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ABSTRACT

The theory, implementation, and testing of a method for on-the-fly unresolved resonance region
cross section calculations in continuous-energy Monte Carlo neutron transport codes are presented.
With this method, each time that a cross section value is needed within the simulation, a realization
of unresolved resonance parameters is generated about the desired energy and temperature-dependent
single-level Breit-Wigner resonance cross sections are computed directly via use of the analytical ψ − χ
Doppler integrals. Results indicate that, in room-temperature simulations of a system that is known to be
highly sensitive to the effects of resonance structure in unresolved region cross sections, the on-the-fly
treatment produces results that are in excellent agreement with those produced with the well-established
probability table method. Additionally, similar agreement is observed between results obtained from the
on-the-fly and probability table methods for another intermediate spectrum system at temperatures of
293.6 K and 2500 K. With relatively tight statistical uncertainties at the ∼ 10 pcm level, all on-the-fly
and probability table keff eigenvalues agree to within 2σ. Also, we use the on-the-fly approach to show
that accounting for the resonance structure of competitive reaction cross sections can have non-negligible
effects for intermediate/fast spectrum systems. Biases of up to 90 pcm are observed. Finally, the
consequences of the on-the-fly method with respect to simulation runtime and memory requirements are
briefly discussed.

Key Words: Nuclear Data, Cross Sections, Unresolved Resonance Region, Doppler Broadening, Monte
Carlo

1 INTRODUCTION

The use of Monte Carlo particle transport codes, which, in principle, allow for physical and
geometrical models of arbitrary fidelity, has historically been limited by the availability of com-
putational resources. However, with the increased processing power of modern high-performance
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computing (HPC) platforms, Monte Carlo methods are increasingly being considered for practical
reactor analysis, rather than simply benchmarking purposes. Future research and development
efforts will benefit from improved computational methods for the representation of nuclear data
in Monte Carlo simulations of advanced reactor systems, many of which rely on intermediate or
fast neutron energy spectra. For the simulation and analysis of fast reactors, and also the critical
assemblies that are used for validation of nuclear data and computational methods, the treatment of
neutron cross sections in the unresolved resonance energy region is especially important. And while
future reliance on cumbersome legacy nuclear data preparation procedures will likely be reduced by
promising methods for on-the-fly∗ processing of thermal scattering data [1] and resolved resonance
energy region cross sections [2–4], the treatment of unresolved resonance region data has received
less attention in recent decades. A high-fidelity, memory-reducing on-the-fly method for generating
unresolved resonance region neutron cross sections in Monte Carlo transport simulations is the
focus of this work.

In this section we give brief introductions to important physical phenomena that characterize
the unresolved resonance energy region and the computational methods that have typically been
employed for capturing the effects of those phenomena in Monte Carlo simulations. Section 1.1
highlights defining characteristics of the unresolved resonance region as applicable to neutron
transport simulations. In Sec. 1.2 we describe the use of so-called infinite-dilute cross sections in
the unresolved resonance region and the pitfalls of this approach. The probability table method for
treating resonance cross section structure in the unresolved region is briefly outlined in Sec. 1.3 and
Sec. 1.4 discusses the importance of accounting for the resonance structure of competitive reaction
cross sections. In Sec. 2 we explain the on-the-fly method of generating cross sections in the
unresolved resonance region. Results obtained with the on-the-fly method are presented in Sec. 3
along with results obtained with the infinite-dilute and probability table methods. Conclusions
reached in this initial study and areas for future research are discussed in Sec. 4.

1.1 Unresolved Resonance Region

At sufficiently high incident neutron energies, on average, individual resonances become
broader, exhibit lower peak values, and are spaced close enough together that they overlap signifi-
cantly with one another. In this region, the localized structure of a single resonance is insignificant
relative to the collective structure of several resonances spanning a wider energy range. The energies
that are characterized by this sort of cross section behavior comprise the fast energy region [5].
The fast energy region boundaries for different nuclides will vary with the onset coming at lower
energies for heavier nuclides than for lighter ones. At somewhat lower incident neutron energies,
the resonances for a given nuclide will be narrower, more pronounced, and better separated from
neighboring resonances. These properties make individual resonances more easily distinguishable
from one another in cross section measurement experiments. That is, the resonances can be resolved
experimentally. Unlike in the fast energy region, there is sharp structure associated with individual
resonances at these energies and this structure must be carefully accounted for in neutron transport
simulations. Energies characterized by this type of behavior make up the resolved resonance

∗We use the term on-the-fly to describe methods which perform the calculation of some value within the simulation, rather than
those which utilize values that are pre-computed prior to the initialization of a simulation.
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region [5]. The intermediate incident neutron energies between the resolved resonance and fast
energy regions make up the unresolved resonance region (URR). In the URR, individual resonances
cannot all be resolved experimentally even though, in reality, single resonances exhibit distinct
structure, just as in the resolved resonance region. As a result, precise cross section values are
unknown in the URR. Instead of precise descriptions of URR resonances and cross sections, we
must rely on average descriptions and statistical distributions [5].

1.2 Averaged, Infinite-dilute Cross Sections

Though precise cross section values at any given incident neutron energy, En, in the URR are
unknown, based on mean unresolved resonance parameter values and the statistical distributions of
those values, we can construct the probability distribution, P (σ′r|En), of cross section values for
reaction r. Then we can write an expression for the expected cross section value as a Lebesgue
integral in σ′r-space,

〈σr(En)〉 =

∫ ∞
−∞

dσ′rP (σ′r|En)σ′r. (1)

This averaged, expected value is what is commonly referred to as an infinite-dilute cross section.
Historically, in the absence of precisely known URR resonance structure, these expected cross
sections were used in Monte Carlo neutron transport simulations.

Use of the infinite-dilute cross sections, though, is tantamount to neglecting energy self-
shielding effects. By obtaining expected cross section values in the manner just described, we have
smoothed out the resonance structure of the URR. That is, in the narrow energy intervals where
resonances actually occur, we have a reduced value, and in the wider energy intervals between real
URR resonances, we have an increased value. So, over the majority of URR energies, infinite-dilute
cross sections are greater than the unknown, precise values. It is known that this phenomenon leads
to significant over-predictions of reaction rates, notably capture by resonant absorbers (e.g. 238U) in
intermediate energy spectrum systems when infinite-dilute cross sections are used in simulations.
This can result in under-predicted, non-conservative keff eigenvalue calculations [6].

1.3 Probability Tables

In order to more faithfully account for resonance structure and the resulting self-shielding
effects in the URR — phenomena that can be worth hundreds of pcm in intermediate spectrum
systems — the probability table method was proposed [7]. This method relies on the sampling of
discrete cross section values with associated discrete probabilities such that, in the limit of many
samples, the expected cross section value at a given En is preserved. Although expected cross
sections are preserved, the distribution of discrete cross section-probability pairs provides a more
realistic model for URR self-shielding effects. Probability tables are generated in a pre-processing
step before the start of a neutron transport simulation. In general, a different set of tables is required
at every temperature, for each nuclide with a URR, in a simulation. Certain practical considerations
in implementing the probability table method are well-documented [8–10].
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1.4 Competitive Reaction Cross Section Resonance Structure

Though there may be multiple competing reactions at URR energies, the ENDF-6 format [11]
allows the specification of File 2 unresolved resonance parameters for only elastic scattering,
radiative capture, fission, and a single competitive reaction, typically inelastic scattering to the first
excited level of the compound nucleus, if energetically possible. Any resonance structure in another
reaction must be entirely described via pointwise energy-cross section pairs in File 3†.

Further, despite allowing for the specification of URR resonance parameters for a competitive
reaction, the ENDF-6 format prescribes the use of only the File 3 averaged cross section values.
The possibility of different treatments of the competitive reaction cross section inducing biases in
simulation results is mentioned by MacFarlane, et. al [12]. In their code-to-code comparison study
of Big Ten critical assembly simulations, it is noted that the TRIPOLI code [13], in making use of
URR cross section data generated with the CALENDF nuclear data processing code [14], accounts
for resonance structure in the competitive reaction cross section. Many other transport codes, such
as MCNP [15], utilize the infinite-dilute URR cross section values that are produced by the NJOY
Nuclear Data Processing System [16]. Here, in OpenMC [17], we have isolated competitive reaction
cross section resonance structure effects by allowing for the on-the-fly use of either averaged or
structured values.

2 ON-THE-FLY CROSS SECTION CALCULATIONS

In this section we describe the on-the-fly method of generating URR cross sections. The
method is implemented in the OpenMC neutron transport code [17]. The sampling of unresolved
resonance parameters and use of the sampled parameters in cross section computations using the
single-level Breit-Wigner formulae are discussed in Secs. 2.1 and 2.2, respectively. Notation for
selected variables is given in Appendix A.

2.1 Level Spacings and Partial Widths

In the energy region about any incident neutron laboratory system energy, En, at which we wish
to compute a realization of URR cross section values, we must statistically generate an ensemble
of resonances. This ensemble, sometimes referred to as a resonance ladder in the context of
probability table generation, is determined by the energies at which resonances occur as well as
the partial reaction widths characterizing each of the resonances. The process for sampling these
values proceeds directly from the unresolved resonance parameters given in File 2 of an ENDF-6
format [11] evaluated nuclear data file.

We are first concerned with the mean unresolved resonance parameter values given for an
individual spin sequence which is defined by an orbital angular momentum quantum number, l, and
a total angular momentum quantum number, J . There are Nl orbital quantum numbers associated

†Any structure that is represented in the File 3 background cross section is typically quite crude because it is only the gross
structure over multiple URR resonances, not the structure of individual resonances.
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with the URR for a given nuclide. For each of these Nl values, there are NJ(l) total angular
momentum quantum numbers. That is, Nl is a nuclide-dependent quantity and NJ(l) is dependent
on both the nuclide and the l values for that nuclide.

For each (l, J) spin sequence, we sample level spacings (i.e. energy differences between
adjacent resonance energies) and partial reaction widths using those parameters’ mean values
and their statistical distributions. The mean parameter values at a specific En are determined by
interpolation‡ between the values at the energies tabulated in the ENDF-6 File 2. The spread of level
spacings and partial reaction widths are described by the Wigner distribution and χ2 distributions
with varying degrees of freedom, respectively. The Wigner distribution for level spacings is given
by

PW

(
Dl,J(En)

〈Dl,J(En)〉

)
=

πDl,J(En)

2〈Dl,J(En)〉
exp

(
− πDl,J(En)2

4〈Dl,J(En)〉2

)
. (2)

Direct sampling of this distribution gives

Dl,J(En) = 〈Dl,J(En)〉
√
−4 log (ξ)/π, (3)

for a random number on the unit interval, ξ. Partial widths for reaction r, Γr, are obtained by
sampling a χ2 distribution,

Pχ2(µr)(y) =
exp

(
−y

2

)
y
µr
2
−1

2µr/2G
(
µr
2

) ; y ≡ µr
Γl,Jr

〈Γl,Jr (En)〉
(4)

with a reaction channel-dependent number of degrees of freedom, µr(l, J). The G
(
µr
2

)
term in

Eq. (4) is the Gamma function.

With a sample y and the mean parameter values and degrees of freedom provided in an ENDF-6
file, it is straightforward to obtain sample partial widths for radiative capture, Γl,Jγ ; fission, Γl,Jf ;
and the single competitive reaction, Γl,Jx . The energy-dependent sampled neutron width is then
calculated as

Γl,Jn (En) = νl(En)
√
En〈Γl,Jn,0〉µn

Γl,Jn,0

〈Γl,Jn,0〉
(5)

using a mean reduced neutron width value, 〈Γl,Jn,0〉. The derived variables νl and ρ are given by Pl/ρ
and ack(En), respectively. In these expressions, ac, k, and Pl are the channel radius, center-of-mass
neutron wavenumber, and orbital quantum number-dependent penetration factor, respectively. The
procedures for computing the channel radius and a related quantity, the scattering radius, as, are
detailed in the ENDF-6 Formats Manual [11]. The wavenumber is given by

k(E) =
10
√

2mn

~c
A

A+ 1

√
|E| (6)

with mn, ~c, and A being the mass of a neutron in eV, the reduced Planck constant multiplied by
the speed of light in eV-fm, and the ratio of the mass of the target nuclide to that of a neutron,
respectively.
‡The nuclide-dependent interpolation scheme is prescribed in the ENDF-6 file.
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Figure 1. 238U Elastic Scattering Cross Section Realization About En = 25 keV for Nλ = 64

2.2 Single-level Breit-Wigner Cross Sections

From the sampled level spacings and partial reaction widths, cross section values at a given
En are computed using a so-called many-level Breit-Wigner model§ [18]. In this model, a cross
section at En is computed as a summation of the contributions from each of Nλ single-level Breit-
Wigner (SLBW) resonances [19] to the value at this energy. The value of Nλ must be chosen,
for each spin sequence, to be high enough that the addition of a nominal resonance’s contribution
to the cross section values at En is negligible. Initial studies suggest that an Nλ value of 64 will
produce satisfactory differential and integral results for the range of systems investigated here. This
determination is based on the observations that the resulting partial reaction cross section values are
unbiased at the 0.1% relative difference level when compared to values computed using a higher
Nλ value and that the keff values that are computed in simulations using cross section realizations
generated with 64 contributing resonances from each spin sequence are unbiased relative to the
results that are obtained with additional resonances. To illustrate, the schematic in Fig. 1 shows a
realization of the 238U elastic scattering cross section localized about En = 25 keV along with the
full realization. It is apparent that the truncated, local realization is sufficient to capture resonance
cross section structure in the vicinity of the desired energy. Each time that a cross section value
is needed within a simulation, the on-the-fly calculation method requires a new generation of an
independent realization localized about En. The SLBW elastic neutron scattering cross section is
given by

σn(En) = σpot(En)

+

Nl−1∑
l=0

NJ (l)∑
j=1

Nλ∑
λ=1

σλ

([
cos (2φl(En))−

(
1− Γn,λ

Γλ

)]
ψ(θ, x) + χ(θ, x) sin (2φl(En)

)
.

(7)

The potential, or shape elastic, scattering cross section appears in the above expression and is
calculated as

σpot(En) =
4π

k2(En)

Nl−1∑
l=0

(2l + 1) sin2 (φl(En)). (8)

§This many-level Breit-Wigner model should not be confused with the multi-level Breit-Wigner (MLBW) resonance formalism.
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It is well-known that, due to its neglect of level-level interference effects, the SLBW representation
can result in unphysical negative elastic scattering cross sections. When a negative value is
encountered, the elastic scattering cross section is simply set to zero in our implementation. This
adjustment is propagated through to the total cross section which is calculated as the sum of partial
reaction values.

Radiative capture, fission, and the competitive reaction cross sections are given by

σγ(En) =

Nl−1∑
l=0

NJ (l)∑
j=1

Nλ∑
λ=1

σλ
Γγ,λ
Γλ

ψ(θ, x), (9)

σf (En) =

Nl−1∑
l=0

NJ (l)∑
j=1

Nλ∑
λ=1

σλ
Γf,λ
Γλ

ψ(θ, x), (10)

and

σx(En) =

Nl−1∑
l=0

NJ (l)∑
j=1

Nλ∑
λ=1

σλ
Γx,λ
Γλ

ψ(θ, x), (11)

respectively. The total cross section is calculated as the sum of the Nr partials,

σtot(En) =
Nr∑
i=1

σr,i(En). (12)

Other formulae and variables needed for the computation of cross sections include those for the
neutron resonance energy, Eλ; the resonance peak value,

σλ = gJ
4π

k2(Eλ)

Γn
Γλ

; (13)

the statistical spin factor,

gJ =
2J + 1

4I + 2
; (14)

the neutron width evaluated at the resonance energy,

Γn,λ(|Eλ|) =
Γn,λ(En)Pl(|Eλ|)

Pl(En)
; (15)

θ =
Γλ

2
√
kBTEn/A

, (16)

with T being the temperature of the material in which the target nuclide resides;

x =
2(En − E ′λ)

Γλ
; (17)

and the shifted resonance energy,

E ′λ = Eλ + Γn,λ
Sl(|Eλ|)− Sl(En)

2Pl(|Eλ|)
. (18)
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Expressions for the penetrabilities, Pl; hard-sphere phase shifts, φl; and resonance energy shift
factors, Sl, are given in the ENDF-6 Formats Manual [11].

Continuous-energy Doppler broadening, as opposed to the pointwise kernel broadening of the
SIGMA1 method [20], is accomplished using the ψ − χ Doppler integral functions [21]. These
functions are given by

ψ(θ, x) =
θ
√
π

2
Re
[
W

(
θx

2
,
θ

2

)]
and χ(θ, x) =

θ
√
π

2
Im
[
W

(
θx

2
,
θ

2

)]
, (19)

respectively. The W -function, also known as the Faddeeva function, is defined as

W (α, β) = exp
(
−z2

)
erfc (−iz) =

i

π

∫ ∞
−∞

dt
exp (−t2)
z − t

(20)

with α and β being the real and imaginary components, respectively, of complex number z = α+ iβ.
With the presented procedures for sampling resonance parameters and subsequently calculating
temperature-dependent cross section values, the relationship that exists between cross section values
at different temperatures, for a given nuclide and fixed energy, can be preserved with relative ease.
When a neutron streams into a region that contains a nuclide which was also contained in another
region previously traversed by the same neutron, without any interactions in between, the cross
section values in the two different regions must be related, regardless of temperature. A new set
of resonances should not be generated when the neutron passes into the latter region. The same
resonances should be used to compute cross sections in both regions, with any differences due to
Doppler broadening only. With the on-the-fly method, this is accomplished by simply storing the
set of sampled resonance parameters, generated near the current energy, between interactions and
use it to compute cross sections at any required temperature. Similar functionality is possible with
the probability table method [10].

As another practical point of implementation, URR cross section values, once computed, can be
utilized in one of two ways. In the first case, cross section values computed from File 2 unresolved
resonance parameters using the above equations are simply to be added to any background File 3
cross sections. In the second, the computed cross section values are divided by pre-computed,
averaged, infinite-dilute values. The resulting factor is then multiplied by the cross section value
given in File 3 to obtain the cross section value that is to be used in the transport simulation. For a
given nuclide, the evaluated nuclear data file prescribes which of these treatments to use.

3 RESULTS AND ANALYSIS

In this section we present results obtained from OpenMC simulations of an infinite, homo-
geneous medium test problem and the Big Ten critical assembly [22]. Specifically, the improved
model of the Big Ten system taken from the International Criticality Safety Benchmark Evaluation
Project (ICSBEP) handbook [23] is used. For each system, we examine the keff eigenvalues and
normalized neutron flux energy spectra that result from various URR cross section treatments.
Particular attention is given to the comparison of results obtained from simulations using probability
tables and on-the-fly cross sections. The effects of the treatment of the structure of the 238U first
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level inelastic scattering cross section on simulation results are also explicitly investigated. The
infinite, homogeneous system is simulated at different temperatures to further validate the on-the-fly
URR cross section Doppler broadening methodology.

All simulations are performed using the ENDF71x neutron data library [24]. Where needed,
probability tables are also drawn from ENDF71x. This library contains ENDF/B-VII.1 nuclear
data [25] processed into ACE format with the NJOY Nuclear Data Processing System, version
99.393 [16]. Resonance parameters and other variables required for on-the-fly cross section
calculations are taken from the raw ENDF/B-VII.1 evaluations.

3.1 Infinite, Homogeneous Medium Test Problem

We start our investigation of URR cross section treatments with a simple infinite, homogeneous
medium system. It is composed of a 10:1 ratio of 238U and 235U nuclei that is brought to critical
with the addition of 10B. The test problem is constructed to have an intermediate/fast neutron energy
spectrum so that it is sensitive to the handling of the URR. The simplicity of the model and its
relatively hard energy spectrum make it an effective system to use in the testing of the on-the-fly
URR cross section calculation method. The system is simulated at both 293.6 K and 2500 K to
demonstrate the consistency between cross sections broadened directly via Doppler integrals and
probability table data pre-computed at a given temperature. Eigenvalue results and neutron flux
energy spectra are presented in Secs. 3.1.1 and 3.1.2, respectively. In this problem, only 238U and
235U have a URR that must be handled. When required, on-the-fly cross sections are computed only
for 238U with structured 235U cross sections being taken from probability tables.

Table I. Comparison of keff for Various URR Treatments at 293.6 K
URR Method Inelastic Cross Section keff 1σ

Averaged Averaged 1.00001 0.00008
Probability tables Averaged 1.00390 0.00009

On-the-fly Averaged 1.00403 0.00008
On-the-fly Structured 1.00493 0.00008

Table II. Comparison of keff for Various URR Treatments at 2500 K
URR Method Inelastic Cross Section keff 1σ

Averaged Averaged 0.99935 0.00008
Probability tables Averaged 1.00071 0.00008

On-the-fly Averaged 1.00065 0.00008
On-the-fly Structured 1.00099 0.00008

3.1.1 keff eigenvalues

In Tables I and II the keff eigenvalue results are shown for various URR treatments at 293.6 K
and 2500 K, respectively. At each temperature we can see the sensitivity of the model to the

Page 9 of 15



Walsh, et al.

representation of cross section resonance structure. Going from the averaged cross sections to
those which account for resonance structure with probability tables can result in a keff increase of
hundreds of pcm. This behavior is brought on by a decrease in 238U resonance absorption.

With respect to the accuracy of the on-the-fly method, we see agreement to well within 2σ
between keff values computed with probability table cross sections and those computed with on-the-
fly cross sections. This agreement is desired because the probability table method is essentially a
discretized version of the on-the-fly method which is continuous with respect to energy, temperature,
and cross section probabilities. Then, comparing the two cases in which cross sections are computed
on-the-fly, there is an additional non-negligible bump in reactivity that comes when the resonance
structure of the first level inelastic scattering reaction cross section is accounted for. This increase
amounts to approximately 90 pcm and 30 pcm at 293.6 K and 2500 K, respectively.
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Figure 2. Flux Spectra at 293.6 K
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Figure 3. Flux Spectra at 2500 K
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3.1.2 Neutron flux energy spectra

Comparisons of flux spectra illustrate the excellent agreement between on-the-fly and prob-
ability table results and also the impact of accounting for the resonance structure of the 238U
competitive inelastic scattering cross section. Figures 2a and 3a show that — at 293.6 K and
2500 K, respectively — at energies with an appreciable flux, the differential tallies calculated with
on-the-fly and probability table cross sections differ by less than one percent. Then, in Figs. 2b
and 3b, again for 293.6 K and 2500 K, respectively, we can see the noticeable bias that results
when using an averaged, rather than structured, inelastic scattering cross section representation.
When using averaged cross sections, inelastic scattering rates in the URR are over-predicted. It
follows that flux tallies in the URR and at energies below it are relatively decreased and increased,
respectively, compared to the structured cross section case. At energies below the URR, a structured
cross section treatment results in flux tally values that are reduced by approximately 5-10% from
the values computed with averaged cross sections.

3.2 Big Ten Critical Assembly

The second system that we investigate is the ICSBEP improved model of the Big Ten critical
assembly. A real system with an intermediate/fast spectrum, Big Ten highlights the same key
phenomena that are observed in the infinite, homogeneous medium test problem results. Where
indicated, an on-the-fly treatment is applied to only 238U with structured URR cross sections for the
other nuclides coming from probability tables.

3.2.1 keff eigenvalues

Table III gives the keff results for different URR cross section treatments. We see that accounting
for the resonance structure of URR cross sections, with either probability tables or on-the-fly
calculations, results in a ∼ 400 pcm increase in keff relative to the case in which averaged cross
sections are utilized. Modeling the resonance structure of the 238U first level inelastic scattering
reaction cross section contributes another ∼ 40 pcm increase. Finally, we see agreement to within a
10 pcm 1σ value between the probability table and on-the-fly eigenvalues.

Table III. Comparison of keff for Various URR Treatments
URR Method Inelastic Cross Section keff 1σ

Averaged Averaged 1.00082 0.00010
Probability tables Averaged 1.00467 0.00010

On-the-fly Averaged 1.00462 0.00009
On-the-fly Structured 1.00503 0.00010
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Figure 4. Big Ten Flux Spectra

3.2.2 Neutron flux energy spectra

As in the infinite, homogeneous test problem case, excellent agreement is observed between
on-the-fly and probability table differential flux spectra. The largest differences at energies with
an appreciable flux are less than one percent. When inelastic scattering cross section resonance
structure is introduced into the URR treatment, there is a non-negligible decrease in flux of up to
10% at lower energies due to the reduced inelastic scattering rate in the URR, relative to the averaged
cross section case. This is precipitated by an increased flux within the URR which is also due to the
reduced inelastic scattering rate. In other words, less URR inelastic scattering in the structured cross
section case means that neutrons are transferred less frequently from the URR to lower energies
which translates to increased and decreased flux in the URR and below it, respectively.

4 CONCLUSIONS AND FUTURE WORK

The work presented in this initial study demonstrates a procedure for computing URR cross
sections on-the-fly in Monte Carlo neutron transport codes, without reliance on a pre-processing
step, such as probability table generation. Excellent agreement — within 2σ for relatively tight
statistical uncertainties — is observed in comparisons of both integral and differential tallies that
are calculated using the on-the-fly method with those obtained using probability tables. This is
achieved in simulations of two intermediate spectrum systems which are highly sensitive to URR
resonance effects.

With respect to runtime, the computational expense of calculating URR cross sections on-the-fly
in the course of a simulation may be relatively severe, or quite manageable, relative to the probability
table method, depending on the type of simulation. For example, in a basic criticality simulation of
the ICSBEP Big Ten assembly model, with only a keff tally, the on-the-fly method, when applied
to a single important nuclide, is observed to run 10-20 times slower than the probability table
method. However, in a simulation with more complex tallies, similar to those that may be required
in practical fast reactor analysis simulations, the runtime overhead associated with the on-the-fly
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method is reduced to 10-20%¶. Longer runtimes can be expected when the on-the-fly method is
applied to more nuclides. However, this impact will be reduced, in a relative sense, if reaction rate
tallies of practical complexity are calculated in the simulation. Additional reductions in runtime
overhead will be realized once optimizations of the on-the-fly algorithm are explored. Further
quantification of the method’s impact on runtime is necessary in order to establish its viability for
both simple criticality calculations and detailed fast reactor analysis.

Because on-the-fly computations rely on temperature-independent unresolved resonance param-
eters rather than probability tables of arbitrary number and size, memory reduction is achieved with
the method. For example, the probability tables for the four nuclides in the Big Ten model account
for 71 kB per temperature while the unresolved resonance parameter data needed for on-the-fly
calculations take up only 16 kB, total, independent of the number of temperatures. For this reason,
even greater memory reductions are attainable in simulations with transient or spatially-varying
temperatures because probability table data are likely to be required at several temperatures to
ensure that interpolation errors are sufficiently small whereas the on-the-fly method allows for the
calculation of cross sections continuously in temperature from a single set of unresolved resonance
parameters. Also, there are URR resonance parameters given for 269 of the 423 nuclides in the
ENDF/B-VII.1 evaluated data. In systems containing more of these nuclides, further memory
reductions will be realized with the on-the-fly method relative to probability tables. Additional
quantification of the memory reductions that are achievable with the on-the-fly method is planned.
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APPENDIX A VARIABLE NOTATION

Variable Symbol

Lab system incident neutron energy En
Lab system neutron resonance energy Eλ

Shifted lab system neutron resonance energy E ′λ

Orbital angular momentum l
Total angular momentum J

Nuclear spin I
Statistical spin factor gJ

Elastic scattering cross section σn
Radiative capture cross section σγ

Fission cross section σf
Competitive reaction cross section σx

Resonance peak cross section σλ
Potential scattering cross section σpot

Mean level spacing 〈Dl,J〉
Sampled level spacing Dl,J

Mean reduced neutron width 〈Γl,Jn,0〉
Sampled neutron width Γl,Jn

Mean radiative capture width 〈Γl,Jγ 〉
Sampled radiative capture width Γl,Jγ

Mean fission width 〈Γl,Jf 〉
Sampled fission width Γl,Jf

Mean competitive reaction width 〈Γl,Jx 〉
Sampled competitive reaction width Γl,Jx

Total resonance width Γλ

Neutron width degrees of freedom µl,Jn
Radiative capture width degrees of freedom µl,Jγ

Fission width degrees of freedom µl,Jf
Competitive reaction width degrees of freedom µl,Jx

Channel radius ac
Scattering radius as

Center-of-mass neutron wavenumber k
Penetration factor Pl

Hard-sphere phase shift φl
Shift factor Sl

Target nuclide material temperature T
Boltzmann constant kB
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