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Coral Biomineralization, Climate Proxies and the Sensitivity

of Coral Reefs to C02-Driven Climate Change

by

Thomas Mario DeCarlo

Abstract

Scleractinian corals extract calcium (Ca2 +) and carbonate (CO-) ions from seawater
to construct their calcium carbonate (CaCO 3) skeletons. Key to the coral biomineral-
ization process is the active elevation of the CO2- concentration of the calcifying fluid
to achieve rapid nucleation and growth of CaCO 3 crystals. Coral skeletons contain
valuable records of past climate variability and contribute to the formation of coral
reefs. However, limitations in our understanding of coral biomineralization hinder
the accuracy of (1) coral-based reconstructions of past climate, and (2) predictions
of coral reef futures as anthropogenic CO 2 emissions drive declines in seawater CO3
concentration.

In this thesis, I investigate the mechanism of coral biomineralization and evaluate
the sensitivity of coral reef CaCO3 production to seawater carbonate chemistry. First,
I conducted abiogenic CaCO3 precipitation experiments that identified the U/Ca ra-
tio as a proxy for fluid CO2- concentration. Based on these experimental results,
I developed a quantitative coral biomineralization model that predicts temperature
can be reconstructed from coral skeletons by combining Sr/Ca - which is sensitive to
both temperature and CO2- - with U/Ca into a new proxy called "Sr-U". I tested
this prediction with 14 corals from the Pacific Ocean and the Red Sea spanning mean
annual temperatures of 25.7-30.1 'C and found that Sr-U has uncertainty of only 0.5
0 C, twice as accurate as conventional coral-based thermometers. Second, I investi-
gated the processes that differentiate reef-water and open-ocean carbonate chemistry,
and the sensitivity of ecosystem-scale calcification to these changes. On Dongsha
Atoll in the northern South China Sea, metabolic activity of resident organisms el-
evates reef-water CO2- twice as high as the surrounding open ocean, driving rates
of ecosystem calcification higher than any other coral reef studied to date. When
high temperatures stressed the resident coral community, metabolic activity slowed,
with dramatic effects on reef-water chemistry and ecosystem calcification. Overall,
my thesis highlights how the modulation of CO2~, by benthic communities on the
reef and individual coral polyps in the colony, controls the sensitivity of coral reefs to

future ocean acidification and influences the climate records contained in the skeleton.

Thesis Supervisor: Dr. Anne L. Cohen
Title: Associate Scientist, Department of Geology and Geophysics, WHOI
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Chapter 1

Introduction

The surface ocean has warmed by 1 'C and its carbonate ion concentration ([CO~-)

has decreased by 40 pmol kg- 1 (15%) over the past century (Feely et al., 2009; Stocker

et al., 2013). Global climate and earth-system models project these trends to con-

tinue, and they paint a picture of a year-2100 ocean that is 1-4 'C warmer and

has CO2--] 30% lower than today (Feely et al., 2009; Meehl et al., 2012; Stocker

et al., 2013). These changes are predicted to have devastating consequences for reef-

building corals (Hoegh-Guldberg et al., 2007). Ocean acidification (decreased [CO--])

increases bioerosion of coral skeleton (Wisshak et al., 2012), and decreases both coral

colony calcification (Chan and Connolly, 2013) and net coral reef calcification (Al-

bright et al., 2016). In combination, warming of the sea surface will likely cross

thresholds of coral thermal tolerance on most of the world's reefs within this century

(van Hooidonk et al., 2013), and even though some corals show evidence of adaptation

(Palumbi et al., 2014), they are unlikely to do so in time (Frieler et al., 2012).

The overarching theme of my thesis is to understand the rapid changes occurring

in our oceans, and the sensitivity of coral reef ecosystems to these changes. Addressing

this question is inherently multi-disciplinary and requires investigations across mul-

tiple temporal and spatial scales. We need to understand how corals control [CO3j

at the site of biomineralization, potentially modulating their sensitivity to changes

in seawater [COJ-1. We need to reconstruct reef temperatures into the past, but to

do this with corals we must understand how they influence the composition of their
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skeleton during the biomineralization process. And we need to identify processes driv-

ing differences between reef-water and open-ocean chemistry, which will modulate the

sensitivity of these ecosystems to climate changes.

Here, I investigate carbonate chemistry at the site of coral biomineralization, I

examine how corals record ocean temperatures within their skeletons, and I evaluate

the drivers of reef-water carbonate chemistry and temperature. First, I conducted

laboratory experiments to test the [CO2-] control on abiogenic aragonite U/Ca ra-

tios, and I modeled the coral biomineralization process in order to predict 3COj of

the coral's calcifying fluid. With this model, I developed a new geochemical-based

coral paleothermometer, "Sr-U", and I tested its accuracy using coral colonies sam-

pled across the Pacific Ocean and the Red Sea. Further, I tested the sensitivity of

coral bioerosion rates to natural gradients of seawater [CO2-1 spanning the tropical

Pacific Ocean. Finally, on Dongsha Atoll in the northern South China Sea, I evalu-

ated the drivers of reef-water temperature and [CO2-], and the response of the coral

community to changes in the reef's chemical and thermal environments.

1.1 Coral biomineralization

The process of coral biomineralization - biologically mediated mineral precipitation -

underpins the growth of coral colonies and reefs, and preserves snapshots of past cli-

mates within coral skeletons. Corals actively construct their skeletons by nucleating

and growing crystals of the CaCO 3 mineral aragonite. Aragonite is supersaturated'

in surface waters of the tropical oceans, meaning that it can precipitate naturally

from seawater. Corals, however, build their aragonitic skeletons orders of magni-

tude faster than rates of abiogenic aragonite precipitation, suggesting that they exert

strong control on this process. Understanding the biomineralization process is key to

understanding how corals record past climates, and how they will respond to changes

in ocean chemistry. Yet, despite decades of research, the mechanisms by which corals

'Aragonite saturation state (QAGrg) = [COj-][Ca2+]/Ksp' > 1, where Ksp' is the apparent
solubility product
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achieve such rapid calcification have not been completely resolved.

Multiple lines of evidence point to the existence of a micro-scale, isolated, ex-

tracellular calcifying space supplied with seawater. Barnes (1970) first suggested

that skeletal aragonite crystals grow in an isolated fluid, and this was later observed

directly by Venn et al. (2011). Evidence supporting seawater as the source of the cal-

cifying fluid comes from microscopy experiments and geochemistry. Tambutte et al.

(2012) reared corals in seawater spiked with fluorescent calcein dye and observed ex-

tracellular seawater transport pathways between the external seawater and the site

of biomineralization. Further, corals grown in seawater spiked with rare earth ele-

ments rapidly incorporate those elements into the growing skeletal surface (Gagnon

et al., 2012), and the isotopic (e.g. J13C and 6'VO) and elemental (e.g. Mg/Ca and

Sr/Ca) ratios in coral skeleton are consistent with partitioning between aragonite and

a seawater source (McConnaughey, 1989a,b; Cohen and McConnaughey, 2003; Cohen

et al., 2006; Gaetani and Cohen, 2006; Holcomb et al., 2009; Gaetani et al., 2011).

While these lines of evidence strongly suggest that corals precipitate their skeletons

from a fluid of similar elemental and isotopic composition to seawater, they do not

explain how corals calcify at rates greatly exceeding those of aragonite precipitation

from ambient seawater.

Additional evidence indicates that corals achieve rapid crystal nucleation and

growth by altering the carbonate chemistry of their calcifying fluid. Micro-electrodes

inserted into the calcifying fluid reveal pH of 9.3 or higher (Al-Horani et al., 2003;

Ries, 2011; Cai et al., 2016), which is substantially elevated above that of ambient

seawater (typically 8.0 - 8.1). These data are generally consistent with independent

approaches based on growing corals in pH-sensitive dyes (Venn et al., 2011), and the

boron isotopic ratio of coral skeletons - a proxy for pH of the fluid from which the

crystals precipitated (Trotter et al., 2011; Rollion-Bard et al., 2011; McCulloch et al.,

2012). Nevertheless, pH information alone is insufficient to completely constrain the

chemical changes occurring within the calcifying fluid. To fully characterize the car-

bonate system, another parameter is required.

A promising proxy for filling this gap lies in skeletal U/Ca ratios because uranium
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speciation in seawater is controlled by carbonate ion concentration ([COj-]) (Djogic

et al., 1986). If coral U/Ca ratios are proven as a reliable [COJ- proxy, they would

provide the second parameter needed to fully characterize the calcifying fluid carbon-

ate system. However, the abiogenic temperature and carbonate chemistry controls

on aragonite U/Ca ratios have yet to be tested, so far precluding the application of

U/Ca in understanding coral biomineralization.

1.2 Coral paleothermometry

Coral skeletons are potentially valuable high-resolution archives of tropical climate.

Their annually banded skeletons provide intrinsic time-markers, and some colonies

grow continuously for several centuries. Well-preserved fossil skeletons have been

dated to the beginning of the past millennium (Cobb et al., 2003), and even into

the early Holocene (DeLong et al., 2010). As corals grow, they incorporate vari-

ous elements from seawater into their skeletal aragonite crystals, and the relative

concentrations of certain elements are sensitive to temperature. In particular, the

Sr/Ca ratio of aragonite depends on temperature in laboratory precipitation experi-

ments (Kinsman and Holland, 1969; Gaetani and Cohen, 2006), and Sr/Ca ratios in

coral skeletons often show seasonal variability coherent with sea surface temperatures

(Smith et al., 1979). Based on these correlations, coral Sr/Ca is commonly applied to

reconstruct ocean temperatures decades, centuries, and even millennia into the past

(Smith et al., 1979; Felis et al., 2009; Hereid et al., 2013; Tierney et al., 2015; Toth

et al., 2015). However, these reconstructions are rooted in the assumption that corals

calcify directly from ambient seawater and that the coral itself plays a negligible role

in mediating the composition of its skeleton.

The strong control exerted by corals in controlling the composition of their calci-

fying fluid has significant implications for the application of coral skeletons as climate

proxies. As corals elevate their calcifying fluid [CO2-] to nucleate aragonite crystals,

the chemical composition of the fluid changes. Certain element ratios, such as Sr/Ca,

are enriched in aragonite relative to seawater, and these ratios therefore become de-
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pleted in the residual calcifying fluid. This process, known as Rayleigh fractionation,

is responsible for more than half of the variance in coral Sr/Ca ratios (Cohen et al.,

2006; Gaetani and Cohen, 2006; Gaetani et al., 2011). For this reason, Sr/Ca-based

temperature reconstructions are frequently plagued by biases and decouplings from

observed temperatures (Marshall and McCulloch, 2002; Felis et al., 2009; Grove et al.,

2013; Storz et al., 2013; Wu et al., 2014; Karnauskas et al., 2015; Alpert et al., 2016).

Coral-based paleothermometers must account for the effects of Rayleigh fractiona-

tion if they are to provide accurate temperature information. In attempts to resolve

only the desired temperature signal from Sr/Ca ratios, multiple studies have applied

various corrections to Sr/Ca based on coral growth rates, replicating time series, and

sampling along certain regions of the skeleton (de Villiers et al., 1994; Saenger et al.,

2008; DeLong et al., 2013). Despite these efforts, coral Sr/Ca continues to be afflicted

with variance unrelated to temperature (Felis et al., 2009; Wu et al., 2014). A new

approach is needed, one based on understanding the coral biomineralization process.

1.3 Coral reef CaCO 3 budgets

Coral reefs are built primarily of CaCO 3 formed biogenically by a wide array of

calcifying organisms, combined with abiogenic cementation. As a counterbalance to

these constructive processes, CaCO3 is removed from reefs via physical transport,

dissolution in carbonate sands, and bioerosion - the biologically mediated breakdown

and dissolution of coral skeleton by a broad range of taxa (Glynn, 1997). Production

of CaCO3 must equal or exceed removal of CaCO 3 in order for coral reefs to maintain

their position near the sea surface, especially during times of rising sea levels. Most

coral reefs today are thought to have net positive CaCO 3 budgets, but with gross

production only slightly exceeding gross removal (Stearn et al., 1977; Glynn, 1997).

This close balance leaves coral reefs potentially vulnerable to any processes that alter

calcification or dissolution.

Ocean acidification jeopardizes coral reef CaCO3 budgets by tipping the balance

between calcification and dissolution. Despite the ability of corals to modify the
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composition of their calcifying fluid, they are sensitive to variations in the carbonate

chemistry of the seawater in which they grow. Multiple laboratory experiments in

which corals were reared in seawater with manipulated CO 2 chemistry show declines

in calcification rates with decreases in [CO-] (Langdon and Atkinson, 2005; Chan and

Connolly, 2013). Additional experiments show that bioerosion of coral skeleton in-

creases as [CO2-] decreases (Wisshak et al., 2012). These results have ignited concern

that corals worldwide are at risk of decreased calcification and increased bioerosion

rates as ocean acidification drives down open-ocean [CO2-] (Hoegh-Guldberg et al.,

2007; Pandolfi et al., 2011). Together, the sensitivities of calcification and bioerosion

to seawater [COj-] indicate that the CaCO3 balance of coral colonies, and potentially

of coral reef ecosystems, could shift from net accretion toward net dissolution in the

coming centuries.

However, extrapolating these sensitivities from the laboratory to future ocean

acidification is difficult because the chemical environments of coral reefs often dif-

fer greatly from the surrounding open ocean. Metabolism by benthic communities

strongly modulates reef-water carbonate chemistry (Kinsey, 1985), in some cases re-

sulting in changes in [CO2-1 greater than those predicted for open-ocean waters by

the end of this century (Shaw et al., 2012). Multiple studies have taken advantage

of this natural variability to investigate the sensitivity of net ecosystem calcification

(NEC) to reef-water [CO2-], and the observed relationships have been used to predict

when reefs will begin net dissolving (Shamberger et al., 2011; Shaw et al., 2012). How-

ever, recent studies have shown that NEC and reef-water [COj-] correlate because

they both oscillate diurnally, but these correlations are unlikely to provide reliable

estimates of the sensitivity of NEC to future open-ocean acidification (Andersson and

Mackenzie, 2011; McMahon et al., 2013). These realizations have sparked the need

for a new paradigm to investigate the sensitivity of coral reefs to ocean acidification.

Rather than extrapolate NEC and [CO-] correlations into the future, we must first

understand how community metabolism differentiates reef-water chemistry from that

of the open ocean, and then factor potential changes in metabolic performance into

predictions of coral reef futures.
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1.4 Thesis objectives

I employed a multi-faceted approach to investigate coral biomineralization and coral

reef CaCO 3 budgets. Overall, this thesis aims to answer the following questions:

1. Corals accrete their skeletons from an isolated calcifying fluid. What is the

chemical composition of this fluid?

2. How does the geochemistry of coral skeleton reflect seawater temperature?

3. Are coral reef CaCO3 budgets sensitive to seawater pH, and if so, how might

these budgets change in the future?

4. How do chemical and thermal environments of coral reef waters differ from the

open ocean, and what are the processes driving these differences?

In Chapter 2, I conducted laboratory experiments to test the influence of tempera-

ture and carbonate chemistry on U/Ca partitioning between abiogenic aragonite and

seawater. Aragonite crystals were nucleated from seawater with modified carbonate

chemistry (pH 7.8-9.0 and carbonate ion concentrations of 600-2600 pmol kg-) and

temperature (20-40 'C), and the elemental composition of the precipitated arago-

nite was measured with mass spectrometry. While the temperature dependence of

aragonite Sr/Ca was consistent with previous experiments, U/Ca was insensitive to

temperature. Rather, U/Ca was strongly controlled by the fluid [C02-]. Within the

framework of these experimental results, I developed a model of the coral biomin-

eralization process constrained by measured coral skeletal U/Ca ratios. The model

reveals that carbonate ion concentrations of the coral calcifying fluid are elevated to

several times those of ambient seawater. These findings provide new insight into the

mechanism of coral calcification and the chemical composition of the calcifying fluid.

The model also makes predictions regarding the correlations among the elemental

and isotopic ratios of the skeleton and seawater temperature, predictions that I test

in Chapter 3.

In Chapter 3, I present a novel approach to coral paleothermometry. The model

developed in Chapter 2 suggests that corals precipitate aragonite crystals - and thus,
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drive Rayleigh fractionation - by elevating [CO'] at the site of calcification, and

the experimental evidence from Chapter 2 indicates that this process is recorded in

skeletal U/Ca ratios. Because U/Ca ratios are insensitive to temperature, but strongly

dependent on [COj-], they should account for the effects of Rayleigh fractionation

on Sr/Ca ratios. I test this prediction with 14 corals collected from the Pacific Ocean

and the Red Sea. I show that by utilizing coral skeleton Sr/Ca and U/Ca ratios in

tandem, the accuracy of reconstructed temperature is 0.5 'C, which is at least twice

the accuracy based on Sr/Ca ratios alone. This chapter also serves as an additional

test of the biomineralization mechanism described in Chapter 2, providing further

support and insight into how corals exert control on the carbonate chemistry at the

site of calcification to achieve rapid skeletal accretion.

Chapter 4 moves to the scale of coral reef ecosystems with an in situ field investi-

gation into the sensitivity of coral bioerosion to carbonate chemistry and nutrients. I

developed an automated software program to quantify rates of coral calcification and

bioerosion from computerized tomography (CT) scans of coral skeletal cores (DeCarlo

and Cohen, 2016). Using this program, I quantified bioerosion rates in more than 100

skeletal cores collected from 11 reef locations across the Pacific Ocean, spanning nat-

ural gradients in nutrients and [C02-1. I found that bioerosion rates were elevated,

synergistically, by high nutrients and low [COj-]. These findings imply that future

ocean acidification is likely to cause elevated rates of bioerosion, especially for reefs

located within nutrient-rich regions of the ocean or with local sources of nutrients

such as upwelling or terrestrial input.

In Chapter 5, I investigate the interactive relationship between benthic community

metabolism and reef-water carbonate chemistry. I measured rates of net community

calcification (NEC) and productivity (NEP) on Dongsha Atoll in the South China

Sea. I found that reef water carbonate chemistry and community metabolism are

intrinsically linked, and are influenced by community structure and thermal stress.

The Dongsha Atoll NEC rate during June 2014 was greater than that measured

on any other coral reef studied to date. These high calcification rates occur under

daytime reef water [CO2-1 of 350 gmol kg- 1, substantially elevated above that of the
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surrounding open-ocean as a result of high daytime NEP, likely driven by abundant

benthic algae and seagrass communities. These findings show the critical influence

that reef communities themselves often have on reef water carbonate chemistry, an

effect that will strongly modulate the ecosystem response to open-ocean acidification

anticipated over the coming centuries.

In Chapter 6, I show the consequences of locally amplified thermal stress on a

shallow coral reef community. During June 2015, a 2 'C open-ocean anomaly in

the South China Sea was amplified on the shallow reef flat of Dongsha Atoll under

unusually calm weather and water flow conditions to reach temperatures 6 'C above

normal. As a consequence, mass coral bleaching ensued and led to 50% mortality

of the resident coral community. Based on stress banding visualized in CT scans

of century-old corals collected from this location, the extreme thermal stress event

appears unprecedented over at least the past 40 years. Like chemical environments,

thermal regimes on shallow reef platforms often differ greatly from the open ocean.

Local reef heat budgets will modulate the open-ocean warming and have potential to

amplify or depress the rate of warming, and thus may shorten or lengthen the time

available for corals to acclimate and adapt.
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Chapter 2

Experimental determination of

factors controlling U/Ca of aragonite

precipitated from seawater

2.1 Abstract

The U/Ca ratio of aragonite coral skeleton exhibits coherent patterns of seasonal and

interannual variability. In field-sampled corals and those grown in controlled cul-

ture experiments, strong correlations have been found between coral skeleton U/Ca

and water temperature, pH, carbonate ion concentration, and salinity. However, the

mechanism(s) underlying these different correlations remain unclear. We performed

abiogenic precipitation experiments designed to evaluate the sensitivity of U parti-

tioning between aragonite and seawater to temperature, pH, and the concentration

of carbonate ion in seawater. Aragonite was precipitated from seawater by addition

of carbonate alkalinity at rates set to maintain stable carbonate chemistry during

precipitation. Experiments were conducted at 20-40 'C, with pH 7.8-9.0 and carbon-

DeCarlo T.M., Gaetani G.A., Holcomb M., Cohen A.L., 2015. Experimental determination of
factors controlling U/Ca of aragonite precipitated from seawater: implications for interpreting coral
skeleton. Geochimica et Cosmochimica Acta 162, 151-165.
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ate ion concentrations of 600-2600 imol kg'. U/Ca ratios of the bulk precipitate

and fluid were determined by inductively coupled plasma mass spectrometry. Our

results show that the U/Ca ratio of aragonite precipitated from seawater decreases

with increasing carbonate ion concentration, and is independent of pH and temper-

ature. We use these results as a framework to interpret the skeletal composition

of coral aragonite precipitated from a calcifying fluid that is semi-isolated from the

external seawater environment. Accordingly, coral U/Ca ratios are consistent with

calcifying fluid carbonate ion concentrations that are several times greater than those

of ambient seawater. Correlations between coral U/Ca ratios and seawater tempera-

ture, carbonate chemistry, and other environmental variables arise indirectly, via the

impacts of these variables on the carbonate ion concentration of the coral calcifying

fluid.

2.2 Introduction

Trace element-to-calcium ratios (E/Ca) in the skeletons of scleractinian corals, both

deep and surface dwelling, are widely used as proxies for environmental conditions in

the oceans. The uranium-to-calcium ratio (U/Ca) of coral skeleton exhibits strong

seasonality and covaries with other E/Ca ratios (Cardinal et al., 2001; Quinn and

Sampson, 2002; Sinclair, 2005; Felis et al., 2009). In skeletons from field-sampled

corals and those grown in controlled culture experiments, strong correlations have

been found between U/Ca and crystal morphology (Robinson et al., 2006), seawater

temperature (Min et al., 1995; Felis et al., 2009; Armid et al., 2011), pH (Inoue et al.,

2011; Raddatz et al., 2014), carbonate ion concentration ([CO2-1) (Shen and Dunbar,

1995; Armid et al., 2008; Anagnostou et al., 2011), and salinity (Ourbak et al., 2006).

The U/Ca ratio of the calcite shells of foraminifera grown in the laboratory also reflect

sensitivites to seawater carbonate chemistry (Russell et al., 2004; Keul et al., 2013).

However, on the basis of existing data it is not possible to demonstrate conclusively

which - if any - of these factors is directly responsible for U/Ca variability.

Observations of a link between aragonite U/Ca and seawater carbonate chemistry
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plausibly reflect the speciation of uranyl ion (UO+), which forms different complexes

with CO2- in seawater as a function of pH (Djogic et al., 1986) and/or [CO2-] (Kitano

and Oomori, 1971; Saito and Miyauchi, 1982; Keul et al., 2013). Uranyl speciation

is potentially influenced by other factors in addition to carbonate chemistry. In

freshwater at low ionic strength (I = 0.1, whereas for seawater I 0.7), UO+

forms complexes with both Ca2+ and CO2 (CaUO2 (CO3 )2 and Ca 2UO 2 (CO3 )3 )

(Dong and Brooks, 2006; Endrizzi and Rao, 2014), and - at pH less than 8 or in

estuarine waters - with dissolved organic matter (DOM) (Mann and Wong, 1993;

Gustafsson et al., 2009). Nevertheless, several studies have found that the dominant

uranyl complex in seawater at pH 8 is uranyl tricarbonate (UO2 (CO 3 )') (Saito

and Miyauchi, 1982; Djogic et al., 1986; Kalin et al., 2005), which was found to be

incorporated directly into the aragonite lattice, substituting for CO~ rather than

Ca2+ (Reeder et al., 2000). Because the abundance of UO 2 (CO3)4 in seawater varies

with pH and/or [COJ], the U/Ca ratio of aragonite should be sensitive to one or

both of these carbonate system variables.

Abiogenic precipitation experiments provide a means to investigate environmen-

tal controls on element partitioning between aragonite and seawater in the absence

of physiological processes that can mask their influence. For example, Meece and

Benninger (1993) used this approach to investigate the incorporation of a series of ra-

dionuclides into abiogenic aragonite precipitated from seawater at room temperature.

Results from these experiments indicate that the aragonite-seawater exchange coeffi-

cient for U/Ca (Ks/ca - (C'j/C i)/(CUi/C ) whereC' is the concentration

of i in phase j) decreases with increasing pH and/or precipitation rate. However, the

relative importance of these two variables could not be resolved, and the influence of

temperature was not evaluated. Gabitov et al. (2008) found that at relatively low pH

(7.6-8), the Ks/ca of abiogenic aragonite increases with increasing precipitation rate

and temperature. This precipitation rate dependence at low pH is opposite in sign to

that found by Meece and Benninger (1993) at higher pH (8.0-8.8). As with the Meece

and Benninger (1993) experiments, Gabitov et al. (2008) did not isolate temperature,

pH, [CO21, and precipitation rate, making it difficult to determine conclusively which
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factors control U partitioning between aragonite and seawater. Here, we present re-

sults from abiogenic aragonite precipitation experiments designed to investigate the

relative influence of temperature (T), pH, and [C02] on the U/Ca ratio of aragonite

precipitated from seawater. We use these results to develop a biomineralization model

that provides a framework for interpreting the U/Ca ratio of coral skeleton and its

variability.

2.3 Experimental and analytical methods

2.3.1 Precipitation experiments

The seawater used in our experiments

was collected from Vineyard Sound,

Massachusetts, passed through a 0.2 pm

filter, and stored in the dark. A concen-

trated seawater solution was prepared by

evaporating an aliquot of filtered seawa-

ter to half of its initial mass and pass-

ing it through a 0.45 pm HAWP filter.

The measured concentration of Ca2+ in

the twice-concentrated seawater was ap-

proximately twice that measured in the

filtered seawater (Table 2.1), indicating

CO gas

W le

Initial-
eawater

V rgonite

Isothermal Bath L L

Figure 2-1: Schematic diagram of experi-
mental setup.

that CaCO 3 did not precipitate from the concentrated seawater. Solutions contain-

ing carbonate alkalinity (hereafter referred to as Na solutions) were prepared by

dissolving Na2CO3 and/or NaHCO 3 powders in deionized water to achieve approxi-

mately 0.04 M Na2CO 3, 0.1 M NaHCO 3, or a 1:1 combination of these two solutions

(Table 2.1). A seawater solution containing elevated Ca and Sr concentrations was

prepared by dissolving CaCO3 and SrCO powders in filtered seawater that had first

been acidified by bubbling with CO 2 gas. This modified seawater solution was then
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passed through a 0.45 pm HAWP filter and divided into two aliquots, one of which

(g13 acidified seawater) was spiked with NaHCO3 (batch 4) to 4 % by volume to

elevate the initial TA (Table 2.1).

Precipitation experiments were conducted at 20 - 40 'C as follows. First, between

400 and 800 g of seawater was added to a 1 L polypropylene container, placed into

an isothermal bath, and stirred continuously at 120 or 130 rpm (Fig. 2-1). For the

majority of the experiments, the concentrated seawater solution and one of the Na

solutions were added simultaneously to the filtered seawater at a constant rate using

a Kd Scientific syringe pump. The initiation of aragonite precipitation was indicated

by a decrease in the pH of the seawater solution (Fig. 2-2). Once precipitation began,

only Na2 CO3 solution and concentrated seawater were added, regardless of which Na

solution was initially used. Different combinations of initial pumping rates (between

0.06 and 10 mL hr- 1) and different Na solutions (Table 2.1) added to seawater con-

trolled the pH and [CO-] of the seawater solution when precipitation began. In order

to maintain stable carbonate chemistry during aragonite precipitation, pumping rates

were regularly adjusted so that addition balanced removal by precipitation. Several

of the experiments (g10, g1l, and h09) were bubbled with a hydrated mixture of air

containing 400-5000 ppm CO2 at 25 mL min-' in order to stabilize pCO2 and thus

maintain pH in the beaker at levels below that of seawater. Two experiments (g13 and

f08) were conducted by pumping Ca- and Sr-enriched seawater solution (Table 2.1) -

rather than concentrated seawater and Na solution - and were bubbled with hydrated
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air at 25 mL min-' in order to strip CO2 from the experimental solution. Over the

course of each experiment, 8-10 samples of approximately 25 g each were typically

collected for analysis of total alkalinity (TA). Each experiment was terminated after

addition of approximately 100 g of Na2 CO 3 solution during aragonite precipitation.

The final experimental solution was passed through a 0.45 Mm HAWP filter and pre-

cipitate retained on the filter rinsed with deionized water and ethanol. Precipitate

on the beaker, stir rod, and bubbler was gently removed with a metal spatula. An

aliquot of the final solution was analyzed for TA, pH, salinity, and the concentrations

of Ca, Sr, and U.

The T of each experiment was continuously monitored (varying within 0.1 0 C

about the reported temperature during each experiment), and the pH of the exper-

imental solution was regularly measured as follows. Approximately 7-8 g of experi-

mental solution were removed and divided into two aliquots; one was used to rinse

the electrode and the second to make a pH measurement of the solution while held

at 25.5 'C and stirred with a magnetic stir bar. The electrode was calibrated against

NBS (now NIST) buffers; this calibration was converted to the total pH scale (pHT)

through comparison of the intercept of the mV-pH regression (i.e. a constant offset

was applied) to reference seawater provided by the laboratory of Andrew Dickson

(batch 116; Scripps Institution of Oceanography).

Total alkalinity of initial seawater, experimental solutions, and Na solutions were

determined by titrating 1 g of sample (measured to 0.0001 g) with 0.01 M HCl,

following the technique of Holcomb et al. (2012). Concentration of the acid was

calibrated by titrating reference seawater of known alkalinity provided by the labora-

tory of Andrew Dickson (batch 116; Scripps Institution of Oceanography). Samples

were diluted with 0.7 M NaCl solution until TA was less than 6000 Aeq kg- 1 before

triplicate titrations, and TA was calculated by a non-linear least squares regression

(Holcomb et al., 2012). At each sampling point, the expected solution TA was calcu-

lated from all equivalents of alkalinity added (initial seawater, concentrated seawater,

and Na solutions) and removed (sample collection) from the experiment. Alkalinity

anomaly was quantified as the difference between measured and calculated TA. The
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full carbonate chemistry of the experimental solution was calculated from pHT (at

the T of the experiment) and TA using the program CO2SYS (Lewis et al., 1998),

with acidity constants of Mehrbach (1973) refit by Dickson and Millero (1987).

Salinities of stock filtered seawater and final experimental solutions were measured

using a Guildline autosal (accuracy 0.003) calibrated with IAPSO standard seawa-

ter (batch P-153). The salinity of the initial filtered seawater was 31.785. There was

typically an increase in salinity of 0.5-1 PSU between the beginning and end of each

experiment (Table 2.2), which was attributed to evaporation and/or addition of Na+

from Na solutions. Salinity at solution sampling points was interpolated with respect

to time between initial and final salinity measurements. Prior to analysis, approxi-

mately 100 pig of precipitate was suspended in deionized water, centrifuged, and the

supernatant removed. This cleaning step was performed in triplicate. A second set of

subsamples was processed separately for U/Ca measurements. A duplicate washing

of approximately 100 pg sample with 0.75 mL of 0.02 M NaOH solution (Fisher lot

975017) preceded duplicate deionized water washes in order to remove any adsorbed

uranyl complexes.

Clean aragonite samples were dissolved in 5% trace metal grade nitric acid be-

fore analysis by inductively coupled plasma mass spectrometry (ICP-MS). Long-term

instrument precision (one standard deviation) determined on an in-house coral skele-

ton external consistency standard was 0.04 mmol mol 1 (0.4% relative) for Sr/Ca

and 0.009 pmol mol' (0.8% relative) for U/Ca. Counts of 4 Ca, 885r, and 238U were

made in low-resolution on a Thermo-Finnegan Element2 ICP-MS at WHOI with 30

scans per sample and a 3-minute wash with 5% nitric acid between samples. Sample

counts were corrected for background counts made on 5% nitric acid blanks, and con-

verted to Sr/Ca and U/Ca ratios by calibration with the Porites coral JCp-1 standard

(Sr/Ca of 8.838 mmol mol' and U/Ca of 1.192 [mol mol-1) (Hathorne et al., 2013).

We tested the homogeneity of precipitate subsamples by cleaning and analyzing five

different aliquots in duplicate.

Concentrations of Ca, Sr, and U in filtered seawater, Na solutions, and the samples

of solution collected at the end of each experiment were also determined by ICP-MS.
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High-Purity Standard simulated seawater (lot # 1221201) was used as the primary

standard for seawater and experimental solution analyses, whereas High-Purity Stan-

dards single element solutions were used for analysis of Na solutions. Samples and

standards were spiked with 1"In at a concentration of 1.31 ppb as an internal stan-

dard. Background concentrations were subtracted based on analysis of a 5% nitric

acid blank. Instrument precision (1 a) determined from repeated measurements of

NASS-5 seawater was 0.06 mmol kg-1 (0.7% relative) for Ca, 0.3 pumol kg-1 (0.4%

relative) for Sr, and 0.1 nmol kg- 1 (0.9% relative) for U.

The mineralogy of the experimental precipitates was confirmed using Raman spec-

troscopy and X-ray diffraction (XRD). At least 3 grains per experiment were analyzed

using a Raman microscope (Horiba Scientific LabRam HR800) with one 5-second ac-

quisition. A subsample of each precipitate was also analyzed by XRD as follows:

precipitates were loaded onto a Si holder on a rotating stage and diffraction patterns

collected using a PANalytical Empyrean diffractometer (at the Centre for Microscopy,

Characterisation Analysis, UWA) using Ni filtered Cu Ka radiation (generator at 40

kV, current 40 mA).

Scanning electron microscope (SEM) images and experimental data, including

solution pH and TA, aragonite element ratios, fluid element concentrations, sample

masses, and solution pumping rates are provided in the supplementary material.

2.3.2 Determination of element partitioning in open-system

experiments

The equilibrium distribution of two elements, such as Sr and Ca, between aragonite

and fluid is described by an exchange reaction:

Sr Fluid + CaAragonite =SAragonite + CaFluid (2.1)

This reaction can be quantified through the use of a semi-empirical exchange

coefficient:
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Table 2.1: Summary of elemental concentrations and alkalinity of initial seawater and
Na solutions.

Solution [Ca] [Sr] [U] TA

(mmol kg-1) (pmol kg-1) (nmol kg-1) (ueq kg-1)

Filtered seawater 9.40 75.15 12.4 2.132 (0.001) x103

2X seawater 19.3 160.9 25.2 4.25 (0.04) x103

g13 acidified seawater 19.7 342 12.0 42.4 (0.1) x103

f08 acidified seawater 20.3 352 12.3 28.3 (0.1) x103

Na2CO3 batch 1 N.D. 0.30 N.D. 76.8 (0.2) x103

Na2CO3 batch 2 N.D. 0.28 N.D. 79.6 (0.2) x103

Na2CO3 batch 3 N.D. 0.27 N.D. 79.8 (0.1) x103

NaHCO3 batch 1 8.8 x10- 3  0.30 N.D. 98.4 (0.1) x103

NaHCO3 batch 2 7.3 x10-3  0.28 N.D. 96.8 (0.3) x103

NaHCO3 batch 3 8.1 x10- 3  0.29 N.D. 88.7 (0.1) x103

NaHCO3 batch 4 8.0 x10- 3  0.29 N.D. 115.4 (0.2) x103

1:1 mix batch 1 4.4 x10- 3  0.28 N.D. 85.9 (0.5) x103

1:1 mix batch 2 3.8 x10- 3  0.29 N.D. 88.0 (0.1) x103

Notes: Experiments f08 and g13 were conducted by pumping acidified seawater
enriched in Sr2+ and Ca2+ by dissolution of SrCO3 and CaCO 3 . Not detectable
(N.D.) measurements defined as less than 3 times the standard deviation of predic-
tion of concentration from ICP-MS counts for Ca, Sr, and U, which were 2 x10- 3

mmol kg-', 8 x10- 2 [tmol kg-, and 2 x10- 3 nmol kg-, respectively. Numbers in
parentheses following TA values indicate 1 - of at least triplicate titrations.

Ksr/ca = (Csr/C0 a)Aragonite/(Csr /CCa)Fluid

where Ci is the molar concentration of Sr or Ca in aragonite or fluid. During

closed-system precipitation of aragonite at temperatures where diffusion is too slow

for the interior of the crystal to maintain equilibrium with the external fluid, exchange

coefficients are determined using the Doerner-Hoskin relationship:

log(1 molAragonite ) Ksr/calog(1 + molragonite ) (2.3)
molsr molCa

where molAra""ite is the total number of moles of Sr or Ca in the bulk precipitate

and molfluid is the total number of moles of Sr or Ca in the final fluid (Doerner

and Hoskins, 1925). Our experiments represent open-system precipitation of arago-

nite (i.e. the bulk composition was modified by continuous addition of concentrated
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seawater and Na solutions and the removal of fluid samples), so that distribution

coefficients could not be determined directly from the final (measured) fluid and

solid compositions. Therefore, aragonite-fluid exchange coefficients were determined

through knowledge of element concentrations in the initial and final fluids, the arag-

onite precipitate, and all system inputs (concentrated seawater; Na solutions; Ca,

Sr-enriched seawater) and outputs (fluid samples, aragonite precipitation). Change

in the total number of moles of element i in the solution during open-system precip-

itation is given by:

di ttal dmConcSW ___ dmrNaSolution dmAragonite Fluid
d =total [iCcS NaSolution- Aragonite

dt dt dt dt D Fuid

(2.4)

where itotal is the total moles of i in solution, t is time, mk is mass, and [i]k and [j]k

are the concentrations (mol kg-1 ) of i (Sr or U) and j (Ca or CO2-), respectively. The

mass of aragonite precipitated per unit time (g h- 1 ) is determined from the change

in alkalinity anomaly per unit time (difference between measured TA and calculated

sum of TA added, where 1 mole of aragonite precipitates per 2 equivalents of TA and

where moles of aragonite are converted to mass using the molecular weight of CaCO 3).

The inventory of Ca is calculated from the initial measured Ca concentration using

alkalinity anomalies, and the concentration of CO- in aragonite is calculated from

stoichiometry. Since the initial fluid composition was measured, the concentration of

element i in the fluid can be solved numerically at any time t using the measured

rates and the concentrations for inputs and precipitate. In practice, solution samples

were periodically removed, so Eq. (2.4) was integrated separately between sampling

points using the Runge-Kutta method (Dormand and Prince, 1980). The number of

moles of Ca, Sr, and U removed by each sample was calculated as the product of

concentration at the time of sampling and the measured mass of the sample. Because

[COJ-] is not conservative in seawater, any change in [CO2-] between sampling points

- as determined from pHT and TA - was assumed to take place at a constant rate so

that [CO-3] at any time t could be interpolated between sampling points.
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The concentrations of Sr and U in the final fluid and bulk precipitate (aragonite)

were used to constrain the Ksr/ca and KU/CO3 values for each experiment. Forward

modeling using initial guesses for Kr/ca and KD/0 0 3 - the only unknown variable in

Eq. (2.4) - resulted in a predicted evolution for Sr and U in the fluid and the concen-

trations of Sr and U in the bulk aragonite. The calculated Sr and U concentrations

in the final fluid and bulk aragonite were compared to the measured values, and a

residual was calculated as follows:

residual ( ipredicted -- ieasured S + (predicted -- measured 2 (2.5)
Ei )Solid 6i )Fluid

where i is the total moles of Sr or U and E is the measurement uncertainty of total

Sr or U in the solid or fluid. Final values for KSr /c" and K/CO 3 were determined

by minimizing Eq. (2.5) separately for Sr and U using Nelder-Mead unconstrained

nonlinear optimization (Lagarias et al., 1998), implemented with MATLAB 2012a.

A Monte Carlo method was used to quantify the uncertainties associated with our

SrI~a UIC03 Srla UI0estimates of Ksr/Ca and KS/cs . The determination of Ksr/Ca and Kj/0 0 3 for each

experiment was repeated 1000 times, adding random measurement uncertainty (2 o

assuming a Gaussian distribution) to the measurements of pHT, TA, and Sr and U

concentrations in the solid and fluid. Uncertainty in estimates of exchange coefficients

was taken as the standard deviation of exchange coefficients from all Monte Carlo

iterations. The mean and standard deviation of carbonate system parameters for

each experiment were weighted by change in alkalinity anomaly between sampling

points:

Wk = -AAk) (2.6)
A An

X=1 _1 2- X2.7
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O-- X)Wk] (2.8)
V (n - 2) __I_

/n-1

where Wk is the weighting coefficient assigned to the kth of n total samples, k=O

refers to the fluid prior to precipitation, AA is alkalinity anomaly, Xk is any carbon-

ate system parameter at the kth sample, and -x is the sample standard deviation

of parameter X. By this definition, weighting of measurements is determined by the

change in alkalinity anomaly between sampling points so that the weighting coeffi-

cient represents the proportion of the bulk precipitate formed between consecutive

measurements. For this reason, the estimated means are representative of only the

time during aragonite precipitation, not the entire experiment. The mean of a given

parameter is then estimated as the sum of the product of the weighting coefficient and

the mean measured value from each consecutive pair of samples. Likewise, the sample

standard deviation is estimated with the same weighting coefficients. Mean aragonite

precipitation rate per surface area (pmol m-2 hr-1) was estimated for each experi-

ment using the mean aragonite saturation state (QArag) and T of the experiment and

their relationships with aragonite precipitation rate reported by Burton and Walter

(1987), where precipitation rate = k(QArag-1)n and where k = -0.0177T 2+1.47T+-14.9

and n = 0.0628T+0.0985 (Table 2.2).

2.4 Results

2.4.1 Precipitate mineralogy and homogeneity

All Raman spectra taken from experimental precipitates and an aragonite standard

contain a double peak in Raman shift between 700 and 708 cm-1 characteristic of

aragonite (Brahmi et al., 2010), and clearly distinct from the calcite peak at 712 cm-1

(Fig. 2-3). Further, XRD patterns collected on a subsample of each experimental

precipitate are consistent with aragonite and show no contaminating phases, except

for a small peak near 2 6 of 30 for experiment h10 (Fig. 2-3). Since this peak

is very weak, only aragonite was found in the Raman spectra, crystal morphology is
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Figure 2-3: Raman and XRD analysis of experimental precipitates. (a) Raman spectra
focused on the peaks around 700 cm- 1 of aragonite (solid black) and calcite (dashed
black) grains, and five example spectra (gray) collected from different experimental pre-
cipitates. (b) XRD pattern for aragonite (black) from RRUFF database (ID R060195.1)
and a pattern collected on a subset of the precipitate formed in experiment h10 (gray).
Raman and XRD data collected on each experimental precipitate clearly indicate the
presence of aragonite with no other contaminating phases.

consistent with the other experiments (SEM images in supplementary), and elemental

ratios are consistent with the other experiments (i.e. this experiment is not an outlier

in Ksr/ca or KS/0 os ), this experiment is likely free of significant contamination.

Mean differences between duplicate subsamples of a given precipitate were 0.59

% and 1.15 % for measured Sr/Ca and U/Ca, respectively. The relative differences

between duplicates were less than 2 o- instrument precision for both Sr/Ca and U/Ca.

Although composition may vary within individual crystals (i.e. the composition is

zoned), for the purposes of this study where we calculate partitioning relative to the

bulk aragonite and fluid compositions, sample heterogeneity was not considered a

source of error in the Monte Carlo simulation.

2.4.2 Temperature dependence of element partitioning

Results from our experiments demonstrate that Ksr/Ca is significantly (p < 0.05)

inversely correlated with T (Fig. 2-4), whereas KD/C03 is independent of T (p >

0.05) at 20 to 40 'C after accounting for the effect of [COj-] as described below

in section 3.3 (i.e. in multiple regression where the influences of T and [CO2-1 on

KU/CO3 are evaluated together, there is no significant effect of T). Ordinary least-
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Table 2.2: Summary of conditions and calculated Kr/ca and K /CO3 for each exper-
iment.

Experiment T Final Precipitation rate TA pHT [C31- 01
,4a K r/ca KD/CO

3

'C salinity (pmo1 m'hr') (peq kg') (pmol kg-')

h02 20 32.455 3.4 (0.6) x1O' 7 (0.2) x10 8.88 (0.01) 2.06 (0.09) xlO 29 (4) 1.13 (0.01) 0.33 (0.01)
h08 20 32.75 2.2 (0.6) x103 13.1 (0.9) x10

3 8.20 (0.01) 1.60 (0.09) x103 21 (4) 1.17 (0.01) 0.36 (0.02)
fOl 25.5 32.703 4 (2) x103 5.8 (0.2) x103 8.62 (0.02) 1.31 (0.07) x103 16 (4) 1.13 (0.02) 0.33 (0.01)
f02 25.5 32.523 6 (2) x103 7.4 (0.3) x103 8.48 (0.02) 1.4 (0.1) x103 19 (3) 1.14 (0.01) 0.32 (0.01)
f03 25.5 32.342 13 (3) x103 6.8 (0.2) x103 8.96 (0.02) 2.1 (0.1) x103 30 (4) 1.08 (0.01) 0.363 (0.009)
f04 25.5 32.686 5 (2) x103 11.9 (0.7) x10

3 8.16 (0.01) 1.38 (0.07) x103 19 (3) 1.10 (0.02) 0.32 (0.01)
f05 25.5 32.493 16 (3) x103 7.8 (0.2) x103 9.03 (0.01) 2.56 (0.08) x103 34 (3) 1.06 (0.01) 0.351 (0.009)
f06 25.5 32.764 2.1 (0.5) x103 5.3 (0.3) x103 8.38 (0.01) 0.86 (0.06) x103 11 (1) 1.13 (0.01) 0.25 (0.01)
f08 25.5 32.047 2 (2) x103 8 (1) x103 7.90 (0.07) 0.6 (0.2) x103 12 (4) 1.16 (0.01) 0.174 (0.009)
gol 25.5 32.269 7 (2) x103 5.8 (0.3) x103 8.80 (0.02) 1.6 (0.1) x103 21 (4) 1.13 (0.01) 0.34 (0.01)
g03 25.5 32.438 5 (1) x103 7.0 (0.3) x103 8.43 (0.01) 1.23 (0.08) x103 17 (3) 1.13 (0.01) 0.30 (0.01)
g04 25.5 32.514 9 (2) x103 9.1 (0.3) x103 8.48 (0.01) 1.72 (0.06) x103 25 (3) 1.11 (0.02) 0.36 (0.01)
g05 25.5 32.68 5 (1) x10

3  14.7 (0.8) x1O' 8.02 (0.02) 1.32 (0.07) x103 18 (2) 1.12 (0.03) 0.31 (0.01)
g06 25.5 32.541 5 (2) x1O' 10.4 (0.6) x10

3 8.24 (0.02) 1.36 (0.06) x1O' 18 (3) 1.15 (0.02) 0.29 (0.01)
g07 25.5 32.901 8 (2) x103 20 (2) x103 8.00 (0.01) 1.7 (0.2) x103 24 (3) 1.13 (0.01) 0.32 (0.01)
g08 25.5 32.47 10 (3) x103 10.0 (0.6) x10

3 
8.49 (0.02) 1.9 (0.1) x103 26 (4) 1.09 (0.02) 0.35 (0.01)

g09 25.5 33.4 8 (3) x103 30 (3) x103 7.78 (0.02) 1.7 (0.2) x103 23 (5) 1.12 (0.02) 0.38 (0.02)
glO 25.5 32.772 5 (2) x103 15 (2) x103 8.06 (0.04) 1.5 (0.1) x103 18 (3) 1.03 (0.04) 0.29 (0.01)
gl 25.5 33.158 4 (1) x103 22.9 (0.9) x10

3 7.79 (0.02) 1.29 (0.07) x103 17 (2) 1.13 (0.01) 0.31 (0.01)
g13 25.5 32.25 1.7 (0. 9) x103 8 (1) x103 7.89 (0.02) 0.6 (0.1) x103 10 (3) 1.07 (0.02) 0.154 (0.008)
hOl 25.5 32.486 7 (2) x103 5.9 (0.2) x103 8.86 (0.01) 1.69 (0.08) x103 21 (4) 1.14 (0.01) 0.34 (0.01)
h09 25.5 33.041 3 (1) x103 16 (1) x103 7.89 (0.03) 1.1 (0.1) x103 14 (3) 1.09 (0.02) 0.26 (0.01)
h1O 25.5 33.297 7 (3) x103 30 (2) x103 7.78 (0.03) 1.6 (0.1) x103 21 (4) 1.10 (0.03) 0.35 (0.02)
h03 33 32.471 18 (8) x103 5.2 (0.2) x103 8.69 (0.03) 1.3 (0.1) x103 17 (3) 1.07 (0.01) 0.34 (0.01)
h07 33 32.501 13 (3) x103 9.9 (0.5) x103 8.13 (0.03) 1.07 (0.07) x103 15 (1) 1.10 (0.01) 0.29 (0.01)
h05 40 32.532 40 (20) x103 4.7 (0.1) x103 8.67 (0.01) 1.10 (0.04) x103 15 (2) 1.05 (0.01) 0.31 (0.01)
h06 40 32.572 22 (9) x103 8.0 (0.4) x103 8.12 (0.04) 0.85 (0.06) x10

3 
12 (2) 1.04 (0.02) 0.24 (0.01)

Notes: Numbers in parentheses indicate lu. T, salinity, TA, and pHT are measured,
while CO3, and QAra, are calculated with CO2SYS. pH reported on the total scale,
calculated as pHNBS - 0-099. Precipitation rate is calculated based upon results

of Burton and Walter (1987) where uncertainty is reported as U by propagating

uncertainty from the estimate of mean QArag.

squares linear regression of mean at each T resulted in the following T dependence

(numbers in parentheses indicate one standard error uncertainties):

Ksr/c= -0.0047(0.0003)T + 1.24(0.01)(r2 0.99) (2.9)

where T is in 'C. The T dependence of Ksr/ca determined between 20 and 40 'C is

within uncertainty of that determined in three previous experimental studies employ-

ing different methodologies (Kinsman and Holland, 1969; Dietzel et al., 2004; Gaetani

and Cohen, 2006). This clearly shows that the lack of T dependence for K/CO3 is

not an artifact of our experimental design or sampling resolution masking the influ-

ence of T on element partitioning. Nevertheless, the Ksr/C variability at 25.5 C

( 0.03 1 o-) is approximately twice as large as expected on the basis of the analyti-
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Table 2.3: Coefficient of determination (r2) matrix
across all experiments (n=27).

TA pH1  HCO- CO2- QArag

DIC 0.995 0.581 0.996 0.004 0.000
TA 0.513 0.981 0.019 0.007
pHT 0.638 0.278 0.283
HCO3 0.000 0.002
CO2- 0.954

1.2

CZ)
0O

1.1 F

1'
20 25.5 33

Temperature (*C)
40

for carbonate system parameters

Figure 2-4: Temperature
dependence of Ksr/Ca. Solid
line is regression performed
with mean Ksr/ca at each
temperature, and shading
is 95 % confidence inter-
val. Error bars from this
study are standard errors

SrI~
of mean KD , and num-
bers in parentheses indicate
the number of experiments,
at each temperature. Note
that standard error of
two samples is equivalent to
the range. Error bars on
data from Gaetani and Co-
hen (2006) and Dietzel et al.
(2004) are analytical error
and standard deviation of
replicates measurements, re-
spectively.
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cal uncertainties of individual experiments (Table 2.2), and this variability does not

correlate with any of the measured parameters. Similar variability was reported by

Dietzel et al. (2004) and Kinsman and Holland (1969) ( 0.02 and 0.05 1 o- respec-

tively, determined from replicate experiments). Despite this, the T dependence of

Ksr/ca derived from averaging all experiments conducted at each T appears robust,

indicating that Ksr/Ca likely follows a Gaussian distribution at a given T ( K.sr/ca

from experiments conducted at 25.5 'C is not significantly different from a normal

distribution, Kolmogorov-Smirnov test, p > 0.05). Our results also contrast the T

dependence of Sr/Ca in abiogenic experiments (-0.039 to 0.044 mmol mol- 1 Sr,/Ca

per 'C) with that of coral (typically -0.05 to -0.1 mmol mol- 1 Sr/Ca per 'C), which

reinforces previous conclusions that factors other than T, such as Rayleigh fraction-

ation (Gaetani and Cohen, 2006), are driving a significant component of the Sr/Ca

variability in corals.

2.4.3 Carbonate chemistry dependence of element partition-

ing

The influence of carbonate chemistry on Ksr/Ca was investigated using only the ex-

periments conducted at 25.5 'C, whereas all experiments were used to evaluate the

carbonate chemistry dependence of K /CO3 because of the lack of any discernible T

effect. Mean solution pH and [CO2 ] are only weakly correlated (r2 = 0.28), whereas
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there are negligible correlations between [COj-I and both [HCO3] and TA (r2 < 0.1),

allowing the influence of these variables on partitioning to be resolved from one an-

other (Table 2.3). However, a strong correlation between [CO2 ] and QArg (r2

0.95) precludes resolving the influence of these two variables. In seawater, variation

in QArg is dominated by variability in [COj-I because of its dependence on biogeo-

chemical processes, whereas [Ca 2+] varies by only a few percent in accordance with

changes in salinity. Corals change the [Ca2+1 of their calcifying fluid by less than 10%

from the seawater concentration but elevate pH to greater than 9 (Al-Horani et al.,

2003), implying that [COJ-1 potentially increases to several times that of seawater.

Thus, while future experiments could provide valuable insights regarding the relative

importance of [CO2 ] and QArag on element partitioning, in the context of aragonite

precipitated from seawater, or the modified seawater of the coral calcifying fluid, these

variables are not independent from one another. There are no significant correlations

between and carbonate system parameters (pH; [CO2-] ; Qrag; [HCO-]; TA; dis-

solved inorganic carbon (DIC)) or precipitation rate, whereas K/CO is significantly

positively correlated with [CO2-] (p < 0.05), accounting for 83% of the total variance

(Fig. 2-5). There is also a significant correlation between and pH, but only 19%

of variance in KS/'0 s can be accounted for in this way. Further, the residuals of

KS/0 0 3 regressed against COj] are not significantly correlated with pH (i.e. mul-

tiple regression yields a significant [CO2- effect but no significant pH effect). Thus,

[COj~] is the variable influencing KS/CO3 , while the apparent pH effect is an artifact

of the weak correlation between pH and [CO2-] in our experiments. The dependence

of KS/0 0 3 on [CO-] was fit by logarithmic regression because the residual KS/0 0 3

did not correlate with either K/ or [CO :

KU/Cos = 0.14(0.01)ln([CO2-]) - 0.70(0.09)(r 2 = 0.83) (2.10)

where [COj-1 is in pnol kg- 1. The activity ratio { UO2 (CO3)4-}/{ CO2-} is strongly

correlated with the concentration ratio [UO 2 (CO3 )4~ ]/[ CO2-] in our experiments (r2

0.978), meaning that the general relationship between K j/CO3 and [CO2-1 would
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not change if we defined K /CO3 with activity ratios instead of concentration ratios.

2.5 Discussion

2.5.1 Partitioning of U between abiogenic aragonite and sea-

water

Our experimental results indicate that [CO2-] has a significant influence on the par-

titioning of U between abiogenic aragonite and seawater. As [CO-] increases from

600 100 to 2560 80 pmol kg- 1 in the experimental seawater, K/CO 3 increases from

0.154 0.008 to 0.351 0.009. Conversely, our results do not indicate a direct link

between [COj] and either T or pH. Here we discuss two potential mechanisms for

explaining the dependence of KD/CO3 on 3CO ]: the kinetics of aragonite growth

and the speciation of UO+ in seawater. We then show how our experimental results

bear on interpretation of U/Ca in aragonite.

The kinetics of aragonite growth provides one possible explanation for the influ-

ence of [CO2] on the partitioning of U between aragonite and seawater. Gaetani and

Cohen (2006) showed that the partitioning of Mg, Sr and Ba is consistent with the

surface entrapment mechanism proposed by Watson (2004). At equilibrium, these

elements are enriched in the near-surface region of an aragonite crystal relative to

the lattice (Watson, 2004). As the near-surface region of the crystal is incorporated

into the lattice, its composition must be modified in order to maintain equilibrium.

In a slow-growing crystal, the elemental composition approaches equilibrium as en-

riched impurities are removed from the lattice via cation transport in the near surface

region of the crystal. As crystal growth rate increases, the concentration of impu-

rities "buried" as the near-surface region of the growing crystal advances increases,

resulting in a larger apparent KD. As noted above, QAag is positively correlated with

[COj-1 in our experiments. Given the well established relationship between QArag

and precipitation rate (Table 2) (Burton and Walter, 1987), the potential exists for

a positive correlation between [CO2--] and crystal growth rate and, thereby, increas-
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Figure 2-6: The influence of UO2+ speciation in seawater on K/C0 0 3 . (a) [CO2-]
dependence of the concentration of UO 2(CO 3 ) and UO 2 (CO )3- in seawater with 13.9
nmol kg-' U, calculated with the program PHREEQC using the measured pHT and
TA conditions of each experiment. [ UO 2 (CO3 )4-] (squares) increases with increasing

[CO-i , while the sum [UO 2 (CO)2 + UO 2 (CO3 ) -] (triangles) remains approximately
constant, indicating that the dominant change in speciation across our experiments is a
conversion of UO2 (CO3 ) to U0 2 (C03 )- with increasing [CO3I. Concentration of all
other UO2+ species calculated as less than 0.003 nmol kg-1. (b) Correlation between
measured KU/C 0 3 and calculated concentration of U0 2 (CO3)4 for each experiment.

ing surface entrapment. This mechanism could explain the increase in K/C0 0 3 with

increasing [CO2-], and is consistent with the finding of Gabitov et al. (2008) that

Ks/Ca increases with increasing precipitation rate until reaching a plateau at high

precipitate rate. However, given that cation transport is T dependent (Gaetani and

Cohen, 2006), a surface entrapment mechanism implies that KU/CO3 should be sensi-

tive to both [CO I and T. Gabitov et al. (2008) found that Ks/Ca increased from 22

*C to 53 'C, but this is potentially an artifact because those experiments did not iso-

late [COJ-] from T. Further, since aragonite was precipitated from aqueous chloride

solutions with [U] much higher than that of seawater in the experiments of Gabitov

et al. (2008), U partitioning in that study may be influenced by different factors

than our study, in which aragonite was precipitated from modified seawater. That
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our experimental results do not indicate any significant T dependence for KD/Cos at

20 to 40 'C makes a surface entrapment mechanism an unlikely explanation for our

observations.

A second potential mechanism by which the partitioning of U between aragonite

and seawater could be sensitive to [CO2-] derives from the tendency of UO2+ to form

various complexes with CO2- in seawater (U02 (CO3 ) ; UO2 (CO3)2; U0 2 (CO 3 )4-)

as a function of pH (Djogic et al., 1986) and/or [COj-] (Kitano and Oomori, 1971;

Saito and Miyauchi, 1982). The incorporation of CO2- into aragonite involves ex-

change of U0 2 (CO3 )4 - the dominant complex in seawater with pH 8 (Djogic et al.,

1986) - for CO2- in the aragonite lattice (Reeder et al., 2000). This combination

of factors suggests that the incorporation of CO2- into aragonite could be sensitive

to pH and/or [CO2-] because the relative abundance of different uranyl-carbonate

complexes varies with carbonate chemistry. A preliminary test of this hypothesis was

performed by conducting speciation calculations using the PHREEQC database and

software package (Parkhurst and Appelo, 1999) to predict the relative abundances

of complexes in our experimental fluids. The modeled abundance of UO 2 (CO3 )4- (

UO+ + 3CO-= U 2 (CO3)t; logio K = 21.397 at 25.5 'C) increases with increas-

ing [COj-] in a manner that is consistent with our experimental results (r2 = 0.89

between [U02 (C03) ] and K /CO3 ), although the magnitude of change predicted

by the PHREEQC model is significantly less than that observed in our experiments

(Fig. 2-6). However, without direct measurements of the speciation of UO2+ in the

experimental solutions, this mechanism cannot be ruled out and remains the most

plausible explanation for our data.

The relationship between K2-] and [COj- determined from our experimental

results can be used to predict the sensitivity of aragonite U/Ca to seawater [CO--]

As discussed above, the exchange coefficient K/ increases with increasing [

which serves to raise the U/CO- ratio of aragonite with respect to that of seawater.

While U is effectively conservative in seawater, changing only in proportion to salinity

(e.g., Owens et al., 2011; but see Mann and Wong (1993) for exceptions in coastal

waters), CO2- is non-conservative and varies in response to changes in TA and/or
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Figure 2-7: Dependence of aragonite U/Ca on seawater [COJ-1. (a) Correlation be-

tween the U/CO- ratio of seawater and the experimentally determined KU/CO 3 , where
the U/CO- ratio is calculated from [U] in seawater of salinity 35 ([UI = 14.7 nmol
kg-1) and the [CO2- of each experiment. (b) Predicted [COj-] dependence of the
U/Ca ratio of aragonite precipitating from an infinite reservoir of seawater (solid line),
calculated as the product of K/COd from Eq. (10) and the seawater U/CO ratio
(shading is 95 % confidence interval). The top abscissa shows how the U/C0 3 ratio
changes with [CO2-] in seawater of salinity 35. Circles indicate the predicted arago-

nite U/Ca ratio from K/C03 and [CO~] of each experiment. The dashed line shows
the observed relationship between seawater [COj-I and U/Ca in the deep-sea coral D.
dianthus (Anagnostou et al., 2011). The gray box indicates the approximate ranges
of U/Ca ratios of shallow-water Porites skeletons (~0.9 - 1.5 pmol mol-') and the of
the seawater in which these corals live (150 - 250 pmol kg-'). Error bars show 1 a
uncertainties.

DIC. Therefore, increasing [CO2 ] at constant salinity decreases the U/CO- ratio

of seawater, resulting in a negative correlation between U/CO- and K/CO (Fig.

2-7a). The U/Ca ratio of aragonite can be calculated from K /CO3 because it is

approximately equal to the U/CO- ratio (i.e. Ca2+ and are stoichiometrically linked

by charge balance in the crystals). This allows the U/Ca ratio of aragonite to be

calculated as a function of [CO2- . Results from this calculation show that although

KUCOS increases with [CO2j- (Fig. 2-5), the U/Ca ratio of abiogenic aragonite

precipitated from an infinite reservoir of seawater decreases with increasing [CO--]
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(Fig. 2-7b). The reason for this negative dependence of U/Ca on fluid [CO~-I is that

U/Ca is directly proportional to KD/C0 3 , and directly inversely proportional to fluid

U/COt-, but the percent difference between maximum and minimum K /COs (59%)

is less than that of fluid U/CO- (77%).

In their abiogenic precipitation experiments, Meece and Benninger (1993) ex-

pressed U partitioning between aragonite and seawater as Kg/Ca, rather than KU/C0 3

and found that the U/Ca ratio of aragonite decreases with increasing pH. Likewise, Ki-

tano and Oomori (1971) precipitated aragonite from magnesium chloride and sodium

chloride solutions and found that K UCa decreases as pH increases. The results of

these previous experiments that related U partitioning to increasing pH (and by in-

ference, increasing [CO2-]) are consistent with our result of an inverse relationship

between the U/Ca ratio of aragonite and [C02]. However, our experiments are the

first to isolate pH from [COj-] to show that it is the latter that influences the U/Ca

ratio of aragonite.

2.5.2 Implications for interpreting U/Ca in coral skeleton

By experimentally precipitating aragonite from seawater under controlled conditions,

we show conclusively for the first time that the U/Ca ratio of abiogenic aragonite

is strongly tied to [C2 ] and is independent of pH and T between 20 and 40 'C.

While these results can be used to interpret U/Ca of coral skeletons, it is important

to recognize that coral aragonite is not precipitated directly from an infinite reservoir

of seawater. Rather, there is strong evidence that skeleton is accreted in an isolated

or semi-isolated space, and that the carbonate chemistry of the calcifying fluid is

manipulated by the coral polyp during the biomineralization process (McConnaughey,

1989a,b; Gaetani and Cohen, 2006; Gagnon et al., 2007; Gaetani et al., 2011; Gagnon

et al., 2012).

In corals, seawater is transported to an extracellular calcifying site between the

base of the calicoblastic epithelium and the top of the existing skeleton or substrate.

Evidence for the transport of seawater comes from tracer studies (Venn et al., 2011;

Tambutt6 et al., 2012) and interpretation of skeletal geochemistry which is consistent
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Figure 2-8: Schematic diagram of
the steady-state biomineralization
model. The calcifying fluid is as-
sumed to be in steady-state and is
replenished by seawater exchange.
Volume of the calcifying fluid is as-
sumed constant, so fluid is removed
at the same rate seawater is added.
Alkalinity (Ac) and DIC fluxes (F),
combined with aragonite precipita-
tion, modify the carbonate chemistry
of the calcifying fluid. Reservoirs are
in bold and arrows indicate fluxes. U
and Sr partitioning are functions of
[COj and T, respectively.

with seawater being the initial fluid for aragonite nucleation and growth (Cohen and

McConnaughey, 2003; Gaetani and Cohen, 2006; Cohen and Gaetani, 2010; Gagnon

et al., 2012). Once in the calcification site, physiological processes modify the carbon-

ate chemistry of seawater to significantly enhance the rate of aragonite precipitation

(Cohen and McConnaughey, 2003; Cohen et al., 2009; Trotter et al., 2011; Venn

et al., 2011; Holcomb et al., 2014). Specifically, evidence from crystal microstructure

and geochemistry (Cohen et al., 2009; Holcomb et al., 2014), corals cultured with

pH-sensitive dye (Venn et al., 2011) and microelectrodes inserted into the calcifying

space (Al-Horani et al., 2003) indicates that calcifying fluid pH and QA,,ag are elevated

above that of seawater, likely achieved through proton removal from the calcifying

fluid (McConnaughey, 1989a,b; Al-Horani et al., 2003; Cohen and McConnaughey,

2003).

Because the carbonate chemistry of the calcifying fluid differs from seawater, the

U/Ca ratio of coral skeleton does not directly record seawater [CO2-]. This is evident

from comparing the dependence of U/Ca on [CO2-] in our abiogenic experiments to

U/Ca ratios of shallow-water Porites corals, and the cold-water (~2-11 'C) coral

Desmophyllum dianthus (Anagnostou et al., 2011), along with the [CO -I of the

seawater in which these corals lived (Fig. 2-7b). This simple comparison suggests

that both Porites and D. dianthus calcifying fluid [CO -I is higher than that of

seawater, and for D. dianthus its dependence on external seawater [CO2-] is stronger

than observed in the abiogenic experiments.
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To investigate further the relationship between coral U/Ca and the composition

of the calcifying fluid, we developed a steady-state model of a simplified coral biomin-

eralization process in which seawater is constantly replenishing the calcifying space,

alkalinity and DIC are constantly added, and aragonite precipitates from the fluid

(Fig. 2-8; Appendix A). The model predicts the U/Ca ratio of coral aragonite based

on the relative balance between alkalinity addition into the calcifying fluid and the

ratio of alkalinity precipitated (removed) to alkalinity added, and using Eq. (2.10)

to describe U partitioning between aragonite and seawater (Fig. 2-9). Model runs

were carried out for different combinations of the amount of alkalinity added and

the alkalinity precipitation to addition ratio in order to identify which combinations

produced aragonite U/Ca ratios in agreement with the range measured in Porites sp.

coral skeletons (~0.9-1.5 btmol mol- 1 ) (Wei et al., 2000; Quinn and Sampson, 2002;

Felis et al., 2009), while also predicting realistic coral Sr/Ca ratios (9.68 - 9.90 mmol

mol- 1 ).

A subset of the alkalinity addition and the precipitation to alkalinity addition ra-

tio combinations that are consistent with coral U/Ca and Sr/Ca are also consistent

with measurements of the coral calcifying fluid pH between 8.5 and 9.3 (Al-Horani

et al., 2003; Venn et al., 2011; Holcomb et al., 2014). Further, the steady-state model

predicts that 14 - 30% of C in coral skeleton is derived directly from seawater, con-

sistent with 4 5Ca and '4 C labeling experiments that found between 25% and 30%

of precipitated C is derived from ambient seawater in the coral Stylophora pistillata

(Furla et al., 2000). Thus, the steady-state model reconciles the U/Ca ratios mea-

sured in coral skeleton with our experimentally determined partitioning for abiogenic

aragonite, and agrees with measurements of coral calcifying fluid pH and the relative

amount of seawater C incorporated in coral skeleton. According to our biomineraliza-

tion model, calcifying fluid [U] decreases with respect to seawater as U is incorporated

into aragonite during precipitation within the semi-enclosed calcifying space. How-

ever, calcifying fluid [COj-] is elevated to several times that of seawater, above 700

pamol kg-1 (Fig. 2-9), by a combination of alkalinity addition and DIC addition into

the calcifying space. The model predicts that alkalinity and DIC are elevated, and
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Figure 2-9: Results from steady-state biomineralization model. Predicted coral U/Ca
(Jymol mol- and indicated by solid black contours) and [COj-] (colors) are functions of
alkalinity addition and precipitation. Dashed lines indicate pH contours at 8.5 (right)
and 9.3 (left) based on 5"B of the skeleton (Holcomb et al., 2014), pH-sensitive dye
studies (Venn et al., 2011), and microelectrode measurements of coral calcifying fluid
pH (Al-Horani et al., 2003). [CO~] is colored only for combinations of the amount of
alkalinity addition and the precipitation to alkalinity addition ratio that are consistent
with measured coral U/Ca (jLmol mol- 1) and calcifying fluid pH (8.5 - 9.3). The
primary vertical axis is defined as the amount of alkalinity added during the residence
time of a parcel of calcifying fluid, and the horizontal axis is the ratio of precipitation
to alkalinity addition in the calcifying fluid. Secondary vertical axis shows percent DIC
in coral skeleton derived directly from seawater as a function of alkalinity added.

pCO2 decreased, relative to seawater, while QArag is elevated to at least 11 (Table

2.4), consistent with calcifying fluid QAag estimated from the crystal aspect ratio of

aragonite coral skeletons (Cohen et al., 2009). These results show that corals exert

control over their calcifying fluid [CO1 , and therefore strongly influence the U/Ca

ratios of their skeleton.

U/Ca of corals has been investigated as a potential proxy for seawater [CO2-. Our

results imply that the utility of such a proxy will depend on whether corals maintain

their calcifying fluid [CO2-] in proportion to that of seawater. Evidence to date

suggests that the pH of the coral calcifying fluid, and likely its [COj-, is proportional

to that of the external seawater. Using boron isotopes as a pH proxy, McCulloch et al.
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Table 2.4: Range of coral calcifying fluid carbonate system parameters predicted by
biomineralization model.

min max

CO'- (ptmol kg-1 ) 0.7 x10 4.2 x10
TA (peq kg-1 ) 3.2 x10 10.2 x10
DIC (pimol kg- 1) 2.6 x10 6.1 x10
pCO2 (patm) 24 150
9Arag 22 68

Notes: Calculations performed at salinity of 35 and temperature of 25 'C. Minimum
and maximum values correspond to the region consistent with calcifying fluid U/Ca
and pH (Fig. 2-9). QArag calculated assuming the Ca2+ concentration of the calcifying
fluid is elevated above seawater by 10% to 11 mmol kg- 1 . (Al-Horani et al., 2003).

(2012) showed that coral calcifying fluid pH is positively correlated with seawater pH.

Further, U/Ca ratios of the cold-water coral D. dianthus collected across the Atlantic

and Pacific basins track differences in seawater [COj-] (Anagnostou et al., 2011).

Our biomineralization model links coral U/Ca with [COJ-] of the calcifying fluid.

Environmental and physiological factors that influence calcifying fluid [CO2-] will

thus be reflected in the U/Ca ratio. Within this framework, U/Ca serves as a poten-

tially valuable tool to investigate how changes in climate and/or seawater chemistry

influence the coral biomineralization process.

2.6 Conclusions

Abiogenic precipitation of aragonite from seawater was carried out under controlled

carbonate chemistry conditions in experiments conducted across a range of pH and

[CO~-1, and at different T. Our experiments confirm that in abiogenic aragonite,

Sr/Ca is affected by T, while also demonstrating that it is independent of carbonate

chemistry. The T dependence of Sr/Ca in our experiments agrees well with previous

studies that were conducted with different methodologies. U/Ca in aragonite depends

on [CO2-], and is independent of pH and T. Using the framework of a newly devel-

oped biomineralization model, the U/Ca ratio of coral skeleton provides a valuable

tool to probe the sensitivity of coral biomineralization, specifically the [CO~] of the
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calcifying fluid, to changes in the environment in which the coral lives, such as rising

temperatures and increasing seawater CO2 concentrations.
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Chapter 3

Coral Sr-U Thermometry

3.1 Abstract

Coral skeletons archive past climate variability with unrivaled temporal resolution.

However, extraction of accurate temperature information from coral skeletons has

been limited by "vital effects", which confound, and sometimes override, the temper-

ature dependence of geochemical proxies. We present a new approach to coral pa-

leothermometry based on results of abiogenic precipitation experiments interpreted

within a framework provided by a quantitative model of the coral biomineralization

process. In Chapter 2, I investigated temperature and carbonate chemistry controls

on abiogenic partitioning of Sr/Ca and U/Ca between aragonite and seawater and

modeled the sensitivity of skeletal composition to processes occurring at the site of

calcification. The model predicts that temperature can be accurately reconstructed

from coral skeleton by combining Sr/Ca and U/Ca ratios into a new proxy, which we

refer to hereafter as the Sr-U thermometer. Here, we test the model predictions with

measured Sr/Ca and U/Ca ratios of fourteen Porites sp. corals collected from the

tropical Pacific Ocean and the Red Sea, with a subset also analyzed using the boron

DeCarlo T.M., Gaetani G.A., Cohen A.L., Foster G.L., Alpert A.E., Stewert J., (2016). Coral
Sr-U Thermometry. Paleoceanography 31, 626-638
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isotope (6 1 B) pH proxy. Observed relationships among Sr/Ca, U/Ca, and 6 1 B,

agree with model predictions, indicating that the model accounts for the key features

of the coral biomineralization process. By calibrating to instrumental temperature

records, we show that Sr-U captures 93% of mean annual temperature variability

(26-30 'C) and has a standard deviation of prediction of 0.5 'C, compared to 1 'C

using Sr/Ca alone. The Sr-U thermometer may offer significantly improved reliability

for reconstructing past ocean temperatures from coral skeletons.

3.2 Introduction

Since 1900, global mean surface temperatures have increased at an average rate of

0.08 'C per decade, and state-of-the-art general circulation models (GCMs) project

further warming of 1-4 'C by the end of this century in response to anthropogenic

greenhouse gas (GHG) emissions (Meehl et al., 2012; Stocker et al., 2013). These

projections depend in large part on estimates of "climate sensitivity", the sensitivity

of Earth's temperature to a doubling of atmospheric C0 2, and there is substantial

uncertainty in these estimates. Natural oscillations in atmospheric and oceanic cir-

culation occurring on inter-annual (e.g. El Nino Southern Oscillation), multi-decadal

(e.g. Pacific Decadal Oscillation), and centennial (e.g. the Little Ice Age) timescales

can partially obscure climate sensitivity, and how these modes of variability inter-

act with, and possibly change, under GHG forcing remain uncertain (Wittenberg,

2009; Stevenson et al., 2012; Emile-Geay et al., 2013; Li et al., 2013; Meehl et al.,

2014). Multi-century long records of temperature can help to resolve these issues by

enabling characterization of internal variability and isolation of secular temperature

trends driven by external forcing (e.g. GHGs).

Direct observations of temperature, however, extend back only as far as the mid-

19th century (Smith et al., 2008). Furthermore, in regions such as the central tropical

Pacific Ocean where sparse observations exist prior to 1950 (Giese and Ray, 2011),

estimates of 20th century warming vary up to a factor of two (Nurhati et al., 2011;

Solomon and Newman, 2012; Emile-Geay et al., 2013). These limits to the length
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and reliability of instrumental records make it difficult to constrain the range of

natural variability, the degree of 20th century warming, and the climate sensitivity

to GHG forcing. Accurate proxy temperature reconstructions offer the only way to

extend the relatively short observational period further into the past and overcome

the limitations of instrumental temperature records.

The skeletons of long-lived reef-building corals are a promising archive of this in-

formation. Distributed across the tropics at shallow water depths, corals are exposed

to the sea surface temperature (SST), and accrete their skeletons in alternating high-

and low-density bands that provide intrinsic, high-resolution time markers extend-

ing hundreds of years into the past (Buddemeier et al., 1974). As corals grow, the

geochemistry of their skeletal aragonite is sensitive to fluctuations in environmental

conditions, including temperature. The most common coral-based temperature proxy

currently in use is the Sr/Ca thermometer, which exploits the inverse relationship be-

tween Sr/Ca and water temperature (Kinsman and Holland, 1969; Smith et al., 1979;

Gaetani and Cohen, 2006; DeCarlo et al., 2015b). Typically, Sr/Ca ratios are first

calibrated with modern instrumental SST records to establish a coral-specific Sr/Ca-

temperature relationship, and then applied down-core to the older skeleton of the

same coral, or in some cases to fossil corals, in order to reconstruct past SST (Smith

et al., 1979; Felis et al., 2009; Hereid et al., 2013; Tierney et al., 2015; Toth et al.,

2015).

However, problems arise because SST is not the only factor that influences coral

Sr/Ca. The biomineralization process affects Sr/Ca ratios and can do so indepen-

dently of any changes in temperature. These biological influences are known as "vital

effects", and are obvious in the comparison between coral and abiogenic aragonites.

The temperature dependence of Sr/Ca in coral skeleton (-0.05 to -0.08 mmol mol-1

Sr/Ca per 'C) is significantly stronger than that of abiogenic aragonite (-0.039 to

-0.044 mmol mol' Sr/Ca per 0C) (Cohen et al., 2002; Gaetani and Cohen, 2006;

Gaetani et al., 2011; DeCarlo et al., 2015b), and Sr/Ca-temperature relationships

derived for different corals can vary widely. For Porites corals, a given Sr/Ca ratio

can correspond to a range of temperatures in excess of 10 'C depending on which
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calibration equation is applied (Corr~ge, 2006; Gaetani et al., 2011). The influences

of vital effects on Sr/Ca ratios are also borne out in coral-based SST reconstructions,

which repeatedly fail to capture observed temperature trends (Grove et al., 2013;

Storz et al., 2013; Karnauskas et al., 2015; Alpert et al., 2016), and often decouple

from observed SST by > 4 'C (Marshall and McCulloch, 2002; Felis et al., 2009; Wu

et al., 2014).

Evidence suggests that these Sr/Ca vital effects arise because corals accrete their

skeleton within an isolated calcifying space (Cohen et al., 2006; Gaetani and Cohen,

2006). As aragonite crystals nucleate from the fluid within this space, the elemental

composition of the fluid changes. Element ratios that are elevated in aragonite rela-

tive to the fluid (e.g. Sr/Ca) become progressively lower in the fluid as precipitation

proceeds. This is known as Rayleigh fractionation (Cohen et al., 2006; Gaetani and

Cohen, 2006). At a given temperature, the Sr/Ca ratio of the aragonite will monoton-

ically decrease as precipitation proceeds, in response to changes in the Sr/Ca ratio

of the calcifying fluid. Fluctuations in calcifying fluid carbonate ion concentration

([C02]) likely drive variations in the amount of aragonite precipitation and thus

cause fluctuations in the magnitude of the Rayleigh fractionation vital effect (Cohen

et al., 2009; Gagnon et al., 2013). Accurate coral-based temperature proxies must

therefore account for this process in order to isolate the temperature component of

geochemical variability in the skeleton.

Abiogenic aragonite precipitation experiments showed that U/Ca ratios of arag-

onite precipitated from seawater decrease as carbonate ion concentrations increase

(DeCarlo et al., 2015b), and thus U/Ca ratios have potential to account for the vi-

tal effects that influence Sr/Ca ratios. Here, we use coral Sr/Ca and U/Ca ratios

interpreted within the context of the biomineralization model developed by DeCarlo

et al. (2015b) to test the hypothesis that Sr/Ca and U/Ca ratios can be used in tan-

dem to accurately reconstruct past seawater temperature. We use data from fourteen

corals collected in the tropical Pacific Ocean and the Red Sea, for which instrumental

temperature data are available for comparison. In a subset of these corals, we also

measured boron isotopic composition (a proxy for pH) to test our hypothesis that vital
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effects in coral Sr/Ca ratios arise from processes occurring during biomineralization.

3.3 Methods

3.3.1 Coral records

Coral skeleton cores were collected from massive Porites sp. colonies using underwa-

ter pneumatic drills. Two cores were collected from the central Red Sea near Jeddah,

Saudi Arabia, two from Palmyra Atoll, four from Jarvis Island, and six in the Republic

of Palau (Fig. 3-1). The mean annual temperatures at which each coral lived were ac-

quired for time periods coincident with element ratio measurements using the NOAA

Optimum Interpolation (01) SST dataset (Reynolds et al., 2002). Temperature was

compared between NOAA-OI and in situ temperature loggers deployed on each reef

at the water depths of coral samples, and a correction was applied to NOAA-OI to

account for any mean bias in temperature during overlapping time periods with the

in situ loggers (Fig. 3-1).

Coral cores were scanned with a Siemens Volume Zoom Spiral Computerized To-

mography (CT) scanner to determine skeletal density. Annual density banding was

used to develop an age model for each coral (Fig. 3-2). Slabs were cut from cores

with a water-cooled diamond wafering blade and cleaned for 15 minutes in an ultra-

sonic bath filled with 18.2 MQ deionized water before drying at 60 'C for at least 24

hours. Subsamples of approximately 100 pg were drilled from slabs with a fine-tipped,

diamond-impregnated drillbit at 0.5 to 1.25 mm (approximately monthly) resolution.

Sampling followed primary growth axes, tracking the growth paths of corallites.

3.3.2 Trace elements

Coral powders were dissolved in 5% trace metal grade nitric acid and counts of 48 Ca,

88Sr, and 238 U were measured in low-resolution on a Thermo Element2 inductively

coupled plasma mass spectrometer (ICP-MS) at Woods Hole Oceanographic Institu-

tion. External precision (one relative standard deviation) was 0.4% for Sr/Ca and
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Figure 3-1: Coral sampling locations
and sea surface temperatures. (a)
Map of climatological mean (1971-
2000) sea surface temperature (SST)
from the NOAA-OI dataset, with coral
reef sampling locations indicated by
white dots. (b) Satellite images of each
reef, with locations of coral sampling
indicated by red dots. (c) Comparisons
between NOAA-OI and in situ log-
ger temperatures for each coral sam-
pling location. Horizontal bars indi-
cate mean temperature for each loca-
tion.
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0.8% for U/Ca, determined via repeated measurements of a secondary coral standard

treated as a sample. Jarvis data are reported in Alpert et al. (2016). Element ra-

tio measurements were standardized to the JCp-1 coral standard (Okai et al., 2002),

which has nominal Sr/Ca and U/Ca ratios of 8.838 0.042 mmol mol1 and 1.192

0.045 pmol mol', respectively (Hathorne et al., 2013). JCp-1 analyses bracketed

every eight sample analyses. Sr/Ca ratios were also measured repeatedly in standard

materials derived from fish otoliths (Yoshinaga et al., 2000; Sturgeon et al., 2005) and

the NBS-19 limestone (Fernandez et al., 2011) to ensure consistency of our Sr/Ca cali-

brations. As reported in Alpert et al. (2016), the batch of JCp-1 used in this study was

compared to High Purity Standards single element standards gravimetrically mixed

to simulate coral skeleton (40 ppm Ca with variable concentrations of Mg, Sr, Ba, and

U). Three aliquots of JCp-1 powder were dissolved and each analyzed in duplicate

with resulting mean 1 o- for Sr/Ca of 8.87 0.03 mmol mol 1 and U/Ca of 1.23

0.01 pmol mol- 1 .
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3.3.3 Boron isotopes

Two pairs of corals, each pair collected

from a single reef in Palau, were analyzed 2M

for boron isotopic composition. S'B was 2M

measured in splits of the same samples 2007

2006
used for Sr/Ca and U/Ca analyses fol-

lowing the methods of Foster (2008) and 2W

Foster et al. (2013). Briefly, 6"B splits 2M

were oxidatively cleaned at 80 'C in "02

1% H2 0 2 (buffered with 0.1 M NH 40H) 2 I
20

in the clean lab of the University of I C"

Southampton. Oxidatively cleaned sam- I199S

ples were then subjected to a weak acid Figure 3-2: Computerized tomography

leach and dissolved in a minimum vol- (CT) scan of Palmyra 3 coral. Light (dark)
shading indicates relatively high (low) den-

ume of 0.5 M HNO 3, and boron was sity skeleton. The timescale is derived
from annual density banding, visible as ap-

then separated from the dissolved sam- proximately horizontal alternating low- and

ple using Amberlite IRA 743 anion ex- high-density bands.

change resin in 20 /l micro-columns. The

boron isotopic composition was determined using a Thermo Scientific Neptune multi-

collector ICP-MS at the University of Southampton normalized against NIST SRM

951. The long term precision (following Henehan et al. (2013)) was better than

0.21%o at 95% confidence, and during the course of this study repeat analysis of JCp-1

gave 6 1B of 24.2 0.2%o at 95% confidence. Calcifying fluid pH was calculated from

measured 1 Beo,yai as

PHECF = PKB - lo(- 6"Bseawater - 6" Bcorai ) (3.1)
6" Bseawater - CeB 6 11Bcoral - 1000(aB - 1)

following Zeebe and Wolf-Gladrow (2001) where aB is equal to 1.0272 (Klochko

et al., 2006), pKB is estimated from temperature and salinity based on (Dickson,

1990), and 61 1Bseawater is assumed to be 39.6%o (following Foster et al. (2010)) and
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representative of the calcifying fluid. For each coral we calculated the mean pHECF

over 2008-2009 in order to facilitate comparison among corals.

3.3.4 Statistics

The relationship between Sr/Ca and U/Ca in our coral samples was examined using

linear regression, and with analysis of covariance (ANCOVA) in which Sr/Ca is the

dependent variable, U/Ca is the covariate, and coral colony is an independent factor.

ANCOVA tests the significance of Sr/Ca to U/Ca correlation in our corals, while

allowing the relationship between Sr/Ca and U/Ca to vary among coral colonies.

We evaluated our data with ANCOVA both including and excluding an interaction

between coral colony and U/Ca (i.e. different slopes of Sr/Ca vs U/Ca for different

corals). Differences in mean values of element ratios or calcifying fluid pH between

corals were evaluated with two-sample t-tests. Linear regression was used to test

for correlations between coral geochemical data and temperature. Throughout this

study, significance is defined as p < 0.05.

3.4 Results and Discussion

3.4.1 Modeling vital effects

Vital effects on coral skeletal geochemistry are linked with the coral biomineraliza-

tion process. Corals nucleate and grow the aragonite crystals that form their skeleton

within an isolated space located beneath the calicoblastic epithelial cells (Barnes,

1970; Venn et al., 2011). Evidence from culture experiments with calcein dyes and

solutions doped with biologically inert elements suggests that seawater transport into

this space supplies the elements for crystallization (Gagnon et al., 2012; Tambutt6

et al., 2012). Corals modify the carbonate chemistry of the incoming seawater - likely

via alkalinity pumping (Al-Horani et al., 2003; Cohen and McConnaughey, 2003;

Venn et al., 2011) - to induce aragonite precipitation. The modified seawater from

which the aragonite crystals precipitate is referred to as the extracellular calcifying
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Figure 3-3: Coral biomineralization model. (a) Schematic diagram of semi-isolated
coral calcifying space where the fluid in the space is supplied by seawater and elemen-

tal concentrations of the fluid are depleted relative to seawater as aragonite precipitates.
Removal of protons (H+) from the fluid represents alkalinity pumping. (b) The model
is evaluated between 24 'C and 30 'C (solid black lines, each representing the relation-
ship between Sr/Ca and U/Ca at a specific temperature) and plotted for U/Ca ratios
consistent with Porites coral skeleton (0.9 to 1.5 Mmol mol-1). Red circles indicate the
three predictions of the model that we test with coral data: (1) skeleton Sr/Ca and
U/Ca ratios are positively correlated, (2) increasing Rayleigh fractionation, combined
with increasing ECF pH and [COj-], decreases both skeleton Sr/Ca and U/Ca ratios,
and (3) at a specific skeleton U/Ca ratio (dashed line), Sr/Ca depends only upon tem-
perature. (c) Predicted calcifying fluid pH related to the coral skeleton U/Ca ratio
at salinity 35 and temperature of 25 'C, and assuming ambient seawater total alkalin-
ity of 2300 peq kg-', and [CO2-1 of pre-industrial (blue) and today (black) bacon on
Feely et al. (2009). While the absolute pHECF at a particular U/Ca ratio is sensitive
to ambient seawater [CO2-, the model consistently predicts increasing pHECF with
decreasing Sr/Ca and U/Ca ratios. Critically, though, seawater [COj-I has little influ-
ence on Sr-U temperature sensitivity, and the industrial [CO2j- change would shift the
isolines in panel (b) by the equivalent of only 0.03 'C (note that the blue and black
lines representing the two [CO~] scenarios are partially overlapping in panel b).
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fluid (ECF). If calcification proceeds in an isolated (or semi-isolated) space, as mi-

croscopy (Venn et al., 2011) and geochemical (Cohen et al., 2006; Gaetani and Cohen,

2006) evidence suggests, there are critical implications for interpreting compositional

variations in coral skeleton. Changes in the extent of precipitation from an isolated

calcifying fluid would lead to variability of element ratios in coral skeletons as a result

of Rayleigh fractionation. For many corals, more than half of the Sr/Ca variance has

been attributed to such vital effects (Cohen et al., 2002; Gaetani et al., 2011).

To shed light on the origin of vital effects, and to potentially quantify their effects

on the composition of coral skeleton, we can look to co-variability among multiple

element ratios. The basis for a multi-element approach to coral paleothermometry

comes from laboratory experiments that determined the abiogenic controls on elemen-

tal partitioning between aragonite and seawater (Gaetani and Cohen, 2006; Gabitov

et al., 2008), and modeling studies that placed abiogenic partitioning of multiple el-

ements within a coral biomineralization framework (Cohen et al., 2006; Cohen and

Gaetani, 2010; Gaetani et al., 2011; Gagnon et al., 2012). Subsequent coral culture

and modeling studies identified the importance of carbonate chemistry changes oc-

curring within the ECF on the elemental composition of the skeleton (Cohen et al.,

2009; Gagnon et al., 2013; Tanaka et al., 2015). DeCarlo et al. (2015b) recently

conducted laboratory precipitation experiments that characterized the abiogenic car-

bonate chemistry and temperature controls on Sr/Ca and U/Ca partitioning between

aragonite and seawater. Previous studies consistently report positive correlations be-

tween coral Sr/Ca and U/Ca ratios (Cardinal et al., 2001; Hendy et al., 2002; Quinn

and Sampson, 2002; Fallon et al., 2003; Sinclair and Risk, 2006; Felis et al., 2009, 2012;

Jones et al., 2015). However, correlations between Sr/Ca and U/Ca are not found

in experimentally precipitated abiogenic aragonite, in which Sr/Ca is controlled by

temperature and is insensitive to [CO-I, whereas U/Ca is controlled by [CO2~] but

is insensitive to temperature (DeCarlo et al., 2015b). The correlations between Sr/Ca

and U/Ca in coral skeletons must, therefore, derive from processes occurring during

biomineralization.

Quantitative, geochemical models of the coral biomineralization process provide a
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framework within which the environmental drivers of variability in skeletal composi-

tion (e.g. Sr/Ca sensitivity to SST) can be distinguished from vital effects that arise

during biomineralization (e.g. influence of Rayleigh fractionation on Sr/Ca). DeCarlo

et al. (2015b) developed a forward biomineralization model that successfully predicts

Sr/Ca and U/Ca ratios of coral skeleton. Seawater exchange, alkalinity pumping,

and aragonite precipitation modify the elemental composition of the ECF (Fig. 3-3).

Together, these processes influence the Sr/Ca and U/Ca ratios of the skeleton via

Rayleigh fractionation and changes in the ECF [CO2-]. This combination of factors

produces a positive correlation between coral skeleton Sr/Ca and U/Ca ratios at a

single temperature, such that a given coral Sr/Ca ratio does not correspond to a

unique temperature (Fig. 3-3). However, the modeling results also suggest a new

approach for deriving temperature from coral skeletons. Since U/Ca is sensitive to

Rayleigh fractionation - through variations in fCO|~] - but not to temperature, a

single U/Ca ratio can serve as a benchmark with which to investigate variability in

other element ratios independent of vital effects driven by Rayleigh fractionation.

Comparing Sr/Ca ratios that correspond to a single U/Ca ratio should, therefore,

isolate the temperature component of the Sr/Ca signal (Fig. 3-3).

3.4.2 Development of Sr-U thermometry

The implication of the biomineralization model is that Sr/Ca and U/Ca ratios in coral

skeleton can be combined to accurately reconstruct past seawater temperature. Here,

we use our coral Sr/Ca, U/Ca, and 6"B data to test predictions from the biominer-

alization model (Fig. 3-3). The first prediction of the model is that Sr/Ca and U/Ca

are positively correlated within the skeleton of each coral colony. We found that

Sr/Ca is significantly positively correlated with U/Ca (ANCOVA including interac-

tion between coral colony and U/Ca, r2 = 0.86) across all of our corals (Fig. 3-4 and

Fig. 3-5). According to the model, corals that experience the same temperature may

have different Sr/Ca ratios, but we expect that any differences in Sr/Ca among such

corals will be positively correlated with U/Ca and inversely correlated with pHECF

(Fig. 3-3). We tested this prediction using corals from Palau that have significantly

65



221: pHECF 
8

.
4 33 

0.004

229: pH 8.411(0.004)
9 ECF 8.8 w ECF

58.9 75
E E 0

8.7 8.7
E Eg

S8.7 06

8 .6 8.6

8.51
0.9 0.95 1 1.05 1.1 1.15 0.8 0.85 0.9 0.95 1 1.05 1.1

U/Ca ( mol mol 1) U/Ca (jimol mol 1)

Figure 3-4: Vital effects in two pairs of corals, each pair collected from a single reef in
Palau and sampled over the same time period (2008-2009). Property-property plots of
Sr/Ca and U/Ca ratios from corals collected in (a) Uchelbeluu (corals "221" and "229")
and (b) Nikko Bay (corals "168" and "169"). Sr/Ca and U/Ca ratios of corals collected
from a single reef are positively correlated. Within each pair of corals from a single
reef, lower Sr/Ca and U/Ca ratios are correlated with elevated pHECF. The pHECF is
reported as the mean with the number in parentheses indicating the standard error of
the mean. Solid black lines with gray bounds indicate least squares regression and 95%
confidence interval between Sr/Ca and U/Ca ratios. Note that the scales are different
between the panels in order to aid interpretation of the plots.

different Sr/Ca ratios even though they experienced the same temperatures (Fig. 3-

4). Within each pair of corals collected from a single reef and sampled over the same

time period (i.e. that experienced the same temperatures), the pHECF is significantly

higher, and the U/Ca ratio is significantly lower, in the coral with lower Sr/Ca (Fig.

3-4), consistent with the model prediction (Fig. 3-3).

The key prediction of the model for paleothermometry is that Sr/Ca and U/Ca

ratios can be used in tandem to accurately reconstruct temperature. In particular,

here we test the prediction that the Sr/Ca ratio of each coral corresponding to a

specific U/Ca ratio correlates with temperature (Fig. 3-3). To do this, we select the

median U/Ca ratio among all of our coral data (1.1 pmol mol'), and we use the

correlations between Sr/Ca and U/Ca to estimate the Sr/Ca ratio, for each coral, that

corresponds to this median U/Ca ratio. We first regress Sr/Ca with U/Ca, separately

for each coral:

Sr/Ca = mi(U/Ca) + bi (3.2)

where Sr/Ca is the estimated Sr/Ca ratio from a given U/Ca ratio, mi is the slope
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and bi is the intercept of ordinary least squares regression performed using the data

of a single coral i with Sr/Ca as the dependent variable and U/Ca the independent

variable. We then define Sr-U for each coral as the estimated Sr/Ca ratio at the

median U/Ca ratio:

Sr - Uj = mi(1.1) + bi (3.3)

where a single Sr-Uj value is estimated for each coral, i. Sr-U from the fourteen

corals is significantly correlated with mean annual temperature (r2 = 0.93, Fig. 3-

5 and Table 3.1), in agreement with the prediction of the biomineralization model.

Temperature is predicted from Sr-U according to the following calibration equation

(I 1 standard error of coefficients):

Ternperature(0 C) = (-11 I 1)(SrU - 9) + (28.1 0.1) (3.4)

where 9 is subtracted from Sr-U to center the regression about zero. Whereas equa-

tions (3.2) and (3.3) are defined independently for each colony (i.e. the regression

between Sr/Ca and U/Ca is based on a particular coral record), the temperature sen-

sitivity of Sr-U in equation (3.4) is calibrated with all fourteen corals in our dataset.

The standard deviation of prediction of mean temperature for Sr-U is 0.5 'C and

the root mean square error between observed and predicted temperature is 0.4 'C,

approximately half of the uncertainty based on Sr/Ca alone (Fig. 3-5).

In our ANCOVA, the intercept of the relationship between Sr/Ca and U/Ca varies

greatly among coral colonies (explaining 58% of total Sr/Ca variance). While differ-

ences in the slope of the Sr/Ca and U/Ca relationship (i.e. interaction between coral

colony and U/Ca) are significant, the slopes vary only slightly (explaining 1% of total

Sr/Ca variance). This means that most (84%) of Sr/Ca variance is explained by re-

gression to U/Ca with a single slope applied to all corals, but with different intercepts

(i.e. offsets in Sr/Ca among corals). Including the interaction term is statistically

robust, but it has potentially important ramifications for applying Sr-U outside of

our calibration. The strength of the correlation between Sr/Ca and U/Ca influences

the ordinary least squares slope, and thus, Sr-U could be sensitive to any effect of
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sampling resolution on the r2 between Sr/Ca and U/Ca. Further, if we include the

interaction term, we must define Sr-U as the Sr/Ca ratio predicted at a certain U/Ca

ratio, one that is within the range of our dataset. Extrapolation to higher or lower

U/Ca ratios would lead to small differences in the Sr/Ca to U/Ca slope among corals

having a disproportionally large effect on Sr-U. Alternatively, similar results are pro-

duced when Sr-U is defined without the interaction term (i.e. the slope of Sr/Ca and

U/Ca is the same for all corals), which is implemented by replacing equations (3.3)

and (3.4) with equations (3.5) and (3.6), respectively:

SrUparallel = Sr/Ca - 1.1107U/Ca (3.5)

Temperature(0 C) = (-10 1)(SrUparaiie - 7.7) + (28.8 0.1) (3.6)

where overbars indicate means and Sr/Ca and U/Ca are in units of mmol mol 1 and

bmol mol', respectively.

The theoretical basis for Sr-U thermometry is derived from the general relation-

ships predicted by the model (Fig. 3-3), which are consistent with coral data (Fig. 3-4

and Fig. 3-5). Yet, it is critical to recognize that Sr-U is empirically regressed against

temperature in a core-top calibration, which has two important implications for its

application to corals outside of our calibration dataset. First, seasonal temperature

variability likely contributes, in part, to coral Sr/Ca signals, so that the regression line

fit between Sr/Ca and U/Ca for a particular coral (Eq. 3.2) captures this seasonal

temperature variability in Sr/Ca in addition to variability imposed by vital effects.

For this reason, Sr-U as defined here is correlated with mean annual temperature,

and cannot yet be applied to reconstruct seasonal temperature variability. Second,

we have defined Sr-U over the temperature range 26 'C to 30 *C based on approxi-

mately monthly sampling of Porites skeletons for Sr/Ca and U/Ca ratios calibrated

with the JCp-1 coral standard. Existing Sr/Ca and U/Ca datasets from Diploria and

Porites corals collected in the Atlantic and Pacific basins show correlations and slopes

between these two ratios that are similar to those found in our fourteen corals (Table

3.1), suggesting that the link between Sr/Ca and U/Ca is a consistent feature of coral
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skeletons. However, only corals analyzed in this study are used to calibrate Sr-U to

temperature because previous paired measurements of modern coral Sr/Ca and U/Ca

ratios are not traceable to JCp-1. We hypothesize that Sr-U is robust to a range of

conditions, but we note that its accuracy for different coral genera, timescales, and

mean annual temperatures outside of our calibration dataset should be validated with

modern corals before application to paleo-reconstructions.

Sr-U thermometry uses U/Ca ratios to account for the vital effects on Sr/Ca that

are driven by the carbonate chemistry, specifically the ICO2-], of the ECF. While

ECF [CO2] may be sensitive to seawater [CO~], our model and our coral data

indicate that variability in seawater chemistry does not impact the fidelity of the Sr-

U thermometer. The modeled relationship between pHECF and U/Ca is sensitive to

ambient seawater chemistry (Fig. 3-3c), but the relationships among Sr/Ca, U/Ca,

and temperature - for the most part - are not (Fig. 3-3b). Since the start of the

industrial era, anthropogenic emissions have increased atmospheric CO 2 from 280 to

400 ppmv, which has decreased seawater [CO-] by 40 mol pmol kg~- (Feely et al.,

2009). Our model predicts that this [CO2-] change alone has a negligible effect, less

than 0.03 'C, on the accuracy of Sr-U thermometry (Fig. 3-3), because it is mostly

overridden by changes within the coral ECF. In fact, the corals used in this study

were collected from reefs spanning a range of seawater carbonate chemistry (DeCarlo

et al., 2015a), including a two-fold difference in [CO2-] from 141 ymol kg- in the

bays of Palau to 290 pmol kg-' in the Red Sea (Shamberger et al., 2014; Bernstein

et al., 2016). Despite this wide range, residuals of the Sr-U temperature calibration

are not significantly correlated with seawater [COj-] (r2 = 0.01), further highlighting

that Sr-U is largely robust to changes in ambient seawater carbonate chemistry.

3.4.3 Application of Sr-U to new corals

The standard deviation of temperature prediction associated with Eq. 3.4 represents

the uncertainty of the calibration equation for a precisely known Sr-U value. Appli-

cation of Sr-U to new corals, ones not included in the calibration, must also consider

the uncertainty of the Sr-U values themselves. Here we derive an expression for the
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14 Porites colonies from the Pacific
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thermometer. (a) Sr/Ca and U/Ca relationship of
Ocean and Red Sea. Each panel shows the data for
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Table 1. Summary of coral temperature, Sr/Ca and U/Ca correlations, Sr-U, and Sr/Ca
Coral Location Depth Mean temperature r, m Sr-U Mean Sr/Ca

(m) (VC) (mmol mol")
Jarvis West W490 0.36960S 160.00830

W 7 25.67 (2007-2012) 0.81 1.3 (0.4) 9.19 9.15
Jarvis West W497 0.3689*S 160.0081*W 16 25.67 (2007-2012) 0.64 1.9(0.2) 9.16 9.25
Jarvis East 16 0.3739*S 159.9834*W 5 26.79 (2007-2012) 0.86 1.4(0.1) 9.17 9.29
Jarvis East E500 0.3715*S 159.9823*W 5 26.79 (2007-2012) 0.49 2.2(0.5) 9.12 9.12
Palmyra 2 5.8664*N 162.1095*W 13 28.13 (2006-2010) 0.07 5 (5) 8.98 9.02
Palmyra 3 5.8664*N 162.1095*W 13 28.29 (1998-2010) 0.44 2 (0.4) 8.99 8.89
Red Sea I 22.0314*N 38.8778*E I 28.41 (1998-2009) 0.23 2.3 (0.8) 9.00 9.02
Red Sea 44 22.0314*N 38.87780 E 5 28.41 (2005-2009) 0.46 1.8 (0.8) 8.92 8.97
Palau 23 (Airai) 7.3321*N 134.56020E 4 29.18 (1997-1999) 0.36 2.0(0.5) 8.94 8.89
Palau 221 (Uchelbeluu)* 7.267*N 134.521*E 5 29.26 (2008-2009) 0.79 2.5 (0.5) 8.92 8.66
Palau 229 (Uchelbeluu)* 7.267*N 134.5210E 5 29.26 (2008-2009) 0.79 2.5 (0.5) 8.92 8.82
Palau 180 (Nikko Bay) 7.3248*N 134.4684

0
E 6 30.04 (1997-1999) 0.29 2.0(0.5) 8.83 8.94

Palau 168 (Nikko Bay)* 7.3248*N 134.4684*E 3 30.12 (2008-2009) 0.30 1.8 (0.9) 8.78 8.66
Palau 169 (Nikko Bay)* 7.3248*N 134.4684

0
E 6 30.12 (2008-2009) 0.30 1.8(0.9) 8.78 8.72

Literature data:

[Cardinal el al., 2001]
Bermuda N Rocks 32.5*N 64.67*W 24 23.0 (1971-1984) 0.67 2.1 (0.4)
Bermuda NE Breakers 32.5*N 64.670W 11 22.9(1981-1984) 0.49 1.9(0.6)

[Quinn and Sampson 2002]
New Caledonia 22.48

0
S I 16.470E 3 24.7 (1968-1990) 0.52 1.6(0.2)

[Felis et a.. 2009]
Japan 27.106*N 142.194

0
E 6 24.3 (1982-1994) 0.88 1.6(0.1)

Notes: Coefficient of determination (r!) and slope (in) of Sr/Ca vs U/Ca relationship determined by reduced major axis regression. Parentheses
indicate 2c. All corals show significant relationships between Sr/Ca and U/Ca.
* Palau 168 and 169 (Nikko Bay), and Palau 221 and 229 (Uchelbeluu) were grouped together to calculate Sr-U.

uncertainty of reconstructed temperature by propagating uncertainty of Sr-U values

with the uncertainty of the calibration.

regression, including error terms:

We begin with the general form of linear

Y Uy = (m um)(x ax) + (b t b) (3.7)

The error of the slope term (mx) is calculated by propagation of errors for multi-

plication:

0rnx = nx1 ~- + ( -)
(3.8)

The error of the predicted values (a,,) is calculated by propagating error between

the slope term (mx) and the intercept term (b) using propagation of errors rules for

addition:

Umx+b myx 2((0U2 2
Urnx~~y m + (X2) + U2

x

For Sr-U thermometry (Eq. 3.4), the standard error (standard deviation) of the

slope is 1 (3.5) and the intercept is t 0.1 (0.35). Inserting the Sr-U coefficients
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and uncertainties into Eq. 3.9 gives:

'7 Temperature = (11)(SrU -_)12((3.5)2 + ( O'SrU )2) + 0.352 (3.10)11 SrU - 9

where O7 SrU is the standard error of prediction of Sr/Ca corresponding to U/Ca of

1.1 pmol mol 1 , which is calculated as:

O - 1.1m 2(( 3)2 + ( 7U Ca )2) + ( . 1
9srU = ~n (3.11)

where m, -m, b, ab are the coefficients and their uncertainties, and n is the number

of data points, for ordinary least squares regression between Sr/Ca and U/Ca, and

JU/Ca is the measurement precision of U/Ca. Thus, given a set of Sr/Ca and U/Ca

measurements, the steps to calculate temperature and its uncertainty are as follows.

First, perform ordinary least squares regression between Sr/Ca and U/Ca (Eq. 3.2),

and then calculate Sr-U (Eq. 3.3) and its uncertainty (Eq. 3.11). Next, convert Sr-U

to temperature (Eq. 3.4) and calculate the uncertainty of the derived temperature

(Eq. 3.10).

To illustrate how Sr-U uncertainties propagate to uncertainties in derived temper-

ature, we reconstructed temperature time series using coral "Palmyra 03", the longest

core in our study. We first calculated one Sr-U value for the entire 12-year record

(i.e. the same Sr-U value for this coral reported in Table 1 and Figure 5). Next,

we sub-divided the geochemical data and calculated Sr-U in "windows" ranging in

length from 2 to 6 years (Figure 3-6). When one Sr-U value was calculated for the

full time series, OSr-U was only 0.02 and the uncertainty in derived temperature (0.5

*C) was close to the uncertainty of the calibration equation. However, as shorter

windows were used, 0 SrU increased. When Sr-U was defined in 2-year windows, the

average osrU was 0.12, and the average OrTemperature was 1.4 'C, more than twice the

uncertainty of the calibration alone. These patterns highlight that when Sr-U is used

in down-core reconstructions, improving temperature precision comes at the cost of
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lowering temporal resolution. Applications of Sr-U must therefore carefully weigh

the balance between temperature and temporal resolution depending on the climate

question to be investigated. While there is no strict rule for the shortest window

that can be used (i.e. the highest temporal resolution), our Palmyra reconstruction

indicates that windows of 3-years or longer are required to maintain cx'emperature less

than 1 'C.

31- 6-year resolution 4-year resolution

0 29 -
0

U27 -V -
27 USr-U
25 - -NOAA-01

I I I I I I I I I I I I

31- 3-year resolution 2-year resolution

029-

cf327
C,)

25
I I I I I I I I I I I I I I

1998 2000 2002 2004 2006 2008 2010 1998 2000 2002 2004 2006 2008 2010

Figure 3-6: Sr-U applied in temporal domain. Blue lines indicate Sr-U reconstructed
temperatures for Palmyra 03 coral, thin black indicates monthly NOAA-OI SST for
the 1' by 10 grid-box surrounding Palmyra Atoll, and thick black indicates SST aver-
aged over the same windows as Sr-U. Each panel shows the reconstruction for Sr-U
defined with various window lengths ranging from 6 years (top left) to 2 years (bottom
right). Blue shading indicates the 1l- of temperature prediction for each window. The
uncertainty of temperature prediction increases as window length decreases.

3.4.4 Implications for coral paleothermometry

Coral paleothermometry began with the discoveries that seasonal cycles of J180 and

Sr/Ca correlate with seawater temperature (Weber and Woodhead, 1972; Smith et al.,

1979). The application of 6180 as a direct temperature proxy is limited by its sensi-

tivity to salinity, leaving Sr/Ca as the preferred temperature proxy. However, once

temperature calibrations were developed for many different corals collected across the

tropics, it became clear that a single relationship between temperature and Sr/Ca
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does not exist (Corr~ge, 2006). A variety of approaches have been undertaken to

resolve the non-temperature controls on coral Sr/Ca ratios, including sampling along

maximum growth axes (de Villiers et al., 1994), empirically regressing temperature to

a variety of element ratios (Quinn and Sampson, 2002), correcting with coral growth

rate (Saenger et al., 2008), accounting for "biosmoothing" (Gagan et al., 2012), and

replicating time series (DeLong et al., 2013). However, no one approach has been able

to resolve all of the Sr/Ca vital effects, and Sr/Ca-based reconstructions continue to

be plagued with unexplained decouplings from temperature (Wu et al., 2014).

Here, we present a new coral paleothermometer developed from a bottom-up ap-

proach. Laboratory experiments were used to evaluate the temperature and carbonate

chemistry controls of aragonite Sr/Ca and U/Ca ratios, in the absence of any influ-

ence from the coral polyp (DeCarlo et al., 2015a). The abiogenic partitioning results

were then placed within the framework of a biomineralization model to understand

how corals influence these element ratios while building their skeletons. Importantly,

the model makes testable predictions of the relationships among coral skeleton Sr/Ca

and U/Ca ratios, and pHECF (Fig. 3-3), even though there are no correlations among

these variables in experimentally precipitated abiogenic aragonite (DeCarlo et al.,

2015a). These predictions are borne out in the composition of coral skeletons col-

lected from different reefs across the Pacific Ocean and Red Sea (Fig. 3-4 and Fig.

3-5). The agreement between the model predictions and the coral data show that by

combining information from Sr/Ca and U/Ca ratios, we are capturing the essential

elements of the biomineralization process that influence the elemental composition of

the skeleton.

Sr-U offers a new approach to coral paleothermometry that is based on our un-

derstanding of the biomineralization process. Coral Sr/Ca ratios are sensitive to

temperature, but that influence is subordinate to vital effects, which produce a range

of Sr/Ca-temperature relationships (Fig. 3-3). With the Sr-U thermometer, we in-

corporate information from two element ratios that are sensitive to different aspects

of the biomineralization process - Sr/Ca, which is sensitive to temperature but also

influenced by "vital effects" and U/Ca, which records vital effects but is insensitive
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to temperature. In this way, U/Ca ratios can be used to normalize Sr/Ca ratios

to a single temperature. Sr-U thermometry combines the temperature sensitivity of

Sr/Ca with the vital effect sensitivity of U/Ca to extract temperature information

from coral skeleton with accuracy not obtained by any other geochemical approach

(Fig. 3-5).

The utility of a temperature proxy is judged on its ability to provide accurate

temperature information prior to the beginning of instrumental records. Currently,

reconstruction of SST several centuries or more into the past is performed using

Sr/Ca calibrations developed with modern corals and applied to fossil samples (De-

Long et al., 2010; Hereid et al., 2013; Toth et al., 2015). This approach is subject

to significant uncertainty as a result of the wide variability in Sr/Ca-temperature

relationships derived from coral colonies living at the same temperatures (Fig. 3-4).

For this reason, Sr-U thermometry may prove particularly valuable for predicting

SST from fossil corals that lack a modern calibration period. The ability of the Sr-U

thermometer to accurately predict absolute temperature from different corals with a

single calibration equation, applicable over a broad spatial scale, separates it from

thermometers based on Sr/Ca alone.

Proxy reconstructions of past climate variability assume that the relationship

between the proxy and the climate variable of interest is constant with respect to

space and time. Coral Sr/Ca paleothermometry violates this assumption due to the

influence of vital effects on Sr/Ca-temperature relationships within the skeleton of

single colonies. Decoupling (or "breakdown") of the relationship between Sr/Ca and

SST has been observed in several studies (Marshall and McCulloch, 2002; Felis et al.,

2009; Wu et al., 2014). Perhaps the most drastic Sr/Ca breakdown was observed by

Felis et al. (2009), in which Sr/Ca ratios of a coral from the northwest Pacific implied

that 1995-2000 was the coolest period of the 20th century, when in fact it was the

warmest. Critically, this Sr/Ca breakdown is accompanied by a positive correlation

with U/Ca ratios (Felis et al., 2009). Our model explains this breakdown: corals may

shift along the Sr/Ca and U/Ca trajectory driven by "vital effects", even in the absence

of temperature changes (Fig. 3-3). The positive correlation between Sr/Ca and U/Ca
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reported by Felis et al. (2009) suggests that observed Sr/Ca breakdowns are actually

temporal variations in the coral biomineralization process. This likely explains why

many existing Sr/Ca records diverge from instrumental SST (Grove et al., 2013;

Storz et al., 2013; Wu et al., 2014), and potentially influences Sr/Ca records extended

prior to the instrumental record for which no independent, direct observations of SST

are available for comparison. When Sr/Ca breakdowns are observed during recent

decades, instrumental SST allows us to identify that the Sr/Ca thermometer failed

(Felis et al., 2009; Grove et al., 2013; Storz et al., 2013; Wu et al., 2014). It is

important to recognize, however, that when Sr/Ca is extended into the paleo-record,

a Sr/Ca breakdown cannot be distinguished from a true temperature change unless

coupled with U/Ca ratios to calculate Sr-U.

3.5 Conclusion

Coral skeletons are promising archives for high-resolution reconstructions of climate

changes in the ocean over the past several millennia. However, application of geochem-

ical temperature proxies - such as Sr/Ca - has proven difficult due to the confounding

influence of physiological vital effects. Here we present a new coral paleothermome-

ter, Sr-U, which uses U/Ca ratios to account for the influence of vital effects on

Sr/Ca-temperature relationships. This approach significantly improves the accuracy

of reconstructed temperature from coral skeleton. We calibrated Sr-U to temperature

using a new dataset of Sr/Ca and U/Ca ratios measured in fourteen corals collected in

the Pacific Ocean and the Red Sea spanning a mean annual temperature range of 26

'C to 30 'C. Sr-U thermometry has a standard deviation of prediction of only 0.5 'C,

which is twice the accuracy compared to using Sr/Ca alone. Coral skeleton Sr/Ca and

U/Ca ratios are routinely measured by ICP-MS, making the Sr-U thermometer read-

ily available to perform temperature reconstructions. With the improved accuracy

and applicability of a single calibration equation to individual corals collected from

different locations, Sr-U thermometry has great potential for extending our limited

instrumental temperature records in the ocean.
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Chapter 4

Coral bioerosion is accelerated by

ocean acidification and nutrients

4.1 Abstract

Coral reefs exist in a delicate balance between calcium carbonate (CaCO 3) produc-

tion and CaCO3 loss. Ocean acidification (OA), the C0 2-driven decline in seawater

pH and CaCO3 saturation state (Q), threatens to tip this balance by decreasing cal-

cification, and increasing erosion and dissolution. While multiple CO 2 manipulation

experiments show coral calcification declines under OA, the sensitivity of bioerosion

to OA is less well understood. Previous work suggests that coral and coral reef

bioerosion increase with decreasing seawater Q. However, in the surface ocean, Q

and nutrient concentrations often covary, making their relative influence difficult to

resolve. Here, we exploit unique natural gradients in Q and nutrients across the Pa-

cific basin to quantify the impact of these factors, together and independently, on

macrobioerosion rates of coral skeletons. Using an automated program to quantify

macrobioerosion in 3-D computerized tomography (CT) scans of coral cores, we show

DeCarlo T.M., Cohen A.L., Barkley H.C., Cobban Q., Young C., Shamberger K.E., Brainard
R.E., Golbuu Y., 2015. Coral macrobioerosion is accelerated by ocean acidification and nutrients.
Geology 43 (1), 7-10.
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that macrobioerosion rates of live Porites colonies in both low-nutrient (oligotrophic)

and high-nutrient (>1 ptM nitrate) waters increase significantly as Q decreases. How-

ever, the sensitivity of macrobioerosion to Q is ten times greater under high-nutrient

conditions. Our results demonstrate that OA (decreased Q) alone can increase coral

macrobioerosion rates, but the interaction of OA with local stressors exacerbates its

impact, accelerating a shift toward net CaCO 3 removal from coral reefs.

4.2 Introduction

Tropical coral reefs are oases of productivity that support some of the world's most

biologically diverse ecosystems and important fisheries. High productivity by sessile

organisms on reefs requires formation of hard calcium carbonate (CaCO 3) substrate in

the euphotic zone, where photosynthesis can occur. This is achieved through biogenic

calcification by reef organisms such as corals, coralline algae, echinoids, foraminifera,

and mollusks which, together with precipitation of abiogenic CaCO 3, build and ce-

ment the reef framework. Coral reef frameworks are degraded through bioerosion, the

biologically mediated breakdown and dissolution of CaCO 3 skeletons, as well as nat-

ural dissolution and export of sand and rubble off the reef (Glynn, 1997). Today, net

CaCO3 accretion typically exceeds, albeit barely, net erosion and dissolution, allowing

reefs to remain near the sea surface (Stearn et al., 1977; Hubbard et al., 1990).

Of mounting concern is that ocean acidification (OA), the decrease in ocean pH

caused by absorption of anthropogenic CO2, could shift this delicate balance toward

a negative CaCO 3 budget where CaCO 3 loss exceeds CaCO production. Addition of

CO2 to seawater decreases pH and lowers the CaCO 3 saturation state (Q), creating

a less favorable environment for CaCO 3 precipitation. Aragonite is the polymorph

of CaCO 3 that corals use to build skeletons and the CaCO3 saturation state with

respect to aragonite (QA,,) is therefore a useful quantity in identifying how OA

impacts the reef CaCO 3 budget. CO2 laboratory manipulation experiments show

that as Arag decreases, rates of calcification by corals and coralline algae generally

decline (Kroeker et al., 2010; Chan and Connolly, 2013). Additionally, laboratory CO 2
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manipulation experiments show that rates of bioerosion of coral skeleton increase with

decreasing pH (Tribollet et al., 2009; Wisshak et al., 2012; Reyes-Nivia et al., 2013).

The combination of declining calcification and increasing bioerosion under low pH

and QArag implies that OA alone could drive coral reefs toward a state of net CaCO3

loss. However, the impact of OA on coral reef bioerosion has not been unequivocally

demonstrated outside of the laboratory because in the tropical oceans, low QArag

generally covaries with elevated nutrients, and high nutrient concentrations can drive

high rates of coral bioerosion in the absence of acidification (Risk et al., 1995; Edinger

et al., 2000; Holmes et al., 2000; Tribollet and Golubic, 2005).

We exploited natural gradients in QAra, and nutrient concentrations across the

Pacific basin to investigate the independent and interactive effects of ocean acidifica-

tion and nutrients on macrobioerosion rates of live colonies of the Indo-Pacific coral

Porites spp. While macrobioerosion (>1 mm boring diameter including bivalves,

worms, and sponges) of coral skeleton is a fraction of total CaCO3 bioerosion on a

reef (Glynn, 1997), independent studies show that macrobioerosion occurs in pro-

portion to total bioerosion of coral rubble (Holmes et al., 2000) and experimental

blocks of coral skeleton (Chazottes et al., 2002), and can thus be linked to total reef

bioerosion. Macrobioerosion also affects the longevity of individual coral colonies, in-

creasing their susceptibility to breakage and dislodgment by waves and storms (Scott

and Risk, 1988; Chen et al., 2013).
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4.3 Materials and Methods

A total of 103 skeletal cores (3-7 cm diameter) were collected using underwater pneu-

matic/hydraulic drills from live Porites spp. coral colonies (~40-100 cm tall) that

appeared visually healthy at 11 sampling locations within 7 reef systems across the

Pacific basin (Fig. 4-1; Table 4.1). Cores were drilled downwards along the axis

of maximum growth from approximately the center of the colonies, to an average

depth of -35 cm. Across the Pacific basin, strong natural gradients exist in Arag

and nutrient concentrations (Fig. 4-1), and in general, this pattern is supported by

in situ sampling of the carbonate chemistry and dissolved inorganic nutrients of reef

seawater (Table 3.1). Two eastern Pacific reefs (Pearl Islands and Taboga) in the

Gulf of Panama are exposed to local upwelling water of low QAag and high nutri-

ent concentrations (D'Croz and O'Dea, 2007; Manzello et al., 2008). In the central

Pacific, Jarvis Island, Palmyra Atoll, and Kingman Reef are located near the mar-

gin of the Pacific cold-tongue, where wind-driven upwelling along the Equator brings

water to the surface that is relatively acidic and nutrient-rich compared to surround-

ing water. Rose Atoll and Wake Atoll are not exposed to cold-tongue waters and

are characterized by high EArag, low nutrient conditions. On Palau, in the tropical

western Pacific, a strong natural gradient in QArag exists across the archipelago, at

persistently low nutrient concentrations (Table 4.1) (Shamberger et al., 2014). This

reef system provides a unique opportunity to investigate the effect of low QArag on

coral macrobioerosion in the absence of the confounding effect of elevated nutrients.

To characterize QArag and nutrient concentrations in reef seawater, samples were

collected during multiple years, seasons, and times of day at the majority of our eleven

reef locations (Table 4.1). Nevertheless, some degree of uncertainty remains because

accurate estimates of the average QArag and nutritional environment over the lifetime

of the coral requires sampling on all relevant timescales, including diurnal, seasonal,

inter-annual and decadal. Comparison with other in situ datasets suggests that this

uncertainty is small relative to the range captured by our study sites (details provided

in the Supplementary Information).

88



Figure 4-2: Macrobioerosion (by
lithophagid bivalves in this particular
core) in a CT scan of a Porites skele-
ton core from Panama. (A-D), axial
cross-sections showing measurement
of % volume bioeroded. (A), Density
variability (relatively light shading
indicates high density) shows ~200
individual corallites (dark spots) and
three borings (arrows). The image in
(A) was filtered to reduce density vari-
ability of corallites in (B), converted
to binary (coral / surrounding air) in
(C), and fit with an ellipse to identify
area of borings (black regions within
yellow circle) in (D). (E), Sagittal
cross-section showing annual density
banding and borings. (F), Surface
rendering showing outside of the
core. (G), translucent surface showing
borings in the center of the core (blue)
that are visible in the cross-section in
(E) but not in the outside surface of
(F). Scale bar in upper left is 1 cm.

We developed an automated computer program to quantify calcification and mac-

robioerosion rates in coral skeleton cores scanned by computerized tomography (CT).

The program quantifies coral extension rate following the methods of Cantin et al.

(2010), with modification to automatically trace the 3-dimensional growth paths of

individual corallites within the core. This enables growth information to be collected

from the entire 3-D core. Bulk skeletal density was determined from CT scans by

comparison to coral standards, cylinders of coral skeleton whose density is calculated

from mass and volume. Annual coral calcification rate (g cm- 2 yr- 1 ) was calculated

as the product of skeletal density (g cm-3) and extension rate (cm yr- 1). The auto-

mated program is described in detail in the Supplementary Information. We define

"bioerosion rate" as the average rate at which CaCO3 is removed from the colony

over the timespan represented by the core:

bioerosion rate (g CaCO 3 cm-2 year 1 (volume bioeroded) (skeletal density)

(coral surface area)(core timespan)
(4.1)
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Equation 4.1 is equivalent to the product of % volume bioeroded (Fig. 4-2) and coral

calcification rate. Converting % volume bioeroded to a mean bioerosion rate corrects

potential biases caused by differences in growth rates and density amongst corals.

The % volume bioeroded data were fit with Arag as the predictor variable using

a generalized additive model for location, scale, and shape with a beta zero-inflated

distribution (GAMLSS-BID) (Rigby and Stasinopoulos, 2005). GAMLSS allows both

the mean % volume bioeroded and the skewness toward zero values (i.e. cores without

macrobioerosion) to depend on Arag and nutrients. Sensitivity of macrobioerosion

to QArag between low- (<1 MM nitrate) and high- (>1 pM nitrate) nutrient reefs was

evaluated by comparing slopes of ordinary least squares regressions fit to the reef

mean macrobioerosion rates. Heteroscedasticity of the data precluded significance

tests using linear regression, but did not invalidate the regression coefficients.

4.4 Results and Discussion

Using only those cores collected from low-nutrient reefs spanning a natural gradient in

QArag we first quantified the impact of ocean acidification on macrobioerosion without

the confounding influence of nutrients (Fig. 4-3). Our results show a significant (p <

0.05) increase in macrobioerosion with decreasing seawater QArag. This result confirms

that ocean acidification alone increases rates of coral macrobioerosion, consistent with

laboratory experiments that show increased sponge (Wisshak et al., 2012) and micro-

(Tribollet et al., 2009; Reyes-Nivia et al., 2013) bioerosion of coral skeleton under

simulated OA/low-nutrient conditions. In our corals, macrobioerosion rates increase

by 10 mg CaCO 3 cm- 2 yr-1 per unit decrease of QArag. Other field studies have

reported high rates of bioerosion where seawater QArag is relatively low. For example,

in the eastern tropical Pacific, high bioerosion rates (Reaka-Kudla et al., 1996) were

measured on coral reefs bathed with naturally low QArag upwelled water (Manzello

et al., 2008). Similarly, the density of macrobioeroders observed at the surface of live

Porites colonies increased along a natural acidification gradient caused by CO 2 venting

onto reefs in Papua New Guinea (Fabricius et al., 2011). Low-pH seawater caused
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by submarine discharge was also linked to higher incidence of bioerosion in Porites

astreoides colonies in the Yucatan (Crook et al., 2013). In these studies however, low

pH and low QAag either covary with high nutrient concentrations (Manzello et al.,

2008; Crook et al., 2013), or nutrient data were not reported (Fabricius et al., 2011),

making it difficult to attribute increased bioerosion or bioeroder density solely to OA.

Using a second set of cores, collected from high-nutrient reefs spanning a natural

gradient in QAag, we investigated the combined impact of ocean acidification and

elevated nutrients on coral macrobioerosion rates (Fig. 4-3). Our results show that

sensitivity of macrobioerosion rate to QArag increases by an order of magnitude - from

10 to 110 mg CaCO 3 cm- 2 yr- 1 per unit decrease of QArag - from low-nutrient reefs to

high-nutrient reefs. The GAMLSS-BID analysis showed a significant effect of QArag

on rnacrobioerosion within high-nutrient reefs, and a significant effect of nutrients

when all reefs were included with QArag as a continuous predictor and nutrients as a

categorical predictor. Our observation that nutrients accelerate coral bioerosion rates

is consistent with that reported for live corals (Sammarco and Risk, 1990; Risk et al.,

1995; Edinger et al., 2000; Holmes et al., 2000; Chen et al., 2013), coral rubble (Holmes
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et al., 2000), and experimental blocks of coral skeleton exposed on high-nutrient reefs

(Chazottes et al., 2002; Tribollet and Golubic, 2005).

There are several potential mechanisms for coral macrobioerosion rates to increase

with decreasing QAag and with increasing nutrients. First, relatively acidic seawater

may increase the efficiency with which coral skeleton is dissolved by bioeroding or-

ganisms. For example, boring algae that infest live coral colonies, and increase their

susceptibility to macrobioerosion, drive dissolution along the most soluble crystal sur-

faces (Kobluk and Risk, 1977). Second, the skeletons in relatively low QArag may be

more soluble than those formed in higher QArag waters. However, the role of coral

skeletal density in determining sensitivity to macrobioerosion has been considered

previously, with mixed results (Highsmith, 1981; Sammarco and Risk, 1990), and we

found no significant effect of skeletal density on macrobioerosion in the GAMLSS-

BID analyses. Nor did we find a relationship to water depth or reef type (Table 4.1).

Third, nutrient enrichment may stimulate primary productivity, elevating particulate

food availability and turbidity, making nutrient-rich reefs favorable environments for

filter-feeding bioeroders. Thus, it is possible that productivity or the concentration

of particulate organic matter, rather than nitrate concentration, is the variable di-

rectly affecting bioerosion rates. If this is the case, more of the variance in bioerosion

rates may be attributable to food availability than nitrate concentration because the

standing stock of nutrients does not necessarily represent the rate of productivity or

the amount of particulate organic matter in the water column. In the semi-isolated

bays of Palau, for instance, it is possible that bioeroders benefit from local production

that maintains consistently low nitrate concentrations but provides particulate food

for filter-feeding bioeroders, and that the relatively low QAra, of these waters has a

less important influence on bioerosion than suggested by our results based on CO 2

chemistry and nitrate concentrations alone.

Bioerosion is a natural process on coral reefs that supplies carbonate sediments

critical to the cementation of the reef (Glynn, 1997), and may contribute to propa-

gation of certain coral species that reproduce by fragmentation (Tunnicliffe, 1981).

However, calcification must exceed bioerosion in order for reefs to grow and persist
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in the euphotic zone. Ocean acidification will drive a decrease in rates of calcification

by corals and coralline algae, and ocean warming will exacerbate these impacts by

inducing coral bleaching and mortality (Hoegh-Guldberg et al., 2007). If decreased

calcification co-occurs with increased bioerosion, the CaCO 3 balance will shift more

rapidly toward a negative CaCO budget.

4.5 Conclusions

The results of this study show that the combination of OA (low QArag) and nutrient

loading is ten times more effective at driving coral macrobioerosion than OA alone.

Over the next century, QArag of reef seawater will be governed by the ocean's ab-

sorption of anthropogenic CO 2, and local and regional variability in biogeochemical

processes (e.g., net photosynthesis and net calcification). However, anthropogenic

nutrient loading is already a major threat to coral reef ecosystems, with at least

one quarter of coral reefs impacted by coastal development and watershed pollution

(Burke et al., 2011). Curtailing global CO 2 emissions, the primary driver of ocean

acidification, cannot be tackled at a local level. However, effective local management

strategies can limit anthropogenic nutrient fluxes to coral reefs, and are urgently

needed to slow the shift to net CaCO3 removal for corals, and potentially coral reef

ecosystems, worldwide.

4.6 Supplementary Information

4.6.1 Details of Carbonate System Chemistry Measurements

Mean QA,, in the Gulf of Panama was calculated previously from in situ seawa-

ter samples collected during the day and night during one wet and one dry season

(Manzello et al., 2008; Manzello, 2010). Seawater samples from the following sites

were analyzed for both alkalinity/DIC and dissolved inorganic nutrients. On Jarvis,

Kingman and Palmyra, seawater samples were collected over the course of the day

(9 AM to 5 PM), over multiple years (2006, 2008, 2010), primarily in springtime
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(March-May). Our Jarvis data include additional Fall samples (September, 2012).

To assess the representativeness of our samples of average conditions, we compared

pH calculated from alkalinity and DIC analyses with pH data reported by Price et al.

(2012), who deployed automated, in situ SeaFet pH sensors on the same reefs over

diurnal and seasonal cycles (Table DR1). Our values are within error of the Price

et al. (2012) values for each reef.

On Rose Atoll, seawater samples were collected in springtime of 2006, 2008, 2010,

and 2012. Mean QAag (4.10) calculated from in situ alkalinity and DIC is consistent

with the climatology (4.19) calculated from GLODAP/World Ocean Atlas. 6 out

of 103 cores were collected from Rose Atoll and Wake Atoll. Any uncertainty in

our average QArag estimate has a small influence on our statistical model, and our

significance tests and our conclusions would remain the same if data from Rose Atoll

and Wake Atoll were excluded.

Within Palau, QArag at each sampling site was calculated from alkalinity/DIC

analyses of seawater samples collected from 6 AM to 6 PM over multiple tidal cycles,

seasons and years. These data are reported in Shamberger et al. (2014). To assess

the representativeness of our daytime samples of the average diurnal QAag, we com-

pared our Palau QArag values with data recently generated from seawater samples

collected every two hours for 4 consecutive days in November 2013 on both a low-pH

reef and a barrier (ambient pH) reef. Daytime QArag was not significantly different

from nighttime QAag over this sampling period (Table DR2; K.E. Shamberger 2014

unpublished data), and our values are within error. This suggests that sampling from

dawn to dusk does not bias our estimates of the mean QArag of our Palau sample

sites.

4.6.2 Computerized Tomography (CT) Scans

A Siemens Volume Zoom Spiral computerized tomography (CT) scanner at Woods

Hole Oceanographic Institution was used to image the cores following the methods

described in Saenger et al. (2009); Cantin et al. (2010); Crook et al. (2013). The

standard curve used to convert CT scan x-ray attenuation to density was constructed
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from nine, 3-cm diameter, dried Porites cores (Fig. DR1). Absolute bulk skeletal

density of each standard, ranging from 0.809-1.537 g cm-3, was calculated as the

quotient of measured core mass and volume.

4.6.3 Automated Analysis of CT Scan Data to Quantify Coral

Skeletal Parameters (Extension, Density, Calcification)

Calcification rate (g cm- 2 yr- 1) was calculated as the product of extension of the

coral colony surface during one year (cm yr-1) and density of skeleton over the year's

extension (g cm- 3 ) (Barnes and Lough 1993).

Corallites were identified in each image by finding local density minima, which

are the porous centers of calices surrounded by dense thecal walls. Images were first

filtered with a 2-dimensional Gaussian filter (standard deviation 0.29 mm and clipped

at 0.97 mm), which resulted in one local density minima per corallite (Fig. DR2). A

Euclidian-distance nearest neighbors approach was used to assign each voxel within

the core to the nearest corallite. The mean density of all voxels in one image assigned

to a given corallite was taken as the corallite density in that image. Corallites were

connected throughout the core by finding the nearest corallites in consecutive images.

Annual density bands were identified by visual inspection of slabs digitally cut

along the vertical growth axis of the cores (Fig. DR2). Local density minima (an-

nual bands) were identified in several locations in each slab and repeated in 4 slabs

throughout the core. Low-density bands were mapped in 3-dimensions by interpolat-

ing between the coordinates where the bands were marked.

Corallite density tracks were used to objectively define the locations of annual

density bands. For each identified band, all corallites passing through the band were

searched for local density minima within 1 mm of the identified band location. If a

density minimum was found, the annual band at the location of the given corallite was

shifted to match the density minimum. After making adjustments for all corallites

passing through a band, the new coordinates of the band were interpolated to map

the band in 3 dimensions. Bands were smoothed by a 2-dimensional Gaussian filter
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(standard deviation 0.97 mm and clipped at 0.97 mm).

For each year's growth (region between 2 low-density bands), all corallites were

identified that extended in the core throughout the full year. A vector was fit to the 3-

dimensional coordinates every 2 mm of vertical growth with the origin set to the first

corallite coordinate, the vector direction determined by singular value decomposition

and the magnitude (length) determined by Euclidian distance. The sum of lengths

of all vectors fit on a corallite's path between annual bands was taken as the annual

extension rate of that corallite. Calcification rate was determined for each corallite as

the product of annual extension and density, and all corallite calcification rates were

averaged to determine the annual whole-core calcification rate. All image analyses

were conducted with MATLAB 2012a.

TABLE DR1. PH MEASURED ON CENTRAL PACIFIC REEFS
Reef Site Our pH Price et al. (2012) pH
Jarvis Island 7.98 0.02 8.005 * 0.013
Palmyra Atoll S forereef 8.007 0.011 7.995 * 0.012
Kingman Reef 8.004 0.012 8.025 0.009

TABLE DR2. DIURNAL VARIABILITY OF ARAGONITE SATURATION STATE (0) IN PALAU
Reef Site Daytime 0 10 Nighttime 2 10 Average Diurnal 0 10
Low pH bay reef 2.77 * 0.05 2.74 0.20 2.75 * 0.22
Barrier reef 3.72 0.27 3.57 0.27 3.66 0.28

co~
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Figure DR1. Standard curve used to convert CT attenuation (Hounsfield Units)

to bulk coral skeletal density (g cm- 3 ).
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Figure DR2. Calcification rate analysis in a CT scan of a Porites core. (A), Axial

cross-section of the core showing corallites (dark regions, low density) surrounded

by skeletal walls (white, high density). (B), Blue dots show the identification of

corallites by finding local density minima. Blue lines show a Voronoi diagram drawn

around the corallites. (C), A slab digitally cut in the sagittal plane. Near-vertical

light and dark streaks are paths of individual corallites through the core. Horizontal

dark (low density) bands were interpreted as indicating annual growth. The first

two low-density bands have been identified in the figure, as indicated by the white

circles. (D), A 3-dimensional reconstruction of annual banding and corallite paths.

Horizontal sheets are the mapped and interpolated annual low-density bands, and

have been shaded to aid visualization of 3-dimensional shape. Black lines indicate

paths of individual corallites traced through the core. For clarity, the image is viewed

from an oblique angle looking slightly downward, and only 20% of all corallite paths

are plotted. Scale bar is 1 cm and the core is 30 cm in height.
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Chapter 5

Community production modulates

coral reef pH and the sensitivity of

ecosystem calcification to ocean

acidification

5.1 Abstract

Coral reefs are built of calcium carbonate (CaCO 3) produced biogenically by a di-

versity of calcifying plants, animals and microbes. As the oceans warm and acidify,

there is mounting concern that declining rates of calcification could shift coral reef

CaCO3 budgets from net accretion to net dissolution. We quantified net ecosystem

calcification (NEC) and production (NEP) on Dongsha Atoll, northern South China

Sea, over a two-week period that included a transient bleaching event. Peak daytime

pH on the wide, shallow reef flat during the non-bleaching period was 8.5, signifi-

cantly elevated above that of the surrounding open ocean (8.0-8.1) as a consequence

DeCarlo T.M., Cohen A.L., Wong G.T.F., Shiah F.-K., Lentz S.J., Davis K.A., Shamberger
K.E.F., Lohmann P. (submitted). Community production modulates coral reef pH and the sensitivity
of ecosystem calcification to ocean acidification. Journal of Geophysical Research - Oceans
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of high daytime NEP (up to 120 mmol C m- 2 hr-'). Diurnal averaged NEC was 390

90 mmol CaCO3 m- 2 day- 1 , higher than any other coral reef studied to date de-

spite comparable calcifier cover (25%) and relatively high fleshy algal cover (19%). A

transient coral bleaching event linked to elevated temperatures significantly reduced

daytime NEP by 31 mmol C m-2 hr-. pH on the reef flat declined by 0.2 units,

causing a 40% reduction in NEC in the absence of any changes in the pH of the

surrounding open ocean. Our findings highlight the interactive relationship between

the carbonate system chemistry of coral reef ecosystems and rates of ecosystem pro-

duction and calcification, which are in turn impacted by ocean warming. As the open

ocean surrounding coral reefs warms and acidifies over the 21st century, the health

and composition of the reef benthic community will play a major role in determining

on-reef conditions that will in turn dictate the ecosystem response to climate change.

5.2 Introduction

Coral reef ecosystems feed millions of people worldwide, provide shoreline protection,

and generate trillions of dollars annually in tourism revenue (Costanza et al., 2014).

Yet coral reefs are threatened by the rapid acidification of the oceans. Since the

start of the industrial era, atmospheric CO2 concentrations have increased at rates

unprecedented for hundreds of millions of years (H6nisch et al., 2012; Zeebe et al.,

2016), and one quarter of anthropogenic CO 2 emissions have already been absorbed

into the oceans (Sabine et al., 2004), driving down ocean pH and QArag, a process

known as ocean acidification (Doney et al., 2009). Multiple studies have investigated

coral reef calcification (net ecosystem calcification, or NEC) with techniques ranging

from flow respirometry to inventories of species present and their individual calcifica-

tion rates (Odum and Odum, 1955; Kinsey, 1985). These studies consistently report

correlations between NEC and reef-water QAag, and these relationships are used to

forecast when ocean acidification will shift reefs from net accretion to net dissolution

(Ohde and van Woesik, 1999; Shamberger et al., 2011; Shaw et al., 2012; Bernstein

et al., 2016; Muehllehner et al., 2016). Multi-decade declines of NEC have already
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been observed on the Great Barrier Reef and attributed primarily to ocean acidifica-

tion (Silverman et al., 2012, 2014). Supporting this assertion, Albright et al. (2016)

artificially manipulated reef-water pH to levels of the pre-industrial open ocean, and

found that NEC increased. If these results are representative of coral reefs worldwide

they imply that ocean acidification has already decreased NEC rates, and they raise

concerns that this trend will endure into the next century as open-ocean pH continues

to decline.

Such concerns are rooted in the assumption that reef-water pH tracks open-ocean

pH. While the chemistry of open-ocean waters surrounding coral reefs appears to

exert at least some influence on reef-water chemistry (DeCarlo et al., 2015a; Yeakel

et al., 2015), local benthic community metabolism (calcification and production) often

drives significant changes (Shaw et al., 2012; Cyronak et al., 2014; Shamberger et al.,

2014). NEC represents the balance between calcification and dissolution, whereas

net ecosystem production (NEP) represents the balance between photosynthesis and

respiration:

NEC: Ca2+ + CO2- CaCO3  (5.1)

NEP: CO2 + H20 # CH 20 + 02 (5.2)

As a result of community metabolism, the pH of water bathing corals may be higher

(Ohde and van Woesik, 1999) or lower (Shamberger et al., 2014) than, and may

not respond linearly to (Cyronak et al., 2014), the pH of the open ocean. Accurate

predictions of coral reef futures therefore require an understanding of the processes

that control rates of community metabolism, reef-water carbonate chemistry, and any

feedbacks between the two.

Chemical feedbacks between NEP and NEC are expected based on their relation

with the seawater carbonate system. Community metabolism perturbs the carbonate

system equilibria:

120 + CO2 # H2CO3 # H+ + HCO- # 2H+ + C02- (5.3)
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where CO2 (CO-) is produced from calcification (photosynthesis) because the re-

moval of CO2- (CO 2 ) shifts the carbonate system (Eq. 5.3) to the left (right). There-

fore, NEC and NEP are linked because products of one are reactants of the other.

This feedback system has potentially important ramifications for the sensitivity of

coral reefs to ocean acidification. Photosynthesis by seagrass and algae has been pro-

posed as a potential mechanism buffering coral reefs from ocean acidification because

it removes CO 2 from reef water (Kleypas et al., 2011; Smith et al., 2013; Andersson

et al., 2014). However, the role of this chemical feedback system in modulating reef-

water carbonate chemistry has so far been difficult to isolate because NEC, NEP, and

reef-water pH are usually dominated by diurnal cycles that create strong correlations,

but do not necessarily reflect causation (Andersson and Mackenzie, 2011). Identify-

ing the mechanistic, interactive links between community metabolism and reef-water

carbonate chemistry is key for understanding the sensitivity of coral reef ecosystems

to CO2-driven climate change, including any compounding effects of ocean warming

or changes in benthic community structure or health.

In this study, we investigated the drivers of reef-water carbonate chemistry and

the metabolic rates of NEC and NEP on Dongsha Atoll, a remote coral reef in the

northern South China Sea (SCS) (Fig. 1). Here, relatively high abundances of benthic

flora and fauna on a wide and shallow reef flat impose dramatic changes in reef-water

carbonate chemistry. We evaluate potential drivers of NEC, including elevated reef-

water pH, coral community structure, and local oceanographic effects. Further, we

tracked the community metabolism response to a transient, week-long coral bleaching

event, which provided a novel opportunity to identify the sensitivity of reef-water car-

bonate chemistry, and NEC and NEP to changes in community health and function.

Overall, we explore potential links between NEC and NEP arising from chemical

feedbacks within the seawater carbonate system, and we consider how changes in

benthic community metabolism will modulate the sensitivity of coral reef ecosystems

to future open-ocean acidification.
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5.3 Methods

5.3.1 Experimental design

The SCS is a tropical to sub-tropical ocean basin extending from the equator to the

Tropic of Cancer in the far western Pacific Ocean (Fig. 5-1). A monsoon climate

dominates the wind field in this region, with southwesterlies during the wet season

from May to October, and northeasterlies during the dry season from November to

April (Wong et al., 2007). Surface ocean currents follow the wind pattern, with a

basin-scale anti-cyclonic gyre in summer and a cyclonic gyre in winter (Shaw and

Chao, 1994). Within the centers of these gyres, high sea surface temperatures (> 22

'C throughout the year) produce a sharply defined pycnocline (Shaw and Chao, 1994;

Gawarkiewicz et al., 2004), maintaining strong stratification and oligotrophic surface

waters (Wong et al., 2007). Coral reef ecosystems are abundant in the coastal waters

of the South China Sea, including a portion of the Coral Triangle, the epicenter of

coral reef biodiversity. Our study was conducted on Dongsha Atoll (20.8'N, 116.7'E),

a ring-shaped coral reef ecosystem on the northern SCS shelf. On the western margin

of the atoll is Dongsha Island, which is bordered to the north and south by 5 m deep

channels into the large lagoon. Fringing the rest of the atoll is an extensive reef flat

that is 1-3 m deep (Fig. 5-1).

We quantified ecosystem production and calcification rates based on tracking

changes in carbonate chemistry as seawater flows from the open ocean, across the

shallow reef flat of Dongsha Atoll. In June 2014, we collected seawater samples both

offshore and on the eastern reef flat, while simultaneously characterizing the flow of

water with current profilers. Additional data were collected to describe the benthic

cover, and the physical setting on the reef flat, including photosynthetically active

radiation (PAR), temperature, wind speed, and sea level. The instruments deployed

and their roles in the experimental design are listed in Table 5.1. We also observed

a transient coral bleaching event on the reef flat in late May and early June 2014, in

response to a 5 'C temperature rise over the course of just 2-3 weeks (Fig. S). Al-

though we did not precisely quantify the extent of bleaching, all of the massive Porites
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Figure 5-1: Map of Dongsha Atoll in C
the northern South China Sea. (a) -
Regional map, (b) satellite image of
Dongsha Atoll, and (c) study loca-
tion and sampling stations on the V
eastern margin of the atoll. In (c), 100*E 110*E 120'E 130 E

bathymetry data from Shih et al. 0
(2011) are overlaid on the satellite
imagery. Offshore samples were col-
lected at station ED, located 80 km 1
east of the atoll, and fore reef sam- W - 4 E
ples were collected at station El. In- ED

struments were deployed across the 8k
reef flat (Table 1), but the primary 10
location for reef-water sampling was 12
E5, located 2 km west of the reef 1crest. 14

colonies, which compose >30% of coral cover at station E5, appeared bleached. The

bleaching event lasted less than 2 weeks, after which all of the coral colonies recovered

their pigmentation.

Ecological surveys were conducted at 8 stations across the eastern reef flat be-

tween 29 May and 7 June 2015, following a protocol similar to previously established

methods for characterizing benthic cover on coral reefs (Golbuu et al., 2007). At each

station, 5x 50 m transect tapes were laid out and the seafloor was photographed every

meter along each tape (0.5 m by 0.5 m image area), for a total of 250 photographs

per station. Transects were oriented N-S (along-shore) and spaced 5 m apart (cross-

shore). Images were analyzed using Coral Point Count (Kohler and Gill, 2006) with

5 randomly placed points per image identified to coral genera or benthic substrate

type (Table 5.2).

Bathymetry surveys were conducted across the reef flat between station E5 and the

reef crest. A Reefnet Sensus Ultra pressure logger recording every 1 s was attached to

a lead weight and dragged along the bottom following an E-W (cross-shore) transect

line. A Garmin 650 logging GPS was attached to a buoy and maintained above the

pressure logger. We synced the depth and location data using the time logs from
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both the pressure logger and the GPS. The depth data were adjusted to mean sea

level based on the local sea level at the time of surveying.

Table 1. Experimental design and instrument deployments.

Site Location Depth (m) Instruments / activity Purpose

ED 20.699*N 117.721 *E 1200 OR3 water sampling station Characterize depth profile of nutrients for comparison of
temperasure-nitrate relationship to that on the fore reef

El 20.7008"N 1 16.922E 25 Seafet pH, SBE-37 T/S/0 2, Characterize chemistry of source-water to the reef, capture
E I 20.008N 16.952* 23 SRE-56 on buoy at 10 m depth / internal wave signal

OR3 water sampling station

8 

SAMI pH, SBE-37 T/S T/S properties of incoming water to the reef flat for sTA and

E2 20.6993*N 116.91860E 0.8 eagauP /BBenthic survey sDIC calculations, local sea level from pressure / describe
benthic community

E2.5 20.6992*N 116.9163 0E 0.8 Benthic survey Describe benthic community

E3 20.6991*N I 16.9140*E 0.7 Nortek Aquadopp ADP / Validate assumption of constant flow direction across reef flat
Benthic survey transect / describe benthic community

E3.5 20.6990*N I 16.9109"E 0.7 Benthic survey Describe benthic community

E4 20.6990'N II 6.90770E 0.8 Seagauge P / Benthic survey Local sea level from pressure / describe benthic community

E4.5 20.699l*N 116.9051*E 0.9 Benthic Survey Describe benthic community

RAS, SAMI pH, SBE-37 T/S, Collect water samples via RAS for NEC/NEP calculations, pH
Nortek Aquadopp ADP, Onset to validate TA/DIC collected in RAS. T/S properties of RAS

ES 20.6993*N I 16.9024
0
E 2.0 Hobo U26 02, Wetlabs ECO- samples to calculate p, 02 to validate NEP, ADP to estimate

PAR, eKo meteorological reef water residence time, meteorological station to estimate
station / Benthic survey CO2 gas exchange rates / describe benthic community

E6 20.6993*N I 16.8945 0E 2.6 Seagauge P / Benthic survey Local sea level from pressure / describe benthic community

Table 2. Benthic survey results. Benthic type reported as % areal cover; coral

genera reported as % of total live coral cover.

Site CCA Fkshy Seagrass Live Acropora Paes. Poriee Slylopkera
(%) algae (%) (%) coral (%) (%) (%) (%) (%)

E2 15 26 2 6 15 0 2 83
E2.3 4 17 10 24 24 0 29 47
E3 1 8 38 27 35 0 6 59
E3.5 1 10 37 23 40 0 1 59
E4 0 21 2 33 5 6 0 59
E4.5 0 34 13 16 41 9 17 33
E5 0 19 13 26 48 6 38 5
E6 0 3 78 0 0 0 0 0
Mean E2-E5 3 19 16 22 29 3 14 53

5.3.2 Carbonate chemistry measurements

Seawater sampling was conducted on the fore reef (station El) of Dongsha Atoll in

order to characterize the total alkalinity (TA) and dissolved inorganic carbon (DIC)

concentrations of seawater bathing the atoll. During 4-5 June 2014, seawater samples

were collected at 2, 5, and 10 m depths every three hours at station El using a
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Niskin bottle rosette deployed from the Taiwanese vessel Ocean Researcher 3 (OR3).

These samples were analyzed for TA, DIC, and salinity. Two additional surface water

samples were collected at El from a small boat, one each on 3 and 18 June 2014.

All TA/DIC samples were collected in 300 mL glass bottles and were immediately

poisoned with 0.05-0.1 mL saturated HgCl 2 poison. Water samples were stored in

the dark at ambient temperature and then returned to a shore-based laboratory for

analysis. DIC was determined by measuring the infrared absorption of the CO 2

released upon the acidification of the sample by using an Apollo SciTech model AS-

C3 DIC analyzer. TA was determined by an acidimetric Gran titration with an Apollo

SciTech model AS-ALK2 alkalinity titrator. The precisions in the determination of

TA and DIC were 2 peq kg' and 2 pmol kg- 1 , respectively. Details of the

analyses are given in Guo and Wong (2015). Salinity samples were collected in 125

mL glass bottles and analyzed with a Guildline autosal with a precision of 0.003.

On the reef flat, seawater samples were collected over multiple diurnal cycles at

station E5 for carbonate chemistry analyses. A McLane Research Labs Remote Access

Sampler-500 (RAS) was programmed to collect 450 mL seawater samples every two

hours in gastight Kynar Luer bags, in which 0.2 mL of saturated HgCl2 poison was

added prior to sampling (see Shamberger et al. (2011) for additional details regarding

the application of the RAS for community metabolism measurements). Two 4-day

RAS deployments were conducted, one during the transient bleaching event 3-6 June

2014 and another deployment post-bleaching between 10-14 June 2014. Samples

collected by the RAS were transferred to 300 mL glass bottles for transportation

to the laboratory where TA and DIC were determined as in the discrete samples

collected onboard the ship. Seawater density corresponding to each RAS sample

was calculated with the standard 48-term equation (McDougall et al., 2009), using

temperature and salinity measured with a Seabird SBE-37 MicroCAT mounted on

the RAS frame and calibrated against salinity measured in bottle samples. The TA

and DIC of RAS samples, combined with temperature and salinity, were also used

to calculate seawater pH, QArag and pCO 2 using the program CO2SYS (Lewis et al.,

1998) with the acidity constants of (Mehrbach, 1973) as refit by (Dickson and Millero,
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1987).

The TA and DIC of our RAS samples were validated by comparison to hand-

collected samples and to independent pH measurements. We collected 7 discrete

samples by opening bottles next to the RAS intake at the same times that the RAS

collected samples. The average absolute differences in TA and DIC between the hand-

collected samples and RAS samples were 11 ueq kg-1 and 10 pmol kg-', respectively,

with no significant biases. In addition, we measured in situ pH (total scale) with a

SAMI pH meter deployed alongside the RAS, and we used these data to calculate

TA from measured DIC and pH, and to calculate DIC from measured TA and pH.

Strong correlations were found between calculated and measured values (r2 = 0.97

for TA, and r 2 = 0.99 for DIC). We used the average absolute differences between

measured TA and calculated TA (15 peq kg-'), and between measured DIC and

calculated DIC (12 pmol kg-'), as conservative estimates for uncertainties of TA and

DIC in our RAS samples. While these uncertainties are several times larger than

the analytical precisions, the TA and DIC changes in our study were large enough to

clearly detect metabolic signals (mean absolute differences in TA and DIC between

El and E5 were 84 pteq kg-' and 133 /amol kg-', respectively).

Using our seawater samples, we quantified the relative influences of NEC and

NEP on the seawater carbonate system (Fig. 5-2). However, this information alone

is insufficient to calculate metabolic rates for comparison to other reef systems. Only

by coupling our TA and DIC measurements with estimates of reef water residence

times can we quantify these rates.

5.3.3 Reef water residence time

We estimated residence time of water flowing over the reef flat under a quasi-Lagrangian

framework in which we traced the trajectories of water parcels across the reef indi-

rectly with current velocity and bathymetry data. Current velocities were measured

every 4 minutes at station E5 with a Nortek Aquadopp acoustic Doppler current pro-

filer (ADP). To test whether flow direction and transport were conserved across the

reef flat, a second ADP was deployed at station E3, approximately halfway between
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Figure 5-2: The seawater CO2 system as a function of nDIC and nTA. Colors show Arag

contours (calculated at 25 0C), with white indicating undersaturation (QArag < 1). The
vector diagram in the lower right shows the predicted effects of community metabolic
processes on TA and DIC. The large white circle shows the seawater composition of
the open ocean surrounding Dongsha Atoll, the small open circles show our reef flat
(station E5) measurements, and solid black lines show the effects of NEC and NEP
imposed on the offshore source-water for various NEC:NEP ratios. A NEC:NEP ratio
of 0.87 maintains approximately constant QArag, whereas higher ratios decrease QArag
and lower ratios increase QArag.

station E5 and the reef crest. We found that the major axis of flow direction was

consistent within 20 and that transport was strongly correlated (r2 = 0.84), but was

12% less at E3 compared to E5 (major axis regression slope = 0.88). This difference

in transport across the reef flat can be explained by assuming that water flows inward

toward the lagoon symmetrically around the ring of the atoll. Transport increases

toward the lagoon-ward side of the reef flat because the perimeter of the inside of the

reef flat is less than that of the outside edge of the atoll. We calculated the trans-

port at any location on the reef flat based on the transport measured at E5 with the

following expression:
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where q is transport (m 2 s-1), x is distance in meters from the reef crest toward the

lagoon, qE5 is transport measured at station E5, and 12,500 meters is the approximate

distance from the reef crest to the center of the lagoon. Following this adjustment

to transport across the reef flat, the mean difference in transport between E5 and

E3 was less than 1%. This close agreement allows us to quantify the velocity at any

location on the reef flat based on water depth and velocity measurements at a fixed

point (station E5). For each seawater sample collected at station E5, residence time

(T) of the sampled water parcel was estimated by back-tracking in time from E5 to

the reef crest using depth-averaged cross-shore current velocity (u) and water depth

(h) across the reef flat (Fig. 5-3). The location x along the reef flat (i.e. distance

from the reef crest) of a water parcel is estimated at any time t by:

ft UE5(t)hE5(t) d (5.5)

Jo h(t,x)

where t is time in seconds, uE5 is the depth-averaged current velocity (m s- 1 ) measured

by the ADP at station E5, hE5 is water depth at E5 based on pressure measurements

from the ADP, and h(t, x) is the local water depth at time t and location x along

the path of each water parcel traversing the reef flat. In practice, Eq. 5.5 must be

integrated stepwise from x = 2020 m (i.e. the distance from E5 to the reef crest)

backward in time every 4 minutes (ADP sampling interval) until each water parcel is

traced to the reef crest (Fig. 5-3). With this approach, we calculated the residence

time of each water parcel as the difference between the time that it crossed the reef

crest and the time it was sampled by the RAS at station E5. The time-averaged

depth of a water parcel is:
- 1 fT
h =- Ih(t,x)dt (5.6)

T 0

which is calculated following the same step-wise approach described above.

Uncertainty of - for each seawater sample was estimated with a Monte Carlo

method, repeating the r calculations 103 times while randomly adding measurement

uncertainty in the current velocity (1 a = 0.04 m s-' and assuming a Gaussian

distribution) at each time step, and excluding any water parcels traced into the lagoon
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Figure 5-3: Reef water residence time. (a) Current velocities at station E5 during the
two RAS deployments: 3-6 June and 10-14 June. The angle of each wedge indicates
the compass direction of water flow, the length of each wedge indicates the relative fre-
quency of currents flowing in that direction, and the colors on the wedge indicate the
distribution of velocities in that direction. During 10-14 June, reef water was persis-
tently flowing from the ocean toward to the lagoon (i.e., westward) but during 3-6 June,
current direction switched between eastward and westward depending on the tide. (b)
Quasi-Lagrangian calculation of reef water residence time. Left panel: transport (uh)
measured at station E5 over 3.5 hours during 10 June (positive westward). Gray error
bounds represent measurement uncertainty of the ADP. Bottom panel: bathymetry
profile across the reef flat. Gray lines represent individual bathymetry transects with
1-3 m resolution. Thick black line shows mean bathymetry profile in 10 m horizontal
bins. The RAS was located 2020 meters from the reef crest. Main panel: seawater
parcel tracing for one sample collected by the RAS on 10 June. Gray lines show the
parcel trajectories for each of 100 Monte Carlo simulations. Tracing the seawater par-
cel begins with collection at the RAS, at known time and distance from the reef crest.
The water parcel is then traced backward in time until it reaches the reef crest. Uncer-
tainty in the current velocity at each time step imposes variability in parcel trajectories
among Monte Carlo simulations. The thick black line shows the mean trajectory aver-
aged across all iterations. The black error bar shows the 1 a- uncertainty of residence
time for this water parcel.

(x = 3000) or that traversed the reef crest at lowest spring tides when water depth at

the reef crest was < 30 cm and boulders on parts of the reef became emergent. This

analysis yielded a total of 60 reliable measurements of paired NEC and NEP rates.
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5.3.4 Reef flat metabolism

Community metabolic rates were quantified by combining estimates of reef-water res-

idence time with measured carbonate chemistry changes. Exploiting the predictable

ways in which community metabolism alters reef water carbonate chemistry (Eqs.

1-2), we can determine NEC and NEP rates by tracking changes in seawater TA and

DIC over time (Langdon et al., 2010). Both TA and DIC are depleted by calcification,

but only DIC is depleted by productivity. These metabolic rates are calculated as

follows:
TAEl-TAE 5NEC = 2p (5.7)

NEP - DICE-DICE5 p - NEC - FC0 2  (5.8)
T

where NEC and NEP are in units of mmol CaCO 3 m-2 hr-' and mmol organic carbon

m- 2 hr-' respectively, K is the time-averaged depth as the water parcel is traced across

the reef flat and is calculated from bathymetry and sea level, p is seawater density (kg

m~3), - is the residence time of a parcel of water on the reef (hr), the factor 2 appears

in the denominator of the NEC equation because 2 equivalents of TA are removed

for each mole of CaCO3 formed, and NEC is subtracted from NEP to account for the

depletion (addition) of DIC by the precipitation (dissolution) of CaCO 3 . Fco2 is the

CO 2 air-sea gas exchange flux (mmol CO 2 m- 2 hr%):

F0 2 = ksp(C0 2 -wate, - CO 2 -air) (5.9)

where k is the gas transfer velocity (m hr'), s is the solubility of CO 2 in seawater

(mmol kg- atm CO2') calculated from temperature and salinity (Weiss, 1974), and

CO2-ai, was assumed to be 400 patm. The CO 2 transfer velocity is calculated with the

parameterization of (Ho et al., 2006) based on wind speed measured at 6 m altitude on

a scaffolding tower constructed at station E5 and adjusted to 10 m altitude wind speed

following the calculations of (Johnson, 1999), and converted to in situ temperature

at salinity 35 following Wanninkhof (1992). We estimated uncertainty in NEC and

NEP rates by propagating uncertainty of offshore TA and DIC, reef flat TA and DIC,
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and r. Mean relative standard deviations of NEC and NEP rates were 29% and 27%,

respectively. The DIC-based NEP rates were validated by comparison to dissolved

02-based NEP rates (Supporting Information and Fig. S2).

5.4 Results

5.4.1 Open-ocean seawater chemistry

The TA and DIC of each fore reef sample were normalized to salinity 34 (approxi-

mately the average offshore salinity) with the equations

nTA= 34TAmegsured
Smeasured

nDIC= 34DICmeasured
Smeasured

to compare to other studies of open-ocean carbonate chemistry. nTA and nDIC

on the fore reef were 2241 6 peq kg 1 and 1936 7 pmol kg- 1 (1 -), respectively.

These results are within uncertainty of nTA and nDIC in samples collected at 10-20

m depth at station "ED" located in the open-ocean 80 km east of Dongsha Atoll (nTA

of 2240 2 /eq kg' and nDIC of 1927 3 pmol kg- 1), and within uncertainty of

other published relationships between TA/DIC and salinity for the tropical Pacific

Ocean (Lee et al. (2006) relationship predicts nTA of 2239-2243 Peq kg-- between

25-30 'C) and the South China Sea (Guo and Wong (2015) relationship predicts nTA

of 2249 8 taeq kg' and nDIC of 1940 9 gmol kg- 1). The consistency between

our fore reef, open-ocean, and published nTA and nDIC values gives us confidence

that our nTA and nDIC estimates on the Dongsha Atoll fore reef are representative

of the background oceanic composition, and that we can reliably estimate nTA and

nDIC of water flowing onto the reef for times when only salinity, and not TA or DIC,

was measured.

5.4.2 Reef flat metabolism

We calculated NEC and NEP based on our nTA and nDIC measurements at station

E5, combined with estimates of water residence time on the reef flat. Reef-water
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Figure 5-4: Diurnal compilations of NEC (a,c) and NEP (b,d) rates. Dashed horizontal
lines indicate 0 rates that separate net calcification from dissolution and net photosyn-
thesis from respiration. White and black circles indicate 3-6 June (during bleaching)
and 10-14 June (post-bleaching) measurements, respectively. In (a,b) the solid black
line and gray shading represent the mean rates 1 a in 2-hour bins, calculated using
only the post-bleaching data. (c,d) Measurements during bleaching and post-bleaching
overlap between approximately 06:00 and 12:30, and over this time the NEC and NEP
rates during bleaching are significantly reduced (see Results section). Solid black lines
are linear regression fits, and light and dark shading are 95% confidence intervals for
during- and post-bleaching data, respectively. All points are plotted on the time axis as
the mid-point between when the water parcel traversed the reef crest and the sampling
time (see Supporting Information for further details).

residence times varied between 1 and 7 hours, nTA varied between 1754 and 2247

peq kg', and nDIC varied between 1229 and 2127 gmol kg- 1 at station E5 (Fig.

5-2). NEC and NEP rates also changed throughout the course of a day (Fig. 5-4).

Maximum NEC and NEP rates typically occurred in late afternoon, approximately

the same time as maximum 02, pH, and QA,, (Fig. 5-5). During nighttime, NEC

decreased to near zero, but we observed no significant net dissolution, which contrasts

with most coral reefs studied to date (Table 5.3). Conversely, nighttime NEP was

consistently negative (net respiration). NEP rates calculated based on 02 stoichiome-

try were in close agreement with the carbon-based estimates (Fig. S2). Minimum 02,

pH, and Arag all occurred shortly before dawn. Throughout our study, the ranges
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Figure 5-5: Diurnal compilations of seawater (a) Q7 2Ara, (b) pH, (c) pCO 2 , and (d)
dissolved 02. Open and filled black circles indicate 3-6 June (during bleaching) and 10-
14 June (post-bleaching) measurements, respectively, on the reef flat at station E5, and
gray points are open-ocean measurements from station El over the same time period as
the reef flat measurements. The reef flat data were derived from RAS samples and an
02 sensor at E5, open-ocean pH and 02 were measured at El, and open-ocean 2Arag and
pCO2 were calculated from OR3 samples. QArag and pH are greatly elevated on the reef
flat during the day, and in comparison they change relatively little in the surrounding
open ocean. These carbonate system parameters follow similar diurnal patterns during
and after the bleaching event, but they are all significantly (p < 0.05; two-sample
t-tests) different during bleaching (pH, QArag and 02 decreased; pCO 2 increased).

of NEC and NEP were between 0 and 47 mmol CaCO3 m-2 hr-1, -64 and 118 mmol

C m-2 hr 1 , and the ranges of seawater chemical properties were 02 0-18 mg L-,

pCO 2 76-1520 patm, pH 7.3-8.5, and QArag 1.3-5.6 (Fig. 5-4 and Fig. 5-5).

The multi-day metabolic rate time series were compiled to estimate diurnal-

average NEC and NEP for comparison with other coral reef systems worldwide (Table

5.3). During 10-14 June, persistent westward currents allowed us to capture full diur-

nal cycles. However, during 3-6 June westward flow occurred only during flood tides,

and as a result our metabolic rate measurements only span daylight hours (Fig. 5-4

and Fig. S5). Therefore, we compare rates between 3-6 June and 10-14 June for

the overlapping times of day, but we use only 10-14 June measurements to estimate

diurnal-averaged metabolic rates. Mean metabolic rates were calculated in 2-hour
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bins and integrated over 24 hours (Fig. 5-4). This resulted in diurnal-average NEC

of 390 90 (1 standard error) mmol CaCO3 m- 2 day-' and NEP of 100 360 mmol

C m-2 day-1 .

We evaluated the effect of coral bleaching on the community metabolic rates by

comparing NEC and NEP during the bleaching event (3-6 June) to post-bleaching (10-

14 June). Since our measurements during the bleaching event only span a portion

of the diurnal cycle, we calculated the differences between the measured 3-6 June

metabolic rates and the rates expected at the same times of day based on the 10-14

June diurnal cycle (Fig. 5-4). The residual NEC (-7 1 mmol CaCO 3 m-2 hr- 1) and

NEP rates (-31 4 mmol C m- 2 hr- 1) were significantly (p < 0.05) different from

zero, meaning that metabolic rates were reduced during the bleaching event relative to

post-bleaching. Further, we tested whether the reduced NEC and NEP rates during

bleaching were attributable to any differences in abiotic factors. We found that for

any PAR or temperature level, NEC and NEP rates were lower during bleaching than

post-bleaching, and multi regression analysis accounting for the combined influence of

PAR, temperature, current speeds, and water depth still produced significant effects

of bleaching on the metabolic rates (Figs. S3-4).

NEC and NEP were significantly (p < 0.05) positively correlated with both linear

and exponential type II (major axis) regressions (Fig. 5-6). However, investigation

of the residuals of the linear regression showed clear structure and the NEC residuals

were significantly correlated with NEP using a second-order polynomial, whereas

NEC residuals of the exponential regression showed no clear structure and produced

no significant correlation with NEP. The best-fit equation ( 2 a-) was:

NEC = e0.015(0.003)NEP+2.3(0.2) (5.10)

where NEC and NEP are in units of mmol CaCO 3 m- 2 hr- 1 and mmol C m- 2 hr- 1

respectively. There was no significant difference in the NEC to NEP relationship

during- and post-bleaching (Fig. 5-6 and Figs. S6-7).
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5.5 Discussion

5.5.1 Carbonate chemistry and community metabolism

Anthropogenic CO2 emissions are forecast to drive changes in pH and Aag of 0.3

and 1.5 units, respectively, by the end of the 21st century in surface waters of the

tropical oceans. These waters bath coral reefs, and the changes driven by ocean acid-

ification are projected to cause declines in ecosystem calcification rates (Shamberger

et al., 2011; Shaw et al., 2012; Bernstein et al., 2016). Yet these projections do not

account for the potentially compounding effects of ocean warming or the processes

that differentiate reef-water and open-ocean chemistry. Predicting the sensitivity of

coral reef ecosystems to C0 2-driven climate changes requires an understanding of the

interactions between open-ocean acidification and the processes driving carbonate

system changes in reef waters.

As open-ocean seawater flows onto coral reefs, benthic communities alter its car-

bonate chemistry. The reef flat of Dongsha Atoll is shallow (1-3 m), wide (3 km), and

has high live benthic cover (61% combined coral, algae and seagrass). TA and DIC

fluxes are imposed by most of the benthic area (high living cover), chemical changes

accumulate rapidly in the shallow water column, and these changes are integrated as

seawater traverses the wide reef flat. On the Dongsha Atoll reef flat at station E5,

TA and DIC depletions relative to the surrounding open ocean are as high as 481

peq kg-1 and 707 pmol kg- 1 respectively (Fig. 5-2), greater than those measured

in water flowing across other coral reefs where CO 2 with similar residence times and

bathymetry (Shamberger et al., 2011; Shaw et al., 2014; Silverman et al., 2014; Kline

et al., 2015).

Due to these changes in reef-water chemistry, calcifiers on the Dongsha reef flat

build their shells and skeletons in seawater with elevated pH and QArag. The vast

majority of NEC (80%) occurs during daytime, when reef-water pH and A,,rg reach

as high as 8.5 and 5.0, respectively, compared to 8.0 and 3.4 in the surrounding open

ocean (Fig. 5-5). Under these conditions, the diurnal-average NEC rate on Dongsha

Atoll was greater than that measured for all other coral communities studied to
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Figure 5-6: Interactive relationship between NEC, NEP, and QArags. Triangles and
circles indicate 3-6 June (bleaching) and 10-14 June (post-bleaching) measurements,
respectively, and colors show Arag at station E5. Solid black line is exponential fit
between NEC and NEP. Theoretical vector in lower right shows the slope between
NEC and NEP (0.87) that maintains an approximately constant QA,,. Greater slopes
decrease QArag and lesser slopes increase QA,,. The exponential curve is increasing in
slope at higher NEP, but is always less than the 0.87 critical value, and thus the highest
QArag values correspond to the highest NEC and NEP rates. The dashed black line
shows a linear fit between NEC and NEP for only daylight hours and extrapolated to
all hours of the day, showing that net dissolution would be expected during night based
on the daytime relationship. Even though respiration drives down QArag to < 2 during
nighttime, net dissolution did not occur. See Supporting Information comparisons of
NEC and NEP between 3-6 June and 10-14 June only during the common hours of
day.

date (Table 5.3; Fig. 5-7). On average worldwide, reef flat NEC rates are 110-130

mmol CaCO3 m- 2 day- 1 (Kinsey, 1985; Atkinson, 2011), and the highest diurnal-

average NEC rate previously measured in the field was 290 mmol CaCO 3 m-2 day-'

(Shamberger et al., 2011). Conversely, we measured diurnal-average NEC of 390

mmol CaCO3 m- 2 day- on the Dongsha reef flat. Although our measurements do

not capture seasonal changes, the June NEC rate on Dongsha Atoll is uniquely high

relative to all seasons on other coral reefs, and this is not explained by calcifier cover

or coral community structure. The calcifier cover on the Dongsha reef flat (25%)

is similar to other reefs where NEC has been measured (Table 5.3; Fig. 5-7), and
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Figure 5-7: Global compilation of coral reef diurnal-average NEC rates plotted as
functions of open-ocean Arag and % calcifier cover. Despite relatively low open-ocean
QArag and comparable calcifier cover, NEC rates on Dongsha Atoll are significantly
higher than those of all other reef systems studied to date. The data sources are
tabulated in Table 3.

even though community structure data are not available for most metabolism studies,

the relatively high abundance of fast-growing Acropora and Stylophora (Dullo, 2005)

on Dongsha is similar to that of other reefs with lower NEC rates (Gattuso et al.,

1996). Our findings challenge the paradigm that healthy coral reefs with favorable

conditions for calcification have low algal cover and high open-ocean Arag (Hoegh-

Guldberg et al., 2007). Rather, the benthic cover of fleshy algae on the Dongsha reef

flat is relatively high (19%) compared to most Indo-Pacific reefs (Bruno et al., 2009;

Roff and Mumby, 2012), and the open-ocean QArag (3.4) in the northern SCS is near

the minimum associated with most coral reefs today (Hoegh-Guldberg et al., 2007).

Daytime photosynthesis plays a key role in sustaining the rapid calcification on the

Dongsha reef flat. The NEC rates are so high that they alone would drive daytime

QArag toward saturation (QArag = 1), and sometimes even below (Fig. 5-8). We

observed the opposite response, however, with daytime QArag rising to greater than

5 on the reef at the same time of day as the most rapid NEC (Fig. 5-4 and Fig.

5-5). This paradox is explained by feedbacks between NEC, NEP, and the seawater

carbonate system. Using our diurnal measurements of coupled TA and DIC changes,

we isolated the effects of NEC and NEP on reef-water carbonate chemistry. Daytime

pCO 2 is elevated 2-fold under the combined effects of NEC and NEP compared to

the isolated effect of NEP (Fig. 5-8). Yet the role of feedbacks between metabolism

and carbonate chemistry is even more important for [CO2-I and QArag. Our analysis
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indicates that daytime [CO--J is elevated 8-fold under the combined effects of NEC

and NEP compared to the isolated effect of NEC (Fig. 5-8). NEP removes CO 2

from reef water, preventing aragonite undersaturation (QArag < 1) that would favor

dissolution over calcification. Correlations between NEC and NEP are a common

feature both within (Shaw et al., 2012; Albright et al., 2015; Koweek et al., 2015),

and among (Gattuso et al., 1999), coral reef communities. Likewise, we observed

this link on Dongsha Atoll, where it is maintained even at extremely high NEC and

NEP rates (Fig. 5-6). This chemical feedback system - in which NEP produces

CO- for calcification, and NEC feeds back by producing CO 2 for photosynthesis -

thus highlights the important function of primary producers in modulating carbonate

chemistry of coral reef waters.

Table 3. Global compilation of NEC and NEP rates measured on coral reefs.

Study Location NEC Max Coral / Open- Reef type / method
(mmol m NEP Calcifier ocean
day") (mmol cover (%) A.,

m hr.)
Kinsey, 1985 109 Literature review
Barnes and Lazar, 1993 Red Sea 163* <80 -100 4' Fringing reef, Lagrangian method
Gattuso et al., 1993 Moorea 243 < 100 2-31 3.9 Barrier reef, Lagrangian method
Gattuso et al., 1996 Moorea 186 t <100 2-31 3.9 Barrier reef, Lagrangian method

GBR 253 t < 150 30 3.1 Barrier reef, Lagrangian method
Kraines et al., 1997 Japan 167 - 317* 50 0-20 3.6 Reef flat and lagoon, Quasi-Lagrangian
Ohde and van Woesik, 1999 Japan (daytime) 127-312 18 37 4.47 Reef flat and lagoon, slack-tide method
Langdon et al., 2003 Biosphere-2 41 < 50 3 2.83 Mesocosm
Kayanne et al., 2005 Japan 70 - 127* < 100 5.8-7.1 3.5 Barrier reef flat, Quasi-Lagrangian

Palau 74 - 130* < 100 1.4-8.1 3.9 Barrier reefflat, Quasi-Lagragian
Langdon and Atkinson, 2005 Hawaii 370-380 <80 100 3 Mesocosn
Yates and Halley, 2006 Hawaii -7.2 - 3* - 10-22 3.5 Mesocosm / enclosure
Silverman et al., 2007 Red Sea -4 - 108* - 20-40 4 Fringing reef, Eulerian
Andersson et al., 2009 Hawaii 79* - 20-30 2.8 Mesocosm
Bates et al., 2010 Bermuda -22- 104 - 21 3.7 Barrier reef and lagoon
Shamberger et al., 2011 Hawaii 235 - 293* <80 20-30 3.9 Barrier reef flat, Quasi-Lagrangian
Falter et al., 2012 W Australia 190 - 200 t < 150 50-90 3.6 Reef flat, Euerian
Shaw et al., 2012 GBR 145* <40 40 3.5 Reef flat and lagoon, slack-tide method
Silverman et al., 2012 GBR 74 - 133* <63 14-15 3.65 Reef flat and lagoon, slack-tide method
Albright et al., 2013 GBR 77 - 166* < 75 17-18 3.1 Reef flat, Lagrangian
McMahon et al., 2013 GBR 58* 113 < 15 3.5 Lagoon, slack-tide method
Teneva et al., 2013 Palau 33.8* - - 3.9 Backreef, control volume
Jokiel et al., 2014 Hawaii 144* - -100 - Mesocosm
Lantz et al., 2014 Hawaii 80* 40 10- 17 3.5 Reef flat, Quasi-Lagrangian
Silverman et al., 2014 GBR (1975-76) 83 - 105* - 8 - Reef flat, Quasi-Lagrangian

GBR (2008-09) 54-61* - 8 3.6 Reef flat, Quasi-Lagrangian
Albright et al., 2015 GBR 104* 61 35 3.5 Reef flat, Lagrangian
Koweek et al., 2015 American Samoa 216 - 46 4.06 Lagoon pools, Quasi-Lagrangian
Longhini et al., 2015 Brazil 58 - 197* <70 5-50 3.8 Reef flat, Slack-tide method
Shaw et al., 2015 GBR 33* < 30 25 3.41 Reef flat, Slack-tide method
Bernstein et al., 2016 Red Sea 110 72 61 4.6 Reef flat, Eularian
Kwiatkowski et al., 2016 GBR 36* <40 18 3.65 Reef flat, Slack-tide method
Muehllehoer et al., 2016 Florida -7- 17 - 2-7 3.7 Patch Reefs, Be-7 method
This study Dongsha Atol 390 * 90 t 120 25 3.4 Reef flat, Quasi-Lagrsnglan

* Indicates nighttime net dissolution occurred, t indicates nighttime net dissolution did not occur. Ocean fA,. is from data presented in each study, if
offshore (i.e. open-ocean) samples were collected. For studies without offshore sampling, GA, values were calculated from climatology and are displayed
in italics. Climatological fA,, was derived for the nearest 1 by 1* grid box with temperature, salinity, nitrate, phosphate, and silicate climatologies from
World Ocean Atlas (Levitus, 2010) and the DIC climatology of Key et al. (2004). TA was calculated from temperature and salinity with open-ocean
relationships (Lee et al., 2006), and A,. was calculated using the program CO2SYS (Lewis et al., 1998) and the acidity constants of (Mehrbach et al.,
1973) refit by (Dickson & Millero, 1987). Koweek et al. (2014) also measured NEC on Palmyra Atoll with Lagrangian and Eulerian methods, but the
reported uncertainties are generally larger than the NEC signals, making it difficult to calculate a diurnal-average NEC rate.
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Community metabolism on Dongsha Atoll is also unique in that NEC increases

exponentially, rather than linearly, with increasing NEP (Fig. 5-6). Related to this

exponential relationship, we found that NEC decreases near zero at night but we found

no significant net dissolution, which is rare among coral reef community metabolism

studies (Table 3.3). In fact, the lack of nighttime dissolution is partly responsible for

the uniquely high NEC rates on Dongsha Atoll (Fig. 5-6), as diurnal-average NEC

on most other reefs is a balance between net calcification during the day and net

dissolution at night. Because our data reveal only the net rates, we cannot determine

if dissolution is entirely absent on the reef flat or nighttime dissolution is balanced

by calcification. Identifying the factors that influence dissolution is thus a key ques-

tion in understanding net CaCO 3 production on Dongsha Atoll in particular, and in

coral reef ecosystems generally. Future studies of coral reef community metabolism

may benefit by combining our method for the net rates with techniques to quantify

certain components of the metabolic signals, such as by using benthic flux chambers

to measure dissolution in sediments.

5.5.2 Effects of bleaching on community metabolism

The role that the benthic community plays in modulating carbonate chemistry of

reef water is further evident from changes in community metabolism associated with

thermal stress. Anomalously high, or rapidly increasing, temperature can induce

coral bleaching, the loss of the symbiotic algae from the coral holobiont Glynn (1993).

Coral mortality following bleaching has been shown to reduce NEC rates (Kayanne

et al., 2005), but no data exist to evaluate changes in community metabolism during a

bleaching event. On Dongsha Atoll, reef-water temperature increased by 5 'C in less

than three weeks during May 2014 (Fig. Si), and by the beginning of June most of

the massive corals had bleached (Fig. S2). As reef waters cooled, bleaching subsided

and corals regained their symbiotic algae populations by mid-June.

During the transient bleaching event, NEP decreased by 31 mmol m- 2 hr- 1 and

NEC decreased by 7 mmol m- 2 hr 1 , a 40% reduction compared to the non-bleaching

measurements (Fig. 5-4). Yet bleaching is not the only possible explanation for these
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Figure 5-8: Conceptual model of feedbacks between community metabolism and car-

bonate chemistry. (a) NEP elevates [CO- 1, which is consumed by NEC. In turn, NEC
elevates C0 2 , which is consumed by NEP. (b) Daytime profiles of reef-water [CO2-] and

pCO 2 with isolated and combined effects of NEC and NEP. The calculations are per-
formed for a 1-meter deep water column with residence time on the reef flat from dawn
to dusk. Thus, the differences between curves show effects of community metabolism
and are not dependent upon residence times. Black curves are calculated effects of
NEC and NEP, red and blue curves show the expected [CO2-] and pCO 2 profiles with
the isolated effects of NEC and NEP, respectively. The gray curves show the combined
effects of NEC and NEP during the bleaching event (when NEC and NEP were reduced
by 7 and 31 mmol m- 2 hr 1 , respectively). The isolated effect of NEC on [CO3- is
so strong that it alone would drive QArag to undersaturation (light red shading). The
right panel shows in black the percent difference between ICO-I based on NEC+NEP
compared to NEC alone; and for pCO 2 based on NEC+NEP compared to NEP alone;
and in gray the percent differences between bleaching and non-bleaching periods. The
interaction between NEC and NEP is most important for [COj-], which is elevated
approximately 8-fold by the effect of NEP, although pCO 2 is still elevated more than
100% by the effect of NEC. Reduced metabolic rates during the bleaching event have
the effect of reducing daytime [CO2-I and increasing daytime pCO2.

changes. Rates of community metabolism are naturally variable and the percent dif-

ferences between bleaching and non-bleaching periods that we observed are within

the range of natural variability recorded on weekly timescales (e.g. Shamberger et al.

(2011)). Further, mean current velocities during the bleaching event were approxi-

mately 50% lower compared to the non-bleaching period, and this could have affected

the rates of community metabolism. Nevertheless, using multiple-regression analy-

sis with our suite of physical measurements, we found that abiotic factors, including

temperature, light, water depth, and current speed, were unable to account for the
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changes in metabolism between 3-6 June and 10-14 June (Figs S3-4), leaving bleach-

ing as a likely driver. During the bleaching event, mean reef-water pH and Arag

also declined on average by 0.2 and 0.8 units, respectively (Fig. 5-5). Reef-water

chemistry is directly related to the rates of metabolism and to the residence time of

water on the reef. Therefore, these changes in carbonate chemistry cannot be ascribed

solely to changes in metabolism because the residence time of water on the reef was,

on average, twice as long during the bleaching period relative to the non-bleaching

period. To illustrate how the changes in metabolism alone would affect reef-water

chemistry, we calculated the influence of metabolism on a parcel of water residing

on the reef from dawn to dusk under the observed NEC and NEP rates during the

bleaching and non-bleaching periods (Fig. 5-8). This analysis shows that bleaching-

induced changes in metabolism, primarily the reductions in NEP, were sufficient to

reduce maximum daytime [CO2 - by more than 40%. These effects - which occurred

in less than two weeks and are comparable to changes predicted for the open ocean

by the year 2100 (Feely et al., 2009) - further highlight that variations in community

structure or health strongly modulate reef-water carbonate chemistry.

The tight relationship between NEC and NEP rates was maintained during bleach-

ing and post-bleaching (Fig. 5-6), even though the rates were lower during the bleach-

ing event (Fig. 5-4). Several possibilities exist to explain how thermal stress affects

NEC and NEP rates together, without decoupling them. If photosynthesis by the

symbiotic algae within coral colonies constitutes a significant proportion of the to-

tal NEP rate, then the expulsion of these algae from bleached coral colonies could

decrease NEP directly. The simultaneous response of NEC may be due to some combi-

nation of increasing seawater CO 2 concentrations and direct energetic stress imposed

on corals by the loss of their symbionts (Cohen and Holcomb, 2009). Alternatively,

symbiont photosynthesis may not contribute substantially to the NEP rates. If this

is the case, then the bleaching event potentially reduced NEC directly by perturbing

the coral-algal symbiosis, and/or NEP directly by thermal stress on seagrass or fleshy

algae (Campbell et al., 2006). Because our metabolic rate data do not identify the

relative contributions of various organisms, we cannot determine whether the link
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between NEC and NEP is established at the organismal level (i.e., the link is driven

by the coral-algal symbiosis) or the community level (i.e., the link is driven by in-

teractions between calcifiers and photosynthesizers and is mediated by the seawater

carbonate system). Yet, whichever is the dominant mechanism, a reduction in one of

the metabolic rates is clearly associated with a reduction in the other (Fig. 5-4 and

Fig. 5-6), indicating that they are inextricably linked.

5.5.3 Implications for coral reef resilience to ocean acidifica-

tion and warming

A worldwide search is underway to locate the coral reef ecosystems most likely to

withstand the effects of C0 2-driven climate change into the next century (Castillo

et al., 2012; Karnauskas and Cohen, 2012; van Hooidonk et al., 2013; Shamberger

et al., 2014; DeCarlo et al., 2015b). Our findings imply that anthropogenic C0 2 -driven

changes in open-ocean chemistry will not necessarily translate directly to changes in

reef-water chemistry. Decreases in open-ocean pH and QAag projected by the end

of this century (0.3 and 1.5, respectively) (Feely et al., 2009) are comparable to the

daytime elevation of pH and QAag driven by productivity on Dongsha Atoll. While

ocean acidification poses a major threat to coral reef ecosystems, it will not be the

sole driver of reef-water carbonate chemistry, nor will it affect all coral reefs equally.

Feedbacks between community metabolism and reef-water carbonate chemistry may

influence the sensitivity of coral reef ecosystems to acidification of the open ocean,

and reefs with high rates of photosynthesis to remove CO 2 from seawater may be the

most likely to sustain conditions favorable for rapid calcification. Yet the capacity

of benthic communities to modulate reef-water chemistry depends on community

structure and health, which are sensitive to thermal stress. By the end of this century,

temperatures on more than 80% of the world's reefs are projected to exceed coral

bleaching thresholds annually (van Hooidonk et al., 2013). Ocean warming therefore

poses an inescapable threat to the metabolic performance of coral reef ecosystems,

one that benthic communities cannot buffer.
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5.6 Supporting Information

5.6.1 Coral bleaching in response to thermal stress

We observed mass coral bleaching on the Dongsha Atoll reef flat in response to thermal

stress during May and June 2014. From mid-April to early May 2014, daily mean reef

flat temperatures remained between 25 0C and 27 'C, but increased steadily from 25.5

C on 9 May to exceed 31 'C by 26 May, sparking widespread bleaching of massive

corals (Fig. S1). Temperature decreased to 29 'C by 10 June, and the corals rapidly

regained their pigmentation.
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5.6.2 Oxygen-based NEP rate estimates

In addition to the dissolved inorganic carbon (DIC)-based NEP rates presented in

the main text, we calculated NEP using dissolved 02 measurements. The 0 2-based

NEP equation is:

NEP=-PQ O2saturation- 0 2E5 -i F02  (5.11)
T

where NEP is in units of mmol organic carbon m- 2 hr-', 02 is in mmol m- 3

PQ is the photosynthetic quotient (moles of oxygen to moles of carbon fixed via

photosynthesis and released via respiration) estimated as 1.05 0.1 following Falter

et al. (2008), K is the time-averaged depth of the water parcel, T is the residence

time of a parcel of water on the reef (hr), and F 0 2 is the 02 air-sea gas exchange

flux (mmol 02 m- 2 hr-'). The initial 02 concentration was assumed to be equal

to 100% saturation with the atmosphere, and was calculated following Garcia and

Gordon (1992) using the temperature and salinity measured at station E2. The gas

exchange flux was calculated as:

F0 2 = k0 2 (O2E5-02saturation)/2 (5.12)

where k0 2 is the 02 gas transfer velocity (m hr-1 ) and 0 2E5 is the measured oxygen

concentration in water at E5. The factor 2 is used to approximate the average gas

flux during reef flat residence time. We assume that as water initially flows onto the

reef, the oxygen concentration is at saturation and thus F0 2 is zero, whereas 0 2E5

represents the end-point of the residence time and presumably the greatest difference

from saturation. Thus, assuming oxygen concentration changes linearly in time as a

water parcel traverses the reef flat, F0 2 = k0 2 (O2E5-O2saturation)/2 approximates the

average F0 2 during the reef flat residence time. k0 2 is calculated following Sarmiento

and Gruber (2006):

k02 = k600( Sco 2 )-O.5 (5.13)

Sc6  ha

where k600 is the piston velocity of CO2 in freshwater at 20 0C calculated with the
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parameterization of Ho et al. (2006) based on wind speed measured at 6 m mean al-

titude on a scaffolding tower constructed at station E5 and adjusted to 10 m altitude

wind speed following the calculations of Johnson (1999), and Sco 2 is the Schmidt

number of oxygen calculated assuming salinity of 35 and with the temperature de-

pendent formula of Sarmiento and Gruber (2006). Wind speed measurements are

averaged over the reef flat residence time of each water parcel. We estimated the

uncertainty of 0 2-based NEP by propagating uncertainty of PQ ( 0.1), 02 mea-

surement uncertainty from our Onset U026 logger ( 6.25 mmol m- 3 for < 250 mmol

m- 3 and 15.6 mmol m- 3 for > 250 mmol m- 3), uncertainty in k600 (Ho et al.,

2006), and uncertainty in r (following Methods section in main text). Our coupled

measurements of 02 and wind speed at E5 spanned 10-12 June, corresponding with

part of our second RAS deployment. During this time, 0 2-based and DIC-based NEP

rates were in close agreement and followed similar diurnal patterns (Fig. S2), giving

us confidence in the accuracy of our longer DIC-based NEP time series.

5.6.3 Effects of coral bleaching on NEC and NEP rates

We evaluated the response of NEC and NEP to the coral bleaching event by comparing

our metabolic rates measurements between 3-6 June (bleached) and 10-14 June (post-

bleaching). However, this comparison must account for the different hours of day

sampled, and potentially any differences in physical variables, between the two time

periods. We found that for the hours of day in common between our 3-6 June and

our 10-14 June measurements, NEC and NEP rates were significantly lower during

the bleaching event (Results section in main text). Here, we test if any abiotic factors

contributed to the differences in metabolism using our suite of physical measurements

(Fig. S3). First, we found that NEC and NEP were correlated with temperature and

light, and that for any temperature or light level the rates were lower during bleaching

(Fig. S4). Next, we performed multiple linear regressions between the metabolic rates

and physical factors, and including bleaching as a categorical variable. These tests are

not intended to proscribe the direct effects of abiotic factors on NEC and NEP rates

because the correlations are potentially artifacts of coherent diurnal cycles. Rather,
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this analysis evaluates the potential for differences in abiotic factors to account for the

changes in NEC and NEP during- and post-bleaching event. The best-fit equations

are reported in Table S1. These analyses show that our measured abiotic factors

cannot explain the differences in NEC and NEP between 3-6 June and 10-14 June,

leaving bleaching as a significant effect on the metabolic rates (i.e. the bleaching term

in each equation is significantly different from zero).

5.6.4 NEC and NEP during- and post-bleaching

We found a significant relationship between NEC and NEP, with no significant effect

of bleaching on this relationship (Results section in main text). Here, we evaluate this

relationship during the hours of day common to both our during- and post-bleaching

measurements. The common hours of day are from 06:00 to 12:30 based on the mid-

points of residence times, and from 05:00 to 16:00 based on the full residence times

(Fig. S5). We evaluated the relationship between NEC and NEP using only these

subsets of overlapping data, from 06:00 to 12:30 (Fig. S6) and from 05:00 to 16:00

(Fig. S7). Linear regression between NEC and NEP produced the following fits:

(06:00 to 12:30) NEC = 13(3) + 0.17(0.05)NEP - 1(4)B (5.14)

(05:00 to 16:00) NEC = 14(2) + 0.23(0.04)NEP - 2(4)B (5.15)

where numbers in parentheses indicate 2 o-, NEC and NEP are in units of mmol

CaCO3 m-2 hr-' and mmol C m-2 hr-1 respectively, and "B" = 1 during the transient

bleaching event and 0 otherwise. In both cases, the bleaching term is not significantly

different from zero, meaning that there were no detectable changes in the relationship

between NEC and NEP during- and post-bleaching.
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Table Si. Muliple-regression coefficients for NEC and NEP as functions of abiotic factors.

Intercept PARO Temperature Current Water Coral r,
speed depth bleaching

NECr -60 70 15 * 7 2 2 - - -12 5 0.58

-110 80 14 7 4 3 30 30 - -8 5 0.62

-40 50 24 5 2 2 50 20 -20 5 -6 4 0.84

NEP -400 200 80 30 13 8 - - -40 10 0.79

-400 300 80 30 13 9 8 70 - -40 20 0.79

-300 200 100 30 9 8 30 70 -40 20 -40 10 0.84

Notes: Values indicate coefficient terms +2 o, NEC and NEP are in units of mmol CaCO 3 m'2 hf and mmol C m* hr' respectively, PAR is in units of

limol photons m' s", temperature is in *C, current speed is in m s', water depth is in m, and "Coral bleaching" = 1 during the transient bleaching event and

0 otherwise. For all physical parameters, values were calculated as the mean of measurements during the residence time of each water parcel (i.e. averaged

over the same time as represented by each metabolic rate measurement). All equations are significant at the 0.0 1 level.

* PAR term is tan'(PAR/370) for NEC and tan-'(PAR/690) for NEP.

For example, the equation for the first NEC row is: NEC = -60 + 24*tan-(PAR/370) + 2*temperature - 12 during bleaching

pr-19 Apr-29 May-09 May-19 May-29 Jun-08 Jun-18

Fig. S1. Reef flat temperatures during April-June 2014. Temperatures rose on

average 5-6 'C between early to late May, initiating coral bleaching. The corals

recovered by mid-June as temperatures decreased. The photographs show the same

massive Porites colony bleached white and recovered (pigmented) 2 weeks later.
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Fig. S2. Net Ecosystem Productivity (NEP) based on oxygen (blue) and carbon

(black) budgets are in close agreement. Light blue shading represents 95% confidence

interval of oxygen NEP estimates, and black error bars represent 1 -of carbon NEP

estimates. Carbon budget data are plotted on the time axis as the mid-point between

the sampling time and the time when the water parcel traversed the reef crest, and

the horizontal error bars represent the residence times (i.e. the left end-point is when

the water parcel crossed the reef crest and the right end-point is the reef flat sampling

time).
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Fig. S4. Correlations between community metabolism and temperature (top), PAR

(middle), and current speed (bottom). NEC (left) and NEP (right) measurements are

plotted for bleaching (open circles) and post-bleaching (black circles) measurements,

and solid (dashed) lines indicate curves fit to the post-bleaching (bleaching) data. At

the same temperature and PAR levels, both NEC and NEP were depressed during

bleaching relative to post-bleaching.
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Fig. S5. NEC and NEP measurements during bleaching (white) and post-bleaching

(black) for hours of day common to both time periods. All points are plotted on

the time axis as the mid-point between the sampling time and the time when the

water parcel traversed the reef crest, and the horizontal error bars represent the res-

idence times (i.e. the left end-point is when the water parcel crossed the reef crest

and the right end-point is the reef flat sampling time). Based on the residence time

mid-points, the two time periods overlap between approximately 06:00 and 12:30,

and based on the full residence times, the common times are approximately 05:00

to 16:00. Solid black lines are linear regression fits, which show that NEC and NEP

rates were lower during the bleaching event compared to post-bleaching.
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Fig. S6. Correlation between NEC and NEP during bleaching (triangles) and post-

bleaching (circles) during 06:00 to 12:30. Regression between NEC and NEP using

this subset of data shows no significant effect of bleaching. Colors indicate QAra, at

station E5 corresponding to the metabolic rate measurement times. Solid black line

is exponential fit between NEC and NEP using all of the data (see Fig. 8 in main

text). Theoretical vector in lower right shows the slope between NEC and NEP (0.87)

that maintains an approximately constant QArag. Greater slopes decrease QArag and

lesser slopes increase QArag. The exponential curve is increasing in slope at higher

NEP, but is always less than the 0.87 critical value, and thus the highest QArag values

correspond to the highest NEC and NEP rates.
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Chapter 6

Mass coral mortality under local

amplification of 2 'C ocean warming

6.1 Abstract

A 2 'C increase in global temperature above pre-industrial levels is considered a rea-

sonable target for avoiding the most devastating impacts of anthropogenic climate

change. In June 2015, sea surface temperature (SST) of the South China Sea (SCS)

increased by 2 'C in response to the developing Pacific El Nifio. On its own, this mod-

erate, short-lived warming was unlikely to cause widespread damage to coral reefs in

the region, and the coral reef "Bleaching Alert" alarm was not raised. However, on

Dongsha Atoll, in the northern SCS, unusually weak winds created low-flow condi-

tions that amplified the 2 'C basin-scale anomaly. Water temperatures on the reef

flat, normally indistinguishable from open-ocean SST, exceeded 6 'C above normal

summertime levels. Mass coral bleaching quickly ensued, killing 40% of the resident

coral community in an event unprecedented in at least the past 40 years. Our findings

highlight the risks of 2 'C ocean warming to coral reef ecosystems when global and

DeCarlo T.M., Cohen A.L., Wong G.T.F., Davis K.A., Lohmann P., Soong K. (submitted).
Mass coral mortality under local amplification of 2 'C ocean warming. Scientific Reports
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local processes align to drive intense heating, with devastating consequences.

6.2 Introduction

An historic international agreement reached at the Conference of Parties 21st session

(COP21) aims to limit global warming within 2 'C above pre-industrial levels by

reducing greenhouse gas emissions, an attempt to avert the most devastating impacts

of climate change (UNFCCC, 2015). Yet there is growing concern that the 2 'C limit

is wholly insufficient to protect the world's at-risk populations and ecosystems (Victor

and Kennel, 2014; Tschakert, 2015). Tropical coral reefs, which provide hundreds of

millions of people worldwide with food and income, fall in this category (Hoegh-

Guldberg et al., 2007; Pandolfi et al., 2011; Costanza et al., 2014). Considered the

ocean's most productive ecosystems, coral reefs are particularly sensitive to ocean

warming, which disrupts the symbiotic relationship between the coral animal and its

photosynthetic algae. Bleaching, so-called because the coral turns white as it expels

damaged algae, is lethal if prolonged (Baker et al., 2008). In the past 30 years, coral

bleaching caused by ocean warming has contributed to the loss of 19% of the world's

coral reef area (Glynn, 1993; Wilkinson, 2008).

Global climate model simulations of open-ocean warming under business-as-usual

greenhouse gas emissions scenarios imply that bleaching will occur annually on over

80% of the world's remaining reefs by the second half of this century (Prieler et al.,

2012; van Hooidonk et al., 2013). Strategies designed to cap ocean warming have

potential to reduce or at least delay these impacts (Frieler et al., 2012; van Hooidonk

et al., 2013), and some corals may be able to adapt to moderate rates of warming

(Frieler et al., 2012; Palumbi et al., 2014). Critically however, the thermal environ-

ments of most tropical coral reef ecosystems do not resemble those of the open ocean

(Davis et al., 2011; DeCarlo et al., 2015b; Wall et al., 2015). Limited by availability of

light, tropical reefs flourish in shallow waters, even those perched atop undersea vol-

canoes whose bases stretch kilometers to the seafloor. In these shallow environments,

regional weather conditions and local hydrodynamics exert strong influence and when
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they align, a moderate open-ocean warming can quickly translate to intense heating

on the reef, with devastating consequences.

Here we document the physical and ecological consequences of such an alignment

on Dongsha Atoll, a coral reef in the northern South China Sea (SCS). We developed

a reef-flat heat budget to diagnose the physical drivers of warming in June 2015,

linking it to a regional atmospheric anomaly, and we tracked the coral community

response to extreme thermal stress. Finally, we evaluate the historical precedence for

an event of this magnitude using markers of thermal stress preserved in the skeletons

of long-lived corals.

6.3 Methods

6.3.1 Climate data

Sea surface temperature (SST) data were acquired from the Extended Reconstructed

SST (ERSST) product (Smith et al., 2008), NOAA Optimum Interpolation (NOAA-

01) (Reynolds et al., 2002), NOAA Coral Reef Watch (Watch, 2013), and Moder-

ate Resolution Imaging Spectroradiometer (MODIS) (NASA Goddard Space Flight

Center, Ocean Ecology Lab, 2014). The different SST products possess a range of

temporal coverage and spatial resolution. ERSST covers the entire 20th century at

relatively course (20 by 2') resolution, NOAA-OI begins in 1982 at 1 resolution (Fig.

6-1), Coral Reef Watch begins only in 2013 at high resolution (5 km), and MODIS

covers only 2002-present but at very high spatial resolution (4 km). ERSST and

NOAA-OI anomalies were calculated relative to the 1940-1970 ERSST mean. The

NOAA Coral Reef Watch program calculated monthly climatologies for 1985-1993,

and we used this as the climatology in our assessment of SST anomalies in the open

ocean around Dongsha Atoll during June 2015. ERSST data were used to evalu-

ate the centennial-scale warming trend in the northern South China Sea (Fig. 6-1).

MODIS was used to plot the high-resolution distribution of SST in and around Dong-

sha Atoll at the time of bleaching (Fig. 6-2c). Sea level pressure (SLP) data were
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acquired from the National Centers for Environmental Prediction / National Center

for Atmospheric Research (NCEP/NCAR) Reanalysis (Kalnay, 1996). Monthly SLP

anomalies were calculated relative to the 1949-2015 monthly climatology.

6.3.2 Local reef conditions

The physical conditions leading to the bleaching event were monitored with a series

of instruments deployed on Dongsha Island and underwater on the reef flat. Solar

radiation, wind speed, air temperature, precipitation, and relative humidity were

measured every 6 minutes on Dongsha Island with a meteorological station maintained

by the Dongsha Atoll Research Station. Seawater temperature was monitored on the

Dongsha Atoll eastern reef flat (station E5) at 2 m depth, on the eastern fore reef

(station El) at 7 m depth, and in the channel north of Dongsha Island at 5 m depth

with Onset Hobo U22 temperature loggers deployed on buoys 0.5 m above the bed

(accuracy t 0.1 'C after calibration in an isothermal bath) and sampling every 15

minutes. Currents at station E5 on the reef flat were measured between June 2014

and June 2015 with a Lowell Instruments Tilt Current Meter (TCM; sampling every

5 minutes in 1-minute bursts at 8 Hz) and in June 2013 and June 2014 with Nortek

Aquadopp acoustic Doppler current profilers (ADP; sampling every 4 minutes). The

TCM was calibrated to the depth-mean current velocity measured by an ADP during

a 1-week co-deployment at station E5 (r = 0.86).

6.3.3 Heat budget calculations

We used the meteorological data to estimate the air-sea heat flux in June 2015 as the

sum of latent, sensible, longwave radiation, and shortwave radiation fluxes. Longwave

radiation was estimated following Reed (1976), and latent and sensible fluxes were

estimated using bulk-formula calculations with COARE 2.6 (Fairall et al., 2003) fol-

lowing the approach previously developed and validated on Red Sea reefs with similar

bathymetry to the Dongsha reef flat (Davis et al., 2011). Heat fluxes were converted
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to temperature (T) change by:
dT Q dT _ Q(6.1)
dt pcph

where t is time, Q is heat flux in W m-2, p is seawater density (kg m- 3 ), cp is the

heat capacity of seawater (W s kg- 1 'C-), and h is water depth (in). The total

heat budget (in 'C hr- 1 ) on the reef flat was calculated by taking the time-derivative

of measured water temperature, and the advective component was estimated as the

difference between total (observed) and air-sea (calculated) components (benthic and

diffusive heat fluxes assumed negligible).

6.3.4 Ecological surveys

Ecological surveys were conducted at 8 stations across the reef flat and 2 stations on

the fore reef following a protocol similar to previously established methods for charac-

terizing benthic cover on coral reefs (Golbuu et al., 2007). Pre-bleaching surveys were

conducted between 29 May and 7 June (reported in Chapter 5), and post-bleaching

surveys were conducted between 27 July and 2 August. At each station, 5x 50 m

transects were laid out and photographed every meter (0.5 m by 0.5 in image area),

giving a total of 250 photos per station. Transects were oriented N-S (along-shore) and

spaced 5 m apart (cross-shore). Images were analyzed using the program Coral Point

Count (Kohler and Gill, 2006) with 5 randomly placed points per image identified to

coral genera or benthic substrate type (Appendix F). The same survey methodology

was repeated at the same locations pre- and post-bleaching for reef flat stations (E2-

E6), while fore reef station El was surveyed only post-bleaching. The channel north

of Dongsha Island was inspected visually for bleaching on 24 June and 29 July, but

no photo surveys were conducted. In total, we made 22,500 point identifications in

our study. All corals, whether alive and pigmented, bleached, or recently dead were

identified to genera level. Bleached corals were identified based on lack of pigment

and the presence of live polyps, whereas recently dead corals were distinguished based

on structurally intact corallites without any live polyps present.
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6.3.5 Bleaching histories

Coral skeletal cores were collected from massive Porites colonies using underwater

pneumatic drills with 3 cm diameter drill bits. The cores were scanned at Woods Hole

Oceanographic Institution Computerized Scanning and Imaging Facility and skeletal

density was calculated by comparison to previously calibrated coral skeletal density

standards (DeCarlo et al., 2015a). Annual calcification rates were calculated using the

software program coralCT (DeCarlo and Cohen, 2016) and the mean calcification rate

was calculated for 2007-2012, the years that are overlapping among all colonies. Stress

bands were identified visually in 1983 (1/3 cores), 1998 (5/13 cores) and 2007 (6/22

cores) from coral CT scans following previous studies that linked observed bleaching

with anomalous high-density band formation (Mendes and Woodley, 2002; Carilli

et al., 2009; Cantin and Lough, 2014; Barkley and Cohen, 2016). We determined the

linear trend of annual calcification rates from 1990-2013 [(1.310 0.031 g cm- 2 yr-1)

+ (0.0061 0.0024 g cm~ 2 yr- 2 )] (standard error), following the statistical approach

of Castillo et al. (2012) that accounts for fixed effects among cores and autocorrelation

within the time series. Estimated mean calcification rates for 1998 (1.36 0.04 g

cm-2 yr-1) and 2007 (1.47 0.07 g cm-2 yr-1) were within uncertainty of measured

calcification rates measured for those years (1.38 0.03 g cm- 2 yr' and 1.43

0.03 g cm-2 yr-1, respectively), indicating that there were no significant declines in

calcification during these past bleaching events.

6.4 Results and Discussion

The ocean surface surrounding coral reefs in the northern SCS has warmed at a

rate of 0.09 0.015 'C (95% confidence) per decade since 1900 (Fig. 6-1), closely

tracking the warming trend globally (0.071 0.013 'C per decade) (Hartmann et al.,

2013; Rhein et al., 2013), and in most coral reef regions (Fitt et al., 2001; Jokiel and

Brown, 2004; Hoegh-Guldberg et al., 2014) (Fig. 6-1a). In spring and summer 2015,

weakened surface winds in the northern SCS associated with a developing Pacific El

Nifno and diminished sea to air latent heat flux (Kleypas et al., 2015; Rong et al., 2007;
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Liu et al., 2013), were superimposed on this secular trend (Fig. 6-ld-e). Anomalous

warming of the sea surface culminated in a June SST anomaly 2 'C above the 1985-

1993 climatological mean for that time of year (Fig. 6-2e). The open-ocean SST

anomaly was not high enough for long enough to raise NOAA's Coral Reef Watch

"Bleaching Alert" (Fig. 6-2b), and coral bleaching was not anticipated in the northern

SCS in June 2015 (Watch, 2013; Liu et al., 2014).
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Figure 6-1: Historical sea surface temperature (SST) changes. a, Map of the rate of
SST increase since 1900 (data from Extended Reconstructed Sea Surface Temperature,
ERSST). The northern SCS has warmed at a rate similar to other coral reef regions
such at the Great Barrier Reef, Melanesia, and the eastern Caribbean. b-c, annual
mean and d-e, summer (June-July-August, or JJA) SST anomalies for the open-ocean
surrounding Dongsha Atoll. The data are plotted in b and d for 1900-2015 from ERSST
and in c and e for 1982-2015 from NOAA Optimal Interpolation (01). In all panels, the
data are derived from the single gridbox (2' resolution for ERRST and 1C resolution
for 01) covering Dongsha Atoll. Red and blue shading corresponds to years that were
warmer or cooler, respectively, than the 1940-1970 climatology calculated from ERSST.
Anomalously warm SST often occurred in the South China Sea during strong El Niiio
events, especially pronounced in summertime during 1998, 2007, and 2015.
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Dongslia Atoll is a massive (25 km diameter), circular coral reef emerging from

500 m water depth on the continental shelf slope in the northern SCS. The living

reef flat encircling the lagoon is just 1-3 m deep (Fig. 6-2d), as is characteristic of

many coral atolls, and barrier and fringing reefs worldwide. In summer, water on the

shallow reef is heated during the day by solar insolation, and cooled via advection of

relatively cooler offshore water across the reef flat by tidal and wave-driven currents.

Consequently, daily average temperatures on the reef flat resemble those of the sur-

rounding open ocean. Indeed, mean temperature recorded by our in situ logger on the

reef flat during June-July-August (JJA) of 2013-2015 was 29.7 'C, nearly identical

to that of the surrounding open ocean (29.6 'C in both NOAA-OI and NOAA Coral

Reef Watch) (Supplementary Fig. Sl). However, in June 2015 however, an anoma-

lous high-pressure system (Fig. 6-2b) resulted in reduced wind speeds and surface

waves across the northern SCS. As a result, current speeds on the reef flat decreased

by 40-60% compared to the previous two years (Supplementary Fig. S2), disrupt-

ing the local heat budget. For several days, heating from solar insolation exceeded

the advective cooling that normally keeps the reef flat at open-ocean temperatures,

adding 4 'C to the relatively modest 2 'C open-ocean anomaly. Reef-flat temper-

atures peaked in excess of 6 'C above the climatological mean June SST (Fig. 6-2

and Supplementary Figs. S1-3). We diagnosed the causes of this transient heating

event using high-resolution physical measurements and a heat-budget analysis. The

extreme temperature (36 'C) reached in June 2015 was anomalous, a result of global

(El Nifio warming superimposed upon a global warming trend), regional (high pres-

sure system and reduced winds), and local hydrodynamic (shallow reef, neap tide and

unusually slow currents) factors aligning - at the right time - to drive intense heating

(see Supplementary Information for additional details).

Ecological surveys conducted across the reef flat in early June prior to the bleach-

ing event, and again in late July after the bleaching provide a rare quantitative

characterization of the response of the benthic community to extreme thermal stress

(Baker et al., 2008). In early June, live, healthy coral on the reef flat covered 22% of

the benthic area. By late July, bleaching gave way to mass mortality and the cover of
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Figure 6-2: Local amplification of regional warming. a, May-June-July (MJJ) 2015
SST anomalies relative to the 1940-1970 (May-June-July, or MJJ ) ERSST climatology
shows Pacific basin-wide warming in response to developing El Nifno conditions. b,
NOAA Coral Reef Watch 7-day maximum alert level (colours) for the South China

Sea region 12-18 June 2015. Black contours are June 2015 monthly sea level pressure
anomaly (hPa) from NCEP/NCAR reanalysis, showing a high-pressure system centered
over Dongsha Atoll (white circle). c, SST in and around Dongsha Atoll 10-17 June 2015
derived from 4-km MODIS data. SST is higher within the lagoon and on the submerged
reef flat compared to the adjacent open-ocean. Dashed black box is where ecological
surveys were conducted. d, Bathymetry map of the eastern reef flat highlights the

shallow habitat created by the atoll. e, Temperatures captured by in situ loggers on
the reef flat (red), in the channel (green), and on the fore reef (blue); and open-ocean

(solid black) and the open-ocean climatological mean for June (dashed grey; NOAA
Coral Reef Watch 5-km product). Open-ocean temperatures were 2 'C above normal

(black bar) in mid-June but were amplified to 6 'C on the shallow reef flat, triggering
mass bleaching and mortality.

live, un-bleached coral was halved to 11% of the benthic area. Our ecological survey

point-counts showed 33-40% of coral points recently dead and 10% still bleached (Fig.

6-3). The response of the benthic community was exceptionally fast. Whereas corals

typically bleach - and recover - in response to several months of accumulated heating

or cooling (Liu et al., 2014; Schmidt et al., 2016), corals on the Dongsha reef flat
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bleached within 1 week of peak temperatures and 90% of them were either recovered

or dead less than 6 weeks later.

In contrast to the reef flat, coral communities in the channel north of Dongsha

Island were not exposed to local amplification, and those on the upper fore reef slope

were cooled by internal waves. Large-amplitude internal waves are generated on tidal

frequencies in the Luzon Strait to the east of Dongsha Atoll and propagate along the

thermocline (70-100 m depth) into the northern SCS (Wang et al., 2007; DeCarlo

et al., 2015b). When these internal waves collide with Dongsha Atoll, they deliver

deep, cool water up the fore reef slope (Wang et al., 2007; DeCarlo et al., 2015b).

As a consequence, temperatures at 7 m depth on the fore reef decrease as much as

8 iC for several hours each day (DeCarlo et al., 2015b), and during 6-15 June 2015,

eastern fore reef temperatures were on average 2.8 'C cooler than the surrounding

open-ocean SST (Fig. 6-2e). Yet over the same time in the channel north of Dongsha

Island, where the internal waves are absent, mean temperature was within 0.1 'C of

the open-ocean SST (Figs. 6-2e). Bleaching did not occur on the fore reef or in the

channel (Fig. 6-3), implying that the internal waves were sufficient, but not necessary

at this time, to relieve thermal stress and prevent bleaching. Critically, the lack of

bleaching in the channel indicates that the 2 'C open-ocean warming was insufficient

to drive bleaching on its own, and that the synergy of global, regional, and local

drivers of warming was responsible for the mass coral morality event on the reef flat.

We observed strong species-specific patterns in mortality as a result of bleaching

(Fig. 6-3). Based on visual surveys conducted on 20 June, all colonies of Porites,

Acropora, Pavona, and Stylophora, the four most common coral genera on the reef

flat, appeared bleached. However, 6 weeks later, we found only 17% mortality of

Porites in our ecological point count data, compared with 56% for Acropora (Fig. 6-

3). Contrasting bleaching responses have the potential to shift coral reef community

composition in favor of the most resistant species (Grottoli et al., 2014). Branching

corals that are most vulnerable to bleaching, such as Acropora, are among the fastest

growing coral genera (Dullo, 2005), creating habitat for many other reef taxa (Jones

et al., 2004; Bonin, 2012; Pandolfi et al., 2011). Their selective demise, therefore,
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Figure 6-3: Response of the Dongsha Atoll reef flat coral community to thermal stress.
At the top, a 100-year old coral colony photographed alive in June 2013 (left) and after
its death in July 2015, confirmed by absence of living polyps (inset). Bleaching-induced
mortality varied by genus. Green, white, and black areas represent percent of live and
healthy/pigmented, bleached, and recently dead corals, respectively, by genus in late
July surveys. Bleached Porites colonies continued to host live polyps (inset), whereas
most Acropora succumbed quickly and were covered in algae after death. Photos at
the bottom show healthy and pigmented corals in the channel and on the upper fore
reef slope in late July. The absence of bleaching in the channel was based on visual
observations, while no bleached corals were found in ecological surveys conducted on
the fore reef.

creates additional problems for the biodiversity of coral reef ecosystems, which harbor

an estimated one quarter of all marine species (Knowlton et al., 2010).

Mass bleaching-induced mortality of long-lived corals across the Dongsha reef flat

suggests that an event of this magnitude is unusual, and perhaps unprecedented over

the past several decades. Bleaching was reported in the waters immediately sur-

rounding Dongsha Island in 1998 (Dai, 2004), but the larger lagoon and reef flat

were not monitored at the time. To assess whether past high temperature events

in the open ocean drove similar levels of ecological response, we examined skeletal
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cores from massive Porites corals for evidence of stress banding, discrete anoma-

lously high-density bands of skeleton accreted during bleaching (Hudson et al., 1976;

Mendes and Woodley, 2002; Carilli et al., 2009; Cantin and Lough, 2014; Barkley and

Cohen, 2016). Colonies that bleach but survive and continue to grow, preserve within

their skeleton a high-density stress band visible in computerized tomography (CT)

scans (Hudson et al., 1976; Mendes and Woodley, 2002; Carilli et al., 2009; Cantin

and Lough, 2014). The prevalence of Porites stress bands scales proportionally to

community-level bleaching in Palau (Barkley and Cohen, 2016), suggesting that stress

bands reliably archive the magnitude of past bleaching events. Partial colony mortal-

ity, indicative of severe bleaching, is also visible in CT scans, and reductions in growth

due to slow recovery can be quantified from CT images (Mendes and Woodley, 2002;

Carilli et al., 2009; Cantin and Lough, 2014).

We analyzed CT scans of 22 Porites colonies on the reef flat ranging in height

from 1 to 1.5 m. Each colony was alive and pigmented in early June, prior to the

peak temperature anomaly, all appeared bleached by mid-June, and 11 (i.e. 50%) of

these colonies had died by late July. Average growth rate was 1.5 cm yr' (Fig. 6-4),

indicating that these colonies were 70-100 years old. This means that each colony

had survived prior high temperatures associated with strong El Nifio events in 1983,

1998, and 2007 (Fig. 6-1 and Fig. 6-4). However, our analysis of the skeletal records

shows that less than 50% of the colonies had bleached during these events, compared

with 100% in 2015 (Fig. 6-4), and there were no signs of partial mortality and no

significant declines in annual calcification rate. This implies that the 2015 bleaching

event was the most severe to hit Dongsha Atoll in at least the past 40 years, and

possibly much longer.

Reef-building corals typically live near the upper limits of their thermal tolerance

(Glynn, 1993; Baker et al., 2008). Global climate models project that conditions on

the majority of coral reefs will exceed these limits by the second half of this century

(Frieler et al., 2012; van Hooidonk et al., 2013). Reducing greenhouse gas emissions

in an effort to cap open-ocean warming to 2 0C could delay these impacts and may

allow some corals time to acclimate and adapt (Frieler et al., 2012; van Hooidonk
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Figure 6-4: Reconstruction of past bleaching on Dongsha Atoll reveals the 2015 event
to be unprecedented in 40 years. a, Computerized tomography (CT) scans of skele-
tal cores extracted from living colonies show annual growth bands and thin, discrete,
anomalously high density bands indicative of bleaching in 1998 and 2007. b, High tem-
perature events associated with El Niio (bottom) caused corals to bleach on Dongsha
Atoll, as evidenced by the occurrence of stress bands in 30-40% of Porites in 1983,
1998, and 2007 (top). By comparison, 100% of Porites colonies bleached in 2015, mak-
ing this event unprecedented in at least the past 40 years. El Niio events are identified
based on the Multivariate ENSO Index (MEI), which quantifies El Niio variability
based on a blend of Pacific-wide air pressure, winds, temperatures, and clouds(Wolter
and Timlin, 2011).

et al., 2013; Palumbi et al., 2014). However, most projections of coral reef futures

under a 2 'C global warming rely solely on estimates of open-ocean warming without

considering the compounding effects of regional climate and local hydrodynamics.

Our results indicate that these projections may be overly optimistic for shallow coral

reef ecosystems.

6.5 Supplementary Information

We used temperature and weather data collected on Dongsha Atoll to investigate the

driving factors of the 2015 thermal stress event. Our underwater temperature loggers

show that reef flat temperatures generally track offshore SST but with strong diurnal
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and fortnightly variability (Fig. Si). Typically, water temperature on the reef flat is

warmer than offshore during the day, and cooler than offshore at night. Fortnightly

variability also modulates the daily mean reef flat temperature, occasionally causing

multi-day periods when reef flat temperatures are persistently cooler or warmer than

offshore (Fig. Si). Much of this fortnightly variability is driven by spring/neap

tidal changes in currents, which cool the reef by exchanging reef flat and offshore

waters. Associated with most summertime neap tides, when tidal-driven currents are

reduced, reef flat temperatures are elevated above the offshore SST for several days.

Yet, exceptions to these patterns exist. During June 2015, weak winds associated with

an unusual atmospheric high-pressure system in the northern SCS reduced currents

speeds by 40-60% compared to June 2013 and June 2014 (Fig. S2). As a consequence,

daily mean reef flat temperatures were consistently warmer than offshore SST during

the entire first half of June 2015, throughout both spring and neap tides (Fig. Si).

Using our suite of physical measurements, we calculated a June 2015 heat budget

for the reef flat (Materials and Methods section). From the beginning of June 2015 to

the onset of bleaching in mid-June, relatively high air temperatures, insolation, and

humidity; and low wind speeds created favorable conditions for high air-to-sea heat

flux (Fig. S3). However, while water temperatures increased > 4 'C between early

and mid-June, the calculated air-sea heat flux maintained a consistent diurnal cycle

of nearly constant amplitude (Fig. S3). This suggests that the advective component

of the heat budget was responsible for the warming between early and mid-June. In-

deed, the calculated advective heat flux shows large cooling events that occur daily,

but begin to diminish in strength and nearly disappear during neap tide on 11 June

(Fig. S3). Intense heating on the reef flat during neap tide is common, however,

and certainly not unique to June 2015. For example, neap tide heating events of

similar magnitude are evident in June-July 2014 and in May 2015 (Fig. Sl). The

mid-June 2015 heating is set apart from the previous two years of temperature vari-

ability because the neap tide warming was superimposed on to already anomalously

warm offshore SST, and on to reef temperatures that were already elevated above the

offshore SST under anomalously slow currents that persisted for 2 weeks (Fig. S2).
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In our ecological surveys, total coral cover (including live, bleached, and dead)

was in excellent agreement pre- and post-bleaching for stations E2, E3, E4.5, E5,

and E6, but total pre-bleaching coral cover was greater than that observed in post-

bleaching surveys for stations E2.5, E3.5, and E4 (Appendix F). Thick algal turfs,

which quickly overgrow and obscure recently dead corals, make our recently dead

coverage a lower-bound estimate (Fig. S4).
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Figure 6-5: Supplemental Figure Si: Time series of summertime sea level and water

temperature at station E5 on the eastern reef flat. Solid black, solid red, and dashed

black plots show sea level, reef flat temperature, and SST climatology, respectively, for

years 2013 (top), 2014 (middle), and 2015 (bottom). The climatology (dashed black;

NOAA Coral Reef Watch 5-km product monthly means) is the same for all temperature

panels, and thus provides a baseline for comparing the reef flat temperatures (red)

among years. Sea level fluctuations were estimated with the model of (Ray, 2013) and

set to the mean depth (2 m) at station ES. Reef flat temperatures generally track the

open-ocean, but often increase during neap tides (i.e. when the sea level amplitude

is at a minimum). The greatest temperatures occurred in June 2015, when reef flat

temperatures were consistently elevated above the open ocean for several weeks, and

were superimposed on a 2 
0

C open-ocean anomaly.
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Figure 6-6: Supplemental Figure S2: Atmospheric pressure and water current anoma-
lies in June 2015. a, June atmospheric pressure measured on Dongsha Island between
2012-2015. Atmospheric pressure in June 2015 (red) was higher than the June 2012-
2014 climatology (black) during almost the entire month. Named tropical storms are
indicated next to the associated low-pressure anomalies. b, Box plots of depth-mean
current velocities measured at reef flat station E5 in June of 2013, 2014, and 2015.
Horizontal black lines are median velocities, gray boxes are the interquartile ranges,
and vertical bars are 10th to 90th percentiles. In a, the greatest pressure anomaly
in June 2015 occurred during 8-15 June, consistent with the timing of low winds and
current speeds, and the onset of bleaching.
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Figure 6-7: Supplemental Figure S3: Local physical conditions on the reef leading
to bleaching. Time series of weather conditions on Dongsha Island, current speeds,
estimated heat budget components, and measured water temperature on the reef flat.
Thick gray lines in heat budget component panels show daily mean temperature changes
(note different y-axis scales for daily compared to hourly data). White background is
daytime, shaded background is nighttime, and red-shaded background indicates the
time within which the onset of bleaching is constrained by visual observations on the
reef flat (i.e. no bleaching observed on 12 June, and all corals visually bleached on 20
June). The air-sea heat flux maintains a consistent pattern throughout the first half of
the month, whereas the strong cooling events in the advective component of the heat
budget begin to diminish leading into the maximum reef temperatures and the onset
of bleaching.
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Figure 6-8: Supplemental Figure S4: Photograph from the post-bleaching ecological
survey at station E5 showing how recently dead corals are partially obscured by algae.
Dead or partially dead colonies of Stylophora, Favites, Favia, and Pocillopora are all
present in this image, all covered with algae. While we are able to identify the recent
mortality in this image, we cannot exclude the possibility that some recently dead coral
colonies were hidden in post-bleaching surveys.

165



166



Chapter 7

Conclusions and Future Directions

If global climate model (GCM) projections of 1-4 'C warming over the next century

prove true, the consequences for tropical coral reef ecosystems will be devastating

(Frieler et al., 2012). Some corals show signs of acclimation and adaptation (Palumbi

et al., 2014), but whether corals have enough time to adjust to a warmer ocean

depends on the rate of 21st century warming (van Hooidonk et al., 2013). GCMs

vary greatly in their predicted warming rates, and much of this variability arises from

differences in their sensitivity to anthropogenic CO 2 emissions (Stocker et al., 2013;

Meehl et al., 2014). Typically, GCMs are tuned to the instrumental temperature

record by adjusting their sensitivity to CO2 , so that historical CO 2 emissions produce

the historical temperature trend. However, internal variability within Earth's climate

system imprints natural fluctuations - on interannual, multi-decadal, and centennial

timescales - onto the observed warming trend (Li et al., 2013). In comparison to

natural variability, the instrumental temperature record is short; it extends back only

150 years - though for vast regions of the ocean it is reliable for less than half of

this time (Giese and Ray, 2011) - and is insufficient to fully characterize the range

of natural variability. This complicates efforts to ascribe the instrumental warming

trend to atmospheric CO2 , to tune the climate sensitivity of GCMs, and to forecast

temperatures into the future.

Likewise, we have an incomplete picture of the temperatures to which coral reef

ecosystems have been exposed. Reliable temperature records for large swaths of the
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tropical oceans go back only to the start of the satellite era in 1982, and pre-satellite

temperatures for many coral reef areas are based on a handful of 20th century ship

tracks (Giese and Ray, 2011). In the remote central Pacific Ocean, for instance,

estimates of the degree of 20th century warming in the ocean surrounding coral reef

ecosystems vary by a factor of two (Nurhati et al., 2011).

Corals themselves can help fill these gaps in our knowledge. Past ocean tem-

peratures are recorded in their skeletons, but so far we have been unable to read

them accurately. In Chapters 2 and 3, I show that we can reliably extract tempera-

ture information from coral skeletons, but we can only do so by characterizing coral

biomineralization. I developed a new coral thermometer, "Sr-U" that offers great

potential to reconstruct past climate with unprecedented accuracy. Future investi-

gations should use Sr-U to reconstruct tropical climate changes over the past several

millennia. These records would advance our understanding of the range of natural

climate variability, potentially improve our estimates of climate sensitivity to C0 2 ,

and constrain the dynamics of the climate system. Coral-based reconstructions can

be developed for remote stretches of the tropical oceans, regions where we have a

particularly poor understanding of past climate changes. At the same time, Sr-U

should be further validated. The Sr-U temperature calibration was developed for

Porites and mean annual temperatures between 26 'C and 30 'C. While this calibra-

tion is applicable over much of the tropical Indo-Pacific, further validation is needed

for higher latitudes, where mean annual temperatures are less than 26 'C. Sr-U also

needs to be validated for multiple genera, in particular the long-lived genera found

in the Caribbean such as Diploria, Siderastrea, and Orbicella. Further, isotopic and

elemental ratios in addition to Sr/Ca and U/Ca may prove valuable in reconstruct-

ing temperature. B/Ca ratios and boron isotopic composition, in particular, are

only weakly sensitive to temperature but strongly sensitive to carbonate chemistry

(Holcomb et al., 2016). Coupling boron systematics with U/Ca ratios may further

constrain the vital effects - driven by calcifying fluid carbonate chemistry - that must

be accounted for in accurate coral paleothermometry.

In addition to understanding the past, we must forecast the future. In Chapters 5
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and 6, I show that thermal and chemical environments of coral reefs can differ greatly

from the surrounding open ocean. These differences, and the driving forces behind

them, should be considered in predictions of coral reef futures. I showed in Chap-

ter 5 how coral reef community metabolism strongly modulates reef water carbonate

chemistry, often creating favorable conditions for rapid daytime calcification. Diurnal

changes in reef-water pH on Dongsha Atoll were comparable to those predicted for

the open ocean by 2100. Future studies should address the relationship between pH

changes driven by metabolism and those by anthropogenic CO 2 emissions. In partic-

ular, will metabolism-driven changes in reef-water pH superimpose on, or override,

declines in open-ocean pH? Perhaps the only way to answer this question with confi-

dence is to develop coupled time-series of reef-water pH and open-ocean pH. Whereas

pH time series in the open-ocean Atlantic and Pacific extend back a few decades,

those on coral reefs are scarce and are typically months long, or at most a few years.

We need to construct reef-water pH time series to go along with the open ocean ones.

Further, new instruments are in development to autonomously record total alkalinity

(TA) and dissolved inorganic carbon (DIC) time-series. If TA or DIC measurements

are coupled with pH, the full carbonate system is constrained, and if combined with

current meters, all of the necessary data are available to develop multi-year time

series of reef community metabolism. By tracking variations of metabolism over mul-

tiple years to decades, we will improve our understanding of the relationship between

open-ocean and reef-water acidification.

Predictions of coral reef futures must also consider local physical processes that

distinguish reef temperatures from those of the open ocean. Presently, the criteria for

coral bleaching events are derived from NOAA's Coral Reef Watch "Bleaching Alert"

(Liu et al., 2006). This warning system is widely used to estimate bleaching impacts,

and it has even been coupled with GCMs to forecast the frequency of bleaching events

over the remainder of this century (Frieler et al., 2012; van Hooidonk et al., 2013).

However, the Bleaching Alert is based on open-ocean temperature data products

that are too low-resolution to capture the locally amplified warming that can occur

on shallow reefs. In Chapter 6, I show that while a modest 2 'C warming in the open-
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ocean South China Sea was insufficient to raise the Bleaching Alert, local amplification

to 6 'C on the Dongsha Atoll reef flat resulted in mass bleaching and 50% mortality

of the resident coral community. Assessments of reef futures over the remainder

of this century, which rely upon this open-ocean warning system without regard to

local processes, may therefore underestimate the risks placed upon shallow marine

ecosystems by the open-ocean warming projected for next century.

Ultimately, we should build coupled physical-biogeochemical models of coral reef

ecosystems. This would involve embedding local reef-scale physical models within

broader ocean-atmosphere climate models. The larger-scale model provides the open-

ocean and atmospheric boundary conditions, and the local hydrodynamic model cap-

tures the movement of water across the reef system. This approach is necessary

because global climate model simulations are typically too coarse to resolve coral

reefs structures. Once the physical model is in place, reef temperatures and car-

bonate chemistry can be integrated by parameterizing air-sea heat exchange (e.g.,

Chapter 6) and benthic metabolic rates (e.g., Chapter 5). This modeling framework

would be especially valuable because, once validated, it could be used to predict coral

reef CaCO3 budgets under various scenarios of warming, acidification, and benthic

community changes. Critically, the model predictions of temperature and carbonate

chemistry across reef ecosystems could be tested with field studies, and re-tuned as

more in situ data become available. A simplified version of such a model already exists

(Falter et al., 2013), but the biogeochemical component is presently limited by gaps

in our understanding of the sensitivities of reef community metabolism to carbonate

chemistry and temperature. My thesis contributes to filling these gaps by highlighting

the importance of feedbacks between community metabolism and the seawater car-

bonate system, and the vulnerability of coral communities to localized heating. These

findings move us one step closer to developing the coupled physical-biogeochemical

models that would be so valuable in predicting coral reef futures.
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Appendix A

Chapter 2 Steady-State Model

The steady-state model of the calcifying fluid uses the experimentally determined

partitioning of U/CO between seawater and aragonite to predict the U/Ca ratio

of coral skeleton as a function of the addition of alkalinity and DIC, and CaCO3

precipitation. We begin with the assumption of steady-state U concentration in the

calcifying fluid:

z dUfl = Fu_- j - Fu-out = 0 (A.1)

where z is the length scale (m) of the calcifying fluid defined as the volume divided

by the area, p is seawater density (kg m- 3 ), U is uranium concentration (pmol kg-'),

t is time (s), F is flux (pmol m 2 s-') across the boundary of the calcifying fluid,

and in and out are relative to the calcifying fluid. U enters the calcifying fluid only

through addition of external seawater:

Fu-in =Z Us (A.2)
T

where U,, is the concentration of uranium in seawater and T is the residence time (s)

of fluid in the calcifying space. U leaves the system by removal of calcifying fluid and

precipitation:

Fu-Ut = Ufliud + P( C03 )fluidK 3 (A.3)
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where calcifying fluid density is assumed equal to seawater density, P is precipitation

rate (pmol CaCO 3 m-2 s-), KIC 0 3 is the experimentally determined exchange

coefficient between U and C0 3, and CO3flUd and Ulpuid are in units of gmol kg 1 .

Rearranging Eq. (A.1):

FU-in = FU-out (A.4)

Substituting Eq. (A.2) and Eq. (A.3) into Eq. (A.4):

1- Usw = zP Ufluid + P( U )fpuidK /CO 3  (A.5)
T T CO 3

where each term is expressed as a flux. Multiplying by T and dividing by zp in order

to express each term as a concentration:

s,= U + 1P( CU )puidKi/CO 3  (A.6)
zp C03

We rearrange by first factoring ( U )fluid on the right side of Eq. (A.6):

U = ( U )fluid(CO3fluid + TPKu/co3) (A.7)
C03 zP

and then factoring K /CO3 from inside the parentheses on the right side of Eq. (A.7):

___ -U/CO3 003 fluid T
UsW )fuidK/ D3 (+ P) (A.8)

K03C0 3 zp

By definition:

( )Coral C03 )fluid)KD/C
0 3  (A.9)

Substituting Eq. (A.9) into Eq. (A.8):

Us) = ( Coral( Da + 1P) (A.10)
CU/CO3 zP

174



and rearranging to solve for ( ),oral):

U U(CO3fluid +T)_
003Coral US KU/CO3 Z. (A.11)

We follow a similar argument for [CO'-] in the calcifying fluid by assuming C02-

is also in steady-state. First, we assume that all alkalinity is carbonate alkalinity, and

approximate [CO~-] by the difference between the conservative properties alkalinity

and DIC:

CO3= AC - DIC (A.12)

where AC is carbonate alkalinity (peq kg-1 ) and CO3 and DIC are in units of pmol

kg- 1 . The steady-state equation for CO 3 is written in terms of conservative properties

AC and DIC:

dCO3d 3 dt= (FA _in - FDIC-in) - (FAC -out - FDIC-out) = 0 (A.13)

Rearranging Eq. (A.13):

FACin - FDIC-in = FAc-out - FDIC-out (A.14)

AC and DIC enter the calcifying fluid by addition of external seawater and alkalinity

and DIC addition/diffusion:

FC03-in = FAcin - FDIC-in = -(ACsw - DICsw) + rAc - rDIC
T

(A.15)

where rAC (jteq m- 2 s-') and rDIc (umol m-2 s-1 ) are fluxes into the calcifying

fluid of AC and DIC, respectively. The flux of CO2- is set equal to the difference

of the flux of AC and DIC following Eq. (A.12) for clarity, even though we work in

units of AC and DIC. AC and DIC exit the system by removal of calcifying fluid and

precipitation:

FCo-_out = FA _out - FDIC-Out - f(Acfiid - DICflid) + 2P - P
7-

(A.16)
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where precipitation of aragonite removes 2 equivalents Ac per 1 mole DIC. Substi-

tuting Eq. (A.15) and Eq. (A.16) into Eq. (A.14):

zp zP
(Ac8s - DICsw) + rAc - rDIC =I (Ac fluid - DICfluid) + 2P - P

T T
(A.17)

where each term is expressed as a flux. Multiplying by 7 and dividing by zp in order

to express each term as a concentration:

T T T
Aces - DICsu;+ -rAc - -rDIC= Acfluid - DICud + -P

zp zp zp

Rearranging to solve for Acflud - Dfluid and substituting Eq. (A.12):

1 T

C03f lud= Acfluid - DICflud = Ac8s - DICs+ -rAc - -rDIC - -P
zp zp zp

( A.18)

(A.19)

We assume that during steady-state, rA, = 2 rDIc, and define the following terms:

T
a = -rAe

zp
(A.20)

where a is in units of peq kg', and

2P

rAc
(A.21)

where / is dimensionless and 2 appears in the numerator because 2 equivalents of

alkalinity precipitate per 1 mole of CaCO 3. Substituting Eq. (A.20) and Eq. (A.21)

into Eq. (A.19):
a - #

C0 3fud = Acsw - DICsw + 2 (A.22)

Substituting Eq. (A.22) into Eq. (10) in the main text:

/C 0 . Da - a
K -0.14ln(Acsw - DICw +. )- 0.70 (A.23)

Next we substitute Eqs. (A.20-23) into Eq. (A.11), and determine [CO3]Cora, from
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stoichiometry:

U U Ac.91 - DICsw + "0" '3aU_)Coral ( )Coral Usw( 2 IS + 1
Ca () 3  0.14ln(Acsw - DICsw + -' ) - 0.70 2

(A.24)

We can now express coral U/Ca with two degrees of freedom as a and 3 are the

only freely adjustable terms in Eq. (A.24). a describes the alkalinity added into

the fluid during the residence time of a parcel of calcifying fluid, while / is the ratio

of alkalinity precipitation to addition. We make simplifying assumptions of initial

seawater as: Ac, = 2300 peq kg- 1 DICSw = 2100 pmol kg- 1 Salinity --= 35

Usw is calculated using the relationship between seawater salinity and U (Owens

et al., 2011).

Following the same steady-state assumptions for Ca and assuming that alkalinity

addition is coupled with Ca addition (2rca= rAc where rca is the Ca addition rate

in pumol m- 2 s-') to the calcifying fluid (Al-Horani et al., 2003):

Cai= Caslu +d-Oa (A.25)
2

Further, Sr concentration in the calcifying fluid can be calculated following a similar

approach as for U, except where Sr exchanges with Ca. We also assume that the

mechanism of Ca addition into the calcifying fluid does not discriminate against Sr,

or in other words Sr is added into the calcifying fluid according to the rate of alkalinity

addition and the seawater Sr/Ca ratio:

Sr
rsr = rCa( C0 )w (A.26)

The Sr/Ca ratio of the coral skeleton is:

Sr a Sr Casw + * ca

(a)coraI (Srs... + ( Ca)SW)( KSr/Ca + 2) (A.27)

where Eq. (A.27) is derived following similar steps as Eqs. (A.1-11 and A.24), except

Ca replaces CO3 and the term 2(-),w) appears on the right side of Eq. (A.27)
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because we assume that Sr enters the calcifying fluid via alkalinity addition (Eq.

A.26), as well as from seawater flux.

The pH of the calcifying fluid is determined from the carbonate alkalinity and

[CO2-] of the calcifying fluid, where carbonate alkalinity is:

Acflind = Acsw + a - 3a (A.28)

and pH is:

K'HCO31  = K(Ac = 2 CO3)fluid)
pHliid = -1og10([H]) = -log1O( ) = -lo 910(

f luid 
(A.29)

K2(Ac,, + a - 6a - 2(Ac,. - DICs, + a a )) K2(-Ac, + 2DICW)-log0i10( Ac.w - DICS + -" 2 Acl, ) - DICw + ")

(A.30)

where K is the apparent second dissociation constant of carbonic acid in seawater.

The percent of DIC in the calcifying fluid from seawater is:

a
%DICs8  = (1 - 2 )x100

0+ DICs,
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Data for Chapter 2
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Table B.1: Data for Chapter 2

experiment initial solid solid final final final
solution Sr/Ca U/Ca solution solution solution
mass (g) (mmol (gmol [Ca] [Sr] [U]

mol-1) mol- 1 ) (mmol (,umol (nmol
kg-1) kg- 1) kg- 1 )

h02 703.6 9.36 1.659 7.57 61.4 9.5
h08 699.86 9.47 1.944 6.25 48.5 6.2
fO1 700 9.40 1.862 5.49 41.3 4.7
f02 699.96 9.38 2.090 6.89 55.0 6.9
f03 699.99 9.08 1.760 7.79 63.6 9.6
f04 700.2 9.35 2.192 6.52 52.0 6.5
f05 700.27 8.95 1.413 6.29 51.0 8.1
f06 796.43 9.28 2.374 6.00 46.8 4.4
f08 699.46 14.89 2.475 - - -

gol 699.99 9.28 1.917 6.20 49.5 6.6
g03 700.9 9.48 2.248 7.29 57.5 6.7
g04 699.85 9.24 2.065 7.54 60.8 8.8
g05 700 9.27 2.116 6.65 53.6 6.7
g06 600.22 9.39 2.017 5.93 45.6 5.9
g07 600.18 9.28 1.838 7.20 58.2 8.1
g08 650.2 9.24 1.816 6.70 53.9 7.6
g09 500.05 9.16 1.908 5.73 45.9 6.2
giG 399.99 8.79 1.773 5.26 40.8 5.1
g1l 409.73 9.23 2.074 6.39 50.8 6.5
g13 701.92 13.31 1.989 8.98 109.6 2.4
hOl 699.98 9.20 1.665 5.37 42.2 5.8
h09 399.73 9.09 1.874 4.97 38.6 4.1
hO 429.73 9.17 1.875 5.86 46.9 6.5
h03 700.11 9.15 2.283 6.68 53.4 6.1
h07 701.56 9.10 2.368 6.80 54.2 6.1
h05 700.4 8.78 2.254 6.50 52.9 5.7
h06 700.25 8.74 2.420 6.96 57.4 5.9
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Data for Chapter 3
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Table C.1: Palmyra 2

(mmol mol- 1 )Date
2010.00
2009.95
2009.90
2009.85
2009.80
2009.75
2009.59
2009.42
2009.25
2009.08
2008.92
2008.75
2008.59
2008.42
2008.25
2008.09
2008.01
2007.94
2007.86
2007.79
2007.71
2007.64
2007.56
2007.48
2007.41
2007.33
2007.26
2007.18
2007.10
2007.03
2006.95
2006.88
2006.80
2006.73
2006.65
2006.58
2006.50
2006.42
2006.33
2006.25

182

Sr/Ca
8.94
9.01
9.00
8.99
9.02
8.88
8.98
8.93
9.04
9.11
9.05
9.06
9.03
9.09
9.04
9.19
9.16
9.16
9.14
9.11
9.10
9.08
9.07
8.97
9.07
9.12
9.03
8.95
9.00
9.07
8.94
8.89
8.90
8.98
8.94
8.97
8.88
8.96
8.96
9.05

U/Ca (pmol mol- 1 )
1.26
1.29
1.31
1.28
1.27
1.22
1.20
1.25
1.18
1.17
1.16
1.17
1.19
1.19
1.20
1.23
1.22
1.23
1.21
1.23
1.22
1.22
1.19
1.19
1.20
1.21
1.17
1.18
1.17
1.17
1.17
1.14
1.08
1.10
1.12
1.13
1.16
1.18
1.19
1.21



Table C.2: Palmyra 3

(mmol mol- 1 )Date
2009.84
2009.70
2009.56
2009.41
2009.27
2009.13
2008.99
2008.85
2008.71
2008.57
2008.43
2008.28
2008.14
2008.00
2007.96
2007.91
2007.87
2007.82
2007.77
2007.73
2007.68
2007.63
2007.59
2007.39
2007.20
2007.09
2006.99
2006.89
2006.79
2006.68
2006.58
2006.48
2006.37
2006.27
2006.16
2006.06
2005.96
2005.86
2005.75
2005.66

([mol molP)

183

Sr/Ca
8.65
8.62
8.83
8.80
8.83
8.87
8.85
8.88
8.83
8.86
8.92
8.92
8.97
9.09
9.05
9.01
8.86
8.94
8.91
8.85
8.80
8.85
8.78
8.89
8.98
8.94
8.93
8.79
8.81
8.83
8.77
8.81
8.87
9.04
8.93
9.03
8.96
8.98
8.80
8.86

U/Ca
0.90
0.89
0.94
0.97
1.01
0.97
0.99
0.98
1.02
1.02
1.07
1.08
1.10
1.17
1.13
1.09
1.01
1.02
1.01
0.98
0.99
0.97
0.96
1.05
1.04
1.04
1.01
0.99
0.99
0.98
0.95
0.96
0.98
1.05
0.97
1.01
0.99
1.02
0.97
0.95



Table C.3: Palmyra 3

(mmol mol- 1 )Date
2005.57
2005.48
2005.39
2005.30
2005.21
2005.12
2005.03
2004.94
2004.85
2004.76
2004.67
2004.52
2004.38
2004.23
2004.09
2003.95
2003.81
2003.67
2003.38
2003.09
2003.05
2003.01
2002.98
2002.94
2002.90
2002.87
2002.83
2002.73
2002.65
2002.57
2002.48
2002.40
2002.32
2002.24
2002.15
2002.07
2001.99
2001.91
2001.83
2001.72
2001.62
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Sr/Ca
8.89
8.93
8.94
8.98
8.86
8.87
8.86
8.90
8.91
8.85
8.84
8.86
8.91
8.91
9.01
8.93
8.88
8.83
9.00
8.92
8.95
8.90
8.91
8.90
8.93
8.87
8.84
8.68
8.71
8.82
8.87
8.94
8.85
8.95
8.84
8.86
8.91
8.81
8.73
8.78
8.87

U/Ca (pmol mol-')
1.01
1.02
1.02
1.02
0.99
0.95
0.96
0.96
1.00
0.98
0.95
0.99
1.02
1.03
1.00
0.98
0.96
0.97
1.00
1.06
1.07
1.06
1.03
1.04
1.02
1.04
0.99
0.96
1.00
1.01
1.06
1.06
1.06
1.07
1.06
1.06
1.04
1.01
1.00
1.04
1.07

.. ............. .. ............. ..........



Table C.4: Palmyra 3

(mmol mol-1)Date
2001.51
2001.41
2001.30
2001.20
2001.10
2001.01
2000.92
2000.83
2000.64
2000.46
2000.27
2000.09
1999.84
1999.67
1999.59
1999.51
1999.43
1999.35
1999.27
1999.18
1999.10
1999.02
1998.94
1998.86
1998.78
1998.70
1998.62
1998.54
1998.46
1998.37
1998.29
1998.21
1998.13
1998.05
1997.97
1997.89
1997.81

(pmol molP')

185

Sr/Ca
8.89
8.95
8.92
8.92
9.01
9.01
8.87
8.79
8.85
9.01
9.03
9.08
9.02
8.96
9.01
9.03
9.00
8.90
8.84
8.90
8.99
8.91
8.83
8.94
8.93
8.87
8.83
8.93
8.91
8.77
8.89
8.95
8.81
8.77
8.80
8.78
8.76

U/Ca
1.10
1.10
1.05
1.06
1.08
1.03
1.01
0.99
1.02
1.08
1.14
1.07
1.04
1.01
1.02
1.08
1.08
1.05
1.00
1.05
1.03
0.97
0.98
1.00
0.99
0.94
0.93
0.97
0.94
0.92
0.95
0.95
0.94
0.93
0.92
0.92
0.86



Table C.5: Red Sea 44

(mmol mol- 1 )Date
2009.92
2009.88
2009.84
2009.81
2009.77
2009.73
2009.69
2009.65
2009.62
2009.58
2009.54
2009.50
2009.43
2009.36
2009.30
2009.23
2009.16
2009.09
2009.00
2008.92
2008.84
2008.75
2008.67
2008.48
2008.29
2008.11
2007.92
2007.84
2007.75
2007.67
2007.59
2007.39
2007.20
2007.00
2006.96
2006.91
2006.86
2006.81
2006.77

186

Sr/Ca
8.88
9.02
9.05
9.03
8.97
8.98
8.95
8.92
8.77
8.74
8.76
8.73
8.76
8.93
8.97
8.90
8.98
9.00
8.88
8.84
8.85
8.85
8.79
8.89
9.25
9.10
9.27
9.11
9.00
9.03
8.97
9.07
9.14
9.10
9.03
9.05
8.99
8.97
8.99

U/Ca (pmol mol-')
1.09
1.16
1.21
1.15
1.15
1.18
1.14
1.10
1.08
1.06
1.06
1.03
1.07
1.12
1.16
1.14
1.16
1.14
1.10
1.08
1.10
1.11
1.10
1.11
1.32
1.27
1.26
1.24
1.24
1.25
1.23
1.25
1.25
1.27
1.25
1.23
1.24
1.23
1.22

-- " I, - 1-1.111- -, 11-111-1 - 1,,,---,, 7:11- -11- 111 'ill- - - .- If' -I -, - - "i-l -11-1 , 7,11-- - 11-1 , - 1I - 11-11-ill-l--ii-!",- i-1--l' , l', 1 %. 11- 1- - I - 111, 111- ,, lz",4, -,, "" ""-" -- it, 1-111, -, I I



Table C.6: Red Sea 44

(mmol mol-') U/Ca
1.11
1.14
1.22
1.13
1.16
1.08
1.06
1.06
1.04
1.02
1.04
1.02
1.08
1.11
1.07
1.07

(pniol mol-1)

Table C.7: Red Sea 1

(mmol mol-1) U/Ca
1.12
1.28
1.08
1.06
1.05
1.03
1.08
1.10
1.05
1.05
1.13
1.10
1.10
1.07
1.05
1.05
1.13
1.25
1.27
1.44

(pmol mol-')

187

Date
2006.72
2006.67
2006.53
2006.24
2006.09
2006.00
2005.92
2005.84
2005.75
2005.67
2005.57
2005.48
2005.38
2005.28
2005.19
2005.09

Sr/Ca
8.95
8.89
9.02
9.02
9.18
9.00
8.88
8.92
8.90
8.90
8.92
8.96
9.01
9.08
9.05
9.09

Date
2009.92
2009.81
2009.71
2009.60
2009.50
2009.39
2009.28
2009.18
2009.07
2008.96
2008.86
2008.75
2008.64
2008.54
2008.43
2008.33
2008.22
2008.11
2008.01
2007.90

Sr/Ca
9.00
9.06
9.00
8.87
8.94
8.91
8.98
9.03
8.97
8.99
9.08
9.11
9.04
8.93
8.93
8.87
8.84
9.00
8.98
9.17



Table C.8: Red Sea 1

(mnol mol- 1 )Date
2007.80
2007.69
2007.59
2007.48
2007.37
2007.27
2007.16
2007.05
2006.95
2006.84
2006.73
2006.63
2006.52
2006.42
2006.31
2006.20
2006.09
2005.99
2005.88
2005.78
2005.67
2005.57
2005.46
2005.35
2005.25
2005.14
2005.03
2004.93
2004.82
2004.72
2004.61
2004.50
2004.40
2004.29
2004.18
2004.08
2003.97
2003.87
2003.76
2003.66
2003.55
2003.44

188

Sr/Ca
9.15
9.14
9.02
9.01
8.70
8.76
8.79
8.83
8.91
9.02
8.96
8.98
9.03
9.01
9.01
9.10
9.08
8.97
8.96
9.00
9.03
9.09
9.22
9.24
9.13
9.03
8.92
8.89
8.98
9.07
9.07
9.06
9.14
9.28
9.23
9.15
8.99
9.04
8.99
9.04
9.19
9.18

U/Ca (amol mol- 1 )
1.33
1.17
1.15
1.10
1.05
1.06
1.08
1.07
1.09
1.14
1.12
1.12
1.12
1.12
1.12
1.14
1.17
1.16
1.15
1.13
1.07
1.10
1.15
1.18
1.11
1.05
1.04
1.06
1.07
1.14
1.12
1.09
1.11
1.16
1.13
1.10
1.11
1.22
1.11
1.10
1.18
1.16



Table C.9: Red Sea 1

(mmol mol-')Date
2003.34
2003.23
2003.12
2003.02
2002.91
2002.81
2002.70
2002.59
2002.49
2002.38
2002.27
2002.17
2002.06
2001.96
2001.85
2001.74
2001.64
2001.53
2001.42
2001.32
2001.21
2001.10
2001.00
2000.89
2000.79
2000.68
2000.57
2000.47
2000.36
2000.26
2000.15
2000.04
1999.94
1999.83
1999.73
1999.62
1999.51
1999.41
1999.30
1999.20
1999.09
1998.98

(pmol mol-')

189

Sr/Ca
9.20
9.07
8.93
8.94
8.94
8.96
8.96
9.03
9.04
9.07
9.13
8.98
9.11
9.09
8.98
8.96
8.98
9.04
9.04
9.13
9.07
8.99
8.96
8.96
9.01
9.00
9.04
8.89
9.03
9.10
9.12
9.15
9.02
8.97
8.97
9.04
8.96
8.98
9.00
9.08
9.01
9.01

U/Ca
1.17
1.09
1.09
1.05
1.09
1.11
1.06
1.09
1.06
1.09
1.10
1.07
1.22
1.20
1.08
1.06
1.08
1.14
1.16
1.24
1.13
1.16
1.13
1.08
1.10
1.08
1.10
1.02
1.04
1.08
1.11
1.09
1.08
1.06
1.10
1.16
1.10
1.06
1.08
1.10
1.12
1.10



Table C.10: Red Sea 1

(mmol molP 1 ) U/Ca
1.10
1.17
1.17
1.08
1.07
1.06
1.16
1.18
1.16
1.09

(pmol mol- 1 )

Table C.11: Palau 23

(mmol mol-1) U/Ca
0.99
0.99
0.97
0.99
1.01
1.02
1.03
1.02
1.01
0.98
0.98
0.97
1.01
0.99
0.96
1.02
1.02
1.00
1.03
0.99
0.97
0.98
1.01
0.98
0.98

(pmol mol-')

190

Date
1998.88
1998.77
1998.66
1998.56
1998.45
1998.35
1998.24
1998.13
1998.02
1997.92

Sr/Ca
8.91
8.97
9.00
8.95
8.98
8.92
8.97
9.01
9.12
9.06

Date
2000.00
1999.97
1999.95
1999.92
1999.89
1999.86
1999.84
1999.78
1999.75
1999.73
1999.70
1999.67
1999.64
1999.62
1999.59
1999.56
1999.53
1999.51
1999.48
1999.45
1999.42
1999.39
1999.37
1999.34
1999.31

Sr/Ca
8.75
8.85
8.77
8.82
8.85
8.78
8.71
8.91
8.92
8.77
8.77
8.84
8.81
8.81
8.77
8.95
8.99
8.96
8.92
8.90
8.92
8.88
8.98
8.86
8.92



Table C.12: Palau 23

(mmol mol-1)Date
1999.28
1999.26
1999.23
1999.20
1999.17
1999.14
1999.12
1999.09
1999.06
1999.03
1999.01
1998.97
1998.93
1998.90
1998.86
1998.82
1998.78
1998.75
1998.71
1998.67
1998.62
1998.56
1998.51
1998.45
1998.39
1998.34
1998.28
1998.23
1998.17
1998.08
1998.00
1997.92
1997.87
1997.82
1997.77
1997.76
1997.74
1997.72
1997.70
1997.68
1997.66
1997.64

(pmol mol-')

191

Sr/Ca
8.85
8.93
8.86
8.88
9.00
8.84
8.84
8.88
8.89
8.90
8.93
8.92
8.84
8.86
8.94
8.84
8.89
8.84
8.80
8.82
8.82
8.88
8.81
8.81
8.90
8.92
8.92
8.90
8.94
8.87
8.86
8.94
8.90
8.85
8.78
8.80
8.84
8.89
8.90
8.99
8.96
9.04

U/Ca
1.01
1.02
1.03
1.04
1.08
1.05
1.05
1.01
1.01
1.02
1.00
1.03
1.02
1.02
1.04
1.02
1.03
1.03
1.00
0.99
1.02
1.00
1.03
1.02
1.15
1.13
1.07
1.03
1.08
1.04
1.04
1.04
1.02
0.98
0.97
1.00
1.04
1.06
1.04
1.07
1.12
1.11



Table C.13: Palau 23

(mmol mol- 1 )Date
1997.63
1997.61
1997.59
1997.57
1997.56
1997.54
1997.52
1997.50
1997.49
1997.47
1997.45
1997.44
1997.42
1997.40
1997.39
1997.37
1997.35
1997.34
1997.32
1997.30
1997.29
1997.27
1997.25
1997.24
1997.22
1997.20
1997.19
1997.17

Table C.14: Palau 180

(mmol mol-1) U/Ca
1.29
1.30
1.26
1.28
1.22
1.24
1.26
1.24
1.25
1.24

(pmol molP)

192

Sr/Ca
9.00
9.00
9.08
9.03
8.92
8.92
8.93
8.92
8.93
8.91
8.87
8.87
8.93
8.88
8.75
8.91
8.85
8.91
8.88
8.82
8.84
8.90
8.88
8.91
8.94
8.92
9.01
9.01

U/Ca (ptmol mol-1)
1.08
1.09
1.12
1.11
1.12
1.07
1.09
1.08
1.11
1.06
1.07
1.04
1.09
1.07
1.04
1.06
1.05
1.09
1.08
1.06
1.04
1.08
1.08
1.10
1.11
1.11
1.14
1.14

Date
2002.08
2002.02
2001.96
2001.91
2001.85
2001.79
2001.73
2001.67
2001.61
2001.54

Sr/Ca
8.82
8.88
8.81
8.83
8.86
8.85
8.90
8.95
8.87
8.89



Table C.15: Palau 180

(mmol molP)Date
2001.46
2001.38
2001.29
2001.21
2001.15
2001.12
2001.08
2001.05
2001.02
2000.99
2000.96
2000.92
2000.89
2000.86
2000.83
2000.80
2000.76
2000.73
2000.70
2000.67
2000.63
2000.60
2000.55
2000.49
2000.42
2000.36
2000.30
2000.23
2000.17
2000.11
2000.04
1999.98
1999.92
1999.86
1999.80
1999.74
1999.68
1999.62
1999.55
1999.48
1999.41

(pymol moV 1')

193

Sr/Ca
9.00
9.06
9.01
8.93
8.97
9.05
8.96
9.02
9.06
8.89
9.06
9.10
9.07
9.10
8.90
8.92
8.95
8.94
8.91
9.03
9.05
8.93
8.85
8.86
8.93
8.86
8.92
8.91
8.97
9.03
8.92
9.00
8.95
8.92
8.94
8.81
8.84
8.86
8.91
8.91
8.82

U/Ca
1.27
1.28
1.30
1.24
1.25
1.30
1.30
1.34
1.28
1.26
1.23
1.31
1.28
1.28
1.19
1.26
1.25
1.25
1.24
1.25
1.26
1.21
1.26
1.24
1.21
1.24
1.21
1.21
1.22
1.27
1.22
1.20
1.24
1.20
1.23
1.23
1.21
1.18
1.16
1.17
1.16



Table C.16: Palau 180

(mmol molV')Date
1999.34
1999.27
1999.20
1999.13
1999.00
1998.94
1998.88
1998.81
1998.72
1998.65
1998.59
1998.52
1998.46
1998.39
1998.33
1998.26
1998.20
1998.13
1998.07
1998.00
1997.94
1997.88
1997.81
1997.75
1997.68
1997.62
1997.55
1997.49
1997.42
1997.36
1997.30
1997.23
1997.17
1997.07
1996.99
1996.90
1996.81
1996.72
1996.63
1996.56

194

Sr/Ca
8.83
8.98
9.00
9.02
9.08
9.16
9.05
8.95
9.05
8.96
8.89
8.90
8.88
8.84
8.74
8.77
8.81
8.87
8.90
8.85
8.87
8.85
8.74
8.78
8.82
8.89
8.81
8.92
8.91
8.88
8.89
8.87
8.92
8.82
8.95
8.80
8.87
8.89
8.91
9.03

U/Ca (pmol mol- 1 )
1.12
1.16
1.21
1.25
1.35
1.42
1.35
1.28
1.27
1.28
1.32
1.34
1.22
1.17
1.15
1.17
1.13
1.14
1.12
1.16
1.16
1.19
1.17
1.18
1.17
1.17
1.15
1.19
1.11
1.11
1.17
1.16
1.18
1.18
1.20
1.16
1.16
1.19
1.30
1.36



Table C.17: Palau 180

(mmol mol- 1)Date
1996.50
1996.44
1996.38
1996.32
1996.26
1996.20
1996.11
1995.99
1995.88
1995.76
1995.64
1995.57
1995.53
1995.49
1995.45
1995.41
1995.38
1995.34
1995.30
1995.28
1995.26
1995.22
1995.19
1995.14
1995.09
1995.03
1994.98
1994.93
1994.88
1994.82
1994.77
1994.72
1994.67
1994.61
1994.55
1994.48

(pmol molP')

195

Sr/Ca.
8.90
8.93
8.96
8.85
8.94
8.88
8.90
8.95
8.91
8.87
8.92
9.03
8.99
9.05
9.00
9.10
9.09
9.17
9.16
9.02
9.05
8.96
8.97
8.96
8.94
8.99
9.00
9.03
9.02
8.96
8.93
8.99
8.96
8.93
8.98
9.03

U/Ca
1.34
1.36
1.23
1.21
1.18
1.20
1.23
1.19
1.21
1.18
1.22
1.25
1.25
1.22
1.19
1.26
1.25
1.25
1.25
1.23
1.23
1.18
1.23
1.23
1.30
1.29
1.32
1.30
1.29
1.25
1.27
1.30
1.32
1.30
1.23
1.25



Table C.18: Palau 168

(mmol mol- 1 ) U/Ca
0.90
0.99
1.01
0.90
0.92
0.84
0.98
1.00
0.90
0.94
0.92
0.94
1.00
0.95

(pmol molP')

Table C.19: Palau 169

(mmol mol-1) U/Ca
1.02
1.01
0.96
0.97
1.04
1.06
1.09
1.10
1.09
1.03
1.04
1.06
1.04
0.98
0.99
1.01
1.00

(pmol mol1)

196

Date
2010.00
2009.80
2009.60
2009.40
2009.20
2009.00
2008.83
2008.67
2008.50
2008.33
2008.17
2008.00
2007.80
2007.60

Sr/Ca
8.64
8.67
8.69
8.67
8.74
8.57
8.67
8.58
8.68
8.73
8.64
8.67
8.75
8.56

611 (%o)
22.73
22.35
22.72
23.00
22.49
22.71
22.59
22.35
22.59
22.79
22.71
22.61
22.96
23.02

pHECF
8.366
8.341
8.366
8.385
8.351
8.365
8.357
8.342
8.357
8.371
8.365
8.359
8.382
8.386

Date
2010.00
2009.89
2009.78
2009.67
2009.56
2009.44
2009.33
2009.22
2009.11
2009.00
2008.86
2008.71
2008.57
2008.43
2008.29
2008.14
2008.00

Sr/Ca
8.81
8.68
8.71
8.68
8.66
8.74
8.80
8.79
8.65
8.67
8.68
8.75
8.69
8.71
8.67
8.68
8.63

611 (%o)
22.26
22.15
22.20
22.27
22.27
22.42
22.01
22.14
22.45
22.56
22.61
22.67
22.60
22.63
22.67
22.41
22.68

pHECF
8.335
8.328
8.331
8.336
8.336
8.346
8.318
8.327
8.348
8.355
8.359
8.362
8.358
8.360
8.363
8.345
8.364



Table C.20: Palau 221

(mmol molV 1 ) U/Ca,
1.01
1.00
0.96
0.98
0.96
0.97
0.93
0.96
0.96
0.97
0.94
1.00
0.96

(pmol molP 1 )

Table C.21: Palau 229

(mmol molP) U/Ca.
1.02
1.01
1.04
1.02
1.04
1.06
1.05
1.05
1.02
1.03
1.07
1.11
1.06
1.07
1.10
1.08

([mol molP')

197

Date
2010.00
2009.83
2009.67
2009.50
2009.33
2009.17
2009.00
2008.83
2008.67
2008.50
2008.33
2008.17
2008.00

Sr/Ca
8.68
8.68
8.54
8.63
8.65
8.70
8.62
8.63
8.67
8.69
8.67
8.71
8.66

11 (%0)
23.98
23.75
24.13
23.75
23.48
23.46
23.56
23.66
23.69
23.49
24.11
24.03
23.66

pHECF

8.449
8.434
8.458
8.433
8.416
8.414
8.421
8.427
8.430
8.417
8.457
8.451
8.428

Date
2010.00
2009.89
2009.78
2009.67
2009.56
2009.44
2009.33
2009.22
2009.11
2009.00
2008.83
2008.67
2008.50
2008.33
2008.17
2008.00

Sr/Ca
8.81
8.74
8.78
8.72
8.73
8.75
8.81
8.81
8.69
8.87
8.85
8.94
8.86
8.93
9.03
8.89

611 (%o)
23.11
23.20
23.64
23.31
23.08
22.95
23.16
23.37
23.49
23.70
23.42
23.78
23.78
23.30
23.83
23.36

pHECF

8.392
8.398
8.426
8.405
8.390
8.381
8.395
8.409
8.417
8.430
8.412
8.436
8.435
8.404
8.439
8.408



198



Appendix D

Data for Chapter 4
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Table D.1: Data for Chapter 4

Core ID

Nikko 178
Nikko 181
Nikko 266
Nikko 267
Nikko 268
Nikko 269
Nikko 270
Nikko 320
Nikko 322
Nikko 180
Nikko 166
Nikko 167
Nikko 168
Nikko P
Nikko 169
Nikko N
Nikko 0
Risong 222B
Risong 224
Risong 271
Risong 272
Risong 275
Risong 276
Risong 212Q
Risong 213S
Risong 219L
Risong 222U
Risong 223R
Risong 224T
Risong 2160
Risong 217
Risong 218
Risong 225
Risong 220K
Risong 277
Airai 278
Airai 318
Airai 278

Reef
site

Nikko Bay
Nikko Bay
Nikko Bay
Nikko Bay
Nikko Bay
Nikko Bay
Nikko Bay
Nikko Bay
Nikko Bay
Nikko Bay
Nikko Bay
Nikko Bay
Nikko Bay
Nikko Bay
Nikko Bay
Nikko Bay
Nikko Bay
Risong
Risong
Risong
Risong
Risong
Risong
Risong
Risong
Risong
Risong
Risong
Risong
Risong
Risong
Risong
Risong
Risong
Risong
Airai
Airai
Airai

mean
calcification
rate

(g cm- 2 yr-')

1.03
0.99
0.83
0.87
0.97

0.82
0.93
1.29

0.73

0.38

1.09
0.88
0.85
0.91

0.68
0.81
0.65
1.14
1.12
1.09
0.49
0.65
0.80
0.96
0.73
1.29

200

mean
density
(g cm- 3 )

0.89
0.92
1.10
1.05
0.90
0.81
0.91
0.94
0.83
0.96
1.22
1.14
1.21
0.93
1.17
1.09
0.86
1.20
0.91
1.07
1.24
1.01
0.97
1.01
1.17
1.00
1.13
1.27
1.03
1.27
1.13
1.01
1.09
1.34
1.12
1.28
1.16
1.20

boring
percent
by
volume
0.52
0.02
3.77
1.36
0.00
0.62
0.11
0.00
0.49
0.37
3.55
0.52
7.49
2.61
6.08
4.44
0.00
3.82
0.01
0.02
1.09
0.43
5.91
0.63
0.31
0.00
0.07
0.00
0.15
0.00
4.66
1.72
1.30
2.38
0.00
0.01
0.00
0.50



Table D.2: Data for Chapter 4

Core ID

Airai A
Airai B
Airai C
Airai 23
DropOff 325
DropOff 210D
DropOff 214
DropOff 221
DropOff 229
DropOff 230
DropOff 231
DropOff 232F
DropOff 233B
DropOff 2341
DropOff 235J
DropOff 214A
Uelbeluu 176
Uchelbeluu 211
Uchelbeluu 221G
Uchelbeluu 237
Uchelbeluu 240D
Uchelbeluu 241E
Uchelbeluu 242
Uchelbeluu 244
Uchelbeluu J
Uchelbeluu 239
Eu 279
Eu 280
ROSOl #1
ROS02 #2
ROSO3 #3
ROS04 #4
WAK 05 #2
WAK 08 #1
PAL01 #11
PALO2 #12
PAL03 #13
KINOl #14

Reef
site

Airai
Airai
Airai
Airai
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Uchelbeluu
Rose Atoll
Rose Atoll
Rose Atoll
Rose Atoll
Wake Atoll
Wake Atoll
Palmyra Atoll
Palmyra Atoll
Palmyra Atoll
Kingman Reef

mean
calcification
rate

(g cm- 2 yr 1 )

1.30
1.89
1.97
1.11
0.77
0.89
1.42
1.06
0.99
1.24
0.81
0.87
0.82
1.22

1.78
1.31
1.86
0.99

0.93

1.31
1.69

1.18
0.85
1.04

1.64
1.60
1.56
2.22

201

mean
density
(g cm- 3 )

1.29
1.35
1.28
1.20
1.28
1.37
1.36
1.50
1.35
1.44
1.38
1.44
1.40
1.38
1.29
1.23
1.37
1.22
1.50
1.28
1.23
1.23
1.30
1.31
1.24
1.37
1.32
1.37
1.25
1.13
1.38
1.54
1.40
1.51
1.17
1.22
1.30
1.02

boring
percent
by
volume
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.89
1.45
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00



Table D.3: Data for Chapter 4

Core ID Reef
site

KINO2 #15
KIN04 #17
KIN05 #18
KIN-P-019
KIN-H-021
KIN_ H_022
KIN-P-020
KINO3
JAR01 #5
JAR02 #6
JAR03 #7
JAR05 #9
JAR06 #10
JAR-H-018
JAR-H-017
JAR-P-016
Pearl POR 193A
Pearl POR 193B
Pearl POR 202
Pearl POR 192
Pearl POR 198
Pearl POR 200
Pearl POR 201
Taboga POR 188B
Taboga POR 190
Taboga POR 188A
Taboga POR 189B

Kingman Reef
Kingman Reef
Kingman Reef
Kingman Reef
Kingman Reef
Kingman Reef
Kingman Reef
Kingman Reef
Jarvis Island
Jarvis Island
Jarvis Island
Jarvis Island
Jarvis Island
Jarvis Island
Jarvis Island
Jarvis Island
Pearl Islands
Pearl Islands
Pearl Islands
Pearl Islands
Pearl Islands
Pearl Islands
Pearl Islands
Taboga
Taboga
Taboga
Taboga

mean
calcification
rate

(g cm-2 yr-1)
1.60
1.94
1.58

1.46
1.88
2.09

1.36

1.65

0.97
1.12
1.30
1.09
0.94
0.88
0.76
0.54
1.47

202

mean
density
(g cm- 3 )

1.11
1.13
1.19
1.00
1.18
0.90
1.07
1.16
1.14
1.38
1.14
1.47
1.33
1.00
1.30
1.35
1.04
0.96
1.14
1.14
1.22
1.02
0.94
0.84
0.78
1.03
0.94

boring
percent
by
volume
0.00
0.00
0.00
0.47
1.59
0.00
0.00
0.00
1.10
6.16
0.00
8.30
0.06
0.00
0.94
0.57
7.43
8.25
8.30
6.47
8.71
4.49
2.14
1.94
7.07
11.08
7.29



Appendix E

Data for Chapter 5
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Table E.1: Data for Chapter 5

RAS
sample
time (UTC)
6/3/14 0:00
6/3/14 2:00
6/3/14 4:00
6/3/14 6:00
6/4/14 0:00
6/4/14 2:00
6/4/14 4:00
6/4/14 6:00
6/5/14 0:00
6/5/14 2:00
6/5/14 4:00
6/5/14 6:00
6/6/14 2:00
6/6/14 4:00
6/6/14 6:00
6/6/14 8:00
6/10/14 4:00
6/10/14 6:00
6/10/14 8:00
6/10/14 12:00
6/10/14 14:00
6/10/14 16:00
6/10/14 18:00
6/10/14 20:00
6/10/14 22:00
6/11/14 0:00
6/11/14 2:00
6/11/14 4:00
6/11/14 6:00
6/11/14 8:00
6/11/14 10:00
6/11/14 14:00
6/11/14 16:00
6/11/14 18:00
6/11/14 20:00
6/11/14 22:00
6/12/14 0:00
6/12/14 2:00
6/12/14 4:00

Residence 1 o- Salinity T ('C) PAR
time
(hr)
3.9
4.4
5.5
6.5
3.6
3.8
4.9
4.9
3.7
3.9
4.8
6.2
5.4
6.3
7.6
7.7
7.2
3.6
4.1
3.2
4.1
4.9
5.0
2.4
1.7
2.7
4.3
5.5
4.2
3.7
4.0
3.9
4.1
3.4
2.4
1.3
1.8
2.2
2.4

0.7
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.6
0.3
0.2
0.2
0.7
0.5
0.4
0.7
0.2
0.6
0.2
0.2
0.3
0.4
0.3
0.3
0.1
0.1
0.1
0.2
0.9
0.4
0.5
0.3
0.4
0.4
0.2
0.1
0.1
0.1
0.1

34.13
34.07
34.05
34.03
34.07
34.01
34.00
33.99
34.05
33.87
33.89
33.91
34.03
34.04
34.02
34.05
32.44
32.48
32.25
32.18
32.52
32.64
32.74
33.21
33.20
33.22
33.21
33.21
33.21
33.25
33.28
33.36
33.38
33.40
33.47
33.49
33.50
33.50
33.51

28.40
28.61
29.18
29.75
28.03
28.46
28.86
29.77
28.47
29.60
30.34
31.14
30.21
30.77
31.23
31.42
30.00
31.24
32.17
30.31
29.27
28.86
28.47
27.73
28.43
29.10
29.45
30.16
31.06
31.60
31.89
28.72
28.07
28.03
28.21
28.43
28.65
28.82
28.84

([mol
m-2 s- 1 )
112
444
785
963
77
246
426
771
151
590
980
1122
348
572
724
826
697
1346
1125
86
8
0
0
0
9
218
492
783
1206
1043
585
4
0
0
0
7
137
444
360

204

Density
(kg m-3 )

1021.5
1021.4
1021.2
1021.0
1021.6
1021.4
1021.3
1021.0
1021.4
1020.9
1020.7
1020.4
1020.8
1020.7
1020.5
1020.4
1019.8
1019.4
1018.9
1019.5
1020.1
1020.3
1020.5
1021.1
1020.8
1020.6
1020.5
1020.3
1019.9
1019.8
1019.7
1020.8
1021.1
1021.1
1021.1
1021.0
1021.0
1020.9
1020.9

mean
depth

(m)
0.97
1.29
1.39
1.40
1.10
1.28
1.39
1.30
1.00
1.23
1.35
1.37
1.14
1.25
1.29
1.20
1.24
1.26
0.89
0.99
0.95
0.98
0.97
1.11
1.41
1.54
1.56
1.30
1.14
0.88
0.75
0.90
0.92
0.95
1.11
1.51
1.64
1.49
1.24



Table E.2: Data for Chapter 5

RAS Residence 1 a Salinity T (0 C) PAR Density mean
sample time (ktmol (kg m- 3) depth
time (UTC) (hr) m-2 s1) (m)
6/12/14 6:00 2.1 0.1 33.55 28.66 322 1021.0 0.85
6/12/14 8:00 1.7 0.1 33.56 28.37 295 1021.1 0.65
6/12/14 12:00 1.6 0.1 33.28 28.05 8 1021.0 0.71
6/12/14 14:00 1.9 0.1 33.34 28.01 0 1021.1 0.84
6/12/14 16:00 2.0 0.2 33.57 28.07 0 1021.2 0.92
6/12/14 18:00 2.0 0.1 33.62 27.99 0 1021.3 0.92
6/12/14 20:00 2.0 0.1 33.72 28.14 0 1021.3 1.01
6/12/14 22:00 1.7 0.1 33.71 28.43 5 1021.2 1.42
6/13/14 0:00 1.43 0.05 33.87 28.87 226 1021.2 1.65
6/13/14 2:00 2.4 0.1 33.85 29.20 551 1021.0 1.74
6/13/14 4:00 3.8 0.1 33.81 29.72 794 1020.8 1.56
6/13/14 6:00 3.4 0.3 33.78 30.23 912 1020.7 1.14
6/13/14 8:00 2.1 0.2 33.77 30.53 686 1020.5 0.71
6/13/14 10:00 3.0 0.4 33.73 30.55 354 1020.5 0.66
6/13/14 14:00 1.9 0.1 33.30 28.02 0 1021.0 0.70
6/13/14 16:00 2.1 0.1 33.80 27.86 0 1021.4 0.84
6/13/14 18:00 1.9 0.2 33.88 27.58 0 1021.6 0.82
6/13/14 20:00 1.8 0.1 33.94 27.23 0 1021.8 0.95
6/13/14 22:00 1.7 0.1 33.89 27.90 5 1021.5 1.27
6/14/14 0:00 1.4 0.1 33.82 27.45 140 1021.6 1.56
6/14/14 2:00 1.49 0.06 33.78 28.37 649 1021.3 1.68

205



Table E.3: Data for Chapter 5

RAS TA DIC F0 0 2  NEC I o- NEP 10,
sample (peq kg-') (fpmol kg-1) (mmol (mmol (mmol
time (UTC) m-2 m-2 m-2

hr-1) hr-1) hr- 1)
6/3/14 0:00 2223 2133 9.9 4 2 -62 11
6/3/14 2:00 2188 2012 3.5 9 2 -34 7
6/3/14 4:00 2151 1892 0.4 13 2 -1 6
6/3/14 6:00 2111 1777 -1.2 15 2 21 5
6/4/14 0:00 2252 2132 4.0 0 3 -64 9
6/4/14 2:00 2206 1977 0.9 7 3 -21 8
6/4/14 4:00 2176 1904 0.2 10 2 -1 6
6/4/14 6:00 2110 1743 -0.9 18 2 35 6
6/5/14 0:00 2223 2091 3.1 3 2 -48 9
6/5/14 2:00 2183 1947 0.5 8 3 -15 7
6/5/14 4:00 2151 1819 -0.3 12 2 19 6
6/5/14 6:00 2110 1726 -0.4 14 2 32 5
6/6/14 2:00 2168 2012 2.9 8 2 -27 6
6/6/14 4:00 2130 1916 1.3 12 2 -9 4
6/6/14 6:00 2104 1854 0.6 12 2 2 4
6/6/14 8:00 2091 1806 0.2 12 2 9 4
6/10/14 4:00 2077 1746 -0.8 6 1 13 4
6/10/14 6:00 1983 1571 -2.3 29 5 73 14
6/10/14 8:00 1893 1411 -3.0 26 2 72 6
6/10/14 12:00 2052 1731 -0.9 11 3 21 7
6/10/14 14:00 2104 1878 0.3 5 2 -12 5
6/10/14 16:00 2125 1937 1.2 3 2 -20 5
6/10/14 18:00 2106 1842 2.1 5 2 -3 4
6/10/14 20:00 2182 1984 1.2 2 4 -47 12
6/10/14 22:00 2190 1933 0.6 1 7 -38 18
6/11/14 0:00 2167 1898 0.2 7 5 -11 13
6/11/14 2:00 2139 1835 -0.6 10 3 12 8
6/11/14 4:00 2112 1744 -1.4 10 2 27 5
6/11/14 6:00 2009 1568 -2.3 25 6 66 15
6/11/14 8:00 1899 1442 -3.2 36 4 78 9
6/11/14 10:00 1717 1203 -4.6 46 6 91 11
6/11/14 14:00 2083 1834 0.6 14 2 1 5
6/11/14 16:00 2183 2016 5.9 2 2 -35 6
6/11/14 18:00 2191 2053 6.5 2 2 -52 8
6/11/14 20:00 2196 2012 2.8 3 4 -57 11
6/11/14 22:00 2208 1943 1.0 1 10 -45 26
6/12/14 0:00 2208 1921 0.9 2 7 -15 20
6/12/14 2:00 2155 1861 -1.1 19 6 13 15
6/12/14 4:00 2128 1800 -1.9 22 4 37 12
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Table E.4: Data for Chapter 5

RAS
sample
time (UTC)

6/12/14 6:00
6/12/14 8:00
6/12/14 12:00
6/12/14 14:00
6/12/14 16:00
6/12/14 18:00
6/12/14 20:00
6/12/14 22:00
6/13/14 0:00
6/13/14 2:00
6/13/14 4:00
6/13/14 6:00
6/13/14 8:00
6/13/14 10:00
6/13/14 14:00
6/13/14 16:00
6/13/14 18:00
6/13/14 20:00
6/13/14 22:00
6/14/14 0:00
6/14/14 2:00

TA
(peq kg- 1)

2081
2040
2127
2165
2189
2185
2206
2205
2204
2177
2147
2044
1953
1876
2148
2185
2209
2214
2219
2210
2202

DIC
(pmol kg- 1 )

1744
1695
1915
1980
1992
2006
1990
1961
1929
1887
1794
1640
1459
1399
1975
2019
2030
2003
1975
1941
1882

Fco2
(mmol
m-2

hr- 1 )
-3.3
-4.1
5.6
8.6
8.5
8.9
6.0
3.1
0.9
-1.2
-3.1
-5.4
-7.6
-7.8
8.2
10.8
9.6
6.4
3.6
3.6
-1.2

NEC

(mmol
m-2

hr-1)
28
35
16
8
6
8
5
9
19
22
18
32
47
39
10
9
6
7
7
13
16

1 -NEP
(mmol
m-2

hr-1)
4 45
4 55
4 -31
4 -54
4 -52
4 -61
4 -48
7 -48
9 -20
6 10
3 40
4 70
5 118
5 85
3 -48
3 -58
4 -60
4 -52
6 -46
9 -33
9 33

207

10
10
10
10
10
11
11
19
25
16
9
10
13
10
9
9
10
12
17
24
25
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Appendix F

Data for Chapter 6
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Table F.1: Chapter 6 Data

E2
Latitude 20.6993
Longitude 116.9186
Acropora 1 /0 /0

2/0/1
Caulastrea 0 /0 /0

0/0/0
Cyphastrea 0 /0 /0

0/0/0
Diploastrea 0 /0 /0

0/0/0
Favia 0 /0 /0

0/0/0
Favites 1 /0 /0

2 /0 /0
Fungia 0 /0 /0

0/0/0
Galaxea 0 /0 /0

0/0/0
Goniastrea 0 /0 /0

1 /0/1
Leptoseris 0 /0 /0

0/0/0
Montipora 1 /0 /0

0/0/0
Oulastrea 0 /0 /0

0/0/0
Pavona 0 /0 /0

0/0 /0
Platygyra 0 /0 /0

0/0 /0
Pocillopora 4 /0 /0

13 /0 /0
Porites 10 /0 /0

11 /0 /5
Psammocora 0 /0 /0

0 /0 /0
Stylophora 55 /0 /0

70/0 /5
Millepora 0 /0 /0

0/0 /0

E2.5
20.6992
116.9163
85 /0 /0
27/5/16
0 /0/0
0 /0/0
0 /0/0
0 /0/0
0 /0/0
0 /0/0
0 /0/0
0/0/0
0 /0/0
0 /1/0
0 /0/0
0 /0/0
0 /0/0
0/0/0
0 /0/0
0 /0/0
0 /0/0
0 /0/0
2 /0/0
0/0/1
0 /0/0
0 /0/0
0 /0/0
0 /0/0
1 /0/0
0 /0/0
4 /0/0
4 /0/4
68 /0 /0
10/1/00
0 /0/0
0 /0/0
136 /0 /0
50/2 /8
0 /0/0
0 /0/0

E3
20.6991
116.914
21 /0 /0
5/1/19
0 /0 /0
0/0 /0
0 /0 /0
0/0/0
0 /0 /0
0/0 /0
0 /0 /0
1 /0/0
0 /0 /0
0 /0 /0
0 /0 /0
0/0/0
0 /0 /0
0 /0 /0
0 /0 /0
0/0/0
0 /0 /0
0/0/0
0 /0 /0
0/0/0
0 /0 /0
0/0/0
0 /0 /0
0/0/0
0 /0 /0
0/0 /0
2 /0/0
0/0/2
114 /0 /0
112 /3 /20
0 /0 /0
0 /0 /0
195 /0 /0
110/14 /43
0 /0/0
0/0 /0

210

E3.5
20.699
116.9109
4 /0 /0
0/0/1
0 /0 /0
0 /0 /0
0 /0 /0
0/0/0
4 /0 /0
0/0/0
0 /0 /0
0/0/0
2 /0 /0
0 /1 /0
0 /0 /0
0/0/0
0 /0/0
0/0/0
1 /0 /0
1 /0/0
0 /0 /0
0/0/0
8 /0/0
0/0/0
0 /0 /0
0 /0 /0
1 /0 /0
0/1/1
0 /0 /0
0 /0 /0
1 /0/0
1/0/1
108 /0 /0
68 /2 /13
0 /0/0
0 /0 /0
160 /0 /0
28 /22 /91
0 /0/0
0/0/0



Table F.2: Chapter 6 Data

E4
Latitude 20.699
Longitude 116.9077
Acropora 0 /0 /0

1 /0/1
Caulastrea 0 /0 /0

0/0/0
Cyphastrea 0 /0 /0

0 /0 /0
Diploastrea 1 /0 /0

0/0/0
Favia 0 /0 /0

0/0/0
Favites 3 /0 /0

0 /0 /0
Fungia 0 /0 /0

0 0/0
Galaxea 0 /0 /0

0/0/0
Goniastrea 3 /0 /0

5/1/00
Leptoseris 0 /0 /0

0/0/0
Montipora 5 /0 /0

0/0/3
Oulastrea 0 /0 /0

0 /0/0
Pavona 25 /0 /0

0 /26 /4
Platygyra 0 /0 /0

0/0/0
Pocillopora 1 /0 /0

0/0/0
Porites 20 /0 /0

24 /2 /6
Psammocora 1 /0 /0

0/0/0
Stylophora 352 0/0

148 /21 /79
Millepora 0 /0 /0

0/0/0

E4.5
20.6991
116.9051
27 /0
68 /5 /2
0 /0 /0
0/0 /0
0 0/0
0/0/0
0 /0 /0
0/0/0
6 /0 /0
0/0/0
6 /0 /0
8 /0/3
0 /0 /0
0/0/0
0 /0 /0
0/0/0
18 /0 /0
12/1/02
0 0/0
0/0/0
3 /0 /0
0/0/1
0 /0 /0
0/0/0
15 /0 /0
1/6/10
0/0 /0
0/0 /0
0 0/0
0 /0 /3
66 /0 /0
24 /0 /6
0 /0/0
0/0//0
53 /0 /0
46 /3 /1
0 /0 /0
0/0/0

E5
20.6993
116.9024
117/0 /0
15 /3/127
0/0 /0
0/0/0
0/0 /0
0 /0 /0
0 /0 /0
0 /0 /0
3 /0 /0
1/1/02
3 /0/0
2/1/07
0 /0 /0
1 /0/0
1 /0 /0
0/0/0
1 /0 /0
6/4/03
0 /0 /0
0/0/0
0 0/0
0 /0/0
0 /0/0
0/0/1
20 /0 /0
3/27/09
0 /0 /0
0/0 0
9 /0 /0
0/0/9
147 /0 /0
74 /6 /20
0/0 /0
0/0/0
25 /0 /0
24 /1/19
0 /0 /0
0/0/0

E6
20.6993
116.8945
0//0 /0
0 0/0
0 /0 /0
0/0//0
0 /0 /0
0/0/0
0 /0 /0
0/0/0
0/0 /0
0/0/0
0 /0 /0
0 /0 /0
0 /0 /0
0/0 /0
0 /0 /0
0 /0 /0
0 /0 /0
0 /0 /0
0/0/0
0/0/0
0/0 /0
01/0 /0
0 /0 /0
0/0/0
0 /0 /0
0 /0 /0
0 /0 /0
0 /0 /0
0 /0 /0
0/0/1
0/0/0
0 /0 /0
0 /0 /0
0/0/0
0 /0 /0
0 /0 /0
0 /0 /0
0/0//0
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Table F.3: Chapter 6 Data

E2 E2.5 E3 E3.5 E4 E4.5 E5 E6
Anemone 0 3 8 4 0 0 0 0

0 3 12 0 1 0 0 0
CCA 193 55 18 7 2 0 0 0

131 20 1 2 0 1 2 0
Halimeda 12 21 6 6 14 0 0 0

12 27 4 11 14 16 13- 1
Turf-algae 285 164 47 90 31 189 138 0

236 335 60 111 31 123 182 0
Macro-algae 42 46 55 40 237 240 99 37

39 51 153 148 242 377 222 102
Seagrass 23 125 475 460 22 159 157 976

5 134 407 445 11 48 127 979
Sponge 0 0 0 0 0 0 0 0

27 3 0 2 0 0 0 0
Coral rubble 182 106 37 27 345 257 251 0

195 141 36 75 452 280 166 0
Pavement 282 2 0 6 4 7 27 0

273 55 8 10 5 3 0 0
Sand 159 432 272 321 184 204 252 237

221 352 239 215 173 200 172 167

21?




