts greatly facilitated.

Methods
Process
Since August 2013 the model was developed through weekly teleconferences and eight focused workshops
during which the team of experts iteratively defined the terminology, seeking to ensure that the output of
AFNI, FSL and SPM could be represented in this framework. Furthermore, a separate meeting was
organised with each of the development teams of SPM, FSL and AFNI to discuss the model and its
implementation. Minutes of the meetings and online discussions are publicly available in our shared
Google drive56 and on GitHub under the incf-nidash organization57.

Scope of the model
NIDM-Results focuses on mass-univariate models based on a General Linear Model (at the subject or
group level). To facilitate adoption, we restricted the scope of NIDM-Results to metadata that could be
automatically extracted with limited user input, motivated by the specific metadata that is crucial for the
application of meta-analysis. This had important practical consequences. Given that pre-processing and
statistical analysis are sometimes done using separate pipelines, we focused on the statistical analysis only.
The concepts to be represented in NIDM-Results were selected based on (1) meta-analysis best practices;
(2) published guidelines to report fMRI studies8, and (3), in an effort to ensure continuity with current
practice, we also considered the elements displayed as part of results reporting in different neuroimaging
software (e.g., peaks, clusters). When an item, essential for image-based meta-analysis, was not produced
as part of the standard analysis (e.g., the contrast standard error map in SPM) we included it in the model
and depend on the exporters to generate it from existing data.

Term re-use and definitions
For each piece of information, we checked if an appropriate term was available in publicly available
ontologies: in particular STATO for statistics term, PROV for provenance, NeuroLex for neuroscience
terms, RRID for tools and also, to a lesser extent, Dublin Core, the NEPOMUK file ontology and the
Cryptographic Hash Functions vocabulary. Namespaces of the re-used ontologies are provided in Table 2.
More details on the re-used vocabularies are provided below.

PROV. The W3C specification PROV35 defines three types of objects: an Activity represents a process
that was performed on some data (e.g., a voxel-wise inference) and occurred over a fixed period of time;
an Agent represents someone (human, organization, machine…) that takes responsibility for an activity
(e.g., the SPM software) and, finally, an Entity represents any sort of data, parameters etc. that can be
input or output of an activity (e.g., a NIfTI image). PROV also defines a set of relations between those
objects (e.g., a voxel-wise inference Activity used a NIfTI image Entity; a voxel-wise inference Activity was
associated with the SPM Agent and another NIfTI image Entity was generated by the segmentation
Activity). NIDM-Results terms were defined as specialisations of PROV terms.

STATO. GLM analyses of fMRI data rely on well-known statistical constructs (e.g., one-sample T-test,
two-sample T-test, F-tests, ANOVA, inference, ordinary least squares estimation, etc.). The general-
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purpose STATistics Ontology (STATO)58 is built on the top of the OBO foundry and aims to provide a
set of terms describing statistics. We re-used statistics terms available in STATO (e.g., obo:'t-statistic') and
when we could not find an appropriate statistical term, we engaged with STATO developers through
GitHub issues to propose new terms (e.g., ‘residual mean squares’ discussed in issue 35 (ref. 59)).

NeuroLex and RRID. Much work has been done in the neuroimaging community to provide
controlled vocabularies and ontologies defining neuroimaging concepts. NeuroLex60,61 provides a
common platform that gathers terms from different sources (including previous vocabularies developed
by NIF, BIRN…). Interestingly, Neurolex was part of the recent Resource Identification Initiative
(RII)62,63 that publicized the use of those identifiers (e.g., ‘RRID:SCR_007037’ for SPM64) in research
papers. RII is currently focused on the identification of biological resources and has been quickly adopted,
with more than 100 journals participating to date. We re-used the available RRIDs describing
neuroimaging software packages.

Dublin core, NEPOMUK file ontology and the Cryptographic Hash Functions vocabulary. Many
vocabularies and ontologies have terms available to describe files. We chose to rely on the widely adopted
DUBLIN core terminology65. Additionally, we used the ‘fileName’ term from the NEPOMUK file
ontology66 and the SHA-256 term from the Cryptographic Hash Functions vocabulary67.

New terms. When no term was found to describe a given neuroimaging concept of interest, we created
a new term and carefully crafted a definition or engaged with the relevant ontology maintainers (e.g., we
contributed 41 terms to STATO) to propose a new definition. All new terms and definitions were
thoroughly discussed between our panel of experts in the NIDM working group, which is part of the
INCF Neuroimaging Task Force (NIDASH).

Examples of usage
Meta-analysis. Data collection was subject to the Oxford University ethics review boards, who
approved the experiments. Only statistical summaries with no identifying data are shared along this
manuscript.

Results from 21 pain studies previously analysed with FSL were made available to us. The second-level
analyses were recomputed with SPM for 10 of those studies in order to obtain a dataset of NIDM-Results
packs coming from mixed software packages. We computed a one-sample meta-analysis contrasting the
effect of ‘pain’ and compared the results of coordinate-based and image-based meta-analyses.

The MKDA toolbox68, was used to perform the coordinate-based meta-analysis. The nidmresults
Python toolbox (https://pypi.python.org/pypi/nidmresults) was used to generate the csv file required as
input for the analyses.

FSL’s FLAME 1 (ref. 69) was used to compute the image-based meta-analysis with the gold standard
approach (3rd level mixed-effects general linear model). FLAME 1 implements a random-effects meta-
analysis with iterative estimation of between-study variation via maximum likelihood70,71. Parametric
inferences are conducted by reference to a Student’s t distribution with nominal degrees of freedom (i.e.,
number of studies minus number of regression parameters) to account for uncertainty in the estimation
of the between-study variance parameter. Difference in data scaling between software packages were
compensated by rescaling the FSL maps to a target intensity of 100 (instead of 10 000 by default).

Reporting of neuroimaging results. From four studies exported with NIDM-Results we wrote a
script42 to extract the information of interest to describe group and subject-level statistics using the

Vocabulary/Ontology URI Prefix

PROV htt#p://ww#w.w3.org/ns/prov# prov

STATO htt#p://purl.obolibrary.org/obo/ obo

NeuroLex htt#p://uri.neuinfo.org/nif/nifstd/ nlx

RRID htt#p://scicrunch.org/resolver/ rrid

Dublin Core types htt#p://purl.org/dc/dcmitype/ dctype

Dublin Core elements htt#p://purl.org/dc/elements/1.1/ dc

Dublin Core terms htt#p://purl.org/dc/terms/ dct

Cryptographic Hash Functions htt#p://id.loc.gov/vocabulary/preservation/cryptographicHashFunctions# crypto

NEPOMUK file ontology htt#p://ww#w.semanticdesktop.org/ontologies/2007/03/22/nfo# nfo

NIDM htt#p://purl.org/nidash/nidm# nidm

FSL htt#p://purl.org/nidash/fsl# fsl

SPM htt#p://purl.org/nidash/spm# spm

Table 2. Prefixes of the vocabularies used in NIDM-Results.
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RDFlib library72 to query the documents. The paragraph that was generated could, for instance, be used
as part of the method section in a research paper.
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