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River networks exhibit a complex ramified structure that has inspired
decades of studies. However, an understanding of the propagation of
a single stream remains elusive. Here we invoke a criterion for path
selection fromfracturemechanics andapply it to thegrowthof streams
in a diffusion field. We show that, as it cuts through the landscape, a
stream maintains a symmetric groundwater flow around its tip. The
local flow conditions therefore determine the growth of the drainage
network. We use this principle to reconstruct the history of a network
and to find a growth law associated with it. Our results show that the
deterministic growthof a single channel basedon its local environment
can be used to characterize the structure of river networks.

river channels | principle of local symmetry | harmonic growth |
Loewner equation | fracture mechanics

As water flows, it erodes the land and produces a network of
streams and tributaries (1–3). Each stream continues to

grow with the removal of more material, and evolves in a direction
that corresponds to the water flux entering its head. The pre-
diction of the trajectory of a growing channel and the speed of its
growth are important for understanding the evolution of complex
patterns of channel networks. Several models address their evo-
lution and ramified structure. One, the Optimal Channel Net-
works model (4), is based on the concept of energy minimization
and suggests a fractal network. The landscape evolution method
and many diffusion-based models (5–7) have also proven useful
for modeling erosion and sediment transport. These models dis-
tinguish between two regimes: one is a diffusion-dominated re-
gime where topographic perturbations are diminished, which leads
to a smoother landscape and uniform symmetric drainage basins.
In this case, the shape of a channel cannot deviate from a straight
line. In the second regime, advection dominates, and channel in-
cisions are amplified. The channel effectively continues to the next
point that attracts the largest drainage basin, which corresponds to
the direction where it receives the maximum water flux. These
models nicely predict the formation of ridges and valleys and
provide insight into the interaction between advective and diffu-
sive processes (8, 9). However, they do not address directly the
evolution of a single channel and do not explicitly address the
nature of a growing stream based on its local environment.
Here we address two basic questions in the evolution and the

dynamics of a growing channel: where it grows and at what velocity.
We propose that, when streams are fed by groundwater, the di-
rection of the growth of a stream is defined by the groundwater flow
in the vicinity of the channel head. This theory is widely used in the
framework of continuum fracture mechanics and accurately predicts
crack patterns in different fracture modes, for both harmonic and
biharmonic fields and for different stress singularities (10–12). The
theory, known as the principle of local symmetry, states that a crack
propagates along the direction where the stress distribution is sym-
metric with respect to the crack direction (10, 13). We find an analog
of this principle in the motion and growth of channels in a diffusive
field. We argue that the trajectory of a stream is dictated by the
symmetry of the field in the vicinity of its head. We also demon-
strate how to determine a growth law that ties the water flux into a
channel to an erosion process and the propagation velocity of
a channel head.

Principle of Local Symmetry
We study the case of channel growth driven by groundwater
seepage as a process representative of channel formation and
growth in a diffusing field (2, 14–19). The emergence of ground-
water through the surface leads to erosion and the development of
a drainage network (17). The flow of groundwater is described by
Darcy’s law (2),

v=−κ∇
�
p
ρg

+ z
�
. [1]

Here v is the fluid velocity, κ the hydraulic conductivity, p the
pressure in the fluid, ρ the fluid density, z the geometric height,
and g the gravitational acceleration. By assuming only horizontal
flow, the Dupuit approximation (20, 21) relates the water table
height hðx, yÞ to the groundwater horizontal velocity v=−κ∇h,
and to the groundwater flux q=−hκ∇h=−ðκ=2Þ∇h2. Considering
an incompressible flow, the steady-state solution for the water table
height becomes a function of the ratio between the mean precip-
itation rate P and κ,

κ

2
∇2h2 =−P. [2]

Thus, the square of the height h is a solution of the Poisson
equation (21, 22). We assume that the hydraulic conductivity κ
is constant. By rescaling the field, Eq. 2 becomes

∇2ϕ=−1, [3]

where ϕ= ðκ=2PÞh2, and −∇ϕ is the Poisson flux. The boundaries
are given by the stream network; for a gently sloping stream we
can assume that the water table elevation at the boundary is
h= 0, and therefore ϕ= 0 along the streams.
Here we investigate how the groundwater flow controls the

growth of a channel. In the vicinity of the channel head we can
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neglect the Poisson term in Eq. 3, and the field can be approx-
imated as (23, 24)

∇2ϕ= 0. [4]

For a semiinfinite channel on the negative x axis with boundary
conditions

ϕðθ=±πÞ= 0, [5]

the harmonic field around the tip can be expressed in cylindrical
coordinates as (23)

ϕðr, θÞ= a1r1=2 cos
�
θ

2

�
+ a2r sinðθÞ+O

�
r3=2

�
, [6]

where, as shown in Fig. 1, r is the distance from the channel head
and the channel is located at θ=±π. The coefficients ai, i= 1,2
are determined by the shape of the water flux coming from the
outer boundary.
Because the leading term in the expansion of Eq. 6 is sym-

metric with respect to θ, we do not expect it to influence the
direction in which the channel grows. Thus, we must consider the
subdominant term that breaks the symmetry and can therefore
cause the stream to bend as it grows. Other terms in the ex-
pansion are negligible in the vicinity of the channel head.
In fracture mechanics, a crack maintains a symmetric elastic

field around its tip to release the maximum stress as it propagates
(10, 13). Inspired by this example, we suggest that a channel grows
in the direction which maintains a locally symmetric groundwater
flow. Accordingly, we formulate an analog of the principle of local
symmetry as follows: A channel grows in the direction for which
the coefficient a2 vanishes. Fig. 2 expresses this notion pictorially.

Evaluation of the Principle of Local Symmetry
We now evaluate the principle of local symmetry (PLS) from
three points of view. First, we justify its application to channel
networks based on simple physical reasoning. We then show that
the PLS is mathematically equivalent to assuming that a channel
grows along the groundwater flow lines, an assumption that has
been shown to be consistent with field observations (24). Finally,
we describe a numerical procedure to grow a network according
to this principle.

Negative Feedback Induced by Groundwater. As a channel grows, it
moves the boundary of the network, and this changes the
groundwater flow near the tip of the channel. Mathematically,

the coefficients an of the expansion of the local flow field near
the tip [6] vary during the channel’s growth.
To understand how groundwater controls growth, we study the

influence of the coefficient of the first two dominant terms (as r→ 0)
a1 and a2 on the distribution of groundwater into the channel. At a
distance r from the channel’s head, the amount of water collected
through the right-hand side of the stream reads

Qright =
Z r

0

∂ϕ
∂θ

����
θ=−π

dr′
r′

≈ a1
ffiffi
r

p
− a2   r. [7]

Similarly, the amount of water collected through the left-hand
side reads

Qleft ≈ a1
ffiffi
r

p
+ a2   r. [8]

For illustration, let us assume that the second coefficient a2 is
negative. Eqs. 7 and 8 indicate that more groundwater seeps into
the stream through its right-hand bank (θ< 0) than through its
left-hand bank (θ> 0). We expect this asymmetric seepage to
erode the bank collecting more groundwater faster, thus causing

ϕ=0 θ
r

Fig. 1. Channel (in red) in a Poisson field. The equipotential lines of the
field are in blue. r is the distance from the channel head, and θ= 0 indicates
the growth direction of the channel.

A

B

Fig. 2. (A) Asymmetric field (a2 ≠ 0); as the stream grows, it must bend in a
direction for which a2 vanishes. (B) Symmetric field (a2 = 0): Growth accord-
ing to the principle of local symmetry.
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the channel’s head to bend toward the stronger source of water.
By turning its head toward the more intense groundwater flux,
the channel reduces the local asymmetry of the flow near its tip.
Therefore, we hypothesize that, as a consequence of this nega-
tive feedback, a channel maintains a locally symmetric ground-
water flow in the vicinity of the tip as it grows.

Equivalence with Geodesic Growth. The geometry of a network
draining a diffusion field depends on the dynamics of its growth.
In particular, when two nascent tips grow off of a parent channel,
the angle of this bifurcation depends on the growth rule. For
instance, if a channel grows along the stream line that intersects
its tip (Fig. 3A), it should bifurcate at 2π=5= 72° (24). This value
accords with field measurements collected in a small river net-
work near Bristol, Florida. This observation suggests that a channel
cuts its path in the surrounding landscape along the groundwater
flow line. We refer to this growth rule as “geodesic growth” (25),
and connect it to the PLS.
To grow numerically a network in a diffusion field, one typically

needs to (i) solve the diffusion field around the network, (ii) evolve
the network according to the local properties of the field near its
tips, and repeat these operations (23). Whether the diffusion field
satisfies the Poisson equation 3 or the Laplace equation 4 does not
impact significantly the numerical procedure. However, complex
analysis facilitates considerably the derivation of formal results
about network growth in Laplacian fields.
In particular, the Laplacian field representing the groundwater

flow defines a complex map from the physical plane to the upper

half-plane (Fig. 3). This map encapsulates both the geometry of the
network at a specific time, and the groundwater flow around it.
Translating geodesic growth and local symmetry into this formal-
ism, we find that they define the same growth rule (SI Equivalence
Between Geodesic Growth and Local Symmetry).
This equivalence does not necessarily hold when the channel

grows in a field which satisfies the Poisson equation. However,
because the above demonstration is based on the local properties
of the field, the source term of the Poisson equation comes as an
external flux only. We therefore expect that the PLS is but a
reformulation of geodesic growth, which accords with field ob-
servation. An important consequence of this reformulation is the
ability to specify the growth direction in a precise, well-con-
trolled manner, to which we now turn.

Numerical Implementation. We design a numerical method to
calculate trajectories that explicitly maintain local symmetry, and
compare its results to an analytic solution. We consider a simple
case in which one channel grows in a confined rectangular ge-
ometry −1< x< 1,0< y< 30 in a Laplacian field. We first calcu-
late the trajectory using the PLS. Our algorithmic implementation
of this principle requires that at each step streams grow in the
direction for which a2 vanishes. (Further details are in SI Propa-
gation of a Channel.) We apply the following boundary conditions:
a zero elevation at the bottom (ϕ= 0 at y= 0), which corresponds
to a main river or an estuary; no flux at the sides (∂ϕ=∂x= 0 at
x= 1, − 1), which corresponds to a groundwater divide; and a
constant flux of water from the top, (∂ϕ=∂y= 1). We then initiate a
small slit (l= 0.01) perpendicular to the bottom edge, and allow it
to grow according to the PLS. Not surprisingly, a stream initiated
at the middle of the lower edge (x= 0; y= 0) continues straight.
However, when we break the symmetry and initiate a slit left of the
center (x=−0.5; y= 0) the stream bends toward the center of
the box.
To validate our numerical implementation of the PLS, we

compare our numerical trajectory to the evolution of a path in a
Laplacian field according to the deterministic Loewner equa-
tion (26–28). In the Loewner model, the properties of analytic
functions in the complex plane are used to map the geometry
into the complex half-plane or into radial geometry, and to find
the solution for the field. Then, at each time step, a slit is added
to the tip of the channel based on the gradient of the field en-
tering the tip. Fig. 4 compares results from the two approaches.
We find that the two solutions exhibit the same trajectory.

A B

Fig. 3. Streamline growth: (A) in the physical plane, and (B) in the mathe-
matical plane. The channel (solid blue) growing along a flow line that enters
the tip is geodesic (green). Red line: example of nongeodesic growth.
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Fig. 4. (Left) Trajectory of a single stream initiated at the bottom, to the
left of center. Blue: the analytical solution (28). Red: the numerical trajectory
of a stream grown according to the PLS. (Inset) The initial slit. (Right) The
average error hj△xðyÞji between the numerical trajectory and the analytical
solution with the decrease of the step size, ds.

Fig. 5. Height h of the water table above a seepage network (black) in
Bristol, FL. The shape of the water table is calculated using Eq. 2, assuming the
channel network is an absorbing boundary at h= 0 and P=κ =3.125× 10−3 (30).
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Growth of a Real Stream Network
The evolution of a channel is defined by the field in the vicinity
of the tip. However, this field is nonlocal and highly dependent
on the boundary conditions imposed by the ramified network of
the streams. In this section, the numerical method developed in
the previous section is used to compute trajectories in more
general settings where no analytic solutions are possible.

Growth According to Local Symmetry. We seek to determine if
growth of a real stream network is consistent with the PLS. We
study a network of seepage valleys located near Bristol, FL on
the Florida Panhandle (17). The network is presented in Fig. 5.
The valley network is obtained from a high-resolution LIDAR
(Light Detection and Ranging) map with horizontal resolution of
1.2 m and vertical resolution of less than 5 cm (17). In this
network, groundwater flows through unconsolidated sand above
the relatively impermeable substratum, and into the streams (17,
29). Previous analyses indicate that the homogeneity of the sand
is consistent with the assumption of constant κ (18, 19, 24, 30).
The flow is determined by the Poisson equation 2; thus, the
network grows in a Poisson field (30).
We study the evolution of this network and check if the growth

of the streams fulfills local symmetry. First, we set the boundary
conditions; because the change in elevation along the Florida
network is small (the median slope ∼ 10−2), we approximate the
height of the channels above the impermeable layer as constant
and choose ϕðh= 0Þ= 0. The outer boundaries are reflective, i.e.,
∂ϕ=∂n= 0, corresponding to a groundwater divide. We calculate
the Poisson field, Eq. 3, and find for each channel head the
coefficient a1 in the expansion 6 that corresponds to the water
flux entering the tip. Then, we remove a segment, li, from the tip
of the ith tributary and propagate it forward to its original length
in five small steps (to reduce numerical error). The growth of
each stream is characterized by two variables: its growth rate and
the direction of its growth. We assume that the velocity of a
stream is proportional to the magnitude of the gradient of the
field, raised to a power η:

v∼ j∇ϕjη ∼ aη1. [9]

A similar growth law has been considered in Laplacian path
models (25, 28) and related erosion models (31–33). Thus, the
length li of each segment that we remove from a channel, and
later add as it grows forward, is defined according to its relative
velocity; li ∝ vi=hvi, where vi ∝ a1i of the ith channel (η= 1) and
hvi= 1=n

P
ivi is the mean velocity. We fix the total length re-

moved from the network of n tributaries to be n meters. Each
channel then grows in a direction that fulfills local symmetry, i.e.,
in the direction for which a2 vanishes. After we grow the network
back to its original length, we study each of the tributaries sep-
arately, and measure the angle, β, between the real trajectory of
the stream and the reconstructed trajectory. We perform this
calculation for 255 channel heads in the Florida network. We
obtain a mean of β around zero with an SD of ∼ 7°. Different

values of η give a similar distribution. We find that a mean
around 0 of the angle error is consistent with a growth that
fulfills local symmetry. However, some of the streams deviate
significantly from their real growth direction, which may suggest
that other factors account for their growth.
To evaluate the significance of the results, we suggest a null

hypothesis in which the streams grow in the direction of the
tangent regardless of the value of a2. We obtain the direction of
the tangent based on the last two grid points (approximately 2 m)
of the channel trajectory after retraction. Then, we calculate the
angle, φ, between the tangent direction and the real trajectory, as
shown in Fig. 6. We find that a growth according to the PLS
reduces on average the error angle by 50% compared with
growth in the direction of the tangent, and therefore improves
prediction of future growth relative to the null model. An F test
(34) shows that the reduction of the variance using PLS is sta-
tistically significant, with P <10−9 (assuming each measurement
is statistically independent).

Growth Law. To understand the deviations between the real and
the calculated path, we hypothesize that the deviant streams
grew in a different environment than currently exists, e.g., the
neighboring tributaries were relatively undeveloped (or over-
developed) when the studied stream reached its current location.
To illustrate this idea, in Fig. 7 we show the trajectories of two
streams with different velocities, and compare their evolution in
Poisson field for different growth exponents η. One notices that
for smaller η the slower streams are more likely to deviate from
their real trajectory, but for higher η the faster streams change
their course. Only when η= η0 (the correct value of η), any errors
will remain uncorrelated to the velocity of the streams.
Motivated by this reasoning, we study the correlation between

the flux entering the tip, which we identify with a1, and the angle
β for different values of η. Retracting the network with different
η creates different boundary conditions and influences the

φ
β

Fig. 6. Retracted channel (blue) with two growth mechanisms: following
local symmetry (red), and continuing in the tangent direction (green). The
error angles β and φ are calculated between a real trajectory of a channel
(dashed blue) and a trajectory that follows local symmetry, and a real tra-
jectory and the tangent, respectively. We find that the mean absolute value
of the error angle measured for 255 channels in Florida is hjβji= 3.67± 0.2 for
the local symmetry and hjφji=5.62± 0.2 for the tangent direction.
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Fig. 7. Bifurcated channel (blue) is retracted with different growth expo-
nents η; η0 is the exponent that characterizes the original growth. The length
of the retracted segment (dashed blue) is proportional to aη1. The faster
stream has a bigger a1. Thus, the segment that is removed from the faster
stream becomes longer with respect to the slower stream as η gets larger.
The red curves are trajectories of channels grown forward. The deviation
angle β is measured between the real (dashed blue) and calculated (red)
trajectories. In A, deviations are characterized by growth away from the fast
stream; in C, the deviant growth avoids the slow streams; only in B, when
η =η0, deviations are not correlated to the velocity of the streams.
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trajectory of the streams as they grow forward. For small η< η0,
the dependence of the length on the flux becomes weaker. In
particular, when η= 0, this dependence vanishes and the same
segment size is removed from each stream (Fig. 7A). Thus, as we
grow the network forward, the deviation from the real trajectory
will be larger for the slower streams, with small a1, because they
try to avoid the faster streams that currently exist in their envi-
ronment. However, when η> η0, the faster streams are retracted
much further backward compared with slower streams, and they
grow in a more developed network than the network that had
existed when they had actually grown in the field. In this case, the
faster streams will reveal a bigger error in their trajectory. For
η= η0, there is no correlation between the flux and β, which
suggests that η0 is the best exponent for the growth. Fig. 8 shows
that η0 ’ 0.7 for the Florida network.
The importance of the growth exponent η is in the evolution of

the network: Negative η will generate a stable network in which
each perturbation, or small channel, will survive regardless of the
water flux entering the tip. A positive η results in an unstable
structure in which a small difference in the velocity of two

competing channels is amplified and may lead to a screening
mechanism and the survival only of the faster channel (28). Fig. 9
contains a schematic representation of this concept. The small
positive exponent found for the stream network in Florida in-
dicates that this network is unstable. This conclusion is consistent
with the prediction of a highly ramified network.

Summary
In summary, we offer a criterion for path selection of a stream in
a diffusing field. We show that this criterion, which is based on
the PLS (10, 13), predicts accurately the evolution of channels
fed by groundwater. We suggest a method to infer the history of
a real network by reconstructing it according to the PLS and
evaluating errors for different growth laws. We parameterize the
large-scale relationship between water flux and sediment trans-
port with a single exponent and show that for the Florida net-
work this growth exponent is roughly 0.7. We envision that our
methods may also be applied to other problems, such as the
growth of hierarchical crack patterns (35–37) and geological
fault networks (38), to provide a better understanding of their
evolution.
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