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ABSTRACT

Generating the tracks to use in a 3D Method of Characteristics (MOC) simulation is not a trivial
task. The method used to generate tracks has significant implications on the memory and compute
requirements for a problem and the current track generation methods have shortcomings. In this study,
we provide a detailed description and analysis of the current state of the art method to generate tracks
for direct 3D MOC, the Modular Ray Tracing (MRT) method. Additionally, a new global method for
generating tracks is presented that is generalizable to many geometries, domain decomposition schemes,
and quadrature sets. The main difference between the global and modular track generation approaches
is that the global approach does not require any knowledge of the underlying geometry discretization
and is therefore more flexible in domain decomposing the geometry. Some considerations with memory
requirements and general applicability that we and others have found are discussed.
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1 INTRODUCTION

The Method of Characteristics (MOC) has seen significant interest in the past several decades
owing to the computational efficiency and flexibility of the method to model complex geometries.
Several production neutronics codes utilize 2D MOC for lattice physics or full core neutronics
calculations. Full core analysis using MOC has typically followed a 2D/1D approach [1–4]. In
this approach, 2D MOC is used in the radial direction while transport in the axial direction is
modeled with a low order diffusion operator that uses transverse leakage to couple the radial
planes. Recently, several codes has been written or extended to perform direct MOC calculations in
3D [5–7]. Extending MOC to 3D comes with a wide array of challenges.

One of the areas that has been investigated recently is the development of procedures to create
3D tracks. The modular ray tracing (MRT) method developed by Filippone [8] has seen wide
adoption in codes including MPACT [5, 9], DeCART [2], DRAGON [6], CRX [7], PEACH [10],
and nTRACER [1] as a way to reduce the memory and compute time required to generate tracks for
a large 3D geometry. While simple in theory, MRT requires all domains to be the same size which
can lead to load imbalance issues during segmentation if the minimum repeating domain is too large.
Additionally, when certain simplifications are used, the z-spacing between 3D tracks can be limited
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for shallow polar angles [5]. This results in additional memory and compute requirements that
could prove burdensome when trying to produce high fidelity solutions to full core PWR problems.
Studies performed on 3D MOC often use pin cell domains during the MRT segmentation process
when simplified problems such as the 3D C5G7 benchmark are solved [5]. With the small domain
sizes, the load imbalance issues are trivial. However, in real PWR problems such as the BEAVRS
benchmark [11], the strict pin cell structure is no longer preserved due to the presence of the grid
sleeve and inter-assembly water gap. Furthermore, the presence of grid spacers, flow nozzles, and
the bottom support plate result in uneven axial zone heights in the geometry. These characteristics
complicate MRT and suggest a more streamlined, global approach to generating tracks might be
more practical.

In this paper, we describe the conditions required for cyclic ray tracing and present a new
procedure for creating global 3D tracks that is independent of the domain decomposition scheme
used. This new method, which we call 3D Global Tracking (3DGT), uses information about the 2D
track cycles to perform a global fitting to ensure cyclic wrapping of 3D tracks. In order to highlight
the benefits of this method, we present the number of tracks required for the MRT, simplified MRT,
and 3DGT methods using anticipated parameters for a converged 3D MOC solution of a PWR core.

2 2D TRACKING

The Method of Characteristics is a widely used method for finding the solution of partial
differential equations in which a two or three dimensional problem is approximated by solving the
transport equation along constant angle tracks that traverse the geometry. While one dimensional,
each track represents a particular three dimensional volume and angular subspace. The first step in
setting up the MOC problem is creating tracks that span the spatial and angular space of the problem.
In Fig. 1, a sparse 2D and 3D track laydown for a homogeneous cube geometry is illustrated.

Figure 1. Pictures illustrating 2D (a) and 3D (b) tracks for a homogeneous cube geometry.

When creating the tracks, it is important to consider the boundary conditions as these determine
whether the outgoing angular flux needs to be passed as the incoming flux to another track. In
this study, we focus on generating tracks that are cyclic and can therefore be used for reflective
or vacuum boundary conditions. While analysis of full-core problems typically involves only
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vacuum boundaries, it is helpful to have the option for reflective boundaries to compare the results
of small-core benchmarks, such as the C5G7 benchmark, to other codes.

In our discussion, it is important that we make clear the distinction between tracks and segments
(sometimes referred to as intersections). Tracks are defined to span an entire geometry or geometry
subdomain and pass through region boundaries. When setting up a problem, tracks are decomposed
into segments that span only a single region. Fig. 2 illustrates a fine track and segment laydown for
a pin cell geometry. In this study, we focus only on the track generation procedure.

Figure 2. Pictures illustrating the geometry (a), the geometry subdivided into source regions
(b), a fine 2D track laydown (c), and the corresponding segment laydown colored by source
region (d) for a 2D pin cell geometry containing fuel, gap, clad, and moderator materials.

Before discussing the methodology for 3D track generation, we discuss how global tracks are
generated for 2D problems. Tracks for a 2D MOC problem are typically laid down using the cyclic
tracking approach as illustrated in Fig. 3. Users input a desired azimuthal track spacing, δφ, and
number of azimuthal angles, nφ, in 0 < φ < 2π. With this approach, azimuthal angles are created
to evenly subdivide the angular space such that each azimuthal angle in 0 < φ < π

2
is paired with a

complementary azimuthal angle,

φi =
2π

nφ
(0.5 + i) ∀ i =

[
0,
nφ
2

)
(1)

φ
nφ
2

−i−1 = π − φi ∀ i =
[
0,
nφ
4

)
, (2)

where φ
nφ
2

−i−1 is the complement of angle φi. Other valid angular quadrature sets have also been
used [7]. By tracking both forward and backward along a track, the full 2π angular space is covered
as shown in Fig. 3 for four azimuthal angles. Tracks are laid down such that they intersect with a
complementary track at the boundaries.
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Figure 3. Pictures illustrating forward (a) and backward (b) tracking for 2D MOC track
laydown. The geometry width ∆x, geometry height ∆y, and track angles and spacing (collec-
tively φi, φ

nφ
2
−i−1, δiφ, δix, and δiy) have been denoted on the pictures.

In order to guarantee cyclic wrapping of 2D tracks, there must be an integer number of tracks
on x and y axes for a particular angle, φi,

δix =
∆x

nix
δiy =

∆y

niy
(3)

where nix is the integer number of tracks along the x axis for angle φi. The same notation applies
to the y direction. Using the input value of δφ, the integer number of tracks along the axes for a
particular angle φi are computed,

nix =

⌈(
∆x · sin(φi)

δφ

)⌉
niy =

⌈(
∆y · cos(φi)

δφ

)⌉
(4)

where the ceiling is taken to ensure at least one track intersects with each axis. The azimuthal angle
is then corrected,

φi = tan−1

(
δiy
δix

)
(5)

where φi is used to denote the corrected azimuthal angle. Using the corrected azimuthal angle, the
azimuthal track spacing for each angle is also corrected,
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δiφ = δix · sin(φi) (6)

where δiφ is used to denote the corrected azimuthal track spacing. Using the corrected values, φi and
δiφ, the 2D tracks are laid down on the geometry.

3 3D TRACKING

3.1 Requirements for Cyclic Track Laydown in 3D

In generating 3D tracks, we assume that 3D tracks are laid down as z-stacked arrays of tracks
that project down onto the 2D track layout. Before discussing the conditions required to generate
cyclic tracks in 3D, we need to understand the concept of a reflective track cycle. Fig. 4 decomposes
a sample 2D geometry into 2D reflective track cycles with T iR,k denoting the kth reflective track
cycle for azimuthal angle φi.

Figure 4. Each plot highlights one of the 2D track cycles contained in a sample geometry.
The reflective track cycles are labeled with T iR,k denoting the kth track cycle for azimuthal
angle φi.

To generate 3D tracks, users input a desired polar track spacing, δθ, and number of polar angles, nθ,
in 0 < θ < π in addition to the parameters required to generate 2D tracks. With this approach, polar
angles are created to evenly subdivide the angular space such that each polar angle in 0 < θ < π

2
is

paired with a complementary polar angle,

θi,j =
π

nθ
· (0.5 + j) ∀ j =

[
0,
nθ
2

)
(7)

θi,nθ−j−1 = π − θi,j ∀ j =
[
0,
nθ
2

)
, (8)

where θi,nθ−j−1 is the complement of angle θi,j . Note that the polar angles are initially defined to
be independent of azimuthal angle index, i. Later, we use the azimuthal angle to correct the polar
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angle to ensure the tracks are cyclic. Following the same notation used to describe the azimuthal
angles, the corrected polar angles will be denoted by θi,j . By tracking both forward and backward
along a track, the full 4π angular space can be covered as shown in Fig. 1 for four azimuthal and
two polar angles.

Tracks are laid down such that they intersect with a complementary track at the boundaries.
Selecting an arbitrary cycle, T iR,k, we follow a set of 3D tracks as they complete one 2D cycle. Fig.
5 highlights a particular 2D track cycle and a set of 3D tracks projected along that cycle.

Figure 5. Illustration of an arbitrary 2D track cycle (a), T iR,k, and a set of 3D tracks projected
along the 2D track cycle (b).

To guarantee cyclic track wrapping of the 3D tracks, two conditions must be met:

1. For each azimuthal angle, φi, polar angle, θi,j , and 2D track cycle, T iR,k, the distance between
the beginning and end of a 3D track projection along a 2D track cycle must be an integer
number of track spacings.

2. For each azimuthal angle, φi, and polar angle, θi,j , there must be an integer number of track
spacings along the z axis over the depth of geometry, ∆z.

The first condition guarantees that a 3D track cycle wraps back onto another 3D track when
the 2D reflective cycle is completed. The second condition guarantees that a 3D track cycle that
contains a reflection off a top or bottom surface still reflects into an existing 3D track when the
2D cycle is completed. In the next two sections, we show how both the 3DGT and MRT methods
comply with these conditions and what additional assumptions they make.

3.2 The 3D Global Tracking Method

The 3DGT method uses the conditions stated in the previous section for 3D cyclic ray tracing
to generate tracks for a rectangular geometry independent of any domain decomposition scheme.
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After the 2D track information has been generated, the 3D track information can be computed
using the requirements for 3D cyclic global ray tracing. First, we note that all 2D track cycles for a
particular azimuthal angle index, i, have the same cycle length that can be computed,

LiR = lcm
(

2 · nix,
2 ·∆y

tan(φi) · δix

)
· δix

cos(φi)
, (9)

where lcm is the least common multiple. There are several ways in which the 3D track information
can be found given a user specified polar spacing and number of polar angles. The method we use
below is well suited towards minimizing the correction to the desired polar angles while allowing
the polar track spacing to change significantly. Using the reflective cycle length for each azimuthal
angle, the integer number of track spacings between the beginning and end of a set of 3D tracks
after one complete 2D cycle can be computed,

nil =

⌈
LiR · cot(θi,j) · sin(θi,j)

δθ

⌉
, (10)

where LiR · cot(θi,j) is the z distance between the start and end of the set of 3D tracks, sin(θi,j)
δθ

is
the z distance between tracks, and the subscript l is used to signify that nil is measured along the
direction of a track cycle. Next, the number of track spacings along the z axis needs to be set to
an integer number. The number of tracks on the z axis can be found by considering the relation
between the number of track spacings in the z direction and the spacing along the length of the 2D
track.

tan(θi,j) =
δiL
δi,jz

=
LiR
nil
· n

i,j
z

∆z
(11)

Rearranging and inserting our approximation for the polar angle, θi,j , this equation gives us an
expression for the number of tracks on the z axis,

ni,jz =

⌈
∆z · nil · tan(θi,j)

LiR

⌉
, (12)

where we take the ceiling to ensure at least one track crossing on the z axis. The z-spacing between
3D tracks is shown in Eq. 13.

δi,jz =
∆z

ni,jz
(13)
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Using the 2D cycle length and number of track crossings on the z axis and along the length of the
2D cycle, the polar angle can be corrected using Eq. 14.

θi,j = tan−1

(
LiR

nil · δ
i,j
z

)
(14)

Similarly, the polar track spacing is corrected using Eq. 15.

δi,jθ = δi,jz · sin(θi,j) (15)

In summary, the algorithm for generating tracks with the 3DGT method is described by Alg. 1.

Algorithm 1 3D track generation using the 3D Global Tracking Method
User specifies nφ, δφ, nθ, and δθ.
for all i ∈ I do {Loop over azimuthal angles}

Compute the # of tracks in x and y for φi, nix and niy, and distance between tracks in x and y,
δix and δiy (Eqs. 3 and 4).
Correct the azimuthal angle and azimuthal track spacing, φi and δiφ (Eqs. 5 and 6).
Compute the length of the 2D reflective track cycles, LiR (Eqs. 9).
for all j ∈ J do {Loop over polar angles}

Compute the # of track spacings after one complete 2D cycle, ni,jl (Eq. 10).
Compute the # of tracks on the z axis, ni,jz (Eq. 12).
Compute the z distance between 3D tracks, δi,jz (Eq. 13).
Correct the polar angle, θi,j (Eq. 14).
Correct the polar track spacing, δi,jθ (Eq. 15).

end for
end for

3.3 The Modular Ray Tracing Method

Modular ray tracing relies on the principle that a geometry can be uniformly decomposed into
a series of rectangular cuboids of equal size. Typically, the decomposition procedure is performed
such that many of the cuboids have the same underlying geometry and therefore contain the same
segment structure. This allows an identical set of tracks to be laid down on each domain and
segmentation only performed on each unique domain type. Therefore, we only present the track
generation procedure for a single domain.

The MRT method uses a procedure similar to that used in the 3DGT method for track generation.
For a domain, the number of tracks and spacing between tracks in x and y are described in Eq. 16
and Eq. 17, respectively,
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nix =

⌈(
∆x · sin(φi)

Dx · δφ

)⌉
niy =

⌈(
∆y · cos(φi)
Dy · δφ

)⌉
(16)

δix =
∆x

Dx · nix
δiy =

∆y

Dy · niy
, (17)

where Dx and Dy are the integer number of domains in the x and y directions, respectively. This
guarantees that an integer number of tracks lie along the x and y boundaries of each domain cell
and that tracks on one surface line up with adjoining tracks in the neighbor domain cell.

When generating tracks using the MRT method, it is important to remember that a track
crossing a domain interface needs to connect with another track on the neighboring domain. As
we follow a series of tracks across the geometry, we notice that the series of tracks is periodic. A
periodic track cycle is defined to be the series of domain tracks that repeats when a global track
traverses a geometry. Fig. 6 shows the periodic track cycles for one azimuthal angle in our sample
geometry when it is split into four domains.

Figure 6. Each plot highlights one of the 2D periodic track cycles contained in a sample
geometry split into four domains of equal size. The track cycles are labeled with T iP,k denoting
the kth periodic track cycle for azimuthal angle φi.

We can define the length of the periodic track cycles for each azimuthal angle to be LiP . For
the MRT method, the periodic 2D track cycles for a particular azimuthal angle, i, have the same
cycle length computed in Eq. 18.

LiP = lcm
(
nix,

∆y

Dy · tan(φi) · δix

)
· δix

cos(φi)
(18)

The procedure to find the corrected polar track spacing and corrected polar angles is identical to the
procedure used in the 3DGT method, except that LiR is replaced with LiP and ∆z is replaced with
∆z
Dz

.
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The procedure for identifying the periodic track cycles and finding the start and end points for
all tracks using the MRT and 3DGT methods can seem a bit tedious, so others have simplified the
MRT method by noticing that the lengths of all 2D tracks are an integer multiple of the shortest 2D
track [5]. For example, the length of the first three 2D tracks, ti1, ti2, and ti3, for azimuthal angle φi

are shown in Eqs. 19, 20, and 21.

li1 =

√[
δix
2

]2

+

[
δiy
2

]2

=
1

2

√
(δix)

2 + (δiy)
2 (19)

li2 =

√[
3δix
2

]2

+

[
3δiy
2

]2

=
3

2

√
(δix)

2 + (δiy)
2 = 3li1 (20)

li3 =

√[
5δix
2

]2

+

[
5δiy
2

]2

=
5

2

√
(δix)

2 + (δiy)
2 = 5li1 (21)

Since the length of all 2D tracks is an integer number of lengths of the first track, li1, any
valid track laydown for the first track is also valid for all other tracks. Therefore, we can set the
cycle length for an azimuthal angle, LiP , to the length of the shortest track, li1. The algorithm for
generating tracks for the MRT and simplified MRT (s-MRT) method can be described by Alg. 2.

It is important to note that the track generation procedure described in Alg. 2 favors correcting
the polar track spacing over correcting the polar angle. Alternative algorithms could easily be
designed to favor correcting the polar angle over the polar track spacing, but it is expected that
correcting the polar track spacing is a more conservative procedure and this is in line with previous
work on MRT [5]. When the periodic cycle length is small relative to the desired polar track spacing,
the correction to the polar track spacing can be very large. This has significant implications for
the s-MRT method where the periodic cycle length is always on the order of the azimuthal track
spacing. For instance, if we consider the case of a shallow polar angle (θ near π

2
) where φ = π

4
,

θ = 0.9 · π
2
, δφ = 0.05, and δθ = 0.25 for an infinitely tall domain, the s-MRT method produces a

corrected polar track spacing of δi,jθ ≈ 0.0079. This increases the number of tracks for this direction
by a factor of ∼32 over the ideal case and in Sec. 4 we discuss the memory implications of this
characteristic in more detail.

Additionally, others have claimed that the MRT method must store all tracks in the unit sphere
while the s-MRT method only requires tracks in half of the unit sphere [5]. Our algorithm for
generating tracks using the MRT and s-MRT methods (Alg. 2) satisfies the criteria for cyclic
tracking and in practice we have been able to produce cyclic track laydowns for the MRT method
that require storage of tracks over only half the unit sphere. It is suspected that the previous work
did not consider the track cycles as a unit and instead generated the z-stacked arrays of 3D tracks
independent of other tracks in the cycle.
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Algorithm 2 3D track generation using the Modular Ray Tracing Method
User specifies nφ, δφ, nθ, δθ, Dx, Dy, and Dz.
for all i ∈ I do {Loop over azimuthal angles}

Compute the # of tracks in x and y for φi, nix and niy, and distance between tracks in x and y,
δix and δiy (Eq. 16 and 17).
Correct the azimuthal angle and azimuthal track spacing, φi and δiφ (Eqs. 3 and 4).
if MRT then

Compute the length of the 2D periodic track cycles, LiP (Eq. 18).
else

Compute the length of the shortest track, li1 (Eq. 19).
end if
for all j ∈ J do {Loop over polar angles}

Compute the # of track spacings after one complete 2D cycle, ni,jl .

nil =

⌈
LiP · cot(θi,j) · sin(θi,j)

δθ

⌉
Compute the # of tracks on the z axis, ni,jz .

ni,jz =

⌈
∆z · nil · tan(θi,j)

Dz · LiP

⌉
Compute the z-distance between 3D tracks, δi,jz .

δi,jz =
∆z

Dz · ni,jz
Correct the polar angle, θi,j .

θi,j = tan−1

(
LiP

nil · δ
i,j
z

)
Correct the polar track spacing, δi,jθ (Eq. 15).

end for
end for

4 IMPLICATIONS FOR 3D MOC

As a rough approximation, the required parameters to converge a full-core problem might be
similar to those presented in Table I. With the 3DGT method, these parameters lead to the generation
of 5.66× 109 tracks when no memory decomposition scheme is used. With this many tracks, the
storage of the two 100-group angular flux vectors for each track with single precision would require
4.53 TB. This is much larger than the memory limit of current machines. For instance, the on-node
memory of BlueGene/Q is constrained to 16 GB/node [12].

For any MOC implementation, iterations are performed in which the Boltzmann neutron
transport equation is solved for every characteristic track. Therefore, the computational time
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Table I. Anticipated parameters for a converged 3D MOC solution of a PWR core.
Parameter Dimension

Height (z) 455.444 cm
Width (x and y) 365.56188 cm*

Radial ray spacing 0.05 cm
Axial ray spacing 0.25 cm

Number of azimuthal angles 64
Number of polar angles 10

*Width assumed to be 17 assemblies in each direction.

associated with solving any problem directly scales with the number of tracks [5]. In addition, the
on-node memory constraints are often dominated by the storage of boundary angular fluxes for each
track [13]. The number of tracks generated using the s-MRT, MRT, and 3DGT methods using the
parameters in Table I is presented in Table II.

Table II. Number of tracks generated using the three track generation methods applied to
the parameters in Table I.

Method Number of tracks generated

s-MRT 4.74× 1010

MRT 5.70× 109

3DGT 5.66× 109

Previous work has often used only one track spacing for both the desired azimuthal and polar
track spacing [5, 9]. However, due to the success of 2D/1D methods [3], we anticipate that the
required axial spacing will be far more coarse than the radial spacing. Fig. 7 shows the number
of tracks versus the ratio of desired polar to azimuthal track spacing for the parameters in Table I.
Both the MRT and 3DGT methods do not require large corrections on the polar track spacing due to
the relatively large length of the cycle compared with the azimuthal spacing. With equal azimuthal
and polar track spacing, the s-MRT method only requires ∼2.0 times more tracks than the 3DGT
and MRT methods while for the expected parameters, the s-MRT method requires ∼8.4 times more
tracks. This illustrates the inflexibility of the s-MRT method when applied to common reactor
problems in which the radial complexity is much greater than the axial complexity and suggests
that the s-MRT method should be avoided.

Incorporating a domain decomposition scheme will only increase the memory requirements
further. For the 3D MOC problem presented in Table I, we have assessed the memory requirements
for two domain decomposition schemes with a variety of input parameters and presented the results
in Table III. The increase in storage requirements for the s-MRT method is due almost entirely to
the increase in the δθ/δφ ratio and not to the domain decomposition scheme. Reducing the number
of polar angles did not have a large effect on the ratio of storage required by the s-MRT method to
the storage required by the MRT and 3DGT methods either. At this point, it is unclear what the
track spacing and number of azimuthal and polar angles will be to converge a full-core problem.
The storage requirements for many cases in Table III are close to or above the on-node storage of
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Figure 7. Plot of the number of tracks versus the track polar spacing, δθ, divided by the track
azimuthal spacing, δφ, for the specifications described in I. In order to change the ratio of
desired polar to azimuthal spacing, the polar track spacing was modified while the desired
azimuthal spacing was held constant at 0.05 cm.

BlueGene/Q and the storage for the scalar fluxes and material cross sections has not even been taken
into consideration. New machines will likely have different characteristics and it will be important
to have a method this both minimizes the memory requirements and is flexible to different domain
sizes.

Another important aspect to consider is the generality of the track generation scheme. While
benchmark geometries can be quite simple, real geometries are often far more complex and can
be composed of many different repeating subdomains of different sizes. The implementation of
the MRT method must be able to identify these subdomains and have a robust track generation
scheme or rely on the user to identify the subdomains in the input. The 3DGT method is completely
general and works for arbitrary geometries, whether they have repeating subdomains (e.g. C5G7) or
complex structures (e.g. pebble bed reactors). This characteristic makes the 3DGT method well
suited as a general track generation scheme to implement in a 3D MOC code.

5 CONCLUSIONS

In this paper, a detailed description of track generation for 3D MOC was provided. A new
track generation method for 3D MOC called 3D Global Tracking that is applicable for arbitrary
geometries while having slightly lower memory requirements than the current state-of-the-art MRT
method was also presented. A brief analysis of the number of tracks required for an anticipated track
laydown for a full-core PWR problem was conducted. This revealed the inherent disadvantage of
the s-MRT method in that it required ∼8.4 times more tracks than the MRT and 3DGT methods. As
we move towards solving larger, more complex problems, the track generation method will become
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Table III. Number of tracks and memory requirements for full core PWR problem using
quarter assembly geometry, assembly-wise domain decomposition, 64 azimuthal angles, and
0.05 cm azimuthal ray spacing.

Method Domains (x,y,z) nθ δθ (cm) tracks
domain

memory
domain (GB)

3DGT 8.65× 106 13.8
MRT (17,17,21) 10 0.25 8.71× 106 13.9

s-MRT 7.00× 107 112.1
3DGT 4.32× 107 69.2
MRT (17,17,21) 10 0.05 4.33× 107 69.3

s-MRT 8.64× 107 138.2
3DGT 2.16× 106 3.5
MRT (34,34,42) 10 0.25 2.18× 106 3.5

s-MRT 1.76× 107 28.2
3DGT 1.08× 107 17.3
MRT (34,34,42) 10 0.05 1.09× 107 17.4

s-MRT 2.17× 107 34.7
3DGT 8.65× 106 8.4
MRT (17,17,21) 6 0.25 8.71× 106 8.4

s-MRT 7.00× 107 59.4
3DGT 4.32× 107 41.8
MRT (17,17,21) 6 0.05 4.33× 107 41.9

s-MRT 8.64× 107 75.7
3DGT 2.16× 106 2.1
MRT (34,34,42) 6 0.25 2.18× 106 2.1

s-MRT 1.76× 107 14.9
3DGT 1.08× 107 10.5
MRT (34,34,42) 6 0.05 1.09× 107 10.5

s-MRT 2.17× 107 19.0

more relevant due to the increased memory and compute requirements implicit to the track laydown.
Additionally, the current state-of-the-art method, Modular Ray Tracing, will face new challenges in
track generation for complex geometries. As we tackle these larger problems, additional challenges
and insights to the track generation procedure will likely arise.
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