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One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multi-

ple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for

target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar,

require an expensive payload on each outfitted vehicle and post-processing and/or image interpreta-

tion. A vehicle payload and machine learning classification methodology using bistatic angle de-

pendence of target scattering amplitudes between a fixed acoustic source and target has been

developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the

high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this

research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition

with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by

an AUV around spherical and cylindrical targets insonified by a 7–9 kHz fixed source. The col-

lected data were compared to simulated scattering models. Classification and confidence estimation

were shown for the sphere versus cylinder case on the resulting real and simulated bistatic ampli-

tude data. The final models were used for classification of simulated targets in real time in the

LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J.

Field Rob. 27, 834–875 (2010)]. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4938017]

[AMT] Pages: 3773–3784

I. INTRODUCTION

A growing application for autonomous underwater vehi-

cle (AUV) technology is the localization, classification, and

mitigation of underwater hazards in shallow harbor environ-

ments. The classification problem has attracted particular

attention in recent years with the development of visual and

acoustic AUV-based sensors for remote data collection.

Because visual inspection of targets can be difficult or

impossible in murky harbors and requires precise target

localization, acoustic sensors such as sidescan sonar and syn-

thetic aperture sonar (SAS) are used more extensively for

AUV-based mine countermeasures missions. While these

techniques can provide rich images of targets and the envi-

ronment, they are difficult to use for real-time target classifi-

cation and require expensive precision sensors. Sidescan

sonar images require expert interpretation and are not useful

for locating and classifying buried targets. SAS images are

usually computed in post-processing so that navigation cor-

rections may be applied.1 Both generally rely on image proc-

essing for classification assistance, which is difficult with the

limited computational power on many AUVs. In addition to

these challenges to fully autonomous real-time classification

of data from these systems, the sensors themselves are too

expensive to be practical in multi-vehicle operations.

To achieve plausible, real-time AUV-based target clas-

sification that is expandable to distributed vehicle networks,

two key advancements are required: an inexpensive sensing

payload and a classification method that can be run in real

time on an AUV computer using onboard processing of sen-

sor and navigation data. The advantage of such a sensing

system would be the ability to deploy multiple AUVs to

carry out the target localization and classification missions

with immediate classification and confidence estimates to

inform prosecution decisions without having to recover and

redeploy vehicles. This paper presents a bistatic acoustic

sensing approach to this problem. In this scenario, shown in

Fig. 1, a fixed acoustic source insonifies underwater targets

and scattering data for target classification are collected

using AUV-based linear hydrophone nose arrays cut for

sensing at 1–15 kHz. The bistatic scattering data are proc-

essed onboard each vehicle for target localization and classi-

fication. The bistatic configuration and hydrophone array

were selected to limit sensing system cost per vehicle.

It was critical to identify features within this bistatic

scattering data that were robust to several meters of error in

vehicle location, source location, and target location. The

combined navigational uncertainty, plus the computations

limitations for data processing on an AUV, made using sen-

sitive time and phase information for target classification

impractical. While these features are frequently used for SAS

imaging, they would be difficult to use in real time on a

bistatic AUV system.

When a target on the ocean bottom is acoustically insoni-

fied, the target re-radiates the signal (Fig. 2). This re-radiation

consists of multiple time delayed echoes that interfere in thea)Electronic mail: emf43@mit.edu
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frequency domain. The interference of the time-delayed ech-

oes from target scattering result in frequency-dependent min-

ima and maxima in the bistatic radiation pattern from the

target. These scattering radiation patterns are distinct for dif-

ferent target types and are mostly dependent on azimuth,

showing range and depth independence over meters to tens

of meters. The concept for the classification techniques dis-

cussed in this paper is that these interference patterns in a

given frequency band are stable and can be used to character-

ize seabed targets. This bistatic radiation pattern can be deter-

mined using an AUV with a linear hydrophone nose array, a

data acquisition system, and signal processing software to cal-

culate target scattering amplitude as acoustic data are col-

lected around a target. Imaging techniques are not required, as

the angular dependence of bistatic scattering amplitude can be

analysed directly.

A scattering simulation package was used for modeling

target scattering fields expected from bistatic scattering

experiments. Figures 3(a) and 3(b) show the simulated

intensity-averaged radiation pattern for spherical and cylin-

drical targets versus azimuthal angle relative to the source

for sampling locations 10–60 m from the target. Represented

in this fashion, the difference between the two target types is

very clear, suggesting a good basis for AUV-based target

classification.

Most of the experimental work on bistatic target scatter-

ing has been conducted in water tanks and test ponds. For

example, Baik, Dudley, and Marston conducted an experi-

ment where they looked at the bistatic response of different

cylinders in a test tank for the purposes of holographic imag-

ing.2 Haumesser et al.3 took bistatic measurements of scat-

tering from an air-filled elastic cylinder in a test tank to

study vibration modes. Another experiment, looking at

bistatic scattering from realistic unexploded ordinance geo-

metries, is described in Waters et al.4 Kargl et al.5 looked at

the bistatic scattering response of aspect-dependent targets

in a test pond as a part of the PondEx10 experiment. Other

cases of small and full-scale bistatic tank experiments are

reviewed in Blondel and Pace.6

There have been few seabed target bistatic scattering

experiments in real-world harbor environments, and no

examples were located describing the target classification

approach using bistatic angle mapping of target scattering

amplitude for classification. An example of a bistatic scatter-

ing experiment in a real-world environment was part of the

SITAR project, conducted in Sweden in 2003.6,7 During this

experiment, scattering data were collected around targets

located in a dump site using a fixed receiver and a remotely

operated vehicle (ROV) based transmitter. The frequencies

were higher than those discussed in this paper and the ROV

allowed more precise navigation than that possible with the

AUV used here, but the concept of having a mobile transmit-

ter and a fixed receiver is very similar.

The GOATS’98 experiment is a rare example of a suc-

cessful AUV-based bistatic scattering experiment: it

included an AUV with a nose array and produced data on

the bistatic scattered fields off of fully buried, partially

buried, and proud spheres. LePage and Schmidt8 and

Edwards et al.9 described the AUV experiment and used

the array data for SAS imaging. Bistatic scattering of

seabed targets with simple geometries was also studied in

simulation by Schmidt and Lee,10 who described the dis-

tinguishing characteristics of bistatic scattered fields of

different targets and environments. The application of

bistatic target modeling data to target identification was

discussed by Zampolli et al.,11 including the possiblity of

using modeled monostatic or bistatic target strengths for

the design of acoustic waterside security systems.

Machine learning target classification, using acoustic

data that include temporal or phase information from mono-

static sensing, has been described by Kaminsky and Barbu

(buried cylindrical targets such as cables)12 and Malarkodi

et al.13 (neural networks for classification of target type). A

probabilistic method for monostatic target classification is

discussed in Ref. 14, which attempts to classify targets using

multi-aspect backscatter, wave-based signal processing, and

hidden Markov models (HMMs). These techniques differ

from those described in this paper in that they use features

that include temporal or phase information and only look at

backscatter.

This paper describes the AUV payload used to perform

bistatic acoustic data collection, the real-world bistatic

acoustic data sets collected around spherical and cylindri-

cal seabed targets with that payload during a bistatic scat-

tering experiment, and a machine-learning methodology

that utilizes bistatic-angle-dependent amplitude features

FIG. 1. (Color online) Multi-vehicle operation mission, where a fixed source

insonifies a target field while multiple AUVs sample the bistatic scattering

fields around various targets.

FIG. 2. Insonification of a target results in acoustic scattering, as the target

re-radiates the signal in multiple echoes that interfere to form the radiation

pattern exploited by the characterization techniques discussed in this paper.
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from the scattered field to classify target shape. First, the

AUV experiment used to collect bistatic scattering data is

presented, including the experiment setup, vehicle, pay-

load, and signal processing methodology. The machine

learning target classification methodology, using bistatic

angle dependence of target scattering amplitude, is then

described. The novel experimental data set is then pre-

sented and compared to simulation results. Finally, the

classification results on these data are described and con-

clusions discussed.

II. BISTATIC SCATTERING DATA COLLECTION

To determine the feasibility of target classification

using bistatic angle dependence of target scattering ampli-

tude, it was necessary to collect a real-world bistatic scat-

tering data set. This data set was used to demonstrate

signal processing to calculate target scattering amplitude,

machine learning model generation, and actual target

classification.

A. Experiment parameters

The bistatic scattering data collection was conducted in

St. Andrews Bay near Panama City, FL on May 21, 2014 as

a part of the BayEx’14 scattering experiment. The configura-

tion of the experiment is shown in Fig. 4. Two targets, a

0.6 m diameter empty steel spherical shell with shell thick-

ness of 0.0168 m and a 3-to-1 solid aluminum cylinder with

0.3048 m diameter, were deployed about 60 m from the ends

of the source rail. The source was set at the north end of the

rail for the morning to insonify the sphere and the south end

of the rail for the afternoon to insonify the cylinder. The

source fired a 10 ms 7–9 kHz LFM chirp on a 1 Hz schedule

synchronized to global positioning system (GPS) pulse per

second (PPS). The water depth was 6–7 m with a mud bot-

tom over sand.

B. Vehicle

The Bluefin 21-inch AUV Unicorn was used for data col-

lection (Fig. 5). Unicorn is a 3 meter long, 21 in. (0.5334 m)

diameter AUV that was outfitted for this experiment with an

acoustics and autonomy payload that included a 16 element

nose array with 0.05 m element spacing, precision timing/

data acquisition hardware, and a computer for autonomy and

signal processing. The vehicle also carried a Sea-Bird

Electronics model SBE 37-SI conductivity temperature

(Bellevue, WA) sensor and a pressure transducer used for

depth measurements. The vehicle ran under a front-seat/back-

seat control architecture with basic navigation and sensor

fusion handled by the front-seat computer and vehicle

autonomy, acoustic communications, and acoustic processing

handled on the back-seat computer with processes in MOOS,

IvP Helm15 and Goby.16

FIG. 3. (Color online) Simulated scattering amplitude dependence on angle h for spherical and cylindrical targets. h is calculated by setting the target at (0, 0)

and the source at (�60, 0) such that the source is at 180�. Amplitudes shown here are for multiple receiver depths and ranges to the target. (a) Spherical target.

(b) Cylindrical target.

FIG. 4. Experimental setup with source positions, target positions, and AUV

operational box.
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Good navigation and adaptive autonomy were critical

for vehicle safety in this experiment because the region for

acoustic sampling was near to the source rail and less than

40 m � 50 m. The vehicle’s navigation sensors included a

Teledyne RD Instruments Doppler velocity log (DVL)

(Poway, CA), GPS, a Leica DMC-SX (Norcross, GA) mag-

netic compass, and a Honeywell HG1700 inertial measure-

ment unit (IMU) (Morris Plains, NJ). The Honeywell IMU

was recently installed to improve the navigation of the vehi-

cle while submerged: the previous system resulted in a navi-

gational drift of 1%–5% of distance traveled.17 The

navigational drift with the improved instrumentation was

between 0.3% and 0.5% of the distance traveled between

GPS fixes. The vehicle surfaced for GPS every 10 min to

prevent drift from accumulating significantly.

C. Precision timing

To collect high-quality acoustic bistatic data in this

experiment, Unicorn’s payload was updated and calibrated

to ensure timing error of <70 ls. Precision timing is required

for bistatic data collection because the source and vehicle

are not co-located. The source was triggered directly by a

GPS PPS signal, but the GPS signal is not available under-

water so Unicorn required a separate precise and accurate

on-board time source for hardware-triggered data acquisi-

tion. A PPS signal indicates the start of a second with the ris-

ing edge of a duty-cycled square wave and is used as a

trigger for clock synchronization.

The timing and data acquisition hardware included a

Microsemi SA.45 (Aliso Viejo, CA) chip scale atomic

clock (CSAC),18 two General Standards Corporation

24DSI12-PLL (Huntsville, AL) analog-to-digital data

acquisition boards,19 and a Garmin 15LxW GPS (Canton of

Schaffhausen, Switzerland). The CSAC PPS signal was

synchronized to GPS PPS while the vehicle was on the sur-

face and was used to trigger data acquisition at the start of

each second. The clock on the autonomy computer, an

Advantech 336320 (Taipei, Taiwan) with dual core Intel

Atom processor (Santa Clara, CA), was synchronized to the

CSAC PPS using network time protocol (NTP) and Generic

NMEA GPS Receiver.21,22 Custom daemons on the com-

puter controlled interfacing and synchronization of the hard-

ware and precision recording of data collected on the data

acquisition boards.

Binary files, starting exactly at the start of each second

as triggered by CSAC PPS, were recorded on the vehicle

computer from the data acquisition boards. To further

improve accuracy, the analog and digital delays in the sys-

tem were characterized in a series of experiments and used

to calibrate the system. After correction, the final calibrated

system had an arrival time error of <21.3 ls with 95% confi-

dence, and a phase error of <8.07 ns with 99% confidence.

To put these numbers in context, a timing error of 70 ls will

result in a range localization error of 0.1 m. A phase record-

ing error of 1 ls will result in a phase error of <1% of a

wavelength at 9 kHz.

D. Signal processing

The recorded data files on the computer were passed into

MOOS-IvP,15 which provided a convenient framework for sig-

nal processing in real time on the vehicle, and for processing

in simulation using navigation and acoustic data logged during

an experiment. A MOOS process, pActiveTargetProcess, was

used to extract the amplitudes for targets at specified locations

from a recorded data files. The operations of this process are

shown in Fig. 6. The locations of the target and vehicle for

each recorded data file are first used to identify a time window

for processing. The time window is centered around the

expected arrival time, with a length to either side determined

by replica length, navigation uncertainty, and uncertainty in

soundspeed estimate. The data from all 16 channels are win-

dowed, and then a fast Fourier transform (FFT) is taken using

FFT length NFFT. Matched filtering with the source replica is

used to identify contacts, and beamforming is used to deter-

mine the bearing to the targets and the error in that estimate.

The process outputs the band-averaged amplitude from the

contact with the location (based on bearing and arrival time)

FIG. 5. (Color online) The AUV Unicorn being lifted from the water by the

crane of the PCS-12 during the BayEx’14 experiment.

FIG. 6. Processing in pActiveTargetProcess used to extract target ampli-

tudes from the array time series. The recorded data file, vehicle/target loca-

tion information, and replica are used to estimate the target scattering

amplitude.
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that is closest to the expected target. If the vehicle is in the tar-

get’s forward scatter region, the target contact cannot be distin-

guished from the source’s direct blast so the process does not

produce an amplitude.

Ambient noise was estimated as the band-averaged am-

plitude from the first NFFT samples in the 7–9 kHz band.

These samples never included the direct blast or target con-

tacts as the vehicle was always at least 30 m from the source.

The estimated noise amplitude was subtracted from the esti-

mated target scattering amplitude associated with each re-

cording to get the estimated target scattering amplitudes

used for analysis.

Where decibel levels are shown in this paper based on

experimental data, source levels have been estimated and

used to calculate scattering strength. While this approach

allows for direct comparison with simulation results, it is not

practical for real-time classification. Instead, the relative

amplitudes are used. A mean and standard deviation for data

used by the machine learning model are stored. After two

circles of the target, an experimental mean and standard

deviation are calculated. The collected experimental data are

then normalized using the model mean and standard devia-

tion. Any subsequent data are similarly adjusted. This pro-

cess allows classification to be performed without perfect

knowledge of source level, transmission loss, environmental

topography, and data acquisition system gain.

E. AUV deployment

The AUV Unicorn was deployed off of the Panama City

ship PCS-12, which was anchored on the north end of the

operational area shown in Fig. 4. It was then commanded in a

sequence of acoustic sampling behaviors around each target.

Conventional AUV behaviors, such as lawn mower patterns,

are poorly suited for acoustic data acquisition around targets,

as the target’s contact moves from endfire to broadside and

back to endfire. This results in a non-uniform data set. To cor-

rect this, a behavior was written to collect a full grid of

bistatic amplitudes around a target in depth, range, and azi-

muth. Figure 7 shows how a single layer of the vehicle path is

constructed for this behavior. The vehicle completes a

sequence of concentric circles with decreasing radii. By tran-

sitioning in radius only in the forward scatter direction, the

vehicle goes out of broadside in the region where the target

contact cannot be distinguished from the direct blast from the

source. This sampling layer is repeated at multiple depths to

complete data collection on a target. The behavior is config-

ured using the number of layers sampled, the number of radii

sampled, the minimum and maximum depths, the minimum

and maximum radii, the minimum permitted distance to the

operational boundary, the target location, and the source

location.

To ensure Unicorn did not hit anything while operating

in the tight region between the targets and the source rail, an

operation area and obstacle avoidance points were selected

to keep it away from the buoys and other collision dangers.

In addition, adaptive autonomy built into the acoustic sam-

pling behavior kept the vehicle moving perpendicular to

intersection with and at least 10 m away from the operational

boundary. Altitude safeties prevented the vehicle from nos-

ing into the bottom by aborting the mission when Unicorn
got within 2 m of the bottom. The MOOS-IvP15 infrastruc-

ture with Goby16 interface to acoustic communications

meant new commands could be sent without recovering the

vehicle to improve sampling or increase vehicle safety in the

tight operational area.

III. CLASSIFICATION METHODOLOGY

The goal of this research was to investigate the plausi-

bility of classifying underwater using bistatic scattered

amplitudes calculated by an AUV from acoustic data col-

lected between the source and target. We used two data sets

for this demonstration, the real bistatic scattering data set

collected around spherical and cylindrical targets during the

experiment, and a simulation data set matched as closely as

possible to the experiment conditions.

A. Machine learning approach

Our approach to the challenge of classifying targets

using amplitude-only bistatic acoustic data was to apply

supervised machine learning. In a machine learning

approach, data are represented using example vectors in a

particular feature space and used to train a model that can be

used to classify subsequent data. This approach has draw-

backs and benefits. Because the method is dependent on

well-represented data instead of a physics-based model, it

can be more susceptible to “garbage in, garbage out,” and

poor independent testing can lead to misleadingly good

results. However, with sufficient care in problem construc-

tion and validation, machine learning can be more powerful

than the model-based approach, as it accounts for effects that

show up in real data but are neglected in conventional

FIG. 7. (Color online) Full field sampling behavior used with the vehicle

Unicorn for collecting target bistatic data sets. The vehicle circles the target,

changing radius in the direct forward-scatter direction.
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models. The complexity of bistatic scattering physics makes

a data-based approach appealing.

For this problem, we selected a type of supervised

machine learning called support vector machines (SVMs).

The SVM algorithm was selected for this problem for sev-

eral reasons. SVMs handle large feature spaces easily, adapt

well to different kernels, and have well-implemented off-

the-shelf optimization packages. Perhaps most importantly

for this real time application, while an SVM model can take

significant time and memory to train classification using an

existing model is fast. Classification of an example vector

using this algorithm also results in a margin, which is an in-

dication of the strength of the classification.

SVM classification works by maximizing the minimum

Euclidean distance from a separating hyperplane to the set of

training vectors. The soft-margin SVM classification formu-

lation, originally derived by Vapnik,23 is used

argmin
w;n;b

1

2
kwk2

þ C
Xl

i¼1

ni subject to
yi hw; xii þ bð Þ � ni

ni � 0;

�
(1)

where w is the normal vector to the separating hyperplane

that defines the binary classification, n is the slack variable

that allows the optimization to deviate from perfect classifi-

cation in the selection of a solution, C is used to adjust the

trade-off between the size of kwk and the tolerance for mis-

classification, and b is the offset from the origin of the classi-

fication solution. xi is the ith example vector and yi its label

(1 or �1).

A training data set, Xt, for the SVM is represented as

Xt ¼ ðx1; y1Þ;…; ðxl; ylÞ � vxR; (2)

where v represents the space of the input such that v ¼ Rd if

there are d features.

This optimization selects a separating hyperplane that

maximizes the minimum distance, or margin, from the near-

est training data points to the hyperplane, subject to the set

of conditions. The SVM-Light software package24 was used

for this optimization. The trained SVM model can be repre-

sented by w�, which is the normal vector to the separating

hyperplane selected by training. A new data set, xi, is classi-

fied by comparing it to this separating hyperplane. This

results in a margin, ai, which is the Euclidean distance from

the test example to the separating hyperplane, and is calcu-

lated as the dot product of w� and the new example xi.

ai ¼ hw�; xii þ b: (3)

If ai> 0, the class is positive (sphere) and if ai< 0, the

class is negative (cylinder). A larger margin indicates that

the model ascribes greater confidence to an example vector.

For the purposes of this paper, aþ will be used to represent

margins from examples that come from the positive class

(spheres), and a� will be used to represent margins from

examples that come from the negative class (cylinders).

Assessing the validity of a given model is very important

to the success of this methodology. Two metrics are used in

this paper: test accuracy and test minimum margin ratio. Test

accuracy is simply the accuracy of classification of the exam-

ples in the test set. The test set is independent of the training

set and the validation set used in selecting SVM model param-

eters. Positive margin ratio is the ratio between the largest true

positive margin and the largest false positive margin, i.e., the

ratio between the strongest true sphere classification and worst

false sphere classification. The minimum margin ratio is the

minimum of positive and negative margin ratios

bmin ¼ min
max aþ > 0ð Þ
max a� > 0ð Þ ;

max a� < 0ð Þ
max aþ < 0ð Þ

( )
: (4)

If bmin< 1, the confidence in classification fails to approach

100% as the margin increases. A larger value of bmin results

in greater utility of classification and a better confidence

model.

B. Training and analysis

Real and simulated bistatic data were used to train, vali-

date, and test SVM models in the training and analysis pro-

cedure, shown in Fig. 8. In the real-world experiment, a grid

of amplitude data was collected around each target using the

AUV Unicorn. Each second, the vehicle’s calibrated data ac-

quisition system began recording exactly on the second. The

onboard signal processing chain, shown in Fig. 6, then

extracted the amplitude for each target of interest from the

FIG. 8. Training and analysis process for machine learning methodology.

Acoustic scattering amplitude data are converted to a feature space and used

to construct example vectors. Independent example vectors form training,

validation, and test data sets. Classification model training is conducted on

the training set, and the validation set is used in the selection of model pa-

rameters. The test set is then used to determine the model’s generalization

performance and construct a confidence model, used to estimate the proba-

bility of correct classification given the number of samples and the classifi-

cation margin.
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recorded acoustic data file, subtracting the ambient noise.

The result was a grid of bistatic scattering amplitudes in

range, depth, and azimuth around each target.

In simulation, three-dimensional (3D) data sets were

generated using the scattering simulation package for envi-

ronment, source, and target parameters similar to those in

the real experiment. The sphere parameters were matched

very closely using an elastic fluid-filled shell model.

Because the simulation package does not currently include

an elastic cylinder model, the cylinder was modeled as rigid

with the same dimensions and orientation as the real solid

aluminum cylinder. The outputs of the simulator were files

containing the azimuthal Fourier orders for the sphere and

cylinder scattered fields. These data were converted into a

grid of amplitude values in range, depth, and azimuth. It is

this grid that was used in SVM example generation.

1. Feature selection

The presentation of the data is one of the critical aspects

for successfully using machine learning for target classifica-

tion. For SVMs, this takes the form of the feature representa-

tion used for example vectors. Amplitudes were mapped to

features using the bistatic angle of the samples, allowing the

model to exploit the differences between minima and max-

ima in the bistatic scattering pattern. This feature space was

defined in purely spatial terms, meaning that the model does

not take into account sampling order. A representation of the

angular feature space is shown in Fig. 9.

Each example vector consisted of a sequence of feature-

value pairs, where each value is the median scattering ampli-

tude sampled within the angular region defined by the fea-

ture number. The feature number, Fn, was calculated as a

function of the location of a sample’s bistatic angle relative

to the source-target line, hs, and a bin size in azimuth, Dh.

Fn ¼
�

hs

Dh

�
: (5)

When multiple samples are collected from the same fea-

ture, the median amplitude is taken. Feature mapping is per-

formed for each geometric point the AUV has sampled, such

that the feature vector is composed of a number of feature-

value pairs and the label yi is the target’s class

xi ¼ f½F1;A1�;…; ½FN;AN�g; yi ¼
1; if sphere

�1; if cylinder:

�
(6)

This is a rapid calculation that can easily be performed on an

AUV. The value of the parameter that describes the feature

space, Dh, was selected using a design of experiment (DOE)

reducing grid search.

2. Example generation

Once the grid of scattered field amplitude data is repre-

sented in terms of the feature space, training, validation, and

test example vectors are constructed. Each example repre-

sents the data collected by an AUV approximately circling a

target for some time s. Because the vehicle collects one

acoustic file each second, this involves collecting N¼ s sam-

ples. To properly simulate this while constructing example

vectors from simulation data, each angular feature is

sampled either m, m � 1, or mþ 1 times, where m¼N/nF

and nF is the number of features in the feature space defined

by Dh. The full set of example vectors was split into three in-

dependent data sets such that 50% of examples were used

for training set Xt, 25% for validation set Xv, and 25% for

testing set Xx as suggested by Hastie et al.25 in The Elements
of Statistical Learning.

The data sets collected during the real-world experiment

for the sphere and cylinder targets were used to directly cre-

ate example vectors. Each data set, A, was broken into three

parts: half for training (At), a quarter for validation (Av),

and a quarter for testing (Ax). Examples were then created

from each set by selecting N sequential data points at a time.

If the set of amplitudes designated for training is represented

by At ¼ ½ðh0;A0Þ; ðh1;A1Þ;…; ðhM;AMÞ� the first training

example, x1, would be created using the data ½ðh0;A0Þ;
ðh1;A1Þ;…; ðhN;ANÞ� and the second example, x2, would be

created using the data ½ðh1;A1Þ; ðh2;A2Þ;…; ðhNþ1;ANþ1Þ�.
This process is repeated until Nþ i¼M. The training, vali-

dation, and test data are kept entirely independent such that

if the full sphere data set consisted of 2000 data points, the

first 1000 data points would be used for training, the next

500 for validation, and the final 500 for testing. This ensures

that performance is tested realistically on sequential data col-

lected by the AUV that are separate from data used in model

training. The value of N was varied to observe the relation-

ship between amount of sampling and classification

accuracy.

3. Model training and analysis

An SVM model was trained using the training set. The

parameters for the SVM model were selected using a loga-

rithmic grid search in C, using the training set to train a

model then classifying the validation set. Training sets were
FIG. 9. (Color online) Angularly dependent feature space, configured using

parameter Dh.
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generated with different numbers of training examples and

used to classify the fully independent test set to confirm that

the amount of data being used to train the model was appro-

priate. The performance of the final model was assessed by

classifying the test set of example vectors.

4. Confidence estimation

One of the parameters important to target classification

is confidence estimation: while an SVM outputs the class

(sphere or cylinder) and distance to the separating hyper-

plane in the classification margin a, that value does not trans-

late directly into a probability of correct classification. The

confidence was determined as the probability of correct clas-

sification given the classification margin and the amount of

data collected by the vehicle Pð~yi ¼ yija � ai;NÞ, where ai

is the margin. This probability was calculated empirically by

using the final SVM model to classify sets of example vec-

tors that represent different values of N, and the results were

converted into a lookup table for rapid confidence calcula-

tion in real time.

C. Onboard target classification

Once the SVM model and confidence model are trained,

they are used to perform real-time target classification. These

processes are run within MOOS-IvP,15 which allows nearly

seamless runtime/simulation trade-off and gives a way to test

signal processing on the bench with simulated or logged data.

The onboard classification processing chain (Fig. 10) uses the

results from the training and analysis process, and includes

synchronous and asynchronous components. These processes

were demonstrated in simulation and bench tests.

Each second, the data acquisition system records the

first 0.21 s of data, which should include the direct blast

from the source and target contacts that may be of interest.

The target contacts are extracted from the data and tracked.

Each target report includes target locations and confidence.

Once a target’s location has some confidence, it can be pros-

ecuted by initiating classification. To give the best classifica-

tion result, the AUV is commanded to approximately circle

the target. This gives sampling across all bistatic angles.

On the real vehicle, data are recorded each second to a

file which is then read by pActiveTargetProcess, which per-

forms the matched filter, beamforming, and selection to

choose the contact amplitude from the target of interest. In

simulation, an acoustic simulator was developed to emulate

multipath bistatic acoustic arrivals on a virtual array. This

multipath is combined with simulated scattering data to simu-

late amplitudes collected by the AUV as it passes through the

scattered field.

The scattering amplitudes collected in simulation or run-

time are converted to the correct feature space. An SVM

model is specified to an SVM interface application, which

then runs classification on the amplitude data. The full pro-

cess runs continuously as data are collected by a real or

simulated AUV, constantly updating classification and confi-

dence until a confidence threshold is met for the target.

IV. RESULTS

A. Acoustic data

During the experiment, Unicorn was successfully com-

manded to 15 target sampling missions over the course of

the day, 5 for sphere sampling in the morning and 10 for

cylinder sampling in the afternoon. Three depth levels were

used in sampling and five radii, and the full data collection

was repeated at least twice around each target. Commanding

data sampling deeper than 3.5 m resulted in a depth abort

because of the shallow water depth, so the commanded

depths were between 1.5 m and 3.5 m. Figure 11 shows the

locations of all acoustic data files collected around both

FIG. 10. Classification processing chain run onboard an AUV.
FIG. 11. Locations of collected acoustic data files in x and y relative to the

position of the Research Vessel Sharpe.
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targets in the original coordinate system. Each of the col-

lected acoustic data files starts at the beginning of the second

and, therefore, includes the direct blast. The sampling rate

on the data acquisition boards was set to 37500 Hz, and each

data file contained 8000 samples for the 16 channels. During

the experiment, 15 of the 16 channels worked properly. The

data from the broken element were ignored during

processing.

1. Scattering amplitude extraction

The final data sets included 2162 usable scattering ampli-

tude points around the sphere and 4784 usable points around

the cylinder. This excludes data in the forward scatter direction

indistinguishable from the direct blast, data made noisy by sur-

face transport of the vehicle by the rib boat, data when the ve-

hicle is far from the target, data when the source is off, and

data where no target contact is identified by the signal process-

ing chain. Approximately one third of the sphere data set con-

tained high levels of noise caused by a rope wrapped in the

vehicle’s tail cone. These data were not used in analysis.

Each scattering amplitude represents the processing of

an acoustic file consisting of 16 channels of data. For proc-

essing, NFFT was set to 1024, 30 beams were used, and the

matched filter operation was performed with a 90% overlap

for high time resolution. The band-average amplitude over

the 7–9 kHz frequency band was reported. Modeling for this

frequency range and environment showed low reverberation

compared to ambient noise. This result was consistent with

the experimental findings, which showed similar scattering

strengths to those found in target-only simulation data.

Figure 12 shows the comparison of median radiation

patterns calculated from real scattering field data for the

sphere and cylindrical targets. These polar radiation pattern

plots are valuable for comparing the overall patterns in the

scattering fields of the targets. Most importantly, the sphere

and cylinder are easily distinguished based on these bistatic

scattering patterns, which was the purpose of collecting this

bistatic data set.

The sphere data show a nearly symmetric pattern, with

overall intensity lower in the backscatter direction than the for-

ward scatter direction. Maxima are present at 130/230 degrees

and 150/210 degrees, with strong minima at 180 degrees in the

direct backscatter direction. The strong minima in the back-

scatter direction is likely the same minima observed by

Simpson et al.26 between 7 and 8 kHz when measuring back-

scatter from this exact spherical shell in a 2003 laboratory

experiment. For the thin-shelled sphere, this phenomenon has

been shown to be a result of out-of-phase acoustic radiation

resonance and specular reflection in the target.27

The cylinder shows a glint around 45 degrees, a strong

lobe at 240 degrees, and stronger backscatter than the sphere.

The glint and the source signal should have equal angles

from broadside to the main cylinder axis. The cylinder axis

is at 24 6 5 degrees in the experiment, which puts broadside

at 114 6 5 degrees. This means that the predicted glint

should be at 48 6 5 degrees, where it is observed in the data.

2. Comparison with simulation

The densest part of the grid of scattering field ampli-

tudes around the spherical and cylindrical targets was

compared directly with scattering simulations that

matched source and environment parameters as closely as

possible given the limitations of the scattering simulator.

The simulated scattering amplitudes at the locations that

Unicorn sampled during the experiment around the spheri-

cal targets were used to create simulated target scattering

data sets.

Figure 13 shows a comparison of scattering amplitudes

in the 3 m depth bin in simulation and real data. The normal-

ized amplitudes are similar for real and simulated data for

both the sphere and cylinder. The range of scattering ampli-

tudes is larger for the real sphere than the simulated, and the

opposite is true for the cylinder.

The sphere real data set shows nearly identical loca-

tions of maxima and minima to the simulation. Important

features and symmetry appear in common to both simula-

tion and real models. The cylinder simulation is less similar

to the real data, although general location of minima and

maxima are consistent between the model and the real data.

For example, the glint around 48 degrees is present in both

real and simulated scattered fields, as are relative maxima

at 120, 180, and 210 degrees. The most obvious difference

FIG. 12. (Color online) Polar plot

showing angle dependence of median

target scattering amplitude for spheri-

cal and cylindrical targets. Difference

between intensity-averaged amplitude

and minimum amplitude is plotted on

the r axis and angle in the source-

target coordinate system on the h axis.
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between the patterns is the greater backscatter intensity in

the real cylinder’s scattered field relative to the forward

scatter intensity.

B. Feature and SVM parameter selection

The value of Dh¼ 9� gave the best performance in terms

of minimum margin ratio when a model was trained and

validated on real data. This value also gave good perform-

ance for a model trained on simulation data and used to clas-

sify real data. The set of curves for bmin versus Dh for some

of the tested values of N is shown in Fig. 14. Larger values

of N are not plotted because as N increases the value of bmin

approaches infinity as accuracy goes to 100%. The plot

clearly shows the best feature space at Dh¼ 9�.
A linear SVM model performed extremely well with the

angularly dependent feature space used for classification.

This minimized the complexity of the model and meant that

additional parameters did not need to be selected—adjusting

the value of C did not affect the model in this case.

C. Training/analysis results

Two models were used in training and analysis. The first

was trained based on the real bistatic data, the second on

simulation data matched to the environment of the

experiment.

1. Training on real data to classify real data

Data from the real experiment were turned into training

examples and then a linear SVM classification model. The

test set was classified using the resulting trained model. The

accuracy of the resulting classification was highly dependent

on the value of N. A plot of accuracy versus N is shown in

Fig. 15. Overall, the SVM model was very effective for clas-

sifying independent test example vectors once the vehicle

had completed at least one full circle around the target. With

FIG. 13. Comparison of real versus

simulated scattered fields between

2.5 m and 3.5 m depth for spherical

and cylindrical targets. (a) Real sphere.

(b) Simulated sphere. (c) Real cylin-

der. (d) Simulated cylinder.

FIG. 14. (Color online) Selection of Dh based on the minimum margin ratio,

bmin, at increasing values of N. Dh¼ 9� was selected because it converged

most quickly to bmin¼1 as the accuracy reached 100%.
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two complete circles of the target, the accuracy of the classi-

fication model in classifying new test examples reached

100%. The performance at different values of N and esti-

mated confidence as real scattering data are collected would

be used to inform vehicle behaviors during classification.

2. Training on simulation data to classify real data

The simulated scattering fields are a good match to

those calculated from the real-world BayEx’14 scattering

data. To show empirically that this was the case, a SVM

model was trained using the sphere and cylinder simulation

scattering models and used to classify the same sets of exam-

ple vectors used to test the SVM model trained on real data.

The classification results for the real test examples were very

similar using the simulated-data-based model and the real-

data-based model. Figure 15 shows the plot of accuracy ver-

sus N in classifying the test example sets using the real and

simulated SVM models. The trend for accuracy versus N is

nearly identical in the two cases. The similarity of these

results suggests that, at least for simple targets, a simulation

approach could be used to augment real data in constructing

SVM models used to classify targets in new environments.

However, the power of the machine learning approach

remains the flexibility to deal with targets and environments

that are not easily modeled numerically or analytically by

using real data to construct a model.

D. Confidence model

The curves describing the empirically determined confi-

dence in correct classification versus classification margin a
for different values of N is shown in Fig. 16. The general

behavior shows an approximately logistic relationship

between a and confidence. As N increases, the probability of

correct classification from a lower output margin also

increases. Once N increases past 190, the confidence of cor-

rect classification approaches 100% for all margin values,

indicating no false classifications in the test set.

E. Real-time classification

The use of real and simulated models for real-time clas-

sification was tested in simulation. Simulation studies and

bench tests with the vehicle computer show the full process-

ing chain successfully completing each second: it takes

	0.3 s to calculate the target amplitude from an acoustic file,

the incorporation of acoustic data into the existing SVM

example for classification takes <0.05 s, and the actual clas-

sification, which is only run when the vehicle exits a feature

(every 5–10 s depending on range to the target), takes

<0.5 s. This shows the plausibility of using this method for

real-time analysis and classification. These numbers were

shown on the bench with the Unicorn computer when only

the classification processing chain was running. Adding the

target localization processing chain increased processing

times significantly so that the acoustic data were fully proc-

essed only once every 3 s instead of every second. To simul-

taneously run localization and classification processing on

Unicorn every second, a more powerful or second computer

would be required.

V. CONCLUSIONS

The experiment demonstrated the navigation, timing,

and vehicle behaviors necessary for high-quality 3D bistatic

scattering data collection by an AUV. Navigation problems

were addressed by installing a new IMU that improved drift

to <0.5% of distance traveled, and by surfacing frequently

for GPS. The time synchronization issues were solved using

a CSAC as a time source, a PPS-triggered data acquisition

system, and characterizing all delays to achieve better than

70 ls accuracy. AUV sampling behaviors were developed to

keep the vehicle broadside to the target, resulting in more

uniform data quality through the sampling region. The final

system was successfully deployed, and in one day of data

collection acquired sufficient sphere and cylinder scattering

data to compare real data to existing bistatic scattering

models.

Classification of spherical versus cylindrical targets

using scattering amplitude data collected by an AUV was

successfully demonstrated using real and simulated target

FIG. 15. (Color online) N versus accuracy for model trained on real and

simulated data with feature space where Dh¼ 9�. As N increases, the accu-

racy increases until it reaches 100%. This behavior is expected as additional

data improve the averaging in each feature. After N¼ 190, the accuracy

goes to 100%. When N¼ 190, the vehicle has generally completed two

circles of the target.

FIG. 16. (Color online) Classification confidence versus margin and N for

sphere versus cylinder classification.

J. Acoust. Soc. Am. 138 (6), December 2015 Erin M. Fischell and Henrik Schmidt 3783



scattering data. Furthermore, it was shown in simulation on

the bench that all processes required for target classification

using this methodology can be run in less than a second,

which means AUV-based real-time classification and confi-

dence estimation are plausible. While the sphere versus cyl-

inder classification investigated here is a simplification of

the target geometries of interest in mine countermeasures,

this research shows the potential of the combination of sens-

ing bistatic scattering fields with a linear array payload and

applying machine learning classification of calculated acous-

tic amplitudes for solving the real-time target classification

problem.

Several avenues of future study are suggested based on

these results. First, data were acquired on only a single cylin-

der rotation during the experiment, and collecting scattering

data from different cylinder rotations would be valuable for

learning more about aspect-dependent bistatic scattering.

Data from target types other than spheres and cylinders and

on buried targets would be required to extend this work from

the basic sphere versus cylinder classification to a broader

mine countermeasures application. Looking at the influence

of the cylinder aspect ratio and absolute target size on the ef-

ficacy of the methodology should be further explored, as

should the effect of the target fill and environmental factors

such as bottom type. Another exciting possibility is extend-

ing the work to incorporate multiple vehicles and multi-

statics with an acoustic source located on one of the AUVs.
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