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Technological progress builds upon itself, with the expansion of
invention in one domain propelling future work in linked fields.
Our analysis uses 1.8 million US patents and their citation
properties to map the innovation network and its strength. Past
innovation network structures are calculated using citation
patterns across technology classes during 1975–1994. The inter-
action of this preexisting network structure with patent growth
in upstream technology fields has strong predictive power on
future innovation after 1995. This pattern is consistent with the
idea that when there is more past upstream innovation for a
particular technology class to build on, then that technology
class innovates more.

innovation | networks | patents | growth

Technological and scientific progress propels economic
growth and long-term well-being. Prominent theories de-

pict this process as a cumulative one in which new innovations
build on past achievements, using Newton’s descriptive phrase
of “standing on the shoulders of giants” (e.g., refs. 1 and 2).
Several studies provide evidence supporting this view, and
more generally, knowledge development is embedded in a
landscape of individual scientists, research institutes, private
sector actors, and government agencies that shape the funda-
mental rate and direction of new discoveries. (For example,
see refs. 3–13.) Despite this burgeoning literature, our un-
derstanding of how progress in one technological area is linked
to prior advances in upstream technological fields is limited.
Open but important questions include the long-term stability
of how knowledge is shared across technological fields, the
pace and timing of knowledge transfer, and how closely con-
nected upstream fields need to be to have material impact on a
focal technology. This paper provides some quantitative evi-
dence on these and related questions.
We show that a stable “innovation network” acts as a con-

duit of this cumulative process of technological and scientific
progress. We analyze 1.8 million US patents and their citation
properties to map the innovation network and its strength.
Past innovation network structures are calculated using cita-
tion patterns across technology classes during 1975–1994. The
interaction of this preexisting network structure with patent
growth in “upstream” technology fields has strong predictive
power on future “downstream” innovation after 1995. Re-
markably, 55% of the aggregate variation in patenting levels
across technologies for 1995–2004 can be explained by vari-
ation in upstream patenting; this explanatory power is 14%
when using panel variation within each field (the R2 value
from regressions is tabulated below). Detailed sectors that
have seen more rapid patenting growth in their upstream
technology fields in the last 10 y are much more likely to pat-
ent today.
This pattern is consistent with the idea that when there is

more past innovation for a particular technology class to build
on, then that technology class innovates more. As an example,
using patent subcategories defined below, “Chemicals: Coat-
ing” and “Nuclear & X-rays” display similar patenting rates in
1975–1984. Before 1995, citation patterns indicate that “Nuclear
& X-rays” drew about 25% of its upstream innovation inputs from

“Electrical Measuring & Testing,” whereas “Chemicals: Coating”
had a similar dependence on “Chemicals: Misc.” The former
upstream field grew substantially less during 1985–1994 than
the latter in terms of new patenting. In the 10-y period after
1995, “Chemicals: Coating” exhibits double the growth of
“Nuclear & X-rays.” The network heterogeneity further indi-
cates that knowledge development is neither global, in the
sense that fields collectively share an aggregate pool of knowl-
edge, nor local, in the sense that each field builds only upon
itself.
It is useful to motivate our approach with the standard endog-

enous growth and technological progress models in economics,
which posit a production function of new ideas of the form

ΔNðtÞ= f ðNðtÞ,RðtÞÞ,

where NðtÞ is the stock of ideas, ΔNðtÞ is the flow of new ideas
produced, and RðtÞ is the resources that are used to produce
these new ideas (e.g., scientists). Although some studies esti-
mate the impact of the stock of ideas, NðtÞ, on the flow of new
ideas (e.g., whether there are increasing returns or “fishing out”
externalities), most of the literature takes the input into the
production function of new ideas in every field to be either
their own idea stock or some aggregate stock of knowledge
spanning across all fields. We take a step toward opening this
black box and measuring the heterogeneous dependence of new
idea creation on the existing stock of ideas through studying
innovation networks.
We suppose that new innovations in technology j∈ f1,2, . . . , Jg

depend on past innovations in all other fields through an innovation
network. Suppressing the resource variable RðtÞ for simplicity and
assuming a linear form, we can write
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novation and its economic growth consequences.
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ΔNJ×1ðtÞ= α ·MJ×J ·NJ×1ðtÞ,

where ΔNJ×1ðtÞ and NJ×1ðtÞ are, respectively, the J × 1 vector of
innovation rates and the stock of knowledge in the J technology
classes at time t, and MJ×J is a J × J matrix representing the
innovation network—how much one class builds on the knowl-
edge stocks of other classes. Given the scalar α and our focus on
relative growth for technologies, we can normalize the row
sums of MJ×J to one. The case in which new innovations depend
symmetrically upon an economy-wide technology stock is rep-
resented by all entries in MJ×J being equal to 1=J; the case in
which fields only build upon their own knowledge stock is given
by the identity matrix.
We analyze utility patents granted between 1975–2009 by the

United States Patent and Trademark Office (USPTO). Each
patent record provides information about the invention (e.g.,
technology classifications, citations of patents on which the
current invention builds) and the inventors submitting the ap-
plication. We analyze 1.8 million patents applied for in 1975–
2004 with at least one inventor living in a US metropolitan area.
The 2004 end date allows for a 5-y window for patent reviews.
In our data, 98% of patent reviews are completed within this
window.
Fig. 1 describes the 1975–1984 innovation network in matrix

form. [Hall et al. (14) further describe the patent data. Studies

of cross-sector spillovers date to at least Scherer (15) and
Verspagen (16). Schnitzer and Watzinger (17) provide a recent
example.] The year restriction refers to the dates of cited pat-
ents, and forward citing patents are required to be within 10 y
of the cited patent. The 10-y window for forward citations keeps
a consistent number of observations per diffusion age. USPTO
technologies are often grouped into a three-level hierarchy: 6
categories, 36 subcategories, and 484 classes. This matrix lists
subcategories and their parent categories; our empirical anal-
ysis considers subcategory- and class-level variation.
Each row provides the composition of citations made by the

citing technology field, summing to 100% across the row. Own-
citations (citations that fields make to themselves) account for a
majority of citations and, for visual purposes, are given a dark
shading in Fig. 1. In our empirical work, we face a dilemma: a
complete growth accounting includes how cumulative technolog-
ical progress in one field affects the field’s own future develop-
ment. In fact, own-technology spillovers are usually the most
important channel of cumulative knowledge development and also
connect to the concept of absorptive capacity, where research in
one’s own field prepares one to absorb external knowledge from
other fields (e.g., refs. 18 and 19). However, it is very difficult to
convincingly establish the importance of the innovation network
when looking within individual fields, because technological
progress for a field over time can be endogenously related to its

Fig. 1. Citation matrix 1975–1984. Each row describes the field composition of citations made by the technology subcategory indicated on the left-hand side.
Entries across cited technology fields for each citing technology subcategory sum to 100%. The diagonals—citations of one’s own field, the majority of ci-
tations—are excluded from the calculation but given dark shading for reference. SI Appendix, Fig. 1 shows the 1975–2004 network and additional subperiods.
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past and future progress, as well as outside factors, and also display
serial correlation for other reasons (e.g., rising government funding
levels, dynamic industry conditions). A contribution of our net-
work-based analysis that uses upstream technology progress out-
side of an individual field, as moderated by a preexisting network
structure, to predict future innovation is to demonstrate the im-
portance of this knowledge development process in an empirical
setting that minimizes these difficult identification challenges.
We thus present our findings below in two ways. One route is

to consider the external network only, which excludes own-
citations and within-field spillovers to better isolate network
properties. We write our upcoming equations for this case. To
afford the complete growth perspective, we also report results
for the complete network that includes own-field spillovers.
Formally, an entry in matrix MJ×J from a citing technology
j (row) to a cited technology j′ (column) is

mj→j′ =
Citationsj→j′P

k≠j
Citationsj→k

.

In this representation, the notation j→ j′ designates a patent
citation from technology j to j′, which in turn means knowledge
flowing from technology j′ to j. For the complete network cal-
culation, the denominator summation includes k= j.

Fig. 1 highlights the heterogeneity in technology flows. The
block diagonals indicate that subcategories within each par-
ent category tend to be interrelated, but these flows vary
substantially in strength and show important asymmetries.
For example, patents in “Computers: Peripherals” tend to
pull more from “Computers: Communications” than the re-
verse, because “Computers: Communications” builds more
on electrical and electronic subcategories. There are also

Fig. 2. Innovation network 1975–1984. Networkmapping of patent system using technology subcategories. Nodes of similar color are pulled from the same category
of the USPTO system. The width of connecting lines indicates the strength of technological flows, with arrows being used in cases of strong asymmetry. Connections
must account for at least 0.5% of out-bound citations made by a technological subcategory. SI Appendix, Figs. 2–6 show variations and network properties.
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prominent examples of connections across technology cate-
gories, such as the link between “Organic Compounds” and
“Drugs.” Fig. 2 depicts this information in a network for-
mat, which groups in 2D space the stronger relationships in
nearer proximity.
The innovation network is quite stable. Calculating MJ×J for

the 10-y periods of 1975–1984, 1985–1994, and 1995–2004, the
correlations and rank correlations of cell values over 10-y ho-
rizons are both above 0.9; across a 20-y horizon, both are above
0.8. SI Appendix, Figs. 1–3 show comparable network structures
when using more-stringent thresholds for including network
edges/connections, when examining raw citations without the
normalization such that every technology’s outbound citations
are equally weighted and when using longer data horizons. SI
Appendix, Figs. 4–6 show three frequently calculated diagnos-
tics for network nodes: in-degree importance, closeness, and
betweenness. A common theme, which is also evident in Fig. 2,
is that many high-profile technology areas (e.g., “Drugs”) are at
the periphery of the innovation network. Technologies like
“Electrical Devices” and “Materials Processing/Handling” oc-
cupy more-central positions.
We take advantage of the considerable heterogeneity in

the speed at which knowledge diffuses—how many years
after invention patents in technology j′ typically receive ci-
tations from technology j. We construct our innovation
network matrix to model separately each year of the diffu-
sion process:

CiteFlowj→j′,a =
Citationsj→j′,a

Patentsj′
,

where CiteFlow quantifies the rate at which patents in technol-
ogy j cite patents in j′ (Patentsj′) for each of the first 10 y after the
latter’s invention.* This augmented structure extends the simple
theoretical model described with the M matrix to allow for more
complex knowledge diffusion processes that depend upon inven-
tion age.†

To predict forward patents, we combine the preexisting net-
work with technology development that occurs within a 10-y
window before the focal year t. Define P̂j,t to be the expected
patenting in technology j for a year t after 1994. Our estimate of
P̂j,t combines patents made in the prior 10 y with an added dif-
fusion lag of a= ½1,10� years,

P̂j,t =
X
k≠j

X10

a=1

CiteFlowj→k,aPk,t−a,

where Pk,t−a is the patenting in technology k at a diffusion lag a
from the year t. As an example, for a patent from technology j′
applied for in 1990, we model its impact for technology j in
1997 by looking at the average impact that occurred with a 7-y
diffusion lag during the preperiod. The double summation in
the calculation of P̂j,t repeats this process for each potential
upstream technology class and diffusion lag. In addition to the

network being estimated from preperiod interactions, our cal-
culation requires that upstream patents predate downstream
predictions by at least 1 y (i.e., a≥ 1). For the complete net-
work calculation, the first summation term again includes
k= j.
The first row of Fig. 3A reports the strong levels relationship

between the predicted values (P̂j,t) and actual values (Pj,t) using
subcategory variation in a log format. This estimate includes
360 observations through the analysis of 36 subcategories in
each year during 1995–2004; each subcategory is weighted by
its initial level of patenting. A 10% increase in expected pat-
enting is associated with an 8% increase in actual patenting
when considering the external network. We report SEs that
are robust against serial correlation within a subcategory. This
specification explains about 55% of the aggregate variation
in 1995–2004 patenting levels. The empirical strength of the
complete network estimation is even stronger, with a 10%
increase in expected patenting associated with a 9% increase in
actual patenting.
Although powerful, there are several potential concerns with

the simple approach. First, persistence in the relative sizes
of technological fields may lead to overstatements of network
importance. Likewise, aggregate fluctuations in the annual
patenting rates of all fields could result in overemphasis on the
importance of upstream fields. To address, we consider a panel
regression that includes field and time controls,

ln
�
Pj,t

�
= β ln

�
P̂j,t

�
+ϕj + ηt + «j,t,

where Pj,t and P̂j,t are actual and expected patent rates for tech-
nology j in year t («j,t is an error term). The estimation includes
fixed effects for subcategories (ϕj) that remove their long-term
sizes; likewise, fixed effects for years (ηt) remove aggregate
changes in USPTO grant rates common to all technologies,
so that the identification of the β parameter comes only from
variations within fields. Intuitively, β captures whether the ac-
tual patenting in technology j is abnormally high relative to its
long-term rate when it is predicted to be so based upon past
upstream innovation rates. A β estimate of one would indicate a
one-to-one relationship between predicted and actual patenting
after conditioning on these controls.
We estimate in the second row of Fig. 3A a statistically sig-

nificant and economically substantial value of β: 0.85 (SE =
0.17Þ. Although less than 1, the estimated coefficient shows a
very strong relationship between predicted and actual patent-
ing. SI Appendix, Fig. 7 provides visual representations of these
subcategory-level estimations. This figure shows that our results
are not driven by outliers or weighting strategy.‡

Fig. 3B shows very similar patterns when using variation
among more-detailed patent classes. We consider in this esti-
mation 353 patent classes that maintain at least five patents per
annum. The levels variation is very similar to that found using
subcategories in Fig. 3A. The panel estimates are smaller,
suggesting a 3–4% increase in patenting for every 10% increase
in expected patenting, but remain quite important economically
and statistically. SI Appendix, Figs. 8–9 provide visual repre-
sentations of these class-level estimations.
Fig. 3C shows a second approach to quantifying the in-

novation network strength. We regress cumulative actual pat-
enting during 1995–2004 for each class on its expected value

*Time lags consistently broaden the downstream technology impact. One year after in-
vention, 81% of downstream citations are from the same category (62% are from the
same patent class, 10% are from another patent class within the same subcategory, and
9% from another subcategory within the same category). After 10 years, 75% of cita-
tions occur within the same patent category (respectively, 51%, 12%, and 12%).

†Whereas Figs. 1 and 2 are normalized to sum to 100% for a citing technology using the
network matrix M, we leave this measure relative to baseline patenting to allow direct
use with the forward patenting rates by technology. Patents differ substantially in the
number of citations that they make, and we weight citations such that each citing patent
receives the same importance. Our results are robust to different approaches for dealing
with patents that make no citations and instances where patents list multiple
technologies.

‡For the panel estimations, we plot in these appendix figures the residualized values of
actual patenting against predicted patenting. Residualized values are calculated as the
unexplained portions of a regression of lnðPj,tÞ on the fixed effects ϕj and ηt (a similar
process for predicted patenting series). Conveniently, the slope of the trend line in this
figure is equal to β.
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based upon the innovation network and a control for historical
patenting levels,

ln
�
P95−04
j

�
= β ln

�
P̂
95−04
j

�
+ γ ln

�
P85−94
j

�
+ «j.

This approach allows greater variation in how the lag structure of
the innovation network impacts current technological change; we
now estimate a 10% increase in upstream innovation corre-
sponds to a 3.5% increase in forward patenting. SI Appendix, Fig.
10 provides a visual depiction.
This cumulative approach is a good platform for robustness

checks and extensions. Our first check is to compare our expected
patenting growth due to upstream stimulus with a parallel metric
developed using downstream stimulus. Our account emphasizes
the upstream contributions flowing through the innovation net-
work, but it is natural to worry whether our estimates are instead
picking up broad local shocks in technology or a demand-side pull.
Because the innovation network is asymmetric, we can test this
possibility directly, and we confirm in Fig. 3 that the upstream
flows are playing the central role. SI Appendix, Table 1 documents
many additional robustness checks: controlling for parent tech-
nology trends, adjusting sample weights, using growth formula-
tions, considering second-generation diffusion,§ and so on. The
results are robust to dropping any single subcategory, although
they depend upon at least some computer and communication
fields being retained. We also find these results when using the
International Patent Classification system.
Finally, when introducing the MJ×J matrix, we noted two polar

cases common to the literature: all entries being equal to 1=J

(fields building upon a common knowledge stock) or the
identity matrix (fields building only on own knowledge). The
bottom row of Fig. 3 and SI Appendix, Table 2 quantify that
the truth lies in between—technologies building upon a few
key classes that provide them innovation stimulants. We find a
robust connection of innovation to the 10 most important
upstream patent classes, which diminishes afterward. This
relationship is also shown using the subcategory–category
structure, although this approach is cruder given the knowl-
edge flows across technology boundaries.{ This network het-
erogeneity indicates that knowledge development is neither
global, in the sense that fields collectively share an aggregate
pool of knowledge, nor local, in the sense that each field
builds only upon itself.
To conclude, our research finds upstream technological de-

velopments play an important and measurable role in the future
pace and direction of patenting. A better accounting for the
innovation network and its asymmetric flows will help us model
the cumulative process of scientific discovery in a sharper man-
ner. A better understanding of these features can be an aid to
policy makers. For example, the finding that upstream research
is highly salient for growth implies that if research and devel-
opment slacken in one period, then the effects will be felt years
later. This paper has approached these issues in a setting that
considers all patents and inventions, the development of which
might be thought of as normal or regular science and innovation.
An interesting path for future research is to consider whether
large leaps behave in a similar format to that depicted here.
We also believe that this approach can be pushed to consider
regional and firm-level variation, which can further help us
understand the causal impact of patenting on economic and
business outcomes.

Fig. 3. Analysis of innovation network. (A) Regressions of actual patenting during 1995–2004 on predicted patenting calculated using the 1975–1994 in-
novation network and the growth in upstream technology subcategories predating the focal year. “Field and time controls” analysis reports a panel data
analysis where we first remove averages from each subcategory and each year from actual and predicted values. In “external network only” analyses, we
consider predicted patenting due to upstream patenting outside of the focal patent subcategory. (B) Repeat of the analysis for detailed patent classes
maintaining over five patents per annum. (C) Regressions using the patent class sample, where we calculate cumulative actual and predictive patenting
during 1995–2004 for a patent class. After reporting baseline effects in the cumulative format, we contrast the focal upstream effect with a reverse
downstream effect. We next disaggregate the stimulus to demonstrate localized spillovers.

§Whereas some network analyses consider high-order relationships (e.g., Leontief inverse
in production theory), first-order relationships are sufficient when directly observing
intermediating outcomes. As an example, consider j→ j′→k, with technology k being
upstream from j′. Because we directly model patenting in technology j′ to downstream
outcomes in j, we have already included any potential upstream stimulus from k. SI
Appendix, Table 1 shows similar results using second-order diffusion when excluding
the first-order relationship.

{The top 20 upstream classes account for 80% of citations and are distinct from subcat-
egories. Among the top 10, 27% of citations come from the same subcategory and
another 27% come from other subcategories within the same category. Among the next
10, these figures are 16% and 30%, respectively.
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