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ABSTRACT

The conjectures of Birch and Swinnerton-Dyer predict the behavior of
the Hasse-Weil zeta function of an elliptic curve defined over the
rational numbers at one. One of the major advances in the study of
these conjectures is the result of Coates and Wiles. For elliptic curves
with complex multiplication by the ring of integers of a complex quad-
ratic field k of class number one, they show that the zeta function
vanishes at one if there is a rational point of infinite order. A version
of this result due to Harold Stark is an attempt to understand it from an
analytic viewpoint. Stark's proof assumes that for infinitely many
primes 17 in k, a certain abelian extension of the field of 1 -division
points of the elliptic curve is ramified. This assumption is analogous
to Wieferich's criterion for the first case of Fermat's last theorem.

We remove this assumption by extending the argument up the tower of
fields of division points considered by Coates and Wiles. The analogous
abelian extension of the field of iTn -division points is ramified for some
n. We determine the least such n and for this n find that the conductor
of the corresponding extension is P2 , where 3 is the unique prime
ideal above (7T). This follows from a discriminant bound obtained using
Kronecker's limit formulas and a discriminant-conductor relation which
is a consequence of relations between induced characters on relative
Galois groups. The P2 conductor result and the structure of certain
units (Robert's elliptic units) combine to give the theorem of Coates and
Wiles without most of the machinery they use.

Our method works for first and second degree primes and avoids the
complications of anomalous primes which Coates and Wiles need to con-
sider. We are also able to calculate conductors at arbitrary locations
in the tower.

Thesis Supervisor: Dr. Harold Stark

Title: Professor of Mathematics
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CHAPTER ONE

INTRODUCTION

The theory of the Hasse-Weil zeta function of an elliptic curve

is replete with conjectures but relatively lacking in general results.

Foremost in the state of uncertainty about these zeta functions is the

question of where they exist. They are defined by Euler products

which converge in a half plane and are not known in general to be

continuable to the whole complex plane. Weil has conjectured that

the zeta function of an elliptic curve over Q is in fact a familiar

object, namely the Mellin transform of a modular form.

By drawing parallels with zeta functions of number fields, we

may expect that the zeta function LE(s) of an elliptic curve E

stores arithmetical information about E in its behavior at special

points. In this spirit, and based on extensive numerical evidence,

Birch and Swinnerton-Dyer ([5]) in 1965 conjectured that, for E

over Q, LE(s) has a zero at s = 1 of order equal to the rank of E.

This conjecture is especially remarkable in light of the fact that the

half plane where LE(s) is initially defined is (s I Re(s) > 3/2 }.

For elliptic curves with complex multiplication, many of

these conjectures can be replaced by theorems. Building on the clas-

sical theory as developed by Kronecker, Weber, and others, Deuring

made major advances in the theory of complex multiplication in the

1950's ( [7], [8], [9]). In particular, he showed that if E has complex

1
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multiplication then L E(s) has an analytic continuation to the entire

complex plane and satisfies a functional equation.

In 1977 Coates and Wiles ([6]) proved

THEOREM. Suppose E has complex multiplication by the

ring of integers of an imaginary quadratic field k of class number

one and that E is defined over k or I. Then if E has positive

rank over k or , its zeta function over k or Q respectively

vanishes at s = 1.

Considering the full statement of the Birch and Swinnerton-Dyer con-

jecture, this is a relatively weak result but it is the strongest evi-

dence to date in support of the Birch and Swinnerton-Dyer conjecture.

In ([16]), Stark attempts to understand this important result

from a more analytic viewpoint. The central idea is the same,

namely to show that L E(1) = 0 by showing that some associated num-

ber LE(1) is divisible by infinitely many primes. Here, LE(1) is

in k and is zero if and only if LE(1) is zero. In both versions,

LE(1) is brought into play by the structure of certain elliptic units,

but Stark replaces the formal groups arguments in ([6]) by a simple

congruence. The major simplification involves the explicit observa-

tion that if, for 17 a prime in k, the field of rr-division points of

E has an abelian extension of conductor 2 (where ' is the unique

prime above ( r)), then 7r divides LE(l). This extension is
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constructed by dividing a rational point of infinite order by n.

Assuming that this extension is ramified, Stark is able to show it

2
has conductor 2

Our goal in this thesis is to remove this major assumption by

investigating more carefully the structure of the tower of fields of

division points considered by Coates and Wiles. We prove, as do

Coates and Wiles, that for some n the extension K of the field
n

n
k of Tr -division points is ramified, where K is obtained by

n n
n

dividing a rational point of infinite order by Tr Moreover, we find

the conductor of the abelian extensions K /k for all n and deter -
n n

mine the first n for which ramification occurs. For this n, we

2
prove a "conductor 3 " result which implies that r divides LE (l)

This happens for all but finitely many 7 and hence LE (1) = 0.

The methods we use are considerably different from those

used by Coates and Wiles. We are able to find our conductors using

"conductor -di scriminant relations" and certain key polynomial dis -

criminants calculated by Stark using Kronecker 's limit formula.

Eisenstein and "almost-Eisenstein" criteria play central roles in our

arguments. We avoid the machinery of formal groups, Lubin-Tate

theory, and local class field theory used by Coates and Wiles. Con-

cerning class field theory, we use only the most elementary facts

about ray class fields.

While Coates and Wiles consider only first degree primes,
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our method allows us to include second degree primes as well. It

certainly suffices to consider only first degree primes for the pur-

poses of showing LE(1) = 0, but we believe that any treatment of

curves without complex multiplication using these methods will be

modelled on the second degree prime case. Most of the time, we are

able to treat first and second degree primes simultaneously. We are

also able to include the (most likely infinite) set of anomalous primes

which Coates and Wiles need to eliminate from consideration.

Following Birch and Swinnerton-Dyer, we deal only with ellip-

tic curves over 1. The reader interested in the full generality of the

Coates-Wiles theorem will note that our arguments extend easily to

elliptic curves over k. We believe that our methods should extend

to elliptic curves (not defined over Q) with complex multiplication by

an order of class number greater than one. Nicole Arthaud ([1]) has

generalized the Coates-Wiles result slightly, but still with the class

number one assumption, and promises to remove the class number

one assumption under certain milder assumptions in a subsequent

paper. We also generalize the Coates-Wiles theorem somewhat by

proving it for elliptic curves over Q with complex multiplication by

a non-maximal order.

Chapter 2 consists mainly of background material needed

later. In chapter 3 we construct the fields K and k and prove
n n

some facts we need about them. We also prove a character relation
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which leads to the crucial conductor -discriminant relation. In

chapter 4 we present our main result, the calculation of the conductor

of K /k . Finally, in chapter 5 we prove the Coates-Wiles theorem

using the results of chapter 4.



CHAPTER TWO

PRE LIMIN ARIES

In this chapter we present some background material on elliptic

curves as well as some facts which will prove useful in the next chap-

ters. We draw special attention to the "almost Eisenstein" criteria

of section 2. 3 and the calculation of certain polynomial discriminants

in section 2. 4. The first two sections deal with well known facts

about elliptic curves and complex multiplication; for our purposes the

important result here is Proposition 2. 2. 4 which tells us something

about the form of multiplication by 1r.

2. 1 Elliptic Curves

We gather some basic facts about elliptic curves. See Tate's

excellent survey article ([18]) or Lang ([11]) for details. We con-

fine ourselves to elliptic curves over Q; the general form for such

a curve is

2 3 2
(2. 1. 1) Y + a XY +a3Y = X + a2 + a4X + a6

where the coefficients are rational. For most purposes it suffices to

deal with the simpler Weierstrass normal form

(2. 1. 2) y2  
3

obtained by letting

6
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2
a2 + 4a

X = X 1 2 I (y - aX - a12 2 1 3

3 2The discriminant of (2. 1.2) is A = g2 - 27g3 which is non-zero.

The equation (2. 1. 1) for E is unique up to a coordinate change

X = u X' + r , Y = u Y' + su X' + t

where u,r, s,t E Q with u # 0. Under some coordinate change, it

is always possible to find a model (2. 1. 1) for E such that all the a.
1

are integers and JAI is minimal. The associated Weierstrass

normal form (2. 1. 2) is unique subject to these restraints and we call

it the minimal Weierstrass equation for E; even though g 2 and g 3

may have denominators dividing 6 , A is integral and we call it the

discriminant A (E) of E. The j-invariant of E is

31728 g2

jA (E)

This quantity is indeed invariant under coordinate change and in fact

parametrizes isomorphism classes of elliptic curves over an alge-

braically closed field.

From now on, unless otherwise stated, we take E to be given

by a minimal Weierstrass equation. Associated to E is a lattice

Sc- C such that if p(z) is the Weierstrass p -function for this lat-

tice, then the map
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X : C/o -E (0) , z i - (p (z) , p'(W))

is an isomorphism between the torus C/o and the complex points of

E (including the point X(Q) = (co , co)). This map allows us to define

an addition of points on E. If (x 1,y 1 ) = X(z ) and (x2 ,y 2 ) = X(z 2 )

we let

(xlVy) I (X 2y' 2) = 1 (D x2, 1  y2) = X (z + z2

the origin for this group law is (o , co). The following theorem makes

this addition more concrete.

ADDITION THEOREM.

1 p'(z) - (z2
p(z + z2) = -p(z p(z + -2 4 p (z) - p (z2

We thus have x1 e x 2 as a rational function of x , x 2 , Y 1

and y 2 . Differentiating the above formula yields y1 e y 2 as a

rational function in these quantities as well.

The Addition Theorem shows that the set E(Q) of rational

points of E is a subgroup of E(C). In 1925 Mordell proved that E(Q)

is finitely generated. This result was generalized by Weil and is

known as the
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MORDELL-WEIL THEOREM. If E is defined over a number

field K , the group E(K) of K-rational points of E is finitely

generated.

In fact, Weil showed that this result holds for abelian varieties.

In light of the Mordell-Weil Theorem it makes sense to make

DEFINITION 2. 1. 3. The rank r(E) of E over Q is the

rank of E(Q) mod torsion, i. e. E(1) =-r(E) E torsion.

We now define the Hasse-Weil zeta function of E.

DEFINITION 2. 1.4.

L (s ) = ( - + 
( +- -1..

E p ' A(E) p p ZS1 p I A(E) p )

Here, s is a complex variable, the products are over primes, N is

the number of points on E mod p , and t is 1 or 0. N is one
p p

more than (because of the point (co , co)) the number of solutions in

Z/pZ x 7 /pZ to a minimal equation (2. 1. 1); for p # 2, 3 we may

use the minimal Weierstrass equation to find N . Thanks to Hasse,
p

who proved lp+1 -N I : 2 Nf, it is easy to see that LE(s) is de-

fined for Re s > 3/2. In fact much more is believed.

CONJECTURE 2. 1. 5. LE (s) has an analytic continuation to

the whole complex plane and satisfies a functional equation.
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Even though we are not justified in doing so, let us put s = 1

in Definition 2. 1. 4. Ignoring the fi part we get

p I A(E)

(1N ~
E p tA(E) p N

Now if r(E) is large, we expect that N is large so that LE(1) is

small. Based on similar heuristics and extensive numerical calcula-

tions, Birch and Swinnerton-Dyer made in ([ 5 ]).

CONJECTURE 2. 1. 6. L E(s) has a zero at s = 1 of order

r (E).

Here we are of course assuming that Conjecture 2. 1. 5 is true.

An expression for the lead coefficient in the Taylor series

about s = 1 is formulated in a more general version of this conjecture.

This expression involves the order of the Tate-Shaferevitch group,

which is conjectured to be finite. This leads Tate to remark ([18])

"This remarkable conjecture relates the behavior of a function at a

point where it is not at present known to be defined to the order of a

group which is not known to be finite !"

2. 2 Complex Multiplication

We now discuss an important special class of elliptic curves

which we deal with in this thesis, those with complex multiplication.

For more on the rich theory of complex multiplication, see for
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example Weber ([19]) or Lang ([11]).

DEFINITION 2, 2. 1. E has multiplication by P E C if

c 2. E has complex multiplication if it has multiplication by

some P 4 7 .

Deuring ([ 81) proved

THEOREM 2. 2. 2. If E has complex multiplication, Conjec -

ture 2. 1. 5 is true.

Deuring proved this by showing LE(s) is a Hecke L-function with

Gro'ssencharacter. Thus for elliptic curves with complex multiplica-

tion it at least makes sense to formulate Conjecture 2. 1. 6.

We note that E clearly has multiplication by rational integers.

If E has complex multiplication (CM) then

I = ( I E has multiplication by P }

is an order in the ring of integers (k of an imaginary quadratic field

k and 0 = w r for some w E Q. For some c E 7, called the

conductor of r, r = 7 + c 8 Z where (1, 8 } is an integral basis for

9k . The j-invariant j(E) depends only on r and is in Q exactly

when the class number of r is one. There are precisely 13 orders

in imaginary quadratic fields with class number one. Besides the 9

maximal orders &k as k ranges over the imaginary quadratic fields

of class number one, the orders with conductors 2 and 3 in Q(4~-3)
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and the orders with conductor 2 in Q1 (i) and Q(tF 7) have class

number one.

This means that over the algebraic closure of 0- there are

exactly 13 isomorphism classes of elliptic curves definable over Q

with complex multiplication. To decide whether a given elliptic curve

has CM, we only need to compute its j-invariant and check whether it

is one of the corresponding 13 values. These values, which are in

fact not only rational but integral, may be found in Weber ([19]). For

2 3
example, the curves y _ 3 - 4Dx with j-invariant 1728 have CM

by the Gaussian integers.

Not surprisingly, given the terminology, if E has multiplica-

tion by P we can define a multiplication by p on the points E(C).

Namely, we define

P 0 (x, y) = ( Ox, ( y) = (p (z), p'( z))

where (x,y) = (p(z), p '(z)). The inclusion QC implies that this

multiplication is well-defined; p( Pz) and p'( 8 z) are elliptic func-

tions for the lattice 0 .

The theory of the Weierstrass p -function tells us that p ( p z)

is a rational function in p (z). Investigation of the poles of p ( 8 z) in

fact yields

LEMMA 2. 2. 3. Suppose E has multiplication by . Then

PPz) = f (p(z))
g(p (z))
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where f and g are polynomials of degree n8 281

respectively.

We rewrite this more suggestively as E) x = f(x)/g(x). For

19 l2 odd, the polynomial g(x) has double roots at the points p ,

w E Q $ Q, so g(x) is a square. We normalize f and g by setting

g(x) = 4 (x) where

qj (x) (x -(pW

Here, the product ranges over w E -80 mod $ n, mod 21, where

by "mod 1" we mean that if w , I 2 occur in the product then

W, t w. mod 50 . The fact that p (z) is even means that t (x)

2
is well-defined. With this normalization we have $ 0 x = Cp (x)/ $ (x)

where cp is monic and cp , 9 have coefficients in 0 or k accord-

ing as 8 E X or & . For 2 even it is still possible to define

2
so that is a polynomial over Q or k and 8( Ox is as

above.

The following result tells us much more about the polynomials

cp and in the case that 8 is a prime in &k Our future in-

vestigations rely heavily upon it.

PROPOSITION 2. 2.4. Suppose E has complex multiplication

by an order F C ( and let r E F be a prime of norm q relatively

prime to 6 A(E). Then



Cp (x)
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= x mod(rr)

and

L (x) = constant * 0 mod(TT)

where these congruences hold coefficient-wise.

This result is most efficiently proved by invoking the notion

of Frobenius automorphisms. With E and r as above we may

reduce the minimal Weierstrass equation for E mod(rr); we then have

a curve E over F . The Frobenius automorphism of E is
q

In this setting Deuring ([ 8 ]) (see also Lang ([11], p. 138)) proved

THEOREM 2.2.5. Using a bar to denote reduction mod(rr),

we have TT'0 (x,y) = a (5,7) for some generator 7' of (r) in F.-- (r)

Remarks. (1) If T

then T'= -p.

(2) Since

(-r') ( (x,y) = ( It -7 q )

Using these remarks

when F contains units other

is second degree and has norm p

p(z) is even and p'(z) is odd,

we see that TT 0 x = x except possibly

than 1; even then we have

FACT 2.2.6. If F = ( then ir x = p q where

p2 = 1 and if F = C Q x =r 3
p~~~~~3 =1adiF 1-then iT x = Px where P =1
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This fact may be found in Stark ([15]) where an elementary

proof of Theorem 2. 2. 5 (at least for r first degree) is given.

Proposition 2. 2.4 now follows immediately from

2 _(q-1)/2 2 = PX
' (x) (x +--.)

This last equality is an equality of rational functions so indeed

cp (x) = 5q and 41 (x)2 = Tp- (= 1 most of the time).

2. 3 Eisenstein and Almost -Eisenstein Criteria

In this section we state for later reference the well-known

Eisenstein criterion and prove some elementary facts about poly-

nomials which are "almost-Eisenstein. " To inspire our proofs of

these almost-Eisenstein criteria we briefly sketch the proof of the

Eisenstein criterion. Here, 11 denotes "exactly divides" and by the

discriminant disc (f) of a polynomial f(x) we mean the discriminant

of the associated monic polynomial, which we recall is the square of

a van der Monde determinant.

THEOREM 2. 3. 1 (Eisenstein irreducibility criterion). Let

k be a number field, $ a prime ideal in 0k and f(x) = a xn +
k - n

n-l
a x +n- +a E 0 [x]. Suppose that %,a, Sa ,...,n-l o k -n n-l

a 1 and | a andlet a be a root of f(x). Then

(1) f(x) is irreducible over k.

(2) ramifies totally in K = k(E) - say =P
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(3) P 11 e.

(4) The power of T in disc (f) is the power of

field discriminant

Proof. We reduce to the case

see Lang ([10], p. 65) for justificatior

h(k) = 1 by localizing at 1;

i. Then (1) follows easily and

(2) and (3) follow by setting P= (1 , a e). For (4), the assumption

h(k) = 1 means there is an integral basis {a 1, a 2' '$ ' aPn }

/k, so there exists an nxn matrix M over Sk such that

(1, , (ane)n- )

has root

' (a.1,S a.2.a .) M .

a e, this leads to
n

2
disc(g) = D(K/k)(det M)

The same power of occurs in disc(g) and disc(f). One checks by

induction that

mod

n-l
Zj=0 c.(a e)3

jn
0 mod p for c. E 0k forces c. 0

3 3
for all j ,so +det M which gives (4).

Stark ([17]) noticed the following partial converse to the

Eisenstein criterion.

THEOREM 2. 3.4. Let k, , f(x), e, K be as in the state-

ment of Theorem 2. 3. 1 but now suppose that

and P 2a 0 and that f(x) is irreducible. Then the power of

_is greater than the power of

D(K/k).

in the

for

(2, 3, 2)

If g(x)

(2. 3. 3)

PI al

a , . I a n-l'''''-

i~n disc(f) P in D(K/k).



17

Proof. We consider two cases.

Case 1. 1 does not ramify totally in K. Then all ramifica-

tion indices of primes above 9 are : n-l. From

n 1 n-le -- (a e +- +a )
a n-l o
n

we see that J j (a )n, whence p j (a )m for some m < n.

n
Case 2. D = P in K. Since the norm N ((a n)) =K/k n

n-l 2 2
(a a ) is divisible by P , we have P a e . As above,

o n n

3 1 (a G) for some m < n.

Now, as in the proof of Theorem 2. 3. l,we may assume by

localizing that a 1, ... , an} is an integral basis for K /k and for

th
some matrix M E M (9 ) (2. 3. 2) holds. The m column of M has

n k

entries all divisible by i since p I (a 8)M, so we have p det M.
n

Equation (2. 3. 3) completes the proof.

It is classical that the powers of P in disc(f) and D(K/k)

differ by an even number. If this difference is 2 we can say more.

THEOREM 2. 3. 5. In addition to the assumptions in Theorem

2. 3. 4, a s sume that the power s of p in dis c (f ) and D(K/k) diff er by

2 and n -2 4. Then 9 factors as = Pn- P in K. Moreover, if1 2
e Pe-1

!P Ila then 1 and P 2 ||e.
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Proof. From the proof of Theorem 2. 3. 4 we know that

(a 8)m for some m < n. But then I (a e)m+l , .. , (a e)n-i

and arguing as before we see that pn-m I det M, whence the powers

of P in disc(f) and D(K/k) differ by at least 2(n-m). This shows

n-i n-2
that p I (a e) but P +(a e) , which means some prime above 3

n n

has ramification index at least n-1. = Pn is ruled out since then

~2m
S21 a e implies p1 (a e) where m is the least integer n/2

n n

and m<n-1. Thus P= P ~- P where P and P have norm ID.
1 2 1 2

e e?*
Finally, if P I e and P 2 . e then e ,e 2 are po sitive,

e + e 2 = e, and e I >- 2 contradicts p 4 (a n)n- . This completes

the proof.

2. 4 Some Polynomial Discriminants

We state here, with a slight misprint corrected, the following

important result due to Stark ([16]):

THEOREM 2. 4. 1. Suppose M is an odd integer and v I , v2

range over M-10 mod 0. Then

2 2 2 2
Tf (P(z+v I) -p(z+ \2)) = M (Mz)M -1 (2M -3)(M -1)/12

(1z 2)p~ ~ )) = tzp( z (E)

Also, if E has complex multiplication by a first degree prime 17 of

odd norm p and v , V 2 run through 7rr Q mod C, then

(p(z + v )-p(z + v 2))= * -r p' (rz) 1 LE(2p- 3)(p-1)/12

1 

( 

2
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In the sequel, these formulas will enable us to calculate cer-

tain key polynomial and field discriminants. See Stark ([16]) for the

pretty analytic proof of this theorem, which is based upon Kronecker 's

limit formula.



CHAPTER THREE

FIELDS OF DIVISION POINTS

Continuing with the notation of chapter 2, we take E to be an

elliptic curve over Q with complex multiplication. We suppose E

2 3is given by the minimal Weierstrass equation y2 4 x - 2x -3

parametrized by x =p(z), y =p'(z). Our goal in this chapter is to

define certain fields of division points and prove some basic facts

about them. In section 1 we introduce k , the field of Trn-division
n

points, and calculate the ( T)-part of its discriminant. In section 2

we define for positive rank curves an extension K of k and show
n n

it is "big as possible. " The last section deals with a character rela-

tion which will be crucial for the calculation of the conductor of

K /k in the next chapter.
n n

3. 1 The Field of Tn-Division Points

We assume E has complex multiplication by the order F in

I& k Let TT E F be a first or second degree prime of norm q = p

or p2 and assume TT does not divide 6A(E). If TT is second degree,

we always take rT = p.

DEFINITION 3. 1. 1. The set of 7n -division points of E is

E = ((p (v), p'(v))I v E r - Q (mod Q) }

20
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n n
It is easily checked that there are q TT -division points.

For v E 7-n Q we will call p(,v) an x- n -division value and denote

n n
a r -division point by (x , y ). We have rn G (x ,y) = (o , cc

n-1
and call (x n, y n) primitive if T G (x , y ) # (0 , 0 ) (recall

( =, =) is the origin for the group law). The coordinates of finite

division points are algebraic; the finite x - Tr -division values are

n th
just the roots of the [(q -1)/2] degree polynomial 4 (x) intro-

duced in section 2. 2.

DEFINITION 3. 1. 2. The field of Tn-division points of E,

denoted k , is k with all coordinates of finite rn-division points

adjoined.

The field k is a normal extension of k whose structure is
n

well known. We say something about the size of k in the next

lemma - it essentially tells us that k is not as big as we might

initially suspect.

LEMMA 3. 1. 3. Let (x , y ) be a pr imitive n -division

point. Then kn = k(x , y ).

n n n

Proof. First note that x gives us all x-1nn-division values.

n
Indeed, if at ,. .. , are representatives for F / n __ 0} mod1 n

(q -1)/2
1, then the numbers a. 0 x are the (q - 1 )/ 2 distinct finite x-1 n
n

rr -division values, and are in k(x ) by the facts stated in section
n
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2. 2. Next, let (x' , y ' ) i t 1 G (x ,y ) be another TT n -division
n n n n

point. By the addition theorem,

,2

Se x = -'- + 1 _ n
n n n n 4 x - x

n n)

2 32
Using y 2= 4xn g 2x - g3 and similarly for y , we solve this

linearly for y' in terms of y, x , x', and x e x . By then n n n n n

first observation above x' and x' E x are in k(x ), so
n n n n

y E k(x, y). This proves the lemma.

Since y 2 E k(x ), we get [k : k(x )] 2 and [k : k] 9 qn.
n n n n n

In fact, the latter degree is even smaller.

THEOREM 3.1.4. k is a de gree q n- (q-1) extension of
n --

k in which (7) ramifies totally. The relative field discriminant

D(k /k) has (r)-part (17)nq -(n+l)q .

The first statement of this theorem is well known; Coates-

Wiles ([ 6]) deduce it from Lubin-Tate theory. We present an

alternate proof using Eisenstein polynomials. Using Theorem 2. 4. 1

we are also able to calculate the crucial discriminant. Given an

extension M/k we let D (M/k) denote the (TT)-part of D(M/k).

Fix a period w 0 E n- TT 0 and let (x , y ) = (p (w /1 ,

n n
p/ (U0 / )), a primitive TT -division point. The theorem will follow

from
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LEMMA 3. 1. 5. We have for all n

(1) [k(x ): k] = 1 (q-1)/2Z
n-

(2) (TT) =! q (q-l)/2 ramifies totally in k(x )
n n

(3) x
n n

n T+~ n-i 1

(4) D (k(x )/k) = (T)2(nq -(n+i)q -1)

2
(5) [k k(x )] = 2, 3 = 2 ramifies in this ex

ni n 'n n
3

n

tension,

Proof. We proceed by induction. The case n = 1 is done in

Stark ([16]) but we outline his argument to inspire our proof. x1

is a root of the polynomial I17(x) = 7 x(q-l)/2 + b 1x(q-3)/Z + - - +

b(q-l)/2 where b. E k. We know by Proposition 2. 2. 4 that

T I b, TT b 2 , . .. , I b(q- 3 )/ 2 but T t b(q- 1 )/ 2

Lp TT Wis reverse Eisenstein

of an Eisenstein polynomial.

2. 3. 1), (1), (2), and (3) hold

with respect to (rr); x 1 is the root

By the Eisenstein criterion (Theorem

for n=1. Now 23J7 j| x, implies that

3 11y2 = x3
y 1 1 -g2 1 - 93

so y1 cannot be in k(x ). Thus k /k(x ) is quadratic and

2 -6 2 -3

in k so that 6 1 y1 and 3 I y1 , giving (5). Since

p - [k(x1 ): k] (q-l)/2 and (17) ramifies totally, we have

D (k(x )/k) = (1)(q-3)/2, which gives (4) for n=1.

and 9-
n
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We now take n > 1. Then x is a solution of

S x= =-
2( n-i

2 th
so the polynomial CP (x) n- 1 (x) , a q degree monic poly-

nomial over k(x n-), has root x . It will be more convenient to

-l 2
work with f(x) = x n-i ( - 4 (x) Using (3) of the induction

-1
hypothesis, F- n-1 and recalling the information Proposition

2. 2. 4 tells us about cP (x) and 4' (x), we see that f(x) is reverse

Eisenstein with respect to 2n-1 This means [k(x ): k(xn-1 = q

n- = in k(x ), and x so (1), (2), and (3) hold. Argu-

ing as in the case n = 1, we see that (5) holds as well. Finally, by

(4) of Theorem 2. 3. 1 we know that the 2 n- 1 -part of the discrimi-

nant of the polynomial for xn over k(x ) is equal to the -nn-i1 n-i

part of D(k(x )/k(x )), which we denote D (k(x )/k(x )).

The polynomial discriminant is

S V TT 10 (m od ) /o oP Tn ) ' - ______
1 2 +

1P (W0+ V 2 -p + V

V 2 -(T'( +

V, V 2 (n+ 1) (i 2
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By Theorem 2. 4. 1,the numerator of this expression is

qno -1

7q-1

As -3 n-- 1), we have (T n 3(q-1) in the

numerator. Also, each p(w /Tn + v.) is divisible exactly by 2
0 1n

so the product over q(q-1) terms in the denominator has

2 3-2q(q-l) . We thus have

D (k(x )/k(x ) = (T) -3(q-1) 22q(q-1)

2n-3 n n-i n-i n

- Z (q-1) 20 2 (q-1)
n-1 n-i

_7 q (q-1)/2
n-1

It will be convenient not to simplify further by replacing (7T) by

q (q-)/2 . Using
n-i

D(k(x )/k) =eN (D(k(x )/k(x 41 D(k(x /k)q

n k~xi n-n-i-n-i
we have

(n- 1)q n-1-nq n-2-1]q
D (k(x ) /k) =[Nk ~ )/kT qZ 1-)/2)](T 2

(7) n Mx n-1 )k n

= ( q) -(q-l )/2 (7)(q-1)/2 () (n-)qn nn -

1 (nn-(n+)qn-_
=(TT)2

A (E) (2q-3)(q-1)/12
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This gives (4) and completes the proof of the lemma.

Proof of Theorem 3. 1. 4. All that is left to do is to compute

the discriminant. Statement (5) of Lemma 3. 1. 5 shows that

D (k /k(x )) = so
n n n

n

(n-(+l)n I - 1)2

D () Nn k(xn)/k(Z n (72

n n-1
( 1) nq -(n+1)q

This completes the proof.

Remark. If I is maximal and k / Q(i) or Q(47-3) it is

known that k(x ) is the ray class field of k mod (T)n . This

knowledge could be used to give an alternate calculation of

D (k /k).

The Galois group G(k /k) is just (r /(17)n) x I& k/(7n

a group of order q n-(q-1). The action is given by

x O a = a O x , y n a = a 0 yn n n n

3. 2 The Construction of K
n

We now suppose that E with CM by F = Z + c6 z (where

t1, 6 1 is an integral basis for k/Z) has rank r > 0. Take 17

to be as in section 3. 1 with the added restraint 7r D(k/Q) - in

fact this already follows from 17 6 A(E). Let P 1 ,..., P r E(Q)
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be a basis for E(Q) modulo torsion.

LEMMA 3. 2. 1. There does not exist a poit P E E(k) such

that 17O P=P .
--- 1

Proof. Here, we use a bar to denote complex conjugation

and - to indicate equality mod torsion. We first claim that

P1 ,. .. , P are linearly independent over F', for suppose
1 r

a OP +-.-+a O P ( )
1 1 r r

where a E F. Then, since P. E E(Q),

TO P + -+ r o P r (O ,).
1 1 r r

Adding these equations and using the independence of the P. over

Z yields Re a. = 0 for all i and Im a.. = 0 follows immediately.

Next, we claim that if P E E(k), there exist a ,. a. E F
1 r

such that

r

c( - )O P aO P.
i=1 1 1

This is because P E P and (c5 G P) E (c8 O P) = (c8 O P) S

(c8 0 P) are in E(Q) so there exist n., m. E 7 such that
1 1

r

P E P n. P.
i=1 11

and
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r

(c5 O P) E (cT ) P) m. P.
jl 1 1

Multiplying P S P by c8 and subtracting (c6 G P) S (c8 G P)

proves our claim.

Now suppose there is a P E E(k) with P = nT G P. Then

c(8 - 6) 0 P = G 0 (c(6 -5) ( P)

r r

-TTO i . E) P. = 1CL* 0 P.
1= =1 11

so c(6 - 6) = tr 1, but our restrictions on TT mean 7 j c(5 - 6)

(recall c is 1, 2, or 3), thus proving the lemma.

Remark. This also shows E has rank at least 2r over k.

We now fix a rational point Q = (X , Y ) = (p (w), p'(w)) which

is part of an integral basis for E(CQ) mod torsion. Let X =

p (w/ n), Y = p (w/7n), and Q (X , Y ) so that TT n Q =Qn n n n n o

Also, let K = k (X ,Y ); we have K C K
n n n n n-l n

LEMMA 3. 2. 2. The field K is k (X ) and is a normal

extension of k.

Proof. Let g(x) = p (x)/4j (x) . We have

TTO x = p (n z) = g(x)
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where x = p(z), and differentiating this with respect to z gives

Tn p',( nZ) = g '(x) p'(z) = g '(x)y

Putting z = w/rn , we solve for Y and get Y = TTn /g(X )n n 0 fl

which shows that Y E k (X ). The proof of the lemma is complete
n n n

after we note that the conjugates of Q are merely translations of
nn

Q by r -division points and the coordinates of these translations

are in K by the addition theorem.

We record for future reference the formula for multiplica-

tion by r:

LEMMA 3. 2. 3. 7 n G (x, y) = (g (x), g '(x)y/rn) where

g(x) =cp (x) / 2 n(x)

The Galois group G = G(K /k) is a subgroup of
n n

Hn = 1)E GL(/(~rn)

n
If (x , y ) is a fixed primitive 71 -division point and a E G , then

(x , y ) Y=PO (x,y ) and X =X (a O x ) for some
n n n n n n n

a. E 1/(7)n nE (F /()x ; the embedding of G in H is
n n

It is an interesting general question to determine when

Galois groups of fields of division points, such as the ones we are

considering, are "big as possible. " Using cohomological methods,
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one can usually say that they are big as possible except finitely often

(see for example Bashmakov ([ 3], [ 4 ]), Ribet ([12]), Serre ([14])).

In our case we in fact can show, using elementary methods

THEOREM 3. 2. 4. Assuming Q is part of a basis of E(Q)
o -

mod torsion, we have G = H
n n

We need a couple of preliminary lemmas. Note that elements

of , /(T)n naturally project to elements of F /(TT).

LEMMA 3.2.5. Suppose we have a ma f: (F /(T)")" -> F/(1)

satisfying f(P 12 f 2 ) + 2 f( 1). Then if 17 is first degree or

n=1, there is a y EF /(17) such that f(S) = y (P-1). If 17 is

second degree, we still have f(P) = 0 whenever = 1 mod TT.

Proof. If TT is first degree or n= 1, the multiplicative

group (F /(T) nx is cyclic and we pick a generator X. We have

f(X2) = f(X) + Xf( X)

and more generally, by induction,

f(xm) =f()(1+X+...+Xm-1

f(X) m

The first statement of the lemma follows by setting y = f( X)/(X- 1).

Suppose now 7 = p is second degree, n> 1, and we have a
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E (P /(p)nx with 3 1 mod p. It is readily checked that for

some X E (F /(p)l)x not congruent to 1 mod p, $ equals p 1

For example, in the case n = 2, if 3 = 1 + a p (a E r /(p)), then we

can find Tr E P/(p) satisfying (2+r p) =1 + ap modp and

= 2 + Tp works. As above, we get

f(S) = f( P ) = If( %)/(% - 1) (X - 1) = lf(x)/(% - 1) (P-1)

and we have the second statement of the lemma.

LEMMA 3. 2. 6. U = (a E '/( (r)n ( ) E GJ i

ideal in 1 / ()n

Proof.

U is an ideal,

for any P E (r

Clearly, U is a subgroup of I /( 1)n . To see that

note that since G(k /k) is all of (F 1/()nx , we have

/(rr)n)x some a 1 1 a 2 E P /(1)n with

( 1 a 1 a2) EG0 ) 0 8-1)n

Multiplying

in fact have

these on the right by all E G shows that we

Q a1 +a)0 5 )

(1

0

aL 2 + a~

6 G

for all a E U. Now

a2 1

0
(1 CL 1 1 c
0 ) (0 8- 1 )
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and

( 1 a 1 +a20 11

soa 2+a 1 and a +

+ a for some a E U.

-1U; then -a. +a is a

O2 1 l +a we have

a P are in U. In particular, a 2  C 

-a. 1

Now fix a1 and let a be any element of

legitimate choice for a 2 above. Taking

a + a =a + (-a2 1+

and this holds for all a E U and

of F/(TT)n is the sum of two units, t

I /( 17)n

suppose

( a I

a 1 +a.L 22 @

Proof of Theorem 3. 2. 4. U

so U = (TTm ) for some m

to the contrary that m 1.

(1 '2) E Gn we have,
U0 -

+) =.S E U

(f/(T) n) . Since any element

t is an ideal.

is an ideal in the (local) ring

0. We want to show m = 0 so

Taking 6 E (F /(TTU)n)X and

as in the proof of Lemma 3. 2. 6,

a1 - a 2 $mod TT.

Sending i-> a thus defines a map f from (F /(T)n)x +F/();

( ) (1 ? a'+ 'a

\0 t f \0 8'/ \0 of /

shows that f satisfies the hypothesis of Lemma 3. 2. 5.

1 a 2 1 a.1

\0 P-1 0 / )
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In the case n = 1, Lemma 3. 2. 5 gives

G, {(l Y( )-1) X

G0 = \ 0 ( /, / )

If y = 0, then X E k and Lemma 3. 2. 3 shows YE k as well, but

this contradicts Lemma 3. 2. 1. If y J 0, y (P-1) ranges over q-1

residue classes mod T and X has q-1 conjugates over k. If a is

th
a representative for the q residue class, then X - X e (E t x )

and Y' = Y a ( CL y ) lie in k and TT 0 (X',Y') = (X , Y ), con-
1 1 0 0

tradicting Lemma 3. 2. 1 again. Thus G, = H

11a
If n> 1, then Lemma 3. 2. 5 shows that any ( E G

with 1 mod T has CL 0 mod T. But G is a quotient of G ,
1 n

namely

1
G, = G n (0

SId mod )@) - o

and the maximality of G1 contradicts what we have

This completes the proof of the theorem.

3. 3 Character Relations

We start this section

and recall the definitions of

It will be helpful to keep this

deduced above.

by drawing a picture. Let M = k(X )
n n

k and K from sections 3. 1 and 3. 2.
n n

picture in mind as we proceed.
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C

M

K
n

n- 1 K n- q n

k
n n
nq - q

M

q 1 K1

q
Mq

kn_ 1

q

q
k

k

We know the degrees are as indicated by our work in sec-

tions 3. 1 and 3. 2; we also know G = G(K /k)

GL2 (r /(T)n)} . Clearly,

Et( *0 *1

1
G(K n/k ) (

G(K /M ) (
n n (\o

and a little thought shows

G(K /Mn-l

Note that G(K /k ) is the abelian group

for TT first degree and 2 /pnZ x Z/p n for TT second degree.

(3. 3. 1)

1

9

L 0 mod ncc3.

_ /(TT)n which is X/pn2
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We are interested in finding the conductor of K /k.
n n

The following

proposition will aid us greatly in our endeavors.

PROPOSITION 3. 3. 2.

of G(K /k
n n

satisfying x
n-

Let X be any first degree character
1
j1. Then

*
1 (K /M )

n n
* *

=l1(K /M )+ x
n n-l

where l(K / - ) denotes the trivial character on the associatedn

Galois group and * denotes inducing to G
- n

Proof. We first compute the values of

1 (K /Mn- Let ( ) E G

1 (K /M ) andn n

. By the definition of induced

characters, we have

1 (K /M ) =
n n (0 $)

1
n- 1

q (q-l)

We compute

[ u:

L 0 V)
E G

n

1 U- 1 a 1

0 v (0 5)k 0

u

V)
E G(K /M)n n

( Iu 1 1 a 1 u
0 V 0 8 0 V)

(1

0

u+ Cv -Bu

'3

so we need to find the number of solutions (u,v) E F/(o)n X

( F /( r)n)x to
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(l-)u + av Omod 7n

If P= 1, then (3.

of course all (u,v) are

3. 3) has no solutions unless a = 0 and then

solutions. We have

1 (K /M)
n n (1 a0 1)

I G T1I n

IG(K /M q

0

if a =O0

otherwise .

If P j 1, for some m we have r 11(1 -8) where 0 ! m : n-1.

The congruence (3. 3. 3) has no solutions unless rm ja and in this

case (3. 3. 3) becomes

(1 -8) av

i-m m

Given each of the q n- q-1) v's, we

giving q solutions for u (mod irn).

1 (K /M)
n n C1 L0 5)

mod n-r

n-rnsolve this for u mod r

Wehave for P # , m

if TTa

otherwise

For I (K /M-1) we need to solve (3. 3. 3) but now mod Trn1

l(K /M n-) is q-n(ql)1 times the number of solutions. Exactly

the same argument with n replaced by n-1 shows that for 1

mod Tn-

(3. 3. 3)

qm

0
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-J, 1 a
1 (K n/M ) 0 P

n4--

n~n~i) 0 @)

qn-i

q
-~0

Tn-1

otherwise

and for $ 1 mod T1n-1 0T~T 11 (li- 3

1(K /M )-n n-i (1 a0 P)

(m

q
-~0

if TrTmI

otherwise

Looking at these values, we observe that

I (Kn/Mn- differ only when P = 1.

1 (K /M)n n
and

Letting p = 1 (K/M )
n

1 (K/M 1), we have

n n-i
q -q

= -n-1

0

if P = 1, a = 0

if = 1,
n-7I

otherwise .

Note that 4i assumes the value -q n- exactly q-1 times so

K$,q.) = 2n-11) [n - q
n- )

2
+ (q-l)q 2(n-1)]

= 1,

and LP is irreducible. By Frobenius reciprocity,

, X G
n

1

q

G(K n/k n)n n[(qn-qnl)
X

G(K /k )

n-1

-q A
TV -1

/1

X 
0

) (0 m n-2),

a)1

0

1)]
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To evaluate the sum, re-write it as

1

\0

n-
1 

) -E (F/(T))-{0

n-i/1 1/
x (\0 1)

This equality is clear if r is second degree and is seen easily for

n-i n-i
17 first degree by replacing 3 by ir n . But ) is a non-

trivial first degree character of F /(1) (= Z/pZ for 17 first

degree, (Z/pZ)2 for 7r second degree) so the sum is -1. This

gives (P, x ) = 1 whence t = X since both characters have the

same degree and Q is irreducible. Recalling what L is, the

proposition follows.

Using k and characters from the quotient groups

m < n, it is quite easy to find the character table of G .

not need this so we leave it as an exercise for the reader

cares).

G
m

We will

(if he

Next we see how Proposition 3. 3. 2 leads to a conductor-

discriminant relation which allows us to find the conductor of K /k

SE ( T()) { }o



CHAPTER FOUR

THE CONDUCTOR OF K /k
n n

We are now ready for our main result, the evaluation of the

conductor of K /k . Throughout, we assume that n 6 A(E) D(k/Q)
n n

and that Q0 = (0, Y ) is part of a basis for E(Q) mod torsion (in

particular we are assuming r(E) > 0) so that the results of chapter 3

hold. We will see in the next chapter how the Coates-Wiles theorem

follows from the results of this chapter.

4. 1 A Conductor -Discrininant Relation

We recall that class field theory associates to any first degree

character X of an abelian Galois group a conductor 3(X) which is

an ideal in the base field.

PROPOSITION 4. 1. 1. Let X be any first degree character
n-l

of G(K /k ) such that X / 1. Then
-- n n -

D(M /k) = D(M n- /k) D(k /k) N /k(U(X))
n

As we shall see shortly, this result follows easily from

Proposition 3. 3. 2 and results in Artin ([2]). In this paper, Artin

defines "conductors" of characters on arbitrary (i.e. not necessarily

abelian) Galois groups. We use 9 to denote these conductors as

well; this is justified since they agree with the conductors from class

field theory in the abelian case. The following theorem summarizes

39
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the results in ([2]) we need. As before, * denotes inducing from a

subgroup to the whole group.

THEOREM 4.1. 2. Let K/k be normal and suppose K = M D k.

If X 1 , X 2 are characters of G(K/k) and J is a character of

G(K/M) then

(1) 3(xI + X 2  3(X 1 ) 3(X 2)

(2) 3(4I) = D(M/k) N M/k (

(3) 3(1) = (1).

Proof of Proposition 4. 1. 1. Take conductors of both sides of

I (K /M ) = 1 (K /M )+ x
n n n n-i

which we know by Proposition 3. 3. 2,and apply the properties (1), (2),

(3) above.

Remark. We can give an alternate proof of Proposition 4. 1. 1

using the theory of L-functions, for the character relation above

implies

CM (s) = QM (s) L(s, X)
n n-i

Proposition 4. 1. 1 follows, up to absolute values, by comparing fudge

factors in the functional equations of these series. A little more

work gets rid of the absolute values.
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4. 2 Evaluation of the Conductor

Recall that (X , Y ) is a rational point of infinite order and
o o

rn 0 (X , Y ) = (X , Y ).
n n 0 0

LEMMA 4. 2. 1. Suppose r does not divide the numerators

or denominators of X or Y . Then the numerators and denomina-
0V 0 _ _ _

tors of X , Y are also relatively prime to ( r).

Proof. By Lemma 3. 2. 3,

n-i' n-i n n \n n

2
where g(x) = cp (x)/i (x) . Using our knowledge of cp (x) and

qjJ (x) (Proposition 2. 2. 4),we see immediately from Xn- = g(X n)

that if X is relatively prime to (r), then so is X . By simply
n-i n

differentiating g(x) we also see that g'(X ) is integral at primes

above (r) and Tr g'(X ). Using Y = (g '(X )/TT) Y we observe

that if Y n- is relatively prime to ( r) then the numerator of Y

is relatively prime to (T). Since

2 3
Y = 4X -g X -gn n 2 n 3

implies that any prime above (T) dividing the denominator of Y
n

must also divide the denominator of X , we are done.
n

Recall that 'P is the unique prime above (r) in k . We

will need the following two results, the second of which implies that
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the conductor of K /k is a power of .n nn

PROPOSITION 4. 2. 2. For some n, the extension K /k is
n n-

ramified.

PROPOSITION 4. 2. 3. The extension K /k is unramified
n n

outside of 9

These results may be found in Coates-Wiles ([6]) but we give

another proof of Proposition 4. 2. 2 in the next section using our meth-

ods. Proposition 4. 2. 3 follows from the fact that E has "good

reduction everywhere" over k - see [6] . We remark that Theorem

2. 4. 1 simplifies the argument in ([6]) to eliminate primes above F.

We assume from now on that TT does not divide the numera-

tors or denominators of X or Y . As before, we let D (M/k)
o o (rr)

denote the ( r)-part of D(M/k). Our main theorem is a generaliza-

tion of Theorem 1 in Stark ([16]). For convenience we set M, K0 ,

k =k.
0

THEOREM 4. 2. 4. Let n 0 and suppo s e K. /k. is unr ami -
1 1-

2
fied for all i < n. If K /k is ramified, then it has conductor .

-- n n- n

If K /k is unramified, then
- n n -

n n-

D (M /k) = (n)nq -2q - ... - 2q-2
('rr) n

wher e for n = 0 we make the c onvention nqn -2qn - . .. -2q-Z2 = 0.
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Proof. We proceed by induction. The case n = 0 is a trivial-

ity, so take n > 0. The extension M /M is obtained by dividing
n n-i

2
X by T , i. e. adding a solution of cp (x)/qi (x) = X . We

n-i r r n-f
th

are adding a root of the monic q degree polynomial

n(x) = Cp (x) - Xn (x)

which we know is irreducible by Theorem 3. 2. 4. The discriminant

of f (x) has ( rr)-part ( T) by Theorem 2. 4. 1 and Lemma 4. 2. 1

(take z = w/1n in Theorem 2. 4. 1); here (7r)-part means the part of

disc (f ) above (1r). Moreover, f (x) has coefficients which are
n n

e, e2  e
integral at (r) so if (T) = P P 2  ... g in M , the P.-part

1 2g n-i
qei

D (M /M ) of D(M /M ) divides P. . Since polynomial and
n -1n n-i 1

field discriminants differ by squares (at least locally), the quotient

is an even power of P. . Using

D(M n/k) =N /k (D(M n/M n )) D(Mn /k)

and the induction hypothesis we see that

D (SM n/k) ) ()(n-)q -eq

Simplify to get

- 0 2 1 q

n n-(

D (T)(M n/k) ( T)nq _ 29

where for n = 1 we interpret the exponent as being q. We know that

0
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the quotient of the above power of ( r) by D( )(M /k) is an even

power of ( TT).

On the other hand, by Proposition 4. 1. 1 we have

D (M /k) = D (M /k)D (k /k)N (9(X)(r) n (ru) n-i (r) n Nk /k(X)
n

n-i
for X any first degree character of G(K /k ) with X 1

n n

(Proposition 4. 2. 3 tells us 3 ( X) is a power of pn ). By Theorem

3. 1. 4 and the induction hypothesis, we have

n-i n-2 n n-i
D (M /k)D (k /k) (1)(n- )q -2q -.. (-2 nq -(n+l)q

(i-) n-i (r) n(-)

n n-1 n-2
= )nq -2q -2q -...- 2

Now a miracle has happened, namely the bound we have for the power

of (17) in D(M /k) and the exponent immediately above differ exactly

2by 2. This shows that either 3 ( X) = 2 or 3(X) = (1) and
n n -i

D (M /k) ()nq -2q .2-2 . The conductor of K /k
( T) n n n

being the .. c.m. of the conductors of the characters of G(K /k ), we
n n

have our result.

Combining Theorem 4. 2. 4 and Proposition 4. 2. 2 gives

THEOREM 4.2.5. For some n, K /k has conductor D2
n n- n

For the purposes of proving the Coates-Wiles theorem, the

above result is the important one. It turns out that Theorem 4. 2. 5



holds for exactly one n ; in the next section we find an explicit

description of this n.

We say that a prime P in M above ( T-) is relative first
n

degree if NM /k (P) = (r-7). The proof of Theorem 4. 2. 4 immediately
n

yields

COROLLARY 4.2.6. Suppose K 1/k ,...,K n/kn are

unramified and P is a prime above (r) in M . If the powers of

P in D(Mn/M n-) and disc(f ) differ, then this difference is 2 and

P is relative first degree. Moreover, this happens for exactly one

prime above (7) if K /k is unramified and otherwise does not

occur.

Here, fn is as introduced in the proof of Theorem 4. 2. 4.

In the next section we will say more about the factorization of (7r)

in M
n

We close this section with

PROPOSITION 4.2. 7. Suppose 7 = p is second degree,

K /k 1,..., K /k are unramified, and K /k has conductor
11 n-l n-l -- --___ - n n -- ____

2
2 .Then for an field L with k c L c K and [K : L] = p, the

n -- n n- n
2

conductor of L/k is 2 as well.

Proof. Let H c G(K /k ) be the subgroup corresponding to
n n

L. The character s of G(L/k ) = G(K /k )/H correspond to the
n n n
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characters of G(K /k ) trivial on H. Since
n n

./pn Z and IHI = p, for some such character

The proof of Theorem 4. 2. 4 shows that X has

hence so does L/k- .
n

G(K /k ) =e
n n

X we have

conductor

a/pnZ X
n-l

X p.

2 and
n

4. 3 Ramification at Some Location

In this section we will prove Proposition 4. 2. 2. Our method

of proof enables us to describe the explicit factorization of ( r) in

M and calculate the conductor of K /k for all n. Almost -n n n

Eisenstein criteria (section 2. 3) form the heart of our arguments.

In this section we suppose r has been chosen (as guaranteed by

Theorem 2. 2. 5) so that 7 0 x a xq mod (r).

Recall that we have monic irreducible qth degree polynomials

2f (x) = p (x) -X 4i (x) E M [x]n n n-I r n-i

generating M /M , i.e. with root X . It
n n-i

introduce the translations of f (x)
n

will be convenient to

g (x) = f (x + X ) ;
n n 0

g (x) has Xn -X as a root. Here, as before, we will assume Tr

is relatively prime to the numerators and denominators of X and

Y . The coefficients of x~ , ... ,x in f (x) are divisible by TT

but the constant coefficient is not. The coefficients of x ,
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in g n(x) are also divisible by TT. Letting a
1

be the constant coeffi-

cient of g (x) we have

a1 =T (X ) - X 0 
(X )

0 0 'Ti 0

X - X
0 0 = 0 mod ( TT)

because cp (x) = Xq and 4i (x)2 = I mod ( r) by our choice of

Since gI(x) is irreducible, a1  0 and we may find

Te 1 a 1 . We use P . to denote a prime above ( TT)
1 n, i

e so that

in M ; recall
n

that we say P .
n, i

TH EOREM

are unramified.

is relative first degree if N

4. 3. 1. The extensions K 1

For n e, K/k
n n

M /k, n, i
n

= ( ii).

/k 1 S, . ., K /k

is ramified and has conductor

2qn -e
13nq . Also, ( 17) is a product of relative first degree primes in

M . For n : e-l
n-

n-l

(1) n,=P 1
n, I

n-2

n, 2
. .q-1 P
n,n n,n+1

and for n L e

n-( n-2

(2) (I-T) = 2 ( ) n,l n,2

In the case

n-e+1 n-e+l
- . . (qI-~) P

n, e- I

n = 0 we interpret (1) as (T) = 9
- n,n+l

n

n, e

interpret (2) as ( T) = qE
n,1

Proof. The key to the proof is an investigation of the constant

and if e = 1 we

of g n(x); we know gn(x) is monic and the other

Ti.

coefficient a
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coefficients are all divisible by Tr. We have

a = cp (X ) - x n (X )n 'i- 0 n-i er 0

0=a I - (x n - X ) T (X ) . (4. 3.2)

Suppose e = 1. Then g I (x) is Eisenstein with respect to (1r)

and by the Eisenstein criterion ( r) ramifies totally to Mi, say

,7), 1 1 - X) and disc (g1) = D (M /k) where

as usual the subscript indicates "( n)-part of."

Now suppose e > 1. By the almost-Eisenstein criterion

(Theorem 2. 3. 4), disc (g ) D ((M 1 /k) so by Corollary 4. 2.6 ,

K I/k is unramified and

disc (g ) = (72 D ((MI/k)

By Theorem 2. 3.5, (r) = Pq- P2 in M with P I (X - X1,1 1,2 1 1,11 ( 1 -X)

and P (X - X ) Equation (4. 3. 2) shows that P a, and1,2 1 o* 01

since , 2 1 a 1 , we also get P jj a 2 . The polynomial g 2 (x) is

Eisenstein with respect to P so P = =q in M If e =2
1, 1 2, 1 2

then g 2 (x) is Eisenstein with respect to P 1,2 as well; if e > 2

then g2 (x) is almost-Eisenstein with respect to , . In the latter

case, the almost-Eisenstein criterion, Corollary 4. 2.6, and Theorem

2. 3. 5 now applied to (gx2 1, 2) instead of (g (x), ( r)) show that

K /k is unr amified and P = q-1 , in M with2 2 1, 2 2,2 2.,3 2
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P 2 (X - X ) and Pe-2 1 (X - X ). We also know P 11 (X -X).
., 0 2,3 2 2,) W k

Using (4. 3. 2) as before we see that PZ, 1 11 a 3 ' 2 11 a 3, and

P2 31 a3 ; 3 (x) is Eisenstein with respect to P and P and

also with respect to P2, 3 if e = 3, otherwise it is almost-Eisenstein

with respect to P2, 3

Repeated applications of the above argument give the first

statement of Theorem 4. 3. 1 and the factorization (1) for n < e . In

M we have

e-2 e-3
e (q-) (q- )
e-l,l e-l,2

Sq-1
e-l,e-l e-l,e

where now g (x) is Eisenstein with respect to all P e . We have

P . = P . and (4. 3. 2) shows g (x) is Eisenstein with respect
e-l,i e,i e+l

to all P . - repeating this argument gives (2) for n - e .

To finish the proof of Theorem 4. 3. 1, note that the bound

(17) for D (M /M ) we had in the proof of Theorem 4. 2. 4
('Ti) n n-l

now becomes exact for n e because g (x) is Eisenstein with

respect to all primes above ( 1). For n 2 e we thus have

D (M /k)=N () ) D (M n-/k)

n
=7) D T(M n-/k) .

Using
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e-1 e-2

D (T)(M el/k)= (O)(e-I)q -2 -.. 2

(from Theorem 4. 2. 4) we get

n n-i n-e+i
D (M /k) =(1)nq -2q -...- 2

(Trr) n

The c onduct or -dis criminant r elation

and Theore
n-i

with XP

completes t

D(M n/k) = D(M n /k) D(k n/k) Nk k ( 3 (X))
n

n-e
n 3.1.4 then yield 3(X)= z2q for an

n

1, so K /k has conductor a2q -
n n n

he proof of the theorem.

y character X

3 claimed. This

Theorem 4. 3. 1 certainly encompasses Proposition 4.2.2 so

we have accomplished the goal of this section. Although we used

Proposition 4.2. 3 to conclude 3( X) = 2q above, a closer in-
n

spection shows that we in fact have a proof of Proposition 4. 2. 2

independent of Proposition 4. 2. 3.

It is reasonable to expect that e = 1 most of the time so that

ramification occurs at the first level of the tower. However, this is

reminiscent of the famous

OPEN QUESTION. Are there infinitely many primes p such

that p 11 (2 P 1 - 1)?
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Wieferich showed that p 11 (2 ~1 - 1) implies the truth of the

first case of Fermat's Last Theorem for exponent p ; it is not known

whether the first case of Fermat's Last Theorem holds infintely often.

Thus, we expect it to be very difficult to decide if K /k is ramified

infinitely often, but as far as the Coates-Wiles result is concerned,

ramification at some level is all we need.



CHAPTER FIVE

THE COATES-WILES THEOREM

We will now use the results of chapter 4 to prove the Coates-

Wiles theorem. Crucial to the argument is the structure of certain

units living in k . As before, 17 is a first or second degree prime
n

in k not dividing 6 A (E)D(k/Q) or the numerators or denominators

of X or Y
0 0

5. 1 Elliptic Units

Robert ([13]) constructed certain "elliptic units" in fields

of _n-division points. These units are constructed by evaluating

certain elliptic functions at division points of the lattice Q. The

important fact we need is

THEOREM 5. 1. 1.

unit u E k such that
- n

u +
n

Outside of finitely many T 's there is a

Yn 2
L (1) - mod 'P2 n

n

where LE(l) E k is integral at T, does not depend on T, and is

zero if and only if LE () =

This result follows from results in Stark ([16]); u is just

the elliptic function h(z) in ([16] ) evaluated at some primitive

52
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TTn-division point of the lattice 02 Lemma 3 in ([16]) gives the

structur e of u above. LE (1) is essentially, i.e. up to some

transcendental factor, LE(1) with a finite number of Euler factors

missing.

In section 3. 1 we saw that P 3 11 y and x so
n n n n

2
'n 4i(y /2x ) and u 1 mod . We have

n n n n n

2
COROLLARY 5. 1. 2. u n 1 mod P3 if and only if

n n - -- -_

TT I LE (1).

2
Proof. Clearly, u n 1 mod 3 if and only if E LE(l)

and since LE(1) E k, this happens if and only if TT I LE ()

5. 2 Units and Class Fields

We suppose r(E)> 0 and let n be the unique location in the

2
tower (3. 3. 1) such that K /k has conductor - we know nn n n

exists by Theorem 4. 2. 5 and is unique by Theorem 4. 3. 1.

PROPOSITION 5. 2. 1. Any unit in k which is 1 mod 1

2
is I mod 3

- n

Proof. Let G(U), K(U) denote the ray class group,

respectively field, of k mod U. We have

h(k ) 0 (U)
G(U)I = [K(U): k I = (n e (U)'



where h(k ) is the class number of k , O is the Euler 0 function,

and e( U) is the number of incongruent units of k mod U. The group
n

G(13 ) is a quotient of G( ) and

I|G( 2)1
[K( p 2): K(P3)] = n n n

n n |G(p n)| Pn E (P 2
n

q

We now consider two cases.

Case 1. 1r is first degree. Then

[G(P 2)
= p 1 or p,

n n

2
and since K /k has conductor , the above quotient must be p.

n n n
2

This gives e(P ) = (13n ),which easily implies our proposition.

Case 2. 17 = p is second degree. Then

G(P 2)I 2
p-1, p. or p

SG(n) E: (p 2)
n n
K/ eig~ 2 rue2u

and the conductor of K /k being P rules out IG(9 )|/G(n )I = 1.n n n n n

We need to rule out IG(9p 2 ) / IG( )I = p. Note that since K /k
n n n-i n-i

is unr arnified, K'= knKn-1 is an unramified extension of k . Also,

K /K' is a (p,p) extension and we have the following picture:
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K(P 2

K(P n) Knn

K_2
K' p

We know [K( 2): K(P ) is p or p . Let G = G(K(p ) '),n n

H = G(K(p 2)/K ), and H = G(K(3 2)/K(3 )). By Proposition 4.2.7,
1 n n 2 n n

K(P n) n Kn = K ', so H1H2 = G. If H 1l H2 = (1 ? as well, then
12 1 2

H 5 G/H which has order p , SO [K( 2 ): K(P)] =p If
2 1n n

H 1 H f1 2 1 our picture looks like

K( 
2

In
N

K( n ) Kn

K'

where K( )IN and N/K(n) are non-trivialso [K(P ): K(9P)] =

2 2
p again. The equality e (P ) = e (P ) then finishes the proof ofn n

Case 2.

5. 3 Conclusion

Proposition 5. 2. 1 and Corollary 5. 1. 2 combine to show that

if r(E)> 0 then 17 1 LE(1) for all 17 outside a finite bad list. There

are infinitely many rr (even for non-maximal orders), so
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LE(1) = LE(l) = 0 and we have proved the Coates-Wiles theorem.

We may very well wonder whether our methods extend to

curves without complex multiplication. The fields in question be-

come much bigger for non-CM curves. In fact Serre ([14]) shows

that for non-CM curves the field of p-division points is an extension

of 0 with Galois group GL 2 (Z/pZ) except for finitely many p

2Also, the ramification index of p is p-1, p(p-1), or p -1.

The last instance is that of "good reduction of height 2" ;

from our point of view it is the case when the Frobenius auto-

morphism associated to p has trace zero and Proposition 2. 2. 4

holds for multiplication by p . According to the Sato-Tate conjec-

ture,we should be in this case infinitely often. Stark ([16]) indicates

how in this situation we can get a "conductor 'P2 " result at the first

level of the tower, if ramification occurs at this level. We expect

that it should be possible to extend this result up the tower as we

have done here for CM curves. Our investigations on this question

are rather preliminary and we hope to report on them in the future.

Another question that invites investigation is whether there are units

for non-CM curves that have a structure which yields information

about LE ().
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