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Abstract

Given samples from an unknown multivariate distribution p, is it possible to distinguish
whether p is the product of its marginals versus p being ε-far from every product distribu-
tion? Similarly, is it possible to distinguish whether p equals a given distribution q versus p
and q being ε-far from each other? These problems of testing independence and goodness-
of-fit have received enormous attention in statistics, information theory, and theoretical
computer science, with sample-optimal algorithms known in several interesting regimes of
parameters [14, 15, 17, 18, 20]. Unfortunately, it has also been understood that these prob-
lems become intractable in large dimensions, necessitating exponential sample complexity.

Motivated by the exponential lower bounds for general distributions as well as the ubiq-
uity of Markov Random Fields (MRFs) in the modeling of high-dimensional distributions,
we study distribution testing on structured multivariate distributions, and in particular the
prototypical example of MRFs: the Ising Model. We demonstrate that, in this structured
setting, we can avoid the curse of dimensionality, obtaining sample and time efficient testers
for independence and goodness-of-fit which yield a sample complexity of poly(n)/ε2 on n-
node Ising models. Along the way, we develop new tools for establishing concentration of
functions of the Ising model, using the exchangeable pairs framework developed by Chatter-
jee [27], and improving upon this framework. In particular, we prove tighter concentration
results for multi-linear functions of the Ising model in the high-temperature regime. We
also prove a lower bound of n/ε on the sample complexity required for testing uniformity
and independence of n-node Ising models.

Thesis Supervisor: Constantinos Daskalakis
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Testing properties of objects is a quintessential task in science. The scientific question

of testing is the following: Does the object O have the property P? One could ask this

question in the case when the object of interest O is a probability distribution. Complete

knowledge of the distribution would make this a purely computational problem. But in

many cases, only partial access to the object is available. This partial access could be via

samples drawn from the distribution, for instance. Such a setting occurs naturally in in-

stances when we are given data from a study or an experiment and we wish to understand

the properties of the underlying distribution. Under this style of a sampling model, testing

properties if distributions has a long history in statistics, since the early days; for some old

and some more recent references see, e.g., [9, 10, 11, 12]. Traditionally, the emphasis has

been on the asymptotic analysis of tests, pinning down their error exponents as the number

of samples tends to infinity [12, 13]. In the last two decades or so, distribution testing has

also piqued the interest of theoretical computer scientists, where the emphasis has been

different [14, 15, 16, 17, 18, 19, 20]. In contrast to much of the statistics literature, the

goal has been to minimize the number of samples required for testing. Apart from being

motivated by real world problems involving data, the field of distributional property testing

has revealed that many interesting properties of distributions only require a few samples,

often resulting in a sample complexity which is sub-linear in the size of the support of the

distribution. This points to the idea that to perform property testing we do not need to

learn the distribution in its entirety and there is something more efficient which can be done

instead.

Before we state what property testing is in more formal terms we will talk a bit about the
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notion of a distribution being ε-far from another one. It is natural to define a distance

between two distributions only if they are supported on the same domain. Many notions

of distances exist in literature and one of the most common distance used is total variation

distance (TV distance) which is also a metric. Other common distances such as Kullback-

Liebler divergence (KL-divergence), Wasserstein distance are also considered in literature.

Note that the KL divergence is not a metric (see Remark 1). We will describe these distance

notions in greater detail in Section 2.1.

Next, we describe what a property means in a mathematical sense. Formally, a property

is any set of distributions. All distributions q in the set are said to have the property. For

instance, the property of uniformity is the singleton set containing the uniform distribution.

Henceforth, when we refer to a property P we will be referring to the set of distributions q

which have the property.

Using any distance measure, we can extend the notion of distance between distributions to

define distance between a distribution and a property as follows:

Definition 1. The distance d(p,P) between a distribution X and a property P is defined

as

d(p,P) , inf
q∈P

d(p, q).

That is the distance between p and property P is the smallest possible distance between

p and q, where q is any distribution having the property P. The broad question we will be

interested in is the following:

Given 0 < ε ≤ 1 and i.i.d. sample access to an unknown distribution p supported

over a known domain D, how many samples are required to test whether p ∈ P

or is ε-far from every distribution which has property P, i.e. d(p,P) ≥ ε for some

distance d() of interest, with a probability of success at least 2/3?

2
3 is an arbitrary choice of a constant, except that it is bounded away from 1

2 . It can always

be boosted to some arbitrary 1 − δ at the expense of a factor O(log 1/δ) in the sample

complexity. Our focus will be on discrete distributions supported over a finite domain. We

will require our testers to be efficient in terms of both the number of samples they use and

the amount of time they take. The focus in much of the literature has been on optimizing

the sample complexity of the tester. With regards to the time complexity, we will be happy

if our tests run in polynomial time and will not focus on optimizing this polynomial.
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For the most general properties, it is folklore that Ω(|D|) samples are necessary to test.

However many properties of interest can be tested using a number of samples which is

sub-linear in |D|. Some of the well-known properties which have been studied in the above

setting are uniformity, goodness-of-fit with respect to a known distribution q (also known as

identity testing), monotonicity and log-concavity of distributions over an ordered domain

D. It is known that all these properties can be tested with O
(√
|D|/ε2

)
samples from p

[18].

There are many natural variants and generalizations of the testing question stated above

based on variations in the underlying sampling model, the accuracy parameters in the

problem and the power of the tester. We will describe the major ones here. In the following

we will assume that access to the distribution of interest p is provided via some kind of an

oracle ORACLEp known as the sampling oracle.

Types of Sampling Oracles: The sampling model describes how we are allowed access

to the distribution we wish to test. A common assumption to make is that we are given

access via independent and identically distributed samples from p. That is each query the

tester makes returns an i.i.d sample from p. Another popular model is conditional sampling

known as the COND model. It was introduced independently by [5] and [6]. Under COND

we can specify a subset ΩS of the domain Ω with each query and the COND oracle returns

an independent sample from p conditioned on it coming from ΩS . The COND oracle gives

more power to the tester leading to much more efficient testers for many problems. For

instance, under the standard i.i.d sampling model testing goodness-of-fit under the total

variation distance requires Θ(
√
n/ε2) samples whereas under the COND model it requires

only Õ(1/ε2) samples [7].

Other sampling oracles break the independence assumption. For instance, one might

consider an oracle which outputs a sequence of samples which come from an underlying

Markov chain.

Tolerant vs Non-Tolerant Testing Testing is a promise problem, i.e., the tester is

promised that the unknown distribution p either has a property P, or is ≥ ε-far from it.

Tolerant testing, defined and formalized by [8] is a variant with a ’softer’ promise as stated

below.

Given 0 < ε1, ε2 ≤ 1 and i.i.d. sample access to an unknown distribution p

supported over a known discrete domain D, how many samples are required to

test whether d(p,P) ≤ ε1 or d(p,P) ≥ ε2 for some distance of interest d(), with

a probability of success at least 2/3?

15



Adaptivity of the tester: Another important variation is obtained based on whether the

tester is allowed to be adaptive or not. A non-adaptive tester cannot use the answers given

by the oracle to its previous queries to formulate the next query. In essence, it must list

all its queries at once at the start of the algorithm. An adaptive tester on the other hand

can formulate the nth query based on the answers given by the oracle to its previous n− 1

queries hence making it more powerful. Note that if the oracle is an i.i.d. sampler it doesn’t

matter whether our tester is adaptive or not. However under the COND model adaptive

testers can potentially perform better than non-adaptive ones.

Although all the aforementioned variants offer interesting questions to study, in this

thesis, our focus will be on the originally stated property testing question which is the non-

tolerant, non-adaptive version with access to i.i.d samples. Most of the literature in this

setting has focused on testing properties of single-dimensional distributions [18, 19]. Much

less is known about property testing of high-dimensional distributions and this will be our

focus in this thesis. The problems of interest for us will be high-dimensional goodness-of-fit

and independence testing.

From this vantage point, our testing problems take the following form:

Goodness-of-fit (or Identity) Testing: Given i.i.d sample access to an unknown

distribution p over Σn and a parameter ε > 0, the goal is to distinguish with prob-

ability at least 2/3 between p = q and d(p, q) > ε, for some specific distribution

q, from as few samples as possible.

Independence Testing: Given i.i.d sample access to an unknown distribution p

over Σn and a parameter ε > 0, the goal is to distinguish with probability at

least 2/3 between p ∈ I(Σn) and d(p, I(Σn)) > ε, where I(Σn) is the set of

product distributions over Σn, from as few samples as possible.

In these problem definitions, Σ is some discrete alphabet.

For both testing problems, recent work has identified tight upper and lower bounds on

their sample complexity [15, 17, 18, 20]: when d is taken to be the total variation distance,

the optimal sample complexity for both problems turns out to be Θ
(
|Σ|n/2
ε2

)
, i.e. exponential

in the dimension. As modern applications commonly involve high-dimensional data, this

curse of dimensionality makes the above testing goals practically unattainable. Nevertheless,

there is a sliver of hope, and it lies with the nature of all known sample-complexity lower

bounds, which construct highly-correlated distributions that are hard to distinguish from

the set of independent distributions [18, 20], or from a particular distribution q [15]. Worst-
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case analysis of this sort seems overly pessimistic, as these instances are unlikely to arise

in real-world data. As such, we propose testing high-dimensional distributions which are

structured, and thus could potentially rule out such adversarial distributions.

Motivated by the above considerations and the ubiquity of Markov Random Fields

(MRFs) in the modeling of high-dimensional distributions (see [21] for the basics of MRFs

and the references [22, 23] for a sample of applications), we initiate the study of distribution

testing for the prototypical example of MRFs: the Ising Model, which captures all binary

MRFs with node and edge potentials.1

Markov Random Fields: A Markov Random Field with pairwise potentials is a distribu-

tion defined by an undirected graph G = (V,E) where associated with each vertex v ∈ V is

a random variable Xv taking values in some alphabet Σ. Also associated with each vertex

v ∈ V is a potential function φv : Σ → [0, 1] and associated with each edge e ∈ E is a

potential function φe : Σ2 → [0, 1]. The probability of a particular configuration of the

nodes xV is given by

p(xV ) ∝
∏
v∈V

φv(xv)
∏
e∈E

φe(xe),

where xe refers to the restriction of the vector x to the nodes which share the edge e.

MRFs defined as above have nice conditional independence properties captured by the

graph structure. Specifically, if S ⊆ V is a set of vertices such that every path from u to v

passes through S, then conditioned on the vertices in S, Xu and Xv are independent. This

conditional independence structure makes calculations tractable in many cases.

Note: All MRFs need not be restricted to only pairwise potentials. They can be defined

with potential functions which take as input larger subsets of nodes as well. However

in this thesis we will be interested in MRFs with pairwise potentials. Property

testing on general MRFs is an interesting direction to pursue (refer to Section 8.1).

Ising models are a canonical example of MRFs where the random variables for each node

are over a binary alphabet. They were originally used in physics for modeling magnetization

of atoms in a lattice but have found applications in computer science and other fields where

graphical models are used. For instance, the problem of learning the graph structure of an

Ising model is a question of significant interest [24]. The potential functions φv and φe for

Ising models take a very particular form yielding the following probability for a particular

1This follows trivially by the definition of MRFs, and elementary Fourier analysis of Boolean functions.
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configuration xV

p(x) = exp

∑
v∈V

θvxv +
∑

(u,v)∈E

θu,vxuxv − Φ(~θ)

 , (1.1)

where Φ(~θ) is the log-partition function, ensuring that the distribution is normalized. In-

tuitively, there is a random variable Xv sitting on every node of G, which may be in one

of two states, or spins: up (+1) or down (-1). The scalar parameter θv models a local (or

“external”) field at node v. The sign of θv represents whether this local field favors Xv

taking the value +1, i.e. the up spin, when θv > 0, or the value −1, i.e. the down spin,

when θv < 0, and its magnitude represents the strength of the local field. We will say a

model is “without external field” when θv = 0 for all v ∈ V . Similarly, θu,v represents

the direct interaction between nodes u and v. Its sign represents whether it favors equal

spins, when θu,v > 0, or opposite spins, when θu,v < 0, and its magnitude corresponds to

the strength of the direct interaction. Of course, depending on the structure of the Ising

model and the edge parameters, there may be indirect interactions between nodes, which

may overwhelm local fields or direct interactions.

The Ising model has a rich history, starting with its introduction by statistical physicists

as a probabilistic model to study phase transitions in spin systems [25]. Since then it

has found a myriad of applications in diverse research disciplines, including probability

theory, Markov chain Monte Carlo, computer vision, theoretical computer science, social

network analysis, game theory, and computational biology [26, 27, 28, 29, 30, 31, 32]. The

ubiquity of these applications motivate the problem of inferring Ising models from sam-

ples, or inferring statistical properties of Ising models from samples. This type of prob-

lem has enjoyed much study in statistics, machine learning, and information theory, see,

i.e., [33, 34, 35, 36, 37, 38, 39, 24, 40, 41, 42, 43]. Much of prior work has focused on pa-

rameter learning, where the goal is to determine the parameters of an Ising model to which

sample access is given. In contrast to this type of work, which focuses on discerning para-

metrically distant Ising models, our goal is to discern statistically distant Ising models, in

the hopes of dramatic improvements in the sample complexity. (We will come to a detailed

comparison between the two inference goals shortly, after we have stated our results.) To

be precise, we study the following problems:
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Ising Model Goodness-of-fit (or Identity) Testing: Given sample access to an

unknown Ising model p (with unknown parameters over an unknown graph) and

a parameter ε > 0, the goal is to distinguish with probability at least 2/3 between

p = q and dSKL(p, q) > ε, for some specific Ising model q, from as few samples as

possible.

Ising Model Independence Testing: Given sample access to an unknown Ising

model p (with unknown parameters over an unknown graph) and a parameter

ε > 0, the goal is to distinguish with probability at least 2/3 between p ∈ In and

dSKL(p, In) > ε, where In are all product distributions over {−1, 1}n, from as

few samples as possible.

We note that there are several potential notions of statistical distance one could consider

— classically, total variation distance and the Kullback-Leibler (KL) divergence have seen

the most study. As our focus here is on upper bounds, we consider the symmetrized KL

divergence dSKL, which is a “harder” notion of distance than both: in particular, testers for

dSKL immediately imply testers for both total variation distance and the KL divergence.

Moreover, by virtue of the fact that dSKL upper-bounds KL in both directions, our tests offer

useful information-theoretic interpretations of rejecting a model q, such as data differencing

and large deviation bounds in both directions.

Sample Application: As an instantiation of our proposed testing problems for the Ising

model one may maintain the study of strategic behavior on a social network. To offer a little

bit of background, a body of work in economics has modeled strategic behavior on a social

network as the evolution of the Glauber dynamics of an Ising model, whose graph is the

social network, and whose parameters are related to the payoffs of the nodes under different

selections of actions by them and their neighbors. For example, [31, 32] employ this model

to study the adoption of competing technologies with network effects, e.g. iPhone versus

Android phones. Glauber dynamics, as described in Section 2.4.2, is the canonical Markov

chain for sampling an Ising model. Hence an observation of the actions (e.g. technologies)

used by the nodes of the social network should offer us a sample from the corresponding Ising

model (at least if the Glauber dynamics have mixed; see also Lemma 24 in Section C for a

bound on the mixing time of Glauber dynamics). An analyst may not know the underlying

social network or may know the social network but not the parameters of the underlying

Ising model. In either case, how many independent observations would he need to test, e.g.,

whether the nodes are adopting technologies independently, or whether their adoptions

conform to some conjectured parameters? Our results offer algorithms for testing such
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hypotheses in this stylized model of strategic behavior on a network. Similar applications

can be found in other domains where Ising models have been a common modeling device,

such as computer vision and computational biology.

1.1 Results and Techniques

The main result of this thesis is the following:

Theorem 1. Both Ising Model Goodness-of-fit Testing and Ising Model Independence Test-

ing can be solved from poly
(
n, 1

ε

)
samples in polynomial time.

There are several variants of our testing problems, resulting from different knowledge that

the analyst may have about the structure of the graph (connectivity, density), the nature

of the interactions (attracting, repulsing, or mixed), as well as the temperature (low vs

high). We proceed to discuss all these variants, instantiating the resulting polynomial

sample complexity in the above theorem. We also illuminate the techniques involved to

prove these theorems. This discussion should suffice in evaluating the merits of the results

and techniques of this thesis.

A. Our Baseline Result. In the least favorable regime, i.e. when the analyst is oblivious to

the structure of the Ising model p, the signs of the interactions, and their strength, the poly-

nomial in Theorem 1 becomes O
(
n4β2+n2h2

ε2

)
. In this expression, β = max{|θpu,v|} for inde-

pendence testing, and β = max{max{|θpu,v|},max{|θqu,v|}} for goodness-of-fit testing, while

h = 0 for independence testing, and h = max{max{|θpu|},max{|θqu|}} for goodness-of-fit

testing; see Theorem 2. If the analyst has an upper bound on the maximum degree dmax (of

all Ising models involved in the problem) the dependence improves to O
(
n2d2maxβ

2+ndmaxh2

ε2

)
,

while if the analyst has an upper bound on the total number of edges m, then max{m,n}

takes the role of ndmax in the previous bound; see Theorem 2.

Technical Discussion 1.0: “Testing via Localization.” All the bounds mentioned so far

are obtained via a simple localization argument showing that, whenever two Ising models p

and q satisfy dSKL(p, q) > ε, then “we can blame it on a node or an edge;” i.e. there exists a

node with significantly different bias under p and q or a pair of nodes u, v whose covariance

is significantly different under the the two models. Pairwise correlation tests are a simple

screening that is often employed in practice. For our setting, there is a straighforward

and elegant way to show that pair-wise (and not higher-order) correlation tests suffice; see

Lemma 5.

For more details about our baseline localization tester see Section 3.

20



B. Anchoring Our Expectations. The next results aim at improving the afore-described

baseline bound. Before stating these improvements, however, it is worth comparing the

sample complexity of our baseline results to the sample complexity of learning. Indeed,

one might expect and it is often the case that testing problems can be solved in a two-

step fashion, by first learning a hypothesis p̂ that is close to the true p and then using

the learned hypothesis p̂ as a proxy for p to determine whether it is close to or far from

some q, or some set of distributions. Given that the KL divergence and its symmetrized

version do not satisfy the triangle inequality, however, it is not clear how such an approach

would work. Even if it could, the only algorithm that we are aware of for proper learning

Ising models, which offers KL divergence guarantees but does not scale exponentially with

the maximum degree and β, is a straightforward net-based algorithm. This algorithm,

explained in Section B, requires Ω
(
n6β2+n4h2

ε2

)
samples and is time inefficient. In particular,

the baseline localization algorithm already beats this sample complexity and is also time-

efficient. Alternatively, one could aim to parameter-learn p; see, e.g., [38, 24, 40] and their

references. However, these algorithms require sample complexity that is exponential in the

maximum degree [38], and they typically use samples exponential in β as well [24, 40].

For instance, if we use [40], which is one of the state-of-the-art algorithms, to do parameter

learning prior to testing, we would need Õ(n
4·2β·dmax

ε2
) samples to learn p’s parameters closely

enough to be able to do the testing afterwards. Our baseline result beats this sample

complexity, dramatically so if the degrees are unbounded.

D. The High-Temperature Regime. Motivated by phenomena in the physical world, the

study of Ising models has identified phase transitions in the behavior of the model as its

parameters vary. A common transition occurs as the temperature of the model changes from

low to high. As the parameters ~θ correspond to inverse (individualistic) temperatures, this

corresponds to a transition of these parameters from low values (high temperature) to high

values (low temperature). Often the transition to high temperature is identified with the

satisfaction of Dobrushin-type conditions [44]. Under such conditions, the model enjoys a

number of good properties, including rapid mixing of the Glauber dynamics, spatial mixing

properties, and uniqueness of measure. For some background, in Section C, we show the

rapid mixing of the Glauber dynamics, when max{|θu,v|} = O(1/dmax), which corresponds

to one of the most commonly studied high temperature regimes and the one we will adopt in

this thesis.2 We also show some basic facts about concentration of Lipschitz functions f(XV )

2In fact, we show this for a more general condition stated in Definition 23. All our results for the high
temperature regime can be extended to this more general condition, but we refrain from studying such
generalizations to avoid making the notation in our proofs unnecessarily complicated.
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of the variables XV of an Ising model in the high temperature regime. Both the mixing time

bound and the concentration result are easy adaptations of Chatterjee’s framework [27] so

we do not claim them as contributions of our work. They can also be skipped when reading

this thesis, as they are only meant to provide background.

In the high-temperature regime, we show that we can improve our baseline result using

a non-localization based argument, explained next. In particular, we show in Theorem 4

that under high temperature and with no external fields independence testing can be done

computationally efficiently from Õ
(

max
{

n10/3

ε2d2max
, n11/3

ε2d2.5max

})
samples, which improves upon

our baseline result if dmax is large enough. For instance, when dmax = Ω(n), the sample

complexity becomes Õ
(
n4/3

ε2

)
. Other tradeoffs between β, dmax and the sample complexity

are explored in Theorem 3. Similar improvements hold when external fields are present

(Theorem 6), as well as for identity testing, without and with external fields (Theorems 7

and 8).

We offer some intuition about the improvements in Figures 6-1 and 6-2 (appearing in

Section 6), which are plotted for high temperature and no external fields. In Figure 6-1, we

plot the number of samples required for testing Ising models with no external fields when

β = Θ( 1
dmax

) as dmax varies. The horizontal axis is logn dmax. We see that localization is

the better algorithm for degrees smaller than O(n2/3), above which its complexity can be

improved. In particular, the sample complexity is O(n2/ε2) until degree dmax = O(n2/3),

beyond which it drops inverse quadratically in dmax. In Figure 6-2, we consider a different

tradeoff. We plot the number of samples required when β = n−α and the degree of the

graph varies. In particular, we see three regimes as a function of whether the Ising model

is in high temperature (dmax = O(na)) or low temperature (dmax = ω(na)), and also which

of our techniques localization vs non-localization gives better sample complexity bounds.

Technical Discussion 3.0: “Testing via A Global Statistic.” One way or another all our

results so far had been obtained via localization, namely blaming the distance of p from

independence, or from some distribution q to a node or an edge. Our improved bounds

employ non-localized statistics that look at all the nodes of the Ising model simultaneously.

Specifically, we employ statistics of the form Z =
∑

e=(u,v)∈E ceXuXv for some appropriately

chosen signs ce.

The first challenge we encounter here involves selecting the signs ce in accordance with

the sign of each edge marginal’s expectation, E[XuXv]. This is crucial to establish that the

resulting statistic will be able to discern between the two hypotheses. While the necessary

estimates of these signs could be computed independently for each edge, this would incur
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an unnecessary overhead of O(n2) in the number of samples. Instead we try to learn these

signs from fewer samples. Despite the terms potentially having nasty correlations with each

other, a careful analysis using anti-concentration calculations allows us to sidestep this cost

and generate satisfactory estimates with a non-negligible probability, from fewer samples.

The second and more significant challenge involves bounding the variance of a statistic

Z of the above form. Since Z’s magnitude is at most O(n2), its variance can naively be

bounded by O(n4). However, applying this bound in our algorithm gives a vacuous sample

complexity. We require more work to arrive at useful bounds, and surprisingly, in fairly

general regimes, we can show the variance to be Õ(n2). Stated another way, despite the

complex correlations which may be present in the Ising model, the summands in Z behave

roughly as if they were independent. In order to prove this result, we draw inspiration from

the method of exchangeable pairs used in Chatterjee’s thesis [27]. This method involves

defining a coupling between two evolutions of the Glauber dynamics for the Ising model and

demonstrating contraction of an appropriate statistic. Our analysis requires the definition

of a new coupling and more careful contraction arguments, but allows us to show a variance

which is up to a factor of Õ(n) better than one would get by applying Chatterjee’s arguments

directly. We consider our techniques here to be a significant contribution, and we expect

that they will be applied to analysis of other complex random structures which may be

sampled by rapidly mixing Markov chains. Our technique is described in Section 5. Our

variance bounds vary slightly depending on whether an external field is present and the

bounds are given in Theorems 9 and 10.

E. Lower Bounds. The proof of our linear lower bound applies Le Cam’s method [45].

Our construction is inspired by Paninski’s lower bound for uniformity testing [15], which

involves pairing up domain elements and jointly perturbing their probabilities. This style

of construction is ubiquitous in univariate testing lower bounds. A naive application of this

approach would involve choosing a fixed matching of the nodes and randomly perturbing

the weight of the edges, which leads to an Ω(
√
n) lower bound. To achieve the linear lower

bound, we instead consider a random matching of the nodes. The analysis of this case

turns out to be involved due to the complex structure of the probability function which

corresponds to drawing k samples from an Ising model on a randomly chosen matching.

Indeed, our proof turns out to have a significantly combinatorial flavor, and we believe that

our techniques might be helpful for proving stronger lower bounds in combinatorial settings

for multivariate distributions. See Theorem 15 for the formal statement of our main lower

bound. As mentioned before, we also show that the sample complexity must depend on β

23



Testing Problem No External Field Arbitrary External Field

Independence

using Localization
Õ
(
n2d2maxβ

2

ε2

)
Õ
(
n2d2maxβ

2

ε2

)
Identity

using Localization
Õ
(
n2d2maxβ

2

ε2

)
Õ
(
n2d2maxβ

2

ε2
+ n2h2

ε2

)
Independence

in high temperature

using Learn-Then-Test

Õ
(
n8/3 max{n2/3,nβd0.5max}β2

ε2

)
Õ

(
n8/3 max{n2/3,nβ2/3d

1/3
max}β2

ε2

)

Identity

in high temperature

using Learn-Then-Test

Õ
(
n8/3 max{n2/3,nβd0.5max}β2

ε2

)
Õ
(
n11/3β2

ε2
+ n5/3h2

ε2

)

Table 1.1: Summary of our results in terms of the sample complexity upper bounds for
the various problems studied. n = number of nodes in the graph, dmax = maximum degree,
β = maximum absolute value of edge parameters and h = maximum absolute value of node
parameters (when applicable).

and h in certain cases, see Theorem 16 for a formal statement.

Table 1.1 summarizes our algorithmic results.

1.2 Thesis Organization

In Chapter 2, we discuss preliminaries. In Chapter 3, we give a simple localization-based

algorithm. In Chapter 4, we describe our main algorithm. In Chapter 5, we discuss our

technique for bounding the variance of statistics over the Ising model. In Chapter 6, we com-

pare the localization and the learn-then-test algorithms and note the regimes under which

one performs better than the other. Finally, in Chapter 7 our lower bound is presented.

Some details in the above sections are deferred to the supplementary material.
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Chapter 2

Preliminaries

In this chapter, we state some preliminaries which are intended as a background for the

rest of the thesis. We will describe formally what an Ising model is and the terminology

related to Ising models. We will also set down notation which will be used through the rest

of this thesis. Knowledge of basic probability, random variables and Markov chains will

be assumed. We start with a description of a folklore result about Rademacher random

variables.

Rademacher random variables are binary random variables where Rademacher(p) takes

value 1 with probability p, and −1 otherwise. We will use the following folklore result on

estimating the parameter p of a Rademacher random variable.

Lemma 1. Given iid random variables X1, . . . , Xk ∼ Rademacher(p) for k = O(log(1/δ)/ε2),

there exists an algorithm which obtains an estimate p̂ such that |p̂− p| ≤ ε with probability

1− δ.

Next, we describe of some commonly used notions of distance between distributions.

2.1 Distance Between Distributions

A statistical distance function quantifies the distance between two statistical objects. Here

the objects of interest are distributions. In the following sections we list some of the com-

monly used distance measures for distributions. We will focus on distributions supported

over a discrete space. We denote the two distributions being considered as p and q and

their common support by S (if they have different supports, take S to be the union of the

two supports).
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2.1.1 Total Variation Distance

This is one of the most widely used metric. Denoted by dTV(., .), it is defined as

dTV(p, q) =
1

2

∑
i∈S
|p(i)− q(i)| .

2.1.2 Kolmogorov Distance

Let P and Q represent the cumulative distribution functions of distributions p and q re-

spectively. The Kolmogorov distance between p and q, dK(p, q), is defined as

dK(p, q) = sup
x
|P (x)−Q(x)| .

It can be seen that the Kolmogorov distance lower bounds the total variation distance, i.e.,

dK(p, q) ≤ dTV(p, q).

2.1.3 Hellinger Distance

The Hellinger distance, denoted by dH(., .) is defined as

dH(p, q) =

√
1

2

∑
i∈S

(√
p(i)−

√
q(i)

)2
.

It is closely related to the total variation distance as stated in the following inequalities

d2
H(p, q) ≤ dTV(p, q) ≤

√
2dH(p, q).

2.1.4 Wasserstein Distance

Also known as the Earthmover distance in the discrete setting, the Wasserstein distance

dW (., .) is defined as the minimum cost required to move probability mass around in one

distribution so as to make it identical to the second distribution, where cost is computed

as the mass times the distance it has to be moved. Computing the Wasserstein distance

between two distributions typically involves solving a linear program.

2.1.5 Kullback-Liebler Divergence

A popular distance in information theory literature is the non-symmetric KL-divergence.

Measuring the relative entropy of p relative to q, the KL-divergence between p and q is
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defined as

dKL(p, q) = Ep

[
log

(
p

q

)]
.

2.1.6 Symmetrized Kullback-Liebler Divergence

There are a number of ways to symmetrize KL-divergence. We present here the defi-

nition which is of interest to us in this thesis. Denoted by dSKL(., .), the symmetrized

KL-divergence is defined as,

dSKL(p, q) = dKL(p, q) + dKL(q, p) = Ep

[
log

(
p

q

)]
+ Eq

[
log

(
q

p

)]
.

Remark 1. Many distance functions are metrics. A distance function d(., .) on a set X is

a metric if it satisfies the following properties. For all x, y, z ∈ X,

• d(x, y) ≥ 0 (non-negativity)

• d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles)

• d(x, y) = d(y, x) (symmetry)

• d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality / sub-additivity)

The total variation distance, Kolmogorov distance and Hellinger distance are metrics for

instance.

Divergences are distance functions which satisfy only the first two properties in the above

list. They can be asymmetric and may violate the triangle inequality. The KL-divergence is

a popular example.

We will use without proof the following well-known result regarding relations between

distance measures on probability distributions.

Lemma 2 (Pinsker’s Inequality). For any two distributions p and q, we have the following

relation between their total variation distance and their KL-divergence,

2d2
TV(p, q) ≤ dKL(p||q).

Also since dKL(p||q) ≥ 0 for any distributions P and Q, we have

dSKL(p, q) ≥ dKL(p||q) ≥ 2d2
TV(p, q). (2.1)
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Hence the symmetric KL-divergence between two distributions upper bounds both the KL-

divergence and total variation (TV) distance between them under appropriate scaling.

2.2 Concentration Inequalities

Concentration inequalities or tail inequalities bound the probability of a random variable

being far from its mean in terms of its moments. We will state a couple of well-known tail

inequalities which we use in this thesis.

The first is Chebyshev’s inequality which gives a tail bound using the second moment

of a random variable.

Lemma 3 (Chebyshev’s Inequality). Let X be a random variable with a finite expected

value E[X] and a finite non-zero variance Var[X], then for all t > 0

Pr [|X −E[X]| ≥ t] ≤ Var[X]

t2
.

The second is the stronger Chernoff bound which holds when looking at sums of in-

dependent random variables. There are many forms of the Chernoff bound which hold in

different settings. We state one of them here.

Lemma 4 (Chernoff Bound). Let X1, X2, . . . , Xn be independent Bernoulli random vari-

ables (taking values in {0, 1}) and let X = X1 +X2 + . . .+Xn. Also let µ = E[X]. Then,

Pr[|X − µ| ≥ t] ≤ exp

(
− t

2

3µ

)

2.3 Markov Chain Monte Carlo Sampling

Sampling from a high dimensional distribution can be an expensive task in practice. The

reason being the exponential support size. A popular technique to get around this issue is

Markov Chain Monte Carlo (MCMC) sampling wherein a Markov chain M is defined with

one node for each possible support element of the distribution that we wish to sample from.

M has the property that it is fast mixing and more crucially, the stationary distribution is

the high dimensional distribution we wish to sample from. The sampling procedure simu-

lates a run of the chain for mixing time number of steps and outputs the final state as a

sample. This will represent a sample from a distribution which is statistically close to the

desired distribution.
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Apart from being a sampling tool, MCMC also enables us to prove some properties of the

distribution in elegant ways. A popular Markov chain which performs MCMC sampling

for Ising models is the Glauber dynamics which will be described in detail in Section 2.4.2.

We will show some important properties of functions on the Ising model using the Glauber

dynamics.

2.4 Ising Models

Ising models were first introduced in physics for modeling the spin interactions between

atoms in a lattice. We do away with the lattice assumption in this thesis. We consider the

Ising model on a graph G = (V,E) with n nodes. It is a distribution over {±1}n, with a

parameter vector ~θ ∈ R|V |+|E|. ~θ has a parameter corresponding to each edge e ∈ E and

each node v ∈ V . The probability mass function assigned to a string x is

P (x) = exp

∑
v∈V

θvxv +
∑

e=(u,v)∈E

θexuxv − Φ(~θ)

 ,

where Φ(~θ) is the log-partition function for the distribution. The edge parameters signify the

strength of the influence a node has on its neighbours. In physical systems, this interaction

strength is inversely related to the temperature at which the lattice exists which leads to

one of the important parameters related to an Ising model. Let β denote the maximum edge

interaction strength (when looking at absolute values). 1/β is defined as the temperature

of the Ising model. Hence a large value of β indicates a low temperature and vice-versa. A

critical value of β at which the Ising model’s behavior exhibits a phase transition is η
4dmax

where η is a constant. If β is smaller than this critical value, we consider the Ising model

to be in the high-temperature regime.

Definition 2. In the high-temperature regime, for all e ∈ E, θe ≤ η
4dmax

, where η < 1 is a

constant.

Intuitively, in high temperature the atoms are in higher energy states and their spin

alignments are less affected by their neighbours. This regime is a well-studied one as Ising

models exhibit distinct behaviors depending on the temperature. In this thesis, we will

see that in the high-temperature regime we can exploit the limited interaction strength to

improve the sample complexities of our tests.
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We will abuse notation, referring to both the probability distribution p and the random

vector X that it samples in {±1}V as the Ising model. That is, X ∼ p. We will use Xu

to denote the variable corresponding to node u in the Ising model X. When considering

multiple samples from an Ising model X, we will use X(l) to denote the lth sample. We will

use h to denote the largest node parameter in absolute value and β to denote the largest

edge parameter in absolute value. That is, |θv| ≤ h for all v ∈ V and |θe| ≤ β for all e ∈ E.

Depending on the setting, our results will depend on h and β. Furthermore, in this thesis

we will use the convention that E = {(u, v) | u, v ∈ V ∧ u 6= v} and θe may be equal to 0,

indicating that edge e is not present in the graph. We use m to denote the number of edges

with non-zero parameters in the graph, and dmax to denote the maximum degree of a node.

Throughout this thesis, we will use the notation µv , E[Xv] for the marginal expectation

of a node v ∈ V (also called node marginal), and similarly µuv , E[XuXv] for the marginal

expectation of an edge e = (u, v) ∈ E (also called edge marginal). In case a context includes

multiple Ising models, we will use µpe to refer to the marginal expectation of an edge e under

the model p.

We will use Un to denote the uniform distribution over {±1}n, which also corresponds

to the Ising model with ~θ = ~0. Similarly, we use In for the set of all product distributions

over {±1}n.

When ~p and ~q are vectors, we will write ~p ≤ ~q to mean that pi ≤ qi for all i.

Definition 3. In the setting with no external field, θv = 0 for all v ∈ V .

Definition 4. In the ferromagnetic setting, θe ≥ 0 for all e ∈ E.

2.4.1 Symmetric KL Divergence Between Two Ising Models

We note that the symmetric KL divergence between two Ising models p and q admits a very

convenient expression [38]:

dSKL(p, q) =
∑
v∈V

(θpv − θqv) (µpv − µqv) +
∑

e=(u,v)∈E

(θpe − θqe) (µpe − µqe) . (2.2)

This expression will form the basis for all our algorithms.

2.4.2 Glauber Dynamics

Glauber dynamics is the canonical Markov chain for sampling from an Ising model. We

consider the basic variant known as single-site Glauber dynamics here. The dynamics are
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a Markov chain defined on the set Σn where Σ = {−1,+1}. They proceed as follows:

1. Start at any state X(0) ∈ Σn. Let X(t) denote the state of the dynamics at time t.

2. Let N(u) denote the set of neighbors of node u. Pick a node u uniformly at random

and update X as follows:

X(t+1)
u = 1 w.p.

exp
(
θu +

∑
v∈N(u) θuvX

(t)
v

)
exp

(
θu +

∑
v∈N(u) θuvX

(t)
v

)
+ exp

(
−θu −

∑
v∈N(u) θuvX

(t)
v

)
X(t+1)
u = −1 w.p.

exp
(
−θu −

∑
v∈N(u) θuvX

(t)
v

)
exp

(
θu +

∑
v∈N(u) θuvX

(t)
v

)
+ exp

(
−θu −

∑
v∈N(u) θuvX

(t)
v

)
X(t+1)
v = X(t)

v ∀ v 6= u.

Glauber dynamics define a reversible Markov chain whose stationary distribution is

identical to the corresponding Ising model. In many relevant settings, for instance, the

high-temperature regime, the dynamics are fast mixing, i.e., they mix in time O(n log n)

(Lemma 24) and hence offer an efficient way to sample from Ising models.

2.5 Input to Goodness-of-Fit Testers

To solve the goodness-of-fit testing or identity testing problem with respect to a discrete

distribution q, a description of q is given as part of the input along with sample access

to the distribution p which we are testing. In case q is an Ising model, its support has

exponential size and specifying the vector of probability values at each point in its support

is inefficient. Since q is characterized by the edge parameters between every pair of nodes and

the node parameters associated with the nodes, a succinct description would be to specify

the parameters vectors {θuv}, {θu}. In many cases, we are also interested in knowing the

edge and node marginals of the model. Although these quantities can be computed from the

parameter vectors, there is no efficient method known to compute the marginals exactly for

general regimes. A common approach is to use MCMC sampling to generate samples from

the Ising model. However, for this technique to be efficient we require that the mixing time of

the Markov chain be small which is not true in general. Estimating and exact computation of

the marginals of an Ising model is a well-studied problem but is not the focus of this thesis.

Hence, to avoid such computational complications we will assume that for the identity

testing problem the description of the Ising model q includes both the parameter vectors
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{θuv}, {θu} as well as the edge and node marginal vectors {µuv = E[XuXv]}, {µu = E[Xu]}.
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Chapter 3

Localization Algorithm

Our first algorithm is a general purpose “localization” algorithm. While extremely sim-

ple, this serves as a proof-of-concept that testing on Ising models can avoid the curse of

dimensionality, while simultaneously giving a very efficient algorithm for certain parameter

regimes. The main observation which enables us to do a localization based approach is

stated in the following Lemma, which allows us to “blame” a difference between models p

and q on a discrepant node or edge.

Lemma 5. Given two Ising models p and q, if dSKL(p, q) ≥ ε, then either

• There exists an edge e = (u, v) such that (θpuv − θquv) (µpuv − µquv) ≥ ε
2m ; or

• There exists a node u such that (θpu − θqu) (µpu − µqu) ≥ ε
2n .

Proof of Lemma 5: We have,

dSKL(p, q) =
∑

e=(u,v)∈E

(θpe − θqe) (µpe − µqe) +
∑
v∈V

(θpv − θqv) (µpv − µqv) ≥ ε

=⇒
∑

e=(u,v)∈E

(θpe − θqe) (µpe − µqe) ≥ ε/2 or
∑
v∈V

(θpv − θqv) (µpv − µqv) ≥ ε/2

In the first case, there has to exist an edge e = (u, v) such that (θpuv − θquv) (µpuv − µquv) ≥ ε
2m

and in the second case there has to exist a node u such that (θpu − θqu) (µpu − µqu) ≥ ε
2n thereby

proving the lemma.

Before giving a description of the localization algorithm, we state its guarantees.

Theorem 2. Given Õ
(
m2β2

ε2

)
samples from an Ising model p, there exists a polynomial-

time algorithm which distinguishes between the cases p ∈ In and dSKL(p, In) ≥ ε with
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probability at least 2/3. Furthermore, given Õ
(
m2β2

ε2
+ n2h2

ε2

)
samples from an Ising model

p and a description of an Ising model q, there exists a polynomial-time algorithm which

distinguishes between the cases p = q and dSKL(p, q) ≥ ε with probability at least 2/3 where

β = max{|θuv|} and h = max{|θu|}. If we are given as input the maximum degree of nodes

in the graph dmax, m in the above bounds is substituted by ndmax.

Note that the sample complexity achieved by the localization algorithm gets worse as

the graph becomes denser. This is because as the number of possible edges in the graph

grows, the contribution to the distance by any single edge grows smaller thereby making it

harder to detect.

We describe the algorithm for independence testing in Section 3.1. The algorithm for testing

identity is similar, its description and correctness proofs are given in Section 3.2.

3.1 Independence Test using Localization

We start with a high-level description of the algorithm. Given sample access to Ising model

X ∼ p it will first obtain empirical estimates of the node marginals µu for each node u ∈ V

and edge marginals µuv for each pair of nodes (u, v). Denote these empirical estimates

by µ̂u and µ̂uv respectively. Using these empirical estimates, the algorithm computes the

empirical estimate for the covariance of each pair of variables in the Ising model. That is, it

computes an empirical estimate of λuv = E[XuXv]−E[Xu]E[Xv] for all pairs (u, v). If they

are all close to zero, then we can conclude that p ∈ In. If there exists an edge for which

λuv is far from 0, this indicates that p is far from In. The reason for this follows from the

expression Lemma 5 and is described in further detail in the proof of Lemma 7. A precise

description of the test is given in in Algorithm 1 and its correctness is proven via Lemmas

6 and 7.

To prove correctness of Algorithm 1, we will require the following lemma, which allows

us to detect pairs u, v for which λuv is far from 0.

Lemma 6. Given O
(

logn
ε2

)
samples from an Ising model X ∼ p, there exists a polynomial-

time algorithm which, with probability at least 9/10, can identify all pairs of nodes (u, v) ∈

V 2 such that |λuv| ≥ ε, where λuv = E[XuXv]−E[Xu]E[Xv].

Proof. This lemma is a direct consequence of Lemma 1. Note that for any edge e =

(u, v) ∈ E, XuXv ∼ Rademacher((1 + µe)/2). Also Xu ∼ Rademacher((1 + µu)/2) and
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Algorithm 1 Test if an Ising model p is product

1: function LocalizationTest(sample access to Ising model p, accuracy parameter
ε, β, dmax)

2: Draw k = O
(
n2d2maxβ

2 logn
ε2

)
samples from p. Denote the samples by X(1), . . . , X(k) .

3: Compute empirical estimates µ̂u = 1
k

∑
iX

(i)
u for each node u ∈ V and µ̂uv =

1
k

∑
iX

(i)
u X

(i)
v for each pair of nodes (u, v)

.

4: Using the above estimates compute the covariance estimates λ̂uv = µ̂uv − µ̂uµ̂v for
each pair of nodes (u, v)

.

5: If for any pair of nodes (u, v),
∣∣∣λ̂uv∣∣∣ ≥ ε

2nβdmax
return that dSKL(p, In) ≥ ε .

6: Otherwise, return that p ∈ In.
7: end function

Xv ∼ Rademacher((1 + µv)/2). We will use Lemma 1 to show that O(log n/ε2) samples

suffice to detect whether λe = 0 or |λe| ≥ ε with probability at least 1 − 1/10n2. With

O(log n/ε2) samples, Lemma 1 implies we can obtain estimates µ̂uv, µ̂u and µ̂v for µuv, µu

and µv respectively such that |µ̂uv − µuv| ≤ ε
10 , |µ̂u − µu| ≤ ε

10 and |µ̂v − µv| ≤ ε
10 with

probability at least 1−1/10n2. Let λ̂uv = µ̂uv− µ̂uµ̂v. Then from the above, it follows that

|λuv − λ̂uv| ≤ 3ε
10 + ε2

100 . It can be seen that in the case when the latter term in the previous

inequality dominates the first, ε is large enough that O(log n) samples suffice to distinguish

the two cases. In the more interesting case, ε2

100 ≤
ε
10 , and hence by the triangle inequality

|λuv − λ̂uv| ≤ 4ε
10 . Therefore if |λuv| ≥ ε, then

∣∣∣λ̂uv∣∣∣ ≥ 6ε
10 , and if |λuv| = 0, then

∣∣∣λ̂uv∣∣∣ ≤ 4ε
10

thereby implying that with probability at least 1− 1/10n2 we can detect whether λuv = 0

or |λuv| ≥ ε. Taking a union bound over all edges, the probability that we correctly identify

all such edges is at least 9/10.

With this lemma in hand, we now prove the first part of Theorem 2.

Lemma 7. Given Õ
(
m2β2

ε2

)
samples from an Ising model X ∼ p, Algorithm 1 distinguishes

between the cases p ∈ In and dSKL(p, In) ≥ ε with probability at least 2/3.

Proof. We will run Algorithm 1 on all pairs Xu, Xv to identify any pair such that |λuv|

is large. If no such pair is identified, output that p ∈ In, and otherwise, output that

dSKL(p, In) ≥ ε. If p ∈ In, we know that E[XuXv] = E[Xu]E[Xv] for all edges (u, v), and

therefore, with probability 9/10, there will be no edges for which the empirical estimate of

|λe| ≥ ε
2βm . On the other hand, if dSKL(p, In) ≥ ε, then dSKL(p, q) ≥ ε for every q ∈ In.

In particular, consider the product distribution q on n nodes such that µqu = µpu for all

u ∈ V . For this particular product distribution q, by (2.2), there must exist some e∗ such
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that |λe∗ | ≥ ε
2βm , and the algorithm will identify this edge. This is because

∑
v∈V

(θpv − θqv) (µpv − µqv) = 0 (3.1)

∴ dSKL(p, q) ≥ ε

=⇒ ∃e∗ = (u, v) s.t (θpe − θqe) (µpe − µqe) ≥
ε

m
(3.2)

=⇒ ∃e∗ = (u, v) s.t |(µpe − µqe)| ≥
ε

2βm
(3.3)

=⇒ ∃e∗ = (u, v) s.t |λe∗ | ≥
ε

2βm
.

where (3.1) follows because µpv = µqv for all v ∈ V , (3.2) follows from Lemma 5 and (3.3)

follows because |θpe − θqe | ≤ 2β. This completes the proof of the first part of Theorem 2.

3.2 Identity Test using Localization

If one wishes to test for identity of p to an Ising model q, the quantities whose absolute

values indicate that p is far from q are µpuv − µquv for all pairs u, v, and µpu − µqu for all u,

instead of λuv. Since µquv and µqu are given as part of the description of q, we only have to

identify whether E[XuXv] ≥ c and E[Xu] ≥ c for any constant c ∈ [−1, 1]. A variant of

Lemma 6 as stated in Lemma 8 achieves this goal. Algorithm 2 describes the localization

based identity test. Its correctness proof will imply the second part of Theorem 2 and is

similar in vein to that of Algorithm 1. It is omitted here.

Lemma 8. Given O
(

logn
ε2

)
samples from an Ising model p, there exists a polynomial-time

algorithm which, with probability at least 9/10, can identify all pairs of nodes (u, v) ∈ V 2

such that |µpuv − c| ≥ ε for any constant c ∈ [−1, 1]. There exists a similar algorithm, with

sample complexity O
(

logn
ε2

)
which instead identifies all v ∈ V such that |µpv − c| ≥ ε, where

µpv = E[Xv] for any constant c ∈ [−1, 1].

Proof of Lemma 8: The proof follows along the same lines as Lemma 6. LetX ∼ p. Then, for

any pair of nodes (u, v), XuXv ∼ Rademacher((1 + µpe)/2). Also Xu ∼ Rademacher((1 +

µpu)/2) for any node u. For any pair of nodes u, v, with O(log n/ε2) samples, Lemma 1

implies we that the empirical estimate µ̂puv is such that |µ̂puv −µpuv| ≤ ε
10 with probability at

least 1− 1/10n2. By triangle inequality, we get |µpuv − c| − ε
10 ≤ |µ̂

p
uv − c| ≤ |µpuv − c|+ ε

10 .

Therefore if |µpuv − c| = 0, then |µ̂puv − c| ≤ ε
10 w.p. ≥ 1− 1/10n2 and if |µpuv − c| ≥ ε, then

|µ̂puv − c| ≥ 9ε
10 w.p. ≥ 1 − 1/10n2. Hence by comparing whether |µ̂puv − c| to ε/2 we can

distinguish between the cases |µpuv − c| = 0 and |µpuv − c| ≥ ε w.p. ≥ 1 − 1/10n2. Taking
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a union bound over all edges, the probability that we correctly identify all such edges is at

least 9/10. The second statement of the Lemma about the nodes follows similarly.

Algorithm 2 Test if an Ising model p is identical to q

1: function LocalizationTestIdentity(sample access to Ising model X ∼ p, descrip-
tion of Ising model q, accuracy parameter ε,β,h,dmax)

2: Draw k = c
(n2d2maxβ

2+n2h2) logn

ε2
samples from p for some constant c. Denote the

samples by X(1), . . . , X(k)

.

3: Compute empirical estimates µ̂pu = 1
k

∑
iX

(i)
u for each node u ∈ V and µ̂puv =

1
k

∑
iX

(i)
u X

(i)
v for each pair of nodes (u, v)

.

4: If for any pair of nodes (u, v), |µ̂puv − µquv| ≥ 2ε
nβdmax

return that dSKL(p, q) ≥ ε .

5: If for any node u, if |µ̂pu − µqu| ≥ 2ε
nhdmax

return that dSKL(p, q) ≥ ε .
6: Otherwise, return that p = q.
7: end function

The proof of correctness of Algorithm 2 follows along the same lines as that of Algorithm

1 and uses Lemma 8. We omit the proof here.
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Chapter 4

Learn-then-Test Algorithm

In this chapter, we describe a framework for testing Ising models in the high temperature

regime which results in algorithms which are more efficient than our baseline localization

algorithm of Chapter 3 for dense graphs. This is the more technically involved part of the

thesis and we modularize the description and analysis into different parts. We will give a

high level overview of our approach here. Recall from Definition 2 that Ising models in the

high temperature regime have a bound on the maximum allowed strength of edge interac-

tions. To be precise, we have that β ≤ 1
4dmax

where β is the maximum strength of the edge

interactions.

The main approach we take in this chapter is to consider a global test statistic over all

the variables on the Ising model in contrast to the localized statistics of Chapter 3. For ease

of exposition, we first describe the approach for testing independence under no external

field. We then describe the changes that need to be made to obtain tests for independence

under an external field and goodness-of-fit in Section 4.5.

Note that testing independence under no external field boils down to testing uniformity

as the only independent Ising model when there is no external field is the one corresponding

to the uniform distribution. The intuition for the core of the algorithm is as follows. Suppose

we are interested in testing uniformity of Ising model p with parameter vector ~θ. Note that

for the uniform Ising model, θuv = θu = 0 for all u, v ∈ V . We start by obtaining an upper

bound on the SKL between p and Un which can be captured via a statistic that does not
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depend on ~θ. From (2.2), we have that under no external field (θu = 0 for all u ∈ V ),

dSKL(p,Un) =
∑

e=(u,v)∈E

θuvµuv

=⇒ dSKL(p,Un) ≤
∑
u6=v

β |µuv| (4.1)

=⇒ dSKL(p,Un)

β
≤
∑
u6=v
|µuv| . (4.2)

where (4.1) holds because |θuv| ≤ β.

Given the above upper bound, we consider the statistic Z =
∑

u6=v sign(µuv) · (XuXv),

where X ∼ p and sign(µuv) is chosen arbitrarily if µuv = 0.

E[Z] =
∑
u6=v
|µuv| .

If X ∈ In, then E[Z] = 0. On the other hand, by (4.2), we know that if dSKL(X, In) ≥ ε,

then E[Z] ≥ ε/β. If the sign(µe) parameters were known, we could simply plug them

into Z, and using Chebyshev’s inequality, distinguish these two cases using Var(Z)β2/ε2

samples.

There are two main challenges here.

• First, the sign parameters, sign(µuv), are not known.

• Second, it is not obvious how to get a non-trivial bound for Var(Z).

One can quickly see that learning all the sign parameters might be prohibitively expen-

sive. For example, if there is an edge e such that |µe| = 1/2n, there would be no hope of

correctly estimating its sign with a polynomial number of samples. Instead, we perform a

process we call weak learning – rather than trying to correctly estimate all the signs, we

instead aim to obtain a ~Γ which is correlated with the vector sign(µe). In particular, we aim

to obtain ~Γ such that, in the case where dSKL(p,Un) ≥ ε, E[
∑

e=(u,v)∈E Γe (XuXv)] ≥ ε/ζβ,

where ζ = poly(n). That is we learn a sign vector ~Γ which is correlated enough with the

true sign vector such that a sufficient portion of the signal from the dSKL expression is

still preserved. The main difficulty of analyzing this process is due to correlations between

random variables (XuXv). Naively, we could get an appropriate Γe for (XuXv) by running

a weak learning process independently for each edge. However, this incurs a prohibitive

cost of O(n2) by iterating over all edges. We manage to sidestep this cost by showing that,

despite these correlations, learning all Γe simultaneously succeeds with a probability which
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is ≥ 1/ poly(n), for a moderate polynomial in n. Thus, repeating this process several times,

we can obtain a ~Γ which has the appropriate guarantee with sufficient constant probability.

At this point, we are in the setting as described above – we have a statistic Z ′ of the

form:

Z ′ =
∑
u6=v

cuvXuXv (4.3)

where c ∈ {±1}(
V
2) represent the signs obtained from the weak learning procedure. E[Z ′] = 0

if X ∈ In, and E[Z ′] ≥ ε/ζβ if dSKL(X, In) ≥ ε. These two cases can be distinguished using

Var(Z ′)ζ2β2/ε2 samples, by Chebyshev’s inequality. At this point, we run into the second

issue mentioned above. Since the range of Z ′ is Ω(n2), a crude bound for Var(Z ′) is O(n4),

granting us no savings over the localization algorithm of Theorem 2. However, in the high

temperature regime, we show the following bound on the variance of Z ′ (Theorem 9).

Var(Z ′) = Õ(n2) + Õ
(
n3β3d1.5

max

)
.

Surprisingly, for dense graphs in our high temperature regime, the above bound implies

that Var(Z ′) = Õ(n2). In other words, despite the potentially complex structure of the

Ising model and potential correlations, the variables XuXv contribute to the variance of Z ′

roughly as if they were all independent! We believe the result and techniques involved in

the analysis of this variance bound are of independent interest outside the context of this

algorithm, and describe them in Chapter 5. Given the tighter bound on the variance of our

statistic, we run the Chebyshev-based test on all the hypotheses obtained in the previous

learning step (with appropriate failure probability) to conclude our algorithm. Further

details about the algorithm are provided in Sections 4.1-4.4.

We state the sample complexity achieved via our learn-then-test framework for indepen-

dence testing under no external field here. The corresponding statements for independence

testing under external fields and identity testing are given in Section 4.5.

Theorem 3 (Independence Testing using Learn-Then-Test, No External Field). Suppose

p is an Ising model in the high temperature regime under no external field. Then, given

Õ
(

max
{
n10/3β2

ε2
, n

11/3·β3·
√
dmax

ε2

})
i.i.d samples from p, the learn-then-test algorithm runs

in polynomial time and distinguishes between the cases p ∈ In and dSKL(p, In) ≥ ε with

probability at least 9/10.

Next, we state a corollary of Theorem 3 with sample complexities we obtain when β is
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close to the high temperature threshold.

Theorem 4 (Independence Testing with β near the Threshold of High Temperature, No

External Field). Suppose that p is an Ising model in the high temperature regime and suppose

that β = 1
4dmax

. That is, β is close to the high temperature threshold. Then:

• Given Õ
(

max
{

n10/3

ε2d2max
, n11/3

ε2d2.5max

})
i.i.d samples from p with no external field, the

learn-then-test algorithm runs in polynomial time and distinguishes between the cases

p ∈ In and dSKL(p, In) ≥ ε with probability at least 2/3. For testing identity of p to an

Ising model q in the high temperature regime, we obtain the same sample complexity

as above.

Figure 6-1 shows the dependence of sample complexity of testing as dmax is varied in

the regime of Theorem 4 for the case of no external field.

The description of our algorithm is presented in Algorithm 3. It contains a parameter

τ , which we choose to be the value achieving the minimum in the sample complexity of

Theorem 5. The algorithm follows a learn-then-test framework, which we outline here.

Algorithm 3 Test if an Ising model p under no external field is product using Learn-Then-
Test

1: function Learn-Then-Test-Ising(sample access to an Ising model p, β, dmax, ε, τ)
2: Run the localization Algorithm 1 on p with accuracy parameter ε

nτ . If it identifies
any edges, return that dSKL(p, In) ≥ ε

.

3: for ` = 1 to O(n2−τ ) do
4: Run the weak learning Algorithm 4 on S = {XuXv}u6=v with parameters τ and ε/β

to generate a sign vector ~Γ(`) where Γ
(`)
uv is weakly correlated with sign (E [Xuv])

.

5: end for
6: Using the same set of samples for all `, run the testing algorithm of Lemma 11

on each of the ~Γ(`) with parameters τ2 = τ, δ = O(1/n2−τ ). If any output that
dSKL(p, In) ≥ ε, return that dSKL(p, In) ≥ ε. Otherwise, return that p ∈ In

.

7: end function

Note: The first step in Algorithm 3 is to perform a localization test to check if |µe| is

not too far away from 0 for all e. It is added to help simplify the analysis of the

algorithm and is not necessary in principle. In particular, we use the first part of

Algorithm 1, which checks if any edge looks far from uniform, to perform this first

step, albeit with a smaller value of the accuracy parameter ε than before. Similar

to before, if we find a single non-uniform edge, this is sufficient evidence to output

dSKL(X, In) ≥ ε. If we do not find any edges which are verifiably far from uniform,

we proceed onward, with the additional guarantee that |µe| is small for all e ∈ E.

42



A statement of the exact sample complexity achieved by our algorithm is given in The-

orem 5. When optimized for the parameter τ , this yields Theorem 3.

Theorem 5. Given Õ
(

minτ>0

(
n2+τ + n4−2τ ·min

{
n3,max

{
n2, n3 · d1.5

max · β3
}}) β2

ε2

)
i.i.d

samples from an Ising model p in the high-temperature regime with no external field, there ex-

ists a polynomial-time algorithm which distinguishes between the cases p ∈ In and dSKL(p, In) ≥

ε with probability at least 2/3.

The organization of the rest of the chapter is as follows. We describe and analyze

our weak learning procedure in Section 4.1. Given a vector with the appropriate weak

learning guarantees, we describe and analyze the testing procedure in Section 4.2. In Section

4.3, we describe how to combine all these ideas – in particular, our various steps have

several parameters, and we describe how to balance the complexities to obtain the sample

complexity stated in Theorem 5. Finally, in Section 4.4, we optimize the sample complexities

from Theorem 5 for the parameter τ and filter out cleaner statement of Theorem 3. We

compare the performance of our localization and learn-then-test algorithms and describe

the best sample complexity achieved in different regimes in Section 6.

4.1 Weak Learning

Our overall goal of this section is “weakly learn” the sign of µe = E[XuXv] for all edges

e = (u, v). More specifically, we wish to output a vector ~Γ with the following guarantee:

EX

 ∑
e=(u,v)∈E

ΓeXuXv

 ≥ cε

2βn2−τ2 ,

for some constant c > 0 and parameter τ2 to be specified later. Note that the “best” Γ, for

which Γe = sign(µe), has this guarantee with τ2 = 2 – by relaxing our required learning

guarantee, we can reduce the sample complexity in this stage.

The first step will be to prove a simple but crucial lemma answering the following

question: Given k samples from a Rademacher random variable with parameter p, how well

can we estimate the sign of its expectation? This type of problem is well studied in the

regime where k = Ω(1/p2), in which we have a constant probability of success (see, i.e.

Lemma 1), but we analyze the case when k � 1/p2 and prove how much better one can do

versus randomly guessing the sign. See Lemma 22 in Section A for more details.

With this lemma in hand, we proceed to describe the weak learning procedure. Given

parameters τ ,ε and sample access to a set S of ’Rademacher-like’ random variables which

43



may be arbitrarily correlated with each other, the algorithm draws Õ
(
n2τ

ε2

)
samples from

each random variable in the set and computes their empirical expected values and outputs

a signs of thus obtained empirical expectations. The procedure is described in Algorithm

4.

Algorithm 4 Weakly Learn Signs of the Expectations of a set of Rademacher-like random
variables

1: function WeakLearning(sample access to set S = {Zi}i of random variables where
|S| = O(ns) and where Zi ∈ {−1, 0,+1} and can be arbitrarily correlated,ε, τ ,).

2: Draw k = Õ
(
n2τ

ε2

)
samples from each Zi. Denote the samples by Z

(1)
i , . . . , Z

(k)
i .

3: Compute the empirical expectation for each Zi: Ẑi = 1
k

∑k
l=1 Z

(l)
i .

4: Output ~Γ where Γi = sign(Ẑi).
5: end function

We now turn to the setting of the Ising model, discussed in Section 4.1. We invoke the

weak-learning procedure of Algorithm 4 on the set S = {XuXv}u6=v with parameters ε/β

and 0 ≤ τ ≤ 2. By linearity of expectations and Cauchy-Schwarz, it is not hard to see that

we can get a guarantee of the form we want in expectation (see Lemma 9). However, the

challenge remains to obtain this guarantee with constant probability. Carefully analyzing

the range of the random variable and using this guarantee on the expectation allows us

to output an appropriate vector ~Γ with probability inversely polynomial in n (see Lemma

10). Repeating this process several times will allow us to generate a collection of candidates

{~Γ(`)}, at least one of which has our desired guarantees with constant probability.

Weak Learning the Edges of an Ising Model

We now turn our attention to weakly learning the edge correlations in the Ising model. To

recall, our overall goal is to obtain a vector ~Γ such that

EX

 ∑
e=(u,v)∈E

ΓeXuXv

 ≥ cε

2βn2−τ2 .

We start by proving that such a bound holds in expectation. The following is fairly

straightforward from Lemma 22 and linearity of expectations.

Lemma 9. Given k = O
(
n2τ2β2

ε2

)
samples from an Ising model X such that dSKL(X, In) ≥ ε

and |µe| ≤ ε
βnτ2 for all e ∈ E, there exists an algorithm which outputs ~Γ = {Γe} ∈ {±1}|E|
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such that

E~Γ

EX

 ∑
e=(u,v)∈E

ΓeXuXv

 ≥ cβ

εn2−τ2

(∑
e∈E
|µe|

)2

,

for some constant c > 0.

Proof. Since for all e = (u, v) ∈ E, |µe| ≤ ε
βnτ2 , and by our upper bound on k, all of the

random variables XuXv fall into the first case of Lemma 22 (the “small k” regime). Hence,

we get that

Pr [Γe = sign(µe)] ≥
1

2
+
c1|µe|

√
k

2

which implies that

EΓe [Γeµe] ≥

(
1

2
+
c1|µe|

√
k

2

)
|µe|+

(
1

2
− c1|µe|

√
k

2

)
(−|µe|)

= c1|µe|2
√
k

Summing up the above bound over all edges, we get

E~Γ

[∑
e∈E

Γeµe

]
≥ c1

√
k
∑
e∈E
|µe|2

≥ c′1n
τ2β

ε

∑
e∈E
|µe|2,

for some constant c′1 > 0. Applying the Cauchy-Schwarz inequality gives us

E~Γ

[∑
e∈E

Γeµe

]
≥ cβ

εn2−τ2

(∑
e∈E
|µe|

)2

,

as desired.

Next, we prove that the desired bound holds with sufficiently high probability. The

following lemma follows by a careful analysis of the extreme points of the random variable’s

range.

Lemma 10. Given k = O
(
n2τ2β2

ε2

)
samples from an Ising model X such that dSKL(X, In) ≥

ε and |µe| ≤ ε
βnτ2 for all e ∈ E, there exists an algorithm which outputs ~Γ = {Γe} ∈ {±1}|E|.
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Define χτ2 to be the event that

EX

 ∑
e=(u,v)∈E

ΓeXuXv

 ≥ cε

2βn2−τ2 ,

for some constant c > 0. We have that

PrΓ [χτ2 ] ≥ c

4n2−τ2 .

Proof. We introduce some notation which will help in the elucidation of the argument which

follows. Let p = PrΓ [χτ2 ]. Let

T =
cβ

2εn2−τ2

(∑
e∈E
|µe|

)2

.

Let Y be the random variable defined as follows

Y = EX

 ∑
e=(u,v)∈E

ΓeXuXv

 ,
U = E~Γ [Y |Y > T ] and

L = E~Γ [Y |Y ≤ T ]

Then we have

pU + (1− p)L = 2T (From Lemma 9)

=⇒ p =
2T − L
U − L

Since U ≤
∑

e∈E |µe|, we have

p ≥ 2T − L(∑
e∈E |µe|

)
− L

Since L ≥ −
∑

e∈E |µe|,

p ≥ 2T − L
2
(∑

e∈E |µe|
)

Since L ≤ T , we get

p ≥ T

2
(∑

e∈E |µe|
)
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Substituting in the value for T we get

p ≥
cβ
(∑

e∈E |µe|
)2

4εn2−τ2
(∑

e∈E |µe|
)

=⇒ p ≥
cβ
(∑

e∈E |µe|
)

4εn2−τ2

Since dSKL(X, In) ≥ ε, this implies
(∑

e∈E |µe|
)
≥ ε/β and thus

p ≥ c

4n2−τ2 ,

as desired.

4.2 Testing Our Learned Hypothesis

In this section, we assume that we were successful in weakly learning a vector ~Γ which is

“good” (i.e., it satisfies χτ2). With such a ~Γ, we show that we can distinguish between

X ∈ In and dSKL(X, In) ≥ ε.

Lemma 11. Let X be an Ising model, and let σ2 be such that, for any ~γ = {γe} ∈ {±1}|E|,

Var

 ∑
e=(u,v)∈E

γeXuXv

 ≤ σ2.

Given k = O
(
σ2 · n

4−2τ2β2 log(1/δ)
ε2

)
samples from X, which satisfies either X ∈ In or

dSKL(X, In) ≥ ε, and ~Γ = {Γe} ∈ {±1}|E| which satisfies χτ2 (as defined in Lemma 10) in

the case that dSKL(X, In) ≥ ε, then there exists an algorithm which distinguishes these two

cases with probability ≥ 1− δ.

Proof. We prove this lemma with failure probability 1/3 – by standard boosting arguments,

this can be lowered to δ by repeating the test O(log(1/δ)) times and taking the majority

result.

Denote the ith sample as X(i). The algorithm will compute the statistic

Z =
1

k

 k∑
i=1

∑
e=(u,v)∈E

ΓeX
(i)
u X(i)

v

 .

If Z ≤ cε
4βn2−τ2 , then the algorithm will output that X ∈ In. Otherwise, it will output that

dSKL(X, In) ≥ ε.
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By our assumptions in the lemma statement, in either case,

Var (Z) ≤ σ2

k
.

If X = In, then we have that

E[Z] = 0.

By Chebyshev’s inequality, this implies that

Pr

[
Z ≥ ε

4βn2−τ2

]
≤ 16σ2β2n4−2τ2

kc2ε2
.

Substituting the value of k gives the desired bound in this case. The case where dSKL(X, In) ≥

ε follows similarly, but additionally using the fact that χτ2 implies that

E[Z] ≥ cε

2βn2−τ2 .

4.3 Combining Learning and Testing

In this section, we combine lemmas from the previous sections to complete the proof of

Theorem 5. Lemma 10 gives us that a single iteration of the weak learning step gives a

“good” ~Γ with probability at least Ω
(

1
n2−τ2

)
. We repeat this step O(n2−τ2) times, generating

O(n2−τ2) hypotheses ~Γ(`). By standard tail bounds on geometric random variables, this will

imply that at least one hypothesis is good (i.e. satisfying χτ2) with probability at least

9/10. We then run the algorithm of Lemma 11 on each of these hypotheses, with failure

probability δ = O(1/n2−τ2). If p ∈ In, all the tests will output that p ∈ In with probability

at least 9/10. Similarly, if dSKL(p, In) ≥ ε, conditioned on at least one hypothesis ~Γ(`∗)

being good, the test will output that dSKL(p, In) ≥ ε for this hypothesis with probability

at least 9/10. This proves correctness of our algorithm.

To conclude our proof, we analyze its sample complexity. Combining the complexities

of Lemmas 6, 10, and 11, the overall sample complexity is

O

(
n2τ1β2 log n

ε2

)
+O

(
n2+τ2β2

ε2

)
+O

(
σ2n

4−2τ2β2

ε2
log n

)
.

Noting that the first term is always dominated by the second term we can simplify the

48



complexity to the following expression.

O

(
n2+τ2β2

ε2

)
+O

(
σ2n

4−2τ2β2

ε2
log n

)
. (4.4)

Plugging in the variance bounds from Section 5, Theorems 9 and 10 gives Theorem 5.

4.4 Balancing Weak Learning and Testing

s

The sample complexities in the statement of Theorem 5 arise from a combination of two

separate algorithms and from a variance bound for our multi-linear statistic which depends

on β and dmax. To balance for the optimal value of τ in various regimes of β and dmax we

use Claim 1 which can be easily verified and arrive at Lemma 12.

Claim 1. Let S = Õ
((
n2+τ + n4−2τ · σ2

) β2

ε2

)
. Let σ2 = O(ns). The value of τ which

minimizes S is 2+s
3 .

Lemma 12. Suppose p is an Ising model in the high temperature regime and under no

external field. Then, given S i.i.d samples from p, the learn-then-test algorithm runs in

polynomial time and distinguishes between the cases p ∈ In and dSKL(p, In) ≥ ε with prob-

ability ≥ 9/10 where

• S = Õ
(
n11/3·β3·

√
dmax

ε2

)
if β
√
dmax = Ω(n−1/3), and

• S = Õ
(
n10/3 β2

ε2

)
if β
√
dmax = o(n−1/3).

Lemma 12 can be condensed to give Theorem 3.

4.5 Changes Required for General Independence and Iden-

tity Testing

We describe the modifications that need to be done to the learn-then-test approach described

in Sections 4.1-4.4 to obtain testers for independence under an arbitrary external field

(Section 4.5), identity without an external field (Section 4.5), and identity under an external

field (Section 4.5).
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Independence Testing under an External Field

Under an external field, the statistic we considered in Section 4 needs to be modified.

Suppose we are interested in testing independence of an Ising model p defined on a graph

G = (V,E) with a parameter vector ~θp. Let X ∼ p. We have that dSKL(p, In) =

minq∈In dSKL(p, q). In particular, we consider q to be the independent Ising model on

graph G′ = (V,E′) with parameter vector ~θq such that E′ = φ and θqu is such that µqu = µpu

for all u ∈ V . Then,

dSKL(p, In) ≤ dSKL(p, q) (4.5)

=
∑

e=(u,v)∈E

θpuv (µpuv − µquv)

=
∑

e=(u,v)∈E

θpuv (µpuv − µpuµpv)

≤
∑

e=(u,v)∈E

β |µpuv − µpuµpv|

=⇒ dSKL(p, In)

β
≤

∑
e=(u,v)∈E

|µpuv − µpuµpv| .

The above inequality suggests a statistic Z such that E[Z] =
∑

e=(u,v)∈E |λ
p
uv| where

λpuv = µpuv − µpuµpv. We consider Z =
∑

u6=v sign(λuv)
(
X

(1)
u −X(2)

u

)(
X

(1)
v −X(2)

v

)
where

X(1), X(2) ∼ p are two independent samples from p. It can be seen that Z has the de-

sired expectation. However, we have the same issue as before that we don’t know the

sign(λuv) parameters. Luckily, it turns out that our weak learning procedure is gen-

eral enough to handle this case as well. Consider the following random variable: Zuv =

1
4

(
X

(1)
u −X(2)

u

)(
X

(1)
v −X(2)

v

)
. Zuv takes on values in {−1, 0,+1}. Consider an associated

Rademacher variable Z ′uv defined as follows: Pr[Zuv = −1] = Pr[Zuv = −1] + 1/2 Pr[Zuv =

0]. It is easy to simulate a sample from Z ′uv given access to a sample from Zuv. If Zuv = 0,

toss a fair coin to decide whether Z ′uv = −1 or +1. E[Z ′uv] = E[Zuv] = λuv
2 . Hence

Z ′uv ∼ Rademacher
(

1
2 + λuv

4

)
and by Lemma 22 with k copies of the random variable Zuv

we get a success probability of 1/2+c1

√
k |λuv| of estimating sign(λuv) correctly. Given this

guarantee, the rest of the weak learning argument of Lemmas 9 and 10 follows analogously

by replacing µe with λe.
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After we have weakly learnt the signs, we are left with a statistic Z ′cen of the form:

Z ′cen =
∑
u6=v

cuv

(
X(1)
u −X(2)

u

)(
X(1)
v −X(2)

v

)
(4.6)

where the subscript cen denotes that the statistic is a centered one and c ∈ {±1}(
V
2). We

need to obtain a bound on Var(Z ′cen). We again employ the technique of exchangeable pairs

described in Section 5 to obtain a non-trivial bound on Var(Z ′cen) in the high-temperature

regime. The statement of the variance result is given in Theorem 10 and the details are

in Section 5.3. Combining the weak learning part and the variance bound gives us the

following sample complexity for independence testing under an external field:

Õ

(
(n2+τ + n4−2τσ2)β2

ε2

)
=Õ

(
(n2+τ + n4−2τ max{n2, n3 · β2 · dmax})β2

ε2

)
Balancing for the optimal value of the τ parameter gives Theorem 6.

Theorem 6 (Independence Testing using Learn-Then-Test, Arbitrary External Field). Sup-

pose p is an Ising model in the high temperature regime under an arbitrary external field.

The learn-then-test algorithm takes in Õ

(
n2/3 max{n2/3,nβ2/3d

1/3
max}β2

ε2

)
i.i.d. samples from p

and distinguishes between the cases p ∈ In and dSKL(p, In) ≥ ε with probability ≥ 9/10.

The tester is formally described in Algorithm 5.

Algorithm 5 Test if an Ising model p under arbitrary external field is product

1: function Learn-Then-Test-Ising(sample access to an Ising model p, β, dmax, ε, τ)
2: Run the localization Algorithm 1 with accuracy parameter ε

nτ . If it identifies any
edges, return that dSKL(p, In) ≥ ε

.

3: for ` = 1 to O(n2−τ ) do

4: Run the weak learning Algorithm 4 on S = {(X(1)
u −X(2)

u )(X
(1)
v −X(2)

v )}u6=v with

parameters τ2 = τ and ε/β to generate a sign vector ~Γ(`) where Γ
(`)
uv is weakly

correlated with sign
(
E
[
(X

(1)
u −X(2)

u )(X
(1)
v −X(2)

v )
]) .

5: end for
6: Using the same set of samples for all `, run the testing algorithm of Lemma 11

on each of the ~Γ(`) with parameters τ2 = τ, δ = O(1/n2−τ ). If any output that
dSKL(p, In) ≥ ε, return that dSKL(p, In) ≥ ε. Otherwise, return that p ∈ In

.

7: end function
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Identity Testing under No External Field

We first look at the changes needed for identity testing under no external field. Similar to

before, we start by obtaining an upper bound on the SKL between the Ising models p and

q. We get that,

dSKL(p, q) =
∑

(u,v)∈E

(θpuv − θquv) (µpuv − µquv)

=⇒ dSKL(p, q)

2β
≤
∑
u6=v
|(µpuv − µquv)|

Since we know µquv for all pairs u, v, the above upper bound suggests the statistic Z of the

form

Z =
∑
u6=v

sign (µpuv − µquv) (XuXv − µquv)

If p = q, E[Z] = 0 and if dSKL(p, q) ≥ ε, E[Z] ≥ ε/2β. As before, there are two things

we need to do: learn a sign vector which is weakly correlated with the right sign vector

and obtain a bound on Var(Z). By separating out the part of the statistic which is just a

constant, we obtain that

Var(Z) ≤ Var

∑
u6=v

cuvXuXv


where c ∈ {±1}(

V
2). Hence, the variance bound of Theorem 9 holds for Var(Z).

As for the weakly learning the signs, using Corollary 1 of Lemma 22 we get that for each

pair u, v, with k samples, we can achieve a success probability 1/2 + c1

√
k |µpuv − µquv| of

correctly estimating sign(µpuv − µquv). Following this up with analogous proofs of Lemmas

9 and 10 where µe is replaced by µpe − µqe, we achieve our goal of weakly learning the signs

with a sufficient success probability.

By making these changes we arrive at the following theorem for testing identity to an

Ising model under no external field.

Theorem 7 (Identity Testing using Learn-Then-Test, No External Field). Suppose p and

q are Ising models in the high temperature regime under no external field. The learn-then-

test algorithm takes in Õ
(
n2/3 max{n2/3,nβd0.5max}β2

ε2

)
i.i.d. samples from p and distinguishes
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between the cases p = q and dSKL(p, q) ≥ ε with probability ≥ 9/10.

The tester is formally described in Algorithm 6.

Algorithm 6 Test if an Ising model p under no external field is identical to q

1: function TestIsing(sample access to an Ising model p, β, dmax, ε, τ , description of Ising
model q under no external field)

2: Run the localization Algorithm 2 with accuracy parameter ε
nτ . If it identifies any

edges, return that dSKL(p, q) ≥ ε
.

3: for ` = 1 to O(n2−τ ) do
4: Run the weak learning Algorithm 4 on S = {XuXv − µquv}u6=v with parameters

τ2 = τ and ε/β to generate a sign vector ~Γ(`) where Γ
(`)
uv is weakly correlated

with sign (E [Xuv − µquv])

.

5: end for
6: Using the same set of samples for all `, run the testing algorithm of Lemma 11

on each of the ~Γ(`) with parameters τ2 = τ, δ = O(1/n2−τ ). If any output that
dSKL(p, q) ≥ ε, return that dSKL(p, q) ≥ ε. Otherwise, return that p = q

.

7: end function

Identity Testing under an External Field

When an external field is present, two things change. Firstly, the terms corresponding to

nodes of the Ising model in the SKL expression no longer vanish and have to be accounted

for. Secondly, the statistic we use is not appropriately centered and can have a variance of

O(n3). This worsens the sample complexity slightly. We will describe the first change in

more detail now. Again, we start by considering an upper bound on the SKL between Ising

models p and q.

dSKL(p, q) =
∑
v∈V

(θpv − θqv) (µpv − µqv) +
∑

(u,v)∈E

(θpuv − θquv) (µpuv − µquv)

=⇒ dSKL(p, q) ≤ 2h
∑
v∈V
|(µpv − µqv)|+ 2β

∑
u6=v
|(µpuv − µquv)|

Hence if dSKL(p, q) ≥ ε, then either

• 2h
∑

v∈V |(µ
p
v − µqv)| ≥ ε/2 or

• 2β
∑

u6=v |(µ
p
uv − µquv)| ≥ ε/2.

Moreover, if p = q, then both 2h
∑

v∈V |(µ
p
v − µqv)| = 0 and 2β

∑
u6=v |(µ

p
uv − µquv)| = 0. Our

tester will first test for case (i) and if that test doesn’t declare that the two Ising models

are far, then proceeds to test whether case (ii) holds.
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We will first describe the test to detect whether
∑

v∈V |(µ
p
v − µqv)| = 0 or is ≥ ε/2h. We

observe that the random variables Xv are Rademachers and hence we can use the weak-

learning framework we developed so far to accomplish this goal. The statistic we consider

is Z =
∑

v∈V sign(µpv) (Xv − µqv). Again, as before, we face two challenges: we don’t know

the signs of the node expectations µpv and we need a bound on Var(Z).

We employ the weak-learning framework described in Sections 4.1-4.4 to weakly learn a

sign vector correlated with the true sign vector. In particular, sinceXv ∼ Rademacher(1/2+

µv/2), from Corollary 1, we have that with k samples we can correctly estimate sign(µpv−µqv)

with probability 1/2 + c1

√
k |µpv − µqv|. The rest of the argument for obtaining a sign vector

which, with sufficient probability, preserves a sufficient amount of signal from the expected

value of the statistic, proceeds in a similar way as before. However since the total number of

terms we have in our expression is only linear we get some savings in the sample complexity.

And from Lemma 13, we have the following bound on functions fc(.) of the form fc(X) =∑
v∈V cvXv (where c ∈ {±1}V ) on the Ising model:

Var(fc(X)) = O(n).

By performing calculations analogous to the ones in Sections 4.3 and 4.4, we obtain that

by using Õ
(
n5/3h2

ε2

)
samples we can test whether

∑
v∈V |(µ

p
v − µqv)| = 0 or is ≥ ε/4h with

probability ≥ 19/20. If the tester outputs that
∑

v∈V |(µ
p
v − µqv)| = 0, then we proceed to

test whether
∑

u6=v |(µ
p
uv − µquv)| = 0 or ≥ ε/4β.

To perform this step, we begin by looking at the statistic Z used in Section 4.5:

Z =
∑
u6=v

sign (µpuv − µquv) (XuXv − µquv)

as Z has the right expected value. We learn a sign vector which is weakly correlated with

the true sign vector. However we need to obtain a variance bound on functions of the form

fc(X) =
∑

u6=v cuv(XuXv − µquv) where c ∈ {±1}(
V
2). By ignoring the constant term in

fc(X), we get that,

Var(fc(X)) = Var

∑
u6=v

cuvXuXv


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which can be Ω(n3) as it is not appropriately centered. We employ this slightly worse

variance bound to get a sample complexity of Õ
(
n11/3β2

ε2

)
for this part.

Theorem 8 captures the total sample complexity of our identity tester under the presence

of external fields.

Theorem 8 (Identity Testing using Learn-Then-Test, Arbitrary External Field). Suppose

p and q are Ising models in the high temperature regime under arbitrary external fields. The

learn-then-test algorithm takes in Õ
(
n5/3h2+n11/3β2

ε2

)
i.i.d. samples from p and distinguishes

between the cases p = q and dSKL(p, q) ≥ ε with probability ≥ 9/10.

The tester is formally described in Algorithm 7.

Algorithm 7 Test if an Ising model p under an external field is identical to Ising model q

1: function TestIsing(sample access to an Ising model p, β, dmax, ε, τ1, τ2, description of
Ising model q)

2: Run the localization Algorithm 2 on the nodes with accuracy parameter ε
2nτ1 . If it

identifies any nodes, return that dSKL(p, q) ≥ ε
.

3: for ` = 1 to O(n1−τ1) do
4: Run the weak learning Algorithm 4 on S = {(Xu − Yu}u∈V , where Yu ∼

Rademacher(1/2+µqu/2), with parameters τ1 and ε/2h to generate a sign vector
~Γ(`) where Γ

(`)
u is weakly correlated with sign (E [Xu − µqu])

.

5: end for
6: Using the same set of samples for all `, run the testing algorithm of Lemma 11

on each of the ~Γ(`) with parameters τ3 = τ1, δ = O(1/n1−τ1). If any output that
dSKL(p, q) ≥ ε, return that dSKL(p, q) ≥ ε

.

7: ————————–
8: Run the localization Algorithm 2 on the edges with accuracy parameter ε

2nτ2 . If it
identifies any edges, return that dSKL(p, q) ≥ ε

.

9: for ` = 1 to O(n2−τ2) do
10: Run the weak learning Algorithm 4 on S = {(XuXv − Yuv}u6=v, where Yuv ∼

Rademacher(1/2+µquv/2), with parameters τ2 and ε/2β to generate a sign vector
~Γ(`) where Γ

(`)
uv is weakly correlated with sign (E [XuXv − µquv])

.

11: end for
12: Using the same set of samples for all `, run the testing algorithm of Lemma 11

on each of the ~Γ(`) with parameters τ4 = τ2, δ = O(1/n2−τ2). If any output that
dSKL(p, q) ≥ ε, return that dSKL(p, q) ≥ ε. Otherwise, return that p = q

.

13: end function
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Chapter 5

Bounding the Variance of

Functions of the Ising Model in the

High-Temperature Regime

In this chapter, we describe our technique for bounding the variance of our statistics on

the Ising model in high temperature. As the structure of Ising models can be quite com-

plex, it can be challenging to obtain non-trivial bounds on the variance of even relatively

simple statistics. In particular, to apply our learn-then-test framework of Chapter 4, we

must bound the variance of statistics of the form Z ′ =
∑

u6=v cuvXuXv (from (4.3)) and

Z ′cen =
∑

u6=v cuv

(
X

(1)
u −X(2)

u

)(
X

(1)
v −X(2)

v

)
(from (4.6)). While the variance for both

the statistics is easily seen to be O(n2) if the graph has no edges, it proves challenging to

prove variance bounds better than the trivial O(n4) for general graphs. In order to do this,

we use the technique of exchangeable pairs, inspired by Chatterjee’s thesis [27]. While a

straightforward application of his result gives an improved bound of O(n3), we must extend

his framework to achieve tighter bounds. We believe this technique may be of independent

interest when analyzing statistics of distributions which exhibit such rich and complex struc-

ture. We state the main results of this chapter now. Our first result, Theorem 9, bounds

the variance of functions of the form
∑

u6=v cuvXuXv under no external field which captures

the statistic used for testing independence and identity by the learn-then-test framework of

Chapter 4 in the absence of an external field.

Theorem 9 (High Temperature Variance Bound, No External Field). Let c ∈ [−1, 1](
V
2)

and define fc : {±1}V → R as follows: fc(x) =
∑

i 6=j c{i,j}xixj. Let also X be distributed

according to an Ising model, without node potentials (i.e. θv = 0, for all v), in the high
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temperature regime of Definition 2. Then

Var (fc(X)) = Õ(n1.5 ·max
v
|c·v|2) +O

(
n2.5 ·max

v
|c·v|2 · d1.5

max · β3
)
.

In particular, since β ≤ 1/4dmax and maxv |c·v|2 ≤
√
n for the function corresponding to

our statistic of interest, the above bound is always Õ(n2) + Õ
(

n3

d1.5max

)
. For dense graphs it

is Õ(n2).

Our second result of this chapter, Theorem 10, bounds the variance of functions of

the form
∑

u6=v cuv(X
(1)
u − X(2)

u )(X
(1)
v − X(2)

v ) which captures the statistic of interest for

independence testing using the learn-then-test framework of Chapter 4 under an external

field. Intuitively, this modification is required to “recenter” the random variables. Here, we

view the two samples from Ising model p over graph G = (V,E) as coming from a single

Ising model p⊗2 over a graph G(1) ∪G(2) where G(1) and G(2) are identical copies of G.

Theorem 10 (High Temperature Variance Bound, Arbitrary External Field). Let c ∈

[−1, 1](
V
2) and let X be distributed according to Ising model p⊗2 over graph G(1) ∪ G(2) in

the high temperature regime of Definition 2 and define fc : {±1}V ∪V ′ → R as follows:

fc(x) =
∑

u,v∈V
s.t. u6=v

cuv(xu(1) − xu(2))(xv(1) − xv(2)). Then

Var(fc(X)) = Õ
(
n1.5 max

v
|c·v|2

)
+ Õ(n2.5 max

v
|c·v|2 · dmax · β2).

In particular, since β ≤ 1/4dmax and maxv |c·v|2 ≤
√
n, the above bound is always Õ(n2) +

Õ
(

n3

dmax

)
. For dense graphs it is Õ(n2).

5.1 Overview of the Technique

We will present an overview of the technique used to obtain the aforementioned results by

considering the statistic of interest under the absence of an external field, Z ′. The result for

Z ′cen uses an extension of the same technique and is presented in greater detail in Section

5.3.

Given some c ∈ [−1, 1](
V
2), we define fc : {±1}V → R as follows: fc(x) =

∑
i 6=j c{i,j}xixj .

To ease our notation, we will set cij = cji = c{i,j}. We are interested to bound the variance

of fc(X), when X is sampled from an Ising model p on graph G = (V,E) with a parameter

vectore ~θ. An obvious bound on the variance is O(n4 max{cij}2). On the other hand,

if the Ising model was a product distribution, then the variance would be bounded by
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O(n2 max{cij}2). Our goal is to match the variance bound for product distributions, in the

high temperature regime. We will do this using exchangeable pairs. Our proof is inspired by

Chapter 4 of Chatterjee’s thesis [27], but it has significant differences from that development.

Using technology lifted off from Chatterjee’s thesis we can quite straightforwardly obtain

a variance bound of O(n3 max{cij}2). Lemma 13 states the variance bound we get from

Chatterjee’s thesis [27]:

Lemma 13. Consider any function f(X) on the variables of the Ising model. Let ci be the

Lipschitz constant of f(.) corresponding to variable Xi. That is,

1

2

∣∣f(X1, . . . , Xi, . . . , Xn)− f(X1, . . . , X
′
i, . . . , Xn)

∣∣ ≤ ci
for any Xi, X

′
i and for all possible values of X1, . . . , Xi−1, Xi+1, . . . , Xn. In the high tem-

perature regime,

Var(f(X)) ≤
∑
i

c2
i .

Our function of interest on the Ising model has a Lipschitz constant of O(n) max{cij}.

Hence by Lemma 13, in the high temperature regime

Var

∑
i 6=j

cijXiXj

 ≤ max{cij}2 × n× n2 = O(n3) max{cij}2. (5.1)

To push the variance down further we need to develop new machinery, involving a

different coupling and more delicate contraction arguments. We discuss these differences as

we develop our bounds.

On with our argument, we consider an exchangeable pair (X,X ′) defined as follows: we

sample a state X from the Ising model, and let X ′ be the state reached after one step of

the Glauber dynamics from X. In particular, X ′ is obtained by choosing a node v ∈ V

uniformly at random, and sampling X ′v from the marginal distribution of the Ising model

at v conditioning the state of v’s neighbors to be XN(v). For all other nodes u 6= v, we set

X ′u = Xu.

We are now seeking an antisymmetric function F (x, x′) such that:

E
[
F (X,X ′)X

]
= fc(X)−E [fc(X)] . (5.2)

To identify one, we consider the evolution (Xt)t of the Glauber dynamics starting at some

arbitrary state X0 = x and a coupled evolution (X ′t)t of the Glauber dynamics starting at
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some state X ′0 = x′. Besides being a faithful coupling, our coupling should also satisfy the

following property:
P: For every initial values (x, x′) and every t, the marginal distribution of Xt

depends only on x and the marginal distribution of X ′t depends only on x′.
If our coupling satisfies property P and additionally

∀(x, x′) :

∞∑
t=0

|E
[
fc(Xt)− fc(X ′t)X0 = x,X ′0 = x′

]
| <∞, (5.3)

then we can define our antisymmetric function F , satisfying (5.2), as follows:

F (x, x′) =
∞∑
t=0

E
[
fc(Xt)− fc(X ′t)X0 = x,X ′0 = x′

]
, (5.4)

i.e. we are summing the expected differences of our function applied to the trajectories

of our coupled dynamics. That F , defined as above, satisfies (5.2) under Conditions P

and (5.3), is simple and can be found as Lemma 4.2 in Chatterjee’s thesis [27]. In terms of

our exchangeable pair (X,X ′) and function F defined as above, we can express the variance

of fc(X) as follows:

Var (fc(X)) =
1

2
·E
[
(fc(X)− fc(X ′)) · F (X,X ′)

]
. (5.5)

Henceforth, to bound the variance of fc(X) we will bound the RHS of (5.5). We shall do

this in a few steps.

5.1.1 Choosing a Coupling

We will be considering the following coupling of (Xt)t and (X ′t)t. At every time step t > 0,

to set (Xt, X
′
t) in terms of (Xt−1, X

′
t−1), we choose to update the same (uniformly randomly

chosen) node v in both chains. However, we will set this node in Xt and X ′t independently.

We call our coupling the “generous coupling,” in contrast to the “greedy coupling” used

by Chatterjee, where the state of node v in the two chains is set so as to maximize the

probability of agreement. Intuitively, a greedy coupling appears effective, as our ultimate

goal is to bound the RHS of (5.5). Given that F (X,X ′) involves a summation over the

differences of fc(·) applied to the trajectories of the two chains, as per (5.4), a reasonable

approach is to bias the coupling towards minimizing the Hamming distance between Xt

and X ′t. Despite this intuition, we elect not to use the greedy coupling for our analysis.

Using our generous coupling, enables us to improve by a factor of Ω(n) the variance bounds
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obtained in Section 4.2 of Chatterjee’s thesis, and by factor of Ω(n2) the naive bounds.

5.1.2 Establishing Contraction and Completing the Proof

At this point, we could follow Chatterjee’s recipe and obtain a variance bound of O(n3) as

follows. First, expanding out the expression for F (x, x′), we get that

Var (fc(X)) =
1

2

∞∑
t=0

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
.

Since the mixing time of this chain is t∗ = O(n log n), the sum of the contributions of terms

t > t∗ is negligible, and thus, we must bound |fc(Xt)− fc(X ′t)| only for t = O(n log n). We

note that |fc(X) − fc(X ′)| ≤
∑

i n1{
∑
j Xj 6=X′j}. Chatterjee shows that if f satisfies such a

Lipschitz condition, it implies the bound Var(fc(X)) ≤
∑

i n
2 = O(n3).

We diverge from his strategy, and apply a more careful argument. First, instead of

showing that a specific function contracts, we must show that a family of related multi-

linear functions, with different coefficients, contracts simultaneously. Secondly, since we

are not using Hamming distance as a measure of progress, and we are doing a generous

coupling instead of Chatterjee’s greedy coupling, we need to deal more directly with the

non-linearities of the Glauber updates. This involves linearizing the tanh function, which

comes at the cost of quadratic or cubic error terms which accumulate as we backpropa-

gate our contraction bound from time t∗ to time 0. To control these error terms, we must

bootstrap the concentration of linear functions of the Ising model, which can be proven

by appealing directly to Chatterjee’s results without loss. Ultimately, our variance bounds

also imply tight concentration results for multilinear functions of the Ising model, which

are similarly better by a factor of O(n) in comparison to Chatterjee.

Our variance bound for the relevant statistics of interest in the presence of external

fields is slightly worse. More details on the proof of Theorem 9 are given in Section 5.2.

Theorem 10 is proven in Section 5.3.

5.2 Bounding Variance of fc(·), No External Field

In this section, we prove Theorem 9. We recall the statement of Theorem 9,

Theorem 9 (High Temperature Variance Bound, No External Field). Let c ∈ [−1, 1](
V
2)

and define fc : {±1}V → R as follows: fc(x) =
∑

i 6=j c{i,j}xixj. Let also X be distributed

according to an Ising model, without node potentials (i.e. θv = 0, for all v), in the high
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temperature regime of Definition 2. Then

Var (fc(X)) = Õ(n1.5 ·max
v
|c·v|2) +O

(
n2.5 ·max

v
|c·v|2 · d1.5

max · β3
)
.

In particular, since β ≤ 1/4dmax and maxv |c·v|2 ≤
√
n for the function corresponding to

our statistic of interest, the above bound is always Õ(n2) + Õ
(

n3

d1.5max

)
. For dense graphs it

is Õ(n2).

5.2.1 Establishing Contraction

We now need to show that as our coupled dynamics evolve, the fc(Xt)− fc(X ′t) contracts.

We first establish a one-step contraction in the following statement. The terms involving

function e(·) are error terms.

Lemma 14. Consider the vector function g(·) mapping a vector c ∈ R(V2) to the following

vector: g(c){u,w} :=
∑

v∈N(w) cuvθwv+
∑

v∈N(u) cwvθuv, for all w 6= u. Consider also a pair of

coupled executions (Xt)t, (X ′t)t of the Glauber dynamics on some Ising model, starting from

a pair of arbitrary states X0, X
′
0. Suppose these executions are coupled using the generous

coupling of Section 5.1.1. If the Ising model has no node potentials (i.e. θv = 0,∀v), then

for all t and point-wise with respect to Xt, X
′
t:

E
[
fc(Xt+1)− fc(X ′t+1) Xt, X

′
t

]
=

(
1− 2

n

)(
fc(Xt)− fc(X ′t)

)
+

1

n

(
fg(c)(Xt)− fg(c)(X ′t)

)
± e(c,Xt)± e(c,X ′t),

where e(·) is the non-negative function defined as follows:

e(c,Xt) =
1

3n

∑
v

∣∣∣∣∣∣
∑
u6=v

cuvXt,u

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwvXt,w

∣∣∣∣∣∣
3

.
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Proof of Lemma 14: For all Xt, X
′
t:

E
[
fc(Xt+1)− fc(X ′t+1) Xt, X

′
t

]
=

=
1

n

∑
v

E
[
fc(Xt+1)− fc(X ′t+1) Xt, X

′
t, node v is chosen in step t+ 1

]
=

1

n

∑
v

fc(Xt)−
∑
u6=v

cuvXt,uXt,v − fc(X ′t) +
∑
u6=v

cuvX
′
t,uX

′
t,v

+ (5.6)

+
1

n

∑
v

∑
u6=v

cuvXt,u tanh

 ∑
w∈N(v)

θwvXt,w

−∑
u6=v

cuvX
′
t,u tanh

 ∑
w∈N(v)

θwvX
′
t,w


(5.7)

=

(
1− 2

n

)(
fc(Xt)− fc(X ′t)

)
(5.8)

+
1

n

∑
v

∑
u6=v

cuvXt,u tanh

 ∑
w∈N(v)

θwvXt,w

− 1

n

∑
v

∑
u6=v

cuvX
′
t,u tanh

 ∑
w∈N(v)

θwvX
′
t,w


(5.9)

where Line (5.6) accounts for the terms of fc(Xt+1) and fc(X
′
t+1) that stay untouched when

we randomly chose to update node v in our coupled dynamics, while Line (5.7) accounts for

the terms that do change. Given our generous coupling, the values of Xt+1,v and X ′t+1,v are

set independently from their marginal distributions conditioning on Xt and X ′t respectively,

and their expectations are the expressions involving tanh(·) in Line (5.7). Finally, in (5.8)

we rewrote (5.6) more neatly, emphasizing a contraction that takes place, while (5.9) just

replicates (5.7).

Our goal next is to get rid of the tanh’s. We start with a trivial claim:

Claim 2. | tanh(x)− x| ≤ |x|
3

3 for all x ∈ R.
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Using derivation (5.6)-(5.9), and Claim 2 we get that

E
[
fc(Xt+1)− fc(X ′t+1) Xt, X

′
t

]
=

(
1− 2

n

)(
fc(Xt)− fc(X ′t)

)
+

1

n

∑
v

∑
u6=v

cuvXt,u

∑
w∈N(v)

θwvXt,w −
1

n

∑
v

∑
u6=v

cuvX
′
t,u

∑
w∈N(v)

θwvX
′
t,w (5.10)

± 1

3n

∑
v

∣∣∣∣∣∣
∑
u6=v

cuvXt,u

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwvXt,w

∣∣∣∣∣∣
3

± 1

3n

∑
v

∣∣∣∣∣∣
∑
u6=v

cuvX
′
t,u

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwvX
′
t,w

∣∣∣∣∣∣
3

=

(
1− 2

n

)(
fc(Xt)− fc(X ′t)

)
+

1

n

∑
u6=w

 ∑
v∈N(w)

cuvθwv +
∑

v∈N(u)

cwvθuv

 (Xt,uXt,w −X ′t,uX ′t,w) (5.11)

+
1

n

∑
u

 ∑
v∈N(u)

cuvθuv

 (X2
t,u −X ′2t,u) (5.12)

± e(c,Xt)± e(c,X ′t)

=

(
1− 2

n

)(
fc(Xt)− fc(X ′t)

)
+

1

n

(
fg(c)(Xt)− fg(c)(X ′t)

)
± e(c,Xt)± e(c,X ′t), (5.13)

where the sum of (5.11) and (5.12) is a rewriting of (5.10), (5.12) is actually 0, and g(·),

e(·) are defined as in the statement of the lemma.

Using Lemma 14, we can establish a multi-step contraction. The terms involving func-

tion e2(·) in the statement, encapsulate the error that is being accumulated and needs to

be controlled:

Lemma 15. Consider the same setup as that of Lemma 14. Then, for all t and point-wise

with respect to X0, X
′
0:

E
[
fc(Xt)− fc(X ′t) X0, X

′
0

]
=

t∑
`=0

(
t

`

)(
1− 2

n

)t−`( 1

n

)`
·
(
fg◦`(c)(X0)− fg◦`(c)(X ′0)

)
± et2(c,X0)± et2(c,X ′0),

where g◦`(·) denotes the `-fold composition of g with itself, and et2(·) is the non-negative

function defined as follows in terms of function e(·) of the statement of Lemma 14:

et2(c,X0) =

t−1∑
`=0

t−1−`∑
q=0

(
t− 1− `

q

)(
1− 2

n

)t−1−`−q ( 1

n

)q
E [e(g◦q(c), X`)X0] .
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Proof of Lemma 15: The proof uses Lemma 14, and property P of our coupling, and proceeds

by induction. It is straightforward to verify that the base case for induction, t = 1, follows

from Lemma 14. Assume the statement holds for some t > 1. We will show that it holds

for t+ 1 as well. First, from the law of iterated expectations, we have,

E
[
fc(Xt+1)− fc(X ′t+1) X0, X

′
0

]
= E

[
E
[
fc(Xt+1)− fc(Xt+1) Xt, X

′
t

]
X0, X

′
0

]
Therefore from Lemma 14, we get

E
[
fc(Xt+1)− fc(X ′t+1) X0, X

′
0

]
=

(
1− 2

n

)
E
[
fc(Xt)− fc(X ′t) X0, X

′
0

]
+

+
1

n
E
[
fg(c)(Xt)− fg(c)(X ′t) X0, X

′
0

]
±E [e(c,Xt) X0]±E

[
e(c,X ′t) X ′0

]
=

(
1− 2

n

)( t∑
`=0

(
t

`

)(
1− 2

n

)t−`( 1

n

)`
·
(
fg◦`(c)(X0)− fg◦`(c)(X ′0)

))

+
1

n

(
t∑

`=0

(
t

`

)(
1− 2

n

)t−`( 1

n

)`
·
(
fg◦`+1(c)(X0)− fg◦`+1(c)(X

′
0)
))

±
(

1− 2

n

)
et2(c,X0)±

(
1− 2

n

)
et2(c,X ′0)± 1

n
et2(c,X0)

± 1

n
et2(c,X ′0)±E [e(c,Xt) X0]±E

[
e(c,X ′t) X ′0

]
=

t+1∑
`=0

(
t+ 1

`

)(
1− 2

n

)t+1−`( 1

n

)`
·
(
fg◦`(c)(X0)− fg◦`(c)(X ′0)

)
±
((

1− 2

n

)
et2(c,X0) +

1

n
et2(c,X0) + E [e(c,Xt) X0]

)
±
((

1− 2

n

)
et2(c,X ′0) +

1

n
et2(c,X ′0) + E

[
e(c,X ′t) X ′0

])
.

It can be verified that
(
1− 2

n

)
et2(c,X0) + 1

ne
t
2(c,X0) + E [e(c,Xt) X0] = et+1

2 (c,X0) using

the definition of et2(.) from the statement of the Lemma. Therefore, by induction, this shows

the statement is true for all t ≥ 1.

5.2.2 Bounding the Variance of fc(·) under High Temperature, No Exter-

nal Field

We are now ready to bound the variance of fc(·), using (5.5), (5.4), our generous coupling

of Section 5.1.1 and our recently established contraction property achieved by this coupling

(Lemma 15). We prove Theorem 9.
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Proof of Theorem 9: (5.5) and (5.4) give

Var (fc(X)) =
1

2
·E
[
(fc(X)− fc(X ′)) · F (X,X ′)

]
=

1

2

∞∑
t=0

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
. (5.14)

In Lemma 24, we establish that the mixing time of the Ising model under high temperature

is O(n log n). In fact, it follows from our proof of Lemma 24 that, for all t∗, if we start the

Glauber dynamics from an arbitrary state X0, then the total variation between the state,

Xt∗ , of the dynamics at time t∗ and a random sample from the Ising model is bounded by

n
(

1− 1−η
n

)t∗
. Hence, for large enough t∗ = Ω(n log n):

|E
[
fc(Xt)− fc(X ′t)X0, X

′
0

]
| ≤ ne−(1−η) t

∗
n 4n2 max |cij | = 4e−(1−η) t

∗
n n3 max |cij |,

where n2 max |cij | is a trivial bound on the maximum absolute value of fc(·). Hence, for

large enough t∗ = Ω(n log n):

E
[
|fc(X0)− fc(X ′0)| · |E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]
|
]
≤ 8e−(1−η) t

∗
n n5 max |cij |2.

This implies that for large enough t∗ = Ω(n log n):

1

2

∞∑
t=t∗

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
≤ 4n5 max |cij |2

∞∑
t=t∗

e−(1−η) t
∗
n

≤ 4n5 max |cij |2e−(1−η) t
∗
n

1

1− e−(1−η) 1
n

≤ 4n5 max |cij |2e−(1−η) t
∗
n

n

1− η
≤ max |cij |2 ≤ 1. (5.15)

The above shows that we only need to bound (5.14) for t ranging from 0 to some t∗ =

O(n log n). It also shows that Condition 5.3, required for our anti-symmetric function F ()

to be well-defined, holds.

Bounding (5.14) for t ranging from 0 to some t∗ = O(n log n) requires more work. Let

us take one of the terms, and plug in our bound from Lemma 15. Given that the bound of
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the lemma holds point-wise and e2() is non-negative we have:

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
≤

t∑
`=0

(
t

`

)(
1− 2

n

)t−`( 1

n

)`
·E
[∣∣fc(X0)− fc(X ′0)

∣∣ ∣∣∣fg◦`(c)(X0)− fg◦`(c)(X ′0)
∣∣∣] (5.16)

+ E
[∣∣fc(X0)− fc(X ′0)

∣∣ et2(c,X0)
]

+ E
[∣∣fc(X0)− fc(X ′0)

∣∣ et2(c,X ′0)
]
. (5.17)

Now, recall that the pair (X0, X
′
0) is sampled as follows: X0 is a sample from the Ising

model, and X ′0 is one step of the Glauber dynamics from X0. So:

∣∣fc(X0)− fc(X ′0)
∣∣ ≤ 2 max

v

∣∣∣∣∣∣
∑
u6=v

cuvX0,u

∣∣∣∣∣∣ .
It follows from Lemma 25 that, for all v, a sample X0 from an Ising model (without node

potentials that we are analyzing) satisfies:

Pr

∣∣∣∣∣∣
∑
u6=v

cuvX0,u

∣∣∣∣∣∣ ≥ t
 ≤ 2e

− (1−η)t2

4
∑
u6=v c

2
uv ,

where η is the constant from Definition 2. So for sufficiently large t = Ω(
√

log n · |c·v|2),

with probability at least 1 − 1
8n3 :

∣∣∣∑u6=v cuvX0,u

∣∣∣ < t. It follows that, with probability at

least 1− 1/8n2, maxv

∣∣∣∑u6=v cuvX0,u

∣∣∣ = O(
√

log n ·maxv |c·v|2). Hence, with probability at

least 1− 1/8n2: ∣∣fc(X0)− fc(X ′0)
∣∣ ≤ O(

√
log n ·max

v
|c·v|2).

By a similar token, for any fixed `, with probability at least 1− 1/8n2:

∣∣∣fg◦`(c)(X0)− fg◦`(c)(X ′0)
∣∣∣ ≤ O(

√
log n ·max

v

∣∣∣g◦`(c)·v∣∣∣
2
).

At the same time, the maximum that 2 maxv

∣∣∣∑u6=v cuvX0,u

∣∣∣ (and hence |fc(X0)− fc(X ′0)|)

can possibly be is 2 maxv |c·v|1 ≤ 2n. Notice that in the regime of Definition 2, function g

maps points in [−1, 1](
V
2) to the same set. Hence the maximum that

∣∣∣fg◦`(c)(X0)− fg◦`(c)(X ′0)
∣∣∣

can possibly be is also at most 2n, for any `.
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It follows from the above calculations that:

E
[∣∣fc(X0)− fc(X ′0)

∣∣ ∣∣∣fg◦`(c)(X0)− fg◦`(c)(X ′0)
∣∣∣] ≤ O(log n ·max

v
|c·v|2 ·max

v

∣∣∣g◦`(c)·v∣∣∣
2
)

≤ O(
√
nlog n ·max

v
|c·v|2) (5.18)

Given that this bound holds for any `, and recognizing the binomial expansion in (5.16),

we obtain the bound:

(5.16) ≤ O(
√
nlog n ·max

v
|c·v|2).

It remains to bound the error terms (5.17). For a fixed ` and q let us try to bound

the term E [e(g◦q(c), X`)X0], involved in the definition of et2(c,X0). For convenience set

c′ = g◦q(c), and recall (as we have pointed out above) that c′ ∈ [−1, 1](
V
2). Recalling the

definition of e() from the statement of Lemma 14, we have that:

E
[
e(c′, X`)X0

]
= E

 1

3n

∑
v

∣∣∣∣∣∣
∑
u6=v

c′uvX`,u

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwvX`,w

∣∣∣∣∣∣
3

X0

 .
Given that X0 is sampled from the Ising model, and X` is the state reached after ` steps

of the Glauber dynamics from X0, it follows that X` is also a sample from the Ising model.

So a similar analysis as the one we did earlier implies that for a fixed v, with probability at

least 1 − 1
2n21 :

∣∣∣∑u6=v c
′
uvX`,u

∣∣∣ < O(
√

log n · |c′·v|2). So, with probability at least 1 − 1
2n20 ,

simultaneously for all v: ∣∣∣∣∣∣
∑
u6=v

c′uvX`,u

∣∣∣∣∣∣ ≤ O(
√

log n ·
√
n).

Via similar arguments, it can be shown that, with probability at least 1− 1
2n20 , simultane-

ously for all v: ∣∣∣∣∣∣
∑

w∈N(v)

θwvX`,w

∣∣∣∣∣∣ ≤ O
(√

log n · dmax · β
)
,

where we used that our working regime is the high-temperature regime of Definition 2.

So it follows from the above that, with probability at least 1− 1/n20, it holds that:

1

3n

∑
v

∣∣∣∣∣∣
∑
u6=v

c′uvX`,u

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwvX`,w

∣∣∣∣∣∣
3

≤ O
(√
n log2 n · d1.5

max · β3
)
.

Let us call the event that the above holds E . We want to view this event as a function
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E = E(X0, G`) of X0 and the decisions G` that the Glauber dynamics made in the first `

steps. Indeed, we want to view X0 and G` as independent random variables. G` samples

independently of X0 which nodes it will update, together with ` uniform [0, 1] random

variables. Then the Glauber dynamics are a deterministic function of X0 and G`. With

this perspective in mind, we have from the above that:

Pr
X0,G`

[E(X0, G`)] ≥ 1− 1

n20
.

From this it follows that

Pr
X0

[
Pr
G`

[E(X0, G`)] ≥ 1− 1/n9

]
≥ 1− 1/n9.

In turn, the above implies that

Pr
X0

E

 1

3n

∑
v

∣∣∣∣∣∣
∑
u6=v

c′uvX`,u

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwvX`,w

∣∣∣∣∣∣
3

X0

 ≤ O (√n log2 n · d1.5
max · β3

) ≥ 1− 1/n9.

i.e.

Pr
X0

[
E
[
e(c′, X`)X0

]
≤ O

(√
n log2 n · d1.5

max · β3
)]
≥ 1− 1/n9. (5.19)

From similar analysis to the one we did earlier we also have:

Pr
X0

[∣∣fc(X0)− fc(X ′0)
∣∣ ≤ O(

√
log n ·max

v
|c·v|2))

]
≥ 1− 1/n9. (5.20)

So (5.19) and (5.20) imply:

E
[∣∣fc(X0)− fc(X ′0)

∣∣E [e(c′, X`)X0

]]
≤ O

(√
n log2.5 n ·max

v
|c·v|2 · d1.5

max · β3
)
. (5.21)

Now the definition of function et2(·) in the statement of Lemma 15 and (5.21) imply that:

E
[∣∣fc(X0)− fc(X ′0)

∣∣ et2(c,X0)
]
≤ O

(
t ·
√
n log2.5 n ·max

v
|c·v|2 · d1.5

max · β3
)
.

The same bound applies to E
[
|fc(X0)− fc(X ′0)| et2(c,X ′0)

]
. So we have successfully bounded

(5.17).
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Using our bounds for (5.16) and (5.17), we get that:

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
(5.22)

≤ O(
√
nlog n ·max

v
|c·v|2) +O

(
t ·
√
n log2.5 n ·max

v
|c·v|2 · d1.5

max · β3
)
. (5.23)

So we can go back to (5.14) to bound the first t∗ terms of the summation, for t∗ =

O(n log n) as set earlier. We get:

1

2

t∗∑
t=0

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
=

= O(n1.5log2 n ·max
v
|c·v|2) +O

(
n2.5 log4.5 n ·max

v
|c·v|2 · d1.5

max · β3
)

(5.24)

Plugging (5.24) and (5.15) into (5.14), we bound the variance as follows:

Var (fc(X)) = Õ(n1.5 ·max
v
|c·v|2) +O

(
n2.5 ·max

v
|c·v|2 · d1.5

max · β3
)
.

5.3 Bounding the Variance of fc(·), Arbitrary External Field

Extending our techniques from Section 5.2, we obtain a variance bound for the centered

multi-linear function on arbitrary Ising models. Firstly, we note that the non-centered

function
∑

u6=vXuXv can have a variance O(n3) even in the case the Ising model is product,

i.e. has no edges. This is because the function
∑

u6=vXuXv is not appropriately centered

when external fields are present. We show a better variance bound on our centered statistic

for independence testing under an external field, as stated in equation (4.6). Recall from

(4.6), that Z ′cen =
∑

u6=v cuv

(
X

(1)
u −X(2)

u

)(
X

(1)
v −X(2)

v

)
is a function of two independent

samples from an Ising model p. Together, the two samples can be viewed as a single sample

from an Ising model which consists of two copies of p put next to each other. The new

Ising model p⊗2 has the underlying graph G(1) + G(2), where G(1) and G(2) are identical

copies of G. Note that p⊗2 is also in the high temperature regime. The statistic Z ′cen now

becomes a multi-linear function of the variables in the Ising model p⊗2. We can then apply

the exchangeable pairs technique described in Section 5.1 to p⊗2 to show a variance bound
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for functions of the form

fc(X) =
∑
u6=v

cuv (Xu(1) −Xu(2)) (Xv(1) −Xv(2))

where c ∈ [−1, 1](
V
2). This will directly imply a bound for Var(Z ′cen). The proof will again

proceed by considering two coupled executions {Xt}t, {X ′t}t of the Glauber dynamics on

the two sample Ising model π⊗2.

Our bound for Var(fc(X)), stated in Theorem 10, is only slightly worse than the one

without node potentials (from Theorem 9):

Theorem 10 (High Temperature Variance Bound, Arbitrary External Field). Let c ∈

[−1, 1](
V
2) and let X be distributed according to Ising model p⊗2 over graph G(1) ∪ G(2) in

the high temperature regime of Definition 2 and define fc : {±1}V ∪V ′ → R as follows:

fc(x) =
∑

u,v∈V
s.t. u6=v

cuv(xu(1) − xu(2))(xv(1) − xv(2)). Then

Var(fc(X)) = Õ
(
n1.5 max

v
|c·v|2

)
+ Õ(n2.5 max

v
|c·v|2 · dmax · β2).

In particular, since β ≤ 1/4dmax and maxv |c·v|2 ≤
√
n, the above bound is always Õ(n2) +

Õ
(

n3

dmax

)
. For dense graphs it is Õ(n2).

The proof of Theorem 10 follows along similar lines as the proof of Theorem 9. The first

step would be to establish contraction of our coupled dynamics fc(Xt)− fc(X ′t) as t grows.

We show this in the following statement. The terms involving function e(.) are error terms.

Lemma 16. Consider the vector function g(·) mapping a vector c ∈ R(V2) to the following

vector: g(c){u,w} :=
∑

v∈N(w) cuv sech2(σv)θwv +
∑

v∈N(u) cwv sech2(σv)θuv, for all w 6= u,

where σv = θv +
∑

w∈N(v) θwvµw. Consider also a pair of coupled executions (Xt)t, (X ′t)t of

the Glauber dynamics on some Ising model, starting from a pair of arbitrary states X0, X
′
0.

Suppose these executions are coupled using the generous coupling of Section 5.1.1. Then for

all t and point-wise with respect to Xt, X
′
t:

E
[
fc(Xt+1)− fc(X ′t+1) Xt, X

′
t

]
=

(
1− 1

n

)(
fc(Xt)− fc(X ′t)

)
+

1

n

(
fg(c)(Xt)− fg(c)(X ′t)

)
± e(c,Xt)± e(c,X ′t),
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where e(·) is the non-negative function defined as follows:

e(c,Xt) =
1

2n

∑
v∈V

∣∣∣∣∣∣
∑
u6=v

cuv(Xt,u(1) −Xt,u(2))

∣∣∣∣∣∣ ∣∣tanh(σv) sech2(σv)
∣∣ ∣∣∣∣∣∣
∑

w∈N(v)

θwv(Xt,w(1) − µw)

∣∣∣∣∣∣
2

+

+
1

2n

∑
v∈V

∣∣∣∣∣∣
∑
u6=v

cuv(Xt,u(1) −Xt,u(2))

∣∣∣∣∣∣ ∣∣tanh(σv) sech2(σv)
∣∣ ∣∣∣∣∣∣
∑

w∈N(v)

θwv(Xt,w(2) − µw)

∣∣∣∣∣∣
2

.
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Proof of Lemma 16: For all Xt, X
′
t:

E
[
fc(Xt+1)− fc(X ′t+1) Xt, X

′
t

]
=

=
1

2n

∑
v(1)∈V (1)

E
[
fc(Xt+1)− fc(X ′t+1) Xt, X

′
t, node v(1) is chosen in step t+ 1

]
+

1

2n

∑
v(2)∈V (2)

E
[
fc(Xt+1)− fc(X ′t+1) Xt, X

′
t, node v(2) is chosen in step t+ 1

]

=
1

2n

∑
v(1)∈V (1)

fc(Xt)−
∑
u6=v

cuv

(
Xt,u(1) −Xt,u(2)

)(
Xt,v(1) −Xt,v(2)

)− (5.25)

− 1

2n

∑
v(1)∈V (1)

fc(X ′t)−∑
u6=v

cuv

(
X ′
t,u(1)

−X ′
t,u(2)

)(
X ′
t,v(1)

−X ′
t,v(2)

)+

+
1

2n

∑
v(2)∈V (2)

fc(Xt)−
∑
u6=v

cuv

(
Xt,u(1) −Xt,u(2)

)(
Xt,v(1) −Xt,v(2)

)− (5.26)

− 1

2n

∑
v(2)∈V (2)

fc(X ′t)−∑
u6=v

cuv

(
X ′
t,u(1)

−X ′
t,u(2)

)(
X ′
t,v(1)

−X ′
t,v(2)

)
+

1

2n

∑
v(1)∈V (1)

∑
u(1) 6=v(1)

cuv

(
Xt,u(1) −Xt,u(2)

)tanh

θv +
∑

w∈N(v)

θwvXt,w(1)

−Xt,v(2)


(5.27)

− 1

2n

∑
v(1)∈V (1)

∑
u(1) 6=v(1)

cuv

(
X ′
t,u(1)

−X ′
t,u(2)

)tanh

θv +
∑

w∈N(v)

θwvX
′
t,w(1)

−X ′
t,v(2)

+

(5.28)

+
1

2n

∑
v(2)∈V (2)

∑
u(2) 6=v(2)

cuv

(
Xt,u(1) −Xt,u(2)

)Xt,v(1) − tanh

θv +
∑

w∈N(v)

θwvXt,w(2)


(5.29)

− 1

2n

∑
v(2)∈V (2)

∑
u(2) 6=v(2)

cuv

(
X ′
t,u(1)

−X ′
t,u(2)

)X ′
t,v(1)

− tanh

θv +
∑

w∈N(v)

θwvX
′
t,w(2)


(5.30)
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The above expression on simplification yields the following:(
1− 1

n

)(
fc(Xt)− fc(X ′t)

)
+ (5.31)

+
1

2n

∑
v∈V

∑
u6=v

cuv

(
Xt,u(1) −Xt,u(2)

)
tanh

θv +
∑

w∈N(v)

θwvXt,w(1)


− 1

2n

∑
v∈V

∑
u6=v

cuv

(
Xt,u(1) −Xt,u(2)

)
tanh

θv +
∑

w∈N(v)

θwvXt,w(2)


− 1

2n

∑
v∈V

∑
u6=v

cuv

(
X ′
t,u(1)

−X ′
t,u(2)

)
tanh

θv +
∑

w∈N(v)

θwvX
′
t,w(1)


+

1

2n

∑
v∈V

∑
u6=v

cuv

(
X ′
t,u(1)

−X ′
t,u(2)

)
tanh

θv +
∑

w∈N(v)

θwvX
′
t,w(2)

 .

In the above derivation, we have followed the same strategy as the one in Lemma 14 where

we first split fc(Xt+1)−fc(X ′t+1) into terms which stay untouched when we randomly choose

to update nodes v or v′ in our coupled dynamics and the terms which do change. Given

our generous coupling, the values of Xt+1,v and X ′t+1,v are set independently from their

marginal distributions conditioning on Xt and X ′t respectively, and their expectations are

the expressions involving tanh(·) in Lines (5.27)-(5.30).

Our goal next is to get rid of the tanh’s. We will use the following claim which follows

from Taylor’s theorem:

Claim 3.
∣∣tanh(x+ a)− tanh(a)− sech2(a)x

∣∣ ≤ tanh(a) sech2(a)|x|2 for all x ∈ R.

Note that all the tanh expressions involved in the above derivation have the same ex-

pected value σv := θv +
∑

w∈N(v) θwvE[Xw]. We perform a Taylor approximation of the
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tanhs around σv. Using derivation (5.27)-(5.31), and Claim 3 we get that,

E
[
fc(Xt+1)− fc(X ′t+1) Xt, X

′
t

]
=

(
1− 1

n

)(
fc(Xt)− fc(X ′t)

)
+

+
1

2n

∑
v∈V

∑
u6=v

cuv

(
Xt,u(1) −Xt,u(2)

)sech2(σv)
∑

w∈N(v)

θwv

(
Xt,w(1) −Xt,w(2)

)
− 1

2n

∑
v∈V

∑
u6=v

cuv

(
X ′
t,u(1)

−X ′
t,u(2)

)sech2(σv)
∑

w∈N(v)

θwv

(
X ′
t,w(1) −X ′t,w(2)

)
± 1

2n

∑
v∈V

∣∣∣∣∣∣
∑
u6=v

cuv(Xt,u(1) −Xt,u(2))

∣∣∣∣∣∣ ∣∣tanh(σv) sech2(σv)
∣∣ ∣∣∣∣∣∣
∑

w∈N(v)

θwv(Xt,w(1) − µw)

∣∣∣∣∣∣
2

± 1

2n

∑
v∈V

∣∣∣∣∣∣
∑
u6=v

cuv(Xt,u(1) −Xt,u(2))

∣∣∣∣∣∣ ∣∣tanh(σv) sech2(σv)
∣∣ ∣∣∣∣∣∣
∑

w∈N(v)

θwv(Xt,w(2) − µw)

∣∣∣∣∣∣
2

± 1

2n

∑
v∈V

∣∣∣∣∣∣
∑
u6=v

cuv(X
′
t,u(1)

−X ′
t,u(2)

)

∣∣∣∣∣∣ ∣∣tanh(σv) sech2(σv)
∣∣ ∣∣∣∣∣∣
∑

w∈N(v)

θwv(X
′
t,w(1) − µw)

∣∣∣∣∣∣
2

± 1

2n

∑
v∈V

∣∣∣∣∣∣
∑
u6=v

cuv(X
′
t,u(1)

−X ′
t,u(2)

)

∣∣∣∣∣∣ ∣∣tanh(σv) sech2(σv)
∣∣ ∣∣∣∣∣∣
∑

w∈N(v)

θwv(X
′
t,w(2) − µw)

∣∣∣∣∣∣
2

=

(
1− 1

n

)(
fc(Xt)− fc(X ′t)

)
+

1

n

(
fg(c)(Xt)− fg(c)(X ′t)

)
± e(c,Xt)± e(c,X ′t).

Using Lemma 16, we now establish a multi-step contraction. The terms involving func-

tion et2(·) in the statement, encapsulate the error that is being accumulated and needs to

be controlled:

Lemma 17. Consider the same setup as that of Lemma 16. Then for all t and point wise

with respect to X0, X
′
0:

E
[
fc(Xt)− fc(X ′t) X0, X

′
0

]
=

t∑
`=0

(
t

`

)(
1− 1

n

)t−`( 1

n

)`
·
(
fg◦`(c)(X0)− fg◦`(c)(X ′0)

)
± et2(c,X0)± et2(c,X ′0),

where g◦`(·) denotes the `-fold composition of g with itself, and et2(·) is the non-negative
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function defined as follows in terms of function e(·) of the statement of Lemma 16:

et2(c,X0) =
t−1∑
`=0

t−1−`∑
q=0

(
t− 1− `

q

)(
1− 1

n

)t−1−`−q ( 1

n

)q
E [e(g◦q(c), X`)X0] .

The proof of Lemma 17 uses induction and follows along similar lines to that of Lemma

15, hence it is skipped here.

We are now ready to bound the variance of fc(·) and prove Theorem 10:

Proof of Theorem 10: (5.5) and (5.4) give

Var (fc(X)) =
1

2
·E
[
(fc(X)− fc(X ′)) · F (X,X ′)

]
=

1

2

∞∑
t=0

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
. (5.32)

Using the same argument as in the proof of Theorem 9 it follows that for large enough

t∗ = Ω(n log n):

1

2

∞∑
t=t∗

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
≤ 1. (5.33)

The above shows that we only need to bound (5.32) for t ranging from 0 to some t∗ =

O(n log n). It also shows that Condition 5.3, required for our anti-symmetric function F ()

to be well-defined, holds.

To bound (5.32) for t ranging from 0 to t∗ = O(n log n), let us take one of the terms, and

plug in the bound from Lemma 17. Given that the bound of the lemma holds point-wise

and e2() is non-negative we have:

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
≤

t∑
`=0

(
t

`

)(
1− 1

n

)t−`( 1

n

)`
·E
[∣∣fc(X0)− fc(X ′0)

∣∣ ∣∣∣fg◦`(c)(X0)− fg◦`(c)(X ′0)
∣∣∣] (5.34)

+ E
[∣∣fc(X0)− fc(X ′0)

∣∣ et2(c,X0)
]

+ E
[∣∣fc(X0)− fc(X ′0)

∣∣ et2(c,X ′0)
]
. (5.35)

Now, recall that the pair (X0, X
′
0) is sampled as follows: X0 is a sample from the Ising
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model, and X ′0 is one step of the Glauber dynamics from X0. So:

∣∣fc(X0)− fc(X ′0)
∣∣ ≤ 2 max

v

∣∣∣∣∣∣
∑
u6=v

cuv(X0,u(1) −X0,u(2))

∣∣∣∣∣∣ .
Since E

[∑
u6=v cuv(X0,u(1) −X0,u(2))

]
= 0, it follows from Lemma 25 that, for all v, a sample

X0 from p⊗2 satisfies:

Pr

∣∣∣∣∣∣
∑
u6=v

cuv(X0,u(1) −X0,u(2))

∣∣∣∣∣∣ ≥ t
 ≤ 2e

− (1−η)t2

8
∑
u6=v c

2
uv ,

where η is the constant from Definition 2. So for sufficiently large t = Ω(
√

log n · |c·v|2),

with probability at least 1 − 1
8n3 :

∣∣∣∑u6=v cuv(X0,u(1) −X0,u(2))
∣∣∣ < t. It follows that, with

probability at least 1− 1/8n2, maxv

∣∣∣∑u6=v cuv(X0,u(1) −X0,u(2))
∣∣∣ = O(

√
log n ·maxv |c·v|2).

Hence, with probability at least 1− 1/8n2:

∣∣fc(X0)− fc(X ′0)
∣∣ ≤ O(

√
log n ·max

v
|c·v|2).

Notice that in the regime of Definition 2, function g maps points in [−1, 1](
V
2) to the same

set. Hence by a similar token, for any fixed `, with probability at least 1− 1/8n2:

∣∣∣fg◦`(c)(X0)− fg◦`(c)(X ′0)
∣∣∣ ≤ O(

√
log n ·max

v

∣∣∣g◦`(c)·v∣∣∣
2
).

At the same time, the maximum that 2 maxv

∣∣∣∑u6=v cuv(X0,u(1) −X0,u(2))
∣∣∣ (and hence

|fc(X0)− fc(X ′0)|) can possibly be is 4 maxv |c·v|1 ≤ 4n. Similarly, the maximum that∣∣∣fg◦`(c)(X0)− fg◦`(c)(X ′0)
∣∣∣ can possibly be is also at most 4n, for any `.

It follows from the above calculations that:

E
[∣∣fc(X0)− fc(X ′0)

∣∣ ∣∣∣fg◦`(c)(X0)− fg◦`(c)(X ′0)
∣∣∣] ≤ O (log n ·max

v
|c·v|2 ·max

v

∣∣∣g◦`(c)·v∣∣∣
2

)
≤ O(

√
nlog n ·max

v
|c·v|2) (5.36)

Given that this bound holds for any `, and recognizing the binomial expansion in (5.34),

we obtain the bound:

(5.34) ≤ O(
√
nlog n ·max

v
|c·v|2).

It remains to bound the error terms (5.35). For a fixed ` and q let us try to bound
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the term E [e(g◦q(c), X`)X0], involved in the definition of et2(c,X0). For convenience set

c′ = g◦q(c), and recall (as we have pointed out above) that c′ ∈ [−1, 1](
V
2). Recalling the

definition of e() from the statement of Lemma 16, we have that:

E
[
e(c′, X`)X0

]
=

= E

∑
v

∣∣tanh(σv) sech2(σv)
∣∣

2n

∣∣∣∣∣∣
∑
u6=v

c′uv(X`,u(1) −X`,u(2))

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwv(X`,w(1) − σv)

∣∣∣∣∣∣
2

X0


+ E

∑
v

∣∣tanh(σv) sech2(σv)
∣∣

2n

∣∣∣∣∣∣
∑
u6=v

c′uv(X`,u(1) −X`,u(2))

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwv(X`,w(2) − σv)

∣∣∣∣∣∣
2

X0

 .

Given that X0 is sampled from the Ising model, and X` is the state reached after ` steps

of the Glauber dynamics from X0, it follows that X` is also a sample from the Ising model.

So a similar analysis as the one we did earlier implies that for a fixed v, with probability

at least 1− 1
2n21 :

∣∣∣∑u6=v c
′
uv(X`,u(1) −X`,u(2))

∣∣∣ < O(
√

log n · |c′·v|2). So, with probability at

least 1− 1
2n20 , simultaneously for all v:

∣∣∣∣∣∣
∑
u6=v

c′uv(X`,u(1) −X`,u(2))

∣∣∣∣∣∣ ≤ O(
√

log n ·
√
n).

Via similar arguments, it can be shown that, with probability at least 1− 1
4n20 , simultane-

ously for all v(1) ∈ V (1):∣∣∣∣∣∣
∑

w(1)∈N(v(1))

θwv(X`,w(1) − µw)

∣∣∣∣∣∣ ≤ O
(√

log n · dmax · β
)
,

and for all v(2) ∈ V (2):∣∣∣∣∣∣
∑

w(2)∈N(v(2))

θwv(X`,w(2) − µw)

∣∣∣∣∣∣ ≤ O
(√

log n · dmax · β
)
.
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So it follows from the above that, with probability at least 1− 1/n20, it holds that:

1

2n

∑
v

∣∣tanh(σv) sech2(σv)
∣∣ ∣∣∣∣∣∣
∑
u6=v

c′uv(X`,u(1) −X`,u(2))

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwv(X`,w(1) − µw)

∣∣∣∣∣∣
2

≤ O
(√
n log2 n · dmax · β2

)
,

1

2n

∑
v

∣∣tanh(σv) sech2(σv)
∣∣ ∣∣∣∣∣∣
∑
u6=v

c′uv(X`,u(1) −X`,u(2))

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwv(X`,w(2) − µw)

∣∣∣∣∣∣
2

≤ O
(√
n log2 n · dmax · β2

)
Let us call the event that the above two statements hold E . We want to view this event

as a function E = E(X0, G`) of X0 and the decisions G` that the Glauber dynamics made

in the first ` steps. Indeed, we want to view X0 and G` as independent random variables.

G` samples independently of X0 which nodes it will update, together with ` uniform [0, 1]

random variables. Then the Glauber dynamics are a deterministic function of X0 and G`.

With this perspective in mind, we have from the above that:

Pr
X0,G`

[E(X0, G`)] ≥ 1− 1

n20
.

From this it follows that

Pr
X0

[
Pr
G`

[E(X0, G`)] ≥ 1− 1/n9

]
≥ 1− 1/n9.

In turn, the above implies that

Pr
X0

[
E
[
e(c′, X`)X0

]
≤ O

(√
n log2 n · dmax · β2

)]
≥ 1− 1/n9. (5.37)

From similar analysis to the one we did earlier we also have:

Pr
X0

[∣∣fc(X0)− fc(X ′0)
∣∣ ≤ O(

√
log n ·max

v
|c·v|2))

]
≥ 1− 1/n9. (5.38)

So (5.37) and (5.38) imply:

E
[∣∣fc(X0)− fc(X ′0)

∣∣E [e(c′, X`)X0

]]
≤ O

(√
n log2.5 n ·max

v
|c·v|2 · dmax · β2

)
. (5.39)
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Now the definition of function et2(·) in the statement of Lemma 17 and (5.39) imply that:

E
[∣∣fc(X0)− fc(X ′0)

∣∣ et2(c,X0)
]
≤ O

(
t ·
√
n log2.5 n ·max

v
|c·v|2 · dmax · β2

)
.

The same bound applies to E
[
|fc(X0)− fc(X ′0)| et2(c,X ′0)

]
. So we have successfully bounded

(5.35).

Using our bounds for (5.34) and (5.35), we get that:

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
(5.40)

≤ O(
√
nlog n ·max

v
|c·v|2) +O

(
t ·
√
n log2.5 n ·max

v
|c·v|2 · dmax · β2

)
. (5.41)

So we can go back to (5.32) to bound the first t∗ terms of the summation, for t∗ =

O(n log n) as set earlier. We get:

1

2

t∗∑
t=0

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
=

= O(n1.5log2 n ·max
v
|c·v|2) +O

(
n2.5 log4.5 n ·max

v
|c·v|2 · dmax · β2

)
(5.42)

Plugging (5.42) and (5.33) into (5.32), we bound the variance as follows:

Var (fc(X)) = Õ(n1.5 ·max
v
|c·v|2) +O

(
n2.5 ·max

v
|c·v|2 · dmax · β2

)
.
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Chapter 6

Comparing Localization and

Learn-then-Test Algorithms

At this point, we now have two algorithms: the localization algorithm of Chapter 3 and

the learn-then-test algorithm of Chapter 4. We note that their sample complexities differ

in their dependence on β and dmax. In this chapter, we offer some intuition as to why the

difference arises and state the best sample complexities we achieve for our testing problems

by combining these two approaches.

First, the localization algorithm gets worse as dmax increases. As noted in Chapter 3, the

reason for this worsening is that the contribution to the distance by any single edge grows

smaller thereby making it harder to detect. However, when we are in the high-temperature

regime a larger dmax implies a tighter bound on the strength of the edge interactions β

and the variance bound of Chapter 5 exploits this tighter bound to get savings in sample

complexities when the degree is large enough.

We combine the sample complexities obtained by the localization and the learn-then-test

algorithms and summarize in the following theorems the best sample complexities we can

achieve for testing independence and identity by noting the parameter regimes in which of

the above two algorithms gives better sample complexity. In both of the following theorems

we fix β to be n−α for some α and present which algorithm dominates as dmax ranges from

a constant to n.

Theorem 11 (Best Sample Complexity Achieved, No External Field). Suppose p is an

Ising model under no external field.

• if β = O(n−2/3), then for the range dmax ≤ n2/3, localization performs better, for both
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independence and identity testing. For the range n2/3 ≤ dmax ≤ 1
4β , learn-then-test

performs better than localization for both independence and identity testing yielding a

sample complexity which is independent of dmax. If dmax ≥ 1
4β , then we are no longer

in the high temperature regime.

• if β = ω(n−2/3), then for the entire range of dmax localization performs at least as

well as the learn-then-test algorithm for both independence and identity testing.

The theorem stated above is summarized in Figure 6-2 for the regime when β =

O(n−2/3).

The comparison for independence testing under the presence of an external field is a bit

more complex and is presented in Theorem 12.

Theorem 12 (Best Sample Complexity Achieved for Independence Testing, Arbitrary

External Field). Suppose p is an Ising model under an arbitrary external field.

• if β2dmax = O(1/n) and β = O(n−5/6), then for dmax = Ω(n2/3) learn-then-test

performs better than localization.

• if β2dmax = ω(1/n) and β−1d
5/2
max = Ω(n5/2), learn-then-test performs better than

localization.

• In all other regimes, localization performs at least as well as learn-then-test.

Finally, we note in Theorem 13, the parameter regimes when learn-then-test performs

better for identity testing under an external field.

Theorem 13 (Best Sample Complexity Achieved for Identity Testing, Arbitrary External

Field). Suppose p is an Ising model under an arbitrary external field.

• if β = O(n−5/6), then for the range n2/3 ≤ dmax ≤ 1
4β , learn-then-test performs better

than localization for identity testing yielding a sample complexity which is independent

of dmax. If dmax ≥ 1
4β , then we are no longer in the high temperature regime.

• if β = ω(n−5/6), then for the entire range of dmax localization performs at least as

well as the learn-then-test algorithm for identity.
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Figure 6-1: Localization vs Learn-Then-Test: A plot of the sample complexity of testing

identity under no external field when β = 1
4dmax

is close to the threshold of high temperature.

Note that throughout the range of values of dmax we are in high temperature regime in this

plot.
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Figure 6-2: Localization vs Learn-Then-Test: A plot of the sample complexity of testing

identity under no external field when β ≤ n−2/3. The regions shaded yellow denote the

high temperature regime while the region shaded blue denotes the low temperature regime.

The algorithm which achieves the better sample complexity is marked on the corresponding

region.
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Chapter 7

Lower Bounds

In this chapter we describe lower bound constructions for the testing problems studied in

this thesis and state the main results.

7.1 Dependences on n

Our first lower bounds show dependences on n, the number of nodes, in the complexity of

testing Ising models.

To start, we prove that uniformity testing on product measures over a binary alphabet

requires Ω(
√
n/ε) samples. Note that a binary product measure corresponds to the case

of an Ising model with no edges. This implies the same lower bound for identity testing,

but ( not) independence testing, as a product measure always has independent marginals,

so the answer is trivial.

Theorem 14. There exists a constant c > 0 such that any algorithm, given sample access

to an Ising model p with no edges (i.e., a product measure over a binary alphabet), which

distinguishes between the cases p = Un and dSKL(p,Un) ≥ ε with probability at least 99/100

requires k ≥ c
√
n/ε samples.

Next, we show that any algorithm which tests uniformity of an Ising model requires

Ω(n/ε) samples. In this case, it implies the same lower bounds for independence and

identity testing.

Theorem 15. There exists a constant c > 0 such that any algorithm, given sample access

to an Ising model p, which distinguishes between the cases p = Un and dSKL(p,Un) ≥ ε with

probability at least 99/100 requires k ≥ cn/ε samples. This remains the case even if p is

known to have a tree structure and only ferromagnetic edges.
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The lower bounds use Le Cam’s two point method which constructs a family of distri-

butions P such that the distance between any P ∈ P and a particular distribution Q is

large (at least ε). But given a P ∈ P chosen uniformly at random, it is hard to distinguish

between P and Q with at least 2/3 success probability unless we have sufficiently many

samples.

Our construction for product measures is inspired by Paninski’s lower bound for unifor-

mity testing [15]. We start with the uniform Ising model and perturb each node positively

or negatively by
√
ε/n, resulting in a model which is ε-far in dSKL from Un. The proof

appears in Section 7.3.1.

Our construction for the linear lower bound builds upon this style of perturbation. In

the previous construction, instead of perturbing the node potentials, we could have left the

node marginals to be uniform and perturbed the edges of some fixed, known matching to

obtain the same lower bound. To get a linear lower bound, we instead choose a random

matching, which turns out to require quadratically more samples to test. Interestingly,

we only need ferromagnetic edges (i.e., positive perturbations), as the randomness in the

choice of matching is sufficient to make the problem harder. Our proof is significantly more

complicated for this case, and it uses a careful combinatorial analysis involving graphs which

are unions of two perfect matchings. The lower bound is described in detail in Section 7.3.2.

Remark 2. Similar lower bound constructions to those of Theorems 14 and 15 also yield

Ω(
√
n/ε2) and Ω(n/ε2) for the corresponding testing problems when dSKL is replaced with

dTV. In our constructions, we describe families of distributions which are ε-far in dSKL.

This is done by perturbing certain parameters by a magnitude of Θ(
√
ε/n). We can instead

describe families of distributions which are ε-far in dTV by performing perturbations of

Θ(ε/
√
n), and the rest of the proofs follow similarly.

7.2 Dependences on h, β

Finally, we show that dependences on the h and β parameters are, in general, necessary for

independence and identity testing. Recall that h and β are upper bounds on the absolute

values of the node and edge parameters, respectively. Our constructions are fairly simple,

involving just one or two nodes, and the results are stated in Theorem 16.

Theorem 16. There is a linear lower bound on the parameters h and β for testing problems

on Ising models. More specifically,
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• There exists a constant c > 0 such that, for all ε < 1 and β ≥ 0, any algorithm, given

sample access to an Ising model p, which distinguishes between the cases p ∈ In and

dSKL(p, In) ≥ ε with probability at least 99/100 requires k ≥ cβ/ε samples.

• There exists constants c1, c2 > 0 such that, for all ε < 1 and β ≥ c1 log(1/ε), any

algorithm, given a description of an Ising model q with no external field (i.e., h = 0)

and has sample access to an Ising model p, and which distinguishes between the cases

p = q and dSKL(p, q) ≥ ε with probability at least 99/100 requires k ≥ c2β/ε samples.

• There exists constants c1, c2 > 0 such that, for all ε < 1 and h ≥ c1 log(1/ε), any

algorithm, given a description of an Ising model q with no edge potentials(i.e., β = 0)

and has sample access to an Ising model p, and which distinguishes between the cases

p = q and dSKL(p, q) ≥ ε with probability at least 99/100 requires k ≥ c2h/ε samples.

The construction and analysis appears in Section 7.3.3.

This lower bound shows that the dependence on β parameters by our algorithms cannot

be avoided in general, though it may be sidestepped in certain cases.

7.3 Lower Bound Proofs

7.3.1 Proof of Theorem 14

This proof will follow via an application of Le Cam’s two-point method. More specifically,

we will consider two classes of distributions P and Q such that:

1. P consists of a single distribution p , Un;

2. Q consists of a family of distributions such that for all distributions q ∈ Q, dSKL(p, q) ≥

ε;

3. There exists some constant c > 0 such that any algorithm which distinguishes p from

a uniformly random distribution q ∈ Q with probability ≥ 2/3 requires ≥ c
√
n/ε

samples.

The third point will be proven by showing that, with k < c
√
n/ε samples, the following

two processes have miniscule total variation distance, and thus no algorithm can distinguish

them:

• The process p⊗k, which draws k samples from p;
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• The process q̄⊗k, which selects q from Q uniformly at random, and then draws k

samples from q.

We will let p⊗ki be the process p⊗k restricted to the ith coordinate of the random vectors

sampled, and q̄⊗ki is defined similarly.

We proceed with a description of our construction. Let δ =
√

3ε/2n. As mentioned

before, P consists of the single distribution p , Un, the Ising model on n nodes with 0

potentials on every node and edge. LetM be the set of all 2n vectors in the set {±δ}n. For

each M ∈M, we define a corresponding qM ∈ Q where the node potential Mi is placed on

node i.

Proposition 1. For each q ∈ Q, dSKL(q,Un) ≥ ε.

Proof. Recall that

dSKL(q,Un) =
∑
v∈V

δ tanh(δ).

Note that tanh(δ) ≥ 2δ/3 for all δ ≤ 1, which can be shown using a Taylor expansion.

Therefore

dSKL(q,Un) ≥ n · δ · 2δ/3 = 2nδ2/3 = ε.

The goal is to upper bound dTV(p⊗k, q̄⊗k). We will use the following lemma from [46],

which follows from Pinsker’s and Jensen’s inequalities:

Lemma 18. For any two distributions p and q,

2d2
TV(p, q) ≤ log Eq

[
q

p

]
.

Applying this lemma, the fact that Q is a family of product distributions, and that we

can picture q̄⊗k as the process which picks a q ∈ Q by selecting a parameter for each node

in an iid manner, we have that

2d2
TV(p⊗k, q̄⊗k) ≤ n log Eq̄⊗k1

[
q̄⊗k1

p⊗k1

]
.

We proceed to bound the right-hand side. To simplify notation, let p+ = eδ/(eδ + e−δ)

be the probability that a node with parameter δ takes the value 1. Note that a node with

parameter −δ takes the value 1 with probability 1 − p+. We will perform a sum over all

realizations k1 for the number of times that node 1 is observed to be 1.
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Eq̄⊗k1

[
q̄⊗k1

p⊗k1

]
=

k∑
k1=0

(q̄⊗k1 (k1))2

p⊗k1 (k1)

=
k∑

k1=0

(
1
2

(
k
k1

)
(p+)k1(1− p+)k−k1 + 1

2

(
k

k−k1

)
(p+)k1(1− p+)k1

)2

(
k
k1

)
(1/2)k

=
2k

4

k∑
k1=0

(
k

k1

)(
(p+)2k1(1− p+)2(k−k1) + (p+)2(k−k1)(1− p+)2k1 + 2(p+(1− p+))k

)

=
2k

2
(p+(1− p+))k

k∑
k1=0

(
k

k1

)
+ 2 · 2k

4

k∑
k1=0

((
k

k1

)
(p2

+)k1((1− p+)2)k−k1
)

where the second equality uses the fact that q̄⊗k1 chooses the Ising model with parameter on

node 1 being δ and −δ each with probability 1/2. Using the identity
∑k

k1=0

(
k
k1

)
ak1bk−k1 =

(a+ b)k gives that

Eq̄⊗k1

[
q̄⊗k1

p⊗k1

]
=

4k

2
(p+(1− p+))k +

2k

2

(
2p2

+ + 1− 2p+

)k
.

Substituting in the value for p+ and applying hyperbolic trigenometric identities, the above

expression simplifies to

1

2

((
sech2(δ)

)k
+
(
1 + tanh2(δ)

)k)
≤ 1 +

(
k

2

)
δ4

= 1 +

(
k

2

)
9ε2

4n2

where the inequality follows by a Taylor expansion.

This gives us that

2d2
TV(p⊗k, q̄⊗k) ≤ n log

(
1 +

(
k

2

)
9ε2

4n2

)
≤ 9k2ε2

4n
.

If k < 0.9·
√
n/ε, then d2

TV(p⊗k, q̄⊗k) < 49/50 and thus no algorithm can distinguish between

the two with probability ≥ 99/100. This completes the proof of Theorem 14.
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7.3.2 Proof of Theorem 15

This lower bound similarly applies Le Cam’s two-point method, as described in the previous

section. We proceed with a description of our construction. Assume that n is even. As

before, P consists of the single distribution p , Un, the Ising model on n nodes with 0

potentials on every node and edge. Let M denote the set of all (n− 1)!! perfect matchings

on the clique on n nodes. Each M ∈ M defines a corresponding qM ∈ Q, where the

potential δ =
√

3ε/n is placed on each edge present in the graph.

The follow proposition follows similarly to Proposition 1.

Proposition 2. For each q ∈ Q, dSKL(q,Un) ≥ ε.

The goal is to upper bound dTV(p⊗k, q̄⊗k). We again apply Lemma 18 to 2d2
TV(p⊗k, q̄⊗k)

and focus on the quantity inside the logarithm. Let X(i) ∈ {±1}n represent the realization

of the ith sample and Xu ∈ {±1}k represent the realization of the k samples on node u.

Let H(., .) represent the Hamming distance between two vectors, and for sets S1 and S2,

let S = S1 ] S2 be the very commonly used multiset addition operation. Let M0 be the

matching with edges (2i− 1, 2i) for all i ∈ [n/2].

Eq̄⊗k

[
q̄⊗k

p⊗k

]
=

∑
X=(X(1),...,X(k))

(q̄⊗k(X))2

p⊗k(X)

= 2nk
∑

X=(X(1),...,X(k))

(q̄⊗k(X))2

We can expand the inner probability as follows. Given a randomly selected matching, we

can break the probability of a realization X into a product over the edges. By examining

the PMF of the Ising model, if the two endpoints of a given edge agree, the probability is

multiplied by a factor of
(

eδ

2(eδ+e−δ)

)
, and if they disagree, a factor of

(
e−δ

2(eδ+e−δ)

)
. Since

(given a matching) the samples are independent, we take the product of this over all k

samples. We average this quantity using a uniformly random choice of matching. Writing
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these ideas mathematically, the expression above is equal to

2nk
∑
X

 1

(n− 1)!!

∑
M∈M

∏
(u,v)∈M

k∏
i=1

(
eδ

2(eδ + e−δ)

)1
(X

(i)
u =X

(i)
v )
(

e−δ

2(eδ + e−δ)

)1
(X

(i)
u 6=X

(i)
v )

2

= 2nk
∑

X=(X(1),...,X(k))

 1

(n− 1)!!

∑
M∈M

∏
(u,v)∈M

(
1

2(eδ + e−δ)

)k
eδ(k−H(Xu,Xv))e−δH(Xu,Xv)

2

=

(
eδ

eδ + e−δ

)nk ∑
X=(X(1),...,X(k))

 1

(n− 1)!!

∑
M∈M

∏
(u,v)∈M

exp(−2δH(Xu, Xv))

2

=

(
eδ

eδ + e−δ

)nk
1

(n− 1)!!2

∑
X=(X(1),...,X(k))

 ∑
M∈M

∏
(u,v)∈M

exp(−2δH(Xu, Xv))

2

=

(
eδ

eδ + e−δ

)nk
1

(n− 1)!!2

∑
X=(X(1),...,X(k))

∑
M1,M2∈M

∏
(u,v)∈M1]M2

exp(−2δH(Xu, Xv))

At this point, we note that if we fix matching the matching M1, summing over all

matchings M2 gives the same value irrespective of the value of M1. Therefore, we multiply

by a factor of (n− 1)!! and fix the choice of M1 to be M0.

(
eδ

eδ + e−δ

)nk
1

(n− 1)!!

∑
M∈M

∑
X=(X(1),...,X(k))

∏
(u,v)∈M0]M

exp(−2δH(Xu, Xv))

=

(
eδ

eδ + e−δ

)nk
1

(n− 1)!!

∑
M∈M

∑
X(1)

∏
(u,v)∈M0]M

exp
(
−2δH

(
X(1)
u , X(1)

v

))k

We observe that multiset union of two matchings will form a collection of even length

cycles, and this can be rewritten as follows.

(
eδ

eδ + e−δ

)nk
1

(n− 1)!!

∑
M∈M

∑
X(1)

∏
cyclesC
∈M0]M

∏
(u,v)∈C

exp
(
−2δH

(
X(1)
u , X(1)

v

))
k

=

(
eδ

eδ + e−δ

)nk
1

(n− 1)!!

∑
M∈M

 ∏
cycles C
∈M0]M

∑
X

(1)
C

∏
(u,v)∈C

exp
(
−2δH

(
X(1)
u , X(1)

v

))
k

(7.1)

We now simplify this using a counting argument over the possible realizations of X(1)
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when restricted to edges in cycle C. Start by noting that

∑
X

(1)
C

∏
(u,v)∈C

(e2δ)
−2H

(
X

(1)
u ,X

(1)
v

)
= 2

n/2∑
i=0

((
|C| − 1

2i− 1

)
+

(
|C| − 1

2i

))
(e2δ)−2i.

This follows by counting the number of possible ways to achieve a particular Hamming

distance over the cycle. The |C| − 1 (rather than |C|) and the grouping of consecutive

binomial coefficients arises as we lose one “degree of freedom” due to examining a cycle,

which fixes the Hamming distance to be even. Now, we apply Pascal’s rule and can see

2

n/2∑
i=0

((
|C| − 1

2i− 1

)
+

(
|C| − 1

2i

))
(e2δ)−2i = 2

n/2∑
i=0

(
|C|
2i

)
(e2δ)−2i.

This is twice the sum over the even terms in the binomial expansion of (1 + e−2δ)|C|. The

odd terms may be eliminated by adding (1−e−2δ)|C|, and thus (7.1) is equal to the following.

(
eδ

eδ + e−δ

)nk
1

(n− 1)!!

∑
M∈M

 ∏
cycles C
∈M0]M

(1 + e−2δ)|C| + (1− e−2δ)|C|


k

=

(
eδ

eδ + e−δ

)nk
1

(n− 1)!!

∑
M∈M

 ∏
cycles C
∈M0]M

(
eδ + e−δ

eδ

)|C|(
1 +

(
eδ − e−δ

eδ + e−δ

)|C|)
k

= E


 ∏

cycles C
∈M0]M

(
1 + tanh|C|(δ)

)
k (7.2)

where the expectation is from choosing a uniformly random matching M ∈ M. At this

point, it remains only to bound Equation (7.2). Noting that for all x > 0 and t ≥ 1,

1 + tanht(δ) ≤ 1 + δt ≤ exp
(
δt
)
,

we can bound (7.2) as

E


 ∏

cycles C
∈M0]M

(
1 + tanh|C|(δ)

)
k ≤ E


 ∏

cycles C
∈M0]M

exp
(
δ|C|
)

k .
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For our purposes, it turns out that the 2-cycles will be the dominating factor, and we use

the following crude upper bound:

E


 ∏

cycles C
∈M0]M

exp
(
δ|C|
)

k ≤ exp
(
δ4nk/4

)
E
[
exp

(
δ2ζk

)]
,

where ζ is a random variable representing the number of 2-cycles in M0]M , i.e., the number

of edges shared by both matchings. We examine the distribution of ζ. Note that

E[ζ] =
n

2
· 1

n− 1
=

n

2(n− 1)
.

More generally, for any positive integer z ≤ n/2,

E[ζ − (z − 1)|ζ ≥ z − 1] =
n− 2z + 2

2
· 1

n− 2z + 1
=

n− 2z + 2

2(n− 2z + 1)
.

By Markov’s inequality,

Pr[ζ ≥ z|ζ ≥ z − 1] = Pr[ζ − (z − 1) ≥ 1|ζ ≥ z − 1] ≤ n− 2z + 2

2(n− 2z + 1)
.

Therefore,

Pr[ζ ≥ z] =
z∏
i=1

Pr[ζ ≥ i|ζ ≥ i− 1] ≤
z∏
i=1

n− 2i+ 2

2(n− 2i+ 1)
.

In particular, note that for all z < n/2,

Pr[ζ ≥ z] ≤ (2/3)z.
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We return to considering the expectation above:

E
[
exp

(
δ2ζk

)]
=

n/2∑
z=0

Pr[ζ = z] exp
(
δ2zk

)
≤

n/2∑
z=0

Pr[ζ ≥ z] exp
(
δ2zk

)
≤ 3

2

n/2∑
z=0

(2/3)z exp
(
δ2zk

)
=

3

2

n/2∑
z=0

exp
(
(δ2k − log(3/2))z

)
≤ 3

2
· 1

1− exp (δ2k − log(3/2))
,

where the last inequality requires that exp
(
δ2k − log(3/2)

)
< 1. This is true as long as

k < log(3/2)/δ2 = log(3/2)
3 · nε .

Combining Lemma 18 with the above derivation, we have that

2d2
TV(p⊗k, q̄⊗k) ≤ log

(
exp(δ4nk/4) · 3

2(1− exp (δ2k − log(3/2)))

)
= δ4nk/4 + log

(
3

2(1− exp (δ2k − log(3/2)))

)
=

9ε2

4n
k + log

(
3

2(1− exp (3kε/n− log(3/2)))

)
.

If k < 1
25 ·

n
ε , then dTV(p⊗k, q̄⊗k) < 49/50 and thus no algorithm can distinguish between

the two cases with probability ≥ 99/100. This completes the proof of Theorem 15.

7.3.3 Proof of Theorem 16

We provide constructions for our lower bounds of Theorem 16 which show that a dependence

on β is necessary in certain cases.

Lemma 19. There exists a constant c > 0 such that, for all ε < 1 and β ≥ 0, any algorithm,

given sample access to an Ising model p, which distinguishes between the cases p ∈ In and

dSKL(p, In) ≥ ε with probability at least 99/100 requires k ≥ cβ/ε samples.

Proof. Consider the following two models, which share some parameter τ > 0:

1. An Ising model p on two nodes u and v, where θpu = θpv = τ and θuv = 0.

2. An Ising model q on two nodes u and v, where θqu = θqv = τ and θuv = β.
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We note that E[Xp
uX

p
v ] = exp (2τ+β)+exp (−2τ+β)−exp(−β)

exp (2τ+β)+exp (−2τ+β)+exp(−β) and E[Xq
uX

q
v ] = tanh2(τ). By

(2.2), these two models have dSKL(p, q) = β (E[Xp
uX

p
v ]−E[Xq

uX
q
v ]). For any for any fixed β

sufficiently large and ε > 0 sufficiently small, τ can be chosen to make E[Xp
uX

p
v ]−E[Xq

uX
q
v ] =

ε
β . This is because at τ = 0, this is equal to tanh(β) and for τ →∞, this approaches 0, so

by continuity, there must be a τ which causes the expression to equal this value. Therefore,

the SKL distance between these two models is ε. On the other hand, it is not hard to see

that dTV(p, q) = Θ (E[Xp
uX

p
v ]−E[Xq

uX
q
v ]) = Θ(ε/β), and therefore, to distinguish these

models, we require Ω(β/ε) samples.

Lemma 20. There exists constants c1, c2 > 0 such that, for all ε < 1 and β ≥ c1 log(1/ε),

any algorithm, given a description of an Ising model q with no external field (i.e., h = 0)

and has sample access to an Ising model p, and which distinguishes between the cases p = q

and dSKL(p, q) ≥ ε with probability at least 99/100 requires k ≥ c2β/ε samples.

Proof. This construction is very similar to that of Lemma 19. Consider the following two

models, which share some parameter τ > 0:

1. An Ising model p on two nodes u and v, where θpuv = β.

2. An Ising model q on two nodes u and v, where θpuv = β − τ .

We note that E[Xp
uX

p
v ] = tanh(β) and E[Xq

uX
q
v ] = tanh(β − τ). By (2.2), these two

models have dSKL(p, q) = τ (E[Xp
uX

p
v ]−E[Xq

uX
q
v ]). Observe that at τ = β, dSKL(p, q) =

β tanh(β), and at τ = β/2, dSKL(p, q) = β
2 (tanh(β)− tanh(β/2)) = β

2 (tanh(β/2) sech(β)) ≤

β exp(−β) ≤ ε, where the last inequality is based on our condition that β is sufficiently

large. By continuity, there exists some τ ∈ [β/2, β] such that dSKL(p, q) = ε. On the

other hand, it is not hard to see that dTV(p, q) = Θ (E[Xp
uX

p
v ]−E[Xq

uX
q
v ]) = Θ(ε/β), and

therefore, to distinguish these models, we require Ω(β/ε) samples.

The lower bound construction and analysis for the h lower bound follow almost identi-

cally, with the model q consisting of a single node with parameter h.

Lemma 21. There exists constants c1, c2 > 0 such that, for all ε < 1 and h ≥ c1 log(1/ε),

any algorithm, given a description of an Ising model q with no edge potentials(i.e., β = 0)

and has sample access to an Ising model p, and which distinguishes between the cases p = q

and dSKL(p, q) ≥ ε with probability at least 99/100 requires k ≥ c2h/ε samples.

Together, Lemmas 19, 20, and 21 imply Theorem 16.
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Chapter 8

Conclusion

Distributional Property Testing questions in the finite sample regime have been studied

primarily for low-dimensional distributions where tight bounds are known in many cases.

Little was known when it came to multi-dimensional distributions except that we run into

lower bounds which are exponential in the dimension when we consider general multi-

dimensional distributions. This thesis explores property testing on Ising models which

are multi-dimensional distributions with a rich structure. Ising models have been studied

extensively by physicists, statisticians, mathematicians and computer scientists and are

known to exhibit complex behavior depending on the parameters of the model. The results

presented in this thesis show that property testing on Ising models can, in general, be

done with a number of samples which is polynomial in the dimension of the distribution.

Upper and lower bounds for testing independence and identity were presented. A number

of challenges lie in the way of attaining tight upper and lower bounds. For instance, to

attain the linear lower bound of Theorem 15, we used matchings as the underlying graphs.

Intuitively, denser graphs would have more power in thwarting detection by a tester but

they end up being significantly harder to analyze for the purposes of the lower bound. In our

upper bounds, we noted that since we do not know the signs of the pairwise correlations in

the model, we need to expend some samples to perform the weak learning process described

in Chapter 4. If we can circumvent the necessity for weak-learning then we could save on

the sample complexity by a polynomial factor. Next, some potential future directions of

the work presented in this thesis are listed.
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8.1 Future Directions

There are many interesting directions to pursue building on the results in this thesis. One

interesting question is what happens to the sample complexity if we impose structural re-

strictions on the underlying graph such as, for instance, requiring that the graph is a forest.

Similarly, we can also study the testing question on special families of Ising models such as

ferromagnetic Ising models.

A natural direction to pursue is to study testing problems on other structured high-dimensional

distributions. Even within the class of graphical models, ones with a larger alphabet and

k-way edges instead of the 2-way edges in Ising models, are an interesting open question.

If we allow n-way edges, then we end up dealing with the class of all n-dimensional distri-

butions for which we know from previous work that we need Θ
(
2n/2

)
samples. It would

be interesting to see what the sample complexity is if k-way edges are allowed and whether

there is smooth interpolation of the sample complexity between the two extremes.

A central contribution of this thesis is the application and extension of Chatterjee’s tech-

nique of exchangeable pairs for bounding variance of functions on the Ising model. The

technique with slight modifications can be used to also prove exponential concentration

bounds for functions on the Ising model. Attaining such a concentration bound for multi-

linear functions on the Ising model is an open problem and it would be interesting to see if

the techniques in this thesis can be applied to attain the same.

Application of the algorithms developed in this thesis to real-world data is another direc-

tion. An application domain where the Ising model assumption could make sense would be

predicting votes of people in a social network. Applying the theoretical framework devel-

oped here to such areas in practice would provide valuable insights into how practical the

assumptions made in theory are and how efficient theory is in practice.
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Appendix A

Weakly Learning Rademacher
Random Variables

In this section, we examine the concept of “weakly learning” Rademacher random vari-
ables. This problem we study is classical, but our regime of study and goals are slightly
different. Suppose we have k samples from a random variable, promised to either be
Rademacher(1/2 +λ) or Rademacher(1/2−λ), for some 0 < λ ≤ 1/2. How many samples
do we need to tell which case we are in? If we wish to be correct with probability (say)
≥ 2/3, it is folklore that k = Θ(1/λ2) samples are both necessary and sufficient. In our
weak learning setting, we focus on the regime where we are sample limited (say, when λ is
very small), and we are unable to gain a constant benefit over randomly guessing. More
precisely, we have a budget of k samples from some Rademacher(p) random variable, and
we want to guess whether p > 1/2 or p < 1/2. The “margin” λ = |p − 1/2| may not be
precisely known, but we still wish to obtain the maximum possible advantage over ran-
domly guessing, which gives us probability of success equal to 1/2. We show that with any
k ≤ 1/4λ2 samples, we can obtain success probability 1/2 + Ω(λ

√
k). This smoothly inter-

polates within the “low sample” regime, up to the point where k = Θ(1/λ2) and folklore
results also guarantee a constant probability of success. We note that in this low sample
regime, standard concentration bounds like Chebyshev and Chernoff give trivial guarantees,
and our techniques require a more careful examination of the Binomial PMF.

We go on to examine the same problem under alternate centerings – where we are
trying to determine whether p > µ or p < µ, generalizing the previous case where µ = 1/2.
We provide a simple “recentering” based reduction to the previous case, showing that
the same upper bound holds for all values of µ. We note that our reduction holds even
when the centering µ is not explicitly known, and we only have limited sample access to
Rademacher(µ).

We start by proving the following lemma, where we wish to determine the direction of
bias with respect to a zero-mean Rademacher random variable.

Lemma 22. Let X1, . . . , Xk be iid random variables, distributed as Rademacher(p) for any
p ∈ [0, 1]. There exists an algorithm which takes X1, . . . , Xk as input and outputs a value
b ∈ {±1}, with the following guarantees: there exists constants c1, c2 > 0 such that for any
p 6= 1

2 ,

Pr (b = sign (λ)) ≥

{
1
2 + c1|λ|

√
k if k ≤ 1

4λ2

1
2 + c2 otherwise,
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where λ = p− 1
2 . If p = 1

2 , then b ∼ Rademacher
(

1
2

)
.

Proof. The algorithm is as follows: let S =
∑k

i=1Xi. If S 6= 0, then output b = sign(S),
otherwise output b ∼ Rademacher

(
1
2

)
.

The p = 1/2 case is trivial, as the sum S is symmetric about 0. We consider the case
where λ > 0 (the negative case follows by symmetry) and when k is even (odd k can be
handled similarly). As the case where k > 1

4λ2
is well known (see Lemma 1), we focus on

the former case, where λ ≤ 1
2
√
k
. By rescaling and shifting the variables, this is equivalent

to lower bounding Pr
(
Binomial

(
k, 1

2 + λ
)
≥ k

2

)
. By a symmetry argument, this is equal

to
1

2
+ dTV

(
Binomial

(
k,

1

2
− λ

)
, Binomial

(
k,

1

2
+ λ

))
.

It remains to show this total variation distance is Ω(λ
√
k).

dTV

(
Binomial

(
k,

1

2
− λ

)
, Binomial

(
k,

1

2
+ λ

))
≥ dTV

(
Binomial

(
k,

1

2

)
, Binomial

(
k,

1

2
+ λ

))
≥ k min

`∈{dk/2e,...,dk/2+kλe}

∫ 1/2+λ

1/2
Pr (Binomial (k − 1, u) = l − 1) du (A.1)

≥ λk · Pr (Binomial (k − 1, 1/2 + λ) = k/2)

= λk ·
(
k − 1

k/2

)(
1

2
+ λ

)k/2(1

2
− λ

)k/2−1

≥ Ω(λk) ·
√

1

2k

(
1 +

1√
k

)k/2(
1− 1√

k

)k/2
(A.2)

= Ω(λ
√
k) ·

(
1− 1

k

)k/2
≥ Ω(λ

√
k) · exp (−1/2)

(
1− 1

k

)1/2

(A.3)

= Ω(λ
√
k),

as desired.

(A.1) applies Proposition 2.3 of [47]. (A.2) is by an application of Stirling’s approxima-

tion and since λ ≤ 1
2
√
k
. (A.3) is by the inequality

(
1− c

k

)k ≥ (1− c
k

)c
exp(−c).

We now develop a corollary allowing us to instead consider comparisons with respect to
different centerings.

Corollary 1. Let X1, . . . , Xk be iid random variables, distributed as Rademacher(p) for
any p ∈ [0, 1]. There exists an algorithm which takes X1, . . . , Xk and q ∈ [0, 1] as input and
outputs a value b ∈ {±1}, with the following guarantees: there exists constants c1, c2 > 0
such that for any p 6= q,

Pr (b = sign (λ)) ≥

{
1
2 + c1|λ|

√
k if k ≤ 1

4λ2

1
2 + c2 otherwise,
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where λ = p−q
2 . If p = q, then b ∼ Rademacher

(
1
2

)
.

This algorithm works even if only given k iid samples Y1, . . . , Yk ∼ Rademacher(q),
rather than the value of q.

Proof. Let X ∼ Rademacher(p) and Y ∼ Rademacher(q). Consider the random vari-
able Z defined as follows. First, sample X and Y . If X 6= Y , output 1

2 (X − Y ). Oth-
erwise, output a random variable sampled as Rademacher

(
1
2

)
. One can see that Z ∼

Rademacher
(

1
2 + p−q

2

)
.

Our algorithm can generate k iid samples Zi ∼ Rademacher
(

1
2 + p−q

2

)
in this method

using Xi’s and Yi’s, where Yi’s are either provided as input to the algorithm or generated
according to Rademacher(q). At this point, we provide the Zi’s as input to the algorithm of
Lemma 22. By examining the guarantees of Lemma 22, this implies the desired result.
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Appendix B

An Attempt towards Testing by
Learning in KL-divergence

One approach to testing problems is by learning the distribution which we wish to test. If
the distance of interest is the total variation distance, then a common approach to learning
is a cover-based method. One first creates a set of hypothesis distributions H which O(ε)-
covers the space. Then by drawing k = Õ(log |H|/ε2) samples from p, we can output a
distribution from H with the guarantee that it is at most O(ε)-far from p. The algorithm
works by computing a score based on the samples for each of the distributions in the
hypothesis class and then choosing the one with the maximum score.

However, it is not clear if this approach would work for testing in KL-divergence (an
easier problem than testing in SKL-divergence) because KL-divergence does not satisfy the
triangle inequality. In particular, if p and q are far, and we learn a distribution p̂ which
is close to p, we no longer have the guarantee that p̂ and q are still far. Even if this issue
were somehow resolved, the best known sample complexity for learning follows from the
maximum likelihood algorithm. We state the guarantees provided by Theorem 17 of [48].

Theorem 17 (Theorem 17 from [48]). Let b, a, ε > 0 such that a < b. Let Q be a set
of hypothesis distributions for some distribution p over the space X such that at least one
q∗ ∈ Q is such that dKL(p||q∗) ≤ ε. Suppose also that a ≤ q(x) ≤ b for all q ∈ Q and for
all x such that p(x) > 0. Then running the maximum likelihood algorithm on Q using a set
S of i.i.d. samples from p, where |S| = k, outputs a qML ∈ Q such that dKL(p||qML) ≤ 4ε
with probability 1− δ where

δ ≤ (|Q|+ 1) exp

(
−2kε2

log2
(
b
a

)) .
To succeed with probability at least 2/3, we need that

k ≥
log (3(|Q|+ 1)) log2

(
b
a

)
2ε2

For the Ising model, a KL-cover Q would consist of creating a poly(n/ε) mesh for each
parameter. Since there are O(n2) parameters, the cover will have a size of poly(n/ε)n

2
.

Letting β and h denote the maximum edge and node parameter (respectively), then the
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ratio b/a in the above theorem is such that

b

a
≥ exp

(
O(n2β + nh)

)
.

Therefore, the number of samples required by this approach would be

k = O

(
n2 log

(
n
ε

)
(̇n2β + nh)2

ε2

)

= Õ

(
n6β2 + n4h2

ε2

)
which is more expensive than our baseline, the localization algorithm of Theorem 2. Ad-
ditionally, this algorithm is computationally inefficient, as it involves iterating over all hy-
potheses in the exponentially large set Q. To summarize, there are a number of issues
preventing a learning-based approach from giving an efficient tester.
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Appendix C

High-Temperature Mixing Times
and Concentration of Lipschitz
Functions

We show several useful properties of the Ising model in the high temperature regime of
Definition 2. In fact, we will show these properties for an even more permissive regime,
captured by the following definition.

Definition 5. For all (u, v) ∈ E, suppose θuv ≤ η
4 max{du,dv} , where du and dv are the

degrees of u, v in G, and η < 1 is any constant.

Lemma 23. Consider the V × V matrix A = (auv)uv where, for all u 6= v, au,v = 4θuv
and, for all u, auu = 0. Suppose also that, for all u 6= v, θuv satisfies the conditions of
Definition 5. Then |A|2 ≤ η < 1, where η is as in Definition 5.

Proof of Lemma 23: Take any vector x such that |x|2 = 1. Then

|A · x|22 =
∑
u

 ∑
v∈N(u)

4θuvxv

2

≤
∑
u

η2

dudv

 ∑
v∈N(u)

|xv|

2

≤
∑
u

η2

dudv

 ∑
v∈N(u)

x2
v

 du

 =
∑
v

η2 · x2
v

dv

 ∑
u∈N(v)

1

 = η2 · |x|22 ≤ η2.

where the second inequality is by Cauchy-Schwarz.

Lemma 24. The mixing time of the Glauber dynamics in an Ising model satisfying the high
temperature conditions of Definition 5 is O(n log n).

Proof of Lemma 24: This is quite standard and related to Dobrushin’s uniqueness criterion.
As we have not seen it stated in the full spectrum of Ising models we consider here, we
provide a proof for completeness. Our proof follows the line of argumentation in the proof
of Theorem 4.3 in [27], where a concentration bound is proven.

We use a coupling argument, considering two coupled executions (Xt)t and (X ′t)t of
the Glauber dynamics starting at arbitrary states X0 = x and X ′0 = x′. We couple these
executions using the greedy coupling explained in Section 5.1.1. Namely, at each step t > 0
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of the coupled executions, we choose to update the same (uniformly randomly chosen) vertex
v in both chains and we set Xt,v and X ′t,v so as to maximize the probability that they are
equal. In particular, if we choose to update node v in the 2 Chainz, then the probability
that Xt,v and X ′t,v are different is:

Pr[Xt,v 6= X ′t,v|v is chosen, Xt−1, X
′
t−1] = dTV(µv(·|Xt−1,N(v)), µv(·|X ′t−1,N(v))),

where dTV denotes total variation distance and µv(·|Xt−1,N(v)), µv(·|X ′t−1,N(v)) represent the

conditional measures at node v conditioning respectively on the states Xt−1,N(v), X
′
t−1,N(v)

of v’s neighborhood. Defining matrix A as in the statement of Lemma 23, it follows from
Lemma 4.4 of [27] that

dTV(µv(·|Xt−1,N(v)), µv(·|X ′t−1,N(v))) ≤
∑

u∈N(v)

avu1Xt−1,u 6=X′t−1,u
≡
∑
u

avu1Xt−1,u 6=X′t−1,u

So it follows from the above that:

Pr[Xt,v 6= X ′t,v and v is chosen|Xt−1, X
′
t−1] ≤ 1

n

∑
u

avu1Xt−1,u 6=X′t−1,u
.

On the other hand:

Pr[Xt,v 6= X ′t,v and v not chosen|Xt−1, X
′
t−1] =

(
1− 1

n

)
1Xt−1,v 6=X′t−1,v

.

Hence, overall:

Pr[Xt,v 6= X ′t,v] ≤
(

1− 1

n

)
Pr[Xt−1,v 6= X ′t−1,v] +

1

n

∑
u

avu Pr[Xt−1,u 6= X ′t−1,u].

So suppose that `t is a non-negative vector such that `t,v = Pr[Xt,v 6= X ′t,v]. For all
t > 0, we have:

`t ≤
((

1− 1

n

)
I +

1

n
A

)
`t−1 =: B`t−1,

where the inequality holds coordinate-wise and we have set B =
(
1− 1

n

)
I + 1

nA. Note that

|B|2 ≤
(
1− 1

n

)
+ 1

n |A|2 ≤
(

1− 1−η
n

)
, where for the last inequality we used Lemma 23.

Setting t∗ = cn log n, we have

|`t∗ |2 ≤ |B|t
∗

2 |`0|2 ≤
(

1− 1− η
n

)t∗
|`0|2

≤
(

1− 1− η
n

)t∗ √
n (using that for any vector of probabilities |`0|2 <=

√
n)

≤ e−(1−η)c logn√n ≤ 1/(4
√
n),

for sufficiently large constant c. This means that |`t∗ |1 ≤ 1/4. Hence, Pr[Xt∗ 6= X ′t∗ ] ≤
|`t∗ |1 ≤ 1/4. So the mixing time of the chain is O(n log n).

Lemma 25. Take any linear function f(x) =
∑

v svxv, where s ∈ RV . Suppose that X is
drawn from an Ising model satisfying the high temperature conditions of Definition 5. Then
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1. Var[f(x)] ≤ 2
∑
v s

2
v

1−η .

2. For all t ≥ 0,

Pr[|f(X)−E [f(X)] | ≥ t] ≤ 2e
− (1−η)t2

4
∑
v s

2
v .

Proof of Lemma 25: The second claim follows directly from the statement of Theorem 4.3
of [27]. Indeed, the matrix A defined as in the statement of Lemma 23 satisfies, using
Lemma 4.4 of [27]:

dTV(µv(·|XN(v)), µv(·|X ′N(v))) ≤
∑

u∈N(v)

avu1Xu 6=X′u ≡
∑
u

avu1Xu 6=X′u .

At the same time, |A|2 ≤ η by Lemma 23, and function f satisfies the generalized Lipschitz
condition: |f(x)− f(x′)| ≤

∑
v 2|sv|1xi 6=x′i . So we can directly apply Theorem 4.3 of [27].

To bound the variance of f(X) we appeal to the proof of Theorem 4.3 of [27]. The proof
defines an exchangeable pair (X,X ′), where X is distributed according to the Ising model,
and an antisymmetric function F (X,X ′) such that

f(X)−E [f(X)] = E
[
F (X,X ′)X

]
.

In terms of the exchangeable pair and F , we can express the variance of f(X) as follows:

Var (f(X)) =
1

2
·E
[
(f(X)− f(X ′)) · F (X,X ′)

]
=

1

2
·E
[
E
[
(f(X)− f(X ′)) · F (X,X ′)X

]]
≤ E

[
1

2
·E
[
|(f(X)− f(X ′)) · F (X,X ′)|X

]]
The proof of Theorem of [27] shows that point-wise:

1

2
·E
[
|(f(X)− f(X ′)) · F (X,X ′)|X

]
≤

4
∑

v s
2
v

2(1− |A|2)
≤

2
∑

v s
2
v

1− η
,

concluding our proof.
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