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Full-waveform inversion with extrapolated low-frequency data

Yunyue Elita Li1 and Laurent Demanet1

ABSTRACT

The availability of low-frequency data is an important factor
in the success of full-waveform inversion (FWI) in the acoustic
regime. The low frequencies help determine the kinematically
relevant, low-wavenumber components of the velocity model,
which are in turn needed to avoid convergence of FWI to spu-
rious local minima. However, acquiring data less than 2 or
3 Hz from the field is a challenging and expensive task. We
have explored the possibility of synthesizing the low frequen-
cies computationally from high-frequency data and used the
resulting prediction of the missing data to seed the frequency
sweep of FWI. As a signal-processing problem, bandwidth ex-
tension is a very nonlinear and delicate operation. In all but the
simplest of scenarios, it can only be expected to lead to plau-
sible recovery of the low frequencies, rather than their accurate
reconstruction. Even so, it still requires a high-level interpre-
tation of band-limited seismic records into individual events,

each of which can be extrapolated to a lower (or higher) fre-
quency band from the nondispersive nature of the wave-propa-
gation model. We have used the phase-tracking method for the
event separation task. The fidelity of the resulting extrapola-
tion method is typically higher in phase than in amplitude.
To demonstrate the reliability of bandwidth extension in the
context of FWI, we first used the low frequencies in the
extrapolated band as data substitute, to create the low-wave-
number background velocity model, and then we switched
to recorded data in the available band for the rest of the iter-
ations. The resulting method, extrapolated FWI, demonstrated
surprising robustness to the inaccuracies in the extrapolated
low-frequency data. With two synthetic examples calibrated
so that regular FWI needs to be initialized at 1 Hz to avoid
local minima, we have determined that FWI based on an
extrapolated [1, 5] Hz band, itself generated from data avail-
able in the [5, 15] Hz band, can produce reasonable estimations
of the low-wavenumber velocity models.

INTRODUCTION

Since proposed by Tarantola (1984), full-waveform inversion
(FWI) has established itself as the default wave-equation-based
inversion method for subsurface model building. In contrast to
ray-based traveltime tomography (Woodward et al., 2008), FWI in-
cludes phase and amplitude information in the seismograms for
elastic-parameter estimation. When working with reflection data,
the model update of FWI is similar to a migration image of the data
residual, given the background propagation velocity (Claerbout,
1985; Biondi and Symes, 2004). The accuracy of the resolved
model is controlled by the frequency band in the data and the ac-
curacy of the initial (background and macro) model. When this ini-
tial macro model is not sufficiently accurate, the iterative process of
FWI gets trapped in undesirable local minima or valleys (Virieux
and Operto, 2009). The lack of convexity is intrinsic and is due to
the relatively high frequencies of the seismic waveforms.

Global optimization techniques could overcome the nonconvex-
ity in theory; however, their computational cost for million-dimen-
sional model space is often prohibitively expensive for FWI.
Therefore, most FWI algorithms are based on local gradient-based
iterative techniques. In spite of an extensive literature on the subject,
a convincing solution has yet to emerge for mitigating these con-
vergence issues. So far, the community’s efforts can be grouped into
three categories.
In the first category, misfit functions different from least squares

have been proposed to emulate traveltime shifts between the mod-
eled and recorded waveforms. Luo and Schuster (1991) propose to
combine traveltime inversion with FWI, in which the misfit is mea-
sured over the maximum correlation time lag. Ma and Hale (2013)
and Baek et al. (2014) propose variants of FWI augmented with
warping functions directly estimated from the data. However, these
methods move away from the attractive simple form of the least-
squares formulation and require additional data processing steps
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that are themselves not guaranteed to succeed in complex propaga-
tion geometries.
In the second category, additional degrees of freedom are intro-

duced to (attempt to) convexify the waveform inversion in higher
dimensions. The extension of velocity with a nonphysical dimen-
sion was first introduced by Symes and Carazzone (1991). Recently,
Shen (2004), Symes (2008), Sun and Symes (2013), and Biondi and
Almomin (2014) show that a velocity extension along the subsur-
face-offset, plane-wave ray-parameter, or time-lag axis is able to
describe the large time shift in wave propagation. Warner and
Guasch (2014) extend the model space to include trace-based Wie-
ner filters comparing the modeled and recorded data. van Leeuwen
and Herrmann (2013) extend the model space to include the whole
wavefield so that the reconstructed wavefield fits the data by design.
All these methods rely on an iterative formulation to gradually re-
strict the extended nonphysical model space to the physical model
space, which is often a delicate process without guarantees. In ad-
dition, they introduce significant computational cost and memory
usage in addition to the already very expensive FWI.
In the third category, the tomographic and migration components

in the FWI gradient are separated and enhanced at different stages of
the iterations. Based on a nonlinear iterative formulation, Mora
(1989) decomposes the wavefields according to their propagation
directions. Then, the low- and high-wavenumber components of
the velocity model are extracted using correlations of these direc-
tional wavefields. Following a similar approach, Tang et al. (2013)
propose to enhance the tomographic components at the early iter-
ations and gradually reduce its weights toward convergence. Alkha-
lifah (2015) further separates the gradient components based on the
scattering angle at the imaging point. Although these methods en-
hance the low-wavenumber components of the FWI gradient, the
essential difficulty of ensuring correctness of the tomographic com-
ponent is still mostly untouched.
The most straightforward way to increase the basin of attraction

of the least-squares objective function is to seed it with low-fre-
quency data only, and slowly enlarge the data bandwidth as the
descent iterations progress. However, until several years ago, the
low-frequency energy less than 5 Hz was often missing due to in-
strument limitations. More recently, as the importance of the low
frequencies became widely recognized by industry, broadband seis-
mic data with a high signal-to-noise ratio between 1.5 and 5 Hz
started being acquired at a significantly higher cost than previously.
To synthesize some form of low-frequency information, Wu et al.
(2013) propose using the envelope function. Similarly, Hu et al.
(2014) propose to use the low-frequency information hiding in
the difference between data at two adjacent frequencies. Both stud-
ies demonstrated that fitting “manufactured” low-frequency infor-
mation produces somewhat improved low-wavenumber models that
enabled closer initialization for the subsequent FWI with the band-
limited recordings. However, neither method attempts to approxi-
mate the actual low-frequency recordings, and neither choice of
nonlinear low-frequency combination is justified by a rationale that
they succeed at convexifying the FWI objective function. The situa-
tion is worse: it is easy to find examples in which the wave-equation
Hessian of an augmented FWI functional with, say, the envelope
function and a low-pass filter, still have undesirable large eigenvalues
growing as the frequency increases.
The premise of this paper is that the phase-tracking method, pro-

posed in Li and Demanet (2015), is a reasonably effective algorithm

for extrapolating the low-frequency data based on the phases and
amplitudes in the observed frequency band. A tracking algorithm
is able to separate each seismic record into atomic events, the am-
plitude and phase functions of which are smooth in space and fre-
quency. With this explicit parameterization, the user can now fit
smooth nonoscillatory functions to represent and extrapolate the
wave physics to the unrecorded frequency band. Although the re-
sulting extrapolated data can only be expected to accurately repro-
duce the low-frequency recordings in very controlled situations,
they are nevertheless adequate substitutes that appear physically
plausible in a broad range of scenarios. Although existing literatures
have tried to expand the frequency band of seismic data implicitly
via model space extension and/or sparse regularization (Sun and
Symes, 2013; Pan et al., 2016), we are not aware that there is
any other attempt at synthesizing low frequencies directly in the
data space. The resulting synthesized seismic data are comparable
with the low-frequency data that would have been recorded in the
field (the mathematical problem of providing tight guarantees con-
cerning extrapolation of smooth functions from the knowledge of
their noisy samples has, however, been solved in our companion
paper; Demanet and Townsend, 2016).
In this paper, we test the reliability of the extrapolated low-

frequency data on two numerical examples in the constant-density
acoustic regime. In both cases, the low frequencies between 1 and
5 Hz are extrapolated from the recordings at 5 Hz and above. We
demonstrate that although the extrapolated low frequencies are
sometimes far from exact, the low-wavenumber models obtained
from the extrapolated low frequencies are often suitable for initial-
ization of FWI at higher frequencies.

METHODS

Review of full-waveform inversion with truncated
Gauss-Newton iterations

Conventional FWI is formulated in data space via the minimiza-
tion of the least-squares mismatch between the modeled seismic
record u with the observed seismic record d

JðmÞ ¼ 1

2

X
r;s;t

ðusðxr; t;mÞ − dr;s;tÞ2; (1)

where m is the slowness of the pressure wave, s indexes the shots,
and xr are the receiver locations. We also write sampling at the
receiver locations with the sampling operator S as usðxr; t;mÞ ¼
Susðx; t;mÞ. The modeled wavefield usðx; t;mÞ is the solution of
a wave equation (discretized via finite differences in space and time):�

m2
∂2

∂t2
− ∇2

�
us ¼ fs; (2)

with fs a source wavelet at location xs and ∇2 ¼ ð∂2∕∂x2Þ þ
ð∂2∕∂y2Þ þ ð∂2∕∂z2Þ the Laplacian operator.
Starting with an initial model mð0Þ, we use a gradient-based iter-

ative scheme to update the model

mðiþ1Þ ¼ mðiÞ − αðJTr JrÞ−1JTr rðmðiÞÞ; (3)

where mðiÞ is the model at the ith iteration, r ¼ SuðmðiÞÞ − d is the
data residual, Jr is the Jacobian matrix, and α is the step length for
the update.
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In practice, the normal matrix JTr Jr is too large to build explicitly
and is often approximated by an identity matrix. In this paper, we
choose to precondition this matrix by approximately solving the
following system using a few iterations of the conjugate gradient
method (Claerbout, 1985; Metivier et al., 2013):

min
δm

krðmðiÞÞ − JrðmðiÞÞδmk22; (4)

where δm is the unknown increment in model. The linear iteration
in equation 4 is also known as least-squares reverse time migration,
which effectively removes the source signature and produces “true-
amplitude” velocity perturbation at convergence. Then, a careful
line search is performed to make sure the objective function (equa-
tion 1) decreases in the nonlinear iterations (another effectiveway of
preconditioning the normal operator is to use randomized matrix
probing, see Demanet et al., 2012).
To help the iterative inversion avoid local minima, we perform

frequency-continuation FWI starting from the lowest available fre-
quency with a growing window. Algorithm 1 shows the workflow
for FWI with the truncated Gauss-Newton iterations.

Review of phase tracking and frequency extrapolation

In a previous paper (Li and Demanet, 2015), we demonstrated
that there exist interesting physical scenarios, in which low-fre-
quency data can be synthesized from the band-limited field record-
ings using nonlinear signal processing. This processing step is
performed before FWI in the frequency domain. To extrapolate
the data from the recorded frequency band to lower (and higher)

frequencies, the phase-tracking method consists of solving the fol-
lowing optimization problem to separate the measured data to its
atomic event components: minimize

Jtrackingðfaj; bjgÞ ¼
1

2
kûðω; xrÞ− d̂ðω; xrÞk22

þ λ
X
j

k∇2
ωbjðω; xrÞk22 þ μ

X
j

k∇xrbjðω; xrÞk22

þ γ
X
j

k∇ω;xrajðω; xrÞk22; (5)

where d̂ is the measured data in the frequency domain at a receiver
location xr; ∇k and ∇2

k, with k ¼ ω; xr, respectively, denote the
first- and second-order partial derivatives;∇ω;xr denotes the full gra-
dient; and the predicted data record û is modeled by the summation
of r individual events:

ûðω; xrÞ ¼
Xr

j¼1

v̂j ¼
Xr

j¼1

ŵðωÞajðω; xrÞeibjðω;xrÞ; (6)

where wavelet ŵðωÞ is assumed known to a certain level of accu-
racy. The constants λ, μ, and γ are chosen empirically based on the
available frequency, accuracy of the source signature, and the sam-
pling of the offset. These parameters are tested on a couple of shot
gathers, so that a majority of the events are consistently picked.
The optimization problem for event tracking here is reminiscent

of FWI with high-frequency data, hence shares a similar level of
nonconvexity. Yet, by posing it as a data processing problem,
the nonconvexity can be empirically overcome with an explicit ini-
tialization scheme using multiple signal classification (MUSIC),
coupled with a careful trust-region “expansion and refinement”
scheme to track the smooth phase and amplitude. We refer the
reader to the detailed algorithm in the previous paper (Li and
Demanet, 2015).
Having obtained the individual events, we make explicit assump-

tions about their phase and amplitude functions to extrapolate out-
side of the recorded frequency band. Namely, we assume that the
earth is nondispersive, i.e., the phase is affine (constant + linear) in
frequency, and that the amplitude is to a good approximation con-
stant in frequency — though both are variable in x, of course. A
least-squares fit is then performed to find the best-constant approx-
imations ajðω; xrÞ ≃ αjðxrÞ, and the best-affine approximations
bjðω; xrÞ ≃ ωβjðxrÞ þ ϕjðxrÞ, from values of ω within the useful
frequency band. These phase and amplitude approximations can
be evaluated at values of ω outside this band, to yield synthetic
flat-spectrum atomic events of the form

v̂ejðω; xrÞ ¼ αjðxrÞeiðωβjðxrÞþϕjðxrÞÞ: (7)

These synthetic events are multiplied by a band-limited wavelet,
and summed up, to create a synthetic data set.
The effectiveness of this method for event identification is limited

by many factors, chiefly the resolution of the MUSIC algorithm and
the signal-to-noise ratio of the data. The algorithm often tracks the
strong events and treats the weak events as noise. Moreover, the
amplitudes of the events are less predictable than the phases,
due to propagation and interfering effects. Therefore, the extrapo-
lated data record is inexact, typically with higher fidelity in phase
than in amplitude. In the following section, we test the reliability of

Algorithm 1. The FWI with truncated Gauss-Newton
iterations.

Initialize m0

for i ∈ 0 · · · N do

rðiÞ←SuðmðiÞÞ − d

if krik < ϵ then

Converged with model mðiÞ

else

Initialize Gauss-Newton iterations

p0 ¼ rðiÞ; A ¼ JrðmðiÞÞ; g0 ¼ ATp0

First iteration as steepest descent

δp0 ¼ Ag0; α0←
δp0 ·δp0

δp0 ·p0

δm1 ¼ −αjp0; p1 ¼ p0 − α0δp0

for j ∈ 1 · · · n do

gj ¼ ATpj; δpj ¼ Agj�
αj
βj

�
←

�
δpj−1 · δpj−1 δpj−1 · δpj

δpj · δpj−1 δpj · δpj

�
−1
�
pj · δpj−1
pj · δpj

�
δpj←αjδpj−1 þ βjδpj; gj←αjgj−1 þ βjgj
pjþ1←pj − δpj; δmjþ1←δmj − gj

end for

Line search to find γðiÞ

mðiþ1Þ←mðiÞ − γðiÞδmnþ1

end if

end for
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the extrapolated low frequencies by initializing the frequency con-
tinuation of FWI. Our goal is to bring reliable low-wavenumber in-
formation in the model by fitting the phase of the extrapolated data
and to help enlarge the basin of attraction for FWI when the low
frequencies are missing from data.

NUMERICAL EXAMPLES

In this section, we demonstrate the reliability of the extrapolated
low frequencies on two synthetic examples. The first model is a
wide-aperture, one-sided version of the classic Camembert model
(Tarantola, 1984; Gauthier et al., 1986), in which the accuracy of

frequency extrapolation can be analyzed care-
fully on the data record. The second model is
the Marmousi model, in which the frequency
extrapolation is tested in a more complex and
geologically relevant environment. In both exam-
ples, we compare three cases while keeping the
initial models fixed:

1) In the control case, frequencies from 1 to
15 Hz are used in the frequency continuation
of FWI.

2) In the extrapolated FWI (EFWI) case, we
first extrapolate the data between 5 and
15 Hz to the frequency band between 1
and 5 Hz. The extrapolated data are used
to build the low-wavenumber model to fur-
ther initialize the frequency continuation
starting at 5 Hz.

3) In the missing low-frequency case, frequency
continuation of FWI starts from the lowest
frequency at 5 Hz.

For the extrapolated case, data are processed
prior to the FWI iterations. For both test cases,
we set λ ¼ 1.0, μ ¼ 10.0, and γ ¼ 0.002. With
our sequential implementation, phase tracking
and frequency extrapolation costs approximately
5% of a single FWI iteration. We truncate the
Gauss-Newton inversion in Algorithm 1 at three
iterations for each nonlinear step, when it shows
a good balance between convergence and com-
putational cost.

Synthetic example: Camembert model

In this example, we model the synthetic seismic records on the
classic Camembert model. We work with the reflection setting in
which 41 sources and 401 receivers are evenly spaced on the sur-
face. The maximum offset between the sources and receivers is
4 km. A circular low-velocity anomaly (v ¼ 1700 m∕s) is placed
in a constant velocity background (v ¼ 2000 m∕s).
Figure 1a shows one record between 5 and 15 Hz. The tracking

algorithm picked up the two strong reflection events from the top
and the bottom of the low-velocity anomaly. The dotted black line
overlaid in Figure 1 denotes the inverted arrival time for each event.
The inverted two reflection events are shown in Figure 1b. The
tracking algorithm does not perfectly reproduce the input recording,
leaving behind the weaker multiple reflection events trailing the sec-
ond reflection event. Energy from these missing events will appear
as phase and amplitude errors at lower frequency when events in-
terfere with each other.
Following the extrapolation strategy in equation 7, we extend

each event from the recorded frequency band to higher and lower
frequency bands. Figure 2 shows the comparison between inverted
phase function (solid line) and the extrapolated phase function
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Figure 2. Comparison between the inverted phase function (solid
line) and the extrapolated phase function (dashed line) for
(a) top and (b) bottom reflection events. The extrapolated phase
function represents a reasonable approximation to the inverted
phase function.
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Figure 1. Comparison between (a) the recorded shot profile and (b) the inverted shot
profile on the Camembert model within the recorded bandwidth (5–15 Hz). The inverted
shot profile recovers the phase and the amplitude of the two strong reflection events,
whose estimated arrival times are denoted by the dotted line in panel (a). The inversion
does not recover the weak multiple reflection events behind the second reflection event.
Energy from these missing events will show up as phase and amplitude errors at lower
frequency when events begin interfering with each other.
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(dashed line). Although the inverted phase function is not perfectly
linear with respect to frequency for each event, the extrapolated
phase function represents a reasonable approximation of the in-
verted phase function.
Figure 3 compares the modeled low-frequency shot profile (Fig-

ure 3a) with the extrapolated low-frequency shot profile (Figure 3b).
The two shot profiles differ from each other in amplitude and phase.
Discrepancies in amplitude are caused by the crude “constant am-
plitude” assumption, whereas discrepancies in phase are caused
by the interference of the unmodeled weak events. However, the
extrapolated low-frequency shot profile is a reasonable approxima-
tion of the modeled one for FWI.
To test the accuracy and reliability of the extrapolated record, we

initialize the frequency continuation of FWI using the extrapolated
data. Starting from a constant-velocity model (v ¼ 2000 m∕s), Fig-
ure 4b shows the inversion result using the extrapolated low fre-
quency (1–5 Hz) data in comparison with the inversion result
using the modeled low-frequency data (Figure 4a). Although the

positive velocity side lobes are stronger in the extrapolated result,
both inversion tests resolve the low-wavenumber structure of the
velocity model.
We continue the frequency continuation of FWI starting from the

initial models in Figure 4 and obtain the final-inversion results in
Figure 5. Figure 5a shows the inversion result in the control case
when all the frequencies (1–15 Hz) are used in the frequency con-
tinuation. The inversion successfully delineates the boundary of the
low-velocity anomaly. Figure 5b shows the inversion result when
low-frequency (1–5 Hz) energy is missing from the inversion.
Thanks to the low-wavenumber information extracted from the
low-frequency extrapolated data, FWI without low frequencies
has converged to a meaningful velocity model. In comparison,
FWI starting from a constant background velocity model and
5 Hz data cannot resolve the low-wavenumber velocity structure,
yielding mispositioned boundaries of the velocity anomaly, as
shown in Figure 5c.
One important issue to notice is that the velocity value of the

anomaly has not been fully recovered in any of the three cases. This
is primarily due to the limited number of iterations that only enable

b)

a)

Figure 3. Comparison between (a) the modeled low-frequency
(1–5 Hz) shot profile and (b) the extrapolated low-frequency shot
profile on the Camembert model. Discrepancies in amplitude are
caused by the crude “constant amplitude” assumption. Discrepancies
in phase are caused by the interfering of the unmodeled weak events.

a)

b)

Figure 4. Inversion results from FWI with (a) the modeled low fre-
quency (1–5 Hz) shot profile and (b) the extrapolated low-frequency
shot profile. These inversion tests resolve similar low-wavenumber
structure in the velocity model.
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a)

b)

c)

Figure 5. Comparison between the inverted model from FWI after a
full-bandwidth continuation. (a) Resulting model from the control
case (frequency continuation from 1 to 15 Hz). (b) Resulting model
from the extrapolated case (initialization using extrapolated low
frequencies [1–5 Hz] and frequency continuation with recorded data
from 5 to 15 Hz). (c) Resulting model from the missing low-fre-
quency case (frequency continuation from 5 to 15 Hz). When all
the frequencies (1–15 Hz) are used in the frequency continuation,
FWI successfully delineates the boundary of the low-velocity
anomaly. When low frequencies (1–5 Hz) are missing from the data,
FWI converges to a velocity model with meaningful low-wavenum-
ber components with the aid from the extrapolated low-frequency
data. Otherwise, FWI cannot resolve the low-wavenumber velocity
structure, yielding mispositioned velocity boundaries.
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Figure 6. Comparison of the pseudovelocity logs at x ¼ 0 m be-
tween the inversion results and the true velocity model. The
FWI cannot fully resolve the perturbation of the anomaly due to
the limited bandwidth in the data. Both inversion results match well
with the band-limited (between 1 and 15 Hz) true velocity model.

a)

b)

Figure 7. (a) Marmousi model and (b) the starting model for FWI.
The starting model is a 1.5D linearly increasing velocity profile
from 1500 m∕s at the water bottom to 3500 m∕s at 3.2 km. The
initial model is far from the true especially in the deeper section.
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the updates within the available frequency. In the control case, the
inversion will resolve the exact model if we let FWI iterate to con-
vergence — an unrealistic proposition when the data become
noisy. Due to the inaccuracies in the extrapolated data, we stop
the inversion after 50 iterations to avoid overfitting the unreliable
fine scale features in the data. We compare the pseudologs at x ¼ 0

between the true and the inverted velocities in Figure 6. The true
velocity anomaly is −300 m∕s with respect to
the background, whereas the inversion results
only recover half the perturbation with side lobes
of similar opposite perturbations. We find that
these inverted results match well with a band-
limited version of the true velocity model, in
which frequencies less than 1 Hz and more than
15 Hz are not present in the model.
Further tests reveal that the lowest frequency

that is needed to recover the circular shape of
the Camembert model is 1 Hz (acquisition and
iterative scheme fixed). The FWI starting from
2 Hz will only resolve the boundary of the Cam-
embert model, which might lead to erroneous
interpretations. For this simple model, our
extrapolation algorithm continues to yield stable
results, as we increase the lowest available fre-
quency in the recorded data. With the highest
available frequency fixed at 15 Hz, the lowest
frequency for a reliable extrapolation can be as
high as 8 Hz.

Synthetic example: Marmousi model

In this example, we test the reliability of the
extrapolated low frequency on the Marmousi
model (Figure 7a). We restrict FWI to reflection
events only by limiting the maximum offset to
500 m in the inversion. The starting model for
FWI is a 1.5 D linearly increasing velocity pro-
file (Figure 7b). It is an extremely challenging
task for FWI to recover large low-wavenumber
discrepancies between the initial and the true
models, especially in the deeper section (more
than 2 km).
Figure 8 shows the comparison between the

modeled band-limited (5–15 Hz) shot profile
(Figure 8a) with the inverted shot profile by event
tracking (Figure 8b). The tracking algorithm is
set up to identify up to 10 strongest events in
each shot record. On this particular shot profile,
nine events are identified. The tracking algorithm
recovers the input record very well. Figure 9
shows the comparison between the modeled
and the extrapolated low-frequency (1–5 Hz)
shot profile, amplitude-normalized. Despite
the amplitude and slight phase discrepancy, the
extrapolated shot profile approximates the
modeled shot profile sufficiently well in the low-
frequency band for the purpose of initializ-
ing FWI.
The reliability of the extrapolated low frequen-

cies (1–5 Hz) is tested with FWI at these low

frequencies. Figure 10 shows the inverted velocity model using
modeled data (Figure 10a) and using extrapolated data (Figure 10b).
Although not as detailed as Figure 10a, the velocity model inverted
using the extrapolated data correctly captures the very low-wave-
number component of the true model. These models are used to
initialize FWI with data at higher frequencies.
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Figure 8. Comparison between (a) the modeled band-limited (5–15 Hz) shot record and
(b) the inverted shot record. The tracking algorithm identifies nine individual events and
recovers the modeled data very well.
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Figure 9. Comparison between (a) the modeled low-frequency (1–5 Hz) shot record and
(b) the extrapolated low frequency (1–5 Hz) shot record. The color bar denotes the nor-
malized amplitude. Despite the imperfect reconstruction of phase and amplitude, the
extrapolated low frequencies are adequate for the purpose of initializing FWI.
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Figure 11 compares the final-inverted results after a full-
bandwidth FWI continuation. In the shallow region (less than
2 km), velocity models resolved in the control and the extrapolated
cases are very similar with accurately imaged fine layers and normal
faults. Both models have trouble resolving a high-resolution and
accurate velocity model in the deep region because reflections from
the dipping reflectors and the anticline structure have not been suf-
ficiently recorded due to the limited offset. In comparison, FWI
starting at 5 Hz yields little meaningful information about the sub-
surface. The inversion failed to update the low-wavenumber struc-
ture of the velocity model and placed reflectors at wrong positions.
Compared with the true model, relative velocity errors in Fig-
ure 11a–11c are 14.45%, 15.33%, and 18.39%, respectively.
Figure 12 compares pseudovelocity logs at three surface loca-

tions. Velocity models in the control and extrapolated cases recover
the true velocity model very well above more than 1 km. Quality of
the inverted model degrades with depth. However, both velocity
models capture the low-wavenumber components of the velocity
model. The maximum updates in the deeper section are as high

a)

b)

Figure 10. Comparison between (a) the inverted model after FWI
using modeled low-frequency (1–5 Hz) data and (b) using extrapo-
lated low-frequency data (1–5 Hz). Both models capture the low-
wavenumber structure of the Marmousi model, although the in-
verted model using modeled data contains more details in the shal-
low part.

a)

b)

c)

Figure 11. Comparison between the inverted model from FWI after
a full-bandwidth continuation. (a) Resulting model from the control
case (frequency continuation from 1 to 15 Hz). (b) Resulting model
from the extrapolated case (initialization using extrapolated low
frequencies [1–5 Hz] and frequency continuation with recorded data
from 5 to 15 Hz). (c) Resulting model from the missing low-fre-
quency case (frequency continuation from 5 to 15 Hz). A better
inverted model can be obtained in the control case, if we iterate
to convergence at the lowest frequencies. However, we limit the
number of iterations in the control case to ensure a fair comparison
with the extrapolated case.
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as 1000 m∕s. The huge velocity error prevents FWI starting at 5 Hz
from converging to the true model.

DISCUSSION

In the Camembert example, we have carefully examined the ac-
curacy of the phase-tracking method for low-frequency extrapola-
tion. There are two main reasons that the amplitude and the phase of
the extrapolated data are inexact. First, the tracking algorithm de-
termines the number of individual events as an initialization step.
This number may decrease (for event truncation), but it may not
increase (for event bifurcation) as the tracking expands. These un-
tracked events are the main contributors to the errors in the extrapo-
lated phase function. An aggregation method, with event fragments
tracked in subsets of traces and merged into actual composite
events, may help to improve the accuracy of the event tracking
and phase extrapolation. Second, compared with the phase extrapo-
lation based on nonattenuative physics, the amplitude extrapolation
is less constrained by physical principles. Still, it has been demon-
strated that FWI is robust against inaccuracies in modeling the am-
plitudes of seismic data (Pratt and Shipp, 1999; Shin and Cha,
2008). Consequently, the extrapolated data provide adequate phase
information for initializing FWI, although they might not be suit-
able for absolute impedance inversion and amplitude-based rock-
property interpretation.
Due to the inaccuracy in their phase and amplitude, we do not

allow FWI to fully fit the data at the extrapolated low frequencies.
This limits the resolution of the inverted FWI model. With hundreds

of more iterations in the control case, FWI starting at 1 Hz can re-
duce the data residual to 1% at each frequency band. Hence, the
velocity model can be fully resolved (with all wavenumber compo-
nents) because of the availability of low frequency and long offsets.
To the contrary, overfitting the extrapolated data at low frequencies
would lead the inversion to undesired local minima and spurious
models. The FWI with a limited number of iterations resolves a
good estimate of the velocity model within the increased available
frequency band, but it cannot perfectly resolve the model at all
wavenumbers due to the slow convergence and the potential local
minima introduced by the inaccuracies in the extrapolated data.
In our numerical examples, the extrapolated low frequencies are

used only to initialize FWI to obtain a low-wavenumber model. As
soon as the frequency continuation moves to the recorded frequency
band, the extrapolated low frequencies are abandoned. This leaves
the low-wavenumber components of the model space unconstrained
in later FWI iterations. A proper combination of the extrapolated
and the recorded data needs to be studied to ensure a fully con-
strained inversion for velocity in the whole wavenumber band.

CONCLUSION

To mitigate the nonconvexity of FWI, we propose to start the
frequency continuation using the extrapolated low-frequency data.
The extrapolation is only feasible after decomposing the seismic
records into individual atomic events via phase tracking for each
isolated arrival. Numerical examples demonstrate that FWI is sur-
prisingly tolerant to inaccuracies in the amplitude and phase of the
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Figure 12. Pseudovelocity logs at three surface locations. The black line denotes the initial model. The green line denotes the true model. The
black, green, red, and blue lines denote the pseudolog from the initial, true, control, and extrapolated model, respectively.
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extrapolated events. Initializing with the extrapolated low frequen-
cies mitigates the severe nonconvexity that FWI suffers from when
only high-frequency data are available. By explicitly obtaining the
phase and amplitude of each individual event, our method shares an
important feature with traveltime tomography: its ability to extract
kinematic information from high frequencies only. We call the
method EFWI for short.
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