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We used a data-driven Bayesian model to automatically identify
distinct latent factors of overlapping atrophy patterns from voxel-
wise structural MRIs of late-onset Alzheimer’s disease (AD) demen-
tia patients. Our approach estimated the extent to which multiple
distinct atrophy patterns were expressed within each participant
rather than assuming that each participant expressed a single at-
rophy factor. The model revealed a temporal atrophy factor (medial
temporal cortex, hippocampus, and amygdala), a subcortical atro-
phy factor (striatum, thalamus, and cerebellum), and a cortical at-
rophy factor (frontal, parietal, lateral temporal, and lateral occipital
cortices). To explore the influence of each factor in early AD, atro-
phy factor compositions were inferred in beta-amyloid–positive
(Aβ+) mild cognitively impaired (MCI) and cognitively normal (CN)
participants. All three factors were associated with memory decline
across the entire clinical spectrum, whereas the cortical factor was
associated with executive function decline in Aβ+ MCI participants
and AD dementia patients. Direct comparison between factors
revealed that the temporal factor showed the strongest association
with memory, whereas the cortical factor showed the strongest
association with executive function. The subcortical factor was as-
sociated with the slowest decline for both memory and executive
function compared with temporal and cortical factors. These results
suggest that distinct patterns of atrophy influence decline across
different cognitive domains. Quantification of this heterogeneity
may enable the computation of individual-level predictions rele-
vant for disease monitoring and customized therapies. Factor com-
positions of participants and code used in this article are publicly
available for future research.

mental disorder subtypes | Alzheimer’s disease subtypes | Alzheimer’s
disease heterogeneity | voxel-based morphometry | unsupervised
machine learning

Alzheimer’s disease (AD) dementia is a devastating neurode-
generative disease that affects 11% of individuals over age 65

with no disease-modifying treatment available. Accurate in vivo
biomarkers are urgently needed to assist in early detection of at-risk
individuals, improve diagnosis, monitor disease progression, and
serve as outcome measures in clinical trials.
Although AD is typically associated with an amnestic clinical

presentation and disruption of the medial temporal lobe (1), it
has become increasingly clear that heterogeneity exists within
this disease. Specifically, heterogeneity has been observed in the
clinical presentation of AD (2) and the spatial distribution of
neurofibrillary tangles (NFTs) (3, 4) as well as the presence of
comorbid pathologies, such as vascular disease, Lewy bodies, and
transactive response DNA binding protein 43 kDa (TDP-43) (5, 6).
Interestingly, the spatial distribution of atrophy varies across AD
subtypes defined on the basis of NFT distribution (7), suggesting
that analyses of gray matter (GM) patterns are useful to characterize

heterogeneity in AD. Furthermore, although distinct atrophy
patterns have been observed in patients who clearly show atyp-
ical clinical presentations (8), heterogeneity in GM atrophy has
also been reported among late-onset AD cases (9). It is, there-
fore, likely that the ability to quantify varying patterns of atrophy
among AD patients will help inform our understanding of fun-
damental disease processes.
In this study, we sought to explore the heterogeneity of atro-

phy patterns in late-onset AD using a data-driven Bayesian
framework that accounted for and estimated latent AD atrophy
factors derived from structural MRI data. The mathematical
framework that we used, latent Dirichlet allocation (LDA) (10),
has been successfully used to extract overlapping brain networks
from functional MRI (11) and metaanalytic data (12, 13). Im-
portantly, this approach does not require the atrophy pattern of
an individual to be determined by a single atrophy factor. Instead,
the model allows the possibility that multiple latent factors are
expressed to varying degrees within an individual. For example,
the atrophy pattern of a patient might be 90% owing to factor 1

Significance

Alzheimer’s disease (AD) affects 10% of the elderly population.
The disease remains poorly understood with no cure. The main
symptom is memory loss, but other symptoms might include
impaired executive function (ability to plan and accomplish
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patterns, explaining variation in gray matter loss among AD
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ing symptoms, including autism and schizophrenia.
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and 10% owing to factor 2, whereas the atrophy pattern of another
patient might be 60% owing to factor 1 and 40% owing to factor 2.
Given that multiple contributors that are not mutually exclusive
may influence heterogeneity in AD, such as the spatial location of
NFT pathology (3, 4), coexisting non-AD pathologies (5, 14), and
genetics (9), we believe that it is more biologically plausible that
individuals express varying degrees of distinct atrophy factors
rather than one single factor. Thus, the LDA approach is partic-
ularly well-suited for these analyses and will provide insight into
whether expressing multiple atrophy factors is common among
late-onset AD patients.
Most studies investigating the heterogeneity of AD have ex-

amined patients soon after AD onset or at advanced AD stages
(3, 7, 15–17). However, the pathophysiological processes of AD
begin at least a decade before clinical diagnosis (18), suggesting
that the emergence of this heterogeneity may occur before the
onset of clinical dementia. In this study, we, therefore, examined
how distinct atrophy factors identified in AD dementia patients
were associated with longitudinal cognitive decline early in non-
demented participants who were at risk for AD dementia based on
elevated beta-amyloid (Aβ) (19–21).
Our study makes three significant contributions. First, we in-

troduced an innovative modeling strategy where expressions of
multiple atrophy patterns are estimated rather than assigning each
participant to a single subtype. Second, our approach harnesses
the rich multidimensional information across all GM voxels,
avoiding the need for a priori selection of regions and enabling an
in-depth exploration of atrophy patterns. Third, application of this
approach to participants spanning the clinical spectrum revealed
that latent atrophy factors are associated with distinct memory and
executive function trajectories, providing insights into the impact
of disease heterogeneity throughout the prolonged course of AD.

Results
Overall Approach. Our approach involved three main steps. In
step I, we performed LDA (a Bayesian model) (10) to estimate
latent atrophy factors in 188 AD dementia patients and used this
model to extract factor compositions in two independent samples
of nondemented participants: 147 Aβ+ mild cognitively impaired
(MCI) and 43 Aβ+ cognitively normal (CN) participants. In step
II, we examined robustness across different analytic approaches
and investigated characteristics of the factor compositions across
participants. Third, in step III, we examined the associations

between atrophy factors and different cognitive domains
(memory and executive function). The results of each step are
described in detail below.

Step I. Discovering Latent Atrophy Factors in AD Dementia Patients.
We used the Bayesian LDA model (10) to encode our assumption
that a patient expresses one or more latent atrophy factors (Fig. 1).
The LDA model was applied to the structural MRI of 188 AD
dementia patients. Given the voxelwise GM density values derived
from structural MRI (FSL-VBM) (22) and a predefined number
of factors K, the model is able to estimate the probability that
a particular factor is associated with atrophy at a specific spatial
location [i.e., Pr(Voxel j Factor) or probabilistic atrophy map of the
factor] and the probability that an individual expresses each atro-
phy factor [i.e., Pr(Factor j Patient) or atrophy factor composition

Alzheimer’s
Patients

Latent
Atrophy
Factors

Brain
sMRI

Patient  2 ...

...
Pr(Factor | Patient)

Pr(Voxel | Factor)

...

Factor 2 Factor 3Factor 1

Patient 1

Voxel 1 Voxel 2 Voxel 3 Voxel 4

Fig. 1. A Bayesian model of AD dementia patients, latent atrophy factors,
and brain structural MRI (sMRI). Underpinning our approach is the premise
that each participant expresses one or more latent factors. Each factor is
associated with distinct but possibly overlapping patterns of brain atrophy.
The framework can be instantiated with a mathematical model (LDA) (10),
with parameters that can be estimated from the structural MRI data of AD
dementia patients. The estimated parameters are the probability that a patient
expresses a particular factor [i.e., Pr(Factor j Patient)] and the probability that a
factor is associated with atrophy at an MRI voxel [i.e., Pr(Voxel j Factor)].
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Fig. 2. Hierarchy of latent atrophy factors with distinct atrophy patterns in AD.
Bright color indicates higher probability of atrophy at that spatial location for a
particular atrophy factor [i.e., Pr(Voxel j Factor)]. Each of the (A) two, (B) three,
and (C) four factors was associated with a distinct pattern of brain atrophy and
named accordingly. A nested hierarchy of atrophy factors was observed, al-
though the model did not mandate such a hierarchy. For example, when going
from two to three factors, the temporal+subcortical factor (A1) split into tem-
poral (B1) and subcortical (B2) factors, whereas the cortical factor remained the
same (A2 and B3). From three to four factors, the temporal and subcortical
factors remained the same (B1 and C1; B2 and C2), whereas the cortical factor
(B3) split into posterior cortical (C3) and frontal cortical (C4) factors. This hier-
archical phenomenon was quantified for 2–10 factors (SI Appendix, Fig. S2).
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of the individual]. Importantly, resulting atrophy factors were not
predetermined but estimated from data (Materials and Methods).
An important model parameter is the number of latent atro-

phy factors K. Therefore, we first determined how factor esti-
mation changed from K = 2 to 10. Visual inspection of the spatial
distribution of each atrophy factor suggested that factor esti-
mates from K = 2 to 10 were organized in a hierarchical fashion
(Fig. 2 and SI Appendix, Fig. S1). For instance, the two-factor
model revealed one factor associated with atrophy in temporal
and subcortical regions (“temporal+subcortical”) (Fig. 2A1) and
another factor associated with atrophy throughout cortex
(“cortical”) (Fig. 2A2). The three-factor model resulted in a
similar cortical factor (Fig. 2B3 and SI Appendix, Table S1C),
whereas the temporal+subcortical factor split into a “temporal”
factor associated with extensive atrophy in the medial temporal
lobe (Fig. 2B1 and SI Appendix, Table S1A) and a “subcortical”
factor associated with atrophy in the cerebellum, striatum, and
thalamus (Fig. 2B2 and SI Appendix, Table S1B). Likewise, the
four-factor model resulted in the cortical factor splitting into
“frontal cortical” and “posterior cortical” factors, whereas the
temporal and subcortical factors remained the same (Fig. 2C).
Sagittal and axial slices of these probabilistic atrophy maps are
available in SI Appendix, Fig. S1.
To quantify the hierarchical phenomenon, we used an ex-

haustive search to assess the possibility that two unknown factors
in the (K + 1)-factor model were subdivisions of an unknown
factor in the K-factor model (whereas the other factors remained
the same). The exhaustive search yielded a hypothesized factor
hierarchy with associated correlation values quantifying the sub-
division quality (SI Appendix, SI Methods). The high correlation
values (SI Appendix, Fig. S2) confirmed that additional factors
emerged as subdivisions of lower-order factors, corresponding to a
nested hierarchy of atrophy factors.
This nested hierarchy suggested that specification of different

numbers of estimated factors might yield distinct insights into
AD. In the remainder of this paper, we highlighted the results of
three-factor model (Fig. 2B), because the emergence of the
temporal and cortical factors were consistent with the “limbic-
predominant” and “hippocampal-sparing” pathologically defined
AD subtypes previously reported (3, 7). We additionally re-
peated analyses for two- and four-factor models, which yielded
behavioral insights consistent with the three-factor model. These
additional results are reported in SI Appendix, Figs. S6 and S8.
To explore the influence of atrophy factors in early AD, proba-

bilistic atrophy maps Pr(Voxel j Factor) estimated from the AD
dementia patients were used to infer factor compositions Pr(Factor j
Participant) of 190 Aβ+ nondemented participants using the stan-
dard variational expectation–maximization (VEM) algorithm (10).

Step II. Examining Factor Robustness and Characteristics of Factor
Compositions. Among the 188 AD dementia patients, 100 had
their cerebrospinal fluid (CSF) amyloid data available; 91 of 100
patients were Aβ+ (CSF amyloid concentration <192 pg/mL)
(23). We performed LDA on the subset of Aβ+ AD dementia
patients (and Aβ+ MCI participants) (SI Appendix, SI Results)
and compared atrophy patterns of the resulting factors with
those derived using the larger sample (SI Appendix, Fig. S3).
Atrophy factors were similar across these methods, with an av-
erage correlation across all pairwise comparisons of r = 0.89.
Given this similarity and to improve our estimates of the atrophy
factors, we elected to use the atrophy factors derived from the
larger sample of 188 AD dementia patients for subsequent
analyses. Furthermore, resulting atrophy patterns were consis-
tent between FreeSurfer (24) and FSL-VBM, suggesting that the
atrophy factors were robust to variations in image preprocessing
software (SI Appendix, SI Results and SI Methods).
To determine whether expression of atrophy factors remained

stable over time, we examined the subset of the Alzheimer’s
Disease Neuroimaging Initiative 1 (ADNI 1) participants who had
a two-year follow-up scan available (n = 560 of 810). We were
specifically interested in whether atrophy factors reflected dif-
ferent disease stages rather than different atrophy subtypes (for
instance, high expression of the temporal factor may lessen over
time with greater expression of the cortical factor). Therefore, we
compared factor compositions after two years with baseline
compositions. The factor probabilities were positivity correlated
and highly consistent (r > 0.85 across all three factors; Fig. 3) (SI
Appendix, Fig. S4 shows results by diagnostic group with addi-
tional amyloid information), suggesting that these factors do not
merely reflect a sequence of atrophy patterns.
Examination of atrophy factor compositions among AD de-

mentia patients revealed that the majority expressed multiple
latent atrophy factors rather than predominantly expressing a
single atrophy factor (Fig. 4). Examination of factor compositions
of 190 Aβ+ nondemented participants revealed a similar pattern,
such that the majority of participants expressed multiple atrophy
factors (SI Appendix, Fig. S5A). Factor compositions for the two-
and four-factor models also suggest that most participants
expressed multiple atrophy factors (SI Appendix, Fig. S5 B and C).
To understand the association between atrophy factors and de-

mographic variables, general linear model (GLM; for continuous

Fig. 3. Stability of factor compositions over two years. Each blue dot repre-
sents a participant. For each plot, x and y axes represent the probabilities of
factor at baseline and two years after baseline, respectively. In the ideal case,
where factor probability estimates remain exactly the same after two years,
one would expect a y = x linear fit as well as an r = 1 correlation. In our case, the
linear fits were close to y = x with r > 0.85 for all three atrophy factors, sug-
gesting that the factor compositions were stable, despite disease progression.
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Fig. 4. Factor compositions of 188 AD dementia patients. Each patient cor-
responds to a dot, with location (in barycentric coordinates) that represents
the factor composition. Color indicates amyloid status: red for Aβ+, green for
Aβ−, and blue for unknown. Corners of the triangle represent pure factors;
closer distance to the respective corner indicates higher probability for the
respective factor. Most dots are far from the corners, suggesting that most
patients expressed multiple factors.
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variables) and logistic regression (for binary variables) were con-
ducted in 188 AD dementia patients (SI Appendix, Table S2).
Briefly, the response variable was the variable of interest (e.g., age
at AD onset), and the explanatory variables consisted of two col-
umns encoding participants’ loading on the cortical and subcortical
factors. The temporal factor was implicitly modeled, because the
factor probabilities summed to one (Materials and Methods).
There were no significant differences in years from AD onset,

education, sex, or apolipoprotein E (APOE) e4 loadings across
the three factors. Importantly, amyloid level was not significantly
different across factors. The cortical factor was associated with
significantly younger baseline age than the temporal factor (P =
1e−5) and subcortical factor (P = 2e−6) as well as younger age at
AD onset than the temporal factor (P = 3e−4) and subcortical
factor (P = 7e−6). In addition, the subcortical factor was associ-
ated with higher APOE e2 loading than the temporal factor (P =
0.01) and cortical factor (P = 0.04), but these associations were not
significant when corrected for multiple comparisons.
Similar analyses were conducted for the Aβ+ MCI and CN

groups. The only significant association was that, among Aβ+
MCI participants, the cortical factor was associated with younger
age at baseline compared with the temporal factor (P = 0.05) and
subcortical factor (P = 0.02). However, this association did not
survive after correcting for multiple comparisons.

Step III. Examining Associations Between Atrophy Factors and Cognition.
We first examined diagnostic group differences in memory (ADNI-
Mem) (25) and executive function (ADNI-EF) (26) without con-
sidering factor compositions. As expected, cross-sectional memory
was worse for AD dementia patients (mean = −0.84) compared
with Aβ+ MCI participants (mean = −0.21; t test P = 5e−23). Aβ+
MCI participants had worse memory than Aβ+ CN participants
(mean = 0.93; t test P = 2e−26). Likewise, cross-sectional executive
function was worse for AD dementia patients (mean = −0.92)
compared with Aβ+ MCI participants (mean = −0.17; t test P = 3e
−16). Aβ+ MCI participants had worse executive function than
Aβ+ CN participants (mean = 0.50; t test P = 1e−7).

We then examined a GLM predicting cross-sectional memory
and executive function, which included both diagnosis and factor
compositions as well as their interactions as predictors (Materials
and Methods shows model details; Fig. 5 A1 and B1). This
analysis revealed that all factors were associated with baseline
memory, and these associations continued to worsen across the
disease spectrum (Fig. 5A1). For cross-sectional executive func-
tion, there was only an association with the cortical factor, and this
association also worsened across the disease spectrum (Fig. 5B1).
Next, we examined a linear mixed effects (LME) model pre-

dicting longitudinal change in memory and executive function (Fig.
5 A2 and B2). The LME model provides significantly improved
exploitation of longitudinal measurements (27) by accounting for
both intraindividual measurement correlations and interindividual
variability. The model setup was the same as the GLM above, ex-
cept that time and its interactions with diagnosis and factor com-
positions were included as predictors (SI Appendix, SI Methods).
This analysis revealed that the temporal and subcortical fac-

tors exhibited memory decline that began in CN and maintained
similar memory decline rates in MCI and AD (Fig. 5A2). In
contrast, the cortical factor was not associated with memory
decline in CN but showed faster decline in MCI compared with
CN and AD compared with MCI (Fig. 5A2). The cortical factor
was not associated with executive function decline in CN but
showed faster longitudinal executive function decline in MCI
compared with CN and AD compared with MCI (Fig. 5B2).
In our final set of analyses examining cognition, we directly

compared the three factors. The GLM and LME model were
exactly the same as the previous sections, but we instead focused
on the contrasts between factors.
For cross-sectional memory, the temporal factor was associ-

ated with worse performance than the subcortical (P = 3e−6)
and cortical (P = 7e−3) factors among AD dementia patients
(Fig. 6A). Similar results were found for Aβ+ MCI participants
(SI Appendix, Fig. S7A1). Among Aβ+ CN participants, there
was no memory difference across the atrophy factors (SI Ap-
pendix, Fig. S7A1). For cross-sectional executive function, the
cortical factor was associated with worse performance than the

Fig. 5. Differences by diagnosis and atrophy factor in (1) cross-sectional
baseline and (2) longitudinal decline rates of (A) memory and (B) executive
function. Comparisons remaining significant after FDR (q = 0.05) control are
highlighted in blue. T, S, and C indicate temporal, subcortical, and cortical
factors, respectively. For example, the top left cell of A, 1 suggests that Aβ+
MCI participants with high loading on the temporal factor had worse baseline
memory than Aβ+ CN participants with high loading on the same factor (P =
6e−4). However, the bottom left cell of B, 2 suggests that Aβ+ CN participants
expressing the cortical factor did not exhibit executive function decline (P =
0.91), whereas the bottom right cell of B, 2 suggests that AD dementia patients
expressing the cortical factor showed faster executive function decline than
Aβ+ MCI participants expressing the same factor (P = 7e−4).

A

B

Fig. 6. Comparisons of baseline (A) memory and (B) executive function in AD
dementia patients across factors. Comparisons remaining significant after FDR
(q = 0.05) control are highlighted in blue. T, S, and C indicate temporal, sub-
cortical, and cortical factors, respectively. Blue dots are estimated differences
between “pure atrophy factors,” and red bars show the SEs (Materials and
Methods). For example, the top row in A suggests that AD dementia patients
expressing the temporal factor had worse baseline memory than AD dementia
patients expressing the subcortical factor (P = 3e−6).
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temporal (P = 0.01) and subcortical (P = 1e−5) factors among
AD dementia patients (Fig. 6B). There was no executive function
difference across the factors among Aβ+ CN and MCI partici-
pants (SI Appendix, Fig. S7B1).
For longitudinal change in memory (Fig. 7A), the cortical

factor was associated with faster longitudinal memory decline
than the temporal (P = 1e−4) and subcortical (P = 4e−6) factors
among AD dementia patients. Among Aβ+ MCI participants,
the subcortical factor was associated with slower decline rate
than the cortical (P = 8e−4) and temporal (P = 4e−3) factors.
Finally, among Aβ+ CN participants, the cortical factor showed
slower memory decline than the temporal (P = 1e−4) and sub-
cortical (P = 3e−3) factors.
For longitudinal change in executive function (Fig. 7B), the

cortical factor was associated with faster executive function de-
cline than temporal (P = 2e−3) and subcortical (P = 2e−4)
factors among AD dementia patients. Among Aβ+ MCI partic-
ipants, the subcortical factor had slower decline than the cortical
(P = 8e−9) and temporal (P = 1e−8) factors. There was no ex-
ecutive function decline difference across the factors among Aβ+
CN participants.

All cognitive analyses were repeated using the two- and four-
factor LDA atrophy factors (SI Appendix, Figs. S6 and S8). The
results were consistent with the three-factor model (SI Appendix,
SI Results). In addition, associations between minimental state
examination (MMSE) and the three atrophy factors are reported
in SI Appendix, Fig. S7C.

Discussion
In this study, we identified distinct atrophy factors within AD
dementia patients using Bayesian LDA modeling of MRI GM
density maps. This approach estimated the factor composition of
multiple atrophy factors for each participant rather than assuming
membership to a single atrophy subtype (Fig. 1). Our analysis
yielded a nested hierarchy of atrophy factors (Fig. 2), which cor-
responded to distinct trajectories of memory and executive func-
tion decline across the disease spectrum (Fig. 8). Overall, these
results provide evidence that heterogeneity in patterns of atrophy
exists in late-onset AD and that these atrophy patterns are asso-
ciated with distinct cognitive trajectories.

A

B

Fig. 7. Comparisons of (A) memory and (B) executive function decline rates
across factors by clinical group. Comparisons remaining significant after FDR
(q = 0.05) control are highlighted in blue. T, S, and C indicate temporal,
subcortical, and cortical factors, respectively. Blue dots are estimated differ-
ences between pure atrophy factors, and red bars show the SEs (SI Appendix, SI
Methods). For example, the second row in A suggests that AD dementia pa-
tients expressing the cortical factor showed faster memory decline than pa-
tients expressing the temporal factor (P = 1e−4).

Memory
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Disease
Stage

Aβ+ CN Aβ+ MCI AD

T < S T < C, S

∆T, ∆S < ∆C ∆C < ∆S, ∆T
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F

Disease
Stage
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∆T, ∆C < ∆S
 Executive Function

∆T, ∆C < ∆S

∆C < ∆S, ∆T

Subcortical
Cortical
Temporal

Temporal
Cortical

Subcortical

A

B

Fig. 8. Schematics of distinct (A) memory and (B) executive function tra-
jectories for temporal, subcortical, and cortical atrophy factors. T, S, and C
indicate temporal, subcortical, and cortical factors, respectively. Labels on
dotted lines indicate cross-sectional differences. For example, T < C, S in A
indicates that the temporal factor was associated with the worst baseline
memory among AD dementia patients. Labels in the intervals indicate dif-
ferences in longitudinal decline rates. For example, ΔT, ΔC < ΔS in B indi-
cates that, among Aβ+ MCI participants, the temporal and cortical factors
were associated with faster executive function decline than the subcortical
factor. The schematics summarize the behavioral results of Figs. 5, 6, and 7
(more discussion is in SI Appendix, SI Results). Within each cognitive domain,
the atrophy factors were associated with distinct trajectories across the stages.
The trajectories of the cortical and subcortical factors transpose between the
two cognitive domains. Divergence in memory trajectories existed even at the
asymptomatic stage of the disease (i.e., among Aβ+ CN participants).
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Atrophy Patterns in AD Dementia. Our model revealed a hierarchy
of atrophy patterns within AD dementia patients (Fig. 2). As the
number of estimated atrophy factors was increased from K to
K + 1, one atrophy pattern fractionated into two atrophy pat-
terns, whereas the remaining patterns remained unchanged (SI
Appendix, Fig. S2). It is noteworthy that the atrophy patterns
extracted using K = 3 were similar to results from other groups
investigating AD subtypes (7, 15, 16), although notable differ-
ences did emerge.
Specifically, our three-factor model revealed a temporal factor

associated with atrophy in the temporal cortex, hippocampus,
and amygdala; a cortical pattern associated with atrophy in the
frontal, parietal, lateral temporal, and lateral occipital cerebral
cortices; and a subcortical factor associated with atrophy in the
cerebellum, striatum, and thalamus (Fig. 2B). Our temporal factor
was similar to the previously described limbic-predominant sub-
type, whereas the cortical factor was similar to the hippocampal-
sparing subtype (3, 7). More specifically, previous pathologically
defined subtypes were identified based on the ratio of NFT bur-
den in hippocampal subregions versus association cortex, resulting
in a limbic-predominant subtype and a hippocampal-sparing
subtype. Follow-up VBM analyses (7) suggested GM loss in the
temporoparietal cortex, frontal cortex, insula, and precuneus in
the hippocampal-sparing subtype, consistent with our cortical at-
rophy factor. However, Whitwell et al. (7) identified predominant
atrophy in the medial temporal lobe of the limbic-predominant
subtype, consistent with our temporal atrophy factor.
A benefit of our approach is that the nested hierarchy of at-

rophy patterns was not mandated by our model but completely
data-driven. Thus, although not mandated, our results revealed a
nested hierarchy in contrast with previous approaches where
hierarchy was imposed (15). Specifically, Noh et al. (15) identified
three subtypes: a “medial temporal” subtype, a “parietal frontal-
dominant” subtype, and a “diffuse” subtype. Our temporal atro-
phy factor might correspond to their medial temporal subtype,
whereas our cortical factor might correspond to their parietal
frontal-dominant subtype, although direct comparison was diffi-
cult, because their analyses were restricted to the cerebral cortex.
Our model suggests that atrophy patterns in AD patients

follow a nested hierarchy structure. Given the nested hierarchy
of cognitive functions revealed by a recent large-scale meta-
analysis of 10,000 brain imaging experiments (12) as well as brain
network analyses (28–31), one might speculate that the nested
hierarchy of atrophy factors arises from a natural hierarchy of
brain functions and networks.

Atrophy Factors Reflect Subtypes Rather than Disease Stages. A
potential pitfall of AD subtype analyses (32) is that the observed
heterogeneity might correspond to different disease stages (stage
hypothesis) rather than heterogeneity in disease expression
(subtype hypothesis). There are various reasons why the atrophy
factors discussed in this manuscript likely correspond to subtypes
rather than disease stages (33). First, there was not a single factor
associated with the worst memory and executive function. Instead,
decline trajectories of the temporal and cortical factors varied in
their associations with the two cognitive domains (Fig. 8). Fur-
thermore, analysis of follow-up MRI scans revealed that factor
compositions were stable over time (Fig. 3), suggesting that indi-
viduals were not progressing from one factor to another [e.g., from
temporal factor to cortical factor as predicted under the Braak
staging scheme (34)].

Factor-Dependent Characteristics. There were significant differ-
ences across the atrophy factors in baseline age (P = 8e−7) and
age at AD onset (P = 1e−5). Baseline age is dependent on study
design, and therefore, drawing meaningful comparisons with the
literature is difficult. Nevertheless, the cortical factor was asso-
ciated with younger age at AD onset, consistent with previous

studies describing subtypes with predominant cortical atrophy (3,
8, 15). Importantly, years from AD onset to baseline did not
differ across the three latent factors (P = 0.29) (SI Appendix,
Table S2), providing additional evidence that these factors were
not simply disease stages. The subcortical factor was associated with
a higher prevalence of the APOE e2 allele (P = 0.03; not significant
when corrected for multiple comparisons). The protective effects of
the e2 allele (35) might potentially contribute to the observation
that the subcortical factor was associated with the mildest decline in
both memory and executive function across all stages (Fig. 8).
Importantly, a lack of association between each factor and

amyloid status suggests that atrophy factors do not merely reflect
patterns associated with non-AD dementia patients who may
have been “misdiagnosed” as AD dementia within the ADNI
dataset (36). However, although repeating our factor estimation
with Aβ+ AD dementia patients revealed consistent atrophy
patterns with the model using all AD patients, we are not able to
determine whether atrophy patterns are a result of Aβ pathology
or precede Aβ pathology. For instance, these atrophy patterns
may emerge through processes not directly linked to Aβ pathol-
ogy but instead, converge with AD pathology to influence disease
progression. It is possible that factors, such as comorbid TDP-43
pathology and genetics, as well as development differences con-
tribute to this heterogeneity. Along these lines, recent work
suggests that different pathologies have distinct impacts on cog-
nitive trajectories (37). Interestingly, TDP-43 was shown to have a
very early impact on cognitive trajectories compared with other
pathologies, such as hippocampal sclerosis and Lewy bodies.
Given that TDP-43 is known to impact the medial temporal lobe
(6), it is possible that the temporal atrophy factor is influenced by
the involvement of this pathology (because the temporal factor
shows an early impact on memory among Aβ+ CN in our study).
A fundamental question that remains is why the expression of

these atrophy patterns varies across individuals, especially be-
cause the spatial distribution of Aβ tends to be very diffuse
throughout cortex. A similar dissociation is observed among AD
patients with atypical clinical presentations, such that, although
the spatial pattern of Aβ is diffuse, the underlying pattern of
NFTs and GM atrophy aligns with clinical symptoms (4). Future
work should investigate the time course of these atrophy patterns
using longitudinal MRI as well as longitudinal assessment of Aβ
and also investigate the prevalence of atrophy patterns among
Aβ− participants to understand whether these patterns are spe-
cific for AD or merely converge with AD processes to influence
disease progression.

Distinct Memory and Executive Function Decline Trajectories. The
behavioral results (Figs. 5, 6, and 7) are summarized in Fig. 8.
Overall, we found that the associations between atrophy factors
and cognition varied by domain as well as time course in the
disease. Specifically, the temporal factor showed the greatest as-
sociation with memory, a relationship that emerged early among
Aβ+ CN participants and remained consistent in later disease
stages. Conversely, the cortical factor was associated with both
memory and executive function but exerted greater impact later in
the disease among Aβ+ MCI participants and AD patients.
Overall, the trajectories (Fig. 8) revealed several salient

points. First, memory decline in the context of late-onset AD
occurred earlier than decline in executive function, which is in
line with previous studies (38). Second, divergence of memory
trajectories among atrophy factors appeared as early as the
asymptomatic (CN) stage of the disease, whereas divergence of
executive function trajectories was not detectable until the MCI
stage (Fig. 8). Specifically, the temporal and subcortical factors
showed faster memory decline than the cortical factor among
Aβ+ CN participants, and by MCI, the temporal factor was al-
ready associated with worse memory at baseline than the sub-
cortical factor. In contrast, there was no difference in executive
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function decline rates among Aβ+ CN participants or cross-
sectional difference among Aβ+ MCI participants. Interestingly,
AD dementia patients expressing the cortical factor exhibited the
fastest decline rates in both executive function and memory.
Third, the subcortical factor (blue curves in Fig. 8) was the
mildest factor in terms of both memory and executive function
deterioration. In both Aβ+ MCI and AD dementia participants,
the subcortical factor was associated with the best memory and
executive function scores as well as the slowest decline rates.

Correspondence and Extensions of AD Heterogeneity Literature. Our
results were consistent with the preponderance of literature on
heterogeneity among AD dementia patients. For example, our
atrophy factors show overlap with the pathologically defined
hippocampal-sparing and limbic-predominant subtypes (7) as
well as the subtypes described by Noh et al. (15). Our analyses
suggested that the cortical factor was associated with faster decline
in both memory and executive function than the temporal factor at
the dementia stage, which is consistent with the hippocampal-
sparing subtype exhibiting faster MMSE decline than the limbic-
predominant subtype among AD dementia patients (3). Similarly,
our finding that the cortical factor was associated with the most
rapid memory and executive function decline among AD dementia
patients was also consistent with the work by Byun et al. (16).
Among AD dementia patients, the cortical factor was associated
with the worst baseline executive function, whereas the temporal
factor was associated with the worst baseline memory. This result
is consistent with previous work showing that thinning of fron-
toparietal cortical regions was associated with nonamnestic
presentations and dysexecutive phenotypes (9) and that the
“cortical atrophy-only” subtype had worse baseline executive
function than the “hippocampal atrophy-only” subtype (16).
Thus, our data-driven approach provides additional evidence
that distinct atrophy patterns among AD patients impact dif-
ferent cognitive domains.
In addition to characterizing heterogeneity among AD de-

mentia patients, we extended our approach to participants who
were presumably in very early stages of AD development (i.e.,
Aβ+ but without the clinical symptoms of dementia) (19, 20). By
examining earlier stages, we found that the temporal factor
showed the greatest association with memory decline among
Aβ+ CN participants but that the cortical factor was a stronger
predictor of memory decline among AD dementia patients (SI
Appendix, Fig. S7A2). Likewise, although the cortical factor was
not associated with either cognitive domain among Aβ+ CN
participants, this factor was associated with executive function
decline in Aβ+ MCI participants and AD patients (Figs. 7B and
8). The impact of these atrophy factors at different points along
the clinical spectrum has important implications for measuring
decline and understanding the progression of AD. Furthermore,
consideration of this heterogeneity may improve the ability to
identify individuals most at risk for cognitive decline compared
with approaches that measure atrophy using the same regional
metric across all participants.

Mixed Membership Modeling and Precision Medicine. One key ad-
vantage of our modeling strategy is that individuals can express
multiple latent atrophy factors (i.e., mixed membership) rather
than being assigned to a single subtype. Therefore, patients clas-
sified by Murray et al. (3) as hippocampal-sparing (or limbic-
predominant) might correspond to the few patients in our study
who predominantly expressed the cortical (or temporal) atrophy
factor. Murray et al. (3) also defined a third group of patients who
were considered “typical” by virtue of being neither hippocampal-
sparing nor limbic-predominant. These typical patients might
correspond to the majority of AD dementia patients in our study
who expressed multiple latent factors to similar degrees.

The use of mixed membership modeling has implications for
estimation of factor-dependent atrophy maps and cognitive decline.
For example, consider a hypothetical patient who expressed 50%
subcortical, 40% temporal, and 10% cortical factors. In our anal-
yses, 50%, 40%, and 10% of the patient’s atrophy map would
contribute to the estimation of the probabilistic atrophy maps of
the subcortical, temporal, and cortical factors, respectively. This
method extends previous approaches (7, 15, 16) that classified each
patient into one single subtype and then, performed group com-
parisons to obtain differential atrophy patterns, despite the fact that
each patient might express multiple latent atrophy factors. Thus,
more information about each participant is retained by treating
factor compositions continuously rather than assigning participants
to a single group.
Similarly, 50%, 40%, and 10% of the hypothetical patient’s

cognitive decline rate would contribute to our estimation of the
memory decline rates associated with the subcortical, temporal,
and cortical factors, respectively. Indeed, when such a patient
was simply assigned to a single factor based on the highest
probability (i.e., assigned to a pure subtype), the estimated dif-
ferences in cognitive decline rates across subtypes were found to
be substantially weaker. The reason should be clear when con-
sidering the hypothetical patient. Because the patient expressed
50% subcortical, 40% temporal, and 10% cortical factors, one
would expect the memory decline rate to be faster than a pure
subcortical subtype (and slower than a pure temporal factor). By
assigning this patient to be a pure subcortical subtype, one would
overestimate the decline rate of the subcortical subtype.
Although we observe some participants with extreme proba-

bilities of a single atrophy factor, these participants are infrequent.
Instead, the majority of the participants expressed intermediate
probabilities across multiple latent atrophy factors. We can po-
tentially use the factor decomposition to predict the memory and
executive function decline trajectories of individual participants. For
example, we might predict the hypothetical patient who expressed
50% subcortical, 40% temporal, and 10% cortical factors to have
decline trajectories corresponding to 50% times the blue curve plus
40% times the green curve plus 10% times the red curve from Fig.
8. Therefore, the factor composition can be thought of as an indi-
vidualized subtype diagnosis of the participant, representing a small
but crucial step toward precision medicine.

Limitations. Our study has multiple limitations. First, direct com-
parisons with other subtype studies were difficult because of
methodological differences, including the utilization of mixed
membership modeling and participant selection. Another limita-
tion is the arbitrary choice of the number of latent atrophy factors
to estimate using LDA. Given consistency with previous studies
and a limited sample size, we focused on K = 2–4 factors, but
atrophy factors beyond K = 4 may be biologically relevant.

Conclusion
By using a Bayesian modeling framework, our study revealed
three latent AD atrophy factors with distinct memory and ex-
ecutive function trajectories. Across the clinical spectrum, the
cortical atrophy factor was associated with the worst executive
function performance, whereas the temporal atrophy factor was
associated with the worst memory performance. The subcortical
atrophy factor has not been discussed in the literature and was
associated with the slowest memory and executive function de-
cline. Our approach allowed each individual to express multiple
atrophy factors to various degrees rather than assigning the in-
dividual to a single subtype. Therefore, each participant exhibited his
or her own unique factor composition, which can potentially be
exploited to predict individual-specific cognitive decline trajectories,
with potential implications for prevention and monitoring disease
progression. Finally, our methodological framework is general and
can be used to discover subtypes in other brain disorders. Factor
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compositions of ADNI participants and code used in this manuscript
are publicly available (https://github.com/ThomasYeoLab/CBIG/tree/
master/stable_projects/disorder_subtypes/Zhang2016_ADFactors).

Materials and Methods
Overview. Voxelwise atrophy of 188 AD dementia patients was derived from
their structural MRI data (22, 39). Subsequent analyses proceeded in three
steps. In step I, a Bayesian model (Fig. 1) (10) was applied to estimate the
probabilistic atrophy maps of latent factors Pr(Voxel j Factor) and the factor
composition of each patient Pr(Factor j Patient). The probabilistic atrophy
maps were then used to infer the factor compositions of 43 Aβ+ CN partic-
ipants and 147 Aβ+ MCI participants. In step II, stability of the factor decom-
position over a period of two years was analyzed. In addition, characteristics
(demographics, age at AD onset, years from AD onset to baseline, amyloid
burden, and APOE genotype) of all participants were compared across the
factors. Finally, in step III, we analyzed the atrophy factors’ relationships with
cross-sectional baseline and longitudinal decline of memory and executive
function. Each step is described in detail below.

Data. Data used in this study were obtained from the ADNI database (adni.
loni.usc.edu), which was launched in 2003 as a public–private partnership
and led by Principal Investigator Michael W. Weiner. The primary goal of the
ADNI has been to test whether serial MRI, PET, other biological markers, and
clinical and neuropsychological assessment can be combined to measure the
progression of MCI and early AD (up to date information is at www.adni-info.
org/). Institutional review boards approved study procedures across partici-
pating institutions (the complete list of the institutions is in SI Appendix).
Written informed consent was obtained from all participants.

This study considered the structural MRI (T1-weighted, 1.5 T) of 810
participants enrolled in the ADNI 1, comprising 188 AD dementia (at baseline;
same hereinafter) patients, 394 MCI participants, and 228 CN participants. Of
the 188 AD dementia patients, 100 had their CSF amyloid data available, and
91 of 100were Aβ+. AD onset was, on average, 3.6 years (SD= 2.5, minimum= 0,
maximum = 13) before baseline. Of 394 MCI participants, 197 had their CSF
amyloid data available, and 147 of 197 were Aβ+. Of 228 CN participants,
114 had their CSF amyloid data available, and 43 of 114 were Aβ+. The Aβ+
CN elderly participants and the Aβ+ MCI participants are referred to as the
Aβ+ nondemented group (n = 190) in this study.

According to the ADNI protocol, AD dementia patients had their cognition
examined at baseline and in months 6, 12, and 24. In addition, normal
participants were examined in month 36 and annually afterward. MCI par-
ticipants underwent another extra examination in month 18. Although this
study only considered participants enrolled in the ADNI 1, to increase sta-
tistical power, their neuropsychological scores (ADNI-Mem, ADNI-EF, and
MMSE) from ADNI Grand Opportunity (GO) and ADNI 2 were also included in
the longitudinal analyses of cognitive decline.

Voxel-Based Morphometry. Structural MRI data of all 810 participants were
analyzed with FSL-VBM (fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM) (22), a VBM
protocol (40) carried out with FSL tools (41). First, structural images were
brain-extracted and GM-segmented before being registered to the Montreal
Neurological Institute (MNI152) standard space using affine registration.
Second, the affine-registered images were flipped about the x axis and av-
eraged to create a left–right symmetric, study-specific affine GM template.
Third, the GM images were nonlinearly registered to the affine GM tem-
plate, and again, they were flipped and averaged to create a final left–right
symmetric, study-specific nonlinear GM template in MNI152 space. Fourth,
all native GM images were nonlinearly registered to this final template and
modulated to account for local expansion (or contraction) because of the
nonlinear component of the spatial transformation. The resulting GM den-
sity images were smoothed with a Gaussian kernel of 10-mm FWHM, con-
sistent with standard VBM practices (42, 43). Finally, we applied log10 to the
smoothed GM density images and regressed out possible effects of age, sex, and
intracranial volume (ICV) with a GLM estimated from just 228 CN participants.

Quality Control for Voxel-Based Morphometry. The outputs of each VBM step
were visually checked by authors X.Z. and N.S. Details are found in SI Ap-
pendix, SI Methods.

Bayesian Model.We sought a mathematical model that captured the premise
that each AD patient expresses one or more latent atrophy factors, each of
which is associated with distinct but possibly overlapping atrophy patterns
(Fig. 1). Among many possible models, the LDA model (10) is probably the
simplest and was applied to the ADNI data.

The LDA model was originally developed to automatically discover latent
topics in a collection of text documents. The model assumes that each docu-
ment is an unordered collection of words associated with a subset of K latent
topics. Each topic is represented by a probability distribution over a dictionary
of words. Given a collection of documents, there exist algorithms (10) to es-
timate the probability of a dictionary word given a topic Pr(Word j Topic) and
the probability that a topic is associated with a particular document Pr(Topic j
Document). The LDA model is useful, because it allows a document to be as-
sociated with multiple topics (which can be shared across documents) and each
topic to be associated with multiple words (which can be shared across topics).

To map the LDA model to the ADNI data, one can think of AD patients as
text documents, atrophy factors as topics, and MNI152 voxels as dictionary
words. Correspondingly, each patient expresses one or more latent atrophy
factors to different extents [Pr(Factor j Patient)], and each factor is associated
with atrophy at multiple voxels to different extents [Pr(Voxel j Factor)].

LDA assumes that a document is summarized by the number of times that a
dictionary word appears in the document. Because dictionary words corre-
spond to MNI voxels, the continuous log-transformed GM density images (in
the previous section) were discretized, so that greater atrophy corresponded
to larger word counts. More specifically, for each voxel of the log-transformed
GM density images, z transformation (with respect to 228 CN participants) was
performed for each of 810 participants. Therefore, a z score of <0 at a given
voxel of a particular individual would imply above-average atrophy at the
voxel relative to the CN participants. z Scores above zero were set to zero,
equivalent to regarding the voxels as atrophy-free. Finally, the z scores were
multiplied by −10 and rounded to the nearest integer, so that larger positive
values (greater word count) indicated more severe atrophy.

The LDA model assumes that the ordering of words within a document is
exchangeable. In the context of our application, the corresponding as-
sumption is that the ordering of atrophied voxels is exchangeable. Although
word order in real documents is important, the ordering of atrophied regions
(e.g., prefrontal vs. parietal) reported in an experiment is arbitrary and thus,
consistent with the assumption. Consequently, the LDA model appears
particularly well-suited for applications in this context.

Given the discretized voxelwise atrophy of 188 AD dementia patients and
the number of latent atrophy factors K, the VEM algorithm (www.cs.
princeton.edu/∼blei/lda-c/) (10) was applied to estimate Pr(Factor j Patient)
and Pr(Voxel j Factor). For each K, the algorithm was rerun with 40 different
random initializations, and the solution with the highest likelihood (bound)
was selected. The random initializations led to highly similar solutions, sug-
gesting that 40 random initializations were sufficient for robust factor
estimations.

The probabilistic atrophy maps Pr(Voxel j Factor) estimated from the AD
dementia patients were used to infer factor compositions Pr(Factor j Participant)
of 190 Aβ+ nondemented participants using the standard VEM algorithm (10).

Interpreting Pr(Voxel j Factor) and Pr(Factor j Patient). For a given latent
factor, Pr(Voxel j Factor) is a probability distribution over all of the GM
voxels, which can be visualized as a probabilistic atrophy map overlaid on
the FSL MNI152 template (each row of Fig. 2).

Pr(Factor j Patient) is a probability distribution over latent atrophy fac-
tors, representing the factor composition of the patient, and can be visu-
alized as a dot inside a “factor triangle” (for K = 3 factors) with barycentric
coordinates that equal Pr(Factor j Patient) as shown in Fig. 4 and SI Appendix,
Fig. S5A. For example, Pr(Factor j Patient) = [0.7, 0.2, 0.1] implies that the
patient expresses a pattern of brain atrophy caused by 70% temporal, 20%
subcortical, and 10% cortical factors, respectively, and that the dot repre-
senting this patient falls closer to the “temporal corner” of the factor triangle.
This approach contrasts with work in the literature that assigns each individual
to a single subtype (3, 15, 16).

Quantifying the Nested Hierarchy of Atrophy Factors. An important model
parameter is the number of latent factors K. Therefore, we determined how
factor estimation changed from K = 2 to 10 factors. The detailed description
is in SI Appendix, SI Methods.

Top Anatomical Structures Associated with Each Factor. This manuscript fo-
cuses on three atrophy factors. To automatically identify the GM anatomical
structures most associated with each atrophy factor, the MNI152 template
was first processed using FreeSurfer 4.5.0 (24). The FreeSurfer software au-
tomatically segmented the MNI152 template into multiple cortical (44, 45)
and subcortical (44, 46) structures, such as the inferior parietal cortex and
hippocampus. For each anatomical structure, we averaged Pr(Voxel j Factor)
over all of its voxels. The structure was assigned to the factor with the largest
average probability. For each factor, we tabulated the assigned brain

E6542 | www.pnas.org/cgi/doi/10.1073/pnas.1611073113 Zhang et al.

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/disorder_subtypes/Zhang2016_ADFactors
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/disorder_subtypes/Zhang2016_ADFactors
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://www.adni-info.org/
http://www.adni-info.org/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611073113/-/DCSupplemental/pnas.1611073113.sapp.pdf
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611073113/-/DCSupplemental/pnas.1611073113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611073113/-/DCSupplemental/pnas.1611073113.sapp.pdf
http://www.cs.princeton.edu/~blei/lda-c/
http://www.cs.princeton.edu/~blei/lda-c/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611073113/-/DCSupplemental/pnas.1611073113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611073113/-/DCSupplemental/pnas.1611073113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1611073113/-/DCSupplemental/pnas.1611073113.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1611073113


structures and ranked them in the descending order of average probability.
The results are in SI Appendix, Table S1.

Cross-Pipeline Validation of Atrophy Patterns. To ensure that the atrophy
factors were robust to choice of VBM software (FSL), we performed post hoc
analyses using FreeSurfer. Details are found in SI Appendix, SI Results and
SI Methods.

Atrophy Factor Stability. To examine the atrophy factor stability during disease
progression, we considered all 810 participants who had their two-year follow-
up scans available (n = 560). First, their baseline factor compositions Pr(Factor j
Participant) were extracted using their baseline MRI data. Second, VBM was
performed on the follow-up structural MRI data using the VBM template
previously created with all 810 participants. Subsequent processing (e.g.,
z normalization) adopted parameters used in processing 810 baseline scans.
Factor compositions were then inferred with the processed VBM results (same
procedure as inferring factor compositions of Aβ+ CN and MCI participants).
The factor stability was visualized with a scatter plot for each factor (Fig. 3 and
SI Appendix, Fig. S4). Each participant is represented by a dot with an x co-
ordinate that is the factor composition at baseline and a y coordinate that is
the factor composition after two years. Therefore, if the factor estimation is
stable over disease progression, one would expect a close-to-one correlation
coefficient and a y = x linear fit.

Comparing Patient Characteristics by Atrophy Factor. We explored how pa-
tient characteristics (baseline age, age at AD onset, years from onset to
baseline, education, sex, amyloid, and APOE genotype) varied across the
three latent factors (SI Appendix, Table S2) using GLM (and logistic regres-
sion for binary variables).

GLM was applied to baseline age, age at AD onset, years from onset to
baseline, education, amyloid, and APOE: the characteristic of interest served
as response y, and the subcortical factor probability s and cortical factor
probability c were included as explanatory variables. Hence, the GLM was
y = β0 + βs·s + βc·c + e, where β indicates the regression coefficients, and e is
the residual. The temporal factor probability t was implicitly modeled, be-
cause t + s + c = 1. Intuitively, β0 reflected the response of the temporal
factor, βs reflected the response difference between the subcortical and
temporal factors, and βc reflected the difference between the cortical and
temporal factors.

Statistical tests of whether the characteristic y varied across factors in-
volved null hypotheses of the form Hβ = 0, where β = [β0, βs, βc]T, and H is the
linear contrast (47). We first performed a statistical test of overall differences
across all factors with H = [0, 1, 0; 0, 0, 1]. We then tested for differences be-
tween the factors. For example, H = [0, 1, −1] tested possible differences be-
tween the subcortical and cortical factors. H = [0, 1, 0] compared the subcortical
and temporal factors. Similarly, H = [0, 0, 1] compared the cortical and
temporal factors.

Because sex is a binary variable, logistic regression was applied. In this case,
response y was sex (zero for male, and one for female), and explanatory
variables consisted of the subcortical factor probability s and cortical factor
probability c. Therefore, the regression model was log(μ/(1 − μ)) = β0 + βs·s +
βc·c + e, where μ is the probability of female, β indicates the regression co-
efficients, and e is the residual. Intuitively, the linear combination β0 + βs·s +
βc·c predicts the probability of female (y = 1); exp(β0) reflects the odds ratio
for the temporal factor, exp(βs) reflects the ratio of odds ratio between the
subcortical and temporal factors, and exp(βc) reflects the ratio of odds ratio
between the cortical and temporal factors.

Likelihood ratio test was used to determine whether sex varied across the
latent atrophy factors. In short, the test involved comparing the likelihood of
an appropriately restricted model with the original model (47). We first
performed a statistical test of overall differences across factors. In this case,
the restricted model log(μ/(1 − μ)) = β0 + e was fitted to the data, and the
resulting likelihood was compared with the likelihood of the original model
log(μ/(1 − μ)) = β0 + βs·s + βc·c + e. We then tested for possible differences
between atrophy factors. For example, to compare the subcortical and
cortical factors, the restricted model was log(μ/(1 − μ)) = β0 + βs·(s + c) + e,
because βs = βc under the null hypothesis. To compare the subcortical and
temporal factors, the restricted model became log(μ/(1 − μ)) = β0 + βc·c + e,
because βs = 0 under the null hypothesis. To compare the cortical and
temporal factors, the restricted model was log(μ/(1 − μ)) = β0 + βs·s + e, be-
cause βc = 0 under the null hypothesis.

General Linear Modeling of Cross-Sectional Cognition Among Aβ+ CN, Aβ+
MCI, and AD Dementia Participants. A single GLM was used to examine
cross-sectional differences in memory (ADNI-Mem) (25) across the atrophy

factors in 43 Aβ+ CN, 147 Aβ+ MCI, and 188 AD dementia participants. The
same model was estimated for K = 2, 3, and 4 factors as well as for executive
function (ADNI-EF) (26) and MMSE.

For ease of explanation, we will focus on explaining the GLM for the case
of three atrophy factors and ADNI-Mem. Response y of the GLM consisted of
378 (=43 CN + 147 MCI + 188 AD) participants’ baseline ADNI-Mem. Ex-
planatory variables consisted of binary MCI group indicator m, binary AD
dementia group indicator d, subcortical factor probability s, cortical factor
probability c, and interactions between group indicators and factor proba-
bilities (i.e., m·s, m·c, d·s, and d·c), whereas nuisance variables consisted of
baseline age x1, sex x2, education x3, and total atrophy x4 (defined as ICV
divided by total GM volume as estimated by FSL).

Therefore, the GLM was y = β0 + βm·m + βd·d + βs·s + βc·c + βms·m·s +
βmc·m·c + βds·d·s + βdc·d·c + β1·x1 + β2·x2 + β3·x3 + β4·x4 + e, where β indicates
the regression coefficients, and e is the residual. Temporal factor probability
t was implicitly modeled, because t + s + c = 1. Similarly, the CN group in-
dicator nwas also implicitly modeled, because only one of n, m, and d is one,
with the other two being zero. Intuitively, β0 reflected the temporal factor’s
contribution to ADNI-Mem at the CN baseline (because m = d = s = c = 0),
β0 + βm reflected the temporal factor’s contribution to ADNI-Mem at the MCI
baseline (because m = 1 and d = s = c = 0), and β0 + βm + βs + βms reflected
the subcortical factor’s contribution to ADNI-Mem at the MCI baseline (be-
cause m = s = 1 and d = c = 0). With this model setup, variations in age, sex,
education, and total atrophy were controlled for across participants.

Statistical tests involved null hypotheses of the form Hβ = 0, where β = [β0,
βm, βd, βs, βc, βms, βmc, βds, βdc, β1, β2, β3, β4]T, and H is the linear contrast (47).
We tested whether ADNI-Mem deteriorated across disease stages (i.e., from
CN to MCI to AD) for each factor. Specifically, for each factor, we tested
possible differences in ADNI-Mem between the CN and MCI baselines, be-
tween the MCI and AD baselines, and between the CN and AD baselines. For
example, to test whether ADNI-Mem deteriorated significantly from the CN
toMCI baseline for the temporal factor,Hwas specified, such thatHβ = βm = 0. As
another example, Hβ = βd + βdc – βm – βmc = 0 tested whether ADNI-Mem de-
graded greatly from theMCI to AD baseline for the cortical factor. The test results
for both memory and executive function are tabulated in Fig. 5 A1 and B1.

To foreshadow the results, the hypothesis tests in the previous paragraph
hinted at differences in cross-sectional ADNI-Mem across the factors.
Therefore, statistical tests of whether cross-sectional ADNI-Mem y varied
across factors at each disease stage were performed. For each stage baseline,
we first performed a statistical test of overall differences across all factors
and then tested for pairwise differences. Take the AD baseline as an ex-
ample. To test whether baseline memory differed across all factors among
AD dementia patients, H was specified, such that Hβ = 0 translated to βs +
βds = βc + βdc = 0. For pairwise comparisons, βs + βds = 0 tested possible
differences between the temporal and subcortical factors at the AD base-
line, βc + βdc = 0 compared the temporal and cortical factors at the AD
baseline, and βs + βds = βc + βdc tested possible differences between the
subcortical and cortical factors at the AD baseline.

The results of the above statistical tests are shown in Figs. 5 A1 and B1 and
6 and SI Appendix, Figs. S6 A1 and B1; S7 A1, B1, and C1; and S8 A1 and B1,
where (except in Figs. 5 A1 and B1) the blue dots correspond to the esti-
mated difference in baseline scores between two “pure factors” after con-
trolling for age, sex, education, and total atrophy. For example, when
comparing subcortical and cortical factors at the MCI baseline, the estimated
difference in baseline cognition is given by βs + βms – βc – βmc. The red bars
correspond to the SE of this estimation given by SD(βs + βms – βc – βmc).

LME Modeling of Longitudinal Cognitive Decline Among Aβ+ CN, Aβ+ MCI, and
AD Dementia Participants. To analyze variations in cognitive decline rates
across atrophy factors, we used the LME model, which had a setup that was
similar to the GLM setup (in the previous section). Details are found in SI
Appendix, SI Methods. Results of the LME statistical tests are illustrated in
Figs. 5 A2 and B2 and 7 and SI Appendix, Figs. S6 A2 and B2; S7 A2, B2, and
C2; and S8 A2 and B2.

False Discovery Rate Correction for Behavioral Tests. Because of the many
statistical tests performed in the behavioral analyses, multiple testing was
corrected using false discovery rate (FDR) (48) at q = 0.05 for all behavioral
comparisons. In detail, included tests are diagnostic group comparisons in
memory and executive function regardless of factors as well as all comparisons
of baseline and longitudinal decline rates of memory, executive function, and
MMSE at all disease stages for K = 2, 3, and 4 factors. In total, we corrected for
240 statistical tests. P values that remained significant after FDR control were
highlighted in blue in Figs. 5, 6, and 7 and SI Appendix, Figs. S6–S8.
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Bayesian model reveals latent atrophy factors with dissociable cognitive 

trajectories in Alzheimer’s disease 
 

Supporting Information 
 

This supplemental material is divided into Supplemental Results, Supplemental 

Methods, Supplemental Figures and Tables, and Complete List of ADNI 

Investigators and Participating Institutions. 

 

Supplemental Results 

Similar Atrophy Factors Were Obtained from Aβ+ MCI Participants 

We confirmed that atrophy patterns estimated with our LDA approach would be 

similar during the nondemented stage compared to the resulting factors from the AD 

dementia group. Given the small number of the Aβ+ CN participants, we estimated 

atrophy factors with the 147 Aβ+ MCI participants (Fig. S3C) and confirmed that the 

obtained atrophy factors were highly similar, with an average correlation across all 

pairwise comparisons of r = 0.77. Therefore, the atrophy factors from the AD dementia 

patients were utilized for subsequent analyses.  

 

Atrophy Factors Were Robust to Choice of Software  

 Table S1 lists the anatomical structures associated with each factor based on 

overlap between the atrophy maps and anatomical structures in MNI152 space as defined 

by FreeSurfer [1] (see Supplemental Methods). The volumes of individual anatomical 

structures in all AD dementia patients were computed using FreeSurfer. Regression 

analyses confirmed that volumes of anatomical structures associated with an atrophy 

factor were lower (after controlling for intracranial volume) in participants with higher 

loading on the factor (see Supplemental Methods). For example, the temporal factor 

was associated with the most severe atrophy in the structures listed by Table S1A 

compared with the subcortical factor (p = 2e-15) and cortical factor (p = 4e-15), whereas 

there were no differences between the subcortical and cortical factors (p = 0.84). Results 

for the subcortical and cortical factors are in the captions of Tables S1B and S1C. The 
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agreement between FSL-VBM [2] and this posthoc analysis with FreeSurfer suggested 

that the factors were unlikely the results of segmentation or registration artifacts. 

 

Baseline and Longitudinal Decline of Memory and Executive Function Were 

Consistent Across Factor Hierarchy 

The behavioral (memory and executive function) analyses were repeated for two 

and four atrophy factors (Figs. S6 and S8). The results were consistent with the hierarchy 

of atrophy factors.  

 For example, the temporal and subcortical factors in the three-factor model were 

merged as a single temporal+subcortical factor in the two-factor model. Since the cortical 

factor was associated with the fastest longitudinal memory decline among the three 

factors in the AD dementia cohort (Fig. 7A), we expected the cortical factor to be 

associated with faster memory decline than the temporal+subcortical factor in the two-

factor model, which was indeed the case (p = 2e-6; Fig. S6A2).  

 On the other hand, the three-factor analysis of AD dementia patients suggested 

that the temporal factor was associated with worse memory than the cortical factor, while 

the cortical factor was associated with slightly worse memory than the subcortical factor 

(Fig. 6A). Therefore, we expected difference in baseline memory between the 

temporal+subcortical and cortical factors (in the two-factor model) to be diluted by the 

fusion of the temporal and subcortical factors, which was indeed the case (p = 0.17; Fig. 

S6A1). Therefore, additional insights into factor differences could be obtained by going 

from two factors to three factors. 

 As the number of factors was increased from three to four, the cortical factor split 

into frontal and posterior cortical factors. There was again consistency when comparing 

the four-factor results with the three-factor results. The two factors were mostly 

associated with similar behavioral trajectories, except that among Aβ+ MCI participants, 

the posterior cortical factor was associated with faster memory (p = 8e-3) and executive 

function (p = 9e-8) decline rates than the frontal cortical factor (Fig. S8).  

As the number of factors increased, the effective (average) number of participants 

per factor decreased (e.g., the effective number of Aβ+ CN participants “assigned to the 

temporal factor” is only 5.7 for the four-factor model), thus reducing our confidence in 
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larger number of factors despite the successful behavioral dissociation. Therefore, this 

work focused on interpreting the results of the three-factor model. As the ADNI database 

continues to grow, future work might re-visit the question of larger number of atrophy 

factors. 

 

Schematics of Memory and Executive Function Trajectories Based on Statistical 

Test Results 

The behavioral results (Figs. 5, 6 and 7) are summarized by the schematics of 

trajectories in Fig. 8, which were drawn based on how memory (or executive function) of 

each factor declined across disease stages and how the factors compared with each other 

in terms of memory (or executive function) decline at each stage.  

All salient features of the trajectories reflect the results of statistical tests (Figs. 5, 

6 and 7). For example, the executive function trajectories of all three atrophy factors were 

almost flat and did not diverge at the CN stage (Fig. 8B). This was based on the fact that 

there was no change in ADNI-EF [3] performance between Aβ+ CN and MCI 

participants for all three factors (Fig. 5B1), as well as no difference in ADNI-EF decline 

rates between factors among Aβ+ CN participants (Fig. 7B). From the MCI stage 

onwards, the trajectory of the cortical factor (red curve) became increasingly steep, 

reflecting the test results that executive function decline of the cortical factor accelerated 

from CN to MCI to AD (Fig. 5B2). This was also consistent with the ADNI-EF decrease 

between MCI and AD (Fig. 5B1). In contrast, trajectories of the temporal and subcortical 

factors (blue and green curves) remained almost flat from MCI to AD because there was 

no difference in ADNI-EF performance between MCI and AD for the two factors (Fig. 

S5B1). In addition, cross-sectional and longitudinal differences between the factors (Figs. 

6B and 7B) were also respected in Fig. 8B, e.g., the cortical factor was associated with 

the worst baseline ADNI-EF and the most rapid decline among AD dementia patients. 

One salient feature of the memory trajectories was the crossing of the subcortical 

and cortical factors (blue and red curves), supported by the following behavioral tests. 

Among Aβ+ CN participants, both the temporal and subcortical factors exhibited 

significant memory decline rates, but not the cortical factor (Fig. 5A2). The temporal and 

subcortical factors showed faster memory decline than the cortical factor (Fig. 7A). These 
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results implied that the cortical (red) curve should be above the subcortical (blue) and 

temporal (green) curves immediately after CN (Fig. 8A). Among Aβ+ MCI participants, 

the temporal factor was associated with worse memory than the subcortical factor, but not 

the cortical factor (Fig. S7A1). This implies that the cortical (red) curve should be lower 

than the subcortical (blue) curve, closer to the temporal (green) curve. This is also 

consistent with the statistical test showing a significant decrease in memory performance 

between MCI and CN for the cortical and temporal factors, but not for the subcortical 

factor (Fig. 5A1). Together, the results imply that the cortical (red) curve, originally 

higher than the subcortical (blue) curve at the CN stage, later crossed the subcortical 

(blue) curve before the MCI stage. 
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Supplemental Methods 
Quality Control for Voxel-Based Morphometry. The outputs of each VBM step were 

visually checked by authors XZ and NS. In practice, all the VBM steps (except for brain 

extraction) did not require any manual interventions. The brain extraction (FSL BET [4]) 

sometimes resulted in inaccurate brain extraction, e.g., part of the neck was sometimes 

included as part of the brain. For these problematic cases, the parameters were manually 

tuned until the results were satisfactory. The 810 baseline scans and 560 follow-up scans 

(see the second paragraph of II. Examining Factor Robustness and Characteristics of 

Factor Compositions) were processed jointly to avoid bias introduced by processing the 

baseline and follow-up scans separately as two independent sets. Specifically, the 810 

baseline scans and 560 follow-up scans were mixed together and randomly divided into 

two sets, such that each set contained both baseline and follow-up scans. XZ and NS each 

processed one set. To ensure common quality control standards, XZ and NS 

independently processed a small number of the participants, compared their conclusions, 

and eventually reached consensus. 

 

Quantifying the Nested Hierarchy of Atrophy Factors. An important model parameter 

is the number of latent factors K. Therefore, we determined how factor estimation 

changed from K = 2 to 10 factors. An exhaustive search was performed to quantify the 

possibility that two atrophy patterns in the (K+1)-factor model were subdivisions of a 

pattern in the K-factor model (while the remaining K-1 atrophy patterns remained similar 

across both models). This quantification is based on the following idea: suppose an 

atrophy pattern in the K-factor model divides into the i-th and j-th patterns in the (K+1)-

factor model, then the average of the i-th and j-th patterns should be similar to the 

original pattern. To quantify the presence of this phenomenon, the Pr(Voxel | Factor) of 

the i-th and j-th latent factors were averaged into a single Pr(Voxel | Factor). The 

resulting K factors of the (K+1)-factor model were matched to the K-factor model by 

reordering the factors (using the Hungarian matching algorithm) to maximize the 

correlation of Pr(Voxel | Factor) between corresponding pairs of factors. After obtaining 

the optimal correspondence, the pairwise correlations were averaged across all pairs of 

factors, resulting in an average correlation value indicating the quality of the split (with 
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higher correlation values indicating a better split). By performing an exhaustive search 

over all pairs of i and j, we found the atrophy factor of the K-factor model whose split 

best approximated the (K+1)-factor model (Fig. S2A). This procedure was independently 

repeated using Pr(Factor | Patient) (Fig. S2B). 

 

Cross-Pipeline Validation of Atrophy Patterns. To ensure the atrophy factors were 

robust to choice of VBM software (FSL [2]), we performed posthoc analyses using 

FreeSurfer. Recall from Top Anatomical Structures Associated with Each Factor, that 

we have assigned each MNI GM anatomical structure to each of the three atrophy factors 

(Table S1). The structural MRI data of the 378 (= 43 CN + 147 MCI + 188 AD) 

participants were preprocessed using FreeSurfer so as to obtain volume estimates of all 

the anatomical structures for each participant. We then verified using GLM that each 

factor had a smaller total volume of its assigned GM anatomical structures than the other 

two factors (while controlling for ICV).  

For example, Table S1A shows the top GM anatomical structures associated with 

the temporal factor. A GLM was set up where the response variable y was the total 

volume of the anatomical structures listed in Table S1A, while the explanatory variables 

included the subcortical factor probability s, cortical factor probability c, and ICV i. 

Hence, the GLM was y = β0 + βs·s + βc·c + βi·i + ɛ, where β’s are the regression 

coefficients, and ɛ is the residual. The temporal factor probability t was implicitly 

modeled because t + s + c = 1. Intuitively, β0 reflected the temporal factor’s total GM 

volume of the structures while discounting ICV, βs reflected the response difference 

between the subcortical and temporal factors, and βc reflected the response difference 

between the cortical and temporal factors.  

Statistical tests of whether total GM volume y varied across factors involved null 

hypotheses of the form Hβ = 0, where β = [β0, βs, βc, βi]T, and H is the linear contrast [5]. 

By specifying different H’s, we were able to compare different pairs of factors. For 

example, H = [0, 1, 0, 0] tested possible differences between the subcortical and temporal 

factors, and H = [0, -1, 1, 0] compared the cortical and subcortical factors.  
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The GLM and statistical tests were repeated using Table S1B (top GM anatomical 

structures associated with the subcortical factor) and Table S1C (top GM anatomical 

structures associated with the cortical factor). 

 

Linear Mixed-Effects Modeling of Longitudinal Cognition Decline Among Aβ+ CN, 

Aβ+ MCI and AD Dementia Participants. To analyze variations in cognitive decline 

rates across atrophy factors, one could first estimate the decline rate for each participant 

and then model the estimated decline rates using GLM. However, this approach is 

suboptimal because participants with one or even two time points may have to be 

discarded because the decline rate cannot be estimated with confidence (e.g., [6]).  

Here we considered the linear mixed-effects (LME) model that provides 

significantly improved exploitation of longitudinal measurements [7] by accounting for 

both intra-individual measurement correlations and inter-individual variability. Under 

this framework, the longitudinal cognitive decline rates can be easily compared across 

atrophy factors for the 188 AD dementia patients, 147 Aβ+ MCI participants, and 43 Aβ+ 

CN participants.  

A single LME model was utilized to examine longitudinal changes in memory 

(ADNI-Mem [8]) across the atrophy factors in the 43 Aβ+ CN, 147 Aβ+ MCI, and 188 

AD dementia patients. The same model was estimated for K = 2, 3 and 4 factors, as well 

as for executive function (ADNI-EF) and MMSE. 

For ease of explanation, we will focus on explaining the LME model for the case 

of three atrophy factors and ADNI-Mem. Response variable y of the LME model 

consisted of the 378 (= 43 CN + 147 MCI + 188 AD) participants’ longitudinal ADNI-

Mem. Explanatory fixed-effects variables included binary MCI group indicator m, binary 

AD group indicator d, subcortical factor probability s, cortical factor probability c, 

interactions between group indicators and factor probabilities (i.e., m·s, m·c, d·s and d·c), 

time from baseline t, interactions between group indicators and time from baseline (i.e., 

m·t and d·t), interactions between factor probabilities and time from baseline (i.e., s·t and 

c·t), and interactions among group indicators, factor probabilities and time from baseline 

(i.e., m·s·t, m·c·t, d·s·t and d·c·t), while nuisance variables consisted of baseline age x1, 

sex x2, education x3 and total atrophy x4.  
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The resulting LME model was y = (β0 + βm·m + βd·d + βs·s + βc·c + βms·m·s + 

βmc·m·c + βds·d·s + βdc·d·c + β1·x1 + β2·x2 + β3·x3 + β4·x4 + b) + (βt0 + βtm·m + βtd·d + 

βts·s + βtc·c + βtms·m·s + βtmc·m·c + βtds·d·s + βtdc·d·c)·t + ɛ, where β’s are the regression 

coefficients, b is the random intercept, and ɛ is the residual. For the same reasons 

provided in the previous section, the temporal factor probability and binary CN group 

indicator were implicitly modeled. Intuitively, βt0 reflected the temporal factor’s decline 

rate at the CN stage, βt0 + βtm reflected the temporal factor’s decline rate at the MCI stage, 

and βt0 + βtm + βts + βtms reflected the subcortical factor’s decline rate at the MCI stage. 

With this model setup, variations in age, sex, education and total atrophy were controlled 

for across participants.  

Statistical tests were performed in two stages. First, we tested whether ADNI-

Mem decline rate accelerated, decelerated or stayed the same across disease stages for 

each factor. More specifically, for each factor, we first tested whether decline in memory 

and executive function was significant at the CN stage and then examined possible 

changes in decline rates from CN to MCI as well as from MCI to AD. For example, to 

test whether ADNI-Mem decline was significant at the CN stage for the subcortical factor, 

the null hypothesis was βt0 + βts = 0. To test whether the decline rate changed from CN to 

MCI for the subcortical factor, the null hypothesis was βtm + βtms = 0. Finally, null 

hypothesis βtd + βtds – βtm – βtms = 0 tested whether the decline accelerated from MCI to 

AD. The test results for memory and executive function are shown in Figs. 5A2 and 5B2, 

respectively. Details on hypothesis testing in the LME model can be found in [7]. 

To foreshadow the results, the hypothesis tests in the previous paragraph hinted at 

differences in ADNI-Mem decline rates across the factors. Therefore, statistical tests of 

whether ADNI-mem decline rates varied across factors at each disease stage were 

performed. More specifically, at each disease stage, we first performed an omnibus 

statistical test on whether there were differences in memory decline rates across factors 

and then tested for pairwise differences. Take the MCI stage as an example. Rejecting the 

null hypothesis βts + βtms = βtc + βtmc = 0 would imply differences in ADNI-Mem decline 

rates across the three factors among Aβ+ MCI participants. Rejecting the null hypothesis 

that βts + βtms = 0 would suggest that the subcortical factor and temporal factor were 

associated with different ADNI-Mem decline rates. Rejecting the null hypothesis that βtc 
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+ βtmc = 0 would suggest that the cortical factor and temporal factor were associated with 

different ADNI-Mem decline rates. Finally, rejecting the null hypothesis that βts + βtms = 

βtc + βtmc would suggest that the subcortical and cortical factors were associated with 

different cognitive decline rates.  

The results of the above statistical tests are illustrated in Figs. 5A2, 5B2, 7, S6A2, 

S6B2, S7A2, S7B2, S7C2, S8A2 and S8B2, where (except in Figs. 5A2 and 5B2) the 

blue dot corresponds to the estimated difference in cognitive decline rate between two 

“pure factors” after controlling for age, sex, education and total atrophy. For example, 

when comparing temporal and subcortical factors at the AD dementia stage, the estimated 

difference in cognitive decline rate is given by βts + βtds. The red bar corresponds to the 

standard error of this estimation given by SD(βts + βtds). 
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Fig. S1. Sagittal, coronal and axial slices of the probabilistic atrophy maps for K = 2, 3 and 
4 atrophy factors. Bright color indicates high probability of atrophy at that spatial location 
for a particular atrophy factor, i.e., Pr(Voxel | Factor).
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Fig. S2. Quantifying the nested hierarchy of latent atrophy factors in terms of (A) atrophy 
patterns and (B) individual factor compositions. A high correlation value at “K-(K+1)” on 
the x-axis indicates a high-quality split from the K-factor model to the (K+1)-factor model 
(see Supplemental Methods of SI). For example, the close-to-one values at “2-3” in both 
(A) and (B) suggest that the splits of both the atrophy patterns and individual factor 
compositions are high-quality from two to three atrophy factors. Overall, the high 
correlation values from 2 to 10 support a nested hierarchy of latent atrophy factors.



Fig. S3. Probabilistic atrophy maps for K = 3 factors estimated with (A) 91 Aβ+ AD 
dementia patients, (B) all 188 AD dementia patients, and (C) 147 Aβ+ MCI participants. 
The three different cohorts yielded highly similar atrophy patterns. Bright color indicates
high probability of atrophy at that spatial location for a particular atrophy factor, i.e., 
Pr(Voxel | Factor). 
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FreeSurfer Structure Name Average 
Probability

Right-Amygdala 3.81e-5

Left-Amygdala 3.59e-5

ctx-rh-entorhinal 3.03e-5

ctx-lh-entorhinal 2.87e-5

Right-Hippocampus 2.86e-5

Left-Hippocampus 2.51e-5

ctx-rh-parahippocampal 2.24e-5

ctx-lh-temporalpole 2.06e-5

ctx-rh-temporalpole 1.95e-5

ctx-lh-parahippocampal 1.78e-5

ctx-rh-inferiortemporal 1.52e-5

ctx-lh-middletemporal 1.50e-5

ctx-rh-middletemporal 1.47e-5

ctx-rh-fusiform 1.40e-5

ctx-lh-inferiortemporal 1.32e-5

ctx-lh-fusiform 1.26e-5

ctx-rh-insula 1.26e-5

ctx-lh-insula 1.20e-5

ctx-lh-superiortemporal 1.09e-5

ctx-lh-rostralanteriorcingulate 1.03e-5

ctx-rh-superiortemporal 9.82e-6

ctx-rh-medialorbitofrontal 8.39e-6

ctx-rh-rostralanteriorcingulate 7.77e-6

ctx-rh-lateralorbitofrontal 7.71e-6

ctx-lh-medialorbitofrontal 7.71e-6

ctx-rh-transversetemporal 7.13e-6

ctx-lh-lateralorbitofrontal 6.92e-6

Right-VentralDC 5.95e-6

ctx-lh-caudalanteriorcingulate 3.71e-6

Table S1A. Top anatomical 
structures associated with the 
temporal factor (see Methods). The 
temporal factor was associated with 
significantly greater atrophy in these 
structures than the subcortical factor 
(p = 2e-15) and cortical factor (p = 
4e-15). There were no differences in 
atrophy of these structures between 
the subcortical and cortical factors (p 
= 0.84). See Supplemental Methods 
of SI. 



FreeSurfer Structure Name Average 
Probability

Right-Accumbens-area 1.85e-5

Left-Accumbens-area 1.75e-5

Right-Putamen 1.31e-5

Left-Cerebellum-Cortex 1.16e-5

Left-Putamen 1.13e-5

Right-Cerebellum-Cortex 1.10e-5

Left-Thalamus-Proper 8.82e-6

Right-Thalamus-Proper 7.99e-6

Right-Caudate 7.62e-6

ctx-lh-lingual 7.58e-6

Left-Caudate 7.50e-6

ctx-rh-lingual 7.16e-6

ctx-lh-parstriangularis 7.10e-6

ctx-rh-parstriangularis 6.52e-6

ctx-rh-parsopercularis 6.25e-6

ctx-rh-superiorfrontal 5.81e-6

ctx-rh-parsorbitalis 5.57e-6

Left-VentralDC 5.46e-6

ctx-lh-parsorbitalis 5.26e-6

ctx-lh-superiorfrontal 5.01e-6

ctx-lh-frontalpole 4.31e-6

ctx-rh-frontalpole 3.57e-6

Brain-Stem 3.36e-6

Right-Pallidum 2.55e-6

Left-Pallidum 2.22e-6

Table S1B. Top anatomical 
structures associated with the 
subcortical factor (see Methods). 
The subcortical factor was associated 
with significantly greater atrophy in 
these structures than the temporal 
factor (p = 1e-5) and cortical factor 
(p = 2e-12). The temporal factor had 
more atrophy in these structures than 
the cortical factor (p = 0.01). See 
Supplemental Methods of SI. 



FreeSurfer Structure Name Average 
Probability

ctx-lh-bankssts 1.15e-5

ctx-rh-inferiorparietal 1.10e-5

ctx-lh-precuneus 1.00e-5

ctx-rh-bankssts 9.92e-6

ctx-rh-precuneus 9.07e-6

ctx-lh-inferiorparietal 8.94e-6

ctx-lh-caudalmiddlefrontal 8.47e-6

ctx-rh-caudalmiddlefrontal 8.37e-6

ctx-rh-lateraloccipital 8.22e-6

ctx-lh-supramarginal 7.99e-6

ctx-lh-lateraloccipital 7.64e-6

ctx-rh-isthmuscingulate 7.32e-6

ctx-rh-cuneus 7.16e-6

ctx-lh-isthmuscingulate 7.11e-6

ctx-lh-superiorparietal 6.89e-6

ctx-rh-supramarginal 6.74e-6

ctx-lh-paracentral 6.53e-6

ctx-lh-cuneus 6.47e-6

ctx-lh-transversetemporal 6.29e-6

ctx-rh-posteriorcingulate 6.29e-6

ctx-lh-parsopercularis 6.05e-6

ctx-lh-posteriorcingulate 5.87e-6

ctx-lh-rostralmiddlefrontal 5.69e-6

ctx-rh-precentral 5.69e-6

ctx-rh-superiorparietal 5.57e-6

ctx-rh-rostralmiddlefrontal 5.41e-6

ctx-lh-precentral 5.33e-6

ctx-lh-pericalcarine 5.29e-6

ctx-lh-postcentral 5.27e-6

ctx-rh-pericalcarine 4.94e-6

ctx-rh-postcentral 4.73e-6

ctx-rh-paracentral 4.68e-6

ctx-rh-caudalanteriorcingulate 3.83e-6

Table S1C. Top anatomical 
structures associated with the cortical 
factor (see Methods). The cortical 
factor was associated with 
significantly greater atrophy in these 
structures than the temporal factor (p 
= 7e-6) and subcortical factor (p = 
4e-7). There were no differences in 
atrophy of these structures between 
the temporal and subcortical factors 
(p = 0.62). See Supplemental
Methods of SI. 
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Fig. S4. Stability of factor compositions over two years for (A) 115 AD dementia patients, 
(B) 260 MCI participants, and (C) 185 CN participants. Each participant corresponds to a 
dot, whose color indicates amyloid status: red for Aβ+, green for Aβ-, and blue for 
unknown. For each atrophy factor (plot), x-axis and y-axis represent, respectively, the 
probabilities of factor at baseline and two years after baseline. In the ideal case where 
factor probability estimations remain exactly the same after two years, one would expect a 
y = x linear fit as well as a r = 1 correlation. In our case, the linear fits were close to y = x 
with r > 0.82 for all three atrophy factors for all clinical groups, suggesting that the factor 
compositions were stable despite disease progression.



Fig. S5A. Factor compositions of (1) 147 Aβ+ MCI participants and (2) 43 Aβ+ CN 
participants for K = 3 factors. Each participant corresponds to a dot, whose location (in 
barycentric coordinates) represents the factor composition. Corners of the triangle 
represent “pure factors”; closer distance to the respective corners indicates higher 
probabilities for the respective factors. Most dots are far from the corners, suggesting that 
most participants expressed multiple factors. 
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Fig. S5B. Factor compositions of (1) 188 AD dementia patients, (2) 147 Aβ+ MCI 
participants, and (3) 43 Aβ+ CN participants for K = 2 factors. Histograms were created 
with participants’ cortical factor probability (x-axis). Therefore the left (or right) extreme 
corresponds to the pure temporal+subcortical (or cortical) factor. In addition, colors in (1) 
indicate amyloid status: red for Aβ+, green for Aβ-, and blue for unknown. The majority of 
the population lies around the center, suggesting that most participants expressed both 
atrophy factors. 
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Fig. S5C. Factor compositions of (1) 188 AD dementia patients, (2) 147 Aβ+ MCI 
participants, and (3) 43 Aβ+ CN participants for K = 4 factors. Each participant 
corresponds to a dot, whose location represents the factor composition. Tetrahedron 
corners represent “pure factors”; closer distance to a corner corresponds to higher 
probability for the corresponding factor. Color in (1) indicates amyloid status: red for Aβ+, 
green for Aβ-, and blue for unknown. Most dots are far from the corners, suggesting that 
most participants expressed multiple factors. 
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Table S2. Characteristics of 188 AD dementia patients by factor. Data are weighted 
averages (weighted standard deviation) with weights corresponding to factor probabilities. 
Highlighted p values (blue) are characteristics significantly different across factors. 
*Computed by linear hypothesis test on GLM or likelihood ratio test on logistic regression 
for sex (see Methods). †Only available for 182 patients. ‡Only available for 100 patients. 
§The original counts were 0, 1 or 2.

Temporal Subcortical Cortical Overall p*

Baseline age (years) 76 (6.9) 76 (7.1) 74 (7.8) 8e-7

Age at AD onset (years)† 72 (7.5) 73 (7.7) 70 (8.5) 1e-5

Years from onset to 
baseline† 3.8 (2.6) 3.5 (2.4) 3.5 (2.4) 0.29

Education (years) 15 (3.1) 14 (3.1) 15 (3.2) 0.15

Sex (0 for male) 0.4 (0.5) 0.5 (0.5) 0.5 (0.5) 0.27

Amyloid (pg/mL)‡ 141 (39) 149 (51) 140 (36) 0.09

APOE ε2§ 0.03 (0.2) 0.08 (0.3) 0.04 (0.2) 0.03

APOE ε4§ 0.86 (0.7) 0.81 (0.7) 0.87 (0.7) 0.61



Fig. S6. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of 
(A) memory and (B) executive function between K = 2 factors. Comparisons remaining 
significant after FDR control (q = 0.05) are highlighted in blue. Blue dots are estimated 
differences between “pure atrophy factors”, and red bars show the standard errors (see 
Methods and Supplemental Methods of SI). 
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Fig. S7A. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of 
memory among K = 3 factors. Comparisons remaining significant after FDR control (q = 
0.05) are highlighted in blue. Blue dots are estimated differences between “pure atrophy 
factors”, and red bars show the standard errors (see Methods and Supplemental Methods 
of SI). 
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Fig. S7B. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of 
executive function among K = 3 factors. Comparisons remaining significant after FDR 
control (q = 0.05) are highlighted in blue. Blue dots are estimated differences between 
“pure atrophy factors”, and red bars show the standard errors (see Methods and
Supplemental Methods of SI). 
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Fig. S7C. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of 
MMSE among K = 3 factors. Comparisons remaining significant after FDR control (q = 
0.05) are highlighted in blue. Blue dots are estimated differences between “pure atrophy 
factors”, and red bars show the standard errors (see Methods and Supplemental Methods 
of SI). 
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Fig. S8A. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of 
memory among K = 4 factors. Comparisons remaining significant after FDR control (q = 
0.05) are highlighted in blue. Blue dots are estimated differences between “pure atrophy 
factors”, and red bars show the standard errors (see Methods and Supplemental Methods 
of SI). 
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Fig. S8B. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of 
executive function among K = 4 factors. Comparisons remaining significant after FDR 
control (q = 0.05) are highlighted in blue. Blue dots are estimated differences between 
“pure atrophy factors”, and red bars show the standard errors (see Methods and
Supplemental Methods of SI). 
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Andrew Kertesz, MD – Past Investigator
Dick Drost, MD – Past Investigator

Nathan Kline Institute
Nunzio Pomara, MD
Raymundo Hernando, MD
Antero Sarrael, MD

University of Iowa College of Medicine
Susan K. Schultz, MD
Karen Ekstam Smith, RN
Hristina Koleva, MD
Ki Won Nam, MD
Hyungsub Shim, MD– Past Investigator

Cornell University
Norman Relkin, MD, PhD
Gloria Chiang, MD
Michael Lin, MD
Lisa Ravdin, PhD

University of South Florida: USF Health Byrd 
Alzheimer’s Institute
Amanda Smith, MD
Balebail Ashok Raj, MD
Kristin Fargher, MD– Past Investigator



 

	

ADNI Participating Institutions 

Johns Hopkins University; Washington University, St. Louis; University of 

California, Los Angeles; University of Pennsylvania; Cleveland Clinic Lou Ruvo Center 

for Brain Health; Sunnybrook Health Sciences Centre; Parkwood Hospital; University of 

California, San Diego; University of Kansas; Dent Neurologic Institute; McGill 

University / Jewish General Hospital Memory Clinic; Rush University Medical Center; 

Baylor College of Medicine; Duke University Medical Center; Wein Center for Clinical 

Research; Indiana University; St. Joseph’s Health Center – Cognitive Neurology; Banner 

Alzheimer’s Institute; New York University Medical Center; Mayo Clinic, Jacksonville; 

Mount Sinai School of Medicine; University of Michigan, Ann Arbor; University of 

British Columbia, Clinic for AD & Related; University of Wisconsin; Oregon Health and 

Science University; Northwestern University; Boston University; Case Western Reserve 

University; Emory University; University of Pittsburgh; Brigham and Women’s Hospital; 

University of Alabama, Birmingham; Medical University of South Carolina; University 

of California, Irvine; Howard University; University of California, Davis; Rhode Island 

Hospital; Mayo Clinic, Rochester; Nathan Kline Inst. for Psychiatric Rsch; University of 

Rochester Medical Center; University of California, Irvine (BIC); The Weill Cornell 

Memory Disorders Program; Georgetown University; University of California, San 

Francisco; Banner Sun Health Research Institute; Premiere Research Institute; Butler 

Hospital Memory and Aging Program; Dartmouth Medical Center; Ohio State University; 

University of Southern California; University of Iowa; Wake Forest University Health 

Sciences; University of Kentucky; University of South Florida, Tampa; Columbia 

University; Yale University School of Medicine; University of Texas, Southwestern MC; 

Stanford / PAIRE; Albany Medical College. 

The list is also available online at http://adni.loni.usc.edu/about/centers-

cores/study-sites/. 


