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ABSTRACT

A local parametrix F for hyperbolic pseudodif-
ferential operators P with involutive double charac-
teristics satisfying the Levi condition is constructed.
The problem is reduced to construct a parametrix E for
the Cauchy problem for a 2x2 symmetric hyperbolic
system with characteristic roots of non uniform multi-
plicity. This is done via the sum of two Fourier Integral
Operators and an oscillatory integral with wedges E3The wave front set of E is contained in the union
of the two canonical relations defined by the Fourier
Integral Operators and the "cone generated" by the two
canonical relations on the points of double character-
istics. Out of the wedge of this cone E is a Fourier
Integral Operator and its symbol satisfie a symmetric
hyperbolic system. The wave front set of F is contained
in the union of the diagonal, the canonical relations
defined by H if P = P P2 + Q , and the "cone

generated" on the points of double characteristics by
the canonical relations.

We generalize this construction to get a parametrix
for the Cauchy problem of a symmetric hyperbolic system
with double characteristics that leads to a parametrix
for the Cauchy problem for hyperbolic operators with
double characteristics under an assumption that coincides
with the Levi condition in the involutive case.
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INTRODUCTION

In this paper we study hyperbolic pseudodiffer-

ential operators with double characteristics on a Cw

manifold X . We consider the construction of right and

left parametrices for these operators (Chapter I) and we

study the Cauchy problem (Chapter II).

Hyperbolic with double characteristics means that

the principal symbol p of P E Lm(X) has the form

P = plP2 ' pi real valued homogenous functions on T*X

with single characteristics i.e. dgpi(x,g) / 0 on

p (x, C) = 0 , i = 1,2 .

In Chapter I we construct a local parametrix F for

P , when the characteristics are involutive i.e.

(p 1,p2 ) = 0 on Z = ((x, ) E T*X - (O)l

pl(x,) = p2 (xl) = 0)

We also assume CP = 0 on Z where Cp is the subprin-

cipal symbol of P . Ivrii-Petkov (see [I-P] and

Chapter 11.2) have shown that this last assumption is

necessary for the well possedeness of the Cauchy problem

for P under the involutive assumptions. Also the

condition Cp = 0 on Z is equivalent to the local Levi

condition (see Chapter I) that it is a necessary and

sufficient condition for the well possedeness of the

Cauchy problem for hyperbolic operators with characteristic
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roots of constant multiplicity as it was shown by

Flaschka-Strang (see [F-S]). The construction is done

first by transforming the operator P to a "simpler"

one M in Rn. The principal part of M has the form

D D . Afterwards we consider a system associated to

M and we reduce this system to:

D t 0

L = DD) + A(t,y,D )

where the coordinates in IRn are denoted by (t,y) E

R x Rn-1 , A E Lo n-1) smooth in t . For constructing

a parametrix for L we construct a parametrix for the

Cauchy problem for L , i.e. an operator

E: C' (]Rn-1) C+ C(IRn)St0

LE E Cw(]n-1 x Rn

y E = Id mod L0(Rn-1

where y0 : Cw(2Rn) -. Co(R)n-1 is the restriction to the

hypersurface t = 0 , i.e. yof(y) = f(Oy) , f E Coo(Rn

E is not a Fourier Integral Operator as it is when P

is strictly hyperbolic or P has characteristic roots
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of constant multiplicity. (See Chapter II.1 and [CH 1].)

We have

E = E1 + E2 + E3 Ei

1

E I F(JRn- vIR nIC

E3 f(ty)

where e3

t

-tJ
icP3 (TYt y e)

E S1 (:R x Rn n-i) .

WFE3 -c Cl(0) U) C2 (0) U C3 (0)

E TI(JRn xJRn-I

j = 2,...,n-1 ,

-t < T < t

r = r 0

C3(0) =u
-t ( <

C 3 (-t) = C1(o)

i(0))

i = 1,2

We have

where

C3(0) =

y =y.

We have C3(T)

t

( T,t,y, )f (@)dqd T

.

C3(P) = C2(0)and ,

.
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So C3 (0) is the cone generated by C0(0) and C2(0)

on the points where r = C = 0 (p1 = p2 = 0) . The

appearence of the extra term E is motivated in Chapter3
I, Section 4. Its construction was suggested by the

Granoff-Ludwig paper (see [G-L]). We show that E3 is

a Fourier Integral Operator out of the "wedge" of the

cone mentioned above and its principal symbol satisfies

a symmetric hyperbolic system like the wave equation in

three dimensions. The "phenomenon" that the transport

equation is a symmetric hyperbolic system appears also in

conical refraction (see [L]). E3 is also a Fourier

Integral Operator out of E . The wave front set of F

is contained in the union of the diagonal, C. where

C are the canonical relations defined by Hp , i = 1, 2

and C3 , where C3 is the "Cone generated" by the

canonical relations Ci(O) , i = 1,2 , on F , (see

Chapter I, Section 7 for more precise information).

In Chapter II we construct a parametrix for a

symmetric hyperbolic system with double characteristics,

reducing this system via a canonical transformation that

"preserves" the Cauchy data, to a system of the form:

D t0

L = 0 + D(t,y,D )0 Dt- X2 Iy
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i(t,., .) E L smooth in t . A parametrix for

L is constructed using a generalization of the idea

of the construction of a parametrix for L . This leads

to a parametrix for the Cauchy problem for hyperbolic

operators with double characteristics under an assumption

that coincides with the Levi condition in the involutive

case.

Finally in Chapter III we mention some open

problems related to this work.

The general emphasis in this thesis is on

constructive methods.
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CHAPTER I

THE LOCAL PARAMETRIX

If Y is a Co manifold, we are going to denote

by Lm(Y) the pseudodifferential operators whose full

symbol is an asymtotic sum of homogenous functions. More

precisely: p % 7 p- , pj homogenous function of

j=-m
degree -j on T'(Y) = T*(Y) - (0) and

p - p S-k (T'(Y))

j<k

and p is the full symbol of the operator.

If P E Lm(Y) we are going to denote by small p

the principal symbol unless the other thing is stated.

1. Assumptions. Let X be a Coo manifold.

P E Lm(X) P = P P2 + Q

m.

P E L '(X) i= 1,2

m 1+m2 -1
Q EL 2(X).

pi homogenous functions of degree m on T*X with real

values, i = 1,2 .

q homogenous of degree m 1+m2 -1

Let E = [x,C) E T'(X)I p1 (xs) = p2 (xl) = 0)
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We will assume

il) (Pl'P 2) = 0 on E

12 ) dgpi linearly independent on E , i = 1,2 .

13) CP = 0 on

of P .

where Cp is the subprincipal symbol

i4 ) H , H , V are 1.i. on Z where H is the

Hamiltonian vector field of p, i = 1,2 and V

is the cone axis.

15) Pi have simple characteristics, i = 1,2

Notation: We will say that P satisfies (I) if

P = P1P2 + Q
M m +M2 1

P i E L (X) i = 1, 2 QE L (X)

Pj homogenous of degree m , i = 1,2 , q homogenous

of degree m +m2 -l -

2. Reduction of the problem.

Proposition 2.1: Suppose P satisfies (I); P satisfies
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11). Then P satisfies 13 )t q = 0 on z .

Proof: We have that in local coordinates on X

(1) Cp = Pm-1

n 2

3 1
j =1 t

(2) p q+ n 2

-1 J= j

J

(cf. [D]) and

(cf. [D]) . Also

(3) p= PlP2

Then

1 6n 6 2 )72(4) C = q + 1 2 1

j=l ~j Xj =

1 - 2 1J=1 j6 =16

n 2 n 2
+ 1 7 1 1

-212 L) i =1 I
j=l jl

So:

(5) Cp = q +1 (pp 2  on E

From (5) Proposition 2.1 is trivial.

Q.E.D.
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Definition: Let (x0, go) E N = {(x, 9) E Tt(X)I p(x, g)= 0)

Then we say that P as in (I) , satisfies the local

Levi condition at (x , go) if Yc E C"(X) solution of

the equation pl(xdxg) = 0 (resp. p2 (x, dxq) = 0 ) in

a neighborhood of x with dxcp(x) = o and yf E CO(X)

supported in a neighborhood of x where dpe 0 , we

have

(6) eitcP(fetcP) = O(tm 1+m2~l as t -l o

in the sense that YN E IN, a C N, f, .9C > 0 and R EI +

s.t. y t > R

e . tP(e tP)| < C N9f. pt-N t > R

where J , denotes the euclidean norm induced by a

coordinate system in a neighborhood of x0  (taking that

neighborhood sufficiently small), in the case that

p(xos go) = 0 , p2 (xo o) / 0 (resp. p 1 (x, go) / 0

p2(xo'go) = 0 )

If (x0, o) E Z , let cp be a solution in a neighborhood

of x , of p,(xdxcp) = p2 (x,dxcp) = 0 with d ep(x0 ) = o.

Let f E C'(X) supported in a neighborhood of x where
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dcp / 0 then P satisfies the Levi condition at (x 0,Y)

if

(7) e itCPp(feitCP) = O(tm +m2-2 as t -+ o,

in the same sense than before.

Proposition 2.3: Let P satisfy condition (I) and (i1 ).

Then (13 ) is equivalent to the local Levi condition.

Proof: (a) We have that in local coordinates

(8) eitPP(etP)(x) = tm +m 2 p(x,d cp)f(x)

12=+ tm 1+m 2-1 x dC)3 X
SJ=l J3

+ C(xdxcp)f(x))

+ t +m2-h(t,x) ,

(cf. [D]). So if pl(x,dcp) = 0 = p2 (xd cp) = 0 ,

e E Cc (X) , dxcp(x) = C , (xo, go) E E , then clearly

p(x,d xcp) = 0 , and t-(x,dxcp) = 0 in a neighborhood of

x . If we suppose that C = 0 on E , then clearly

eitcPP(etcP) = 0 (t 1  ) . In the case that

Pl(xo, go) = 0 , P2(xo'go) / 0 , then clearly for the
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corresponding cp , eitPP(eiteP) = O(tm +m 2 1 because

p(x,dxcp) = p1 (xdxcp).p 2 (x,d cp) = 0 . Same reasoning

works for the case pl(x0 , 90) / 0 , p2 (x' o) = 0 .

(b) Suppose the Local Levi condition is satisfied

at (x0 ,go) E F . We want to show Cp (xo, to ) = 0 . Take

f E CO (X) one in a sufficiently small neighborhood of

x0 , where p ,(xOvdxcp(xo)) = p 2 (xodxcp (xo)) = 0 ,

dxcp(xo) = go .
n

Since 6 (x,dp) = 0 and()

= 0

we have that: C P(xdxcp)f(x) =0 ,

then C (x, to ) = 0 .
p o 0Q.E.D.

Proposition 2.4: Let (xO, 9 0 ) E E . Then a ai (i=1,2)

C 00 functions homogenous of degree 1 - mi , s.t.

ai(xo, o) / 0 and (rrjr2} = 0 in a conic neighborhood

of (xo, 90) with ri = aipi , i = 1,2 .

Proof: Let h be Co functions homogenous of degree

1 - mi , in TI(X) , i = 1,2 ,

(h p1 ,h2p2 ) = h h2 1lp2 ) + p2 (h p1 ,h2} + p1 (hllh2p2 )

Then (hlpl, h2P2 ) = 0 on E . Let us consider the
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(9) H = H 1PH2 = H1 P P2H2 + H 1QH2

H = HlH2 + R

with Hi = H Pi i = 1,2 ,R = H 1 QH2

We have that CH = 0 at E since 'h 1 ,h = 0 on E

and r = hqh2  on Z. Then using Proposition 2.1 and

that clearly H satisfies (I) we get cH = 0 on E .

Since (h1,h2 )(x,I) = 0 y (xx) E E , we have that

(10) (h 1,h2  X1h X2h2 in a conic neighborhood

of ( , xC homogenous of degree 0

i = 1,2 .

Let's observe that

(11) [e 1h,e 2h2 = e1 2{h,h2 ) + ef1 +f 2f ,h2 )h1

+ e 1+2(h ,f2)h2 + e 2 f1 f2 1)h h2

We first solve the equation
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(12) Hh 2

We know that there is a unique solution in a conic

neighborhood of (x O, ) with f 1 homogenous of degree

0, with initial data f1 0 on a conic hypersurface

transversal to Hh2 at (x 09 ) . (cf. [D])

Having determined f1 , we solve for f2

(13) (e h1,if2) + X2e = 0 in a conic neighborhood

of (xo, to) , 2 homogenous of degree 0 with

initial data 0 in a conic hypersurface trans-

versed to Hh 1'at (x

if

Let's take a = e h, i = 1,2 . Then we have

{alp1 ,a2P2 ) = 0 in a conic neighborhood of (xoto)

because by (10) and (11) we have

(14) e h 1 , e h2) = e 1 2[Xh + [fl ,h2 )hl]

+ e 2h2 [Xle + (e h1 , f2 )]

Q.E.D.

Remark : Let's consider

A1 PA2 =1 1 P2A2 + AQA 2(15)
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A = A PA2 =1 AA2 + B

where Ai = A P i = 1,2

B = A iQA2

We have that ('aia 2 ) = 0 in a neighborhood of (x0 , to) E E.

We have clearly that H (x0, 0 ) , H (x,) ,V(x

al a 2

are 1.1., because H (x , 0 ) = HP (x , ), i = 1,2
ap 0 0

Also to find a local parametrix for A near

(xo, o) is clearly equivalent to finding one for P

since the Ai are elliptic near (x0, 0 ) , i = 1,2

Lemma 2.5: Let PI ... ,Pk be real valued Co functions

in a conic neighborhood of (x ,09) E T'(X) which are

homogenous of degree 1. For the existence of a homo-

genous canonical transformation x from a conical

neighborhood U of (x 0,0) to a conical neighborhood

V of (z0 0 ) E T'(JRn)

X(X, 9) = (x1(x, ).,.xn (x 9 1 (x,''),,en(x-')) E T (n)

with pj(x,g) = e (x,1 ) , j = l,...,k it's necessary

and sufficient that:
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i) {pip } = 0 in a neighborhood of (x ,9)0 )

1, j = 1,...,k

ii) Hg (x 0, ),...,H (x go),V(x, 0.) are l.i.

Proof: See [D-H].

Reduction: Since (a1,a2 ) = 0 in a conic neighborhood

of (x0 , to) E 7 , and the Remark of page 19, we can apply

Lemma 5. We choose for later convenience (z ,O ) E

T'(jRn) s.t. z / 0 with z= (z ,...,z )

Let's choose (see [D-H]) A E Io(X x ]Rn,,) s.t.

i) r is a closed conic subset of graph X

ii) (x0,901, 0 ) is a non-characteristic point for

A .

Let B E I (]Rn xX, (r 1 )') be s.t.

(15) (xo, go) WF(AB - IX)

(16) (Z0 ,e 0 ) WF(BA- I nEn

I is the identity

operator in X .

In is the identity

penoperator in En.

Now let's consider



22

P = BPA

Proposition 2.6: z R,Al,A2 E Lo(IRn) s.t.

(17) (zoe0 ) WF(P - (D 1D2 + A 1D 1 +A 2D2 + R))

Proof: We know that the principal symbol of P is (l 2

in a conical neighborhood of (z0,e0 ) E T?(]Rn) - (0)

(cf. [D-HJ). We also know that C(z0 ,90 ) = 0 , because
p

the subprincipal symbol restricted to E is invariant

under canonical transformations. So P = D1 D2 + S with

S E L1 (Jan) in a conical neighborhood of (z ,e0) E

TI(Rn) - (0). The fact that C(z o,eo) = 0 e
p

S = al l + a2 :2 in a conic neighborhood of o090)

with ai C functions homogenous of degree 0, so taking

Ai E Lo (sn) with principal symbol ai , i = 1,2

P = D1 D2 + A 1 D 1 + A2D2 + R in a conical neighborhood of

(zO,e) .

Q.E.D.

Proposition 2.7:

(18) (xo, Cozo, 9e) , WF'(PA - AM)

(19) (zOeox0,o) , WF'(BP - MB) ,
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where M = D1 D2 + A1D1 + A2D2 + R with A1 ,A2 ,R as in

Proposition 2.6.

Proof: PA - AP = (I - AB)PA

Since (15), (xo, 90,zo, 00) W WF?(PA -AT) then by

(17) we get (18)

BP - PB = BP(Id - AB)

So in the same way we get (19).

Q.E.D.

Remarks: (a) Using (18) and (19) and the construction

of a parametrix for M we will show in 1.7 how to get

a parametrix for P .

(b) The observation about the equivalence of the

local Levi condition with condition (13 ) if P satisfies

(I) and (i1 ) will be discussed further in Chapter II

3. Reduction of simpler case to a system.

We are going to denote the space of vector valued

functions or operators with the same notation as in the

scalar case.

.
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Proposition 3.1: There exists an elliptic operator

E E Lo (n) with values in 2x2 matrices s.t.

(1)

Proof:

Dl

0

A 1D

D

We have that:

D 0 E

0 D2 E21

Id A
So taking E = ( 1)

A 1D = D1A mod L ( )

(D

0
0 E mod Lo(]Rn)
D

E12) 1E 1

E12 D2E 21

E Lo nIR) . We

D E2D1 
12)

D2 E22

get (1) since

E is clearly elliptic.

Q.E.D.

So we have for the operator:

A D A2
1D1) + ( 2

D 2 -Id

R Dl

0 0
A D + -

D 2

that:

(3) L = 0

with A = AE'

Let's consider

0) + AJE mod L~(]Rn) , A E L(JRn)

D 2

and E'I E L o ]n) a parametrix f or E.

(2)
#-% = D

S0
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K D 0 +A
K= ( D

O 2

A E Lo (Rn)

Let's make the change of variables:

t = x 1

yl= xl - X2

y = xj+1

We are going to denote the new variables by (t,y) E En

and the corresponding dual variables in the cotengent

space by (r,g) . So in this new variables, K looks

like:

#110 D t
K =0

0

+ I
D t-D Y,

A E Lo(JRn)

Proposition 3.2: There exists C E LO(OR) elliptic,

A(t,y,D ) E LO(]Rfl ) smooth in t s.t.

(7) D t

0

0 *"-

) A=((DtD t~ +I = D

0 )+ A (t.,D ) C
D -D +A md Y)C

t mod L~~(JRn

Proof: We write:

C ekC=
k=0

00

A I A-k
k=0

A-j E L-J(Rn)

C E L J(3Rn)

j E IN U (0

(4)

(5)

(6)
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in the sense that

First we take

V

C -

k=0

V

A -=
k=0

Co = Id

C-k E L-(V+l) (Rn)

L- (V+l) 3n)A-k E

Then C is elliptic. Let us

suppose we have chosen A_ , C- J1 for j< k-1

+ ... A-k+( 0+

E L-k (Rn)

then we must find

D

K- (0

A-k , C-k-1 ,P

0

D -D +A0 +A-k+lX0

Ak + (Dt
0

0

D -D

s.t.

)C-k-1 mod

Calling the principal symbol of left hand side of (o)

h-k E S-k(n)

(10) h-k(t, y, r,

(because of (8 )), we know:

)

r S4 h1 (t,y, sr, C)ds

(r-( r) ht y, s (r- Cl),

(8) K - (
0(D t

0

s.t.

D-D y
0

+ Ck)

(9) +---+ C-k)

r 1 h 1 (t,9 Y., sr, C)dsJ 11h

(r- ( L )

+

()ds

.

h 11(t,9 y, 0, )

= h (t,1 )

hk(t, y, s(r- g) )s

h12( t, ys 0, (

h 22(t, y,0 -V,
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Since C-k E S-k ORn) , it is clear that:

a jE S (Rn X Rln-l)

C _j E S-k-1 n n)

1, j = 1,2

i, j = 1,2

From (10) we get immediately (9) considering

0 C11

r~~i C-

C12
-k-

C 2

rC
1 1

( -k-1

(r )C - l

rC12

(r-g )C

Q.E.D.

4. Construction of fundamental solution for the Cauchy

problem for L .

For a fundamental solution of the Cauchy problem

for L , we mean an operator E: C"(JRn-l)-. Coo(2Rn) s.t.0

LE = R

YO E = Id + RI

with R: C (En-1)-CC(En) an operator with Coo kernel

in sn-i xn , i.e. Rf(t,y) = r(t,y,y')f(y')dy,

f E CO(OR)n-), r E Co(n Rn-1

r

0
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and

defined by0o C(pn) -- +C,(]Rn~ )

YOf(y) = f(O,y) f E C ( n

Remark: A natural idea to consider, for constructing our

E , would be

E EE = (El

0

E 1f (tpy)

0
) , with

e2

= Sei< 6 el(t,y,e)f(e)de

for f E C(JRn- e m (n x n-1) for some m

E2f(ty)

for f E C (Rn-'

i((t+YlPl)+Y292+...+yn-1 n-1t
e( ,ef(9d

e2 E S (En xRn-1) for some m' E R

because this is the form that the fundamental solution

for the Cauchy problem for

II.1).

D t

0

D t

0

0
has (see Chapter

D -DY,

We have that

0)

D -D
A]E 0 AD EE ) A 1E A12E2(EA 0 = ,.E I +122

0 E 2 0 (D -DY )E 2 A 2 1 E A22 2

R' E L~(]Rfn-1)
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So for being able to prove (1) we would need A1 2E 2 = 0

A 21E = 0 , mod Cw*(Rn-l1xn) and this is in general

impossible.

The second idea is to try

valued operators i = 1,2

E = E1 + E2

E f(ty) = Sei<Y>el (t,y,e)f(e)dB f E C00 (Rn-

for some m E R .

E2f (ty)
2 (typ)'(e)de

with e 2 E

<t+y, e> =

S (En n-1) f

(t + yl) 9 + y202 +

Dr some m' E R , and

. . . + Yn-en-1 .* Then we have

+ A] (E 1+E2)

0
+ Sei<Yl>(

0

e Yoe>(D t

0

0

0 ) )de

Dt-DY

+ ei<Y'e>ei<y'>A(e i<Yie>e1

+ Sei<t+y> (D t

0

+ Sei<t+Y9e>( l

0

0 
()

D *2t-Dy, ) (~9)( d
0

0) e2(t~yle)r^~d

matrix

with

that

D t

0

0

D t-Dy )

E S m ]n X n-1)
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+ ei<t+Yl ,> -i<t+Y,<>A(e <t+y))2)f(G)de

For getting (1) we should have then either

1 )e 2 = 0 or
0

0

0
)e =0 mod S or Sm

-91

Then going to the following step we should have

al2 )e 21 = 0

or a21 (t,y, e)e11 = 0

a 2 )e 2 = 0

21 = 02
a 9)e 12= 0

mod Sm'-1

mod Sm-1

This is because

e i<Y8>A(e i<Yqe) = a(t,y,q)e + h

e- i<t+y>A(ei<t+yte>e ) = a(t,y,e)e2 + h'

h E Sm-1ORn x n-l)

(see [D]). If e1 j = 0 , j = 1,2 , there is no contri-2 ,D 0
bution in the second row from the term (

D -D e1

So we have again restrictions on A , that are not

satisfied in general.

h' E S m 1-1 (]n XRn-l )
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The idea of our construction is to try to anni-
e o o o

hilate the terms of the form e2 and ( 1or 0 0) (0 -el
that cause the trouble and don't disturb the

initial data, this is accomplished in the following way,

We put

(2) E = E 1 + E2
--- > CW(n) i = 1,2,3

(3) E 1 f(t,y)

(4) E2f(t,y)

(5) E3 f(t.y)

where < +y,o>

observe that:

( 6y > =

<tL+y,9> =

= Sei<yv> e (tye)f'()dO

= e i<t+y, 6>e2 (t,ye)f(e)de

ts
e

= ($+

<y,O> when

f E C *(Rn-1 )

O>

e3(T,t,y,)f ()d dT

+ .. + Yn-en- . LetIs

T = -t

<t+y,9> when T = t

and

E :C, (Rn- 1)

i< L~z + y,
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- ( 0 0

U U

i<t+y, e> 0

0
(7)

and

D (< +y,o>)= D (< t +y,9>)

(8)

(D - Dy) (<t +y,6>)

(6), (7) and (8) play a fundamental role in our construc-

tion.

Construction off el, e2 and . Take f E C (Rn-1

We have

(9) LEfI(t,y) = ei<Yle> 6ei<YO> [(Dt
0

+ Sei<Y'9>eO<Y9> 1(0
0

0

D

-D

+A] (e >e )

f (B)dO

)] (e i<Ype>e1 )

f (O)dO

D t

0

0

D t

0 i< +y,>
2

0

D t-D
) eDt~ y

0

D t-D 'T

0

0

U D +D -

0

0

0

0

+y,>)=-D (<$t



33

+ Sei<yJB>e3 (-tty,9

+ Sei<t+Y,9>e-i<t+Y,9

+ ei<t+ye> -i<t+yeje

)f(e)de

> ICt-D l 0 +A

t yl

(ei< t+y >e 2 ) f (e)d

> y 0 ]e<t+y,>e2)
0 0-

f (O)dO

+ Sei<t+ye>e3 (tty,9)f(9)d9

+ t Ji3 3 t

LD D + A]

D -DY

where (= <r+y Y,> . We have

A doesn't contain Dt derivatives and (6

and (8 ), integrating by parts in the last

( 9), we get:

(10) LEf(ty)

(e 3 3 )f(O)ded

used here that

). Using (7 )

integral of

= ey> Dt 0

+e e A(O de)()d

+ ey e >
+ je'<' O>e-'iy'e>A(eiY el) f (8) d8

0 -D

f(O)de

+ Sei<Yoe>e3 (-ttye)?(8)de
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0 1

+ ei<t+y> Dt y
0

0%
0 2 )e2(ty,9)f(9)d9D D

+ Sei<t+Y,9>e-i<t+yO>A(ei<t+ye> 2 ) f(O)dO

+ Sei<t+y, O> e-i<t+y,> y D
0

0

0

+ Sei<t+y,>e 3 (tt,

"e<t+ 
1 0

%)> - 1

t
+ J e

icP3( D t-D

ye)r()d (

0

U U -D

+ jte CP3e ip3A(e
- t

'c3
e 3)f (O)d~dr

From (10) we are going to deduce the transport equations

for el , e2 , and e3

First a remark:

Remark: It is enough for constructing E , to construct

E satisfying

PE E CW (XRn- 1 xn)

yOE = S mod L-~(ORn- )
(11)

i< t+y, 0>*2f9d

DT)e 3(TstsyO)f ()dOdT
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where S E Lo R n-l) , WFS c V , V a sufficiently small

Conic neighborhood of T' (E n-) (we are going to construct

Ef(t,y) for t in a given finite interval of time),

because we can take pseudodifferential partitions of the

unity.

(a) We will put

CO

e 7 e-

j=0

e-. homogenous of degree -j in

T*X , i = 1,2

in the sense that

V
e - J E S-(V+1) (]n x]n- 1

J0

Choose e s .t.

(12) D t0 e (t,y,e) + a(t,y,e)e (ty,e) = 0
0 Dt

t E 10,t] ] (y,9) E V .

Choose e2 s.t.

D -D
(13) (t Y1

0

0

1"~ )e2(t,y,e) + a(t,y,O)e2(tyO) = 0

t E [0,to] (y,9 ) E V .
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e, e have to satisfy the initial condition at t = 0 :

e1(0,yB) + e2(0,ye) = s(y,e) (y,8) E V .

We extend el , e 2  to be in S~ ([0,t0 ] X aX) , X c V

X open.

For constructing

(15) (t 0 )e~ (t,y,e)
0 Dt

with h_ homogenous off

we solve:

D -D
(16) ( t Y1

0

e- , we solve the equation

+ a(t,y,O)eI (t,y,e) = h-_(tjy,O)

degree -j in e For e~ 2

0 )e2(t,y,e) + a(t,y,e)e2 (t,y,e) =

D-DY,

-_ (t,y,e)

with k homogenous of degree -j in e e e- J2

submitted to the initial condition at t = 0 :

(17) e~J(Oy,6) + e2 (0'y,) = s-j(yse)(y.0) E M c V

if s O s- J s- homogenous of degree -j

J=O

Again e1 , e2J are extended to be S00

(14i)

out of H C V ,
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H closed and for t E [0,t0 ] . h , k_ are chosen,

so that

(18) Dt 0 + A)El E C"0( 2n-1 KRn)
0 Dt

D -D

0

0

D .-DYl+ A)E 2 E Cc (3R x In-
D -Dy

(b) e3 : Let e (T,t,y,8) be homogenous of degree 1 s.t.

D t-D T
(19) (

0
0 )e (',t,y,6) + a(t,y,)e (ty) =0

Dt-Dy+D 3

for t E [0,t ] , -t < , < t , (y,6) E V . Putting

11 1 12 1

e =21 2 , we require (20) and (21) when T = t

3 r3
and r = -t

,11 121

(20) ( e3 tty6 3 (~ ,)
0 0 N

= w (ty,8)

t near 0 ; (y,e) near V

where

w(t,y,e) = e- it+y,6> D t0
0 0

homogenous of degree 1 in ,

degree -j and

00

+y,@>e ) w + 7w

J=0

w homogenous of-J
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0

(21) (21 el( t~t~yB)

where v(t,y,e)

0

22

= ei<ye> (
0

0

-D
y1

00

= v1 (t,y,e)

(ei<Yie> el)

Sv 1 (t,y,9) + V 4 (t,y,B)

4=0

homogenous of degree 1 in 8 v homogenous

degree -j in 8 .

We extend

t E [0,t .

extension of

(22) D t-D T
(22) (

0

e1  to be in3 S- out of V ,

(The meaning of this is the same as in the

e0 ,e

0

D t-Dl+D T

For the j-th step,

( ,t,y, ) + a(tlyB)e3

we solve

t Y.9 e)

t E [0,t00

(y, )

(t.t
9yl) )

0

- t < T < t

E W C V

- (t,y,e)

t E [0,t ]

(y,) E W

(24) (21e-J
3

0

(-ttale) 22 -J
3

0

(t,t,y,e)
=-J(tyO)

t E [0,to]

(y,8) E W

v
1 of

= (T.tlye)

(23) (
12 -4

0

and

.9yP 
0) )

lle 31(jtjq
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ij (Ttye)

is chosen so

(25) tD
0

is homogenous of degree -j in .J_

that

D -D +D
0-Y + A E E C'O(En-1 XRn+l)

)

where Ef:C(2R n-1) C(E n+) defined by

r i<ryt +yq>
E If (t, yT) = e

From (18), (25) considering (19) and (20), (21) we get:

PE E C(Rn-1 XRn) .

From (17) we get:

y 0 E = S

So we get (1) using the remark (11).

5. Construction of a parametrix for L .

In (4.) we got an operator E: C(JR-) --- C (JR n)

LE R E C (:,n- 1 X n)

R' E L~(JRn-1)

e 3( T.tvy,9)f(O)d9 .

y 0E = Id + R'
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Let R": C (JR n-1) - Coo(n) be defined by

(1) R"f(t,y) = R'f(0,y)

Clearly R" E C(IR n- x IRn) . We have also from (1) and

4.(l)

(2) P(E - R") E C(]Rn- 1 X ]Rn)

yO(E - R") = Id .

Notation: We will denote E - R" by E

Doing the same construction that in 4 we can construct

a one parameter family of operators (Es)sER

E : C 00 (:R n- -- CW(]n)

depending smoothly on s , such that:

LE E C(Rn-l xIRn)

(3)

y sE5 = Id

where ys: Co (,n)--- Cw (f n-1) , YS f(y) = f(sy) -

Let's consider E: C (JRn) -- Cw(Rn) defined by



(y SY f) (ty)ds

We clearly have that

(5)

from ( 3 )

Lf (ty)= f(ty)

and the form of

+ Rf(ty)

L with

R: C(

Rf(ty) =

Definition 5-1:

of the form

, ) f (so ) dy dsr(t,y,s

We will sayLet N: C (,n) --- (]n)

if

(6)

with

So we get

Nf(ty) =
0

from (5 )

E: C(

n E C'(Rx Rn)

and definition 5.1

) Co(3Rn)

an operator

s.t.

L( = Id + R

with

N E N~ -

R E N

41

.-. 0 t
Ef (to y) = I(4)

r E C(n n

n (to yosoj ) f(s j ) dyds

(7)
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Proposition 5.2:

T' (]Rn X Rn) IWFN c {((t, y,) E

if N E N~ .

t = r = t = 0)

Proof: Let us denote by KN the Schwartz kernel of

Then we have

KN(cp 9 *) (e-< ;c~(r,~)>e-i~~* ;cL(')>) -

tj n(t, y,,~e- <(t,y) ;a(r,
00

Take ((ty,,r 09e);(t 0ye ie 05)

> -i<(ER);M(iA)>

cp(t,y) *(I,y)dy dt al ay

E T'(]Rn XRn)

Then for r sufficiently near , so that

Ir| > C > 0.

= -(ar)e-i<(ty) ; C(r, )>

So applying integration by parts a sufficiently

large number of times with respect to the variable t, we

get Y MEIN,
Mpst.

(8) K(cp 4) (e-i<-;a(r,)>e-i<-;(a(r,0)| < C t-M

t > 1 .

N .

r0 / 0

We have

S. t.

r 0

D -i< (t, y) ; a(r,)>
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The same argument changing D for D

(8) if 2 /0 or 74 0
0 3

Proposition 5.3: Let N E N-0 . then

or D- proves

Q.E.D.

WFN t ((t,y,r,();(,,,9)) E T'(IRn x2n)I r = = = 0}

Proof: Same argument as in Proposition 5.2.

Q.E.D.

So for making the same statement about the right and left

parametrices for L , we introduce the class:

Definition 5.4: We will say that H E H 00 if

H: C (]n) --- (Rn0
s. t.

WFH c {((t,y,r, ) ; (Ey,,i1)) E T' (Rn x .n) I r = C = 0} or

WFH Q ((t,y,r,t);(t,yit)) E TI (Rn XIRn)I = t = 0

Proposition 5-5: Let A E Lm (JRn) be a properly supported

pseudodifferential operator, H E H-00

a)

, then

AH E H~



HA E H~

H E H 0 0

We know (cf. [DI)

U (WF'A x (0))

r1(,Rn)

U (0 X WF'H)

S2 (i)n

where WF'A = ((t,y,r,t) E T'(IRn) I a (T, ) E 3Rn

Ir,1(,:1R)

= {(, r,) E T'(Rn) I
T2 ORn)

From (9), we deduce then a) and b). c) is immediately

a consequence from

= <Nt Cp

i< -;a (r,()

KN

where e = pe 4=

Q.E.D.

, we can construct an

44

b)

c)

Proof: that

s.t.

WF'H a (tsy) E F n s.t.

(9) WF'I(AH) . WF't(A) . WF t(H)

((t py.,r, ) ;(:Ey,*0,90)) E WFA}

((t., y,90 ),( %, , ,1)) E WFH}

;CL(r ),(9* e- i< -;C(r., )>e-R <

Considering A t instead of A
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operator it: C (]Rn) -+ C(n) s.t. -EL = Id + H',

H'E H~0 . So as a consequence of c), we have operators

E , E , satisfying

LE = Id + H

E L = ID + H'

H E H~

H t E H'

6. Construction of a parametrix for M

Notation: In this paragraph, we will denote by E all

the parametrices constructed.

Proposition 6.1: a E: Co(]Rn) -- Co(31n) s.t.
0

(1) K E = Id mod H

Proof: By 3.(7) we have that

K = LC with C elliptic.

Let C' be a parametrix for C . Using 5.(l0) and

Proposition 5.5, we get that

(10)
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KEC' = ID mod H~

Proposition 6.2: a E: Coo(] ) C C(I ) s.t.
0

(2) KE = Id mod H~ .

Proof: We have that K is obtained from K by the

change of variables

Q.E.D.

t = x

Yi= X -

yj = xj+ 1

x2

j = 2,...,n-1 .

So we just change the variables in the parametrix

E of K and we observe that H~0 is invariant under

the change of variables 3.(5), because if (tyr, ) E

T'(JRn) are the new variables obtained under the change

of variables 3.(5) and (x,e) E T'(]n) are the old ones,

then 6 1 = r , 2 = r - l' ,Jj 1 j 1 ' > 3 -

Q.E.D.

Proposition 6.3: aE: C(Rn)--. Co(]Rn) s.t.0

( LIE = Id mod H~(]n)

3.(5)

(3)
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Proof: We have by 3.(3) that

L = KE with E elliptic.

Let E' be a parametrix for E . Using (2) and Propo-

sition 5.5 we get:

LE'E = Id mod H~( n

Q.E.D.

Proposition 6.4: E.%: Co(En) Co(3Rn) s.t.
0

(4) ME = Id mod H~(Jn

Proof: Using Proposition 5.5, and 5.(10) we can prove

Proposition 6.1, Proposition 6.2, Proposition 6.3, with

E a left parametrix instead of a right parametrix (taking

real transposes).

So a E: Coo(]n)- Co(]n) s. t.
0

(4) EL = Id + H , H E H~(Rn) . In this case, we have

with

~ (11E =

21

12

E22
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(5) (
E21

E12) Dl

E22 0

A D

D2

EDE 11 1

21 D1

11A 1D 1 12 2)

E21A 1D 1 22D 2

and

(6) (Ell

E2 1

12 2

E 22 - Id

R

0

S11 A2 12

E21 A2-E 22

Let's take U =
D u

( 2 ),
u

u E CO(]Rn) . Then

(7 )

11D D2u + A D u + 22D22u + A2D2u - E2D2u + 11 Ru

2 1 D 1 D 2 u + E 2 1 A 1 D 1 u + E2 2D2 u + E2 1A2 D2 u - E2 2 D2 u + E1 2 Ru

2u H D2u + H 12u

u (H 21D2u + H22u

H E H (Rn)

(8 ) 21 Mu = u + H 'u ; H I E H-0 (R ) by proposition 5.5.

Note that

M = D D +D A + DA + Rt

Mt = D1 D2 + A1 D + A2D2 R

E 11R)

ER
E21R

(9)
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R = [D1 ,A1 ] + [D2,A2] + R E L(Rn)

has the same form as M , =>So M t

s. t.

= Id + H , H E H~

Taking tranpose and applying Proposition 5.5 we are done.

Q.E.D.

7. Construction of a local parametrix for P .

Let us consider the operator P satisfying (I)

and assumptions (1), (i2 ' 3 ' 4), (i 5).

a) Local right parametrix. See also [D-H].

i) Take (x o, E Z . We can take T E Lo(: n

s.t. WFT is near (xo, to) . Since we have constructed

a canonical transformation carrying (xo, go) into

(z0, 0) , and we have freedom to choose z0 , we will

assume z' /0 (this is for latter convenience) and we

can take T with WFT so near (xO, OP) s.t. x (WFT)

with

(10) ~M

E: C,(3Rn) Coo (]Rn)0
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doesn't intersect the surface z, = 0 , where x is
0

the canonical transformation of Lemma 2.5.

Let $ E C(EIRn xnIRrn) s.t. * = 1 in a neighborhood

of the diagonal A in JRn x JRn , and $ = 0 outside

another sufficiently small neighborhood of A

Let's take

(1) F = A$EBT , A and B as in 2.(15) and 2.(16).

Then we have:

(2) PF = PA4EBT = (PA - AM)*EBT + AM*EBT

We know that (x, go,ze 00) K WF'(PA - AM)cr by Propo-

sition 2.7. So we have that 3 a conical neighborhood

V of (z ,e) s.t.

(3) (PA -AM)v E C if WFv c V

WF'(*E) can be chosen arbitrarly close to the

a in T'(IRn x IRn) , by choosing the support of 4 close

to the diagonal in JRn x Rn

If WF(T) is so close to (xl to,x0,g) s.t.

X(WFv) c V' , where V' is a conic neighborhood of

(z0,00 ) s.t. WF(4~v) c V if WFv c V' *
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(4) (PA - AM)*EBT E C'

We have also that:

AM*EBT = -AM(1 - *)EBT + ABT + AHBT,

by Proposition 6.4.

(6)

H E H~00(WRn)

We have

(xo, to, x 0,to ) / WF (AHBT)

(6) follows from the fact that

WF I (C e D) c WF ' (C) * WF (D) U WFt (A) x D(Z ))xx

WT'(B)

C: C,(Y)

D: C' (Z)

-- D (X)

D (Y)

X, Y, Z C manif olds

(cf. [D])

and the fact that

(7) ABT

x Tt(]Rn)

WFt (B) )c T (Tn) TI(X)

= (AB - I)T + T .

Since (x0 , Y ) e WF(AB - ID) , (7) says that:

(AB - I)T E Co

(5)

where

.

WF'(A) _; T'(X)

(8)
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if WFT is sufficiently close to (x0 , toxo, ) .
Then from (4), (5), (6), (7), (8) we get

(x0 , to) ! WF(PAE'B - Id)T

If (x 0 ,g) E T'(X) is such that

(a) p (x., t) / 0 , p 2 (xo'9o) / 0 , a local right and

left parametrix is easily constructed, since in this case

p is elliptic at (xo, go)

(b) pl(xo, to) X 0 , p2 (xo'Co) = 0 , the construction of

a local right and left parametrix is known, since in this

case p is with single characteristics at (xo, 9) ,

because of 15 )

(c) p (xoto) = 0 , p2 (xo'go) / 0 , same argument as in

(b).

b) Local left parametrix.

In the proof of Proposition 6.4 it was shown that

there exis ts E: Coo( Rn )o --+C( Rn )
0

(9) EM =Id +Hj H EH-4

s. t.

]n)
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We take

(z ,e0 )

We know

(10)

We take

Rn xn

A . We

now T' E Lo(]Fn) with WF(T') sufficiently near

such that WFT n ((z,9) E T'(IRn)I z = 0) = 0

by Proposition 3.7, that

(z0,o0 ,xO, 0) WF(BP - MB)

4 E C(2Rn x Rn) , * = 1 near the diagonal in

and 0 outside another small neighborhood of

take

F = TB'EA

And using that (z ,e) / WF(BA - Id n), we get, using

the same proof as in 7. (a) that

(x090l x,9) / WF'(B 'EAP - Id )

when (x0, 0 ) E O . The argument for (x,) E TT(X) ,

(x,) / E , is the same as given in 7 a).

-0-

In the following section we will analyze the properties

of the local parametrix constructed for P , through the

properties of the parametrix constructed for M . We will

also analyze the fundamental solution for the Cauchy

problem for L .

(11)

(12)
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8. Properties of the parametrix constructed for

and the fundamental solution of the Cauchy problem

for L

(i) Singularities of the operators constructed.

We will use the following lemmas:

Lemma 8.1: If u 9u2 E D?(Rn), WFui c r ,

ri closed cones in TI(IRn), r n (-r.) =

(x, ) E r 2 ) then u 1u2
E Df(ORn)

and WF(ulu
2 )

rl+ r2 = ((x, Cl+C 2 )

c (r1 + r2 ) u tu 2 where

E T'(Rn)

Lemma 8.2: Let n: ]Rn x

if u E D'(JRm x R)

is proper and WF(

nlu E D'I(em)

nlu) c ((z, E T'(

the projection, then

if n: sup u -- +

Rm )j I H E F;

(z,rl, r,0)

Proof: S

Note also that fl*u = ju(x, )dr (in formal

integration over the fiber T.

Lemmas 8.1 and 8.2 are more general than stated,

PM

i = 1,2

where

E WFu)

ee [D).

terms) i.e.

Remark:

{( XP- ) E T f(IRn) I

ProDerties

(Xt 91) E rl , (x.VC2 ) E r2 )

-
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but we will need them only in this form.

was defined by

E3f(ty)
ts-t i< y, .9>
f e e3( , ty, e)f(e)dedT.

Putting the inner integral as an oscillatory integral,

we have:

E3f(t,y)
i< r+t Y,9 e> -<z, e>

2
t

-t

Let

E f(ty)

(It makes

j e 2

sense of course as an oscillatory integral.)

We have that since E3 is a Fourier Integral Operator:

T (R xRn xEn- )I

, j = 2,...,n-1

(1) WF'Ec ((T~m); (t, y,r., C);, ))

y - 2+y, y

(=1 m= r= }

Let H(t+T) 1 1
0

if -t < T in R x n-i

otherwise

(a) E 0: C, ( n-1 --- ( n

e3 (T*t-Py,0 9)f (z)dzdedTe

E

y

:1
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and H(t-T) = 16
(a

if ti < t

otherwise
in JRxJRnx ]n-

WFH(t+ T) {((T,m);(t,y,r,);(z,))

= -t , = t = 0 ,

E T?(xRx]Rn xR n-1

m = -r)

and

WFH(t-T) (

T = t , 9 = t = 0 , m = r) .

So, we have th

WF'(H(t+T)H(t-

KE (t,y,5) =
3

at WFH(t+-T) n (-WFH(t-T)) = 0

T)) n (-WFIE ) = 0

H(t+T)H(t-T)KE,(
3

and

Considering that

T,t,y,y)dr

and using Lemmas 8.1 and 8.2 we get:

E T'(ORn x

-t < < t ,y

-1

=y,

j

r = g-

(2)

WF'E3 = C3(0)

,

E (IR x Rn x Rn-1I

'(ty,r )(y, ))

1l=Y + -2- ,

= 0
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(t,y,r, );(f,1)) E T'(Rn x ]n-1

Yl=y 1+t , Y = , J=2.,n-l

r= g = ' ,

(

j = yj , j=l,...,n-1, r=0 ,

Remark: Note that we have that C (O) and C 2 (0)

the canonical relations that appear in the construction

of the fundamental solution of the Cauchy problem for

respectively. (See Chapter

E T' (]Rn) x T( n-1

(t,y, r, g)

strip of

is in the same bicharacteristic

Hp= Dt
as

xi(t,y, C) = 0 y (ty, g) E R xT'(]Rn-1) in this case.

( (t., y, r, 9); (y-, ?) ) E T

(t, y, r, C) is in the

strip of HP =D - Dy

I(Rn) x T' Rn-1)

same bicharacteristic

as (0, y, X2( 0, 9, t), t)
"I-

E T'(Rn x In-1

= C 2 ()

3= C 1(o) .

D t and D t -D

are

C(0) =

C2 (0) =

(t, y, r, C);( , t) )

((t,y,r, (;y1)

(0,1 yv, (, Oy, j ) , t )
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X2 (t),y, ) = Y (t,y,() E R x T'(Rn-1)

Note that X1 (t,y, g) = X2 (ty, C)

Let '4(0) = Ci(o) n 0 (t,y,r,C);(zt) E TI(Rn) x T( n-1

We have that

= 0) , i = 1,2

Si(O) are isotropic submanifolds

of dimension 2n - 2, i = 1,2 Note that

C3(0) = U
-t < T< t

where

E T'(]Rn) x T' (Rn-1

= y , j = 2,,...,n-1

( y r, ( ( )= )

03 1 + ,

C ~ = (T Y , + =2 .,

is an isotropic submanifold of

dimensions 2n-2 for each fixed

T (ERn XRn-1)

T . Note that

C3P ) = 02(0)

Also C (o) n {(t,y, r, C);(y,1)

02 (o) n (t,9 y., r., C); (y-,)

E T'(2Rn) x T'(OR n-1)It

E Tf(Rn) x T In-)It = 0}

in this case.

= 0

T'(On x

(3)

of

= 0

(4)

of

c 3(-t) =Cl(O)

= 0) =

.a
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and (4) explains the sentence: the "cone generated by

(0) and C2

(b) From the construction of the parametrix

it is clear that it has the form

2

(5) Ef(t,y)

Recall that

B kBij
i,j = 1
k= 1,2,3

t

0o

E = E + E2 + E3

(E (s )ySf)(t,y)ds

are 2x2 matrices of

operators

Ek
Ek = (l

21

So to calculate

WFIE2 , WF'E3

diagonal of T'

WF'E

k

Ek
22

B kij E L o(Rn)

it is enough to calculate

since WFI (B k) C

(]Rn) x T' t n)

WF'E1

where A is the

(b 1 ) We have that

(E1 (s)y8 (f)(ty) = ei<yY e>el(s,t,y, e)f(s,f)dfde

f E C (]Rn)

We will consider

(3)

for M

.



60

E l(s)ys: Coo(]n) - -+Coo(3n+1l

WF'E1 (s )ys

Tf(]R X ]Rn x2RnIy

S , =, m= r , r = 0)

Taking into account that:

El= H(t -

using Lemmas 8.1,

s)H(s)E1 (s)y(s)ds

8.2 and

T'(R xRn X n)IWFH(s) ( E

S = 0 , r= 0=F ),

WFH (t - ) s {(s,u); (t,y.r., C); (tp j, ,i )) E

TI(2R XRn x IRn )I t =

we get:

(6)

(ty,r,

WF'E C

t = y , j=n-1

S , u = r , 9 = r=j=0),

E T'(ORn XJRn)

= C1

, =1, r = 0

E

ci =

c ('~) (t, y, r, C), (Z, f,9 9))



E T?(]Rn xRn)I( y,

U

r

y, E
t 

i=O, r=O, , y =y

Note that C -

T t(Rn x :Rn)

j =,...,n-l

is the canonical relation defined

E T'(IRn x n),

by

(t,y, r, 9)

and (tyr, ) are in the same bicharacteristic

strip corresponding to

A denotes the diagonal in

Hr = Dt

rt (Rn) x T' (an)

also, that

c1 (0) = c 1 (O) * R(0)

where R(O) is the canonical relation associated to the

Fourier Integral Operator:

y : C ( n)- -+ defined by

= f(0,y)Y0f(y)

(0) -

Cl = ((t9yr, 9); ( i .9r, ))

Notice
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R(0) = (((z,);(ty,r, )) E TI()Rn- 1 X Rn)

y = y , t = 0)

Remark: Note that the singularities of E that lie in

A or 'Cl(O) come from the "wedge" S = t or s = 0 ,

because if E'f(ty) = E (s)y(s)f(ty)ds , supposing

that this would make sense, then we would have

WF'E' c C

More precisely 'O(0) comes from the contribution

of ' = 0 (H(T)) and the A comes from the contri-

bution of ' = t(H(t- )) . In the same way, we get:

(b2 )

(7) WF?(E2 ) C C2  A u C2(0)

where C2 = ((ty, r, C); (,,r, )) E TI(Rn XRn)

=, Y,+ (t-E), y , j = 2,y .. ,n-1,

(=1 ,r=r} ,

'02(0) = ((t, y, r, );(,F,,)) E T '(Fn X n)

t =O , = y j = 2,.. .,n-1, fl = y + t 9

9= t , r = Cl) .
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We notice that

E T'(Rn x e")I (t,y,r, 9)

and (t,yr, ) are in the same bicharacteristic

strip of'

We also have

(b3 )

(8)

Hr-

02 (0 )

t - D yl .

= c2 (o) - R(O)

We have

E3f(t,y)
t

10

where

t-s
E3(s)y f(t,y) = S I T 0t.9y-9Y,9 e)

f( s, )dided T

where <T~s+t+y -RVe> 2 ( +y -i) 1 + 2 2 @2

+ ... + (yn-1

We consider the operator

E~ (s): C (]Rn)---+ C(]n+1) to be defined by

C
2

= (((t,y,r, 9);(Ei,, )

- < T-S+t +y -,e>
e" 2

- n-l) en-l '



's
E 3T f~ts = S

in the sense of an oscillatory integral. We have that:

WF'IE(S
3,r

T(R x R x Rn xRn)

j = y i
, J = 2, ... ,n-l ,t = s , m = r = 2

= 1 , r = -u = -}1

and considering that

WFH(t - s+T) c (((om);(s9u);(t,y,r, t);(t.f,9)

TI(]R x]RxRn X Rn) I T = t-s , m=-r=u ,

= = r =0)

and

E

T' (]R x]Rx)Rn )

= 1=r = 0 , m=

T = -t +s ,9

r = -u)

64

e
< T- S+t + y e>2

E

y + r-s+t
+ 2

E

e 3( S,9 TP t,7, O)f (s.,f)dide

_c { ( ( -,m); (s, u); (t, y, r, C); (E i, U,))

WFH(-t+s+,r) c {(((,rm);(S,u);(t,y,r, );E ,, ))
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and applying Lemmas 8.1, 8.2 to the fact that:

E3(s)y(s) = rH(t-s-)H(-t+s+r)E do

we get

WF E Y

S.9U);(t, y., r, t);(, T ( x R n

+ ~2S+t s

2,...,n-1, t s, jo = C, gl=r=r=u=0

((s U), (t, y, r, 9); (J,

t I =y - s+t, y =y

u= r=r= 1 =, =

(s, u),(ty, r, 9);( z,

t) Y = y j =n

u = r r r = = 0 ,

,T, )ET'(IR X Rn X)Rn)

,j=2,...,n-l, t= s

1 , E =

The contribution to WF'E3 (S)y(s)

R 2Rn IR n)

from E
3T

is reflected in the first term.

Remark:

C YJ

= 1

IRnI
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Considering that

E3f(t ,y) =

and applying our lemmas we get:

(9)

(( y, , ;

y =y+ r~t+t , t +

j = 2, ...

E T(En X Rn)

< < t - Z,

,n-1, r=r= tl=O9,

E T ' (En x R((t y, r, g); (.,n-l, , = , )

U Yl =Y + ,~ -ti <<t

,j = 2,p .. ,n-1., t=0 ,r

Yj =y J 9

= r = l = 0,

T ' (En x En),

,n-l, t = E ,

( y, r ) ( 0, E

U~ ~ Y .yj = y-,f =y j =1 --

r =r g 0 , . =9

((t,y,r,

r = l =

E T'(]Rn XRn)I

y=y

0 ,

WFE
3 c = yj = C3

= '3 (0)

c A

3

0 ='3(0)

n)|

C);(E9 i,9 ,) )

r
jH(t-s)H(s)(E(S)y )f)(ty)ds3 s



((ty,r

I yr= y

r= =

U

E Tf (]Rn XJRn)

1 , t= ,

S = 0 ,

(toy, r, );( yi, ) E

y = y , j =

r = = = 0 , =

Let us denote H(0) = 3 () 0 C3(0) U '0(O . So we get

WF'E3 c C3

Remark: Note that

conical relations

C3

Cl

U A U H(0)

is the "generated cone" by the

and C2 in a sense similar to the

remark of page 57, since

C3 = C3( ) ,

-t < T < t

= C2

C3 (t)

n (((toy,r, C);(Zz, ,t))

= C2=C , 3(-t)

E Tt(]Rn xRn)I

= 0) , i = 1,2 .

(bl), (b2 ),
and (b3) we get:

WF'E c A tj Cl U C2 03 j

(10)

So from

r = r = C,

Proposition 8.3:

,z );Eir , )) )

=.%C43(0)

.

U '5(0) ' '2(0) U H(O) .

T'( ORn X]n)

, E = 0 ,$
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We will get rid of the terms of the form C (0) , C2(0)

and H(0)

(c) Let us recall that the local parametrix for P near

a point (xo, go) E Z was defined by

F = A'EBT (See Section 7)

We required for T E Lo(IRn) that X(WFT) does not

intersect the surface z' = 0 , where x is the canonical

transformation defined in Lemma 3.5. So by the calculus

of wave front sets (see [D]), we get that

(11) WF'F c A UX~(C() U x~(C2) U X~ (C3)
T '(X)

(because of the condition required for T .) We have,

because x (resp. %- ) preserve Hamiltonian vector

fields H , i = 1,2 (resp. H , i = 1,2) and the

corresponding bicharacteristic strips that

Proposition 8.4: WF'F c AT(X) U l U 02 t) X (C3) where

C . = {((x, ),(y,n) E T'(X x X)I (x,g) and (y,n) are

in the same bicharacteristic strip corresponding

to H ) , i = 1,2 .
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So the new element in the singularities of the parametrix

of F is the term ( c : , and which is sort of

a cone with C and C2 as wedges. A is the diagonal

in T'(X) X T'(X)

(ii). Further description of operators constructed.

(a) It is clear from the construction of Section 4, that

E are Fourier Integral Operators i = 1,2 . We have

that: E3 : C 0(Rn-1) -_+ Coo (n)3 0

t i<-L-t+ y- ,>
E3f(tY) r e 2

3 ~-tj
e3 (r, t, y, e) f( )dzdedr .

Take Xo= (t0,yr0, go);( o,) t C3(0) (see

/ 

yo + to , y ,

(2))

t0 / 0 .

(This means that X E C 3(0) but it is not in the "wedge"

of the cone.)

Take p(t,y,f) E Co(Jn X Rn-1) , c= 1
0 near

(t0,yo,yo) but supported in points (t,y,z) s.t.

t /0.

and

l ?/ yj+ t ; yj /fi l
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C2(o)

SC (0 )

Clearly

E f(t,y)

X /j WF(E3 - E') with

= t r i< 2+y - .9>
e e

-t 3 , t,y, e)cp(tyy)f(y)dydedT

and E are equivalent at

S= (0 9P ') E R x ,n-1

X Let
0

, y = (y, y') E R X Rn-1

= ( , )

Then we have:

E f(t,y)

where

= j e< t - ', e > h(t, y,, 0 )f(y)dde'

- e , > (Tt.0y.9 e 1. e t

p(t,y, )de1d

Remark:

integral

Note that (13) makes sense as an oscillatory

(so as an usual integral) using the

So E3

t1 i< +y 
e 2 1

E IR x IRn-l

(13) h(tpy, ,el)

usual trick
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of integration by parts argument, since in this case we

have, that the only problem for making sense of (13)

using the usual trick of integration by parts (see [H2])

is the appearence of terms of the form:

a (t,y,i,(') =y, 01,9') p(t9yjy)do

where m1 E Sm(Rn x Rn-1) for some m or

- r i<t+y -f,V 02>
a2 (t,y,y, e') = e m2 '),, 9 )ep(tvyy)do .

Note that on suppcp, y 1  and yl t + y, so

we have

a, (t,9 9 9 = (D )M (tpy, e ')

ep(t.2yj ) de .

Integrating by parts a sufficiently large number of times,

we get a1 E S0(IRn n-1 XRn- 2 ) . In the same way we get

a2 E S"(]Rn X )n-1 n-2

Claim: h E S n Rn- Rn-2)

Proof: By the remark, we can consider
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h(t,y,y,9e) =
t I,Je

i< +t+y +f, 1 e3(Yty 61V >)

p(t, y, f )de1 d o

as an usual integral.

dering that e3 E S 1

The result is then trivial consi-

(1+1811 + 1611 ) <(l+ I elj ).(1+ 16 )

and the term corresponding to (1+1 8, ) is taking care

by integration by parts in the oscillatory integral.

Also,

1
(i Ioi + 0 )k.

< ( 1

So we have that

WF'E 0 c (((t,y,r,

r = 91 =

E 0 is a Fourier Integral Operator and

y?=

= 0

IE TIRn 3n-1

t t = C, ) = H 3

Note that H
3

is a Lagrangian submanifold of T'(JRn) (

and it is obtained from C 3 (0) by eliminating

the wedge

Claim:

)h(t,y,yev) = S
1

h 3 (,t,y, 119 , )dedT

D t

0

0

D -D

-T

y, y. Y, <y+t.

t i< T + y

. e 2 1 e l > P .Y



73

with

h3(Tt~y,61,O') =

D -D

0

0

D -D +D )e3 (

for (t,y, ) near (t0,y0 , 0o) . The equality is mod

S-00(:R' x In-1 Xn-2)

Proof: The proof follows immediately since there are no

contributions from derivatives of cp near (tO,yOy9 0 )

and

t +,y l - f ,l 9 >

(D -D y)e

=D e ,-y- ,

r+t
i-2W+ yl -yl-,0e>

=-D

We have by construction that:

D -D
t 1

0

0

0 )Del++ )3 + a (t 'Y ,e19 ')e e = 0
D t-D YJ+DT33

then using the claim we conclude that:

D 0 t i< +y
)h(t,y,y,9') + J e Cp(t,y,y)

VD - IJ y -6

CA(t'Y '1, )e3de 1d = 0

V



in a neighborhood of

h = h 1 + 3 h mod S~*(3Rn n-1 Rn-2

j=O

Developing in Taylor series aA around e = 0 , we get:

(14) (It
0

0

D -Dt y,

in a neighborhood of

)hl (t,yy, eT ) + aA(t,y, 0,e9 t )h = 0

(t 0, yO, o ) , because

aA(tY' 1'.9 A(tY,9 0, e ) + e (t., y, 9

with a_ E S1(Rn xRn) and the term of the

i< e+y
e 2

- > t (
CP(t,yx y) 8 a- (t,y, el, '

t r 2

-t

i< T-+ y,
e

- yl > 9 1 cp(t yy)^a
1 (t,y, 196,w ')

, ' )de dT .

Then integrating by parts,

tS

-t

form:

74

(t, y0 'Y O-9 ) We have.

e 3( T, t ,y, el, 9 1 )d d 

e 3 (1,t je

we get:
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= j2e 2 + 1- > lp(t, Y ) (t. y, 1, ')
-t

er3 1, t .9 l )deld

+ jei(t + y, - ,Czt ). -(,Yel . P . .

2J ei(Yl - l)elp(ty, ) (t, y , e9 )e3 (tt9y. e1 90' )de1

= I +1 2 +1 3

Using the same arguments as in the proof of claim we can

show

I E So(IR n xRn-1 xn-2) I E S-~(Rn xn-1 xin-2 )

j = 2,3

Remarks: a) Apparently we would get h 1 = 0 , since

hl(0, y, y, ') = 0 , but (14) is only valid in a neighbor-

hood not intersecting t = 0

b) Note that equation (14) says that if h

is the principal symbol of E , then

H 0

(15) (P 1  H + 3 = 0

p2
where p1 is p1 = r lifted to TI(Rn) x T'(n-1)
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p2  is p2 = r - LT
2 .1

lifted to TI(]Rn) xT'(Rn-1 )

is the pull back of the subprincipal symbol of

P 0 ) + A(t,y,D ) under the projection:
0 D t-D Y,

H 0 T (On). Then Eo E I1 4(]n-1 n H)

_ 0d

We had by construction that

D t
(0

0
e + aA (t'YGe, )e = 0

D

Then calling e the principal symbol of E and

e,, the pull back of the subprincipal of

P (D t
P = (

0

0

D t-D
A(t,y,D ) under the projection

CO(O) -- + T'(Rn), i = 1,2 , we have:

H

Sp
0

e + -e = 0.1 lpl1
0 H

In a similar way we

and C3P

get:
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H 0
P2  2 + C2p 2 0 '

0 H

p2

So as a conclusion to 8(ii)(a), we have that E1 , E2 ,

are Fourier Integral Operators, E3 is a Fourier Integral

Operator out of the wedge of C 3 (0) , the principal

symbols of Ei , i = 1,2 , satisfy the usual transport

equation and the principal symbol of E satisfies a
3

symmetric hyperbolic system. Note also that the order

of E differs by 1 of the order of El , E32

(b) We have

t i<y -y,e>
Eef (ty) = J e> e (s,t,y, f,e)f(s, )dideds

00
Let cp(t,y, E,j) E C**)(n XJEn)

Supp cp _c (t., Z j ) E Rn xRnj 'd 0 , /t)

then we consider

E1f(ty) = JJe 'e(s, t, y e )cp(t, y, s., z)dydeds
f(sj)
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It is clear then that if

X0 E C and X = ((toyoor, todo, o, , )

with Z / 0 , t0 / E , 0

then Xo e WF( 1 - Z )

cp = 1 near (to.yo9-o )

This is very natural since in

the calculation of WF the terms and C, (0)

from the boundary contributions that are "killed" by

EI 1

cp ,

).
We have that

E2 f(ty) Sf i<t + y -y, 90>e2 (s,t,y, 8

Take X = ( (t 0 , yo, r0 , 0 0;(T ,y0,

E C0 (n X En)0
= 1

r 0 9 to )) E C2 '

near (toyoytoo)

E Rn X IRn,

We have again

WF' 0  CWFE2 C 0 2

X WF (E 2 ) and E2 is a FIOP with

0 E I~ ( En , n, C

E3f(ty)
t ,t-s

0 -t+s

,< T-s+t + y - , 8>
e 2 e 3 (s, Tt,y, )f (s,y)

dydedrds

S0

came

Supp

s. t.

, z / t)

) p(t,y, s,i)f (s, f )dfde.

ep(t-, y, Z, )

CP = ( (t, y, E, y )

.



Let X = ((t0.y0,r0,9 ;

E CO (Rn xRn) = 10
near Xo ,

Supp Cp c ( (tyEf)I

and

y y + t,

Let us consider

E3f(t,y) = jtI ei<Y -y

T-s+t

e 2
S e3( T, ,y, e1, e )

Cp(t, y, s, f )dO1dr

With the same arguments as in (b), we have:

E E I( , nC )E3 v VC3)

X F WF(E3

To conclude this section, we have that 1 , E2 ' 3
FIOPS out of certain regions.
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E C3 . Let

where

t-s

-t+s

and

are

ep(t~y, YPz t.

Z= , t = ,t =0 ,

l / yl)

, sPy.P , 01 )f(s,f )didofds

h (t, s, y y, . ' )

E 03



E T' (Rn) xT, (Rn-1).

Let us suppose that g, / 0 Let g be homogenous of

degree 0 in e , g = 1 near C , essup gc(@ E Rn

X 0  WF'(E3 - Es) where

E : C(Jn-1) ) C"( n)
3 0

3 f(ty)
t

ti-ti

i< +y - ., 9>
e2

Proof: In the calculation of'

have

WF'E3 c [(tyr, );(fj) E T

t,y, 9)f(f)dfded-r .

WF'E
3

(see 8(i)(a))

(an) x T'( n-1

C E ess sup e3)

~= .~,

since 0 K ess supp e3 (
Now

- g(q)) the claim is trivial.

E3 f(ty)
t i< tT2e

+y - ', UI>
S3 t,y,)

f(y)dyded- .

Integrating by parts,

80

(c) Let Xo = (t, YO, ro, go ); ( o )

Claim:

1/}0).

and

we

we get:
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t6+ y2 - ,
e< 2 + - >2 e e3 f (z)dfded

+ y-y, >2

-~ei<Y
- 9.v > 2 e 3(-t, t, yv 8)f (z)dfde

Repeating this procedure a sufficiently large number of

times, we get:

i = 1,2E 3 I 12

ts-ti
e

E f (t, y)

e 3(t, tvy, O)f (f)dyde

Ii E I1 14 (]n' Rn - 1,9C (0) )
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CHAPTER II

THE CAUCHY PROBLEM

1. Parametrix for the Cauchy problem for a strictly

hyperbolic differential operator.

In this section we only intend to give an outline

of the construction in IRn , with the purpose of motivating

section 4 of Chapter I and section 3 of this chapter.

For further details we refer tofCHl], [D], and [H 3].
We will denote by (t, y) E R x ]n-1 the variables

in In and (rv) E R x Rn-1 the dual variables in

T*(IRn)

Let P be a differential operator with Co

coefficients of degree m > 1 and let us assume that its

principal symbol p has the fform:

(1) p(t,y, r, C) = (r - X0(tpy, C) ) ... (r - Xm-1

where Xi are homogenous function of degree 1 in ,

i = O,...,m-l and

(2) x1(t.y,9 ) / ( for i / j , 0 i,j jim-i

C / 0
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(2) and (1) imply that Xi E Co(]R x T'(R)n-1)

i = 0,...,n-1 , because p E C"(T'(e )). Note also that

(1) implies that the hypersurface t = 0 is non charac-

teristic for P

Let us denote pi (t,y,r,)= r - xi(tyC) ,

i = 0,...,m-l and Pi E L1 (Rn) a pseudodifferential

operator with principal symbol pi i = 0,..M-.

Let us consider:

(3) Ci (0) = (((t,y,r, 9);(Y)) E T (]Rn) x T'( n-1)

(t,y,r,C) is in the same bicharacteristic

strip of H as (

i =0,...,m-1

we have C (0) = C. R(0) where R(0) is the canonical

relation associated to the Fourier Integral operator

YO, where yo is the restriction to the hypersurface

t = 0 , and

C= ((t,y,r,C);( T,,,)) E TI(3Rn) x TI(Rn)

(t,y,r,C) is in the same bicharacteristic

strip of HP as
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Assumption (1) implies that ]R n is pseudoconvex with

respect to P , so we have that C. are canonical rela-

tions i = 0,...,m-1 (see [D-H]).

Ci(O) are canonical relations i = 0,...,m-1 and

a local coordinate system for Ci(O) is given by:

Let c (t9yC) be a Coo

in ( , solution of:

(4)

homogenous of degree 1 function

Z-= Xj(ttyqdy p)

Y 0 ep < y, P

i = 0...m-1

in a conic neighborhood r of (OyP go) E )RXT' (Rn-1)

then

(5) F: r 0 Ci(O)

( t.VyVC) o ( (t, Y, d ei ,d e ); (d ccp ,I )

is a local diffeomorphism.

Definition 1.1: We call E a parametrix for the Cauchy

problem for P , if

m-1

E = Ej,

j=O

E are Fourier Integral Operators,
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1

E. E I- n . n-,C (0)) , j = O,...,m-l , satisfying

PE E C0(Rfn-ll xR n)

(6)

t = i jId mod L n

j = 0,. ..,m-1 ,

1 k =j

6kj 0 k plj

See [CHl] for the construction of a solution for

the Cauchy problem for P from the E satisfying (6)

We will consider examples to motivate the appearence

of the E and its relation with the Cauchy problem, as

well as to give the main ideas of their construction.

(i) On IR2 let P = Dt -Dy . Let us consider the

Cauchy problem

(Pu = 0

('7f) f E COO(IR).

Yo u = f

The solution u is given by:
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(8) u(t,y) = je( fy (C)d = f(t+y)

Let us consider the operator E that maps the Cauchy data

f into the solution u , so we have:

(9) Ef(ty) = J ei(t+y)(f ()d .

From (9) it is clear that E is a Fourier Integral

Operator and

PE = 0

(10)

y0E = Id

also

- P = 0

Cp(O,y, ) = < Y>

with p(ty) = (t+y)(

and WF'E = {((t,y,r,C);(f,()) E T'(3R2 )I = d cp(tyj),

r =dtCP, = dyCP)

(Observe relation with (4) and (5) of this section). This

example is very particular as it will be shown in example

(ii) since (10) is an exact equality and the amplitude of
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E is equal to 1.

(ii) Let P = D - x(ty,Dy on IRrn where X(tsy, C) E

Coo(R x T t (Rn-1 )) is homogenous of degree 1 in C and

x(t, y,D ) is a pseudodifferential operator in Rn-l

smooth in t

Let us try as in (10) to find an operator E of

the form

Ef(t,y) = eiCP(ty 9 C f ()dt , f E C(]Rn-1)

with cp satisfying:

Cp(O, y, ) = <y, C>

We have: PEf = P ' )f()d . So we need:

(11) P(e iCP(''') = 0

(11) is not satisfied in general, because we may have

contributions on S0 or lower order from X(t,y,D ) (e CP)

The way to "kill" these lower order terms is

introducing an amplituded a E S Rn X ]n-1) in E
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Ef (t,y) = eCP a(t,y,)()d .

We need now to solve:

(12) ei PP(aecP) = 0

Because of the asymtotic expansion of e iPP(ae CP)

(see [D]) we would have to solve an infinite number of

differential equations along characteristics (of

Dt - X(t,y,D )) with initial condition a(O,y,C) = 1

For avoiding this we put

(13) a 3 a_ aj E S (Rn X mn-1

j=O

Pluging (13) into (12) we have now to solve for each a

j > 1 an inhomogenous differential equation along the

characteristics with 0 initial condition. For a we
0

have to solve an homogenous differential equation along

the characteristics with initial condition: a (0, y, ) = 1

So what it is possible to find in this example is

a Fourier Integral Operator satisfying:

PE E C o(]Rn-1 ln)

Y0E = Id mod L~(ORn-l
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To motivate the appearence of the same number of

Fourier Integral Operators as characteristic roots X ,

i = O,... .,m-l , in the decomposition (1) of p , we

consider:

Let P = where
t

S = 2 + 0+ 2 
)y2 ln-1

is the Laplacian in n-1 dimensional space. n > 2

The solution of the Cauchy problem:

Pu = 0

you = 0

Yo u = f

is u(ty) = ei{<Y, v + tj }j )

- e

Let cpl (ty,) = <yvp

(t9,,) = <Y9 P

then 2-= ki

Y 0CP = <y Y.9>

f E C 0( IRn-l
0

21 C ( C)d g

21j C (C|
1 (|

+ ti I

- ti C

W6 -IP

YOCA2 = Y, 9

(iii)

10
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|CJ is the principal symbol of the square root of the

Laplacian /K and the principal symbols of P and

( + f1) coincide. We have that in this

example Xl(g) = I C| and x2 (9) = -1 91 , and the map that

sends the Cauchy data to the solution is a sum of two

Fourier Integral Operators.

A strictly hyperbolic operator P (i.e. p satis-

fies (1)) behaves "essentially" as T with

(D - x0(t.,Dy))... (D - m- 1(t0 yD))

The essential features of the construction of the

E have been indicated in the examples. We put:

E f(ty) = e ( )f , f E C (]Rn-1)

with cpi satisfying (4), j = 0,...,m-1 . The principal

symbol of the E will satisfy the differential equation

("along characteristics")

(14) H-e + C = 0 on CY(o) , j = O,...,m-,

where is the lifting of p to Tt(Rn) x T tn-l)

and C is the pullback of the subprincipal of P

to C (0) under the projection
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C 1(0) T'(Rn)

Initial conditions for e are determined from the

condition Y(I)kE = 6kjId , and it is possible to

satisfy them because the characteristic roots are different.

A very important motivation of the construction of

(6) is the paper of Lax (see [La] where an approximative

solution is constructed.

Chazarin succeeded in constructing a parametrix for

the Cauchy problem for hyperbolic operators P with

characteristic roots of constant multiplicity if P

satisfies the Levi condition, with a slight modification

of (6) (what changes are the number of Fourier Integral

Operators and their order) (see [CH1]).

Flaschka and Strang had shown before [ CH, ] that

the Levi condition is necessary for the Co well

possedeness of the Cauchy problem for hyperbolic differ-

ential operators with characteristic roots of constant

multiplicity, using a modification of Lax construction in

[La] (see [F-S]).

Equations (14) are called transport equations.

2. Ivrii-Petkov result.

We will state in this section a result of Ivrii-
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Petkov, related to condition (iii) of Chapter 1, Section 1,

and therefore to the Levi condition according to

I. Proposition 2.3. For the proofs see [I-V] and also

the very nice exposition of Hormander (see [H1 ]) of the

Ivrii-Petkov paper.

Let P be a differential operator with Cc

coefficients in a c n , Q open n > 2. Coordinates

are denoted by x = (t,y) E E X n-1 and dual variables

by r = (r, 9) E R X Rn-1

Let t ,

Definition 2.1:

rectly posed in

(a) vf

(t I

(b) u E

Let (x ,ro1 ) E TI(a)

A = ( 
2o)) ,

= (x E nI t < t') .

The Cauchy problem is said to be cor-

at , if

E C (0) , a u E E'(n) with Pu = f in0

E?~)and Pu = 0 in at : u = 0 in

and A,BC the matrices:

B = (x. T0)),

C = ( xj 3x 0 0 ) , < i,j S n
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Let u = (x,n) E T*(Q) , V = (i,~) E T*(O) . Let

Q be the symmetric bilinear form on T*(Q) x T*(Q)

defined by:

(1) Q(u,v) = i<An,~> + -<Bx,~? + j<Cx,R>

< , > is the scalar product in 3R'. Let F: T*o--+ T*()

be the linear map given by

(2) Q(u,v) = a(u,Fv)

where a is the canonical 2-form in T*(Q) i.e. in

local coordinates

n

a = d A dxi

i=l

Proposition 2.2: Let (x 0,T) E T*(n)

pl(xor 0o) = p2 (xo,'o) = 0

such that:

where

pxOO) = pl(xox0o)p 2 
-o0'0

(plp2) o'no) = 0 :* F 2 = 0 .then

Theorem 2.3: Let n be an open set in IRn, let x0 EQ ,

and assume the Cauchy problem is correctly possed in O

.

.
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for t near to if x = (t,y0 ) . Assume that:

p(xOr O 0) =0 , o, 1) = 0 2 (x 0, r) < 0
or 6r

Let F be the linear map corresponding to Q (see (1)

and (2)), then if F has no real eigenvalues different

from zero, then:

p (x0 Lo)

where iu are the eigenvalues of F on the positive

imaginary axis repeated according to their multiplicity

and C is the subprincipal symbol of P
p

Corollary 2.4: F2 = 0 =* C (x0,%) = 0

So by Proposition 2.2 and Corollary 2.4 a necessary

condition for the well possedeness of the Cauchy problem

in the sense of Definition 2.1 is that C (x , ) =0 at

points where p ,(x ,'o) = p2 (xo'r) = 0 if P = P1 P2 + Q

(p,-p2 'x %) = 0, P with simple characteristics

with respect to r i.e. dr pi(xo' o) / 0 , i = 1,2.
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3. Cauchy problem for symmetric hyperbolic systems with

double characteristics.

Let Y be an open set in Rn-l, n > 2 . Let

X = R x Y . Variables in Y will be denoted by (t,y)

and dual variables by (r, ) ER x X n-1 . Let

(1) P = (Dtxl(tiYD y ) + D(t,y,D )
0 D t- 2 (tyD )

where X (ty, ) E C(IR x T'()) are real valued homogenous

functors of degree 1 in C , i = 1,2, and X i(tyD ) are

pseudodifferential operators in Y depending smoothly on

t . D(t,.,.) is in L(Y) , smooth in t . All pseudo-

differential operators will be assumed to be classical

ones and properly supported.

(i) Reduction to simpler case.

Let p E C(]R xT'(Y)) satisfy

= %l(tydyp)

YO( = <y, C>

in a conic neighborhood of (0,y 0 ,C0 ) E RxTI(Y) . Let

( (t,y,r, t) = cp(ty, t) + tr .(3)
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Let x be the canonical transformation defined in a conic

neighborhood V

to T?(Pn)

of (Oy 0,r , o)

defined by

= (dr vd ,r, C) .

Note that

(0, x, r, ) =

dr'(tjyirC)

dy (O, y,r, ) =

d t (t, yr,) =

<y, >

r + xl(tyvdy )

We are going to denote

Tt(ORn) .

also by (t, y, r, C) coordinates in

Let

x(Oy0,r0 , C0 ) = Let A E I( clRxy) xRnrt)

where r is a closed conic subset of the graph of

be defined by:

(6) Af(ty) = elp(t, y, C)-9 P>a(t, y, i, C)f (ty)dfdg

where a E S ( x yxRn-1 xRn-1) . Let

B E I0((J x Y) x R n(r-1) )

E Tt(X) with go ' 0 ,

(5)

() X(t,y,d (t~y,r,5,y~~~,()

(0, i 0o)

be such that
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WF(AB - Idx)

SWF(BZ - Id n

Because of (6) we have

yO A = AY where A E L (Xo)

X= ((0,y) E R xY} and

Ig(y) = je a(0,y, , )g( )did .

B can be chosen so that:

B 0
B E L(Rn-1)

Sn-l= {(0,y)l y E Rn-1) . Note that we can chose W , B

elliptic near (yOPCO) E Tt(Y) , respectively.

Proposition 3.1: The principal symbol of

P = BPA is near (0, O, , 0. )

r 0

P (0 r- 2 tfor some '2 E Co(R x T'I(n-)

homogenous of degree 1 in .

(7)

(0, 0, .9 to )
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Proof: We have to show:

p(t.9x,9 d I(t.9y, r,, d (t.9y., r., )) = (t, d 4, , ) .

Now

p (t, y, d t(t, y, r, )d I(t, y, r,)) =

d tl-x(tyd y)

0

r

0

Now because of (5) we have our claim.

Q.E.D.

Note that )= (t, y, d y (t y., r,)

- 1 (t, y, dy @(t, yr, )

and we have named y = d ,

Remark: R= ( Dt-X(t7yD ) 0
p D 

o-a o xY,y ,Dy

pseudodif ferential operator on IR x Y , beca

pseudolocal (see [N]).

in T'(R XY)

However

is not a

use it is not

WF'R outside the diagonal

only contains points of the form

((t,y,r,O);(t,y,r,O)) but taking BRA those points do

(see [D]) because we have

9 = d .

d -%2t y,9 d )

0 0 0

r-%2 (t., d 4(t.9y., r, (,(
p (t, d *(t, y, r, C)., r,.)

X2 (tP d (t, y,r,

WF I(BRA)not contribute to
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go / 0 .

So we are reduced to study the operator

D t0
(8) P 0 D + , (ty,DtD )

0 Dt-X2 (t3 yD )'

D E Lo (,n)

using the same argument as in Chapter I. Proposition 3.2

developing in Taylor series around r = 0 in the first

row and r = X2 (ty, ) in the second row, we can find

an elliptic operator C E LO(R n) and ~ (t,y,D y) E

Lo(Rn-1) smooth in t such that:

(9) P= t 0 + + tYD.

(Indeed in Proposition 3.2 we got a C in the right hand

side of the right hand side of (9), but taking real

transposes we can get (9).) Let

(10) L = + D(tyDD ).
0 D D2 (t~yD )j/

(ii) Construction of parametrix for the Cauchy problem

for L .

In this paragraph we are not going to give as many
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details as in 1.4 since the construction is along the

same lines.

Let E: C' (Rn-1)- --+(Rn)0

E = E + E2 + E3 where:

E 1 f(ty) = ee e(tyo )f( )de

be defined

E2fE2 (tY)

E 3ff(to y)

S e

tS

i c 2(to yo 9)

icp3
('T, t, y, e)

3 (', t, y, e)(e)de d

where

X2 (t, y, d yp2

Y0CP2 =

cp3('T, t, Y = ep2 (2 .yo

Note that:

(13)

TT

P3(t toy, e) =

cP3
( ,t,y, e)

q,2 (toy e' )

3
= - p3 (-To toy, e)

cP3

by

(11)

and

(12)

2(ey e) f'(@)de

cP3(-t, t-9y, e)= <Y-90>

6
- k2 'ty d YCP3) '
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00

e 3 e , eI

j=0

are chosen so that:

homogenous of degree -j , i = 1,2 ,

D 0

( 0 D )+ D (t,y,D ))E,

D (tyDt 2 y
0

E C**o(Rn-1 XRn)

+

D~ 2(t.9y, D

CC(n-1 lRn)

yO(E1 + E2 ) = Id .

e =ei +3 3
j=0

e- homogenous of degree

homogenous of degree -j are chosen so that:

(17) ( (D t -D
0

0
Co )

D +D - 0(tvyD

where E : C (,n-l-Coo(En+1)3 o0'

Elf(,r, t,y) =

+ID(ttyD ))E E

Cc*(Rn-1 xn+1

, and

e 3

f E C ( n-1

OW D t-D T
Let p = (Dt

0
then

(14)

(15) E

(16 )

1 and e-

DI(t,yt y, D))E 2

,ei

D +D -x Dy



( T t, y, d d dp3 ' dtcp3 ' d7cp3

Initial conditions are given for at T= t

and r = -t by:

e12 (tytjy,3
0

2 y) 
0

0) )

0 )(eip
2ej)

0
mod S

(19) ( 21
e3

0

(-t.0t~y, e)

0 0 ) (e " ' e l)
-2 0

mod S~*

The symmetric hyperbolic system that we have to solve for

in order to have

0

n-1

D +D

k=1

d(ty,dYcp
3 )e

102

=-0

(18) (
0

and

,

0

-tty, )e 22(

(17) is:

t-D

0

+

+

where:

= 0 ,

e 11(t.tjype)3

0 0

q 0
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n-l

X2 (tyDy )(e e3) X2 (ty, d Cp3 ) + n-i
k=1 k k

e3 + qe3

+ lower order terms.

Note also, that (D + D -

n-l

*~-~~ (c3) = 0

So the transport equations for the ej , i = 1,2 ,

are the usual ones, i.e. calling e

of E. , i = 1,2 .

(20) H- e +C e =0 on C (0)
Pu Pi 

where pi is the lifting of p

p1 = r , p2 = r - X2 (t'y Y ) p C
the subprincipal symbol of

the principal symbol

to T'(jRn-1) xT(n

is the pull back of

+ D (t,y,D ) under the projection C1 (0) -+ T?(Rn).
Dt

C is the pull back of the subprincipal symbol of

D 0 0
( ) + D(t,y,Dy) under the projection

0 Dt-X2

C2(o) -+ T!(IEn) . C (0) as in II.l. (2) with kg= ,

X2 (tsy, )= 2 (t,y, ) . Let e3 be the principal symbol

of E , then it satisfies:3

(20) Hv
0

0

H V + C 3 = 0 on 'C3(0)

.
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where 03(0) is the canonical relation defined by E

and 1  is the lifting of r - m to T'(R n+) x T'(R n-

V2 is the lifting of r + m - 12 to T'(2]n+1) xT I(JRn-l

where the variables in T'(R )n+ are denoted by
(' ,t,y,m,r,C) . So e3  satisfies a symmetric hyperbolic

system which is an essential difference with the strictly

hyperbolic case.

So in conclusion of (ii) we get E s.t.

IE E C,(jBn-1 x]n)

(21)

Y(E = Id mod Loo(En-1

(iii) Construction of a parametrix of the Cauchy problem

for P

Clearly we can choose in 3 (11) E s.t.

(22) WF(AB - Id) . WF'E =

Now let E = BE . Then by (21) and (7) we get:

AP E E C"(n-l n)

Y0 BE = 0 
Y E =

Let B' be a parametrix for B , and let = EB'
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Then we get

APZ E Co(]Rn-1 XRn)

Y = Id mod L 0(IR n-1)

By (22) finally

(23)

P I

y 0

E CO( n-1 xRn)

= Id mod L~(-R 1

Remark: Essentially the same construction for the para-

metrix for the Cauchy problem for P works for an mXm

system of the form:

0

+ D(t,yD

D t% m (vy )j

(24) P =

D t- l(ty,D y)
D -%2 (tvy,D )

0

where 
' , X 2

this section,

degree 1 in

k = 1,2,. *..,m

D satisfy the same hypothesis as in

(t.y,9C) E C(IR x T'(Y)) homogenous of

j = 3,...,m , and X / k , j= 3...

j / k , X (t,y,D ) pseudodifferential

0
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operators in Y smooth in t , j =,

Let 4(ty, r, C) = ep(t, y, C) + tr as in 3. (4)

(25) i (t, y, r_, =cp (t, y, C) + tr with

Cp.

and take the associated canonical transformatation xx.

Let A,A. be the associated Fourier Integral Operators to

as in 3.(6) j = 3,...,m

A

0

B

B =

0

B

A

and take

A
3

Am

B
3

B)
m

with B,B local inverses of A, A

a Fourier integral operator, since the

,*

A is

canonical relations
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associated to A,A. are disjoint j = 3,...,m . We

consider now P = OPB and we are reduced to the study of

D t

P =

D t-X
2

(26)

0

Dt

0

+ ID(tyD y) ,

Dt

I5(t, ,v.) E LO(Y)

The construction of fundamental solution E of the Cauchy

problem for (26) has the same form as that for (8), i.e.

E = E 1 + E2 + E3 with Ei as before.

The transport equations for el, e2, e3  are

obtained from:

Dt

0 t

D t-2

0

b)

0

+ D (t.yD ) E2 E C(3n-1 x Rn)

D t-%2

The initial conditions are:

a) il~t~y,00 ElEC(n-l n
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y(E1 + E2 ) = Id mod L 00(R n-1)

D -D

d)

D -%2+Dt

D t-D + D(tgy,D ) 1 E C*(Rn-lxRn)

D -D'

-t,t,y,e) = - 2(e e)

SX 2 (e e 2 ) k > 1 , j

mod S00

= 1,. .. , m

)4. Parametrix for the Cauchy problem for hyperbolic

operators with double characteristics.

Notation is the same as in section 3 of this

Chapter. Let

(1) P = (Dr - kl

S E L1 (X) and we assume s(r,t,y, C) = 0

r - X (t,y, c) = r -

c)

e (

e 3(t t,y, e)

j = 1,...,m

mod Sco

, vy,0D y)) (Dt- X2 (t Iy, D y))

X2 (t-y, Y- ) = 0 .
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Proposition 4.1: If Y (t,y, ) is the full symbol of

-j1l E S-i (R x Tt(Y)) ,

then we can choose

(2)

Xo
CO
so that:

P = (D t

with T E L(x) .

Let p1 E S'(T*(X)) be the term of order one

in the asymptotic expansion of the full symbol of

to have (2) comparing

0

= -% r

where h

terms of order 1 we must solve for

n-l

- x2 Dt2 + 3 - Dx X2
j=l 3

is the term of order

expansion of the

r = X1(ty,)

full symbol of

+ (r- 1 )h0

0 in the asymtotic

So at

n-l

D
2

But the left hand side of (3) is s and by assumption it

vanishes when X = X2so X 0 is determined.

Q.E.D.

Proof:

p , then

- %2.

- X, (tV y,9D y) )(D t - X2 (t.yD y))

f- .

-%2 (t0yD y)

0(( 3) ( (t.9yP 1 ( tqy, ),p C) +D t%2
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Now let us consider the system:

0 T
+ -Id 0

I D t-xl ,y,D y)(4) L = ( 0

0 T 0
Let D= 0) E L (X)

-Id 0
C E LO(X) elliptic and 'D(t,y,D )
s.t.

- D c -[ x
L = C t( 0

We can choose

E L0 (Y) smooth in

0

D -% + Di(t,yD )]

By Chapter II, Section 3 we can construct

LE E C(Rn-l xjRn)

Y E = Id

So we have

E E C

(5)

YOE = Id

From (5) we get:

mod L~ -(n-1)

(Pn-X Rn)

.

i ) (t-x 1 (typDy ))E 11 + TB21

t

E s.t.

D 0 1 )

D -%2(tq yD y)

E C oo(3n-1 x 3Rn)



111

+ TB22 E C00(E Jn- n

- E E CO(R n- XRn)

- E,,E C(OR n-X1R n)

From i ) and i3 )

= Id

= Id

mod L(OR n-1)

=0

=0

we get:

(D - X(t y, D )(D -%2 (t'yD ))E21+ TE21

From 12) and 1)4)

E C00(.n-1 x3Rn)

we get:

(Dt - X(t y D )(Dt - 2 (t, y, D ))E 22+ TE2 2
E C(Rn- 1 X Rn)

Also from 15

From i 3) and 1 5

y E22 = Id

Y E21 = 0 mod L~

OD t X2(ttyDy)E2 1
= Id mod L~0

L5) yoE

o 22

Yo E21

Y oE 12

S2) (D - x ,t0y,D y))E 12

13) (D t- X2 (tt y, D y))E 21

14)( t - 2 ,t9y, D y))E22
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YO%2(t9yDy) = X2 (0,yD )Yo E2 1

= 0 mod L~

From 14) and i 5

Then calling

We have

0 t 22 0 mod L-

E = E22

E2 = 21'

PE E C C( :Rn-l xJRn)

Y. (+tE- = E 8k Id mod L~ (Rn) , k, j = 1, 2

So E = E + E2 is a parametrix for the Cauchy problem

for P

Remark: Using remark of II Section 3, we can construct

a fundamental solution of the Cauchy problem for an

operator of the form

P = (D t- X (ty,Dy))(D - X2(t.yD ).(Dt - m(tyD y) + S

with X , X2 , S as before and . , j = 3,...,m , as

in the remark in Section 3 of this chapter.

Using a slight modification of Proposition 4.1 we

are reduced to consider

But

.
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P = (Dt - Xl ,y,Dy))D t - 2 ' ' y))... (D t- )IM(tq y,Dy))+ T

T E L0(X)

because the principal symbol of (Dt - Xn(t yv D *

(Dt - xm(tyDy) is different from zero when

and we can make a reduction to the case

D t-x1

L = 0

Dt -%

0

D t-

r = x = x2

+ D(t,y,Dy

and continue as before.
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CHAPTER III

Open Problems.

The main problem that is implicit in this thesis

is to make a general theory of oscillatory integrals with

twedgest", i.e. to make sense of expressions of the form

(1) t e c3(TVt . e3(Ttsyiyje)f(z)dyde
J-tj

with conditions on e3 '3 , etc., or more generally to

make sense of oscillatory integrals with singular symbols

(in (1) we have the term H(t- )H(t+ )e3 with H the

Heaviside function) and I think a generalization of [G]

would lead to that. With a functional calculus it could

be constructed (maybe) a global parametrix in certain

cases and it could lead to results in the asymtotic study

on the spectral function of an elliptic system P on

which the eigenvalues of p are multiple and in the

description of the singularities of the spectral function

(see [D-G] and [H4 ]).

The problem of conical refraction, that has many

relations with this thesis, is very interesting as well

(see [L]).

In Chapter II the singularities of the parametrix
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constructed are not analyzed, since this was done in

detail in the involutive case in Chapter I. In the

non involutive case (i.e. (p1,p2 ) / 0 on p1 = p2 = 0)2
we observe that this condition implies -- p 23 / 0 where

- p3  0 with c3 as in Chapter II, Section 3 (12);

so applying the method of stationary phase to E3 we

get that the "extra" term in the singularities of E3
are broken bicharacteristics (corresponding to HP ,

i = 1,2) starting on points where p1 = p2 = 0 (see

[Ga-L] and [M].)

We do not have definitive results on these

problems yet, so we have not included its analysis on

this thesis. We will come back to this soon.
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NOTATION

(1) 3.(4) for instance means number 4 of section 3 of the

same chapter. (4) means 4 of the same section and

chapter.

(2) If X is a Co manifold:

il) T'(X) = T*X - (0) .

12) Cf(X) is the set of C function on X .

i3 ) C (X) is the set of C" functions on X with

compact support.

14) DI(X) is the set of distributions on X .

15) E'(X) is the set of distributions on X with

compact support.

16 ) Lm(X) denotes the set of properly supported,

classical pseudodifferential operators on X

1 ) L~*(X) is the set of pseudodifferential

operators with C kernel.

i8 ) P E Lm(X) , p denotes its principal symbol and

CP its subprincipal symbol.

i ) If Y is a Co manifold and A: C (X) -+ D'(Y)90
linear map, then KA E D'(YXX) denotes its

Schwartz Kernel.
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T E D'(X) WFT denotes the wave front

set of the distribution T .

If A: C (X)- D ' (Y)
0

WFA = WFKA

If A E C (X) -+ DI(Y)0
WF 'A = (((.,) x

continuous linear then

continuous

E T'(YxX)I

linear then

E WFA)

= [(y,.C) E TI(Y)j 1x E X such that

E WFA)

[(x, 9) E TI(X)I 'y E Y such that

E WFA)

Let X be an open set in

= <e . C>f(x)dx

<x . C= x 191 +

fg E C) (x,
n

f E C (X)

... + xn 9

[f,g) = I
4=1

Sm(X X En) =

6f
at

- f
3 x

(a E C,(X x Rn)I given K c X compact,

a, ,K > 0

(D CD Oa(x, )) < C

Va = (CL . . n

Ca, 01 E IN U0) ,

such that

p,K( + 1 |I)m-1 01

' = ' ' - '' On) multiindices

()a 
jaT - a lIa n

xl jeeej~?x n

If

ill)

WF'Ay

WF'A

3) i1 )

12 )

13)

((x, 0); (yi))

( (yV 0 ); (x, C) )

.



ja| =a,+ ... + an ' x 67)i

In general we use the notations of [D].
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