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ABSTRACT

ON THE INTEGRAL EXTENSIONS OF ISOMETRIES OF QUADRATIC

FORMS OVER LOCAL FIELDS

By Allan Trojan

Submitted to the Deoartment of Mathematics on April

1964 in partial fulfillment of the requirement for the

degree of Doctor of Philosophy.

Let F be a local field in which 2 is

a prime element. Let L be a regular lattice

over F , and v,w any two elements in L

such that v2 = w2 . In this thesis we de-

velop necessary and sufficient conditions for

the existence of an isometry on L which maps

v onto w.

Use is made of a mapping, T , from mod-

ular lattices onto the residue class field of

F. It is found that two maximal vectors, v

and w , in a modular lattice L are iso-

metrically equivalent if and only if they have

the same length and T(v) = T(w).

Thesis Supervisor: Nesmith C. Ankeny, Professor of

Mathematics.
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INTRODUCTION

In 1923, Hasse, in a famous paper [3] proved the

following theorem: two quadratic forms over the rational

numbers are equivalent if and only if they are equivalent

over the p-adic numbers (for all primes p) and the real

numbers. This result stimulated the study of quadratic

forms over the p-adic numbers and local fields in general

as a means of examining many of the questions concerning

the theory of quadratic forms over algebraic number fields.

Much of the theory of quadratic forms over local

fields is now well known. Necessary and sufficient con-

ditions for the representation of one form by another

were discovered by Hasse [4]. Such conditions for inte-

gral equivalence were obtained by Durfee [1], and OtMeara

[6], [7]. OtMeara [8] also found necessary and sufficient

conditions for the integral representation of one form by

another, provided that 2 is either a unit or a prime ele-

ment of the local field. The cases where 2 is ramified

is still under investigation.

Another unsolved problem is that of finding necessary

and sufficient conditions for the integral extension of an

isometry acting between two subspaces of a regular quad-

ratic space. That is, given a quadratic space V and

two isometric subspaces V and V2 where V has as a

basis (x1 ,..., xnI , find conditions for the existence

of an isometry ( which maps V onto V2 such that

the matrix representation of cP with respect to the given



basis consists of integers in the local field. (The

existence of some extension of the isometry follows from

Witt's theorem [10].) Rosenzweig [9] and James [2] have

solved this problem for local fields in which 2 is a

unit (so called non-dyadic local fields). The dyadic

case, however, is much more difficult, and conditions are

known only for a few specialized cases. In this thesis

a solution is found for the existence of an integral

isometry mapping a one-dimensional subspace onto another

one-dimensional subspace of a regular quadratic space

over a local field in which 2 is a prime element.

We examine the problem from a geometrical point of

view, that is, we consider integral isometries to be

isometries on lattices with a quadratic structure. A

lattice L is a finite dimensional module over the ring

of integers Z of the local field. An isometry on L

is, of course, a linear mapping of L onto L which

preserves the inner product. The problem which we shall

solve may then be stated as follows: given two vectors,

v and w , in a lattice L on which we have defined a

regualr symmetric product, find necessary and sufficient

conditions for the existence of an isometry on L which

maps v onto w.

Much use will be made of Rosenzweig's ideas of

dividing an arbitrary vector into critical components.

As in Rosenzweig's Thesis [9], the problem will be solved

by first examining vectors with one critical component



and then doing an induction on the number of components.

Aside from this general schemata, however, the proofs of

most of the theorems are quite different. The most

important theorem used is the one proved by OtMeara on

the necessary and sufficient conditions for isometry of

lattices (Theorem 1.10, Chapter 1). It is interesting to

note that many of the methods used, most notably those in

Chapter 4, may be used to simplify existing proofs for

the non-dyadic case.
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Chapter One: Preliminaries

Definition: 1. A local field is a complete field under

a non-archimedian valuation with a finite residue

class field. We shall denote by Z and P the ring

of integers of the field F and the maximal ideal in

this ring. a will be used to denote a generating

element of P.

2. A d local field is a local field

in which 121 < 1. Let a be any element of the

local field F. Then a(a) (the quadratic defect of

a) is the ideal generated by the p such that a - P

is a square and |pf is minimal.

Theorem 1.1: a) The quadratic defect of a unit always is

one of the following ideals:

Z or 0 when F is non-dyadic l.f.

4.Z,..., s 5, P3, P, 0 when F is dyadic l.f.

Furthermore, each of the above ideals actually appears

as the quadratic defect of some element of F.

b) In particular, 1 + 4Li is always a square.

c) If a = 1 + 3 where |4v < |p1 < 1 ,

then a(a) = pZ.

d) If a,P are units with a(a) = a(p) = 4Z

then as is a square

Definition: Let a, p be elements in an arbitrary field

F , then: (a,P) 1 when there exist x and y such

that ax2 + py2 1.

= -1 otherwise.



(a,(P) is called the Hasse y

Theorem 1.2: a) F is a local field. Let A be a unit

such that a(A) = 4Z, E an arbitrary unit. Then

(A,E) = 1. (A,t) = -1.

b) (a,pY) = (a,p)(a,Y) for any ap,Y in

F.

Definition: 1. A quadratic space over a field F is a

vector space V over F with a symmetric inner product

(x,y) C F. The quadratic space is called regular if

(x,y) = 0 for all y in F implies that x = 0.

2. Let V, V be two quadratic spaces over

the field F. Then we say that V and V are

isometric (written V V) if there exists a linear

map cP mapping V onto V such that (x,y) = (cP(x),cP(y)).

T is called an isometry.

Proposition 1.1: Let V be a quadratic space over F.

Assume the characteristic of F is not 2. Then V

has an orthogonal basis x1 , i = 1, ... , n. That is

(x ix ) = 0, if i j. We write V = Z 9 <x >.

Furthermore, if V is regular, and F is a local field

S(V) = iT (xi, xi)
1<i<j<n

Then S(V) is independent of the orthogonal basis chosen.

Definition: Let V be a quadratic space, with basis xi

and let A be the matrix defined by Au (xiVx ).

Then we define d(V) = det A. Note that d(V) is only
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defined up to squares of elements in F.

Theorem 1.3: Let U, V be regular quadratic spaces over

a local field F. Then U ~ V if and only if:

1. Dim U =Dim V.

2. d(U) = d(V).

3. S(U) = S(v).

Definition: Let U, V be quadratic spaces. We say V

represents U (written U -+ V) if there is an isometry

from U onto a subspace of V.

Theorem 1.4: Let U, V be regular quadratic spaces over

a local field F. Then V represents U if and only

if:

1. U _V when dim U = dim V

2. U <dU-dV> - V when dim U + 1 = dim V

3. U 9 H ~ V when dim U + 2 = dim V o..%A iu:-4v.

where H is the quadratic space denoted by the following

matrix:

11 J (hyperbolic plane)

The fundamental theorem for all work on quadratic forms

is the following well known theorem of Witt:

Witt's Theorem: If V is a regular quadratic space over

a field of characteristic not equal to 2, and W, W

are isometric subspaces, then there is an isometry on V

which maps W onto W.
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Lattices

Definition: a) Let F be a field, Z it

egers defined by some dedekind domain of

Let V be a vector space over F, M a

V with respect to the ring of integers

is called a lattice on V if there is a

1x1 , ... , x n for V such that M = x

b) FM = tax : a e F and x C

Theorem 1.5 a) Let L be a lattice over

is a basis ty J for V and fractional

such that

s ring of int-

prime spots.

submodule of

Z. Then M

basis

Z + ... +

M)

x Z

V. Then there

ideals 01

L = Oti x1 + ... + Ot nxn11 n n

b) In particular, if Z is a principal ideal

ring,

L = Z x1 + ... + Z Xn

for some basis (x i

Definition: Let L, M be two lattices on the same quadratic

space. We say that L _ M if there is an isometry C

on V such that CP(L) C M.

From this point on, we will assume that F is a local

field, and all quadratic spaces are regular, unless it is

explicitly stated that they are not.

Definition: Let L = Z x1 + . + Z xn Then we make the

2
definition d(L) = det (xi, x ), mod (units)

Definition: Let fx I be a basis for L. Then we say that



L is unimodular if x -x C Z and d(L) is a unit

of Z. We also make the def inition V =the quadratic

rspace given by the matrix t (x i '). Then we say

L is 7 r-modular if L is unimodular over the quad-

ratic space V .

Definition: 1) Let q be a fractional ideal of F, L a

lattice on V. Then L f x : x C L and x-yeq for

all y e LI.

2) If J is a sublattice of L, we write

(J, L) = ((x,y) : x C J , y e L)

3) H(O) is the lattice x Z + y Z with the

multiplication table x2 = P y2 =.

Definition: Let K and 7 be sublattices of L. Then

we say L=K@K if L isadirect sumof K and K

considered as modules, and (x,y) = 0 if x E K and

y C K. We say that K splits L.

Theorem:1.6: Let L be a lattice over the quadratic space

V. J a unimodular sublattice. Then J splits L if

and only if (J,L) C Z.

Definition: s(L) = the ideal generated by (L,L).

n(L) = the ideal generated by (x,x) where x L.

The following theorem defines an important splitting of

L known as the Jordan Decomposition of L.

Theorem 1.7: Let L be a lattice over a quadratic space

V. Then L may be written L = L1 9 ... 9 Lt where
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the L are modular and s(L1 ) 0 s(L2 ) 7 ... ) s(L '

Furthermore, if we have a second such splitting

L =L ... L- then we have the following facts:
1t

1. t =t

2. s(L ) =)

3. dim Li dim L .

L. n(L ) s(T ) if and only if n(Li) s(L i)

From here we shall assume F is a dyadic local field

in which 2 is a prime element. The great difficulty in

dealing with Lattices over these fields lies in the fact

that n(L) E s(L) but equality does not necessarily hold.

Thus we cannot necessarily find a diagonal basis for L.

The best possible basis for L is given by the following

theorem.

Theorem 1.8: Let L be modular. If L is proper

(n(L) = s(L)) then L has an orthogonal basis. If

L is improper, then L can be written as an orthogonal

sum of two-dimensional sub-lattices.

Another important fact about lattices over dyadic local

fields is that the cancellation theorem does not always

hold. That is, if L = M N = N @ N and M _ N, it is

not necessarily true that N N. However, we do have the

following special cases.

Theorem 1.9: a) If L = K Q M K@ N where K _. K _~ H(O),

then M ~ N.
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b) If L=K@M=K@N with K ~K.

Furthermore, if K is Inr-modular and n(K) c n(M ,r

n(K) c n(N rZ), then M ~ N.

Isometry of Lattices

Definition: a) Let L = L 1 ... 0 Lt be a Jordan split-

ting for L. Then t, dim Li, s(Li) = Si, n(Li) = ni

are called the Jordan Invarients of L.

b) L L =... I Li.

Theorem 1.10: (O'Meara) Let K, L be lattices over the

same regular quadratic space over a 2-adic local field

F. Then L _ K if and only if:

1. K and L have the same Jordan invarients.

2. dL(i)/dK(i) 1 mod nn1 1  i*

3. FL(i) -K(i) <2 ui> when ni+1 c 4n

where ni = 2 ui Z.

We shall have occasion to deal with non-regular lattices.

We make the following definition.

Definition: Rad L = [x : x e L and x-v 0 for all v e L)

Theorem 1.11: Rad L splits L and if L = L 0 Rad L

L L2 @ Rad L

where L_~L then L ~= L2

The following theorem is useful in the construction of

all possible lattices.

Theorem 1.12: Let L be unimodular. Then L is split by

a hyperbolic plane, H(0) if: a) dim L > 5



b) dim L > 4 and L is improper.

Definition: 1. We say the two vectors v, w are equi-

valent (written v'.w) if there is an isometry on L

such that cP(v) = w.

2. Let v e L. Then <v> = [Xe L : x-v = 01

The preceding definitions and theorems may be found in

O'Meara [5].

Here is a brief outline of the following chapters. We

first examine the problem for modular lattices. Given two

vectors v and w, with the same length, the problem is

to find conditions for equivalence of these vectors. We

first find conditions for the two-dimensional case by find-

ing when the natural isometry from <v> @ <v> 1 onto

<W> Q <w>i is actually an isometry on L. We then reduce

the case where dim L > 2 to the two dimensional case by

finding when we can imbed v and w in isometric two

dimensional lattices which split L and have isometric

perpendicular components. It turns out that no more con-

ditions are necessary in this case.

The next case examined, after modular lattices, is that

in which two vectors have only one critical index, that is

each vector can be imbedded in a modular lattice which

splits L. Once again we examine <v> and <v>A to

see whether it is possible to extend the isometry.

Finally we examine the general case. Here we write
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V = V ... V @ V where v and

v1  have only one critical index. Let v v .

. G vi. In this case we find a necessary and sufficient

2 -2congurence relation between v(i) and (i) to permit

the existence of an isometry which maps v onto

W = W. wn where the w each have one critical

2 -2index and where w( V . We then apply the results

obtained for vectors with one critical index.
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Chapter Two: Equivalence of Vectors Over Modular Lattices

Definition: 1. v C L is called maximal'or primitive if

2-1 v % L.

2. L is 2 -modular. Then v 6 L is called

saturated iff L = <x 1> @ ... <n> (i.e. proper)

v = 2 nv with v maximal and v = Z a x and
i i

* 2 x a x mod 2k*+l for all i,j. Otherwise v is

called unsaturated.

3. L is 2 -modular. v, w e L are said to

be of the same t if:

1. v, w are both saturated or unsaturated.

2. If v, w are saturated then

vex, = w.xI mod 2 i+l V

We obviously want the definition of saturation and type

to be independent of the orthogonal basis chosen. The

following lemma establishes that fact.

Lemma 2.1: Let L be unimodular. v, v L.

1. v is saturated iff L is proper and

y e <v>- implies ord y2 > 1.

2. v, v are saturated then v, v are of the

same type iff for every y e L we have v-y = vey mod 2.

3. v, v saturated. dim L is odd.

2 -2
v = v , then v and v are of the same type.

Lb. V - V implies v and 7 are of the same

type .

Proof: We use the following notation throughout the proof
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2of the theorem. L <x ... <x > x 8
Vn I I

v = 3 9 c -, x v = Rpx .

1. Let v-y 0 then r a p P = 0. Squaring this we

have a 2 P 5 0 mod 2. But a 28 1  a2 5 mod 2. Thus,

a 1 ( 1 ( ) aF 0 mod 2. Therefore 2 y2 mod 2

since a 2 8 0 mod 2.

Conversely: Let v be unsaturated. We may assume with-

out loss of generality a 2 5 a 28 mod 2.1 1 2 2

Let y = 2 a2 1 a1 x2  then y.v = 0.

12 22 2 1  F oBut y2 = 5 2 (a2 82 a1 61) 0 mod 2.

2. Let a 6 8  mod 2.

v-y = E a 1 P% 8, E4Pii mod 2. = V-y.

Conversely: v = a x , v = 7 a x1 . If we let y xi

then by hypothesis a181 F 70, mod 2. thus a, a 1 mod 2.

3. na 2  E ' a 5 mod 2 r 5 mod 2 E ni 2n mod 2.n n ai i mo i mn n o

2 -2
But n is odd. Thus a k a mod 2. Therefore
a k 2k k

1 mod 2. Therefore ak ak mod 2.
ak

[. a) v is saturated iff v is saturated follows from

(1).

b) We must show: v-x F -x mod 2 if v is

saturated.

Assume v = E x  where L E @ <x > with x 2 = 8, 5
I I ii

mod 2, tP is an isometry with CP(v) = v and

c(x )Eb x.
'~i i



Thus: 5 E 8b 8 mod 2. Since isometries preserve

inner products.

22
1 E 2 b b I mod 2, and therefore

74 ii

1 E b mod 2.

Now: vex1  8

vex1 = (xj-x )bkj = 8 bkiE 5 [E bki} mod 2.

j,k i i

Thus: v-xE 8 mod 2.

Theorem 2.1: (O'Meara) The only two-dimensional modular

lattices over an unramified dyadic local field are:

H(l) 01 B(0) = H(p) =2p 1

14p le 1 1B(p) = 1 E(,) = |1 2aI

where , 3, p are units and 1 + Lp is not a square.

(Note: p will always stand for a unit such that 1 + 4p

is not a square.)

Proof: See [8].

Proposition 2.1: x2  1 mod 2 n. Then x E 1 mod 2 n- or

x E -l mod 2n-

Proof: (x - 1)(x + 1) - 0 mod 2 . Suppose x-l E 0 mod 4.

Then x + 1 = 2 mod 4. Thus x - 1 0 0 mod 2n-1

Now if x - 1 = 2 mod 4, then x + 1 E 0 mod 2n-1

Theorem 2.2: L is two-dimensional unimodular. v, v are

2 -2
maximal. v =v .Then v ,v iff v and v have

the same type.
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Proof: Necessity has been proven (Lemma 2.1 1+1).

Sufficiency: There are three cases to consider.

Case 1. ord v2 = 0. Then L = <v> @ <v>- = <7> D <7>-.

Then <v> ~_<v>,< . Combine these two

isometries to form an isometry on L mapping v

onto v.

2 2
Case 2. ord v > 1. v 2 0. We let L = vZ + wZ

with matrix representation 1 Ej. Similarly,

L = vZ + wZ with matrix representation .

We first show that we may choose E E mod 2.

If L is improper the result is trivial.

If L is proper, then v and v must be saturated.

Thus by Lemma 2.1 part 2, :-w = 1 mod 2. Therefore

w w Then
v-w = 1 + 2n. Let wi = Then 2 w mod 2.

1 + 2,q

Now (1 - E)/(l - 6f) = 2 with . a unit

_ 1 + (E - E) mod 28

F 1 mod 28.

By Proposition 2.1 we may choose p = 1 + 6X XeZ.

Let cP(v) = 7, M(v - 6w) = ( - &w). This is an

isometry on FL since <v - 6w> ~ <v> and <v - 6W>

<v>L and 2 v - 2 2- + 2 + 5E)

2
= (v - 6w)2. We must show that co is an isometry on

L, that is, c(L) G L. We have co(v) e L. We need

to show M(w) e L. But co(w) 'f (v - (v - 6w))I

1-
(V - (T - 8E) - 6(V -

1 - + 2-)

= w - v + 6W L.
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Case 3. v = 0. Then L _ B(O) or H(0). First let

L _ B(0), L = xZ + yZ, x2 1 e y 2 = 0.

Then v = eC(y) or e(2x - y)
e, are units.

v = C(y) or T(2x - y)

Now by Lemma 2.1 part 2, C = F mod 2.

Let u = E mod 2. We define the linear map co

as follows. mU (y) = y

M (2x - y) = (2x

It is easily checked that ep is an isometry on FL.

But m (2x) = u2x + (- - u)y and - u E 1 mod 2.

Therefore m (x) L, P (y) L, and cp (L) c L.

Thus cD is an isometry on L.

Also let * be the isometry such that C(y) = 2x - y,

*(2x - y) = y some product of * and o will map

v onto v. A similar method also works when L ~ H(0).

Proposition 2.2: Let v C L where L is unimodular and

v maximal. Then if ord v2 > 1, we may write L = R D S

with R two-dimensional and v C R, such that:

1. S improper if v saturated and L proper.

2. R improper if v is unsaturated.

Proof: Case 1, L improper. Then we may write

L = q) Li where the L are two-dimensional. Write

i iL = xZ + yZwith xy= 1. Write v = ax+ y.

Assume laki = 1. Then letting R = vZ + ynZ we have

R unimodular and L = R + S.



Case 2, L proper, v unsaturated. It is easily seen

that we may write L =Ya(x) with x = 6 and

v = 0 x with a 1 and a2 both units and

a 2.* a 262 mod 2. Now every unit of F is a square

mod 2. Thus we may choose 3 such that p2=.62/8 mod 2.

Let y = Px 1 + x2 . It is easily checked that

y = 0 mod 2, v-y + O mod 2. Letting R = vZ + yZ

we have R improper and unimodular. Thus R splits L.

Case 3, L proper, v saturated. We again let

L =ja<Ai Let R = xlZ + vZ. Write L = R @ S. Then

S is improper by Lemma 2.1.

Proposition 2.3: 1. B(p) H(p) ! B(O) @ H(O)

2. B(p) H(O) B(O) H(p)

3. H(P) <e> H(O) e (1+4p).

4. H(p) 4<e> is not isotropic.

5. H(p) @ B(p) is not isotropic.

Proof. See Proposition 9 of [82.

2 -2 -
Theorem 2-3: Let L be unimodular v = v v, v maximal.

Then v ~ V iff v has the same type as v.

Proof: Necessity: Already done.

Suff ic ency:
2 AL A

Case 1. Iv I = 1. Let L =(v)@Dv)=(7V},>(

Now f <v> _~ F<v>L , by Witt's Theorem. Further-

more, by Lemma 2.1 <v> and <v> are both

proper or both improper and hence have the same

Jordan Invariants. Thus they are isometric by

Theorem 1.10. We extend the isometry by mapping
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v onto V.

2Case 2. ord v > 1. v unsaturated.

By Proposition 2.2 we may write L = G S

= ' @ 7. R, N improper two-dimensional

v e R. v e . Furthermore n(S) = n(7) by

Lemma 2.1 (1). If R _ H then FS ~ FS by

Witt's Theorem and 3 ~ by Theorem 1.10.

Thus we may apply Theorem 2.2 to R and R

and we are through.

So now we must show that we may choose R _ F.

If L is 3-dimensional, the result follows

from Proposition 2.3 (3). If ord v2 > 2 then

R _ T _ H(0) since H(p) does not represent

any integers of order > 2 by a maximal vector.

2Thus we may assume dim L > 4, ord v 1.

Suppose R _ R. We may assume without loss of

generality that R _~ H(0) and R _ H(p).

Write R vZ + wZ with vw = 1 w2 = 0
-27 vZ+wZ with v.w= 1 w = 21

S is proper and dim S > 2. Thus there is a

vector y e S with y2 = 2' mod 4.
Let R' = vZ + (w+y)Z

then det R = det Rmod 8.

Thus R' _~ and v e Rt

We may write L =R' D S' with St ~ S by Theorem 1.10.

Case 3. ord v 2 >1 v saturated.

Write LF= R @ S = T 7 v e R v e R



23

(we may do this by Proposition 2.2.) R, H proper

S, S improper

Then v is saturated in R, V saturated in H.

Assume we can show R ~ then S ~ by Witt fs

Theorem and Theorem 1.10.

Now let x e R. and C(R)=.

We have v-x v-x since v, v have the same type.

-1 - -Now v-Cp(x) = Cp (v)-x v-x mod 2 by Lemma 2.1 (L;).

2 vex.

Thus V has the same type in R as v in R

hence by Theorem 2.2 there exists an isometry 0

with *i(R) = N 'o(v) = V

Let *(s) = 7 be an isometry. Then the desired

isometry is * @ 1 on R @ S. If S _ S then

R _ T. Hence we may assume S 4 S. We may also

assume, without loss of generality, that S contains

a hyperbolic plane. Then S ~ H(O) ; T, 7 ~ H(p) 0 T

where T is a direct sum of hyperbolic planes, or

empty. Then R / B(O), R B(p)

R ~B(0), R B(p)

by Proposition 2.3 (1,2).

Thus R - E(,), R _ E(e,7). Therefore ord v2  1

Let R vZ + wZ, R = vZ + wZ, where v2 = 25, v-w = 1,

W2

v = 27, V.-= 1, 2

Let x e S with 25x2 = 2(65 - e5) det N - det R.

Let H' = (v+x)Z + wZ. Note: det R' = det R and

v e R'.



Write L =R' : SDS'. Then S' S. Therefore

R' ~ H.
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Chapter Three - Vectors with One Critical Index.

Definition: Let L be any lattice over a local field.

v a vector in L.

Let L(i) = tv e FL : vey e i Z,

n is a prime element of F.

ei = min ord v.y

yeL i)

We make the following definitions

y e L} where

1. If e ei = (ei+ 1

critical index of v.

- 1) then i is called a

2. If i is a critical index of v , then (e - i)

is called the critical exponent of v corresponding

to the critical index i.

We shall always use the following notation

1. X1, X2 .

2. f 1 , f2 ..

are the critical indices of v in

increasing order.

are the corresponding critical

exponents.

3. s, = X+1 + f i+- ~ = i

The following Theorem gives a better insight into the

meaning and importance of the critical indices and exponents.

Theorem 3.1: Let v have critical indices Xi, exponents

fi.
n

Then there is a Jordan Splitting L = E Li with
i -m

Li empty or 2 -modular, such that v has represent-
in

ation v = E 9 2 vk
with vk

i
maximal in Lk

and the following conditions holding:
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1. h > h2 > ''' '

2. h + k < h2 + k2 '

Purthermore, for any Jordan Decomposition satisfying

the above two conditions, we have that

hi = fi

k = X

The previous Definition and Theorem are due to Rosen-

zweig [9], as are the following important facts about

6ritical indices.
n

Let L = n L. where L. is 2 -modular as empty.
-m h' I

v = E D 2 iv. with v maximal in L (or

possibly zero)

Suppose k is not a critical index of v. Then:

1. If k < X then hk f + l - k.

2. If X < k < Xj+1 then hk fj when

f < k < f. + s.

hk + k > fj+1 + Xj+1 when f + s < k < Xj+1

3. If k < X then hk >f

4. If k > X then hk + k > + f
Xi+Si h.

5 'D @2 v has critical indices X1... X.
-m

Lemma 3.1: L = L Ln L is a 2 -modular.

v, w have critical index X. v - w

-+v Xis of the same type as wX in L X

Proof: v, w e L2Z = ty: y e L and y-L 2X Z

- L X1L X 2 L '...

Then n(L2 Z) = 2 Z.



But ord y2 _ X+l for Vy C L2 XZ such that

y-v = o iff vX is saturated in LX.

Hence: v is saturated in L iff w is saturated

in L., Since the above property is preserved under

isometries on L. Now a method virtually the same as

that used in Lemma 2.1 (Lb) shows that v-y = w-y mod 2

'11 y C L 2 ?"Z*

Lemma 3.2: Let L be unimodular, v saturated in L.

Let y1 e L have | | = 1

Then (V y1 ) 2 mod 2.
22

Yi Y2

Proof: Let v = Za x L = x >.

i = 1,2.

X,2 = A i

v is maximal where a 2 A, = a1 2A mod 2.

yi= E: f3x1
2

Then (v -y1 )

12

y2 = : i

Pi 2

1 2 A 2
2 2A (y 2)a l =ad 12mod

~p 1 A 1 2

2.

This Lemma indicates the existence of a very important

invariant needed to show the equivalence of two vectors.

Definition: Let L be 2 -modular. Let x C L Ix 21 = 1

if L is proper. Then let T(v) o mod 2 if v is

unsaturated.

T(v) 2 mod 2 if v
x

is saturated.

assume

12 Pi2 A12

Pi2A
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T(v) is called the type of v. Clearly T(v) = T(w)

iff v and w are of the same type. Note that T

is a mapping of L into the residue class field of F.

Proposition 3.1. Let L = L 9 .. D L
-m n

L where L k

be

kis 2 -modular. Let v = v D0

a J.D. for

v
n

be the representation of some vector v with respect

to the above decomposition. Assume v has o as its

only critical index and that T(v0 ) o in L .
2+ 2 0

Furthermore, assume that 1 + 1 +.0.vn is a square.

T(v )

Then v ~ w where w L .

Proof: We may write L = T <x i> where v0 = 0 D x .

Then if we let L = <x 1 v 2.. W > S <x >o 12~ n 2

then clearly L ~ L. If we write L 'D.. D Lo n

= L7 0 K, then a simple application of Theorem 1.10

gives us that L L .. L K.

of L given by L = K ) . ) K h
-m n

Thus there is a J.D.

such that

L _ Ki, v e k0 . Let o be an isometry on LP which

maps k onto Li. Then w = ,o(v) is the desired vector.

We now wish to find when two vectors having the same

critical index X are isometric. We first do the

more difficult case where v and w are saturated

in L., We may assume, by scaling that X = o.



Proposition 3.2. Let L = L

2 k-modular or empty.

SVk C Lk Let w = w

L
n

v = V-M

with Lk

0 ID v withn

w 0 L0. v, w maximal with

critical index o. v2 = w2 . Furthermore let w0 be

saturated in L . v be saturated in L .
o o o0

T(v ) = T(w )
0 0

in L . Then
0

is a square.

Proof: First we remark that the

C F 2 makes good sense for if

v +. .+V
v - w iffl+ - -

T(v )

2 2

statement 1 + -M -l

T(v )
2 2
n2 = 1 + 2 where

T

a e Z, T a unit.

2a 2a
Then if X e Z, 1 + 1 + mod ka. But a EoT+2X ; T

mod 2 by Theorem 1.1 (c). Therefore 2 o mod 8.

Thus 1 + 2a is a square by Hensel t s Lemma.T +2 X

29



Necessity: By Proposition 3.1 we may assume

since T + a + 8 is a square iff T + a

T

ITI = 1. Assume

T
2 2v-2 + v_ + T(vo)

T

v-3-k

3+k 0

is when

is not a square.

Let us also assume v 2 o for the present time. The

procedure which will be used is to examine the Jordan

Decompositions of <v> and <w> and show that one

of the conditions 2 or 3 fails to hold. There are three

case to be examined

2
1. v = 0, ord v -

2. ord vl

3. ord v 1

= +2

= +1

= +2.

Case 1. v =0 ord V-22 = +2.

Let L0 = <x > ... 9 <x >o 1 s v = x + *. + x .
0 1 s

T(v ) = x12 = A

We obtain a new Jordan Decomposition for L in the

following way:

a) Let L= L when i t -20.

b) Replace the vector x1 in L
by x = x + v-2

to obtain Los

c) Find a new lattice L such that L T L =
-2 -2 o

= L : L L is proper and L = <y1> .
_2 o -2 2 1

<-,y> where 4y, = v-2. Thus L-2 may be

obtained by replacing y1 by some linear com-

bination of y1 and xl, call it y1 . Note:

30

= 0
k>o.

I



det L2 /det 
L2

det r /det

de t 1-2/det L-2 = det Lo/det0

The Jordan Decompositions for

L = 1 + 4p.

T(v ) +
0

T(v0)

<v>' and <w

the following forms:

= Lm -3 -2 -L1

= L .. *-m D L 3 L_-3 -2

where n(M), n(N) c % Z. We wish to show

Sub case a) L

Then

But

is improper non-zero.

n(L 1 ).n(M) 8Z.

s(L_1 )2

d(T-m). ... . d(L_)

d(Lm ). . .0 *d(L_ 1)

Thus condition (2) of Theorem 1.10 is violated.
n(L 2 )-n(M)

Sub case b) L_ is empty. 2 c 8z,
-l ~x(L- 2 )

. ... . d(L 2 )

. ... . d(L 2)
= 1 + 4p.

Sub case c) is proper

For condition 3

Then n(M) cz4 n(L_ 1 ).

of Theorem 1.10 to hold we

must have f(L-M 9...L_ ) - F(E-m ''' -1

F L-2 - F L-2
; <2 >or

<y1 > *-<y 1 > 4.

31

2
V-

2

have

.< L
,

<V>- + <W> -

= 1 + 4p.

d(L-M

d(L-)

By Witt's

)

Theorem

...

...

L_ 1

<6.2
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Now: Let y1
2 = . n 2 = (1 + )4p)

(1 + 4p has defect =4Z). Therefore <2>

-< -+> < (1 + 14p )> <6 >.

Applying Theorem 1.4 we have:

<-> @ <1+ Lbp <- (1 + p)> <6

Lb 24~~> 2

or <e> @ <2(1 + 4p)> _ <e(1 + L4p)> @ <2>.

Applying Theorem 1.3 and using the simple facts

about Hasse Symbols given in Chapter I we can

easily see that the above Quadratic Spaces are

not isometric. Hence <v> b <w>.

Case 2. ord v 2

Using a similar procedure as before we may write.

<vL = L .. 0 ~~@I .

<V>m -2 U-

<W>- = L .. L L N ..-M -2 -1

n(M), n(N) C 2.

d(L-m). d(T-2 d(-l) = 1 + 2C e a unit.

d(Lm). .. . d(L9 ) d(L_1 )

n(L 1 ) n(N)
But C 4Z. Thus condition 2 of Theorem

s(L_)2

1.10 is violated.

2
Case 3. ord v 1  2.

determinantal arguments like those used above work

when L 1 is improper.



Assume L_ is proper. In this case we may assume

2 2

= o for -1 -2 + 1 is a nor-square.
T(vo)

2 2

is a square or 1+ v-
T(vo)

V

Therefore 1 +
T(v0)

square. In the first case we may assume v-2

the second case reduces to Case 1 above.

Now write: L .-1

is a

= 0 and

y<1 > <y2> S R with

2 1
yl ~2 '

22
y with27 v-1 y, + y2'

We already have L = <x 1> ' .. <x >
0 5

T(v0 ) = x 2 = A 1 and x1 2 =A

We make an alteration in the Jordan Decomposition in

the following manner: We leave all modular components

fixed except for L_ and L . We also leave, R

fixed. Now replace x by x = 2 y which we call

x1 . Replace y1  by some vector y = ay1 + P x

with a, c z Z, lal = 1 where y.x1 = o. Now

2
where a determinental argument shows

a(C) = 2Z.

Note that C = 1 
+2

2
x +

Now, having done this, we repeat the rrocedure with

y2 and x replacing x1  be a vector x = 1 + 2y2

and y2 be a vector 72 a y2 + x1 with la| = 1

and e e Z such that 72*x = o

V-
2

with

0

= C y12



Note: a) J.y = 0
L -~ 2

-2 2 l +x 2e +2e2
b y2 = D y2  where D = 1 2

2x + 21

c) a(CD) = 4 by hypothesis.

So we now have a new Jordan Decomposition for L

L = L - ... L L 1

Ll =<y1> ( <Y> HPR and v.-L-1 2 -1

L L ...
0 1

= 0.

Hence <v> L - . -1 P M .

=L- .. L_ M P .. with n(M),

n(F) C 2Z. Since w is saturated. We wish to show

<V>L . Note: n(M) c 4n( 1 ) . So if we can

show F(L-M D ... -1)-. F(L-m ... L_) <J>

That is we wish to show:

<y > @<2 1 2

By Theorem 1.4, we wish to show:

<C e > @ <D C2> @ <CD> 1 
<e> ( <e2

A calculation of hasse symbols, using the fact that

a(CD) c 4Z shows that the above statement is equivalent

to the statement: (CCe 1C)2= -1 or e"luivalently, the

lattice <C> <Ce 1 e2> D <-1> = k, is anisotropic.

We may assume, by scaling that x 2 = 1. In this case,

C = 1 + 2e

a(1+2c +2e 2) =

5Lj

with
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By Proposition 2.3 (3) we need only show that k contains

a lattice isometric to H(p).

Let x2 = C y2 = 1 C 2
Z2

Then k ~<x> 4<y> >

Let J = (1 x+y)z + ( 4 )Z.

Then J~_' 12 C + c e 2

1

C e(11+C2)

1

Since C + C2 ; o mod 2 J is improper.

We need only

But det J =

show det J E
2(e +e )

-1+ 1

-l + 2(e +E 2) mod 8.

= -1 + 2(c +e2) + (2e1 +Le, 2+...)(2(e 1+2

-1 + 2(c +C2) mod 8.

Thus we have proven necessity of the conditions when

v 2 o. But when v 2 = 0 we have <v> = S9 Drad <v>A

<w> = - rad <w>.

now we show S + 7 by exactly the same method.

Sufficiency: In this case we show there is a second Jordan

decomposition L = L ; ... @ L-m n in which the represent-

ation of the vector v = v-m n

1

C-1
22

1

2

C2

has the property
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Vm vn =0, and L ~Li.

This implies that v v where v e L We then

apply Theorem 1.3.

So let L = <x ... <x >
0 s

with v = x 1  .0 xn

and T(v ) = x 2

We obtain the new Jordan decomposition of L as follows:

First we obtain an intermediate decomposition by replac-

ing x by v-m ' V -1 x 1
to obtain LI.

0

Nowv L 2. .+x12
Now L ~ L since 2 is a square.

xl1

So now we may find a new decomposition of the lattice

L-m I: .. 0 L 0

which may be written L_
-m i

D .. Lsuch that*00 D -1 ':

L ~L.*-n - -n

Now we can do the same with the lattice L + L .. L L
T (v )+v 2 +. .+v 2 o . Ln

provided we can show o 1 n is also a square.
T(v0)

Now 1 + a + p is a square if 1 + a + p and 1 + 3 are

squares with |a|,Ipf < 1. So we need only show, from the

hypotheses that -m2 + .. + V 2 + T(vo) + v 2 + .. + v n2

is a square. That is

T(v
2 2 0w -v + T(v )0 0

T(v)
is a square.

Now v0 = x ... x

But w has the same type as v . Thus

w = (1+2 1 )x .. ' (1+2 1 )x5 where Z.

v- ''- +1



Therefore now (1+21 ) 2
2 2
x~ (~+L ) + x

enullce

x 2

is, of course, a square
2

is a square since

x x 2 (2).

Now w2 - v 0
2 + T(v0)

2xl1

= x 2 + z(Lri+vi2 ) x 2

2
xl1

But 1 +(4n +71 2 2

2X 1

is a square V

Therefore 1 + Z (41 +42 )X

2
xl1

is a square Q.E.D.

So finally we have our result for saturated vectors:

Proposition 3.3. L = L-M D ... Ln
The Jordan

Decomposition. L is 2 -modular or empty.

2
v~ L are maximal, with critical index o. v

T(v ) = T(w ) + o0 0

Then v ~ -w iff X =
(v 2+'+v0 2 2+.+w 2

-m ) - W .+

T(v
0

is a square.

Proof: I. Necessity: Suppose the above expression is not

a square. First note X is a square iff

(v-M 2+...+v 12 ) - 2 2+..+w 21

T(v0)

+ 1 is a square.

By the method used in the last part of the previous

proposition we can find a new Jordan Decomposition

317
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+ 1



L = L-M 0 
. 1 @ L 2

such that if v v- '-M n

w = w-n @ wn

with respect to this decomposition then

V-n ... V-1
= 0.

- 2 - 2 - 2 - 2 2 2
But (v-M +...+vO - m +...+w = (V-m + o

- (w-m 2 +...+wo )

So now we may apply proposition 3.2

II. Sufficiency: The facts that

(v-M 2 +..+v (2 2+..+w02 ) + 1 is a square imply

T(vo)

(v0 2 ++V ) - (w 2+...+w 2 )

T(v0)
+ 1 is a sqyare.

Choose a Jordan Decomposition L = L-7 ... L in

which the above elements are still squares and in which

v e L 0 . (This is done by "absorbing" the "left hand side"

of v into L0, altering L-m .... L_l, then "absorbing"

the right hand side and altering Li,*,L n)

Now apply proposition 3.2.

Proposition 3.4: Let L = J ; k = J k where J, J are

modulars, improper. Then if J J we have k ~k.

Proof: Assume J is unimodular: Write J - H(O)...@

H(o)D H(X)

2 2v =w and

that

7 = H(o)"D...o" H(O)IH(A)



where X = o or p

Then k S H(X) ~ k 9 H(X) by Theorem 1.9(a).

Thus k @ H(X) H () ~ k H(X) D H(X)

But H(X) N (X) _ H(o) @ H(o).

Thus k k by Theorem 1.9(a).

Proposition 3-5: v, w C L. v2 = W2, v, w have one critical

index X, and are maximal. T(vx) = T(wx) = o. Then v w.

We may assume X = o.

Proof: Choose a Jordan decomposition L Lm ... q L
____ n

with v e L
0

There are two cases:

2
Case 1: ord v 2 o

Then <v>A and <w> have proper unimodular com-

ponents since v is unsaturated. Furthermore

L = <v> @ <v>- = <w> D <w> . We are now able to

apply Theorem 1.9(b) to show that <v>-L <w> .

Case 2: ord v2 > 1

We have v e L . If L0  contains a hyperplane H we

may map w0 onto a vector w0 e H where H = w0 Z + xZ

- 2with w 0 A 2w x1 X o

by an integral isometry which leaves every element in

Li fixed when i o. This follows from Theorem 2.3.

Thus we may assume w satisfies conditions (1) for

some vector x e L . Now it is clear that
0

k = wZ + xZ is a hyperplane which splits L (Theorem 1.6)

and contains w. Thus L = H D J = k SJ H ~ k ~ H(o)

(1)



v e H w e k J - J by Theorem 1.9(a). Now let

*(J) = J be an isometry. We have an isometry cP(H) = k

with cp(v) = w by Theorem 2.3. Thus 0 D * on H @ J

is an isometry on L which maps v onto w.

Now suppose L contains no hyperplanes H(o).

We may imbed w0  in an improper lattice. H which splits

L by Proposition 2.2. Thus H _ H(p). Similarly imbed

v in an improper lattice H ~ H(r) which splits L.

Write: H = w0Z + xZ with multiplication table K 1

1 El

= vZ + x~Z with multiplication table i

AE -= E 4p mod 8.

t 
I

Now let H = wZ + xZ, if H ~ H we obtain our result by

applying Proposition 3.4 and Theorem 2.3. If H _ H,
t 2 2

then H ~H(o) and clearly ord w_ =1 or ordw =1

where w = D wi w L .

Assume w 1 2 = 21 |n = 1. Since the residue class

field is perfect (every element is a square) there is a

2 2
unit such that E+ C2 O modL4.

(2) -(2)Let H = vZ + (x + C W1 )z H ~_H(o) - H.

H(2 ) (2)
Then H and H split L and v C H , w C H

Apply Proposition 3.4 and Theorem 2.3 to get that v w.

Collecting the results of this Chapter we have the

following Theorem:

Theorem 3.1: Let L = L 0 .. 'D L be the Jordan Decompo-

sition of a lattice.



Lfl

Let v, w e L be maximal vectors with v2 = w 2

v, w have the same critical index X.

v = E D vi with the above decomposition

W = E v wi

Then v ~- w iff 1. T(v ) = T(w ) mod 2

2. if T(v ) + o then

C2 2 2~ 2)
+ (vo +* .. +v ) - (wo +0 +w )

T(v ).2

is a square in F.

We have also proven the following Theorem which is

interesting but difficult to apply:

Theorem 3.2: v, w C L are maximal v2 =W

the same critical index X. Then v w iff

1. <v>._ <W>

2. T(v ) T(w X) mod 2

v, w have

(in L X).
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Chapter Four - The General One-Dimensional Case .

Notation: When we have more than one Jordan Decomposition,

will number them + number the components of each vector

to indicate with which Jordan Form they are decomposed.

Example: X (1) = Z ' L and G = t(2)

(1) _(2) (1)
we write v = v ) = v() v L

(2) -
v e L .

We are also going to assume s(L) = Z. This of course

will not lose us any generality. We will also write our

Jordan Decompositions in the form; L = L where L 1

is 2 i-modular or empty.

Definition: 1. s= X +1 +f J+1 X i f i>

2. v =) V@ ... V Xi +s

3. = v - v
3- vij (i) - (i-l)

91 A A
. v 2 v where v is maximal in L .

Of course the last three definitions depend on the de-

composition chosen + must be numbered accordingly if

there is more than one decomposition.

Lemma 4.1: Let v ~ w. Then 1. v, w have the same critical

indices and exponents tXi,f1I

2. T(v ) = T(w ) in L.

Proof: 1. See [9].

Z. a) First we show v

saturated

is saturated iff w is
i



2. If L

If L x

is improper, the result is trivial

is proper let L 2 = txeL: x-LC2 Z)

L x t2 L

+ L +lX +*

Define: M= ty C 2 Z : vy = 0).

We shall show that N' x C M, ord x2 > X i iff V is

saturated. This proves the theorem since an isometry on

L induces an isometry on M, so if v v, N ~ N.

First, it is easily seen that there is a Jordan Decomp-

osition t(2) such that v = 9 v(2)

saturated in L off v "X is sa

and v (2) is

turated in L
X.

If v (2) is unsaturated, there is, by definition, a
1 .

vector x C L with v (2) x = o and Ix2 = 2 .i

If V 2) is saturated, ord x2= , x C L2iZ then

-xi X-l
2 xo @2 ' x D...x xxi+l

Now ik ord x2 = Xi , then ord x 2 = Xi, therefore

= xi + f i thus there must be a vector

x -x r X 
+dx -

2 xor xX+k with ord (2 1 i vx

or ord (x +v +k )< k +f .. (b)

But a) is false since f1 > f

b) is false since Xi+k + fi+k xi + f1 .

b) We now show that if y 2 Z ord 2 =

v.y = T(v )-2 X + mod 2

then

q43

I

ord x .V

)< X +f ... * (a)
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Once again assume v = E v

Then v-y

y = E y .

= E v .y .

Now if j < i, then ord v -y,

j > i, then ord v .y

Thus v.y - v -y mod 2
i i

> X +f +(X -X) > X + 1

X +f >+f+

T(v ).2 mod 2

Theorem 4.1: Let v have principal indices X , exponents f

and v ~ v.

- 2 2 X 1+1+f1 +1 +fiThen: v 2 2 mod 2 f

proper.

- 2 i+) i+1 i ,
(i) v mod2

when LX +

hen L

improper.

(Empty. Lattices are defined to be improper).

Proof: This Theorem is an analogue of a theorem for the

non-dyadic case. The proof is similar. See Lemma 2.5

Of [9].

We let L = M N M =L 0 ... LX+S

N L x+

Write: v- r cr

vs~i

Let V(v) = V

T(r) = t 4 t

r M

S M

t e M

u e M u C N

is

is

.. Ln

r eN

s N

tCeN

9(r)= u Iu



We have: cP(v) = (s-u) @ (T-7).
f 9P

Now: 2 I r, s, u. Thus 2 J (i-i).
2 2 ++s+Thus: r2 (s-u) mod 2 ii

r2 _s-u 2 mod i 1+1 1+1+1

Now: ord u-L > ord F-L > Xi+1 + fi+1

2 d1 +

Thus : 2 s -u =- o mod 2 1 +1+X++1

2 2 2
Hence: r E s + u m 2 1+1? +1mod 2 il 1+

Notice that: tP(v) = u u 7 has critical indices

X1 +' Xi+2"... exponents f +1 ' i+2 of

X i+S. h
Thus: u 2  J

0 (

Therefore: ord (2 2h."2

U maximal in L..

h > fi+1 + X1+1 *

)> h + X +1 +f 1+1 hen L is

improper.

>f + f i+1 + X+1

L is proper.

Combining these two conditions, we have

dhen

r 2  s mod 2 f f1 +1 1  when L

2 2 i +X +1Xr E s mod 2 il ilwhen Lx+
i i

is proper.

is improper,

which is what we wished to prove.

The following proposition is simple but important in its

implications. It will be used many times over:

1L5



Proposition 4.2: v, w C L. tk i a partition of the numbers

a, l....n. k0 =o; k n+1

Let D L be any Jordan Decomposition of L.

Let L[i] = Lki

v [i]

L . i+1

= k i ki+1_1

Then v ~ w iff there exist Jordan Decompositions

(1) (2)

such that M [i]

and v[i]
(2) between these isometric lattices.:W~

In our application of this proposition, the Lattices

L [i] will be chosen such that the component v [] of

v in L has only one critical index.

Proposition 4.3: The unimodular lattice L represents I

by an unsaturated maximal vector x. Then L represents

rj + 4A by an unsaturated maximal vector if X C Z.

Proof: Case I. |I9 = 1 a) If ord X ,.. 1 we have

<7> ~ <n + 4A> and thus L clearly represents n + 4X.

b) If ord X = o. We may write L <x> ; <y> T

since x is unsaturated. Choose e e Z with y2C2

X mod 2. Let x x + 2 C y. Then x = + 4N mod 8.

Now use part a).



Case II. ord n > 1. Then x may be imbedded in a two-

dimensional improper lattice k which splits L.

+ 4x 1
1 41

: by Theorem 2.1.

Proposition 4.3 a) Let L be unimodular, then assume L

represents n by a saturated maximal vector s. Then L

represents n + 4N where 1 +
T(x)

is a square, by a

saturated maximal vector of the same type.

Proposition 4.4: Let v, w have the same critical indices

and exponents, and satisfy congruence relations (1) with

respect to ) L . Then if v

in L X
X1

is unsaturated

there exists a second canonical form J(2) " i

with Li ~ Li and such that one of the following two

congruence relations holds:

mod2 1 2 2

(2) (2) 2 (1) (1) j2 mod 212 2
2. () () +v(1) (v +s + d

Remark: The importance of this Proposition lies in the fact

that v - v ) and v - ( VA (1) ) both have one

less critical index than v.

Proof: The result follows from relations (1) if L 1 +s1
improper. So assume L is proper.

Define: x v V(1+- v

o ( (1)
yw 0 ( . w1)-1 = w(+)

(1) (l)
x 1 + *

(1) (1)
- w1+S

k i

is

(2)12 IV (l) 2. w( 1) }( })



is proper it contains a vector Z with

2 2 1
I - y mod 2 2 (Here we use the

perfectness of the residue class field).

By Proposition 4.3, there is an unsaturated vector

- (1)
w X C LXi

with critical exponent f such that

S2 tw (1) 2 + tv
1 (1

(l)}2 - - z 2

Let V(l) w... DW ( (l) 9 ( ) "..o w j +s - Z

(1)2 0 (1 2 1 X 1  wX 1 +1 1+s1-

Then tV (1 )2 = v (1 ) hence by Theorem 3.1 there is
(1) (1(1

an isometry tP on L D .. 4 L with P(v() ) =

(1) y +(1) (1) Then V- v andLet v V) V s 2 ) Vn2 2

furthermore ((1)~ (1 ) 2 t (1l) - w (1) }2 mod 2X2+ :
1S 1+l(

Proposition 4.4 a) Let v, w have the same critical indices

and exponents and satisfy the congruence relations (1)

wrt. "LD . Furthermore let s > 2 and

v be saturated in L
Joda Spitn1.~Lwt

Then there exists a second

Jordan Splitting X(2) = Z L with L ~ i and in

which one of the congruence relations (2) holds.

Proof: Use the same method as before, only apply Proposition

4.3 a).

Since L. 1+s

z2 = v()(1)
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Definition: Let v be any vector space of finite dimension

over a local field. We define a topology on v given by

the norm

cl 9x 1 + .o. + an 'Xn = sup f[|ail}

where tx j is a basis for v. It is a well known fact

that the unit sphere in this topology is compact.

Proposition 4.5: The set of vectors equivalent to a given

vector v is compact.

Proof: Let x 1  x2  x 3 ... be any sequence of equivalent

vectors. Let A be the matrix representing L. Then

there exist matrices B with integral entries such that

x 1 B i= x and Bi A BI = A. If we consider the

matrices Bi to be an n x n dimensional vector space

over F, we have, by the compactness of the unit sphere,

a subsequence tB J of tB i which converges to a

matrix B with B A BT = A and B integral. Thus the

subsequence txk I converges to a vector

x = x1 B.

Proposition 4.6: Let L = L L0 n with L unimodular,

improper. Ln is 2n-modular.

v = V(1) vn (1) with critical indices

|nI = I(VU) )2. exponents

Then there is a Jordan Decomposition t

such that tv (2)12 = n provided that:

1. 1 + 2-nttv }() 2 - + T(vn (1)) is

o and n

f and o.

0 n

a square when

x with



(1 )

T(v ) 4 o and f = 1.

2. Lv (1 2 - r a o mod 2 f+n+l otherwise

Proof: We will show that, given ord [v0 () j2 -

= f+n+k+l with k > o and provided (1) holds when

T(v 1)) : o and f = 1. Then there is a Jordan

Splitting 3 k 0 kn such that

ord [1v0 (3)j2 - i] > f+n+k+2.

This implies that there is a sequence of vectors

V ~ V (1  
* with lIv( i) j 2

(1) (( )J 2
(hu) byr(2) ~ th i v w wit

Thus by Proposition L.6 there is a vector w with w ~.0v

and w 0)2

First we imbed v0 (1) in a two-dimensional, unimodular

sublattice of L . So now we assume L is two-dimensional.

2 2
Let L0 = xZ + yz where x = y = A x-y = 1

where A2 = o or A2 = 4p mod 8.

Now let v0(1) - 2 f(Ex + 2 m 7 y)

Furthermore, let v be a vector in L with v ( n

= a 2n where a is a unit yet to be determined.

Let 2 = 2 n+- where a is a unit. Furthermore,

if v is unsaturated choose vn such that i > 1.

This is easily done.

We are given that ord [iv (1 )j2 - T] = f+n+k+l with

k > o.

~5O



We define the new lattice k
0

- k-
x x + 2 Vn

yy

k L0- 0

to be TZ + yZ where

and has the multiplication table:

A + 22k+n+i a 1

1 1l
and determinant D =

-l1A 2-2A 2
2 K+n+ia)

We may now write: L = k0  kn (3 ) where kn ~ Ln'

Now let v (2 = 7 + v~

Then v 0 (3 t( + 2 2 k+n+ia) + v = 2 e A + 2f+M

+ 2k+n

+ Av = 2 E + 2 +M A.

Solving these two equations, we have

= t2 fe (A2-1) + A 2k+n aj* D

= t2f+m- 2 f+2k+n+i f+m+2k+n+i-
v = 2 e (A -1) + 2 e + 2 e A

2 K+n D

-f 2_ f - 2_
Let U = 2  e (A-1) D= 2 where D = A2_

S= 2f +M -1) - 2k+n ai J 4 , P0 is some unit

f 
2+M ~ k+n k+n+l+s = 2 + 2 a + e 2k, s some positive

integer.

It is clear that hi x + y2 vy2 mod 2n+f+k+2

=v (3)j2

Now tU x + V yJ} t2 e x + 2f+ 2

2 2f+29+n+i 2k+2n 2 2k+2n2 a A 2C 02

51
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- 2 f+m+k+n+l T A - 2 f+k+n+ ae + 1 2f+k+n+1+r
0 02

1 e are some units, r an integer.

Now, using the facts that f > o, n > f and ord A > 1

we can obtain tv ()j2 - v 0 2 a 2 2 2f+2k+n+i

- 2f+n+k+l or e mod 2 f+n+k+2

Now remember that we chose v n such that i > o when

vn ( was unsaturated. Thus we have 2f+2k+n+i > f+n+k+i

provided f + 1 or k + o or v (o) unsaturated.
n

In this case: tv (1) 2 - tv(3)2 = 2 f+n+k+l a0 0

mo f+n+k+2mod2

Here we need only choose vn such that

tv }j2 - C1= a 2 f+n+k+l mod 2f+n+k+2

We have, by hypothesis, that 2 -k [tv(l)j2-] = + 2
0

where L is an integer. So le t v x. Then
n 1

Ca = 2 a 2. Thus 2 n+2 ( 28 ) 2 n(4,+4.2 ) mod

2n+3

[tv j 2-1] mod

2 n+3

Proposition 4.7: L = L 0 L n where Lo is

unimodular. L is 2n-modular.n

Let v C L have critical indices o, n , exponents f, o,

Then there is a Jordan Splitting 3 (2) with fv( 2 )j2

provided that:



1. tv (2) 2 f mod 2.

2. 1 + 2-n (v (1)) 2- / T(v (2)) is a square wheno n

T(v ) # o and f 1.

3. 1 + 2 -n t(v (1)) 2- / T(v (2)) is a square when

T(v() # o and f + 1 = n.

0
4. tv a2n mod 2 ~+1otherwise.

Proof: By Proposition 4.6 we may assume Ln is proper,

otherwise the result follows from applying the previous

proposition to the dual lattice L .

Also we may assume L0  is proper by Proposition 4.6.

Once again we use the method of "successive approximations"

which was applied in Proposition 4.6.

Assume for the time being that n # 2 or k # o

where tv } -nl= 2n+f+k+l X. X is some unit.
0

s
Write L 0 <y> DM where s = 1 or 2

Lnn

where v0 1 2 (y1 + A y2 ) A = o or 1.

Let y1 2 y2 2=

Choose vn E Ln such that v n 1 n 2n a a a unit

-2 n+i
Vn 2

Note: we have free choice in a, and after a is chosen

we may still have i > 0 if vn is unsaturated.



Now le t L = <> <y2> (9 M. L0 - L0

YJ =_ yl + 2 k .Let i12) o n' in(2) o n

(2) 2 '(v.1 ) 2f -we have tv 0 2 + 2 Ae

A simple calculation shows:

tv(2) 2 - tv l)j2 a 2 2f+2k+i + 2 f+k+n+l
0 0

2C mod 2f+k+n+2

Now with the exception of the cases

a) f = 1, k = o, (l)
n

saturated

b) f + 1 = n, k = o

The above expression is congruent to

a mod 2 f+k+n+2

so here we need only let a = X to obtain our next approx-

imation.

Now Case a) Since we assumed n + 2, we have 2k+2n >

f+k+n+l so the above expression is congruent to

(a+a) 2 f+k+n+l mod 2f+k+n+2

This is the same congruence we arrived at in Proposition

4.6 when v (1) was saturated and is handled in the same
n

manner.

Case b) Here we examine L . And in this lattice

f = 1, f + n-l since n + 2. But we have proven the

result for these circumstances in the first part of the

proposition.

Now let n =2, k =o.

where

+ 22k+2n

2 f+k+n+1
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Case 1: v , V both saturated.
n 0

Now tv (1)2 - 2 n+20
X a unit.

We use the notations as of before L = 'D <yi>

L rn <x>

v ( = 'D x v )= 2 Z Y

By scaling we may assume x 2 = 2n. Let ~ = a xT n 1

2Then i = o. a = a By hypothesis 1 + 4)p and

+ are both squares.

Now use the same method as in the previous section

to let y = y + a 7n L0 = <Y1> @ <y2 >

to arrive at:

16 ((1+) a2 + a) tv 1v 2 -tv(2)j2 mod 2

Now if we can find an integer a such that

e-f- 2 24 mod 2)_,n(( C4) a2 + a) 2 mod 2

and such that L 0 _ L0, we shall be through.

But if a satisfies the above equation then

a = 1-1 + 1 - L(1+)XJ.

Now 1 + 4A is a square.

1 + 4/e is a square.

Hence 1 4- 1 x is a square. This solution exists

to the above equation.

Since < 1. |X l= 1 it is clear that we may

choose a with a e Z.



Now L -~ Lo since if we let

v(2) = 2(p ( J1 + y2 + .. + y)

Then y 2

Therefore

Therefore

_Y 1 m 4X mod 8.

2 y2 C + 4X mod 8

- 2/ 2
y1 /y Y is a square.

Case 2: v (1) unsaturated, V (1)
0 n

(1)
Let L M : N with v E M.

0 0

L = E D <x.>
n i

by scaling.

Let tv (l) 2 24
0

2
xl

saturated.

N proper

= 1 v(1) = 7 G X
n i

X a unit and 1 + 4X a square.

Choose C such that -(4 e yj) 2 E 16X mod 32

1 + (2 y ) is a square = "2.

Let v = v j 4 e y D U x1 D X2 S X3 ' 5

then

-2 2
The n v =v

3.1,

t(1))2 -= t (1)12
0 } }mod 32 and by Theorem

applied to N 9 <x > we have v ~ v. v is

our next approximation.

saturated, (1)
n saturated.

L# and apply Case 2.

Case 4p: v (), v(1) unsaturated. We leave for the reader.

Proposition L4.8: Let L = L 0 . L ~

2 -modular or empty

0 n

L. is
1

with Li ~ ki

56

N = E c- <y.>

Case 3: v(1)
0 Examine



V

Then there is a chain of Jordan Decompositions

with mi=l t=

such that L L (k) and ( is obtained from

by altering either three consecutive components

of or else by altering some two components of X .

Proof: We shall show that there is a chain (satisfying the

conditions of the Theorem) ,.,9 t t

We then proce=d by induction.

So let k =
0

n
where x i x

J=O

2
Let x1 = 1

j=o

1 Z + x2 Z + .. + xr Z.

. v i

v ii

v. C L..

and L x Z + ... + x Z.

Clearly L~ _~ L k . Since x x x Ox mod 8.0 0 0 j , 1

Write L 0 L 1 DL 2= T~ 0 ; 1: 'P 1o 1 2 o 1 2

Nowle: = ~ o 1 E2 L3 ''

1- l 2 - 2

(2)(2

2) satisfies the conditions of the Theorem since we

have altered 3 consecutive lattices.

n
We now have: xi = v + jP i

o j
vi, v1  e L .

j j
n

By induction, assume x = v i Dk X
1 0 J~ v ii with k > 3,

and v e L .

Form lattice L 0 by replacing x by x i+ v ik

Clearly 1 Lo.

( %' (2)' P ''''92 (m )

with X.t - ko 11 . ..



Choose L k such that L @ Lk = Lo @ Lk and Lk - k'

Then L L L2 p ... @ Lk-1 k Lk+l '''

n
is the next lattice in our chain and x1 = V+=k+1 i V 1O? j J

with v L
0

Vi e L .

After a finite number of steps we have a second Jordan

Decomposition

M 11 .. M
0 n

with x M .

with M ~L

Clearly M = k
0 0

Then there is aCorollary: Let M be an isometry on L.

chain of Jordan Decompositions. = L0 (1) .. * L ni)

with L (i) ~_ L (k) and a chain of isometries T, such

that T leave all the Lk (I) fixed except for two of

them or three consecutive ones, and e = . .'T, m

Proposition 4.4: L 0 ... :D Ln (l)

kar 9 ... d k Mp

are two different Jordan Decompositions of L with

is saturated
(1)(2) (1)Li ~ k . v = E '+ v = v . v X

in L . Then

tv ( .* V - tv (2) ) . v (1)j2 + 1
1)-

T (v ) - 22f 1+x

Proof: By Proposition 4.8 we may assume L = k when
j j

is a square.

or b) j + r, r+l, r+2.a) J + s, t

58
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Case a) s < t. Let s = X . Then write

L = D <X > with v =

L,~ = T 9 <yi> with Y 2 2

Now since T(v

i i

(2) we have v = Z (1+21i )y1Vk

Therefore tvX(l) 1 - tv j = 2 (4ni+4n )y2
x i i

Thus
tv j)2 - tv (2) 2

xi xi

T (v )

and 1 + r(4n +42) (1+E 2

Therefore tv (1)2 - tv5 (2)j2

2 T(v

-X -2f2
-2 ( i (L i+4ni 2) mod 8.

i

2 mod 8

+ 1 is a square.

Of course the proof is the same if t = Xi. So now we

may assume s < X t . There are three subcases here:

w = V D v t has critical incides 1. s and t

2. s

3. t

Case b) The result

when r = X 1-, the

Since in this case

I
K
Uis trivial when r X -2 , X -1, Xi

result follows from Theorem 3.1.

V (1) D v (1) - v (1) has only
r r+l r+2

one critical index. The other two cases are similar to

case a) when s = X .

Subcase 1. Let the critical exponents of w be T

f t

and

I

I

UI



By Theorem 4.1 tv (1) 2 t s (2)j2

Now ft + t > f + X + 1 by.

r +r +t+i
mod 2 s t

Proposition h.0.

F - + i

v )2 - tv s (2) 2

2f +X
2 -T~v

0 mod 8

But 1 + 8n is always a square if

Subcase 2. Let vt

(1) h1 A
-2 vt

(1) g1 A (1)
v 3  =2 V

A (1) A (2) A (1) A (2)
where vt ' t , V v

Then h > E f1 +l

tvt (l ) 2 O mod 2

bt (2) 2 o mod 2

Thus

?I C Z.

(2) h2 (2)
t t

(2) 22 A(2)
aS a ma s

are all maximal.

t > X +1

2(f +1)+? +1

2(f +1)+? +1

0 0 mod 8.2f i+i

Subcase 3. Proof is similar to subcase 2.

So we have finally collected enough information to prove

our main result.

Theorem 1.2: Let v, w C L. v2 2 L =L ... Lm

is any Jordan decomposition of L where L is empty

or 2 -modular. Then v ~ w if and only if the following

60

Thus

tv t 1)J2 - tv t(2)j
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conditions hold.

1. v, w have the same critical indices and exponents

2i ,Xi.

2. T(vx ) =T(w ) mod 2.

3.
2 2 2 2 2

V-n +V -n+l + .. +V Xi +S W-n + . Xi +s
imi i i

mod 2 i +l i+l I

v 2 +**+v2 i- w2 +-n + . -n
2

.o + W J
i + 1 is a

T.

square when T(v ) 4 o

where A = 1 if L +s

A, = o of L +s

is improper

is proper

2f1 +X.
T(V )/2.

Proof: Necessity

This follows from Proposition 4.9, Lemma 4.1 and

Theorem 4.1.

Sufficiency

We do an induction on the number of critical indices.

To do this, we need only show there is a Jordan Decomposition

(2) -n m

and such that

with LL -

= tw (2) + ... + + 2

v ) + + v (1) 2-n X1 +s -a
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where a = o, or 1. Then Proposition h.9 will imply

the validity of the hypotheses of Theorem 3.1 for the

above two vectors over the isometric lattices

L -n L .. L +S 1- and 1-n ..3 +S

Hence there will exist an isometry cP: Ln . LX +s

onto L-n ... +S which maps

)v . vX +s onto . = 2)X 1 (2)

Furthermore, v - v, w - E have one less critical index

than v and w and they both satisfy the hypotheses of

Theorem 4.2 over the isometric lattices L +S -a+ *

.. Lm and + +l L and so we are able to

carry through the induction step.

So we must find a decomposition 1 (2 ) 7-n 'm

with L, -_ L such that tw (2) . w -(2)i n X 1 +S

= tv ..n v () 2x +s -a

We break the proof up into several subcases.

Case 1: v unsaturated, and f 1-f 2 + 1 when v 2

saturated;or v saturated, s + 1 and f f2 + 1 when V

saturated. By Proposition 4.4 when v X is unsaturated

and by Proposition 4.4 a) when v sis saturated there is



a Jordan Splitting ~ L : . L with
( 3 ) -n m

Lk Lk and such that

t(3)w (3) j 2 t v .. ) v J2
-n 1 +S 1-a -n x1 +S 1-a

mod 2 1 2 2 where a = o or 1.

Let =w w (3)-n x +s

-tv (1) V (1) 2
-n lS1

" E o mod 2 2

4 E o mod 2 1 1

2f2 +k 2 3
So nmod 2

when v. ,
1 2

when v
1

when v

are unsaturated.

is saturated.

is saturated.

Hence we are able, in virtue of Proposition 4.6, applied

to L L

with Li _~ Li

to find a J. D. $( 2 ) T-n 4 m

such that tw_2) 2 w w(2)

= . @ VQ ~ ~ 2V-n 0 0 x+sl-a

Case 2. f = f2 + 1. V

v x is saturated.

We may assume by scaling that L x

saturated, x2 - X # 2 when

is unimodular,

T (v2)= . Then 1 + ( ( 1) + .. + v ( )) 2
x2 -n X1

- (-) + + w ) )2  is a square by hypothesis.
n x 2



Now apply Proposition 4.7 (2) to L 9 L obtain

a J.D. =L-n *. L l
l1

L 2- 2

in which L1 L and (v ) v )2

= (w- (2) w (2) and now note that X2 1 = X +s1 .n 2-2

Case 3. s = x. saturated, X2  1 + 2 when v

is saturated.

Apply Proposition 4.7 (3) to obtain a Jordan Decomposition

() with L ~ L and

(v (1) S * (1) )2 (w-(2 W (2) 2
-n x 1 n x ) and note

that X = + s - 1.

vx , v x2
saturated X2 X 1 = 2.

We may assume X2 = o, T(v X) = 1.

If L x +1 is empty, the result follows from Proposition

4.3 (2,3). Therefore we may assume Lx +1 is not empty,

also by changing the basis if necessary that w x+1 = 0.

Now v2 = tv-n
2 2

+ .. + V 1 J - (-n
2

+0. +V- 2

= + a ~ P

Case 4.

to obtain

T L x ..+
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where 1 + a is a square
T(v0)

1 + P is a square.
T(v 2

ord (a-P) > 2

Now suppose ord (a-P) > 3. Then

+ .. + v_ I - w-n
2

+ .. + W
+ 1 is a square

R

where R = T(v )

Proposition )1 .7

Now suppose ord

or T(v-2 ). Hence we may apply

(2,3) to L-2 D L , and we are finished.

(a-p) t 2.

Then there is a vector x E L_ with x F a mod 8,

and a vector w

2 - 2 2
x + w w.

0

0 with T(w ) = T(w ) and such that

S= W(1) (1x p w

Then w w.

Also w-n l
- (1) 2W_ 1 - (1)S-vn

(1) 2 +
- }1

is a square.

(1) Z- - (1).. 1 1_ - tv-n + 1

T(v-2

= (1)
-n -2 -n . . ( 1 ) j2

-2

T (v 2)

+ ;- (1) j2
-1

T (v 2)

Note:

tv-n 2

Now let W . 1 ) *

T(v0)

+ 1

2

-*;- (1 ) I~
(n

(v 2

- v j 2
-1
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= 1 + u + 4u2 + a - (a-p) + 8 V where u, \> E Z.
T(v-2)

which is a square since 1 + P
T(v 2 )

is a square.

Now apply Proposition 4.7 (2,3) and we are finished.

We now apply Theorem 4.2 to the special case where F

is the 2-adic completion of the rational numbers. Using

the facts that any two saturated vectors have the same

type and that 1 + 21 is a square iff I = o mod 4 we

have

Theorem 4.3:
2 2

v, w e L - v :=. w L = r D Li the Jordan

Decomposition. Then v ~ w if and only if the following

conditions hold.

1. v, w have the same critical indices and exponents

tX 1i 9 r 1.

v saturated iff w saturated (iM L ).

3. v-n2 + .. + v w + .. + w modn X~i+5i -nX +

2 i i+1 i1+ I

2 2 2 2
4. v + .. + v 2 w- + .. + w mod

n X 1 ~-11n

i +2f1 +3 when v is saturated

where A = 1 if L +s

A = o if L

is improper.

is proper.

2.



The solution of this problem for dyadic local fields

in which 2 is ramified would certainly be much more

difficult, for none of the theorems here proven generalize

to that case. The main reason for this is that vectors

in a modular lattice cannot be divided into merely two

catagories (snturated and unsaturated). This results

from the fact that when 2 is a prime, there are at most

two lattices over a riven quadratic space - a proper lattice

and an improper lattice - whereas in the ramified case,

there can be several lattices over a given quadratic

space. Hence any attempt to generalize the method to the

ramified case would have to begin by somehow generalizing

the concept of saturization of a vector in a modular lattice.

Ik
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