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Abstract: The decay B0 → DK∗0 and the charge conjugate mode are studied using

1.0 fb−1 of pp collision data collected by the LHCb experiment at
√
s = 7 TeV in 2011. The

CP asymmetry between the B0 → DK∗0 and the B0 → DK∗0 decay rates, with the neutral

D meson in the CP -even final state K+K−, is found to be

AKKd = −0.45± 0.23± 0.02,

where the first uncertainty is statistical and the second is systematic. In addition, favoured

B0 → DK∗0 decays are reconstructed with the D meson in the non-CP eigenstate K+π−.

The ratio of the B-flavour averaged decay rates in D decays to CP and non-CP eigenstates

is measured to be

RKKd = 1.36 + 0.37
− 0.32 ± 0.07,

where the ratio of the branching fractions of D0 → K−π+ to D0 → K+K− decays is

included as multiplicative factor. The CP asymmetries measured with two control channels,

the favoured B0 → DK∗0 decay with D → K+π− and the B0
s → DK∗0 decay with

D → K+K−, are also reported.
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1 Introduction

Direct CP violation can arise in B0 → DK∗0 decays1 from the interference between two

colour-suppressed transitions: b̄→ c̄ (Cabibbo favoured) and b̄→ ū (Cabibbo suppressed).

The corresponding Feynman diagrams are shown in figure 1; interference occurs if the

D0 and D0 mesons decay to a common final state. The magnitude of the CP -violating

asymmetry that arises from this interference is related to the value of the phase γ =

arg [−(VudV
∗
ub)/(VcdV

∗
cb)], the least-well determined angle of the Unitarity Triangle. A

method to determine γ from hadronic B-decay rates was originally proposed by Gronau,

London and Wyler (GLW) in ref. [1, 2] for various charged and neutral B → DK decay

modes and can be applied to the decay mode B0 → DK∗0. In this mode, the charge of

the kaon from the K∗0 → K+π− decay unambiguously tags the flavour of the decaying B

meson [3], hence no time-dependent tagged analysis is required.

The use of these neutral B decays is particularly interesting because the magnitude

of the ratio of the suppressed over the favoured amplitude, which controls the size of

the interference, is expected to be relatively large (naively a factor three larger than the

analogous ratio for B+ → DK+ decays), hence the system can exhibit large CP -violating

effects, depending on the D decay. Among the modes used in the GLW method, which

are studied in this paper, large CP asymmetries can be expected when the D meson

is reconstructed in a CP eigenstate. Contributions from B0 decays to the non-resonant

DK+π− final state, which can pollute the DK∗0 reconstructed signal candidates due to

the large natural width of the K∗0, can be treated in a model-independent way, as shown

in ref. [4]. Studies with simulated events have shown that the B0 → DK∗0 mode is one of

the most promising channels to provide a precise measurement of γ at LHCb [5]. Results

1Here and in the following, D represents a neutral meson that is an admixture of D0 and D0. Inclusion

of charge conjugate modes is implied unless specified otherwise.
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(a) (b)

Figure 1. Feynman diagrams for (a) B0 → D0K∗0 and (b) B0 → D0K∗0.

with this channel will therefore complement those from B+ → DK+, which have recently

been used by LHCb to constrain γ [6, 7].

This paper presents the measurement of the B0 −B0 partial width asymmetry using

D decays into the CP eigenstate K+K−,

AKKd =
Γ(B0 → D[K+K−]K

∗0)− Γ(B0 → D[K+K−]K
∗0)

Γ(B0 → D[K+K−]K
∗0) + Γ(B0 → D[K+K−]K

∗0)
, (1.1)

together with the measurement of the ratio of the average of the B0 and B0 partial widths

with D → K+K−, to the average partial width with D → K+π− (where the sign of the

kaon charge from the D decay is the same as that of the kaon from the K∗0 decay),

RKKd =
Γ(B0 → D[K+K−]K

∗0) + Γ(B0 → D[K+K−]K
∗0)

Γ(B0 → D[K−π+]K
∗0) + Γ(B0 → D[K+π−]K

∗0)
. (1.2)

These quantities can be used together with other inputs to determine the value of γ. Note

that the suppressed decay mode B0 → D[K−π+]K
∗0, where the sign of the kaon charge from

the D decay is opposite to that of the kaon from the K∗0 decay, is not included in this

analysis. This decay mode can exhibit large CP -violating effects and can be studied with a

larger dataset. The measured asymmetry in the favoured decay B0 → D[K+π−]K
∗0,

Afav
d =

Γ(B0 → D[K−π+]K
∗0)− Γ(B0 → D[K+π−]K

∗0)

Γ(B0 → D[K−π+]K
∗0) + Γ(B0 → D[K+π−]K

∗0)
(1.3)

is a useful cross-check since it is expected to be compatible with zero given the size of the

current dataset.

In pp collisions, B0
s mesons are produced and can decay to the same final state,

B0
s → DK∗0 [8]. In these B0

s decay modes, the interference between the two contributing

amplitudes is expected to be small, since the relative magnitude of the suppressed to the

favoured amplitude is small compared to the B0 case. Therefore, these modes are valuable

control channels, and the asymmetry

AKKs =
Γ(B0

s → D[K+K−]K
∗0)− Γ(B0

s → D[K+K−]K
∗0)

Γ(B0
s → D[K+K−]K

∗0) + Γ(B0
s → D[K+K−]K

∗0)
, (1.4)
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similar to that defined in eq. (1.1), is also obtained in this analysis. Since the favoured

(suppressed) B0
s (B0) decay gives kaons with opposite charges from D and K∗0 decays, Afav

s

is not used as a control measurement in the analysis, to avoid biasing a potential future

measurement of Asup
d .

2 The LHCb detector, dataset and event selection

The study reported here is based on a data sample collected at the Large Hadron Collider

(LHC) with the LHCb detector at a centre-of-mass energy of 7 TeV during the year 2011,

corresponding to an integrated luminosity of 1.0 fb−1. The LHCb detector [9] is a single-arm

forward spectrometer covering the pseudorapidity range 2 < η < 5, designed for the study

of particles containing b or c quarks. The detector includes a high precision tracking

system consisting of a silicon-strip vertex detector surrounding the pp interaction region,

a large-area silicon-strip detector located upstream of a dipole magnet with a bending

power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes

placed downstream. The combined tracking system has a momentum resolution ∆p/p that

varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and an impact parameter resolution of

20µm for tracks with high transverse momentum (pT). Charged hadrons are identified

using two ring-imaging Cherenkov detectors. Photon, electron and hadron candidates are

identified by a calorimeter system consisting of scintillating-pad and preshower detectors,

an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a

system composed of alternating layers of iron and multiwire proportional chambers. The

trigger [10] consists of a hardware stage, based on information from the calorimeter and

muon systems, followed by a software stage which applies a full event reconstruction.

This analysis uses events selected by the hardware level trigger either when one of the

charged particles of the signal decay gives a large enough energy deposit in the calorimeter

system (hadron trigger), or when one of the particles in the event, not coming from the

signal decay, fulfills the trigger requirements (i.e. mainly events triggered by one particle

coming from the decay of the other B in the event). The software trigger requires a two-,

three- or four-track secondary vertex with a high scalar sum of the pT of the tracks and

a significant displacement from the primary pp interaction vertices (PVs). At least one

track should have pT > 1.7 GeV/c and an impact parameter (IP) χ2 with respect to the

PV greater than 16. The IP χ2 is defined as the difference between the χ2 of the PV

reconstructed with and without the considered track. A multivariate algorithm is used for

the identification of secondary vertices consistent with the decay of a b hadron.

Candidates are selected from combinations of charged particles. D mesons are recon-

structed in the decay modes D → K+π− and K+K−. The pT of the daughters is required

to be larger than 400 MeV/c. Particle identification (PID) is used to distinguish between

charged pions and kaons. The difference between the log-likelihoods of the kaon and pion

hypotheses (DLLKπ) is required to be larger than 0 for kaons and smaller than 4 for pions.

This aids the reduction of cross-feed between the signal D decay modes to a negligible level.

A fit is applied to the two-track vertex, requiring that the corresponding χ2 per degree of

freedom is less than 5. In order to separate D mesons coming from a B decay from those
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produced at the PV, the D candidates are required to have an IP χ2 greater than 4 with

respect to any PV. To suppress background from B decays without an intermediate D

meson (B0 → K∗0K+K− for example), for which all four charged hadrons are produced at

the B-decay vertex, a condition on the D flight distance with respect to the B vertex is

applied, requiring that it is larger than 0 by at least 2.5 standard deviations. Finally, D

candidates with an invariant mass within ±20 MeV/c2 of the nominal D0 mass are retained.

K∗0 mesons are reconstructed in the mode K∗0 → K+π−. The pT of the K+ and π−

mesons must be larger than 300 MeV/c. PID is also used, requiring that DLLKπ is larger

than 3 for the kaon and lower than 3 for the pion, reducing the cross-feed from B0 → Dρ0 to

a manageable level and rejecting non-resonant B0 → DK+K− [11]. Possible contamination

from protons in the kaon sample, e.g. from Λ0
b → Dpπ− decays, is reduced by removing kaon

candidates with a difference between the log-likelihoods of the proton and kaon hypotheses

(DLLpK) of less than 10. The IP χ2 of the K∗0 mesons must be larger than 25, to select those

coming from a B decay, and their invariant mass within ±50 MeV/c2 of the nominal mass.
(—)

B 0
(s) meson candidates are formed by combining D and K∗0 candidates selected with

the above requirements. A fit to a common vertex is performed, keeping only combinations

with χ2 per degree of freedom lower than 4, and a kinematic fit is performed to constrain

the invariant mass of the reconstructed D to the nominal D0 mass [12]. Since B mesons are

produced at the PV, only candidates with IP χ2 lower than 9 are retained. In case several

PVs are reconstructed, the one for which the B-candidate IP χ2 is the smallest is taken

as reference. Additionally, the momentum of the reconstructed B candidate is required to

point back to the PV, by requiring that the angle between the B momentum direction and

its direction of flight from the PV is smaller than 10 mrad. Furthermore, the sum of the

square roots of the IP χ2 of the four charged particles must be larger than 32. The absolute

value of the cosine of the K∗0 helicity angle is required to be larger than 0.4. This angle is

defined as the angle between the kaon-daughter momentum direction in the K∗0 rest frame,

and the K∗0 direction in the B rest frame.

Specific peaking backgrounds from B0
(s) → D∓(s)h

± decays, where h is a π or a K meson,

are eliminated by vetoing candidates for which the invariant mass of K+K−π+(K−π+π+

and K+K−π+) is within ±15 MeV/c2 of the nominal mass of a D+
s (D+) meson.

Where possible, data-driven methods are used to determine selection efficiencies and

invariant mass distribution shapes. Otherwise, they are determined from fully simulated

events. The pp collisions are generated using Pythia 6.4 [13] with a specific LHCb

configuration [14] where, in particular, decays of hadronic particles are described by

EvtGen [15]. The interaction of the generated particles with the detector and its response

are implemented using the Geant4 toolkit [16, 17] as described in ref. [18].

3 Determination of signal yields

The numbers of reconstructed signal B0 and B0
s candidates are determined from an un-

binned maximum likelihood fit to their mass distributions. Candidates are split into four

categories, which are fitted simultaneously: D(K+K−)K∗0, D(K+K−)K∗0, D(K+π−)K∗0,
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and D(K−π+)K∗0. The mass distribution of each category is fitted with a sum of probability

density functions (PDF) modelling the different contributing components:

1. the B0 and B0
s signals are described by double Gaussian functions;

2. the combinatorial background is described by an exponential function;

3. the cross-feed from B0 → Dρ0 decays, where one pion from the ρ0 → π+π− decay is

misidentified as a kaon, is described by a non-parametric PDF [19] determined from

fully simulated and selected events;

4. the partially reconstructed B0 → D∗K∗0 and B0
s → D∗K∗0 decays, where the D∗ is

a D∗0 or a D∗0 and the π0 or photon from the D∗ decay is not reconstructed, are

modelled by a non-parametric PDF determined from fully simulated and selected

events.

There are 23 free parameters in the fit. These include the B0 PDF peak position, the core

Gaussian resolution for the B0 and the B0
s and the slope of the combinatorial background,

all of which are common to the four fit categories. The remaining free parameters are yields

for each fit component within each category. Yields for B0
(s) and B0

(s) are constrained to be

identical for the background components where CP violation effects can be excluded or are

expected to be compatible with zero with the current data sample size.

A separate fit to B0 → D(K+π−)ρ0 candidates in the same data sample is performed.

The yield of such candidates and the probability to reconstruct them as B0 → D(K+π−)K∗0

is used to constrain the number of cross-feed events in the D(K+π−)K∗0 category. The

number of cross-feed candidates from B0 → D(K+K−)ρ0 in the D(K+K−)K∗0 category is

derived from the D(K+π−)K∗0 category using the relative D branching fractions and B

selection efficiencies. As no flavour asymmetry is expected for this background, the numbers

of cross-feed events in the DK∗0 categories are constrained to be identical to those of the

corresponding DK∗0 categories.

The partially reconstructed background component accumulates at masses lower than

the nominal B0 mass. Its shape depends on the unknown fraction of transverse polarisation

in the
(—)

B 0
(s) → D∗K∗0 decays. In order to model the

(—)

B 0
(s) → D∗K∗0 contribution, a PDF is

built from a linear combination of three non-parametric functions corresponding to the three

orthogonal helicity eigenstates. The functions are derived from simulated
(—)

B 0
(s) → D∗K∗0

events reconstructed as B0 → DK∗0. Each function corresponds to the weighted sum of

the D∗ → Dγ and D∗ → Dπ0 contributions for a defined helicity eigenstate, where the

weights take into account the relative D∗ decay branching fractions and the corresponding

reconstruction efficiencies.

The invariant mass distributions together with the function resulting from the fit are

shown in figure 2. Note that the decay B0
s → D(K+π−)K∗0 is not observed since the charge

combination of the kaons in the final state corresponds to the suppressed decay. The signal

yield in each category is summarized in table 1. The significance of the B0 → DK∗0 signal

for D → K+K− decays, summing B0 and B0 and including both statistical and systematic

uncertainties, is found to be equal to 5.1σ, by comparing the maximum of the likelihood of
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Category Signal yield Category Signal yield

B0 → D[K+K−]K
∗0 21 + 6

− 5 B0 → D[K+K−]K
∗0 8± 4

B0
s → D[K+K−]K

∗0 23 + 6
− 5 B0

s → D[K+K−]K
∗0 24 + 6

− 5

B0 → D[K+π−]K
∗0 108 + 12

− 11 B0 → D[K−π+]K
∗0 94± 11

Table 1. Signal yields with their statistical uncertainties.

the nominal fit and the maximum with the yield of the B0 → D(K+K−)K∗0 category set

to zero.

The yields determined from the simultaneous mass fit are corrected for selection effi-

ciencies in order to evaluate the asymmetries and ratios described in the introduction. The

selection efficiencies account for the geometrical acceptance of the detector, the reconstruc-

tion, the PID, and the trigger efficiencies. All efficiencies are computed from fully simulated

events, except for the PID and trigger efficiencies, which are obtained directly from data

using clean calibration samples of D0 → K−π+ from D∗+ decays.

4 Systematic uncertainties

Several sources of systematic uncertainty are considered, affecting either the determination

of the signal yields or the computation of the efficiencies. They are summarized in table 2.

In order to take into account the measured difference in the production rate between B0

and B0, the B0 yields are multiplied by a correction factor,

adprod =
1− κAprod

1 + κAprod
, (4.1)

where Aprod = 0.010 ± 0.013 [20] is the asymmetry between B0 and B0 at production

in pp collisions, and κ is a decay-dependent factor, κ =
∫ +∞
0 e−Γt cos(∆mt) ε(B0→DK∗0,t) dt∫ +∞

0 e−Γt ε(B0→DK∗0,t) dt
,

which takes into account dilution effects due to the B0 − B0 oscillation frequency, ∆m,

and includes the acceptance as a function of the decay time for the reconstructed decay,

ε(B0 → DK∗0, t). The value of κ is found to be 0.46± 0.01 using fully simulated events and

PID efficiencies from calibration samples. The uncertainty on adprod is propagated to the

measured observables to estimate the systematic uncertainty from the production asymmetry.

Owing to the large B0
s oscillation frequency, the potential production asymmetry of B0

s

mesons does not significantly affect the measurement presented here and is neglected.

The PID calibration introduces a systematic uncertainty on the calculated PID efficien-

cies, which propagates to the final results. All PID correction factors are compatible with

unity within their uncertainties which are of the order of 1%.

The systematic uncertainty associated to the trigger is estimated by varying in the

simulation the fraction of events triggered by the hadron trigger with respect to the fraction

of events triggered by the other b-hadron in the event. Other selection efficiencies cancel in

– 6 –
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Figure 2. Invariant mass distributions of (a) D[K+K−]K
∗0, (b) D[K+K−]K

∗0, (c) D[K−π+]K
∗0 and

(d) D[K+π−]K
∗0 candidates. The DK∗0 distributions correspond to B0 and B0

s decays whereas

the DK∗0 distributions correspond to B0 and B0
s decays. The fit functions are superimposed; the

different B decays and combinatorial background components are detailed in the legends.

the ratio of yields, except for the efficiencies of the pT cuts on the D daughters, which are

different between different D decay modes. RKKd has to be corrected by a multiplicative

factor 0.94±0.04, where the statistical uncertainty on the correction, which arises from finite

simulated sample size, is assigned as systematic uncertainty due to the relative selection

efficiencies.

The fit procedure is validated with simulated experiments. A bias of statistical nature,

owing to the small number of events in the B0 → D(K+K−)K∗0 channel, is found to be

5% for B0 and 8% for B0. The signal yields are corrected for this bias before computing the

asymmetries and ratios. A systematic uncertainty equal to half the size of the correction

has been assigned.

Simulated experiments are also used to determine the systematic uncertainties due to

the low-mass background, the B0 → Dρ0 cross-feed, and the signal shape. Samples are

generated with different values of the polarisation parameters, the cross-feed fraction and

the fixed signal parameters. The corresponding systematic uncertainty is estimated from

the bias in the results obtained by performing the fit described in the previous section to

these samples.

– 7 –



J
H
E
P
0
3
(
2
0
1
3
)
0
6
7

Source AKKd Afav
d AKKs RKKd

Production asymmetry 0.005 0.006 − 0.003

PID efficiency 0.004 0.008 0.005 0.014

Trigger efficiency 0.004 0.001 0.005 0.022

Selection efficiency − − − 0.040

Bias correction 0.004 − 0.001 0.013

Low-mass background 0.017 0.001 0.004 0.042

B0 → Dρ0 cross-feed 0.001 − 0.002 0.008

Signal description 0.001 0.001 0.001 0.005

D branching fractions − − − 0.022

Total 0.019 0.010 0.008 0.069

Table 2. Summary of the absolute systematic uncertainties on the measured observables.

5 Results and summary

This paper reports the analysis of B0 → DK∗0 decays using 1.0 fb−1 of pp collision data.

Potential contributions to the decay amplitudes from the non-resonant B0 → DK+π−

mode are reduced by requiring that the K∗0 reconstructed mass is within ±50 MeV/c2 of

the nominal mass and the absolute value of the cosine of the K∗0 helicity angle is greater

than 0.4. The results for the CP -violating observables are

AKKd =−0.45± 0.23 (stat)± 0.02 (syst),

Afav
d =−0.08± 0.08 (stat)± 0.01 (syst),

AKKs = 0.04± 0.16 (stat)± 0.01 (syst),

RKKd = 1.36+ 0.37
− 0.32 (stat)± 0.07 (syst).

The value of RKKd takes into account the ratio of the branching fractions of D0 → K+K−

to D0 → K−π+ decays [12]. The correlation between AKKd and RKKd is equal to 0.16 and

the correlations between the other observables are negligible.

These are the first measurements of CP asymmetries in B0 and B0
s to DK∗0 decays

with the neutral D meson decaying into a CP -even final state. Triggering, reconstructing

and selecting a pure sample of these fully hadronic B decays is challenging in a high

rate and high track-multiplicity environment, especially in the forward direction of LHCb.

The present statistical limitations are due to a combination of several factors, the most

important one being the trigger. In order to keep the output rate below its maximum of

1 MHz, the current hardware trigger imposes relatively restrictive criteria on the minimum

transverse momentum of hadrons, which affect the efficiency for fully-hadronic modes. This

limitation is overcome in the proposed LHCb upgrade [21, 22] by reading out the detector

at the maximum LHC bunch-crossing frequency of 40 MHz. With more data, improved

measurements of these and other quantities in B0 → DK∗0 decays will result in important

constraints on the angle γ of the Unitarity Triangle.
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38 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
39 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The

Netherlands
40 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
41 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
42 University of Birmingham, Birmingham, United Kingdom
43 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom

– 13 –



J
H
E
P
0
3
(
2
0
1
3
)
0
6
7

44 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
45 Department of Physics, University of Warwick, Coventry, United Kingdom
46 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
47 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
48 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
49 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
50 Imperial College London, London, United Kingdom
51 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
52 Department of Physics, University of Oxford, Oxford, United Kingdom
53 Syracuse University, Syracuse, NY, United States
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