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ABSTRACT
ON THE INTEGRAL EXTENSIONS OF ISOMETRIES OF QUADRATIC
FORMS OVER LOCAL FIELDS
By Allan Trojan
Submitted to the Deocartment of Mathematics on April R
196l in partial fulfillment of the requirement for the

degree of Doctor of Philosophy.

Let F be a local fleld in which 2 is
a prime element. Let L be a regular lattice
over F® , and v,w any two elements in L
such that v° = w> . 1In this thesis we de-
velop necessary and sufficient conditions for
the existence of an isometry on L which maps
v onto w.

Use 1s made of a mapping, T , from mod-
ular lattices onto the residue class field of
F. It is found that two maximal vectors, v
and w , in a modular lattice L are iso-

metrically equivalent if and only if they have

the same length and T(v) = T(w).

Thesis Supervisor: Nesmith C. Ankeny, Professor of

Mathematics.
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INTRODUCTION

In 1923, Hasse, in a famous paper [3] proved the
following theorem: two quadratic forms over the rational
numbers are equivalent if and only 1f they are equivalent
over the p-adic numbers (for all primes p) and the real
numbers. This result stimulated the study of quadratic
forms over the p-adic numbers and local fields in genersal
as a means of examining many of the questions concerning
the theory of quadratic forms over algebraic number fields.

Much of the theory of quadratic forms over local
fields is now well known., Necessary and sufficlent con-
ditions for the representation of one form by another
were dlscovered by Hasse [lt]. Such conditions for inte-
gral equivalence were obtained by Durfee [1], and 0'Meara
(6], [7). O'Meara [8] also found necessary and sufficient
conditions for the integral representation of one form by
another, provided that 2 1s either a unit or a prime ele-
ment of the local field. The cases where 2 is ramified
i1s still under investigation.

Another unsolved problem i1is that of finding necessary
and sufficient conditions for the integral extension of an
lsometry acting between two subspaces of a regular quad-
ratic spsce. That 13, glven a quadratic space V and
two isometric subspaces V1 and V2 where V has as a
basis {xl,..., xn} , find conditions for the exlstence
of an isometry ® which maps V1 onto V2 such that

the matrix representation of ® with respect to the glven



basis consists of intsgers in the local field. (The
exlstence of some extension of the isometry follows from
Witt's theorem [10].) Rosenzwelg [9] and James [2] have
solved this problem for local fields in which 2 is a
unit (so called non-dyadic local fields). The dyadic
case, however, is much more difficult, and conditions are
known only for a few specialized cases. In this thesis
a solution 1is found for the exlistence of an integral
isometry mapping a one-dimensional subspace onto another
one-dimensional subspace of a regular quadratic space
over a local field in which 2 is a prime element.

We examine the problem from a geometrical point of
view, that is, we consider integral isometries to be
1sometries on lattices with a quadratic structure. A
lattice L 1is a finite dimensional module over the ring
of integers Z of the local field. An isometry on L
is, of course, a linear mspping of L onto L which
preserves the inner product. The problem which we shall
solve may then be stated as follows: given two vectors,
v and w , in a lattice L on which we have defined a
regualr symmetric product, find necessary and sufficient
conditions for ﬁhe existence of an isometry on L which
maps Vv onto w.

Much use will be made of Rosenzwelg's ideas of
dividing an arbitrary vector into critical components.
As in Rosenzweig's Thesis [9], the problem will be solved

by first examining vectors with one critical component

AN



and then doing an induction on the number of components.
Aslide from this general schemata, however, the proofs of
most of the theorsms are quite different. The most
important theorem used 1s the one proved by OtMeara on
the necessary and sufficient conditions for isometry of
lattices (Theorem 1.10, Chapter 1). It is interesting to
note that many of the methods used, most notably those in
Chapter !, may be used to simplify existing proofs for

the non-dyadic case.



Chapter One: Preliminaries

Definition: 1. A local field is a complete field under

a non-archimedian valuation with a finite residue
class field. We shsall denote by Z and P the ring
of integers of the field F and the maximal ideal in
thlis ring. m will be used to denote a generating
element of P.

2. A dyadic local field '1s a local field
in which [2] < 1. Let a be any element of the

local field F. Then 3(a) (the quadratic defect of

a) 1s the 1deal generated by the B such that a - 8

is a square and |p| is minimal.

Theorem 1l.1l: a) The quadratic defect of a unit always 1is
one of the following ideals:
Z or O when F 1s non-dyadic 1.f.
hz,.ee, p°

Furthermore, each of the above ldeals actually appears

s PB, P, O when F 1is dyadic 1l.f.

as the quadratic defect of some element of P.
b) 1In particular, 1 + L4m 1is always a square.
c) If a=1+3 where || < |pg] <1,

then d(a) = BZ.
d) If a,B are units with 3(a) = 3(g) = L2

then af 1s a square

Definition: Let a, B be elements in an arbitrary field

F, then: (a,3) = 1 when thers exist x and y such
that ax2 + By2 = 1,

= =1 otherwise.



(a,B8) 1s called the Hasse Symbol.

Theorem 1.2: a) F 1is a local field. Let A be a unit

such that 3(4) = 4Z, E an arbitrary unit. Then

(A,E) = 1. (A,m) = -1,
b) (a,pBY) = (a,p)(a,Y) for any a,B,Y in

e

Definition: 1. A quadratic space over a fleld F 1is a

vector space V over F with a symmetric inner product
(x,y) € F. The quadratic space is called regular if
(x,v) =0 for all y in 7 implies that x = 0,

2. Let V, V be two quadratic spaces over
the field F. Then we say that V and T are
isometric (written V ~ V) if there exists a linear

map ® mapping V onto V such that (x,y) = (®(x),?(y)).
® 1s called an isometry.

Proposition 1.1: ILet V be a quadratic space over F.

Assume the characteristic of F 1is not 2. Then V
has an orthogonal basis Xy i=1, ..., n. That is

(xi,xj) =0. if 1 # j. We write V=139 <xy>.
Furthermore, if V 1s regular, and F 1is a local fileld

s(vy = TT (xi, x?)
1<i<j<n

Then S(V) 1s independent of the orthogonal basis chosen.

Definition: ILet V Dbe a quadratic space, with basis Xy

and let A be the matrix deflned by Ay, = (xi,xj).
Then we define d(V) = det A. Note that d(V) 1is only



defined up to squares of elements in F.

Theorem 1.3: Let U, V Dbe regular quadratic spaces over
a local field F. Then U~V 1if and only if:
l1. Dim U = Dim V.
2. d(u) = a(v).

3. s(u) = s(v).

Definition: Let U, V be quadratic spaces. We say V

represents U (written U - V) 1if there is an isometry

from U onto a subspace of V.,

The orem l.h: Let U, V be regular quadratic spaces over

a local fileld F. Then V represents U if and only

if:
l. U~V when dim U = dim V
2 U D <dU«dV> ~ V when dim U + 1 = dim V
3. U@ H~V when dim U + 2 = dim V and du=-dv.

where H 1s the quadratic space denoted by the following

matrix:
(hyperbolic plane)

The fundamental theorem for all work on quadratic forms

is the following well known theorem of Witt:

Witt's Theorem: If V 1is a regular quadratic space over

a field of characteristic not equal to 2, and W, W
are lsometric subspaces, then there is an isometry on V

which maps W onto W.



Lattices

Definition: a) Let F be a fleld, Z its ring of int-

egers defined by some dedekind domain of prime spots,

Let V be a vector space over F, M a submodule of

V with respect to the ring of integers Z. Then M

is called g lattice on V 1if there is a basis

{xl, ey X} for V such that M =x; Z + ... + x, 2
b) M = {ax : a € F and x € M}

Theorem 1.5 a) Let L be a lattice over V. Then there
is a basis {yi} for V and fractional ideals O(.i
such that

L=0llxl+.‘.+otnxn
b) In particular, if Z 1s a principal ideal

ring,

for some basis {xi}

Definition: Let L, M be two lattices on the same quadratic

space. We say that L ~M 1if there is an isometry 9

on V such that ®(L) € M.

From this point on, we wlll assume that F 1s a local
field, and all quadratic spaces are regular, unless it is

explicitly stated that they are not.

Definition: ILet L = Z xl + see + 2 xn. Then we make the
det (xi, Xj)’ mod (units)2

I

definition d(L)

Definition: Let {xi} be a basis for L. Then we say that
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L is unimodular if Xy o Xs €7 and d4d(L) 1is a unit

v r
of Z. We also make the definition Vﬂ = the quadratic

space given by the matrix 7 . (xi,xi). Then we say

[

L is nr-modular if L 1s unimodular over the quad-
-r
ratic space yT .

Definition: 1) Let q be a fractional ideal of F, L a

lattice on V. Then LY =1{x : x €L and Xxeye€q for
all y ¢ L},
2) If J 13 a sublattice of L, we write

(3, L) = {(x,y) 1t x€J,yeL}

3) H(0) 1is the lattice x 7 + y Z with the

+
2 _ — a 2 _
multiplication table x~ = 0, x.y =1, y° = 0.

Definition: ILet X and KX be sublattices of L. Then

we say L =K®K if L 1s a direct sumof K and K
considered as modules, and (x,y) =0 if x € K and

v € K. We say that K splits L.

Theorem:1.6: Let I be a lattice over the quadratic space
V. J a unimodular sublattice. Then J splits L 1if

and only if (J,L) < Z.

]

Definition: s(L) the ideal generated by (L,L).

the ideal generated by (x,x) where x L.

n(L)

The followlng theorem defines an Important splitting of

L known as the Jordan Decomposition of L.

Theorem 1.7t Let L be a lattice over a quadratic space

V. Then L may be written L = L, P ... D L, where
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the L are modular and s(Ll) o S(LE) D ... D S(Lt)’

i
Purthermore, if we have a second such splitting
L = fi ... 9 fg then we have the following facts:
3. dim Li = dim Li'
l. n(Li) = s(Li) if and only if n(Li) = S(Li)

From here we shall assume F 1s a dyadic local field
in which 2 1s a prime element. The great difficulty in
dealing with Lattices over these fields lies in the fact
that n(L) € s(L) but equality does not necessarily hold.
Thus we cannot necessarily find a diagonal basls for L.
The best possible basis for L 1is given by the following

theorem,

Theorem 1.8: Let L be modular. If L 1is proper
(n(L) = s(L)) then L has an orthogonal basis. If
L 1s improper, then L can be written as an orthogonal

sum of two-dimensionsal sub-lgttices.

Another important fact about lattices over dyadic local
fields is that the éancellation theorem does not always
hold. That is, if L=M@®N=M@®N and M~ M, 1t is
not necessarily true that N ~ N. However, we do have the

following special cases.

Theorem 1.9: a) If L=K®M =K@®N where K ~ K ~ H(0),



It

b) If L=K®M=K®N with K ~ K.

r
Furthermore, if K is nf -modular and n(K) < n(M7t Z)
ot ’

r
n() < n(8™ %), then M ~ N.

Isometry of Lattices

Definition: a) Let L = L1 D .., @ Lt be a Jordan split-

ting for L. Then ¢, dim L,, s(L;) = s;, n(L;) = ny

are called the Jordan Invarients of L.

b) L(i)zL]-@ooo ®Li¢

Theorem 1,10: (0'Meara) Let K, L be lattices over the
same regular quadratic sﬁace over a 2=-adic local fileld
F. Then L ~ K 1if and only if:
l. K and L have the same Jordan invarients.
2. dL(;)/dK ;) =1 mod nyn,,/s5.
3. FLgyy = FK;y ® <2"1> when n, ., Sln,
where n, = 2% gz,

We shall have occasion to deal with non-regular lattices.

We make the following definition.

Definition: Rad L = {x : x € L and x.v =0 for all v ¢ L}

]

Theorem 1.11: Rad L splits L and if L L1 ® Rad L

L, ®Rad T

L =1L,

i

where L ~ L then L1 ~ L2.

The following theorem 1s useful in the construction of

all possible lattices.

Theorem 1.12: Let L be unimodular. Then L 1s split by

a hyperbolic plane, H(0) 1f: a) dim L > 5



14

b) dim L > l; and L 1is improper.

Definition: 1. We say the two vectors v, w are equi-

valent (written vew) if there 1s an isometry on L
such that ®(v) = w.

2. Let v € L. Then <v>'L ={xeL : xev =0}

The preceding definitions and theorems may be found in

O'Meara [5].

Here is a brief outline of the following chapters. We
first examine the problem for modular lattices. Glven two
vectors v and w, with the same length, the problem is
to find conditlons for equivalence of these vectors. We
first find conditions for the two-dimensional case by find-
ing when the natural isometry from <v> @ <v>& onto
<w> @ <yt is actually an isometry on L. We then reduce
the case where dim L > 2 to the two dimensional case by
finding when we can imbed v and w 1in lsometric two
dimensional lattices which split L and have isometric
prerpendicular components. It turns out that no more con-
ditions are necessary in this case,

The next case examined, after modular lattices, is that
in which two vectors have only one critical index, that is
each vector can be imbedded in a modular lattice which
splits L. Once again we examine <V5L and <VS‘L to

see whether it is possible to extend the isometry.

Finglly we examine the general case. Here we write



@ooo@ -z—-
1 Yhr ¥V E VN,

vi have only one critical index, Let v(i) = vy P ..

= ‘,'9000@—-
v v vn where Vi and

. D Ve In this case we find a necessary and sufficient
congurence relation between v%i) and ;%i) to permit
the existence of an isometry which maps v onto

W= Wy D ,.. P W, ~where the w, each have one critical

index and where w%i) = V?i)' We then apply the results

obtained for vectors with one critical index.



Chapter Two: Equivalence of Vectors Over Modular Lattices

Definition: 1., v € I 1s called maximal or primitive if

271y £ L.
2. L 1is 23Lmodular. Then v € L 1s called

saturated 1ff L = <x,> % ,,. @ <x > (i1.e. proper)

1
v = 2nv with v maximgl and v = T aixi and
i
afx? = a?x? mod 23#1 for all 1,j. Otherwise v is

called unsaturated.

3. L is 2i-modu1ar. vy, W € L are said to
be of the same type if:
l. v, w are both saturated or unsaturated.
2., If v, w are saturated then
i+1 V<

VeXp E WeXy mod 2 R

We obviously want the definition of saturation and type
to be 1independent of the orthogonal basis chosen. The

followlng lemma establishes that fact.

Lemmg 2.1: Let L be unimodular. v, v € L.

l. v 1s saturated iff L 1is proper and

y € <v>'L

implies ord y2 > 1,

2. Vv, Vv are saturated then v, Vv are of the
same type iff for every y € L we have v+y = vey mod 2.
3. v, v saturated. dim L is odd.

ve = 72, then v and Vv are of the same type.

. v~V implies v and Vv are of the same
type.

Proof: We use the following notation throughout the proof
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of the theorem. L = <x.> @ ,,, @ <x > x2 = 8
1 n i i

vENa X, ,V=a.,X, ,7 =% B,X,.
1 i1 5 i1 i ivi

l, Let vey =0 then % aiBiéi = 0. Squaring this we
2,242 _ 2 _ 2
have aiﬁisi = 0 mod 2. But aiéi = a151 mod 2. Thus,

ayd, (Z By84) E O mod 2. Therefore <% @?61 = y2 = 0 mod 2

2
since a8y # 0 mod 2.
Conversely: Let v be unsaturated. We may assume with-
out loss of generality aibl £ agéz mod 2.

Let y =28 then y.v = 0.

191%2
ai&l) £ 0 mod 2.

20Xy — 8
2 _ 2,
2. lLet aléi = aibi mod 2. ;.

vey = I aiBiéi =z aiﬁiéi mod 2. = v-y.

H vy=54a o =
Conversely: v z asXs 5 V Yoagx, If we let y Xy

then by hypothesis aibi E aiéi mod 2. thus a; = a; mod 2.

1

H

2 o~ 2

2 2 . -
3. nanén = T aiﬁi mod 2 & T aibi mod 2 = nanén mod 2.

But n 1is odd. Thus ai = Eﬁ'mod 2. Therefore
2

= 1 mod 2. Therefore a, E E& mod 2.

li. a) v 1is saturated iff Vv is saturated follows from
(1).

b) We must show: vexy = Voxi mod 2 if v is
saturated.
2 _ -
{ = 61 = 63

Assume Vv = Y% X4 where L = L @ <xy> with x
mod 2, ® 18 an isometry with ®(v) = Vv and

w(xi) = i bijxj .



Thus: 61 =z bijbi mod 2. Since isometries preserve
5. [
inner products.
2 )
1=3%bS,={Lb,,.} mod 2, and therefore
i P
1l = % bij mod 2.

Vex, = L (xj°xi)bkj = ? Gibki = 61{f bki} mod 2.

Thus: v-xi = §. = 51 mod 2.

Theorem 2.1: (O'Meara) The only two-dimensional modular
lattices over an unramified dyadic local field are:

l2p 1
1 2

11
[1 0

01

H(O) = | 5 B(0) = H(p) =

sle) = %P3 me,o = |5 2]

where €, 3, p are units and 1 + Lip 1is not a square.
(Note: p will always stand for a unit such that 1 + lp

is not a square.)

Proof: See [8].

Proposition 2.1: x2 =1 mod 2. Then x = 1 mod Zn-l or

x = -1 mod 2771,

1

Proof: (x - 1){(x + 1) = 0 mod 2 + Suppose x-1 = 0 mod .
1

Then x + 1 2 mod lf. Thus x - 1 = 0 mod 2l

i

1

2mod l, them x +1 = 0 mod 2" .

Now if x - 1

Hi

Theorem 2.2: I 1is two-dimensional unimodular. v, v are

maximal. v2 = 72. Then v ~v iff v and Vv have

the same type.



Proof: Necessity has been proven (Lemma 2.1 [L]).

Sufficlency: There are threes cases to consider.

Case 1. ord ve = 0. Then L = <v> @ <y>t = <¥> @ <v>+.

Then <v> ~ <v>, <y>t ~ <v>t . Combine these two

isometries to form an isometry on L mapping v

onto v.

Case 2. ord v2 > 1. v'2 £ 0., We let L = vZ + wZ

with matrix representation ; ;}. Similarly,

L = vZ + wZ with matrix representation ;; %{.

We first show that we may choose E = B mod 2.
If L 1is improper the result is trivial.
If L 1is proper, then v and Vv must be saturated.

Thus by Lemma 2.1 part 2, Vvew = 1 mod 2. Therefore
Vew =1 +2n, Let w= —2—— . Then 7 = we mod 2.
1 + 2n

ua with 4 a unit

n

Now (1 - 38)/(1 - 6E)

1 +5(E - E) mod 28

n

1 mod 28.

L

By Proposition 2.1 we may choose u =1 + 8\ A€Z.
Let o(v) = v, o(v - 8w) = u(v - &w). This is an

isometry on FL since <v - Sw> ~ <v>t and <v - s>

~ <v>t  and ue(F - &) = ua(-é + &2§) = 8(-1 + AE)

= (v - Gw)z. We must show that ® 1s an isometry on

L, that is, ®(L) S L. We have ®(v) € L. We need

to show ®(w) € L. But o(w) fﬁ%(v - (v - 8w}

= 3(T - (T - 80) - 6(7 - sw))
= (50 - 87 + 8%
=G"V+6W€Lc



Case 3. v = 0. Then L ~ B(0) or H(0). First let

L ~B(0), L = xZ + y7, x2 =1 x-.y =1 y2 = 0,

e(y) or e(2x - v)

-3
[an
®
o
<
I

€, € gre units.

<l
n

€(y) or €(2x - y)

Now by Lemma 2.1 part 2, € = € mod 2.

et u = % £ 1 mod 2. We define the linear map wu

as follows. mu(y) = uy
o, (2x - §) = £§5~i—ll

It is easily checked that mu is an isometry on FL.

u

. - L. 1
But ou(2x) wx + (u u)y and = u =1 mod 2.
Therefore mu(x) e L, mu(y) € L, and mu(L) < L.

Thus ®, is an isometry on L.

Also let ¢ be the isometry such that ¥(y) = 2x - 7,

¥(2x - y) =y some product of ¥ and 0, will map

v onto v, A similar method also works when L ~ H(0).

Proposition 2.2: Let v ¢ L where I 1s unimodular and

v maximal. Then if ord v2 >1, we may write L =R 9 S

with R two-dimensional and v € R, such that:
1. S 1improper if v saturated and L proper.

2. R 1l1mproper if v 1s unsatursted.

Proof: (Case 1, L improper. Then we may write

L= 9L where the L are two-dimensional. Write

i i

L, = x,2 + in with x

'y
i i 171 N i

J
Assume lakl = 1l. Then letting R = vZ + ynZ we have

R unimodular sand L = R 9 S.

20

= 1. it = Ta.X, + IR.¥..
Write v 1 .ijj
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Case 2, L proper, v unsaturated. It is easlily seen
- 2 _
that we may write L —E:@(k% with xy =6, and

v = aixi with aqy and a, both unlts and

aiél $a§62 mod 2. Now every unit of F 1s a square

mod 2. Thus we may choose { such that 622562/61 mod 2.
let y = Bxl + X5 It is easily checked that

y2 =0 mod 2, vey £ Omod 2. Letting R = vZ + yZ

we have R 1improper and unimodular. Thus R splits L.
Case 3, L proper, v saturated. We again let

1
S 1is improper by Lemma 2.1.

L =2@(5(1> et R =x.2 +vZ. Write L =R P S. Then

. B(p) @ H(p) £ B(0) & H(0)
. B(p) @ H(0) £ B(0) 9 H(p)
. H(p) ® <e> £ H(0) P e(1+4p).

Proposition 2.3: 1
2
3
. H(p) 9¥<&> is not isotropic.
5

. H(p) 2 B(p) 1is not isotropic,
Proof. See Proposition 9 of [8].

Theorem 2.3: Let L be unimodular vo = 72 v, v maximal,

Then v ~ v iff v has the same type as V.

Proof: Necessity: Already done.

Sufficiency:

Case 1. lvi] = 1. Iet L =(v)®<v>4=(;r-) @(;24

Now f <v¥ ~ F<v>' | Dby Witt's Theorem. Further-
more, by Lemma 2.1 <v>*  and <;S'L ars both
proper or both improper and hence have the same
Jordan Invariants. Thus they are isometric by

Theorem 1.10. We extend the isometry by mapving



SC now

We may

v onto V.

Case g. ord v2 > 1, v unsaturated.

—

By Proposition 2.2 we may write L = R @ 3
=R®S3. R, R improper two-dimensional

v € R. v € R, Furthermore n(S) = n(S) by
Lemma 2.1 (1). If R ~R then FS ~ FS by
Wittts Theorem and S ~ S by Theorem 1.10.
Thus we may apply Theorem 2.2 to R and R
and we are through.

we must show that we may choose R ~ R.

If L 1is 3-dimensional, the result follows
from Proposition 2.3 (3). If ord v2 > 2 then
R~R ~ H(0) since H(p) does not represent
any integers of order > 2 by a maximal vector.
Thus we may assume dim L > li, ord v =1,

Suppose R ~ R. We may assume without loss of

generality that R ~ H(0) and R ~ H(p).
Write R = vZ + wZ with vew =1 w2 =0
R=%Z +WZ with F.w=1 @ = 2n

S 1is proper and dim S > 2. Thus there is a
vector y € S with y2 £ 2m mod .

Let R' = vZ + (w+y)Z

then det R' = det R mod 8.

Thus R' ~R and v € R!

write L = R' @ 3' wilth S' ~ S by Theorem 1.10.

Case 3. ord v2 > 1 v saturated.

Write L=R®S=R®@3% veR VveR

22



o,

(we may do this by Proposition 2.2.) R, R proper
S, S 1improper

Then v 1s saturated in R, Vv saturated in R.

Assume we can show R ~ R then S ~ S by Witt's

Theorem and Theorem 1.10.

Now let x € R. and ®(R) = R.

We have v+x = v+x since v, v have the same type.

- R

Now vep(x) = ® “(v)-x Vex mod 2 by Lemma 2.1 (I).

i

= VeX.
Thus Vv has the same type in R as v in R
hence by Theorem 2.2 there exists an lsometry &O
with ¢ (R) =R ¥ (v) =V
Let $l(s) = S be an isometry. Then the desired
isometry is wo @ ¥, on R ®S. If S ~ S then

R ~ R. Hence we may assume S 4 S. We may also

assume, without loss of generality, that S contains

a hyperbolic plane. Then S ~ H(0) 2T, § ~ H(p) @ T

where T 1s a direct sum of hyperbolic planes, or
empty. Then R £ B(0), R £ B(p)

R ~B(0), R £ B(p)
by Proposition 2.3 (1,2).

Thus R ~ E(€,8), R ~ E(€,5). Therefors ord v2 = 1.

Let R=vZ +wZ, R=vZ + w7, where v2 = 28, vew

Let x € S with 26x2 = 2(€§ - ¢8) = det R - det R.

Let R' = (v+x)Z + wZ. Note: det R' = det R and

v € R',
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Write

R'" ~

R.

L

Rt @ S,

Then

S' :‘S“-

Therefore

24



Chapter Three - Vectors with One Critlcal Index.

Definition: Let L be any lattice over a local field.

v a vector in L.

(1) _ i

Let L lv ¢ PL : vey € ®Z, ¥y ¢ L} where

n 1is a prime element of F.

= min ord v.y

(1)

€3
yeL

We make the following definitions
1. If oy T €3 % (<=>:.L+1 - 1) then 1 1is called a

critical index of wv.

2. If 1 1is a critical index of v , then (ei - 1)

is called the critical exponent of v corresponding

to the critical index 1.

We shall always use the following notation

1. Xl, X2 .o are the critical indices of v in
inecreasing order.
2. fl, f2 o are the corresponding critical

exponents,

30083 T My v Ty

The following Theorem gives a better Insight into the

_)\i::fi

meaning and importance of the critical indlces and exponents.

Theorem 3.1l: Let v have critical indices Ai, exponents

i,

n
Then there is a Jordan Splitting L = £ @ L1 with

-m
L1 empty or 2i~modu1ar, such that v has represent-

h
ation v =5 @2 1 v with v maximal in L
Ky Ky Ky

and the following conditions holding:



26

l. h

> h. > +e. &

i 2

2. hl + kl < h2 + k2 < L I I -

Furthermore, for any Jordan Decomposition satisfying
the above two conditions, we have that

hi =f

kg = 2y

The previous Definition and Theorem are due to Rosen-

i

zwelg [9], as are the following important facts about
é¢ritical indices.

n
et L =X @@L, where L, 1is Ei—modular as empty.

Y92 1 \ with vy maximal in Li (or

"

v
possibly zero)
Suppose Xk 1s not a critical index of v. Then:

1. If k< Kl then h, > f. + Kl - k.

k 1
2. If AJ < k < xj+1 then hk > fj when
f, < k< f, + 3,.
J -] J
h + k > fj+l + Kj+1 when fj + S5 < k < xj+1
. If k < A then h, > f
3 3 k7 1y
L. If k> 2\, then h +k>3}i; +7F
A, +8 J J
i 71 h,
5. % 224 vy has critical indices Aj...hy.
-m

Lemma 3.1: L = LO D ... D Lrl Li is a Zi—modular.
v, w have critical index A. Vv ~w

-V, is of the same type as w in Lx.

A
2ty A
Proof: v, w € L “ = {y:r y e L and y.-L € 2°7}
=L, 1L, 4 92 Ly} ® ...
2z A
Then n(L ©) = 2"7.



s
et

2 2tz
But ord y > A+l for Wy €L such that

y.v = o iff vx 1s saturated in L.

Hence: v is saturated in LK ifrf w I1s saturated

A A

in L Since the gbove property is preserved under

7\’
isometries on L. Now a method virtually the same as

that used in Lemma 2.1 (li) shows that v.y = w.y mod 2
A

\V v € L2 Z.
Lemma 3.2: ILet L Dbe unimodular, v saturated in L.

Let y, € L have Oyi2l =1 1i=1,2,

Then (V*V1) = (v-y5)" poa 2.

2 2
Y5 y2

Proof: Let v = Zai

L = @ <x,>, X = A assume
2 _
v is maximal where ay Ai = aj Aj mod 2.

2 2 2 2.2
Then (V'T1) (ZayBy8y) Toa;Tpy Ay
5 5 >
vy LBy 4y Z By Ay
£ g, 2a (vey,)°
0. S A 1 3 - 4% = 2 mod 2
=oh T 18 5 —7— .
By 54 I

This Lemma indicates the existence of a very important

invariant needed to show the equivalence of two vectors.

Definition: Let L Dbe 2k—modular. Let x €L lxal =1

if L 1is proper. Then let T(v) = o mod 2 if v is
unsaturated.

(V-X)2
T™v) = s mod 2 if v
X

is ssaturated.
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T(v) 1is called the type of v. Clearly T(v) = T(w)
iff v and w are of the same type. Note that T

is a mapping of L into the reslidue class field of F.

Proposition 3.1. ILet L = L-m D .. D Ln be a J.D. for

L. where Lk is Zk—modular. Iet v = v, P .. D v

be the representation of some vector v with respect
to the above decomposition. Assume v has o as 1its

only critical index and that T(VO) ¥ o in L.
2 2
1 +"+Vn is & square.

T(vo)

Furthermore, assume that 1 + '

Then v ~w where w € Lo‘

Proof: We may write LO =9 <x4> where vV, = 29 Xy
Then if we let LO = <xl$v2%..@vn> D <x5> D ...
then clearly Lo ~ LO. If we write LO% oo @ Ln
= fg D K, then a simple application of Theorem 1.10
gives us that L,® .. ®L_~K. Thus there is a J.D.

of L givenby L = K_m% ee P Kn such that

Li ~ Ki’ v e ko. Let ® be an isometry on L' which

maps ki onto Li' Then w = w(v) 1is the desired vector.

We now wish to find when two vectors having the same
critical index A are isometric. We first do the
more difficult case where VK and WK are saturated

in L We may assume, by scaling that A = o.

l.
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Proposition 3.2, ILet L = L_m D .. P Ln with Lk

Zk-modular or empty. v = V_m D ,.. D v with

YV € Lk‘ let w = Wo W € LO. v, w maximal with

critical index o. v2 = w2. PFurthermore let W, be

gaturated in Lo. vo be saturated in Lo‘

v 2+. etV 12
T(v ) =T(w ) in L . Then v ~w iff 1 + —% -
o o o}
T(v_)
0
is a square.
v_ 2+..+v_12
Proof: First we remark that the statement 1 + —=
T(v )
2 2 ©
€ F2 makes good sense for if n =1 + TE where
a € Z, T a unit,
Then if A €2, 1 + 2% =1 + 2% mod lla. But a = o
mod 2 by Theorem 1.1 (c). Therefore %% = o mod 8.
Thus 1 + _2a_ is a square by Hensel's Lermma.

T+2A
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|

Necessitz: By Proposition 3.1 we may assume V-3-k o]

kzp.
Vaye SO
since T +a +8n is g sguare iff T*a is when
T T
v_22 + v_l2 + T(Vo)
IT] = 1. Assume is not a square.
T

Let us also assume v2 ¥ o for the present time. The
procedure which will be used is to examine the Jordan
Decompositions of <vs- and <w>‘L and show that one
of the conditions 2 or 3 fails to hold. There are three

case to be examined

2
= = 4

1. v-l o, ord v_2 2

2. Or’d V"l = +1

3. ord V.4 = +2,
Case 1 v =0 ord v 2 +2
= =t ~1 -2 :

Let LO = <xq> b ... P <x > Vo T X + L., + X e

_ e _
T(vo) =x" = Al.

We obtain a new Jordan Decomposition for L in the

following way:

a) Let L, =L, when 1 % -2,0.

b) Replace the vector Xy in L0 by Xy =Xy vV,

to obtain fo.

¢) Find a new lattice E—Z such that §_2 @T =

= ‘ . »l s @ L)
L_, b L0 L_2 is proper and L_2 <¥y>

. ¥ <y > where hyl =v_,- Thus f_g may be

obtained by replscing vy by some linear com-

bination of y, and x;, call it §i. Note:



det T_,/det L_, = det L /det L =1 + Lp.

The Jordan Decompositions for <v> and <w>' have

s

the following forms:

4 — e o DT ,
<v>= =L_ 9 ... P L3 DL ,9L,9MI ...

<>t =L 9 .,..9L ,.9L_,9L.,9ND...

31

where n(M), n(N) € R Z. We wish to show <yt ¥ <w>J-

Sub case a) L-l is improper non~zero.
n(L_l)-n(M)

Then c 8z.
2
s(L_q)
d(f )0 » s 0 . d(f )
But ~m -1 =1 4 he.
d(L_m). oo o d(L_l)
Thus condition (2) of Theorem 1,10 is violated.
n(L_z)-n(M)
Sub case b) L_y 1s empty. " )2 c 8z.
' -2

Similarly: d(L_ ) . ... . d(L_,)

Sub case c) L_y 1s proper Then n(M) <y n(L_l).

For condition 3 of Theorem 1.10 to hold we

must have f(L_ %...9L ;) - F(L_ 9...9L_;)

By Witt's Theorem F L_, = F L_, ® <i>,or

<y1> .« = <§i> D <%>.



Case

Case

Let y12 =

4{_:‘]m

(1 + p has defect = }jZ).

LGN <E (1 + lp)> @ <3>.

I

Applying Theorem l.li we have:

<E> @ <1 t 40

i g N

Therefore

. Then §12 = E (1 + lp)

e
g4

> < (1 + lp)> @ <3>.

or <e> D <2(1 + lp)> ~ <e(l + Lp)> 9 <2>,

Applying Theorem 1.3 and using the simple facts

about Hasse Symbols given in Chapter I we can

easily see that the above Quadratic Spaces are

not isometric.

2

2. ord V.1 =1

Using a similar procedure as before

<v>*‘ = T, P

<w>4 = T D

a(L ). .. )e d(L

-m —;2
d(L_ ). «o » d(L
n(L ,) n(N)

) &(L ,)

-2 -1

-1

But < Lz.

1.10 is violated.

1. ord V-12 = 2,

determinantal arpuments

when L_1 is improper.

_l) =

Hence <v>1 4 <w>l |

we may write.

1 + 2¢ €

Thus condition 2 of Theorem

like those used above work

32

a unit.
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Assume L_l is proper. In this case we may assume

2 2
v_q +v_2
V_s =90 for ———>=-+ 1 13 g non-square.
T(v_)
o
2 2
V_2 V-l
Therefore 1 + is a square or 1+ is a
T(vo) T(vo)

square. In the first case we may assume v_, = o0 and
the second case reduces to Case 1 above.

Now write: L_1 = <yl> P <y2> P R with

_h 2% _
052 ¥ T with v, Ty Y,

We already have Lo = <xy> P .. D <x > with

_ 2 _ 2 _
™v ) = X" = Al and x," = Ai.

We make an alteration in the Jordan Decomposition in
the following manner: We leave all modular components
fixed except for L_1 and LO. We slso leave R

fixed., Now replace Xy by Xy = 2y1 which we call

Xq Replace M by some vector ¥y T ayq + B Xy

with a, § € Z, la] =1 where §i-§i = o, Now
?l = C~y12 where a determinental argument shows
a(c) = 22.

2

Xyt 291
Note that C = ~———
2
*1

Now, having done this, we repeat the procedure with

y, and x; replacing Ei be a vector ;1 = ;1 + 2y,

and y, be a vector §> =ay, +B Xy with la] =1

and @£ € Z such that §é-§1 = o,
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Note: a) ¥o'¥y = O

c) 3(cDh) =)l by hypothesis.

S0 we now have a new Jordan Decomposition for L

L = L_m Doy oD L_2 P L-l D Lo D Ll P ... with
i;l = <§i> P <§é> P R and v-E;l = o,
Hence <v>+ =L_m@... @f_l DPMI ...
<t = L m @ ..., D L, ® M& ... with n(M),

n (M) © 2Z. Since w 1s saturated. We wish to show

<yt 4 <w>t . Note: n(M) S Ln(T So if we can

1)
show F(L_ % ... 9L )+ F(L_ 2 ... dL_;) D <>

That is we wish to show:
<§i> @ <§é> 4 <¥,> ® <y,> @ <3>
By Theorem 1., we wish to show:

<G E.> @ <D €

1 2> @ <CD> i <61> P <€2> P <]>

A calculation of hasse symbols, using the fact that
9(CD) € 44Z shows that the above statement is equivalent
to the statement: (C,C€1€2) = -1 or etulvalently, the
lattice <C> 9 <C€1€2> P <=1> = k. 1s anisotropic.

We may assume, by scaling that xla =1, In this case,
c =1+ 261

3(1+2e +2¢,) = L7



By Proposition 2.3 (3) we need only show that k contains

a lattice isometric to H(p).

let X2 = C y2 = C€1€2 Z2 = ]

Then Xk ~ <x> B<y>B<ZE>

- X+3
et J = (61 x+y)Z + (-C-E]—-')Z.

Then J ~ 612 c + celee 1
1 c-1
C2€12
~ cel(el+ea) 1
1 2
02€1
Since €, + €_ = o mod 2 J 1s improper.

1 2

We need only show det J = -1 + 2(€l+€2) mod 8.

2(el+32)

But det J = -1 + —.

H

;1 + g(el+32) + (2e1+u612+..,)(2(el+e2))

-1 + 2(e,+€_) mod 8.

i

1 2
Thus we have proven necessity of the conditions when
ve # o. But when vZ =0 we have <yt =3 % rad <v>t
«wst =3 9 rad <wst

now we show S i S by exactly the same method.

Sufficiency: 1In this case we show there is a second Jordan

decomposition L =L 9 ... 9 Eh in which the represent-

ation of the vector v =V n D L. P Vh has the property



V= .. 0= 7_1 =VvV,, = ..=YV_=o0, and Ly ~ Ei'

This implies that v ~ VvV where Vv € L, We then
apply Theorem 1.3.

30 let LO = <x1> D ve. P <xs>
with v, =X D .. P x
and T(vo) =Xy,

We obtain the new Jordan decomposition of L as follows:
First we obtain an intermediate decomposition by replac-

!
ing Xq by Vo P .. D Vo1 ® Xy to obtain Lo‘

~ LO since > 1s a square.

O =

Now L

S0 now we may find a new decomposition of the lattice

Ly ® ..o L,

which may be written f;m P ... 92T ., 2 L; such that

L—n ~ L-n'
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Now we can do the same with the lattice L; P L1 P .. D Ln

T(vo)+v12+..+vn
provided we can show i1s also a square.
T(v_)
o

Now 1 +a + 3 1is a square if 1 +a + 38 and 1 + B are

squares with |al|,|B] < 1. So we need only show, from the

hypotheses that '-m ' °** *V.yp % T(Vo) VTt vy
T(v_)
2 2  ©
W= VO + T(vo)
1s a square. That is is a square.
T(vo)

NOW VO=X1@ LR ] @XS.

But w has the same type as Ve Thus

w o= (1+2n1)x1 P .. D (l+2ns)xS where mn; € Z.



Therefore now (1+2*1i)2 is, of course, a square
x 2(Lm Hhn %) + x. 2
i i i 1

Hence is a square since
2
*
2 _ 2
X" = oxg (2).
2 2 _ 2 2 2
Now w~ - v =~ + T(vo) =xq + E(hni+hﬂi ) X4
X 2 2
1 X
But 1 +(ln,+in 21x,°  1is a square
1Ty Xy 4 vy
x 2
1
‘ 2 2
Therefore 1 + & (hni+hni )%y i1s a square Q.E.D.
1 >
x
1

So finally we have our result for saturated vectors:

Proposition 3.3. L = L_m P ... D Ln The Jordan

Decomposition. L is 2'-modular or empty.

1
vaW € L are maximal, with critical index o. v2 = w2.
T(v ) =T(w ) o .
° © 2 2 2 2
(v_pTHeetv 7)) = (w_ THetw )
Then v ~w iff A = ° ° +1
T(v )

is a squarse,.

Proof: 1I. Necessity: Suppose the above expression 1s not

a square. Flrst note A 1s a square iff

2 2 2
(v

2
-m +...+V_1 ) - (w_m +..+w..1 ) + 1 iS a Square.

T(VO)
By the method used in the last part of the previous

proposition we can find a new Jordan Decomposition



38

such that if v =V _ @ ceve @V
wzﬁ @'.‘.@W

with respect to this decomposition then

YV  eeeV . = 0,
-n, -1
- 2 -2 - 2 -2 2 2
But (v_ ..otV ) - (w_p Feeetw ") = (v_ Heootv )
2 2
- (w-m +...+WO )
So now we may apply proposition 3.2
II. Sufficlency: The facts that v2 = w2 and
2 2 2 2
(v-m Toetvy) - (W *eetwy ) 41 15 a square imply
T(vo)
(v02+..+vn2) - (w02+...+wn2)
that + 1 1s s sqgyare.
T(vo)

Choose a Jordan Decomposition L = f_ D ee. D Ln in

which the above elements are still squares and in which
veL. (This is done by "absorbing" the "left hand side"
of v into io’ altering L_ ... L q» then "absorbing"
the right hand side and altering Ll,...,Ln).

Now apply proposition 3.2.

hal

Proposition 3.i: Let L =J 9k =3 @k where J, are

modulars, improper. Then 1f J ~ J we have Kk ~ k.

Proof: Assume J is unimodular: Write J o~ H(o)®...®
H(o)® H(A)

J ~ H(o)%...d H(o)PH(A)
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where A =0 or o0 .
Then k @ H(A) ~ k @ H(A) by Theorem 1.9(a).
Thus k @ H(A) @ H(A) ~k 3 H(A) P E(A)
But H(A) ® H(A) ~ H(o) @ H(o).

Thus k ~ k by Theorem 1.9(a).

Proposition 3.5: v, w € L. v2 = w2, v, w have one critical

index A, and are maximal, T(VA) = T(wx) = o. Then v ~ w.

We may assume A = 0.

Proof: Choose a Jordan decomposition L =1L D ... DL
with v e L .
o

There are two cases:

Case 1l: ord v2 = 0,

Then <v>% and <w>T have proper unimodular com-

ponents since v is unsaturated. PFurthermore

L = <v> & <y>+ = <w> D <w>®* , We are now able to

apply Theorem 1.9(b) to show that <v>* ~ <>t
Case 2: ord v2 > 1
We have v € LO. - If Lo contains a hyperplane H we

may map w_ onto a vector 56 € H where H = ;OZ + xZ

0

T 2 = o . g 2 -
with w2 = A W, X 1 x o (1)

by an integral isometry which leaves every element in
Ly fixed when 1 ¥ o, This follows from Theorem 2.3.
Thus we may assume LA satisfies conditions (1) for
some vector x € LO. Now it is clear that

k = wZ + xZ 1s a hyperplane which splits L (Theorem 1.6)

and contains we Thus L =H3®J =k & J H~k ~ H(o)



veH wek J ~7 by Theorem 1.9(a). Now let

$¥(J) =J be an isometry. We have an isometry ©(H) = k
with o(v) = w by Theorem 2.3. Thus ® ¥ on H S J
is an isometry on L which maps v onto w.

Now suppose Lo contains no hyperplanes H(o).

We may imbed w_ in an improper lattice H which splits
L by Proposition 2.2. Thus H ~ H(p). Similarly imbed

v in an improper lattice H ~ H(p) which splits L.

Write: H = woZ + x7 with multiplication table A ]
1 E

H =vZ + X2 with multiplication table T 1

1 E

AR = 3E = lijp mod 8.
1
Now let H = wZ + xZ. if H ~ H we obtain our result by

applylng Proposition 3.4 and Theorem 2.3. If H' + H,

1
then H ~ H(o) and clearly ord w_l2 =1 or ord wl2 =1
where w = L @ Wy LA € Li'

Assume wl2 =2n |n| = 1. Since the residue class

field is perfect (every element is a square) there 1s a
2
w3
— t

vZ + (x + € wy)Z H(Z):H(o):H .

unit € such that E + =
(2) _

= o mod l.
Let H

1
(2) ana ®' split L and v e w?), wen'.

Then H
Apply Proposition 3.l and Theorem 2.3 to get that v ~ w.
Collecting the results of this Chapter we have the

following Theorem:

Theorem 3.1t ILet I = Lo P .. P Ln be the Jordan Decompo-

sition of g lattice.

40
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let v, w € I be maximal vectors with v = w .
v, w have the same critical index A.

v=Io vy with the sbove decomposition
W=z 9 Wy

"Then Vv ~w 1iff 1. T(VA) = T(wx) mod 2 (in LK).

2, irf T(VK) ¥ o then

2 2
(Vo +...+V)\ ) - o )\

1 +
A
T(vx)o2

is a square in F.

We have also proven the following Theorem which 1s

interesting but difficult to apply:

2
Theorem 3.2¢ v, w €L are maximal v = w v, w have

the same critical index A. Then v ~w iff

1, <vo>d ~ <y

2. T(v = T(wx) mod 2

)

41



Chapter Four - The General One-Dimensional Case.

Notation: When we have more than one Jordan Decomposition,
will number them + number the components of each vector
to indicate with which Jordan Form they are decomposed.
Example : i(l) =% ®L, and L& T, = I:(Z)

i 1
wo urtte v =@ vy M = ey B v ey
(2) . =
\£] € L.
We are also going to assume s(L) = Z. This of course

will not lose us any generality. We will also write our
Jordan Decompositions in the form; L = L 9@ Li where Li

is 2% -modular or empty.

Definition: 1. s, = A, ., * T4,

e vV . :
(1) o xi+si

3+ ¥131 T V) T V-
&5 A A
l. = 2" v, where v, 1s maximal in L,.

Of course the last three definitions depend on the de-
composition chosen + must be numbered accordingly if

there 1s more than one decomposition.

42

Lemma li.1t ILet v ~w. Then 1l. v, w have the same critical

indices and exponents txi,fii
2. T(v

Proof: 1. See [9].

2. a) First we show vy is saturated iff w is
i i
sgturated



2. If Lx is improper, the result is trivigl
1 Ki
2 A
If L, 1is proper let L = {xe€L: x.Le2 ~Z}
i
= L {2 L
A +L)‘i+1]@“'
. 2 7
Define: M = {y ¢ L : vey = ol.

We shall show that IV x € M, ord x° > A} e is

v
Ay
saturated. This proves the theorem since an isometry on

L induces an isometry on M, so if v ~v, M~ N,

First, it is easily seen that there 1s a Jordan Decomp-

osition a:(Z) such that v = @ V(Z) and v(g) is

XJ Ay
saturated in T off v(l) is saturated in L, .
Ay Ay As
If v{z) is unsaturated, there 1s, by definition, a
i
A
vector x € L,  with via) ex = 0o and |x2! = |2 i..
i 1 Ki
Ir viz) is saturated, ord x2 = Ay 5 X € L2 Z then
Yoy A -1
X = N P2 Xy D,..D x)\i D xx1+1 D
Now 1if ord xe = xi, then ord Xy 2 = xi, therefore
i
ord Xy -vx = xi + fi thus there must be a vector
i i
Ki-lj Xi-Kj
2 X or Xxi+k with ord (2 xxj-vxj) S Ay FTyee

i
But g) 1s false since fj > fi

b) 1s false since Apa T f1+k > xi + fi.
oMy, 2 _
b) We now show that if y € L ord v = A, then
Ki+f A+, +1

vey = T(vxi)-Z L moa 2t 1

(a)
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Once again assume v = L & vy y=I® Yy
i
Then v.y = & vy oY
3
Now if j < i, then ord vj'y)\J > xj+fj+(x1-xj) > A4
j > i? then ord vj-yx. > )\j+fj > xi+fi+1
Ay +HE 41 A+ Ag +i 41
Thus v.y = v, .y, mod 2 1T T(v, )e2 1 g 2t E

Theorem L.l: Let v have principal indices Ki, exponents fi

and V ~ v.

A +f +f
— 2 _ 2 i+1 “1i+41 "1
Then: v(i) = V(i) mod 2 when in+si is
proper.
A +f, 4+, +1
— 2 _ 2 I41 i+l T4 °
v(i) = V(i) mod 2 ~hen in+si is
improper.

(Empty. Lattlices are defined to be impropsr).

Proof: This Theorem 1s an analogue of a theorem for the

non-dyadic case. The proof is similar. See Lemma 2.5

of [9].
Wo let L=M®N M=L 9..9 in+s.
1
N =1 ® ... PL_.
M*Eia n
Write: v =r 91 reM r eN
Yy =g ®% s €M S €N
Let o(v) =¥
o(r) =t ¢ t €M TenN
o(r) =u D0 u €M T eN
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We have: ®(v) = (s-u) @ (s-u).
. f

Now: 2 % | r, s, u. Thus 2 1 | (5-u).
‘ fo+A,+s
Thus : r2 = (s-u)2 mod 2 1771714
f,+f +A +1
r2 = (s—u)2 mod 2 1714 7A

Now: ord u+L > ord r.L > Ayt fi+1

b
2 i ' Seos
£,.+f +A +1
o mod 2 i 7141 "1+41

L]

Thus: 2 seu

I, +f +A +]1
Hence: r2 = 32 + u2 mod 2 1714 a4 .

Notice that: ®(v) = u P U has critical indices

xi+1, Ki+2... exponents fi+l’ fi+2 .o
Ki+s, h
Thus: u= @1 23Jy W, maximal in L,.
S 3 ] N
hj > fi+1 + (K1+1:J).
2 hj 5
Therefore: ord (2 “j) > hj Ayt fi{fnmwwn Lj is
improper.
> fi + fi+1 + Ai+1 ~hen
Lj is proper.
Combining these two conditions, we have
f.+f +A
r2 = 82 mod 2 1714 when L is proper.
Ki+si
f,+f +A +1
r2 = 32 mod 2 171+1 7441 when L i1s improper,
Aytey

which is what we wished to prove.

The following proposition is simple but important in its

implications. It will be used many times over:



Proposition L.2: v, w € L. {ki} a partition of the numbers

o, l....n. ko = 0 ; k} = n+l

Let 9L be any Jordan Decomposition of L.

i
Let L =1L P ... PL o
[1] ki ki+1 1
Veegn =V D e DV
[1] ki k1+1 1

Then v ~w 1iff +there exist Jordan Decompositions

i

® M b & =@ N
(1) 1 1

such that M[i] ~ N[i]

and v[i](l) ~ w[i](z) between these isometric lattices.

In our applilcation of thlis proposltion, the Lattices

will be chosen such that the component v[. of

Lrig 1]

v in L has only one critical index.

[1]
Proposition h.3: The unimodular lattice L represents n

by an unsaturated maximal vector x. Then L ©represents

n + LA by an unsaturated maximal vector if A € Z.

Proof: Case I. In] =1 a) If ord A =21 we have

<m> ~ <n + x> and thus L clearly represents n + L,

b) If ord A = 0. We may write L = <x> D <y> ® L

since x 1s unsatursted. Choose € € Z with y2€2 =

Amod 2. Let X =x +2 €y ., Then ie = N + LA mod 8,

Now use part a).
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Case II. ord m > 1l. Then x may be imbedded in a two-
dimensional improper lattice k which splits L.
n+hx 1

1 u

n 1

k ~ by Theorem 2.1.

1 wu

Proposition l;.3 a) Let L be unimodular, then assume L

represents M by a saturated maximal vector s. Then L

represents 1N + LA where 1 + &A is a square, by a
T(x)

saturated maximal vector of the same type.

Proposition li.ly: Let v, w have the same critical indices

and exponents, and satisfy congruence relations (1) with

respect to ;ﬂ(l) = P Li' Then 1f vx 1s unsaturated
1
in Lx there exists a second canonical form 26(2) ~ TP Ei
1
with T, ~ L, and such that one of the following two

congruence relations holds:

.+, + A, ¥1
(2)32 _ (1)32 172 2
.+ tA+1

1 1) 2 1%,
| = {V(§))‘in+gl} mod 2

Remark: The importance of this Proposition lies in the fact

(1) (1) (1)
that v = v(l) and v - (v(l) - VA1+81)

both have one
less critical index than v.

Proof: The result follows from relations (1) if LX +s is

1 71

improper. So assume LXI’%SS proper. o

_ (1) (1) (1)

Define: X = v D .. DV o =V -V

o . }\1+s1 1 (1) )\l+s1

(1) (1) (1) (1)

y=Ew B .. Bw 1 =W - W, 4

o ;\1+s1 1 (1) Kl s1



4%

Since L is proper it contains a vector 2Z with
7\1+s1

(1),2 _ 2 Aptf,+ry+a

z° = {v(l) - y° mod 2 (Here we use the

perfectness of the residue class field).

By Proposition li.3, there is an unsaturatsd vector

W (1) e L with critical exponent f such that

Xl Ai 1
= (1)2 _ (1),2 (1),2 2 _ 2
{le Vo= {wxl | I {V(l) -y Z
= (1) _ (1) (1) , =(1) (1) (1)
Let v - W :Boo~ QW ‘»'9W @W '-:B..':BW @Z
(1) A -1 Ay A+l Aptsy -1
Then {V({%)}B = {v(é%)} hence by Theorem 3.1 there 1is
. (1), - = (1)
an isometry ® on L 9 .. 9 Lxl_,”81 with @(v(l) ) = Vi) -
= _ = (1) (1) (1) = .
Let v = V(1) B vll+sl+l D see @D v, . Then v v and
T+, 41
- (1) = (1),2_,. (1) (1) 32 Apgttp*hy
furthermore {V(l) Vxl+slj = iw(l) - wx1+sl} mod 2

Proposition liJ4 a) Let v, w have the same critical indices

and exponents and satisfy the congruence relations (1)

wrt. :B = % 9L, . Furthermore let s, > 2 and

(1) i 1
vx be saturated in Lx e« Then there exists a second
1 1
Jordan splitting & ,y =L @ L, with L, ~I, and in

which one of the congruence relations (2) holds.

Proof: Use the same method as before, only apply Proposition

.3 a).



Definition: Let v be any vector space of finite dimension

over a local field. We define a topology on v given by

the norm

Ial,x1 + ...+ an,xnl = sup {lai'}

where {xi} is a basis for v. It is a well known fact

that the unit sphere iIn this topology is compact.

Proposition ;.5: The set of vectors equivalent to a given

vector v 1s compact.

Proof: Let ~ X, ~ X be any sequence of equivalent

x1 2 3 * o0
vectors. Let A be the matrix representing L. Then

there exlist matrices Bi with Integral entries such that

B, = = A. If we consider the

1 xi and Bi A B

! 1
matrices Bi to be an n x n dimensional vector space
over F, we have, by the compactness of the unit sphere,

a subsequence {Bk } of {Bi} which converges to a

i
matrix B with B AB =A and B integral. Thus the
subsequence {xk } converges to a vector x with

1
X"‘XlB-

Proposition lj.6: Let L = L, ® L, with L  unimodular,

improper. Ln is 2P-modular.

v = vo(l) @ vn(l) with critical indices o gnd n

In| = l(VO(l))gl. exponents f and o.

I
£
®
Y

Then there 1s a Jordan Decomposition ::(2) =
such that {VO(Z)}Z = 7m provided that:

1. 1 + Z'nlivo(l)}g - n} s T(vn(l)) is a square when

49
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n

{vo(l)}2 - n=o0o mod o+l otherwise

(1)}2

T(v (1>) o0 and f = 1.
2.

- nl
= f+n+k+l with k > o and provided (1) holds when

Proof: We will show that, given ord [{vO

T(vn(l)) $# 0 and f =1. Then there 1s a Jordan

Splitting :& (3) = ko D kn such that

ord [{vo(3)}2 - n] > fn+k+2.
This implies that there is a ssquence of vectors

(1) 42
V~V(1) ~V(2)~.o with i,V(j_),oj -+ N

Thus by Proposition LL.5 there is a vector w with w ~ v

(1)}2

and lwo = n,

(1)

First we imbed v in a two-dimensional, unimodular

sublattice of Lo' 30 now we assume LO is two-dimensional.

let L = xZ + yz where X = A xy =1

o
A2

where A° = o0 or = lip mod 8.

Now let vo(l) = o2f(gx + 2" T y)
(1) =

Furthermore, let V£ be a vector in L with v "~'.v

I}

a 27 where a 1is a unit yet to be determined.

-2 _
let v, = 2

n+l 5 here 3 1is a unit. Purthermore,

if v 1s unsaturated choose v, such that 1 > 1.

This 1s easily aone.

We are given that ord [!vo(l)}2 - n] = f+n+k+l with

k > o.

e



i

We define the new lattice ko to be XZ + yZ where

x =x + 2k n
Y=y
o = Lg and has the multiplication table:
A+ 22k+n+i 3 1
and determinant D =
. A 2 2K+l

-1(1-A"-242 3)

We may now write: L = ko P kh «-:ﬂ(B) where kn ~ Ln'
(2) _

Now let wv_ = ux + vy
+ 2k+na
VO(B).-B?:U' +A\):2f€+2f+m-€—A
Solving these two equations, we have
u = {Ef € (A2-1) + A 2k+n al + D
v = t2f+‘m-€- (A2-1) " 2f+2k+n+i e + 2f+m+2k+n+i3 A
- oM a} + D
Let u=2 ¢ (A?-l) + D= 2% where D = A°-1
v = 2f+m ) (A2—1) - 2k+n al + D, €5 i1s some unit
= 2f+m € - 2k+n a + e 2k+n+l+% some positive
integer.
It is clear that {uXx + Vv 5}2 = fux + vf}a mod 2PtT¥K*2

— *vo(3)}2

Now 0% + 97 - t2fe x + 2T 342 =

= 32

2f+2x+n+1a + A 22k+2n e2 22k+2n

2 o]



el f+k+n+l+r

- pftmtkin+l =, pftkm+l o >
o 0
ei, €, are some units, r an integer.

Now, using the facts that f > o, n > f and ord A > 1

we can obtain {Vo(l)}2 - {V0(3)}2 s ¢2 p2f+2k+n+i

fm+k+1 fm+k+2
oe

-2 or € mod 2

Now remember that we chose ?h such that 1 > o when

(1)

Vo was unsaturated. Thus we have 2f+2k+n+i > f+n+k+i
provided f ¥#1 or k % o or vn(o) unsaturated.
In this case: {vél)}z - {véB)}Z s pfHtkl
mod 2f+n+k+2.

Here we need only choose Vﬁ such that

f+n+k+1 mnod 2f+n+k+2

ivél>}2 - n=Ee€g 2

We have, by hypothesis, that 2_k[{vél)}2-n} = Jju + huz

where u 1s an integer. So let Vh = % xy. Then
€a = 828 = u2. Thus 2n+2(€a—€28) = 2n(hu+hu2) mod
2R3
= [tv{1)}2=n] moa
2h*3

Proposition l.7: L = LO P Ln ﬁ':ﬁ(l)’ where Lo is

unimodular. Ln is 2n-modular.
Let v € L have critical indices o, n , exponents f, o,
Then there is a Jordan Splitting :ﬂ (2) with (véZ)}2 =mn

provided that:
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1. {Vé2)}2 n mod 2.

m

(2)

n ) 1s a square when

2. 1 +2% {(vél))z-n} / T(v

T(véi)) £ o0 and f =1.
(2)

N ) 1s a square when

3. 1 +27" {(vél))z-nl / T(v
T(Vél)) $# 0 and f + 1 = n.

ly. {vél)}g-n = 0 mod 2T Gtherwise.

Proof: By Proposition lj.6 we may assume Ln is proper,
otherwise the result follows from applying the previous
proposition to the dual lattice L#.

Also we may assume L_ 1s proper by Proposition .6,

Once agaln we use the method of "successive approximations"
which was applied in Proposition li.6.

Assume for the time being that n ¥ 2 or k F o

where lvél)}a-n = 2n+f+k+1 A, A 1s some unit.
s
Write L = T 9P <y,> P M where s =1 or 2
o _ i
i=1
Ln = T <xi>.

by
jn
@
s
@
)
i

2f(yl + A yz) A=o or 1.

Choose vn € Ln such that Vo'Vn =

Note: we have free choice in a, and after d 1is chosen

we may still have 1 > o if vn(l) is unsaturated.
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Now let Eé = <§1> P <y,> P M. L~ L, where
- _ kK — - =
¥y Ty, +2 V. Let :L12)2~ T, 9L .
(p(2) 2 = (vem)® | er, <
Vo -————T-i

1

we have

A simple calculation shows:

f+k+n+l 2k+2n
a +

+ 2 2

f+k+n+2

tvéz)}2  w(1)2 o 5 p2frakt
o
a2/e mod 2

Now with the exception of the cases

(1)

a) £ =1, k = o, v saturated
b) £ +1=n, k =o0

The above expression 1s congruent to

2f+k+n+l o mod 2f+k+n+2

30 here we need only let a = A to obtain our next aporox-
imation,

Now Case a) Since we assumed n F 2, we have 2k+2n >
f+k+n+l so the above expression 1s congruent to

f+k+n+1 m f+k+n+2

(3+a) 2 od 2

This is the same congruence we arrived at in Proposition

(1)

n

.6 when v was saturated and is handled in the same

manner.

Case b) Here we examine L#. And in thils lattice
f=1, f ¥ n-1 since n ¥ 2. But we have proven the
result for these circumstances in the first part of the
proposition.

Now let n =2, k = o.



(1) (1)

Case 1: v » Vg both saturated.

tvél)}z -n= 2n+2 A A a unit.

Now
We use the notations as of before Lo =L 9® <y4>

L =5 ® <x,>

n i
(1) _ o, (1) _
Vo —E?Dxi v, —-22@y1
By scaling we may assume xlc2 = 2%, Iet ?5 =a Xq.

Then 1 = 0. 3 = a°. By hypothesis 1 + LA and

1 + %} are both squeres.

Now use the same method as 1in the previous section

to let y; =y, *#a Vv L = <§i> ® <y,> D ...

n &

to arrive at:

16 ((1+%) a® +a) = tvél)fz - {véz)}z mod 2°73.
Now if we can find an iInteger a such that
((E%i) 0l + a) = 2-u {(vél))z-n} mod 2
and such that L  a~ L_, we shall be through.

But if a satisfies the above equation then

_ € - 1
a = 5Te+T) {-1 + \/ - )4_(1'*"5-))\}.
Now 1 + A 1is a square.

1 + a/e 1is a square.

Hence 1 - u(1+%) A is a square. This solution exists
to the above equation.-
Since Iigll <1l. |Aa] =1 it is clear that we may

choose a with a € Z.



Proposition l[.8: ILet L

. Now Lo ~ LO since if we let

Vo By * ¥yt e )

Then yl2 - 52 §i2 = Ix mod 8.

2 =2

Therefore B~ y, € + A mod 8

i

Therefore §i2/y12 is a square.
(1) (1)

Case 2: v, unsaturated, Y saturated.

Let LO =M PN with vél) e M. N oproper

_ o 2 _ (1) _
N=Y® <y;> Ln 9% <x,> Xy = 1 v =P X4

by scaling.
Let {vél)}2-n = 2hx A a unit and 1 + L\ a square.

2

Choose € such that -(l ¢ y,)" & 16X mod 32  then

1+ (2 ¢ y1)2 is a square = ue.

= _ 4. (1)
Let v = {vo b2 e v Pux, Px, d Xq P .. D Xg -

Then ¥° = v° {7£1)}2 = ivél)}a mod 32 and by Theorem
3.1, applied to N @ <x;> we have V~v. Vv is

our next approximation.

Case 3: vél) saturated, vél) saturated. Examine
L* and apply Case 2.

Case g: vél), vél) unsaturated. We leave for the reader.

n

1

Locp..@Ln~;ﬂ L. 1is

2i-modu1ar or empty
{

.ko@..@kn-ui with Ly ~ ky

"



Then there is a chain of Jordan Decompositions

i(l)’ &(2)! se ey &(m) with i‘l Zi,’ i"m :\&:

(k)

5 and i 141 is obtained from

such that Li(j) ~ L

;ﬁ 3 by altering either three consecutive components

of P g4 ©Or else by altering some two components of &y

Proof: We shall show that there is a chain (satlsfying the

conditions of the Theorem) X l""’xt with lt ~ ko P ...

We then proce=sd by induction.

So let ko = xl Z + x2 Z t .. + X, Z e
n
where x, = 9 A, v v, € L,..
i _ i 1 i
j=o 3 '] i
— 2 ——
et x, = @ A v and L = X, Z + +0s +X_ 7
i _ i i o) 1
j=o Yy % T
Clearly L  ~L_ ~ ke Since xi°xj = xi-xj mod 8.

write L @ L, ®L, =L 2L 97T L, ~L;. L, ~L
Now let: L=L 9L 9T, 2L, ... ~£(2).

;ﬁ(Z) satisfies the conditions of the Theorem since we

have altered 3 consecutive lattices.

n
We now have: x, = v, *3@3 Ay Vg 4, Vs € Lj'
o J J J
n
By induction, assume Xy = v10 j@k xij v, with k > 3,
J
and vij € Lj’

Form lattice LO by replacing Xy by x; + xik vik.

Clearly Lo ~ LO.
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Choose Lk such thsat LO D Lk = LO D Lk and Lk ~ Lk'

Then L, D Ll P L2 P ,.. P Lk-l P fk D Lk+1 ...

n
1s the next lattice in our chain and Xy = Vi:?=k+l kij vij

with vy e LO vi. € Lj'
1% J

After a finite number of steps we have a second Jordan

Decomposition

Mo® ... M with M, ~ T,

with x, € Mo' Clearly MO =k

i e}

Corollary: Let ® be an isometry on L. Then there 1is a
chain of Jordan Decompositions. :&i = Lo(i) A Ln(l)

with L (1) ~ L (k) and a chain of isometries ® such

J - S

that 2] leave all the Lk(i) fixed except for two of

them or three consecutive ones, and o = Py e mm.
Proposition l . ¢ L, D ,.. D L, ~¥, (1)

kg ?...® Ky ~ 33(2)

are two different Jordan Decompositions of L with

Li ~ ki' v=_=59% vil) =L P vi(e). vxil) is saturated
in LA . Then
i
{v({%) D .. D vy }2 - {v(ii) P .. 9P vx(l)}z +1
i-1 i-1
T(vx ) . 22?i+xi is a square.
{ _

Proof: By Proposition /.8 we may assume Lj = kj when

a) J$s,t or b) jFr, rtl, r+2.
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Case a) s < t. Let s = Xi. Then write

- v (1) _
in Y P <xy> with v)\i =& Xy
= - 2 _ 2
in =L@ <yy> with yy = x4
(1), _ (2) (2) _
Now since ’I’(v)\:.L ) = T(v)\i ) we have vxi =L ® (1+2ni )yi
(1),2 (2),2 _ 2 2
Therefore {v, ="} - tv, 74" =% (hni+uni )V
i i i
{v)\(l)}2 {vx(z)}2 A -2fy 5
Thus 1 1 .2 = T (&ni+uni ) mod 8.
T(vx ) 1
i

and 1 + N(hn, +hn,2) = (1+% 2n,)° mod 8.
1 4Ny 3

(2)42

There fore {vs(l)}2 - {vs

xi + 1 1s s squars.
2 T(Vk )
i
Of course the proof is the same if t = xi. S0 now we

may assume 8 < xi < t. There are three subcases here:

W=V (1) D v (1) has ecritical incides 1. s and t
2. 8

3. t
Case b) The result is trivial when r # Am2s A1, Ay

when 1r = xi—l, the result follows from Theorem 3.1.

L (1) 5, (1) o (D)
r

Since in th#s case has only

r+l " Vp+2
one critical index. The other two cases gre similar to

case a) when § = xi.

Subcase Y. Let the critical exponents of w be Fs and

ft.
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T +F +t+1
By Theorem .1 {vs(l)}2 = {vs(e)}Z mod 2 8t
Now Ft MR PRI VI ! by Proposition l.0.
fs > fi + 1
v (1)}2 - v (2)}2
Thus S S = 0 mod 8
2fi+X
2 -T(vx )
i

But 1 + 8n 1is always a square if n € Z.

Subcase 2. Let v, =2 Ve vy =2 0%
28 g
VS(1)2213(1) ;@) 2 52 A()
S 3 g

(1) A (2) A@) 4 (@)

where Ve s Vi s Vg s are gll maximal.
Then h, > g, > fi+1 t > xi+1
ivt(l)}2 = o mod 22(f1+1)+hi+1
v, 212 = 0 moa R
v (1)} _ {Vt(e)}
Thus 22f1+xi = o mod 8.

Subcase 3. Proof is similar to subcase 2.

So we have finally collected enough information to prove

our main result.

Theorem l.2: Let v, w € L. v2 = w2. L= L—n D ees @ Lm

is any Jordan decomposition of L where Li is empty

or Ei-modular. Then v ~w 1f and only if the following
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conditions hold.

l. v, w have the same critical indices and exponents

{xi,fi}.

square when T(vx ) # o

where Ai =1 1f in+si is improper

A, = o of L
i )\i+s1

2f 4 40y
T, = T(v)\ Y/2 .

i

is proper

Proof: Necessity

This follows from Proposition l{.9, Lemma li.1 and

Theorem li.1.

Sufficiency

We do an induction on the number of critical indices.

To do this, we need only show there is a Jordan Decomposition

Loy~ 2.0 2T with T, ~1,

- (2) 2
and such that w_ =7+ oo w)\1+81_a

(1) 2
+ cee t+ V
-n 7\1+sl 3
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where 3 = o, or 1, Then Proposition .9 will imply
the validity of the hypothsses of Theorem 3.1 for the

above two vectors over the ilsometric lattices

L_%.,3L and L_ 9... 3L

-n Ay¥sy-9 x1+s1-a'
Hence there will exist an isometry e: L_n P...9P th+sl—a
onto L_ @ ... 9 L?\l.‘_sl__a which maps
= ., (1) A (1) =_ . (2) (2)
vEv_ "% ... 8 v)\l+sl_a onto w=w_"'9 ..9 w)\l+sl_a

Furthermore, v - Vv, w - w have one less critical index

than v and w and they both satisfy the hypotheses of

Theorem lj.2 over the isometric lattices LK1+31“3+1 D,
..® L and Lx1+31_a+l ?..@L and so we are able to

carry through the induction step.

So we must find a decompositicwlﬁi(z) ~T _ 2...9 fﬁ

-n
T . (2) o o (2) %
with L, ~L, such that {w_“' % .. 9 wxl+sl_a}
= f,(1) (1) 2
AR JP vxl+81_a} .

We break the proof up into several subcases.

Case 1t v unsaturated, and f;-f, ¥ 1 when vy

A 2

saturatedjor v)\l saturated, s, ¥ 1 and f£-f, 1 when V,

saturated. By Proposition L.l when v, 1s unsaturated
1

and by Proposition l.li a) when AAY is satursted there is
1
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-n
1
L.~ ~ L, and such that
1) (1) 2
{w (3) D e ? w(3) }2 = v ( D .. DV
n x1+s1-a -n x1+s1-a
mod 2f1+f2+x2+1 where 3 = o or 1.
= (3) (3) 2
Let u=1dw_°7 @ .. Dw, " _a}
1 71
: 1) (1) 2
- {V ( CD o ':B v
-n x1+s1-a
f1+k2+f2+1
M E o mod 2 when v, , VvV are unsaturated
MDA
2f1+x1+3
M = o mod 2 when vx is saturated.
1
21, +>\2+3
u = 0o mod 2 when vx is saturated.
2

Hence we are able, in virtue of Proposition .6, applied

t ! — —
to Li1 P LK2 to find a J. D. 33(2) =T %..3L
with T; ~L, such that ftw_ ' 9 .. 9 Wx1+sl-a}
=, (1) (1) 2

v D ,,.BDv .

-n 7\1+s1 el

Case 2. f; =1f, + 1. v)\2 saturated, A, - A # 2 when
v is saturated.

M

We may assume by scaling that LX is unimodular,

2

P(v. ) =1. Then 1 + (v (X) 4+ .. 4y (1))2

2 1
- (w_;l)+ e+ w)\(l))2 1s a square by hypothesis.

2



Now apply Proposition L.7 (2) to L, DL to obtain

. . = @.. T R . . e
a J.D :ﬂ(g) L_n P L)\l_1 D LX 7] LX +1 D

1 1
@ L @ ‘f: @ e 00
Xg-l A,
in which T, ~L, and (v_Mo .. o {1) )2
1 1 2
_ (2) (2) =
= (w-n B .. 3 wke-l) and now note that A,-1 = Ayt .

Case 3. s = 1. v)\1 saturated, A, -2, ¥ 2 when vk2

is saturated.

Apply Proposition h.? (3) to obtain a Jordan Decomposition

(2))2
1 - 1

and note

Case h. Vil Yy saturated x2~x1 = 2.

1 2
We may gssume A, =o, T(v, ) =1.
2 Kl
Ir LA +1 is empty, the result follows from Proposition

1
.3 (2,3). Therefore we may assume L, 41 is not empty,
1

also by changing the basis if necessary that Wi+l = 0.
1

2 2 2
Now v o =1lv_+ .o +v - (v~ + .0 +v 5}

+a~ﬁ

1
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a

T(vo)

where 1 + is a square

1 + —LB . is a square .
T(v_g)

Note: ord (a-B) > 2
Now suppose ord (a-B) > 3. Then

2 2 2

tv + .. +w_1}

2
p Toee vVl - dw

-n
+ 1 1s a square

R

where R = T(vo) or T(v_z). Hence we may apply

Proposition 4.7 (2,3) to L_, @ L,» and we are finished.

-2

“Now suppose ord (a-B) = 2.

2

Then there is a veector x € L_; with x a mod 8,

"

and a vector w_ € LO with T(Gg) = T(w_) and such that

o o
x2 + ;62 = w2.
Now let w = W-r(xl) D .. Qw_él) Px B W Qwil) D oee
Then W ~ wW.
Also {;_il)% e @ ;;él)}Z - {v_él)@ ve @ v_{l)}2 +1
T(vo) is a square.
- (1) ()2 . (1) . (1),2
{w_n D .. Bw ) - {v_n P dv i1
| T(v_,)
= (1) (1),2 (1) (1),2
= dw_ 7% Bw T -y TR L By 5 i1
T(v_,)
s (2 gy (12

T(v_,)
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=1 + hu + huz sz (@=B) + 8 v hore u, v € 2Z.
T(v_,)

which is a square since 1 + B 1s a square.
T(v_,)

Now apply Proposition [ .7 (2,3) and we are finished.

We now apply Theorem h.2 to the speclal case where F
is the 2-adic completion of the rational numbers. Using
the facts that any two saturated vectors have the same
type and that 1 + 27n 1is a square iff n = o mod i we

have

Theorem l .3: v, w € L = v oaw L =% %L, the Jordan

Decomposition. Then v ~ w 1f and only 1if the following
conditions hold.

1. v, w have the same critical indices and exponents

{xi,fi}.
2. V saturated iff w saturated (im L, ).
A A A
i i i
2 2 2 2
3. v_ + ..tV EW__ t .. tw mod
n ?\i+si n )\i+si
Zfi*fi+1+xi+1+Ai
2 2 _ 2 2
u. v_n + ., + VK EW_, + ., + wx mod
i i
li+2fi+3
2 when v is saturated
i
where Ai =1 1if LK +s is improper.
i1
Ai = o0 1if LK +a is proper.



The solution of this problem for dyadiec local fields
in which 2 is ramified would certainly be much more
difficult, for none of the theorems here proven generalize
to that case. The main reason for this is that vectors
in a modular lattice cannot be divided into merely two
catagories (saturated and unsaturated). This results
from the fact that when 2 is a prime, there ars at most
two lattices over a riven quadratic space - a proper lattice
and an improper lattice - whereas in the ramified case,
there can be several lattices over a given quadratic
space. Hence any attempt to generalize the method to the
ramifled case would have to begin by somehow generalizing

the concept of saturization of a vector in a modular lattice.
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