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by
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Philosophy in Planetary Science

Abstract

The shape and gravity field are fundamental properties of a planetary body.
Combining gravity and topography data sets is, arguably, the most powerful tool to study
planetary interiors from orbit. However, even when gravity and topography data are in
hand, typically, a wide range of possible geophysical structures is possible. The reader
will find that this problem of non-unique solutions permeates all chapters of this thesis.
The general strategy to reduce non-uniqueness is to find ways to use additional
observations that are sensitive to the interior structure but are not degenerate with gravity
and/or topography.

In this work, we study three Solar System bodies: asteroid Vesta, dwarf planet
Ceres and the Earth's Moon. Using the data from the Dawn spacecraft, we find that once
hot and hydrostatic, Vesta is no longer either. It was despun by two giant collisions. We
use the Dawn gravity/topography data along with meteoritic data to provide constraints
on Vesta's internal structure. Unlike Vesta, Ceres is close to hydrostatic equilibrium.
Based on Ceres' topographic spectrum, we conclude that it has experienced limited
viscous relaxation. Contrary to the pre-Dawn expectations, we find that the cerean crust
is mechanically rock-like. We provide constraints on Ceres' rheology and density
structure by combining gravity/topography data with finite-element modeling of
lithospheric relaxation. Additionally, we find that Ceres' obliquity undergoes large
oscillations, which has important implications for volatile transport. The GRAIL mission
has produced gravity models of the Moon with an unprecedented accuracy. We study the
spectral content of gravity models and characterize their effective resolution to provide
users of these models with the information necessary to understand the model limitations.

Thesis Supervisor: Maria T. Zuber
Title: E. A. Griswold Professor of Geophysics
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FeO4IH3HeecCH' aHaJIH3 BecTbI, Uepepbi H .IyHbI C HCHOJIb3OBaHHeM

gaHHblX FpaBHTalXHOHHOrO 1oJ11 H TOflorpa4)HH

AHTOH EpMaKOB

AHCCccepTUHA nepejgaHa B jelapTaMeHT 3eMHbIx, aTMoC4epHbIX H HJIHCTapHbIX HayK 31-
ro oKT16p, 2016 roja Ha COHCKaHH CTeHnHH AOKTOp OHJIoCoHH HO IJIaHeTOJIOTHH

A6cTpaCT

Htrypa H rpaBHTaLHOHHo0 none 3IBJIAIOTCA 4yHgaMeHTaJbHbIMH
XapaKTepHCTHKaMH He6eCHOrO Tena. COBMeCTHOe HCH0JIb30BaHHC gaHHbIX 0 4HFype H
rpaBHTauHoHHOM none ABJICTCA MOLHLIM HHCTpyMCHTOM AR H3ymeHH31 BHyTpeHHCH
CTpyKTypbI lJIRHeT C op6HTbI. OjHaKO, Ae)Ke ecJH 4HIypa H rpaBHTaUHOHHo0 none
He6eCHOrO TeJa H3BeCTHbI, HeH36e)KHa HeOAHO3Ha4HOCTb B oHpegeJeHHH BHyTpeHHeH
CTpyKTypbI Tena. MHTaTeJb o6Hapy)KHT, 'ITO aHHas npo611eMa HeyHHKJbHbIX pemeHHi
HpHCyTCTByeT BO BCex rJiaBax 3TO4 gHCCepTamHH. 06ImaA cTpaTerHA peUmemHH 3ToI
npo6nembI JIe)KHT B HCHOJIb30BaHHH jOHOJlHHTeJIbHbIX LaHHbIX, KOTOpbIC
'IyBCTBHTeJIbHbI K BHyTpeHHeri CTpyKType, a TaKwe He3aBHCHMbI HO OTHOIneHHIO K
IpaBHTaUHOHHOMy HOJiO H (FHrype.

B 3TO1 pa60Te MbI H3ylaeM TPH Tena COJHexlHOH CHCTeMbI: aCTepoHj Becry,
KapJHKOBytO nnaHeTy Uepepy 14 CHyTHHK 3eMJIH lyHy. HcnOJI3yA LaHHbIe C MHCCHH

Dawn, MbI HpHUIJIH K BbIBOAy, ITO BecTa 6bIma [HJpOCTaTHtIHa, HaXOAACb B
paCHaBJIeHHOM COCTOAHHH Ha paHHHX 3TaHaX 3BOJIIOUHH. B HaCTOAHIAHr4 MOMCHT, nocie
oxna)KAeHH51, BeCTa He HaXoRHTCA B COCTOAHHH rHApOCTaTH'ieCKOIO paBHOBeCHI.
CKOpOCTb ee BpaIuHHA 6bIa yMeHbuICHa B pe3yJbTaTe jByX HMHaKTHbIX CO&bITHH.
KOM6HHHpOBaHHe aHHbIX rpaBHTaUHOHHOrO none H TOrOrpaDHH C MeTeOpHTHbIMH

gaHHbIMH HO3BOJIeT yJIyIHIHTb MOLeJIb BHyTpeHHeri CTPYKTypbI BeCTbl. B OTJIHMHe OT
BeCTbI, lepepa 6JH3Ka K COCTOAHHIO rHApOCTaTHmeCKOrO paBHOBecHI. MCXOA 3

cneKTpa gHCHepCHH TOnOrpa HH, HOBCPXHOCTb Uepepbi qaCTHMHO Bx3KOCTHO

penaKCHpOBaHa. Bpa3pe3 C npeqCTaBjieHHs1MH 9o MHCCHH Dawn, MbI 3aKJnOqHjIH, MTO
KOpa LepepbI MeXaHH'iCCKH nogo6Ha KaMeHHCTOHl nopoie. HpHMeHeHHe MeToga
KOHeMHbIX 3JIeMeHTOB B COxieTaHHH C gaHHbIMH 0 rpaBHTaUHOHHOM none H ToHorpaHH
HO3BOJIHJIO yJ1yMmUHTb mogjCeb peoorHH H paCmpegeneH HJIOTHOCTH [epepbI. TaIoKe
MbI o6HapyKHJIH, LITO HaKJIOH OCH BpaiuCHHSI UepepbI npeTepneBaeT 6onbuIe
H3MeHeHHI, 'iTO HMeeT Ba)KHb[e noCJegICTBHI ARA nepeHoca ieTyHX BeLueCTB. MHCCHI

GRAIL npOH3Beiia onpejaeReHHe IpaBHTaUHOHHOrO HOJIR JIyHbI c 6ecnpegUeJeHTHOi
TOMHOCTbIO. MbI H43yHJIH CHeKTpanbHbIii KOHTeHT mogener FpaBHTaUHOHHOFO nOJIq

JIyHbI H oxapaKTepH30BaJH 3(j(eKTHBHOe pa3peueHHe, TO HO3BOJISCT nyuie HOHATb
HX OrpaHHIeHHI H HeJOCTaTKH.

HayqHbrl4 pyKOBOIHTenb: MapHsI T. 3y6ep

AOJD)KHOCTb: E. A. FpHCBOnJ rIpo eccop reo4W13HKH

(Russian)
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4LLkuMugfi, UbL-P IL 1I1LUli bkp~jp4~qf4wl4ii' LIPLnLi nLFJn1JIL

Tptmhlwgn'A uI~UZi~ IL innuLqpUl44mjh /mbqL"PLuqn4JnLu i4juhIb-pb

M~sOl"L brttfiO'I
'}'buhpuuybh/ P7.btf-fiu/ C~hAh t- I~p4ptjbD, LdfJlnLnpwmuubz k X1Lnpui4Ujfr~

qiLnLIJjnL'ijhpb puiochdf~nrLLqipmuufluinn/ 2016 J.- Cn4t"lhphrph 3l1- 1 'i
Wnnt14wqU~bMnL/JI'h #fflutjfL~l~j rn4tnnph q-hmlu4uh.I murn/~u/b Ctutrwp:

$bhLPLjt/uw4b-pE IL ilpfl1Wnt~ghi #iLwuIjpf 4UIIjqJLI'111LSr Lhi bp41iughlI ifiupdi
4bChw4w', p'bnL!JwiiLpbpI!: 9wum4hrb LL zjpw4#fmwyibhA rlAUZUfi trtuuflu m~jujpii 4tLirFwi+IL

I4hpWIfLJLIrj 4UArq/IUUIIILtF I- 4
ijnp 9-npr./ip LII1npWII'I bPI U'1,vhb" 4uIILILyILu,4IJW-k

IlLtl"LLAbUh/u1h' 1 CLulllup ULIpI1J Uw4uifli, I~nylj4 b/Jlb 4uyt'i hi~ bp4 Iwjfili tpdffi
tqwmlLrpp IL tnlwdilmwuniyh rpu"jw,!, iAunwUn,Ij t- w'hdht~pdponLJjnL'LY trupdbbt 'ibp.#ij

If~ ~ p UinL3jU pu!I i" "" dLkPi QIOPYU1W 44IIl/1IIL-~pb, "P " L lI4f LIILA-"LbpfiJPI1'I"L

liip" U -Auwp I-~'h j~UJI 10M u nn Wf flLL IL-IpPLl OfjuflUfjpf'i LI1AI flpL-ph Efirj-4wqjflLp A

Uivpph'ii 4WjfL!IjwA4ph Cwhirjlaq1, /fzipybu 'bwkj uhi~w/u LAD1 iqpi"uidywg' IpLmb IL

Ulu u, 2JtuWUnL/ojJUL'Z#L~r Mfflp #7LUIILdLJfibpIILIF &i'4p wpLu#4zij/jjhi Ct4wuiwpzj4 L-pLp

LrwupdMhip. xtifuw twuuipn/ip, Ukp&u I0'lLfLII Ap~pw,L IL bpl~pb "flLIGt~Jp 4LUh L~Ij Wh'zp
OqwLUL~fl,

4
b-fll mijuijL'DpL Dawn-bi d4uuiwjb Cbm, h4w'lip uiji InJu4uynLfJjuA, np

~4frumu'D -InUnLybughJm O1nt bLLtrL 'i-"""4k"'1 CwLju1w& lpfSWflLtF 4hqpnumn4 I L bitbr

4IUILUIUUWPU4IVIILISUIILi~UdlLf jUpu UjU17LJik uwqUL1LPJUL'III 4pitiui(Aj I- Lp4IIL

wiuui-L-yb4 ApwirwpUPnLIjqjnLIIJbpA wpVJ'IWUpLlr. 9-ptjanw 3 /n'iA rpuj~mb IL. m~nuqniipw4hu
UnJLfbtUpb Cl~lltu4y"LL bp4lqU~pwjPg' wiui'lbphbm lolnu I- LUwbbu PuIPALIIL ',L1friiujb
U-b~p/hi 4wnn~yIuwph tiiLo: 11 LnwppLplLojnfL'I 4Lbuuijgb, UbLpL-up Amh 1- Chrjpnuwh4
4wCuUI,,jwuplzLnLfS~uJu dJSw4h'i: bLzAT"In tnutqnifujb rj-huupufiujb
/yplLXpllIu,4nLqjnL'1 uujL~mphy UbLpb-ub itw4&pLnLJgJp trLuUtflrp LFUJiflyI4 lonL~wuia I-.

WbIj~LL Dawn-bi dbubil, 4,4turtw4 LqWuf4bpUwfffLdfiIbII14 MWA bqjun4wyjpbyh'zW, np

IfbPILnLtri qIjfi~wy1m~fiA Ip"wiLL inrtJinH114butj ib mL'#pbi i/fL"LLUi4ygl~F7jl L uIi~by
Pt"ih~wLL Li7LnqfiujA /4lupu~pwuLJjfl'l1i/L~qb~p LL IUbpliub IUmflL!ILLI' U,,InILlrp: Jtilu~qbu

'ItuL Jlhi CjtAwppbyhlW, np UIbpLuf uim#nyuib wzwjph /o7L- nL jSnilp IpntruF L
4yfybrniunLpjnLblbp, np'lifiLb 4twpILnp Cb4l iRhjbp orqij 'bjflLlb Mupiu~ldau'i utp:
GRAIL- bi Jbuubhvf 4fMlIupL-M 1,IlU'flib quu/fiww"JbiA IpiUIZmbf flPfZflLlfi tII'Li/Ubflq
sztptwnLfJ~W1Fp: %L'4p flLUflL~tfiibPbffh'4p ~4LLhlk ,j-puj~4frtnzuyfinnz rqui~mh Ll1rbbLW1kpb
utq&4wiUL LuI~pnlLjII4flL,'jlL IL p'1iflL/jGWqpfligf I-,L-4Ifmi1 LIML&j, "PP P"lYL I- mwj/u

"''L1I p,tw
4

u
4

'DIuIL ripwuli UwI~l/uhmUJbL4ltL-pI flL joMPULJ"'AILJ-P":

9-bww,4wA'b Ituu, Wwupbw S.!QnLPLbp
9jwZwnnj b.U. 9-rbulnLij- Lp4piu,hfiwj tqpn*L-unp

f-wlpq~iib"h liublohwrjw'i WtubIo'wp
(Armenian)
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Vesta, Serera va Ayin Caziba Quvvasi va Topoqrafik Malumatlar
Osasinda Geofiziki TAhlili

MU3l1if: Anton Yermakov

Yer, Atmosfer v3 Planet Elmlhri Departamentina 31 Oktyabr 2016-ci ild3 Planet Elmlbri
Uzro Elmlor Doktoru dorocasinin talablrinin bir qisminin yerino yetirilmasi gorgivosind3

toqdim olunmugdur.

XU*lasa

Qurulu v3 cazib3 qUvvosi planet cismlarinin fundamental xtisusiyyotlorini t3 kil
edir. Caziba qiivvasi v3 topoqrafik molumatlar silsilasinin birl;gdirilmsi, planetlbrin
daxili quruluglarmnmn orbitdan byranilmasinin an gUclU iisulu hesab olunur. Ancaq, hotta
caziba qtvvosi v3 topoqrafik molumatlar 3sasmnda bel3, geofizik strukturlarm gox geni$
spektrumda mavcud olmasi mUmkundUr. Oxucu bu qeyri-unikal problem hollarinin bu
dissertasiya iginin bitiin fasillDrind3 istifad; edildiyini gbrocoklbr. Qeyri-unikal
yanagmam azaltmanin 3n Umumi strategiyasi 3lava mUiahidolorin istifada edilmasinin
yeni yollarminm tapilmasindan asilidir ki, bunlarda daxili struktura gox hassasdirlar, ancaq
bununla bela cazib3 qfivvosi va / voya topoqrafik tasirdon mtstaqildirlbr.

Bu igda biz Gun3 Sisteminin ig uzviun tohlil edirik: Vesta asteroidi, cirtdan
planet Serera v3 Yerin sputniki olan Ayi. Dawn missiyasmin malumatlarmi todqiq edorak
bu n;ticzy; g;1irik ki, bir zamanlar hidrostatik tarazihq vo qizmar maye hahnda olan
Vesta asteroidi, artiq bu xUsusiyy;tlbrini itirmisdir. Iki nzh;ng toqquema vzya tasir
nzticzsindo onun 6z ;trafinda firlanmasmin sUr;ti azalmisdir. Cazib3 sahosi vz topoqrafik
malumatlari meteoritik malumatlarla birl;gdirilmasi, Vesta asteroidinin daxili
strukturunun modelinin yaxsllagdirilmasma nail olunmasina imkan verir. Vestadan farqli
olar Serera hidrostatik tarazihq hahndadir. Sereranin topoqrafik spektrumuna 3saslanaraq
bel3 naticoyz galirik ki, o qox mohdud viskos geni lnmayz m;ruz qahb. Dawn
missiyasindan bncoki tasovvCirlarin ksina olaraq biz bel3 qanaat1 galirik ki, Sereranmn Ust
qabigi mexaniki olaraq da -qaya halmdadir. Cazibo sah;si / topoqrafik molumatlari
litosferik relaksasiyanm finit-element modellzgdirilmsi il birl3 dirmnklb Sererarnn
reologiyasimn v3 sixhq sturukturunun paylanmasimn yaxdagdirilmasina nail
olunmugdur. Eyni zamanda mUiyy;n etdik ki, Sereranin oz oxu 3trafinda firlanmasinin
bucagi b6yUk doyisikliklar3 moruz qahr ki, buda ugan aparatlarm transportu U9Un muhum
tosir; malikdir. GRAIL missiyasi Ayin cazibz modellbrinin zn doqiq hesablanmasi Uy9in
misilsiz imkan yaratmisdir. Biz Ayin cazib; modellarinin spektral tarkibini tohlil etmi va
onlarin effektiv hollarini xarakteriza etmigik ki, buda bu modellarin istifadagilrina
modelin mohdudiyyztlarini anlamaq u9Un lazim olan molumatlari toqdim edir.

Dissertasiya iginin rohbori: Maria T. Zuber
Elmi titulu: E.A. Griswold adina Geofizika Professoru
TrcUmi edon: Ramil Maharramov

(Azerbaijani)
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Geofizikka ispitivanja Veste, Ceresa i Meseca koriskenjem gravitacionih
i topografskih podataka

Anton Ermakov

Predato Departmanu za zemaljske, atmosferske i planetarne nauke, 31. oktobra 2016.
godine, kao deo uslova za sticanje diplome doktora nauka za planetarne nauke

Apstrakt

Oblik i gravitaciono polje su fundametalne osobine nebeskih tela. Kombinovanje
gravitacionih i topografskih podataka je verovatno najmocniji vid ispitivanja
unutrasnjosti planeta iz orbite. Medutim, tak i kada su nam podaci o gravitaciji i
topografiji na raspolaganju, 'esto se ne moie sa sigurnosku odrediti o kom tipu
geofizi'ke strukture je red. Citalac de zapaziti da je ovaj problem nejedinstvenog resenja
proiet kroz sva poglavlja ovog rada. Generalna strategija za redukovanje
nejedinstvenosti, je pronalazenje nadina za primenu dodatnih osmatranja osetljivih na
unutrasnju strukturu, ali koja su ne degenerisana gravitacijom i/ili topografijom.

Mi u ovom radu izu'avamo tri nebeska tela Sundevog sistema: asteroid Vestu,
patuljastu planetu Ceres i Zemijin satelit Mesec. Koriskenjem podataka iz svemirske
letelice Don (Dawn - Zora, prim. prev.), nalazimo da, nekadasnji usijani i hidrostati6ni
asteroid Vesta, nije vige ni usijan ni hidrostatican. Njemu se zaustavila rotacija prilikom
dva velika sudara. Mi koristimo gravitacione i topografske podatke sa Dona, zajedno sa
meteorskim podacima, kako bi ogranivili na internu strukturu Veste. Za razliku od Veste,
Ceres je blifi hidrostativnoj ravnoteii. Zasnovano na sopstvenom topografskom
spektrumu, mi zaklju'ujemo da je Ceres pretrpeo manju viskoznu relaksaciju. Nasuprot
ocekivanjima koja smo imali pre upotrebe podataka sa Dona, nalazimo da Ceresova kora
ima mehani'ka svojstva stene. Mi smo prikazali ograni'enja Ceresove reologije i
strukture rasporeda gustine, kombinovanjem gravitacionih i topografskih podataka sa
modeliranjem relaksacije litosfere metodom konannih elemenata. Pored toga, otkrili smo
da Ceresov osni nagib tj, ukosenost, prolazi kroz znacajne oscilacije, Sto nam pru'a vaine
implikacije za volatilni transport. Misija ,,GRAIL" (Gravity Recovery and Interior
Laboratory), tj, ,,LIGI" (Laboratorija za izunavanje gravitacije i interijera), je proizvela
gravitacione modele Meseca sa do sada nezabeleienom preciznoscu. Mi izubavamo
spektralni sastav gravitacionih modela i vrsimo karakterizaciju njihove efektivne
rezolucije, kako bi obezbedili korisnike ovih modela sa informacijama neophodnim za
razumevanje ograniwenja ovih modela.

Supervizor teze: Marija T. Zuber
Titula: E. A. Grizvold, profesor geofizike
Preveo: Strahinja Markovid

(Bosnian)
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reo wH3HqeH aHRJIH3 Ha BecTa, Tepepa H JIyHaTa B]3 OCHOBa Ha

)IaHHH 3a rpaBHTaIUHOHHOTOoiie H TOHorpa4HITa

AHTOH EpMaKOB

AHCepTagHA, npeqageHa B enapTaMeHTa HO 3eMHH, aTMoC4epHH H IiaHeTaPHH HayKH

Ha 31-BH OKTOMBpH, 2016-Ta FOAHHa B H3HbJIHCHHC Ha H3HCKBaHHqTa 3a npHqo6HBaHe
Ha CTeHnHTa "AOKTOp Ha 4AHJIOCOCKHTe HayKH HO nJIaHeTOJIOrH"

A6cTpaKT

FDopMaTa H rpaBHTaUHOHHOTO none ypeHCTaBJIABaT (yHgaMeHTaJIHH
XapaKTepHCTHKH Ha He6eCHHTe TeJa. CMSTa Ce, 4C C1BMeCTHOTO H3HOJI3BaHe Ha jaHHH
3a @OpMaTa H rpaBHTaUHOHHOTO none e Har-MOLHaTa MeTOA1HKa 3a H3yqMBaHe Ha

BbTpeLUHaTa cTpyKTypa OT op6HTa. BbnpeKH TOBa, AOPH KOraTo ca Ha pa3nonoKeHHe
gaHHH 3a FpaBHTaiH31Ta H Tonorpa H$ITa Ha gageHO He6eCHO TAJIO, Te He gaBaT
e1jHo3HaMHa npeACTBa 3a BbTpeLHH5 cTpoexc, a moraT ga C'boTBeTCTBaT Ha pa3JIHMHH
Bb3MO)KHH reo4UH3HMHH CTpyKTypH. MHTaTCJIAT Ilue o6pHe BHHMaHHe, Me BbHpOCbT 3a

Te3H HeAHo3HaMHH MaTeMaTHMeCKH peuieHHA e 3ace-HaT BLB BCAKa iaBa Ha

gHCepTaUHrTa. FJaIBHaTra CTpaTeFH5 3a pa3peiuaBaHe Ha TO3H npo6neM ce CICTOH B

H3HOJI3BaHeTO Ha OnhJIHHTeJIHH gaHHH, KOHTO ca MyBCTBHTeJIHH KbM BbTpelHaTa
CTpyKTypa, HO He ce BJIHSIT OT rpaBHTauHOHHOTO none H 4OpMaTa Ha He&eCHOTO TJIO.

B HaCTOHIMHI HayMeH TPyA H3yMaBaMe TpH TeIa OT CJI'HMeBaTa CHCTeMa:

acTepoi~a BeCTa, nJIaHeTaTa-pKygxe lepepa H 3eMHHA CnbTHHK - JIyHaTa.
43HOJI3BaAKH gaHHHTe OT KOCMHMCCKHA anapaT Dawn (,,3opa"), AOCTHrame 4o H3Bola,

Me BeCTa e 6HIa ropeuxa H B CbCTORHHe Ha XHJAPOCTaTHMHO paBHOBeCHe Ha nO-paHeH
eTan OT CBOITa eBOJHOI4uw. CKOpoCTTra Ha BIPTeHe Ha nnaHeTaTa-AKygKe e 6Hia
3a6aBeHa OT ABa roJei4 c6JIClKa C KOCMHMCKH Tena. KbM HaCTOAIHH1I MoMeHT, cJIel
CBOeTO oxJaKJaHe, BeCTa BCe1 He ce HaMHpa B CbCTOIHHe Ha XHJPOCTaTHMHO
paBHOBeCHe. KOM6HHHpaHeTO Ha jaHHH 3a rpaBHTaUHOHHOTO noIe H TOnOrpa HqTa
CIBMCCTHO C MCTeOpHTHH gaHHH gaBa B13MO)KHOCT ja 6bge noLo6peH MogeJIbT Ha

BIITpeHaTa CrpyKfypa Ha Becra. 3a pa3JIHKa OT BeCTa, [Iepepa e 6n1H3o qO C CTOAHHC

Ha XHAPOCTaTHMHO paBHOBeCHe. B3 OCHOBa Ha cneKTpaJIHaTa qHCHCpCH Ha
TonoFpaq HITa CgiHM, Me HOB'bpXHOCTTa Ha Iepepa e npeTpnsia MaCTHMHa BHCKO3Ha
penaKCaluAH. 06paTHO Ha OMaKBaHHTra, cneJg MHCHATa Dawn (,,3opa") pa3KpHBaMe, Me
KOpaTa Ha [epepa HMa MeXaHHMHH CBOiiCTBa, CbOTBeTCTBauIIH Ha KaMeHHCT xapaKTep.
HpHnIaraKH MeTOga Ha KpaiiHHTe CJIMHTH B C 3MCTaHHe C jaHHH 3a rpaBHTaiHOHHOTO
none H Tonorpa@HATa, HHe noao6pqBaMe MogJena Ha nIaHeTapHaTa peOnOrHA H
pampegeneHeTO Ha nJITHOcrra Ha [1epepa. Cmo TaKa AOCTHraMe go H3Boga, Me
HaKJIOH'bT Ha OCTa Ha Uepepa npeTpnsBa roneJIM H3MeHeHHI, a OT CBOS CTpaHa, TOB
HMa BaXCHH nOCnJICTBHI 3a npeHOca Ha iiTJ1HBH BeHieCTBa. MHCHITa GRAIL qaBa
B'b3MO)KHOCT ja 6wge onpegeneHO rpaBHTaHOHHOTO noie Ha JLyHaTa c 6e3npejejeHTHa
TOMHOCT. HHe H3yMaBaMe CHCKTpaJIHHS CICTaB Ha pa3JIHMHH MOAeJI4H Ha JyHHOTO

FpaBHTaiAHOHHO none H OHHCBaMe TAXHaTa e4eKTHBHa pe30JOUH, KaTO no TO3H HaMHH
H3ACHABaMe OIpaHHMeHHATa H HegOCTaThUHTe Ha OTgeJIHHTe MOgJIH.

HayMeH pIKOBOAHTen: Map14A T. 3y6bp
THTna: Hpolecop no reO14H3HKa ,,E. A. FpHCyojI"
HpeBOA: IBOp KOCTOB

(Bulgarian)
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Geofysisch onderzoek van Vesta, Ceres en de maan door middel van
zwaartekracht en topografie.

door
Anton Ermakov

Submitted to the Department of Earth, Atmospheric and Planetary Sciences on October
31st, 2016, in partial fulfillment of the requirements for the degree of Doctor of

Philosophy in Planetary Science

Abstract

De vorm en het zwaartekrachtsveld zijn fundamentele eigenschappen van een
planetair lichaam. De combinatie van deze eigenschappen is mogelijk de meest krachtige
manier om het binnenste van een planetair lichaam te bestuderen vanuit een baan
eromheen. Zelfs als deze zwaartekracht en topografie data beschikbaar zijn zullen er
meerdere mogelijke geofysische structuren zijn die overeen komen met deze data. Dat er
geen unieke oplossing is komt terug in alle hoofdstukken van deze scriptie. De
gebruikelijke manier om het gebrek aan uniekheid te verminderen is door meer
observaties te gebruiken die niet rechtstreeks van zwaartekracht en topografie afgeleid
zijn.

In deze scriptie bestuderen we drie hemellichamen in het zonnestelsel: asteroide
Vesta, dwergplaneet Ceres en de maan van de Aarde. Door data van het Dawn
ruimtevaartuig te gebruiken ontdekken we dat Vesta eens heet en hydrostatisch was,
maar nu geen van beide. Eens was de asteroYde geraakt door twee enorme botsingen. We
gebruiken zwaartekracht en topografie data van Dawn in combinatie met meteoritische
informatie om Vesta's interne structuur te begrenzen. In tegenstelling tot Vesta is Ceres
bijna hydrostatische balans. Gebaseerd op het topografische spectrum van Ceres kunnen
we concluderen dat er een gelimiteerde hoeveelheid visceuze relaxatie plaatsgevonden
heeft. In tegenstelling tot de verwachtingen voor Dawn ontdekken we dat de korst van
Ceres vanuit mechanisch oogpunt op gesteente lijkt. We geven beperkingen voor de
rheologie en dichtheidsstructuren door zwaartekracht/topografie data te combineren met
finite-element modellen voor de relaxatie van de lithosfeer. We komen ook tot de
conclusie dat de obliquiteit onderhevig is aan grote oscillaties wat belangrijke implicaties
heeft voor het transport van vluchtige stoffen. De GRAIL missie heeft een
zwaartekrachtsmodel van de maan gegeven met ongekende precisie. We bestuderen het
zwaartekrachtsspectrum van de maan en karakteriseren de effectieve resolutie, zodat de
gebruikers van het model de benodigde informatie hebben om de limitaties te begrijpen.

Thesis Supervisor: Maria T. Zuber
Title: E. A. Griswold Professor of Geophysics
Translated by: Bram Willemsen

(Dutch)
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Etude geophysique de Vesta, Ceres, et la Lune ' partir de donnees
gravitationnelles et topographiques

par
Anton Ermakov

Soumis au Ddpartement de Sciences Terrestres, Atmospheriques et Plandtaires
le 31 Octobre 2016, comme exigence partielle du

Doctorat en Planetologie

Resume

La forme et le champ gravitationnel sont deux caracteristiques fondamentales
d'un corps c6leste. Combiner des mesures gravitationnelles et topographiques est
certainement une des meilleures mdthodes pour determiner la structure interne d'un corps
a partir de donnees accumuldes en orbite. Mais meme avec ces donnees gravitationnelles
et topographiques prisent en compte ensemble, un grand nombre de structures
geophysiques est toujours mathematiquement possible. Le lecteur trouvera que ce
probleme de non-unicit6 est recurrent a travers tous les chapitres de cette these. La
strategie gendrale pour reduire cette non-unicite est d'inclure des observations
supplementaires qui sont sensibles a la structure inteme sans etre corr6l6es avec la gravit6
et/ou la topographie.

Dans cette these, nous 6tudions trois corps celestes du systeme solaire : I'asteroide
Vesta, la planete naine Ceres, et la Lune. A partir de donndes de la sonde spatiale Dawn,
nous mettons en evidence que Vesta n'est ni chaude ni hydrostatique, alors qu'elle l'6tait
auparavant. Sa rotation fut ralentie a cause de deux collisions. Nous utilisons les mesures
gravitationnelles et topographiques de Dawn en plus de donnees metdoriques pour
calculer des contraintes sur le modele interieur de Vesta. A l'inverse de Vesta, Cdres est
proche d'un equilibre hydrostatique. A partir du spectre topographique de Ceres, nous
concluons que la planete naine n'a connu qu'une relaxation visqueuse limitde.
Contrairement aux attentes avant les observations de Dawn, nous constatons que la croute
de C'res de nature mecanique rocheuse. Nous ajoutons des contraintes sur la rheologie de
Ceres et sa structure interne en combinant les mesures gravitationnelles et topographiques
avec une moddlisation de la methode des 6lements finis de sa relaxation lithospherique.
De plus, nous concluons que son obliquitd a connu de larges oscillations, ce qui a eu
d'importantes implications pour le transport volatile. La mission spatiale GRAIL a
produit des champs gravitationnels lunaires d'une precision sans precedent. Nous
6tudions le contenu spectral de ces champs gravitationnels et caracterisons leur resolution
pour permettre aux utilisateurs de mieux comprendre les limites des modeles.

Sous la direction de : Maria T. Zuber
Titre : E. A. Griswold Professor of Geophysics
Traduit par: Matthieu Talpe

(French)
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Studio geofisico di Vesta, Cerere e la Luna utilizzando dati delle gravita
e topografia

Anton Ermakov

Presentato al Dipartimento di Scienze della Terra, Atmosferiche e Planetarie il 31
ottobre 2016 per adempimento parziale dei requisiti per il grado di Dottore di Ricerca in

Planetologia.

Abstract

La forma ed il campo gravitazionale sono proprieta fondamentali di un corpo
planetario. Combinare gravita e dati topografici rimane probabilmente uno dei modi pifi
efficaci per studiare l'interno dei corpi planetari dall'orbita. Ciononostante, anche nel caso
in cui si abbiano a disposizione dati sulla gravita e la topografia in molti casi molte
strutture geofisiche rimangono possibili. 11 lettore troveri che tale problema di non-
unicitA delle soluzioni verra riproposto in tutti i capitoli di questa tesi. La strategia
generalmente adottata per ridurre la non-unicita risiede nell'utilizzare osservazioni
aggiuntive che contengano informazioni riguardo la struttura interna, senza essere
direttamente riconducibili alla gravitA e/o alla topografia.

In questa tesi verranno studiati tre corpi del Sistema Solare: l'asteroide Vesta, il
pianeta nano Cerere e la Luna. Utilizzando i dati raccolti dal veicolo spaziale Dawn, si
pub notare che Vesta fu calda e idrostatica in passato, ma ora non lo e pii . La sua
rotazione si deceler6 a causa di due enormi impatti. Sono stati usati dati gravitazionali e
topografici catturati dal veicolo spaziale Dawn e dati meteoritici per limitare le soluzioni
riguardanti la struttura interna di Vesta. A differenza di Vesta, Cerere e vicino
all'equilibrio idrostatico. Sulla base dello spettro topografico, si puo concludere che
rilassamento viscoso e successo parzialmente alla superficie di Cerere. Contrariamente a
quanto si pensava prima dei dati raccolti da Dawn, si pub ora determinare che la crosta di
Cerere e rocciosa. In questo studio sono stati trovati vincoli alla reologia e alla densita di
Cerere attraverso l'utilizzo combinato di dati gravitazionali/topografici con modellazione
con il metodo degli elementi finiti del rilassamento della litosfera. In aggiunta, l'obliquita
di Cerere e affetta da notevoli oscillazioni, il che comporta importanti implicazioni per il
trasporto delle volatili. La missione GRAIL ha prodotto modelli gravitazionali della Luna
con precisione finora ineguagliata. In questa tesi si studia il contenuto dello spettro di
modelli gravitazionali e si caratterizza la loro risoluzione effettiva al fine di garantire a
coloro i quali usufruiranno di tali modelli le informazioni necessarie per comprenderne le
limitazioni.

Relatore di tesi: Maria T. Zuber
Titolo: E. A. Griswold Professore di Geofisica
Tradotto da: Gianmarco de Simone

(Italian)
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TaTaJirIJbIH TaIaHl, TOnOrpa(OH M3)j33JIJ1HHUJI aHrJiaH BecTa, Uepepa
60JIOH capHbl reo4bH3HKHHH UIHHCHJII33

AHTOH EpMaKOB

AHHJIOMbIH awHJI HJIaHeTOJIOFH yxaaHbI AOKTOP 33p3r3H Hb 2016 apaBqyraap CapbIH 31-
HRj g3JIXHl, araap MaHRJI]bIH 6onOH rapHrHHH IUHHJI3X yxaaHbI X3JIT3CT HPYYJIC3H

TOB*I aryyJira

BEeHiH raJI6Hp 6nOH TaTaJIUJIbIH TaJI6aH Hb ceieCTieii 6HeHH yHjC3H 1UHHK

LaHap tOM. BHeHNlH raI6Hp 60JIOH TaTaiLIJIH TaJI6afig Tyxa M3AJ33J1JIHNr XyBaaJi~aX Hb

TOiipOF 3aM Hb 13JXHH qOTOOj 6yTUHHF cyJInaX Hb Xy'HpX3r X3p3FC3JI IOM. F3C3H

X3giMH ', T3p Li 6anryrai 6HeI4H raJI6Hp, 6HeirH 9OTOOq 6yTUHirN TOAOpXOHnOXOA

3arIuryA TOgOpXOr4FyH M393X Hb ceJIeCT4eI 6HeHHH TaTaJIUJIbIH TaJIn6a JI 6on yHUHI

OAJIrOH. 3H3Xyy HCCepTa1AHAH 6yx 6yJIryyg3g OHOOTHHH TOpHAH 6yc OBOpMOI4

1HrH,3JI 6ojIoxbIr ojDK Mw33X 60JHO. 3H3 acyywJibir 1UHr4AB3pJI3X epOHXHH 30PHJFO Hb

H3M3JIT M3933JI3J, TaTaJIUJIbIH TaJI6arN XyBbA, MOH HH)KpHHH 4OTOOg 6yT3u 3M33r,
xapaaT 6yc 6arNx amHFiax OpIIIHHO.

E;HA 3H3 a)KHJA HapHbIH C14CTeMbIH FypBaH 6HeHirr CyyjaJIHa: 6ara rapHr

(acTepoLA) BeCTa, ogoi rapir Lepepy, AJ3nXuiiH Iaryyn rapir Cap. Dawn 30p4JIFo

M3L33JIJIHu F aHIHrJIaH, 6Hg TyyHHA 3XHHN IuaTaHA Hb xaiIcaH 6agrgaa 6aixaq BecTa

FHApOCTaTHK 6aicaH F3C3H aYFH3JIT3HR XypC3H. OAOOrHAH 6aginaap, XepfJIT qapaa

BeCTa yryr4 6Hm F4HApOCTaTHK T3HUB3pHriH 6aiianJ 6ariHa. Opf3JITHHH XypA Hb Xo6p

yHJI ABAJJ1bIH yp HOJIOOHH1 yp RyHg 6yypcaH 6arHa. COJIHpbIH M3)q33fl3JI 3aFBap

TaTaJI1bIH TaJI6a Ji 6onoH ra3pbIH ragapr]IH Ta~iaapx M3g33JIJIHTF H3rTf'3H Vesta JOTOOA

6yTui4fr cariwpyynx 60RHO. BeCTari4IH sjrJaaTarl Hb, Uepepa FHAPOCTaTHK T3HUB3pHHH

6arlgang OApXOH 6aiHa. Uepepa raqapryyrHrlH CHeKTp TapXaJITbIH 3yypaMTraH LaHap

X3C3rIJI3H cyrapLI Hb ra3pbIH ragaprag YHA3CJI3H. Dawn 30pHJIFO Hb y33JI 6ogilbIr

3cp3r33p, 6Hq Uepepa Hb XOJITOC Hb tyiyypxar yyC3X MeXaHHK TOCT3H IOM F'3)K

AyrH3J133. TaTaJIUlbIH TaJI6arg 60JIOH ra3pbIH raqaprtIH M3,33r xocnyyJnaH

Xsiraapnargmasi 3JIeMeHTHHH apruir X3p3A33X 3aFBap peOaOrHnH 6a L-epepa HrTpaJI

XyBaapHiIaJITblr 6ofJOBCpOHryrl 6oJIFOX Hb TyCaJICaH IOM. MOH 6Hq Uepepa Hb 3pF3JITHrH

T3HXJI3FHHH HaJIyy TOM OOpLJIOJIT, g3F'J3MXH 6o0;HCbIH T33B3p2j3X 'iyxan yp garaBpbIF

Hb XHrJIW3)K 6aAHa r3K TOrrOOjiO. GRAIL 30pHrO ypEA OMHO 6arfraaryH

HapHHBMJiaJITafraap CapHbI TaTaJIUJIbIH TaJI6ar1 TOlOpXOr4JIOJITbIH yp AYHA er00. BH

Cap 3aFBap TaTaJIUJIbIH TaJIn6ar CHeKTpHflH aryyJIriir CyaJDK, Ta HIyy caHH oOpCAHRH
XsI3raap, CyJI TaJIyygbIF oNiirox 6oJIoMKHlrN OirOAOF yp AyHT3H LUI4H1rJ1Hr4T

TOAOpXOr4ROO.

3pA3MHIIH axiiar: Maria T. Zuber

An6aH TyHuaaji: reO4H43HKHHH npodeccop E. A. Griswold
Optyyjra: AHxena XaripaT

(Mongolian)
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Badania geofizyczne Westy, Ceres i KsiVEyca z uzyciem danych
grawitacyjnych i topograficznych

Anton Ermakov

Praca Doktorska w dziedzinie planetologii wykonana w Zakladzie Nauk o Ziemi,
Atmosferze i Planetologii 31-ego paidziemika 2016 jako jedno z wymagan' do uzyskania

stopnia naukowego doktora w dziedzinie planetologii.

Streszczenie:

Ksztalt i pole grawitacyjne to jedne z najwakniejszych cech obiekt6w
planetarnych. Mozliwosd polqczenia danych grawitacyjnych i topograficznych jest
bezsprzecznie jednq z najbardziej utytecznych metod badania wnetrza obiekt6w
planetarnych z orbity. Jednakie nawet przy dostepnosci zar6wno danych grawitacyjnych
jak i topograficznych uzyskuje sie czesto wiele mozliwych (r6wnocennych) rozwiqzan
dotyczqcych struktur geofizycznych obiekt6w planetarnych. Czytelnik z pewnosciq
dostrzeze ten problem wielu rozdzialach tej pracy. Podstawowym podejsciem
ograniczajqcym ilos mozliwych rozwiqzan' jest wykorzystanie dodatkowych metod
obserwacyjnych, ktore majq wystarczajqcq czulosd umoiliwiajqcq badanie wnetrz
obiekt6w planetarnych i jednoczesnie bedqcych niezaleznymi od metod grawitacyjnych i
topograficznych.

Tematem tej pracy sq geofizyczne badania trzech cial w Ukladzie Slonecznym:
asteroidy Westy, planety karlowatej Ceres i Ksietyca. Przy uzyciu danych zebranych
przez sonde kosmicznq ,,Dawn" ustalilismy, 2e wnetrze asteroidy Westa nie jest juz
gorqce, sama Westa nie jest w stanie r6wnowagi hydrostatycznej a jej obr6t zostal
spowolniony przez dwie kolizje z innymi duzymi obiektami. Polqczenie wynik6w
pochodzqcych z analizy danych grawitacyjnych/topograficznych uzyskanych przez sonde
,,Dawn" z wynikami uzyskanymi z pr6bek meteorytowych umozliwilo nam dalszy wglqd
w wewnetrznq strukture Westy. W przeciwieistwie do Westy, Ceres znajduje sie blisko
stanu r6wnowagi hydrostatycznej. W oparciu o spektrum topograficzne ustalilismy
r6wnie2, 2e Ceres ulegla w przesz1osci niewielkiej lepkosciowej relaksacji naprzetn.
Ustalilismy te2, 2e z punktu widzenia mechaniki skal skorupa Ceres jest skalista (w
przeciwienistwie do wczesniejszych sugestii z przed misji ,,Dawn"). Dzieki polqczeniu
danych grawitacyjnych/topograficznych z modelowaniem relaksacji (odprezania)
litosferycznego metodq element6w skonczonych moglismy uzyskad wglqd w dokladna
reologie i rozklad gestosci Ceres. Dodatkowo ustalilismy, te nachylenie osi Ceres
podlega znacznym oscylacjom co ma powazne implikacje dla dystrybucji bardziej
lotnych substancji. Wyjqtkowo dokladne modele pola grawitacyjnego Ksietyca uzyskane
dzieki misji GRAIL umozliwily nam zbadanie spektralnych aspekt6w modeli pola
grawitacyjnego, charakteryzacje ich docelowej rozdzielczosci i zapewnienie
uiytkownikom wiarygodnych informacji na temat ograniczen' modeli pola
grawitacyjnego.

Praca wykonana pod kierunkiem prof. Marii T. Zuber
Tytul: Profesor geofizyki im. E. A. Griswolda
Tlumaczenie: Janusz J. Petkowski

(Polish)
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Investigaeio geofisica de Vesta, Ceres e da Lua usando dados de
gravidade e topografia.

Anton Ermakov

Submetido ao Departamento de Terra, Atmosfera e Ciencias Planetirias em 31 de
outubro de 2016 como cumprimento parcial dos requisitos para obtengAo do titolo de

Doutor em Filosofia e Ciencias Planetirias.

Resumo:

A forma e o campo de gravidade sAo propriedades fundamentais de um corpo
planetairio. Combinando conjuntos de dados sobre gravidade e topografia 6, sem dhvida, a
ferramenta mais poderosa para estudar interiores planetirios em 6rbita. No entanto,
mesmo quando os dados de gravidade e topografia sdo fornecidos, normalmente, uma
ampla gama de possiveis estruturas geofisicas e possivel. 0 leitor vai descobrir que este
problema de solug~es nao-exclusivas permeia todos os capitulos desta tese. A estrategia
geral para reduzir nao-singularidade 6 encontrar maneiras de usar observagbes adicionais,
que sdo sensiveis A estrutura interior, mas nio sdo corrompidos pela gravidade e / ou a
topografia.

Neste trabalho, estudamos tres corpos do sistema solar: asteroide Vesta, planeta
anao Ceres e Lua da Terra. Usando os dados da sonda Dawn, descobrimos que uma vez
quente e hidrostdtica, Vesta jat nqo 6 qualquer um. Foi retardando por duas colisaes
gigantes. N6s usamos os dados do principio da sonda Dawn sobre gravidade / topografia,
juntamente com dados de meteoritos para fornecer limites sobre a estrutura interna de
Vesta. Ao contririo de Vesta, Ceres esti perto do equilibrio hidrostAtico. Com base no
espectro topogrdfico de Ceres, concluimos que ele tem experimentado relaxamento
viscoso limitado. Contrariamente As expectativas antes da sonda Dawn, descobrimos que
a crosta Cereana 6 mecanicamente rochosa. N6s fornecemos os limites sobre a estrutura
de reologia e densidade de Ceres, combinando dados de gravidade / topografia com
finito-elemento de modelagem de relaxamento da litosfera. Alerm disso, descobrimos que
a obliquidade de Ceres sofre grandes oscilag3es, o que tem implicagues importantes para
o transporte volitil. A missAo GRAIL produziu modelos gravitacionais da Lua com uma
precisao sem precedentes. Estudamos o conten'do espectral de modelos gravitacionais e
caracterizamos a sua resolugdo efetiva para fornecer aos usuarios destes modelos as
informagOes necessarias para compreender as limitagues do modelo.

Professor Orientador: Maria T. Zuber
Titulo: E. A. Griswold Professor de Geofisica
Traduzido por: Alessandra Silva Xavier

(Portuguese)
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Investigaci6n geofisica del asteroide Vesta, el planeta enano Ceres y la
Luna usando datos de la gravedad y la topografia.

por

Anton Ermakov

Presentado al Departamento de Ciencias Atmosfdricas, Planetarias y de la Tierra el 31 de
octubre de 2016, en cumplimiento parcial de los requisitos para el grado de Doctor en

Filosofia en Ciencias Planetarias

Resumen

Tanto la forma como el campo de gravitatorio de un cuerpo planetario son

propiedades fundamentales de este. La combinaci6n de los conjuntos de datos acerca de

la gravedad y la topografia es, sin duda, la mas poderosa herramienta para estudiar el
interior de un planeta desde la 6rbita. Sin embargo, incluso teniendo los datos
mencionados, generalmente, se obtiene una amplia gama de posibles estructuras
geofisicas posibles. El lector encontrari que estos problemas de soluciones no 6inicas
aparecen en todos los capitulos de la presente tesis. La estrategia general para reducir el
nimero de soluciones es encontrar maneras de utilizar observaciones adicionales que son
sensibles a la estructura interior, pero no se degeneran con la gravedad o la topografia.

En este trabajo, estudiamos tres cuerpos del Sistema Solar: el asteroide Vesta, el
planeta enano Ceres y la Luna. Utilizando los datos de la nave espacial Dawn se deduce
que Vesta alguna vez estuvo caliente e hidrostitica, sin embargo ha perdido estas
propiedades. Sufri6 un despun por dos colisiones gigantes. Se utilizaron los datos de la
nave espacial Dawn respecto a la gravedad/topografia junto con los datos de meteoritos
para proporcionar condiciones sobre la estructura interna de Vesta. A diferencia de Vesta,
Ceres esti cerca de equilibrio hidrostdtico. Basindonos en el espectro topogrifico de
Ceres, llegamos a la conclusi6n de que ha experimentado la relajaci6n viscosa limitado.
Contrariamente a las expectativas previas de la informaci6n brindada por Dawn, nos
encontramos con que la corteza de Ceres es mecanicamente como una roca.
Proporcionamos las condiciones sobre la estructura de la reologia y densidad de Ceres
mediante la combinaci6n de datos de gravedad topografia con el modelado de elementos
finitos de la relajaci6n litosferica. Ademas, nos encontramos con que la oblicuidad de
Ceres sufre grandes oscilaciones, lo cual tiene importantes implicaciones para el
transporte volitil. La misi6n GRAIL ha producido modelos de gravedad de la Luna con
una precisi6n sin precedentes. Tambien se estudia el contenido espectral de los modelos

de gravedad y se caracteriza su resoluci6n efectiva para proporcionar a los usuarios de
estos modelos la informaci6n necesaria para comprender las limitaciones del modelo.

Supervisor de tesis: Maria T. Zuber
Titulo: Profesor A. E. Griswold de Geofisica
Traducido por: Julio C. Castiglioni

(Spanish)
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Feobi3HqHii aHaJai3 BeCTH, IlepepH Ta MicSUSI 3 BHKOPHCTaHHIM

)jaHHX rpaBiTaiUHHOFO HOJIH H TOHOrpa()ii

AHTOH CpMaKOB

AHCepTaLIi nepegaHa B gnapTaMeHT 3eMHHX, aTMOC epHHX Ta HJIaHeTapHHX HayK 31-
FO KOBTHA 2016 pOKy Ha 3go6yTTI CTyneHi AOKTOp cijioco4iI 3 HaneOHTOJTOFiI

A6cTpaKT

ciirypa i rpaBiTauiie none C 4YHgaMeHTaJIbHHMH XapaKTepHCTHKamH He6eCHoro

Tina. CniJIbHe BHKOPHCTaHHI gaJHHX npo 4iWypy Ta rpaBiTauiHHe none c HoTy)KHHM
iHcTpyMeHTOM gJ1I BHBMeHHI BHyTpiIUHbOI CTpyKTypH HhiaHeT 3 op6iTH. Ane, HaBiTb

IKIIO 4irypa TrpaBiTaMI1H noJIe He6eCHorO Tijia BigOMi, HeMHHy'a HeOqHO3Hax1HiCTb

B BH3Ha'eHHi BHyTpiIHbOI CTpyKTYpH Tina. 4HTalI 3'ACyC, Igo LaHa npo6neMa
HeyHiKaJIbHHX pimeHb HPHCYTHI y BCiX rIaBax uiCI qHcepTauiI. 3araJIbHa CTpaTeriq
pimueHHA uicI npo611eMH JIeKHTb B BHKOpHCTaHHi g0jaTKOBHX gaHHX, MyTJIHBHX JO

BHyTpiIIHbO cTpyKTypH, a TaKOK He3aJIeKHi BigHOCHo rpaBiTauiHoro HO i 4irypH.

B uiir Hpaui M4 BHBqacmo TIH Tina COHAMLHOI CHCTeMH: acTepolfg BecTy, KapJIHKOBY

nnaHeTy [lepepy Ta CyHyTHHK 3eMni MicqUb. 3 BHKOpHCTaHHIM gaHHX 3 MiCil Dawn, MH

AiHlJH 9o BHCHOBKy, ujo BeCTa 6yna rigpOCTaTHMHa, 3HaxoL1HBmHCb B po3HJaBJIeHOMy

CTaHi Ha noIaTKOBHX eTanax CBo'0 )KHTrI. Ha RaHHr MoMeHT, niCJIu OxOJaOJxeHHA,
BeCTa He 3HaXoHTbCA B CTaHi riJIpOCTaTHHOFO BpiBHOBa)KeHHI. IllBHAKiCTb II

o6epTaHHR 6yna 3MeHuICHa B pe3yJbTaTi JBOX iMHaKTHHX HOJrU. KoM6iHyBaHHA gaHHX

fpO rpaBiTauiMHe none i TonorpaIno 3 MeTeOPHTHHMH aHHMH AO3BOJIAC HOJliHIIIHTH
MoJCJhb BHyTpiIlHbOI CTPYKTypH BeCTH. Ha BigMiHy Big BeCTH, nepepa 6JIH3bKa gO

CTaHy rigpocTaTHMHorO BpiBHOBa)KeHHI. BHXOAASIH 3i CHeKTpy gHcnepciI TOHOrpa li,

HOBePXHA UepepH maCTKOBO B' S3KiCTHO peaKCOBaHa. Bpo3pi3 LO yABJICHb J O MiCiI

Dawn, MH 3po6HJH BHCHOBOK, 14O KOpa UCpepH MeXaHIlHO HOqi6Ha KaMeHHCTik

nopogi. 3aCTOCyBaHHI MeTOgy KiHieBHx eJIeMeHTiB B nOCgHaHHi 3 gaRHHMH HpO
rpaBiTauirHe none i Tonorpa4Iio gO3BOJ1HJO noninHIITH MOeCmb peonoriI Ta p03HOqijl

FyCTHHH UepepH. TaKOK Mi 3'ACyBaJIH, UAO HaXHJI BiCi o6epTaHHA UepepH 3a3HaC

BeJIHKHX 3MiH, InO MaC BaKJIHBi HaCJIgJKH A51 nepeHOCy JIeTIO'HX peIOBHH. MiCiA
GRAIL npOBeJia BH3Hat1HHA rpaBiTauiHHoro HOnsi MiCusI 3 6e3npeUeeHTHOIO

TOqHiCTIO. MH BHBMHJIH cneKTpaJibHirl KOHTeHT Mogenerl rpaBiTauiiHoro nOns MiCAusI A

oxapaKTePH3yBiiH e4 eKTHBHHH g03BiJl, ILO A03BOJIAC Kpauxe 3pO3yMiTH IX o6MeKeHHq

Ta HeJIoniKH.

HayKOBHiN KepiBHHK: MapiA T. 3y6ep

Hocaga: C.A. FpiCBORA, npo ecop reo0 3HKH

HepeKnaB: OneKCirl CMipHOB

(Ukrainian)
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Chapter 1

Introduction

1.1 Gravity and topography of rocky bodies

The shape and gravity field are fundamental properties of a planetary body. An

accurate model of the shape has both practical and scientific applications. Practical

aspects include the ability to land on or operate in close proximity to the body's

surface. The work in this thesis focuses on the scientific applications, specifically on

how the interior structure of a planetary body manifests itself in the shape and gravity

field of the body. Gravity science complemented with the knowledge of topography

is, arguably, the most powerful tool for studying deep interiors of rocky planetary

bodies from the orbit.

In order to gain insight into the body's structure, the observational data of the

body's gravitational field and surface shape must be compared to a geophysical model

of the body. There are two main classes of modeling, which will be called here forward

and inverse. The forward problem can be stated in the following way: what will the

gravitational field and surface topography of a planetary body be given its internal

structure? The simplest and most commonly employed assumption is hydrostatic

equilibrium. Under the condition of hydrostatic equilibrium the surface of the body

is an equipotential surface and there is no shear stress throughout the body. This

means, in the absence of other processes that affect the long-wavelength shape of the

surface, topography and gravity measurements provide the same information about
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the interior structure. It is often said in scientific literature that a certain body either

is or is not in hydrostatic equilibrium. The situation in reality is rarely so simple.

There always exist deviations from the equilibrium state and such deviations must

be quantified before employing the assumption of hydrostatic equilibrium.

The inverse problem can be stated in the following way: what is the interior

structure of a planetary body given the observed surface topography and gravitational

field? Practice shows that inverse problems are much harder to solve than forward

problems. The situation with gravity and topography data is complicated by the

problem of non-unique solutions, which can be demonstrated by the following simple

example: the exterior gravity field of a point mass and a sphere of the same mass are

identical. In fact, any radial density distribution, which sums up to the same mass,

will have an identical exterior field. The non-uniqueness problem can be tackled

by using additional and independent types of data such as radar, remote sensing or

seismic observations. The hydrostatic equilibrium assumption can be employed as

well.

The gravity and topography data can be obtained in a number of ways. Unless in-

situ gravimetry observations are a possibility, the gravity data are typically obtained

by monitoring the motion of a spacecraft, which acts as a test mass, in the gravity

field of a planetary body. The shape data can be obtained by analysis of imagery or

with an active remote sensing technique such as laser or radar altimetry. Combining

gravity and topography data sets is essential in studying deep planetary interiors.

However, even when gravity and topography data are in hand, typically a wide range

of possible geophysical structures is possible. It is essential to bring new information

to break this degeneracy.

Our work focuses on three solid Solar System bodies: asteroid Vesta, dwarf planet

Ceres and the Earth's Moon. Recent space missions, namely Dawn and GRAIL,

have acquired unique planetary data sets that allow insights into the geophysics of

these bodies that were not previously possible. The Moon, being the only satellite of

our Earth, carefully preserves a record of the processes acting in the Earth's vicinity

over the history of the Solar System. Studying Vesta and Ceres is important as they
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represent a unique class of objects - the protoplanets that survived to the present

day providing clues about the violent environment of the early Solar System.

1.2 Vesta

Vesta is the second largest object in the main asteroid belt by mass. Due to its

relatively high surface albedo and location in the inner part of the asteroid belt, Vesta

is the brightest asteroid observable from the Earth. This high apparent brightness

facilitated ground based observations of Vesta, which revealed the uniqueness of this

asteroid. Vesta possesses a unique basaltic spectrum, which immediately points at

a rich geophysical evolution of this body (McCord et al., 1970; Gaffey, 1983; Binzel

and Xu, 1993). Moreover, there is a group of asteroids in the dynamical vicinity of

Vesta that possess similar spectra. This led to an idea of the Vesta family - a group

of asteroids (currently known as Vestoids) that originated on Vesta and were ejected

into space in one or more violent collisional events (Binzel and Xu, 1993; Burbine

et al., 2001). Pre-Dawn observations have revealed a large depression in the southern

hemisphere of Vesta (Thomas et al., 1997) - a smoking gun of such collision. Ad-

ditionally, there is a group of Howardite-Eucrite-Diogenite (HED) meteorites, whose

reflectance spectra are identical to Vesta and Vestoids (McSween Jr et al., 2010).

These observations constitute the strongest and most studied connection between a

class of meteorites and an asteroidal family.

The Dawn mission has conducted a unique geophysical study of asteroid Vesta.

Unlike terrestrial planets, large asteroids lack substantial surface modification, which

makes it possible to preserve the evidence of the physical processes acting in the dawn

of the solar system - thus the name of the space mission.

Using the data from the Dawn spacecraft, we infer that Vesta, once nearly hydro-

static due high interior temperatures (Fu et al., 2014), has departed from hydrostatic

equilibrium due to two giant impacts (Ermakov et al., 2014). From the observed

shape, gravity field and geochemical data available from the analysis of the HED

meteorites, we derive models of the interior structure of Vesta. The largest gravity
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anomaly is observed in Vestalia Terra - the region of the highest topography on the

rim of the Rheasilvia basin. The power of this anomaly cannot be explained entirely

by crustal thickness variations for plausible crust-mantle density contrasts, and im-

plies lateral variations in crustal and/or mantle density, or alternatively, substantial

lateral variations in impact-related porosity.

Our solution for Vesta's crust-mantle interface reveals a belt of thick crust around

Rheasilvia and Veneneia. The thinnest crust is in the floor of the two basins and in

the Vestalia Terra region. Our solution does not reveal an uplift of the crust-mantle

boundary to the surface in the largest basins. This, together with the lack of olivine

detected by the Visible and Infrared Spectrometer data in Rheasilvia and Veneneia

(Ammannito et al., 2013), indicates that Vesta's presumed olivine mantle was either

not brought to the surface by these large impacts or was covered by ejecta fallback

from subsequent impacts.

1.3 Ceres

Ceres is the largest object in the main asteroid best. Discovered in 1801, Ceres

enjoyed a planetary status for several decades until it was reclassified as an asteroid

when many similar objects were discovered between the orbits of Mars and Jupiter.

Later, it was once again reclassified as a dwarf planet given its large size and ellipsoidal

shape.

Little was known about Ceres before the arrival of the Dawn spacecraft in 2015.

Its mass was constrained from gravitational interactions with other bodies (Kovaeevi6

and Kuzmanoski, 2007; Kovaevi6, 2012). The spectrum had been measured and

classified as an intermediate between C and G type asteroids (Carry et al., 2008;

Milliken and Rivkin, 2009). Unlike Vesta, Ceres does not have a dynamically linked

asteroidal family nor it does a meteoritic family associated with it. Prior to the Dawn

mission, Earth-bound observations revealed that Ceres' shape, unlike that of Vesta,

is consistent with a high degree of hydrostaticity (Drummond et al., 1998; Thomas

et al., 2005; Carry et al., 2008; Drummond and Christou, 2008; Drummond et al.,
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2014). Given its relaxed shape and low density, Ceres was thought to be similar to

an icy satellite of the outer Solar System. It was expected that Ceres might possess

an icy crust overlaying a rocky core. Given Ceres' position in the asteroid belt at

- 2.8 AU from the Sun, pervasive viscous relaxation of icy shell was expected prior

to Dawn (Bland, 2013).

Contrary to the pre-Dawn expectations, we find that there is not much water ice

in cerean crust (<30 vol%). We expand the shape of Ceres in a spherical harmonic

series and compare the topographic spectrum of Ceres to that of Vesta. We observe

that the topographic power of Ceres, unlike that of Vesta, deviates from a power law

at low degrees and that the equatorial regions have lower topographic power. This

indicates that viscous relaxation plays a role at Ceres. However, we find that viscous

relaxation is important only at low degrees that correspond to spatial scales of more

than zz100 km. At smaller scales there is not a systematic latitude variation of the

topographic power, nor there is a a deviation of the topography power from a power

law, unlike the predictions of Bland (2013) based on the icy-shell model.

Because of its low obliquity, permanently shadowed regions (PSRs) can exist on

Ceres, and have been identified using both images and shape models (Schorghofer

et al., 2016; Platz et al., 2016). These observations make Ceres only the third body in

the solar system with recognized PSRs after the Moon and Mercury. Some craters in

Ceres' polar regions possess bright crater floor deposits (BCFDs). These crater floors

are typically in shadow. However, they receive light scattered from the surrounding

sunlit crater walls and therefore can be seen by the Dawn's Framing Camera. These

bright deposits are hypothesized to be water ice accumulated in PSR cold traps,

analogous to the Moon (Watson et al., 1961; Arnold, 1979). The temperatures in

Ceres' cold traps can be low enough to accumulate and preserve volatiles over long

time scales (Titus, 2015; Hayne and Aharonson, 2015b). It was shown that water ice

can survive for 4.5 Gy at depths of only 10-100 m near the equator and less than 1-10

m at latitudes greater than 400 (Fanale and Salvail, 1989; Schorghofer, 2008).

The existence of the PSRs critically depends on the body's obliquity. Knowing

past obliquity variations can shed light on the history of PSRs, and can help constrain
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the water ice deposition time scales. As such, Ceres is unique in that the observation of

volatiles on its surface can directly inform and be used to test its rotational dynamical

models. Conversely an understanding of its dynamics can inform present-day rates

of production, deposition and sublimation of volatiles in its polar regions.

1.4 The Moon

The NASA's GRAIL (Gravity Recovery and Interior Laboratory) mission has

determined the gravity field of the Moon with unprecedented accuracy (Zuber et al.,

2013). The gravity field model is recovered by processing line-of-sight (LOS) range-

rate in combination with the Deep Space Network (DSN) tracking for precise orbit

determination. Since the Moon does not have a notable atmosphere, it is possible

for the spacecraft to orbit at much lower altitudes, which leads to higher sensitivity

of satellite-satellite tracking to the body's gravity. Thus, the analysis of the GRAIL

measurements has enabled for the first time development of a global planetary gravity

model based solely on orbital observations at a resolution comparable to the shape

model.

We study GRAIL gravity models using spectral analysis. First, we compute and

compare the global spectral properties of the gravity, topography and gravity-from-

topography models. We evaluate the global power spectral density (PSD) of gravity

and gravity-from-topography. We find the the PSD of lunar gravity does not follow

a single power law. In order to compare gravity and gravity-from-topography in

the spectral domain, we compute correlation, isotropic ratio and effective density

spectrum.

Second, we compute localized correlations using spectral-spatial localization method

(Simons and Dahlen, 2006). This allows characterization of how the gravity field

model is correlated with topography in both spatial and spectral domain. We find

that the localized correlation is strongly influenced by the geophysical signal of the

maria at low degrees (n < 100). At the intermediate range (100 < n < 500), the

global correlation approaches unity. At high degrees (n > 500), the correlation gener-
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ally decreases. The most important factor that controls the behavior of the correlation

at high degrees is the average altitude of the spacecraft: in the low-lying maria the

decrease of correlation starts earlier, whereas the Orientale basin exhibits a stronger

correlation at high degrees (n > 700) due to the extremely low altitude arcs at the

end of the mission.

Third, we compute the magnitude-squared coherence for the line of sight (LOS)

acceleration time series produced by the gravity models and by the gravity-from-

topography model on arc-per-arc basis. It is expected that at progressively higher

spherical harmonic degrees the gravity signal is dominated by topographic variations

as opposed to local density variations. The topography of the Moon is known to

higher resolution than gravity due to Lunar Orbiter Laser Altimeter (LOLA) (Smith

et al., 2010, 2016) onboard of Lunar Reconnaissance Orbiter (Chin et al., 2007).

Therefore, the gravity created by topography provides a useful reference for gravity

model determination. We find strong contributions of resonances to the coherence

spectrum. The resonances occur at spherical harmonic degrees that correspond to

integer multiples of spacecraft separation.

1.5 Thesis outline

In Chapter 2, we describe the methods of gravity and topography analysis. Then,

In Chapter 3, we apply the gravity-topography analysis methods to study internal

structure, composition and evolution of Vesta. In Chapter 4, we compare the shape

models of Vesta and Ceres derived using stereophotogrammetry and stereophotocli-

nometry techniques. In Chapter 5, we investigate the GRAIL gravity models using

spectral analysis. In Chapter 6, we apply the gravity-topography analysis methods

to investigate the internal structure, evolution and composition of Ceres. In Chapter

7, we study the obliquity history of Ceres using the Dawn observations. Finally, we

summarize the results of our work and discuss future work in Chapter 8.
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Chapter 2

Methods

Abstract

In this chapter, we summarize the methods of working with gravity and topog-

raphy data used throughout the thesis. First, we provide a summary of how gravity
and topography data are represented. Then, we discuss the method of computing
hydrostatic equilibrium. After that, we discuss the methods of gravity-topography
spectral analysis and crustal thickness inversion. Finally, we briefly summarize the

method of ellipsoid fitting based on the least-squares and conclude the chapter with

discussing the method for computing gravity gradients.

2.1 Shape modeling

2.1.1 Gridded models

A geographic grid is the easiest and most common way to represent a planetary

shape model. The main advantage of this method is its simplicity. In fact, to com-

pute the spherical harmonic expansion of a shape, it is preferable to convert the shape

model into the geographical grid format. However, this method has two major dis-

advantages. The first is the inability to effectively take into account the typically

varying resolution of the shape model. Another is that geographic grids have higher

concentrations of data points near the poles. This method might not be applicable

for highly irregular bodies such as small asteroids or cometary nuclei.
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2.1.2 Polyhedral models

A more complicated shape modeling approach is to tesselate the shape with poly-

gons, typically triangles or quadrilaterals. In this approach, the shape model consists

of the two data blocks. The first block contains the location of the vertices. The sec-

ond block is the connectivity matrix that defines which vertices should be connected

to form polygons. While programmatically this method is more complex, it offers

more flexibility for shape representation, especially for highly non-spherical bodies.

2.1.3 Spherical harmonic expansion of topography

A shape model can be converted to a spherical harmonic expansion, which is

desirable since it is the form of solution of Laplace's Equation on a sphere. In this

case, the spherical harmonic coefficients represent the shape. This method, which is

an analogue of a Fourier series on a sphere, allows study of spectral characteristics of

the shape model. We represent the shape as a spherical harmonic series:

r(#, A) = R 1 + (Anmcos(mA) + fnm(mA)) Pnm(sin$) , (2.1)
. n=1 m=O I

where r is the radius vector of the shape model, # is the planetocentric latitude, A is

the longitude, n is the degree, m is the order, Anm and Bnm are normalized spherical

harmonic coefficients, and Pnm are the normalized associated Legendre functions. The

coefficient A0 0 is the mean radius of the body. The first-degree terms are typically non-

zero because center-of-mass - center-of-figure (COM-COF) offset (see Section 3.2.1).

This approach can be used to study cross-correlations between shape models produced

by different methods. It also allows comparison of the spectral characteristics of

the shapes of different planetary bodies. Maximizing the correlation reveals mutual

orientation and offset parameters of the shape models.
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2.2 Gravity modeling

2.2.1 Spherical harmonic expansion of gravity

The gravitational field is also modeled as a spherical harmonic expansion (e.g.,

Kaula, 1966)

U~,, A) = GM 1 + EE ( ) (Cnm cos(mA) +nmsin(mA)) Pnm(sin 0)
n=2 m=O

(2.2)

where U is the gravitational potential, GM is the gravitational constant times the

mass of the body, Onm and Snm are the normalized spherical harmonic coefficients of

the gravitational potential and Ro is the reference radius for the gravity field model.

Ro it usually chosen to be either mean equarorial or volumetic radius of the body,

however it can be chosen arbitrary. The spherical harmonic functions are normalized

such that the integral of the harmonic squared is equal to 47r. The relationship

between normalized and unnormalized coefficients is given by

Cnm _ (n - m)!(2n + 1)(2 - 6om) 1/2 ( nm (2.3)

Snm (n + m)! J Snm

where 60m is the Kronecker delta function. The degree-one term is excluded from

the expansion since the center of the coordinate system is chosen to be at the center

of mass of the body. The zonal coefficients are given by Jn= -Ono. The shape

coefficients Anm and Bnm are normalized in the same way. To shorten the notation

we introduce anmand Unm:

anm {Anm, Bnm}, anm ={Anm, Bnm} (2.4)
Onm = {Cnm, Snm}, =nm {Cnm, Snm}

The use of spherical harmonics for gravity field representation has one serious

drawback. The spherical harmonic series formally diverges in the region below the

minimum sphere that circumscribes the body (also known as the Brillouin sphere).

59



Therefore the spherical harmonic expansion cannot be used to map the gravitational

potential and acceleration near the surface of the body. This is especially important

for Vesta since difference between the lowest and the highest point on Vesta is ~ 80

km. We estimate the divergence of the spherical harmonic expansion as follows. We

find the closest distance to the body reference surface at which the divergence is less

than the uncertainty in the gravity model. Using the icosahedron tessellation of a

unit sphere, we find the location of vertices, and use the shape model expanded in

spherical harmonics to degree 360 to compute the radius vectors at the vertices. To

compute gravitational potential and acceleration, we use the algorithm developed by

Werner (1994) and Werner and Scheeres (1996), in which the gravitational potential

and acceleration of a constant-density polyhedral body can be expressed in a closed

form.

This approach does not have the problem of divergence as the gravity potential

is computed by summing over all tetrahedra that represent the shape model and the

accuracy is defined by the size of the tetrahedra. One might construct a multilayered

model of a body with tetrahedra, which would allow inverting for lateral density vari-

ations, as opposed to crustal thickness variations (Park et al., 2014b). We use the

polyhedral approach to check the accuracy of the spherical harmonic expansion. For

the Vesta shape model, we computed the difference between the gravitational acceler-

ation of a constant density body expanded in spherical harmonics up to degree 20 and

the exact acceleration computed from the polyhedral shape model. The divergence

of the spherical harmonic expansion is illustrated in Fig. 2-1. The reference surface

is defined as the volumetrically-minimal ellipsoid of revolution that approximates in

a least-squares sense an equipotential surface (no centrifugal potential), and at which

the divergence is smaller than the errors in the gravity field model. This ellipsoid

lies partially inside the Brillouin sphere, but the divergence of the spherical harmonic

expansion is not significant to a maximum spherical harmonic degree of 20.
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Figure 2-1 - Difference between the gravitational acceleration of Vesta computed

using spherical harmonic expansion and polyhedral method in the YZ plane of the

Claudia coordinate system.

2.2.2 Moments of inertia

The inertia tensor I contains six independent quantities. In the principal coordi-

nate system, where the axes are aligned with the principal inertia axes, there are three

independent inertia moments, which are called principal moments. By convention,

they are usually called A, B and C, where A < B < C. On the other hand, there are

only five degree-2 gravity coefficients, which can be reduced to two in the principal

coordinate system. These two spherical harmonic coefficients are:

C2 7 = (1 (A A+ B) - C) (2.5)

C22 = 4MR2 (B -A)

Note that here the coefficients are not normalized. It is not possible to uniquely

determine the moments of inertia only from the degree-2 gravity coefficients. An

additional constraint is required. Typically, this can come from the determination of

the precession constant, which depends on the ratio C20 /C. Alternatively, hydrostatic
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equilibrium can provide the extra constraint.

2.3 Hydrostatic equilibrium

Throughout this work, we have to deal with rapidly rotating bodies. The rotation

period of Vesta is 5.34 hours and the rotation period of Ceres is 9.07 hours. Such rapid

rotation requires an accurate method of computing figures of hydrostatic equilibrium.

We use a numerical approach proposed by Tricarico (2014), which gives a solution for

a multilayer body in hydrostatic equilibrium by approximating the equipotential sur-

faces with ellipsoids. In this approach, the equilibrium shape is found by minimizing

the squared differences of the total gravitational potential Utt(x, y, z) = U 11 + Urot

at the outer surface and at the inner interfaces, where x, y and z are the cartesian

coordinates with the z-axis aligned with the spin axis of the body. Here Ueii is the

gravitational potential of an ellipsoid and Urot = }(x 2 + y 2 )W 2 is rotational potential.

The sum of the squared potential differences A 2 is given by:

N

A 2 = {[Utot(a, 0, 0) - Ut.t(0, bi, 0)]2 +
i=O

[Utot(ai, 0, 0) - Utot(0, 0, ci)]2}

where N is the number of layers and a%, bi, ci are the longest, intermediate and shortest

ellipsoidal axes, respectively. This form can be used both for finding the biaxial

(Maclaurin) and triaxial (Jacobi) equilibrium ellipsoids (Chandrasekhar, 1967). To

illustrate this, we compute A 2 for a Vesta-like homogeneous body. Fig. 2-2 shows

A 2 as a function of the polar and equatorial flattening factors fP = (a - c)/a and

fq = (a - b)/a. Maclaurin and Jacobi equilibria are seen. At those points A 2 is

minimized to a machine-precision zero.
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Figure 2-2 - Maclaurin and Jacobi equilibrium for a homogeneous
mean density and rotation period of Vesta.

body with a mass,

2.4 Gravity-topography analysis

2.4.1 Spectral analysis

To study how the power of either gravity or topography is distributed over various

spatial scales, it is useful to define the power spectrum of the spherical harmonic

expansion of gravity Sg , of topography Sn and the gravity-topography cross-power

spectrum Sng.

n

S 9 2m
m=O

n

m=O

n

Snt = &nmanm,
m=O

(2.6)

(2.7)

(2.8)
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The power spectral density (PSD) of the gravity field or topography is defined through

the power of the spherical harmonic expansion:

Mg = Sn (2.9)
2n + '

2n+1' (2.10)Mn 2n + 1 '

It was shown by Kaula (1963) and Lambeck (1976) that the power spectral density

follows a power law assuming a random distribution of density anomalies at random

depth.

2.4.2 Gravity from shape

We compute gravity-from-shape spherical harmonic coefficients &saPe as detailed

by Wieczorek and Phillips (1998), where gravitational coefficients are expanded in a

series of powers of shape.

&shape anm =(n-4-j) (2.11)nm 2n+1=Dhh! (n + 3)

where h nm are the spherical harmonic coefficients of shape raised to the power h. The

first term in this expansion corresponds to the mass sheet approximation. Eq. 2.11

involves computation of the spherical harmonic coefficients of powers of topography.

Although, the maximum power of topography needed is equal to (n + 3), where n is

the degree of the gravity field expansion, we truncate the power of topography whose

contribution to the gravitational field is less than the formal uncertainty in the gravity

model. The terms with h > 1 in 2.11 are referred to as finite-amplitude correction

(Wieczorek and Phillips, 1998). These terms become progressively important for

highly non-spherical bodies and for high n.
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2.4.3 Multilayer structures

Given the shape of internal interfaces, the gravity coefficients of a body can be

computed as a weighted sum of the gravity coefficients of its component parts as

6 nm = N m"XApi ,(2.12)
EiO Vi Api

where i spans from 0 to N representing the layers within the body such as core, mantle

and crust; Vi is the volume. For the case of a three-layer body, Apo is the crustal

density, Ap1 is the crust-mantle density contrast and Ap 2 is the mantle-core density

contrast (e.g. Ermakov et al., 2014; Park et al., 2014b). In our analysis of interior

structure for Vesta and Ceres (Section 3.3.2 and Section 6.3.3, respectively), we will

model the internal interfaces as triaxial ellipsoids to a first-order approximation. The

degree-two coefficients of a triaxial ellipsoid with axes take the form (Balmino, 1994):

C20 R 2  - ), (2.13)

1 2 2

C2 2 = 2 (2 - b2), (2.14)
20 Ra

where a, b and c are the semiaxes of the ellipsoid aligned with the coordinate axes. In

this case, the reference radius Ro is equal to (3/(a + b + c)) 1 /2. Equations (2.13-2.14)

are used to compute gravitational moments of the core and the mantle assuming an

ellipsoidal shape. The coefficients with n + m = odd are equal to zero because of the

ellipsoidal symmetry.

2.4.4 Admittance and correlation

Admittance (Z) is a transfer function between gravity and topography. Admit-

tance is defined as a function of spherical harmonics degree n. In this case, we refer

to it as the admittance spectrum Zn.
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Zn = (2.15)
/n

It is a useful quantity because it depends on the state of isostatic compensation of

topography. Therefore, it is possible to compute the admittance spectrum given a

model of internal structure and compare it with the observed admittance spectrum.

However, if either gravity or topography is not noiseless, Eq. 2.15 will give biased

results. McKenzie (1994) shows that for the case where noise is primarily in the

gravity model, the unbiased estimate of admittance will be:

Zn = , t(2.16)
Sn

where Snt is the cross-power of gravity and topography. On the other hand, if the

noise is primarily in the shape model, the unbiased admittance estimated is:

sgg
Zn = "g (2.17)

Sng

If both gravity and topography have substantial noise, it is not possible to derive an

unbiased estimate of admittance. For planetary applications, typically there is much

more noise in the gravity model compared to topography. In other words, it is much

easier to derive a shape model than a gravity model for a given resolution.

Since the spherical harmonic coefficients as defined in 2.1-2.2 are dimensionless,

the admittance is so as well. To give admittance units of mGal/km, Zn is multiplied

by (n + 1)GM/R3 :

Sut GM
Z = - R 3 (n + 1) (2.18)

The gravity-topography correlation spectrum is defined as:

R9t - S (2.19)

The correlation spectrum is always between -1 and 1. For highly oblate bodies such as

Vesta or Ceres or irregularly shaped bodies, the relationship between the shape and
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the gravity coefficients becomes nonlinear (Wieczorek and Phillips, 1998; Balmino,

1994). Therefore, for a highly non-spherical body, even if it is homogeneous, the

correlation coefficient between gravity and topography is not equal to unity. For

such bodies it is more useful to compute the correlation between gravity and gravity

induced by the shape:

R99' , (2.20)

where Sn'q' M (s ave) 2 and S99' =Eim= Onm Pe.

Another similar quantity called coherence is defined as (Rgt) 2 .

2.4.5 Isotropic ratio

The isotropic ratio introduced in Bills and Lemoine (1995) is a measure of direc-

tional isotropy of the variance. The mean squared North-South and East-West slopes

are defined as follows:

sNS
1 ((DU 

2

47r as )s
SEW~ 1 __a 2d (2.22)

4w J, \ as/)A
Subscripts denote differentiation with respect to the corresponding spherical coordi-

nate. As shown in Bills and Lemoine (1995), these integrals can be solved:

S s n(2n + )m

nE ( 2 ( m +Sjm), (2.24)
M=0

The isotropy coefficient is the ratio of the North-South to the East-West mean squared

slopes.

67



SNS
In= - w ( 2.25)

If the isotropic coefficient is greater than unity, the given field has more North-South

variations, if the isotropic coefficient is less than unity the field has more variations

in the East-West direction. An isotropic field is expected to have the isotropic ratio

of unity.

2.4.6 Crustal thickness inversion

The shape of the mantle-crust interface and crustal thickness can be computed by

minimizing the power of the residual anomaly (Wieczorek and Phillips, 1998) as

_, ,(a M(2n + 1) Ro n n+3 h , I 1(n+4 A
nm 47rAp(D')2 D' (D')hh!(n + 3) (2.26)

h=2

where d'm are the normalized coefficients of the crust-mantle interface, D' is the

mean radius of the crust-mantle interface, Ap is the crust-mantle density contrast

and &Af are the normalized spherical harmonic coefficients of the residual anomaly,

D' is the zeroth order coefficient (mean radius) of the crust-mantle interface. The

parameter is found as we expand the initial ellipsoidal shape of the crust-mantle

interface in spherical harmonics. The first term in equation (2.26) can be computed

directly using the residual anomaly coefficients; the second term should be computed

iteratively. In the first iteration, the crust-mantle interface coefficients d'am can be

computed assuming an ellipsoidal shape of the interface that was derived before from

mass balance and matching second-degree terms. The solution for the crust-mantle

interface is not unique and depends on the assumed density contrast. As a result, the

gravity data alone cannot be used to determine the mean crustal thickness.

In order to mitigate errors in the downward continuation of the residual anomaly,

a low-pass filter should be applied (Wieczorek and Phillips, 1998):
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Wn = (1 + AKn) 1 , (2.27)

where Kn = - )f . To find the filter parameter A, we introduce a

critical degree n, defined as the degree at which w = 0.5, in which case we find

A = K- 2.

2.5 Spectral-spatial localization on a sphere

Wieczorek and Simons (2005); Simons and Dahlen (2006); Simons (2010) present

an approach to locally estimate the spectral characteristics using Slepian functions

that are both spatially and spectrally limited. The spherical harmonic expansion

coefficients of the Slepian functions of a bandwidth L are found by maximizing the

power in region R and spectral band L.

1||2 f udA, - 1 - R g2 dQ (2.28)
1g||12 "n g2dQ

flgII~~1= El Z=Z=0h~A2  _ L =0  n 1=0Mhf (2.29)

where A, and A 2 - the spectral power concentration factors - are sought to be maxi-

mized; Q is the sphere. Simons and Dahlen (2006) presents a way to find A, and A 2

as a solution to an eigenvalue problem and shows that they are identical for harmonic

degrees less than the bandwidth L. The resulting spectral-spatial tapers are called

Slepian tapers.

2.6 Ellipsoid fitting

Figures of hydrostatic equilibrium can be approximated as ellipsoids. It is also

instructive to fit the body's shape model with an ellipsoid to get a general sense of

the body's asphericity. A general conic section is defined by:
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f (x, y, z) = AeX 2 +Bey 2 +Ce +2Dexy+2Eexz+2Fyz+2Gex+2Hey+2Iz (2.30)

f(x,y,z) = 1 (2.31)

under the condition that D2 < 4AeBe, E2 < 4AeCe and F,2 < 4BeCe. We can use this

algebraic equation to derive a method of ellipsoid fitting in the least-squared sense.

A general ellipsoid has nine degrees of freedom: three axes, three coordinates of the

ellipsoid center and three orientation angles. The sensitivity matrix S is defined as:

SOf (x, y, z) Of(xy, z) (2.32)
SAE {XYZ}={Xi,Yi,zi} Oil {XYZ}{Xi,Yi,Zi}

We can find the correction vector using least-squares as:

V = (STS)-ISTQ, (2.33)

where v is a set of the algebraic coefficients {Ae, Be, , Ie} and Q is the vector of

residuals, Q = f(x, y, z) - 1. It is possible to recover the ellipsoidal axes, ellipsoid

center offsets and orientation from v (Gander et al., 1995).

2.7 Gravity gradients

Gravity gradients are second derivatives of the gravitational potential (Andrews-

Hanna et al., 2013). They form the Edtv6s tensor E:

Uzx Uzy Uzz

E = Ux UgY Uvz .(2.34)

UzX UZY Uzz
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If the E6tv6s tensor is computed in the local North-East-Up system, where x-axis is

directed towards North, y-axis toward East and z-axis towards Up, the components

of the Edtv6s tensor take the following form (Petrovskaya and Vershkov, 2006):

Uzz : Urr

U =Ur - 1 U00

Uyy 1 Ur - qUq5+ 2 s2 oo U ,C (2.35)

Uxy = 2cos 4 UOA - r2COs2 U

UXz = -U + 1Ur4

Uyz = ,
2 cOs U - UCos

where subscripts denote differentiation of potential with respect to spherical or local

cartesian coordinates. The E6tv6s tensor is symmetric and the sum of the second

derivatives of potential is zero. Therefore, there are only five independent components

of the E6tv6s tensor. We introduce the horizontal E6tv6s tensor, which contains

derivatives only with respect to the horizontal coordinates x and y.

Eh= UX U , (2.36)
UXY UgY

Since this tensor is symmetric, its eigenvalues A, and A2 can be easily found to be:

A,= (UXX + UgY - VU2X + U2 +4j - 2UxUyy)2 Uxx yy)(2.37)
A =2U (UX + UYY + VU2, + U2Y +4U2, - 2U XU~Y)

We also introduce the maximum amplitude eigenvalue Amax:

AA, IA2 1 (2.38)
A2 , else

The maximum amplitude eigenvalue Amax represents the second horizontal derivative

of maximum amplitude. For a linear gravity anomaly, Amax will represent the gravity

gradient orthogonal to the direction of this structure.
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List of variables

Variable Definition Variable Definition
a, b, C ellipsoidal axes S Sensitivity matrix

A, B, C principal moments of inertia q9 gravity power

Anm, Bnm normalized spherical harmonic coefficients 99 gravity-topography cross-power

of shape

Ae...., Ie coefficients in the algebraic formula for an Stt topography power

ellipsoid

Cnm, Snm normalized spherical harmonic coefficients SNS, SEW mean squared North-South and East-West

of gravity slopes

D zeroth order coefficient (mean radius) of the Utot total potential of a hydrostatic layered body

crust-mantle interface

E E6tv6s tensor Ueii potential of an ellipsoid

fp flattening factor Urot rotational potential

n isotropic ratio U , ... , Uzz second derivatives of potential

L bandwidth Wn Bouguer anomaly filter

m order Zn admittance

M body's mass anm, Ynm {Ax,, Be},

{Anm, om}

n power spectral density (PSD) of gravity hdnm normalized spherical harmonic coefficients

of topography raised to h-th power

Mtt power spectral density (PSD) of topography A 2  
sum of squared potential differences

' degree A longitude

'ic critical degree A 1, A 2  eigen values of the horizontal Ebtv6s tensor

r radius Amax maximum amplitude eigen value of

horizontal E6tv6s tensor

R mean radius anm, &nm {Ce-, Sn-},

{cO , Sem}

R9t correlation between gravity and topography # _latitude

Rgg' correlation between gravity and LA rotation rate

gravity-from-topography

Ro reference radius

Table 2.1 - List of the main variables used in the chapter.
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Chapter 3

Constraints on Vesta's interior

structure using gravity and shape

models from the Dawn missions

Published as: Ermakov, A.I., M.T, Zuber, D.E. Smith, C.A. Raymond, G. Balmino,

R.R. Fu and B.A. Ivanov, Constraints on Vesta's interior structure using gravity and

shape models form the Dawn mission, Icarus, 240, doi: 10.1016/j.icarus.2014.05.015,

146-160, 2014.

Abstract

Vesta is a differentiated asteroid as confirmed by gravity and spectroscopy mea-

surements from the Dawn mission. We use the shape and gravity field of Vesta

determined from observations of the Dawn spacecraft to develop models of the as-

teroid's interior structure. We compute a three-layer interior structure model by
minimizing the power of the residual gravity anomaly. The densities of the man-

tle and crust are based on constraints derived from the Howardite-Eucrite-Diogenite

(HED) meteorites.
Vesta's present-day shape is not in hydrostatic equilibrium. The Rheasilvia and

Veneneia impact basins have a large effect on Vesta's shape and are the main source

of deviation from hydrostatic shape. Constraining a pre-giant-impact rotation rate

and orientation of the spin axis from an ellipsoidal fit to the parts of Vesta unaffected

by the giant impacts, and using the theory of figures, we can constrain the shape of

the core.
Our solution for Vesta's crust-mantle interface reveals a belt of thick crust around
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Rheasilvia and Veneneia. The thinnest crust is in the floor of the two basins and in
the Vestalia Terra region. Our solution does not reveal an uplift of the crust-mantle
boundary to the surface in the largest basins. This, together with the lack of olivine
detected by the Visible and Infrared Spectrometer (VIR) data in Rheasilvia and
Veneneia, indicates that Vesta's presumed olivine mantle was either not brought to
the surface by these large impacts or was covered by ejecta from subsequent impacts.

3.1 Introduction

Asteroid 4 Vesta resides in the inner region of the main asteroid belt, and is

the second largest object by mass and third largest object by volume in the main

belt. With its high albedo, it is the only asteroid that can be observed by naked

eye from Earth. Telescopic observations revealed some characteristic properties of

Vesta such as large-scale albedo variations as early as in 1929 (Bobrovnikoff, 1929).

Spectroscopic observations pointed to a possible connection between Vesta and the

Howardite-Eucrite- Diogenite (HED) meteorites (McCord et al., 1970) that allowed

geochemical studies of Vesta's internal structure and composition (e.g., Ruzicka et al.

(1997)).

Radiometric dating of the HED meteorites suggests that Vesta formed within

3 My of Solar System formation (Lugmair and Shukolyukov, 1998). Its large size

and primordial basaltic crust indicates that it is a relatively intact survivor from the

accretion phase of the Solar System (Russell et al., 2012). As such, the NASA Dawn

mission (Russell et al., 2004; Russell and Raymond, 2011) was launched in 2007 to

orbit the asteroids Vesta and Ceres in an effort to understand the accretion process

of the Solar System via the composition and structure of earlyforming planetesimals.

In this paper we use the shape model constructed using images from Dawn's Fram-

ing Camera (FC) and the gravity model determined by radio tracking the spacecraft

to place constraints on Vesta's internal structure and composition. The gravity mod-

els were produced by the Dawn gravity team at the Jet Propulsion Laboratory (JPL)

(Konopliv et al., 2014a). The shape models of Vesta were produced independently

by two research groups that employed different techniques: the German Aerospace

Center (DLR) group using stereophotogrammetry (Jaumann et al., 2012) and Robert
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Gaskell at the Planetary Science Institute (PSI) using stereophotoclinometry (Gaskell,

2012). We will refer to these methods as SPG and SPC, respectively.

This chapter is organized as follows: In Section 3.2.1 we describe the main prop-

erties of Vesta's shape in the space and frequency domains. Section 3.3.1 is devoted

to the concept of hydrostatic equilibrium. Here, the effect of the impact basins on

the flattening factor of Vesta, and the possibility of despinning and reorientation of

Vesta due to giant impacts is discussed. In Section 3.3.2 we use the constraints from

the observed shape, gravity field and HED meteorites to study the interior structure

of Vesta. We discuss implications of our results on interior structure modeling and

future research directions in Section 3.4. Results are summarized in Section 3.5.

3.2 Data

3.2.1 Shape models of Vesta

The shape model of Vesta as well as the spin vector orientation and rotation rate

were obtained by Cellino et al. (1987) using photometric data, by Drummond et al.

(1988), followed by Drummond and Hege (1989) using speckle interferometry and by

McCarthy et al. (1994) using infrared speckle observations. The most accurate pre-

Dawn estimate was made using Hubble Space Telescope (HST) observations Thomas

et al. (1997). The HST shape model of Vesta can be approximated by a triaxial

ellipsoid with semiaxes 280, 272 and 227 ( 12) km. The HST data first revealed

the large-scale topographic features on Vesta, specifically a basin of probable impact

origin near the south pole that has since been named Rheasilvia. The HST shape

model aided in estimating the illumination conditions on Vesta for the Dawn mission

(Stubbs and Wang, 2011).

The Framing Camera (FC) onboard the Dawn spacecraft has permitted an im-

proved determination of the shape of Vesta (Sierks et al., 2011). A shape model

produced using SPC (Gaskell, 2012) is based on 17409 images from the FC and has a

formal global vector position uncertainty of 26 m with respect to the center of mass
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(Gaskell, personal communication). However, comparison of SPC and SPG-based

(Preusker et al., 2012; Jaumann et al., 2012) shape models show systematic differ-

ences on the order of a few hundreds of meters, with greater discrepancies observed

in deep craters. We consider the mismatch of the models to be a truer estimate of

the uncertainty in the shape than the formal errors in either model. The uncertainty

in the radius vector is not uniform because of poorer illumination conditions in the

north. The radius vector ranges from 211.9 km to 292.8 km, with mean radius equal

to 260.3 km. Thus, the range of topography is equal to 31% of the mean radius which

is nearly two orders of magnitude larger compared to the highest topographic varia-

tion on the terrestrial planets (Wieczorek, 2007b). The topography ranges from -19.4

to +22.5 km with respect to the best-fit rotational ellipsoid centered at the center of

mass.

The gridded shape model is produced with a resolution of 1/64 degree, which

formally allows expansion up to spherical harmonic degree 11560. However, one

must exercise extreme caution with such ultra-high order expansions because of the

non-uniformity of the shape model's uncertainty and possible aliasing at short wave-

lengths. The topography power spectrum (Fig. 3-1) shows that the spectral slope

of Vesta's topography is distinct from topographic spectra of the terrestrial plan-

ets (Wieczorek, 2007b). The power of Vesta's topography is higher at all wave-

lengths than that of the terrestrial planets, indicating rougher terrain at all scales,

attributable to lower gravity and, at least in part, to the absence of weathering. The

fractal dimension D of Vesta's topography on scales 101 - 10 3 km is approximately

equal to 1.28. For Brownian noise topography the parameter D = 1.5 (Turcotte,

1987). The slope of the topography power is steeper at smaller wavelengths than at

longer wavelengths.

The shape model can be fit by a rotational ellipsoid with semi-axes 280.9 and

226.2 km with the origin at the center of mass of the body. We use this ellipsoid as

a reference surface for topography. The best-fit ellipsoid is found by minimization of

the sum of the squares of the ellipsoidal heights. We also compute a more general

ellipsoid fit for the shape model of Vesta. The general problem has 9 degrees of
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Figure 3-1 - Topography power spectra of Vesta and the terrestrial planets. The
spikes at the shortest wavelengths for Vesta are numerical artefacts due to aliasing.

freedom: three axes, three angles that define the ellipsoid's orientation and three

coordinates of the ellipsoid's center (Bertoni, 2010; Fu et al., 2014). We use a shape

model (Gaskell, 2012) that is based on images from all stages of the Dawn mission

including the northern hemisphere, that was not available in earlier shape models

because of poor illumination conditions. Ellipsoid parameters estimated using the

method of least squares are given in Tables 3.1 and 3.2. The range of topography in

the undamaged northern part of Vesta with respect to the fossil (northern) ellipsoid

is ~ 20 km, which is approximately two times smaller that the global topography

range with respect to the global ellipsoid. This indicates that the northern terrains

are much closer to ellipsoidal shape and hydrostatic equilibrium.

3.2.2 Gravity models of Vesta

The gravitational field model of Vesta up to degree 20 was determined by radio

tracking of the Dawn spacecraft (Konopliv et al., 2014a). The corresponding spatial

resolution is ~ 41 km. The gravity field power spectrum, error power spectrum and
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Shape model Semiaxes Center of ellipsoid offset Polar
a(km) b(km) c(km) Ax Ay Az flattening

SPC global 284.895 277.431 226.838 0.151 1.177 0.134 0.1931
shape
(Gaskell,
2012)

Northern 280.61 274.63 236.77 0.83 0.20 5.66 0.1471
shape (Fu 0.15 0.10 0.17 0.15 0.14 0.18 0.0007
et al., 2014)

Table 3.1 - Best-fit ellipsoid dimensions. For the northern ellipsoid, standard devia-
tions of the parameters are shown.

Shape model Planetocentric coordinates of the axes
a b c

SPC global shape (Gaskell, 2012) = 40.50 A= -49.5 A = 65.20

S=0.7 = 0.3' = 89.3'

Northern shape (Fu et al., 2014)
= 2.910 0.150 # = -0.750 0.100 # = 87.000 0.140

Table 3.2 - Best-fit ellipsoid orientation in the Claudia system. Note that the polar
axis of the northern shape deviates from the rotation axis of Vesta by 3.0. For the
northern ellipsoid, standard deviations of the parameters are shown.
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about two orders of magnitude smaller than total gravity power. The power of the

minimized residual anomaly ("Min Bouguer" on the legend) is shown in solid brown.

For explanation of different orbits see Table 4.1.

the residual anomaly spectrum (see Section 3.3.2) are shown in Fig. 3-2. Analysis

of Dawn's gravity and shape shows strong positive correlation between the geoid and

topography (Fig. 3-3). The geoid height was calculated with respect to the ellipsoid

that best approximates the equipotential surface. The reference ellipsoid size and

potential on the geoid were chosen to satisfy three criteria: 1) the ellipsoid should be

close to the surface, so that the amplitude of the anomalies is high; 2) the divergence

of the spherical harmonic series should not produce artifacts when residual anomalies

are plotted on the ellipsoid, in other words the divergence should be smaller than

the errors in the gravity field model; and 3) the ellipsoid should be a least-squares

approximation of a local equipotential surface. The ellipsoid axes are 293.2 km and

266.5 km. This ellipsoid will be used as a reference surface for the residual anomaly

later in the paper.

A gravitational slope is the angle between the inward-pointing surface normal
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between observed gravity and topography (dashed
and gravity induced by the homogeneous density

and the gravitational acceleration vector. If the gravity field is known, gravitational

slopes can be computed (Tricarico, 2012). However, the divergence of the spherical

harmonic expansion does not allow computation of the gravitational acceleration vec-

tor directly on the surface. Using the derived interior structure model (Section 3.3.2),

we can compute gravitational acceleration by numerical integration at any point.

The gravitational acceleration on Vesta surface ranges from 0.23 to 0.27 m/s2 . The

centrifugal contribution is -0.03 m/s 2 at the equator. Computed slopes and the cor-

responding distribution are shown in Figs. 3-4 and 3-5, respectively. The maximum

slope is ~40', which is consistent with studies on the angle of repose of non-cohesive

material with angular grains in reduced gravity environment (Kleinhans et al., 2011).

Statistically, higher slopes are found in the southern hemisphere in the Rheasilvia

basin. The main source of uncertainty in the computed slopes comes from the crust-

mantle interface. By varying the critical degree n, (see Section 2.4.6), we estimate

that the global slope uncertainty is 1.40. Note that in calculating the gravitational

slope we used a high-resolution shape model but a low-resolution gravity field.
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Figure 3-4 - Vesta gravitational slopes based on the computed interior structure

model. The regions close to the North Pole appear to have lower slopes because of

lower resolution due to poor illumination conditions.

Vesta possesses a significant center of mass - center of figure (COM-COF) offset

(Russell et al., 2012). The offset vector lies surprisingly precisely in the equatorial

plane of Vesta. The Z-component of the offset is only 2.5 meters. The XY component

is equal to 1.44 km (Konopliv et al., 2014a) and is aligned approximately in the

direction of Vestalia Terra, the highest point of the shape model. This, in combination

with a strong gravity high, suggests that Vestalia Terra may have formed prior to the

Rheasilvia and Veneneia basins.

3.2.3 Gravity from shape

We compute gravity-from-shape spherical harmonic coefficients &ShaPe as detailed

by Wieczorek and Phillips (1998), where gravitational coefficients are expanded in

a series of powers of shape. We find that due toVesta's significant non-sphericity

eight terms need to be retained in Eq. 2.11 to compute gravity from shape with an

accuracy matching the accuracy of the observed gravity (Fig. 3-6).
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3.3 Results

3.3.1 Hydrostatic equilibrium

Given the shape, gravity field and rotation rate we can estimate the extent to which

Vesta is currently in a state of hydrostatic equilibrium. We numerically compute the

hydrostatic equilibrium figure of a three-layer Vesta by numerically minimizing the

sum of potential differences squared (Equation 3.1) at the pole and at the equator of

the internal interfaces. The method is described in Tricarico (2014).

3

A 2 = [U(0, 0, ci) - U(ai, 0, 0)]2, (3.1)

where U(x, y, z) is the potential of a two-axial ellipsoid (see appendix A and B Tri-

carico (2014) for.analytical expressions of potential), i runs from 1 to 3 representing

the core-mantle, mantle-crust interfaces and the outer surface of Vesta. By fixing the

volumes of the three layers, which gives a relationship between the semimajor axis a,

and semiminor axis ci, we find the flattening factors fi = (a, - ci)/ai that minimize

A 2 . We explicitly assume in the expression for the gravitational potential that Vesta

hydrostatic figures are ellipsoids of rotation.

The rotation period needed to make Vesta's present shape hydrostatic is 4.3 hours

(Fig. 3-7); the present rotation period is 5.3 hours. This poses a problem in defining

the geodetic reference surface for Vesta. The asteroid is too oblate for its rotation

rate; therefore the equipotential surface will not follow the surface of Vesta. The

reference-ellipsoid that approximates the equipotential surface and minimizes geoid

heights of the terrain in a least-squares sense would be less oblate than the best-fit

shape ellipsoid.

Vesta underwent significant melting during its early history that led to the forma-

tion of a basaltic crust (McCord et al., 1970). The extensive interior melting implies

that early Vesta had a thin lithosphere, defined as the near-surface region where vis-

cous relaxation does not occur on geologic timescales. Due to its low gravity, elastic

deformation in this lithosphere is negligible. Significant relaxation of Vesta towards a
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more hydrostatic figure is only possible in the case of prevalent fracturing in the litho-

sphere leading to plastic behavior of the lithosphere (see also Johnson and McGetchin,

1973).

Finite element simulations of the early vestan lithosphere show that sufficient

stresses existed in cases of substantial deviation from the hydrostatic state to cause

extensive plasticity in the lithosphere and efficient hydrostatic relaxation (Fu et al.,

2014). Relaxation to figures more hydrostatic than the present figure of Vesta (f -

feq =0.065) was possible within at least 40 My after the shut down of mantle convec-

tion (Fu et al., 2014), which likely occurred within ~~1 to a few My of the formation

of Vesta (Sterenborg and Crowley, 2013). Inclusion of a thick (5-km) megaregolith

extends this window of efficient hydrostatic relaxation to 200 My. After these times,

Vesta effectively did not relax further. Higher degrees of hydrostatic equilibrium

(f - feq = 0.020) were possible within the first 15 My after convective shut down

(80 My assuming 5-km megaregolith). The deep interior reached temperatures that

correspond to very low viscosities for both olivine-rich silicates and sulfur-bearing

metal (<1019 Pa -s; Ghosh and McSween (1998); Hirth and Kohlstedt (1996); Dobson

et al. (2000)); therefore, the early vestan core also approached closely to hydrostatic

equilibrium. Due to the slow cooling of the interior, the shape of the core was frozen

in at a later time than the outer shape.

In summary, during its early history, both the outer shape and the core mantle

boundary of Vesta likely achieved figures close to hydrostatic equilibrium (f - feq <

0.020). The major impact events such as Rheasilvia and Veneneia are thought to

have occurred much later in the history of Vesta (Schenk et al., 2012a; Marchi et al.,

2012). These events affected the shape of Vesta and could have possibly changed its

rotation rate and the orientation of the spin axis (Matsuyama and Nimmo, 2011; Fu

et al., 2014). However, the asteroid would not have viscously relaxed from these late

events since they occurred when Vesta was much cooler.

The Rheasilvia basin in the southern hemisphere has a significant effect on the

global shape of Vesta. Rheasilvia makes the apparent shape of Vesta more oblate

and changes the COM-COF offset. The hydrocode modeling of the Rheasilvia and
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Veneneia impacts (Ivanov and Melosh, 2012, 2013) shows that the northern shape is

not affected by the corresponding impacts and, consequently, is a reliable represen-

tation of Vesta's fossil shape. Eliminating regions south of the belt of high crustal

thickness due to the Rheasilvia and Veneneia basins (see Section 3.3.2), a fit of an

ellipsoid to the undisturbed northern terrains leads to constraints on the pre-impact

global figure and rotation rate of Vesta (Fu et al., 2014). A similar approach, i.e.,

mirroring the northern hemisphere, was used in Zuber et al. (2011) to estimate the

change of moments of inertia and subsequent reorientation. However, mirroring of

the northern hemisphere makes the center-of-figure in the Z-direction equal to zero.

Another physical unknown that affects reorientation is the angular momentum of the

ejecta, which is strongly dependent on the impact angle.

Instead, we estimate reorientation from a different perspective. Based on finite

element simulations (Fu et al., 2014) we assume that the pre-impact figure of Vesta

was close to hydrostatic equilibrium. We then fit a triaxial ellipsoid with 9 degrees

of freedom (three axes, three orientation angles and three coordinates of the origin)

to the terrains unaffected by the late giant impacts. The northern shape ellipsoid

parameters are given in Table 3.1. The northern shape is less oblate than the overall

shape. The flattening is equal to 0.147, whereas the flattening of the overall Vesta

shape is ~ 0.193. The northern shape appears to be much closer to the state of

hydrostatic equilibrium for the current rotation rate (Fig. 3-7).

In order to constrain the paleorotation rate, we considered the hydrostatic fig-

ures for two end-member cases, which correspond to the most and least differentiated

internal structures that agree with the J2 and total mass constraint. The most dif-

ferentiated case is a three-layer model that has a 110-km core with a density of 7800

kg/m3 and 40 km thick crust with a density of 2700 kg/m3 . The least differentiated

case is a two-layer model with a 135-km core that has a density of 6000 kg/m. The

outer shape flattening is equal to the northern ellipsoid flattening at rotation periods

of 4.83 and 4.93 hours for the most and least differentiated cases, respectively. Fig.

3-7 shows the flattening factors as a function of rotation period for the most differenti-

ated case. Fu et al. (2014) estimates the paleorotation period to be 5.02 hours, which
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is slightly longer than in this work. This is mainly caused by different assumptions

about the core density and radius, which for this estimate was taken from Russell

et al. (2012).

The volume of the paleo-ellipsoid is 2% larger than the present volume of Vesta,

which is consistent with estimates of the volume of excavated material due to giant

impacts (Schenk et al., 2012a). The polar axis of the total shape ellipsoid closely

matches the rotation axis of Vesta. However, the polar axis of the ellipsoidal fit for

the northern shape is off by ~3.0* (Table 3.2). This value is robust with respect to

the definition of the region unaffected by the giant impact and constitutes evidence

for possible reorientation. The magnitude of this value is consistent with the results

of hydrocode impact simulations (Jutzi and Asphaug, 2011; Jutzi et al., 2013). The

orientation uncertainties are also given in Table 3.2.

Hydrocode impact simulations showed that the giant impacts on Vesta could not

have significantly changed the shape and position of the core inside the body. The

displacement of the core-mantle boundary was <1 km (Ivanov and Melosh, 2013).

Therefore the core effectively preserved its pre-impact hydrostatic shape. If we inter-

pret the COM-COF offset by offsetting the center of core from the center of mass,

given its small mass, the equivalent center of core offset is equal to 7-9 km, depending

on the assumed densities. The relationship between core offset and core density is

shown in Fig. 3-8. Shifting the core results in a degree-one change in the gravitational

anomaly and our solution for the interior structure model.

We can estimate the flattening and orientation of the core using either the theory

of figures or using a numerical algorithm assuming the rotation rate that corresponds

to hydrostatic equilibrium of the northern shape. This affects the lower-degree gravity

coefficients of our interior structure model.

3.3.2 Interior structure modeling

The interior structure of Vesta can be estimated using three constraints. The

first is that the total mass of the interior structure model should be equal to the

observed mass of Vesta. The second constraint involves matching the long-wavelength
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component of observed gravity field with the gravity field calculated from an interior

structure model (Eq. 2.13-2.14). The interior structure interfaces can be modeled as

ellipsoids. The third constraint is based on the fact that Vesta is the likely parent body

of the HED meteorites (McCord et al., 1970; Takeda et al., 1983; McSween Jr et al.,

2010). Chemical composition and siderophile element contents in HED meteorites

provide a constraint on of the likely degree of metal depletion in the asteroid mantle

and, therefore, the size of the metal core. Estimates of the core size in Ruzicka et al.

(1997) are consistent with the gravity data. Microporosity can also be estimated from

meteoritic and geochemical evidence.

Since the core mass is relatively small and its flattening is smaller than the global

flattening (see Section 3.3.1), the core contributions are 1.07% for J2 and 0.13% for J4 .

Therefore, we interpret the rest of the gravity signal at higher harmonics, as coming

from the outer shape, the shape of the crust-mantle interface and from internal density

variations.
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The residual anomaly is defined as the difference between the observed gravita-

tional acceleration and the gravitational acceleration produced by the internal struc-

ture model computed at the reference surface. A similar definition was used for the

Bouguer anomaly for Vesta in Konopliv et al. (2014a) and Park et al. (2014b) and for

asteroid 433 Eros (Garmier et al., 2002). We use the term "residual gravity anomaly"

to distinguish it from the conventional definition of Bouguer anomaly that is used in

terrestrial geodesy.

Due to extensive impact bombardment of Vesta's surface, the crust and upper

mantle of the asteroid likely have non-negligible macroporosity. However, due to

Vesta's higher gravity, the vestan crust likely has lower macroporosity than small

asteroids (- 20%; Consolmagno S.J. et al. (2008)). The deep interior of Vesta likely

has nearly zero macroporosity. Some fractures could occur in the core due to the

giant impacts, but the magnitudes of transient stresses in the impact modeling were

not high enough to create a significant porosity (Ivanov, personal communication).

Due to the relatively small mass of the core (<20%), small changes in its porosity

should not influence the densities and structure of the overlying layers presented in

this work. Therefore, we adopt a macroporosity of zero for the core. Porosity for the

silicate portion can be estimated by comparing the mean density of Vesta and the

expected mean density computed from geochemical and thermodynamic constraints

(Toplis et al., 2013). We adopt a porosity of 8% for the silicate potion of the body,

realizing that the uncertainty in porosity can be as high as 50% (Toplis, personal

communication). The mantle and crust macroporosity as well as lateral density vari-

ations can significantly affect the interior structure, especially if the crust-mantle

density contrast is small.

Vesta was first proposed to be the parent body of HED meteorites more than

four decades ago (McCord et al., 1970). Analyses of meteorites from the HED suite

shows that they are spectroscopically, geochemically and dynamically connected to

Vesta (Ruzicka et al., 1997; Binzel and Xu, 1993; Zuber et al., 2011). Spectroscopic

mapping of the vestan surface from the Dawn mission has confirmed its affinity to

the HED meteorites and identified terrains on Vesta, where howardites, eucrites and
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diogenites are each most abundant (De Sanctis et al., 2012; Reddy et al., 2012).

In addition, Vesta's surface elemental composition was found to be consistent with

the HED meteorites from the gamma ray measurements by Dawn's Gamma Ray

and Neutron Detector (GRaND), reinforcing the link between Vesta and the HEDs

(Prettyman et al., 2013). In summary, Dawn observations have strengthened the

hypothesis that HEDs represent the upper layers (crust and upper mantle) of Vesta.

The likely provenance of the HED meteorites from Vesta allows for inferences

of Vesta's interior properties via geochemical studies of the HEDs. The observed

chemical composition and modal mineralogy of the eucrites and diogenites suggest

that they are the end products of both equilibrium and fractional crystallization of

liquids from an extensively-melted interior (Righter and Drake, 1997; Elkins-Tanton

et al., 2011). Petrological modeling of these crystallization processes suggests that the

vestan mantle should consist predominantly of olivine, which has a grain density of ~

3200 - 3400 kg/m3 (Britt et al., 2010; Beck and McSween Jr, 2010). The eucrites and

diogenites, which represent the upper and lower crust of Vesta, have measured hand

sample densities of between 2900 and 3300 kg/m3 (Britt and Consolmagno S.J., G.,

2003b; Elkins-Tanton et al., 2011). However, the geochemical difference in density

can be masked by porosity variations (see Section 3.4). In fact, if the porosity is

order of 10% it results in a density contrast comparable or even higher than the

pure geochemical density contrast. This poses a problem in interpretation of gravity

anomalies.

Russell et al. (2012) showed that, assuming the core has a density similar to that of

iron meteorites, a core with a mean radius of 110 km is required to match the observed

value of J2 for the present-day rotation rate. This value is approximately in the middle

of the possible range of core sizes derived from geochemical data (Ruzicka et al., 1997).

However, due to the non-uniqueness of the inverse gravitational problems, the gravity

and topography date alone are not enough to uniquely determine the parameters of

even a simple two-layer model. See the discussion of Russell et al. (2012) result in

Bills et al. (2014). In order to break this degeneracy, assumptions on the densities

should be made. The density of the vestan core, although not directly constrained
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Figure 3-9 - Core size-density relationship for a two-layer internal structure model.
The abscissa is the core volume-equivalent radius. The red region shows the solution
for the internal structure that satisfies the observed mass and J2 of Vesta. Gray
contours are the density of the outer (silicate) layer in kg/m3. For a given rotation
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of fi corresponds to the smallest core size, highest core density and longest rotation
period (4.93 h). The maximum value of fi corresponds to the largest core size, lowest
core density and shortest rotation period (4.83 h).

by meteorite samples (McSween Jr and Huss, 2010; Buchwald, 1975), is likely to be

similar to that of iron meteorites, which have characteristic hand sample densities

between 7700 and 8000 kg/m. The amount of sulfur, which is unknown, can reduce

the density of the core. Toplis et al. (2013) predict core densities as low as 6000 kg/m3

for some bulk compositions. For the core density range of 6000 - 8000 kg/m3 , the

core size ranges from 110 to 138 km. Fig. 3-9 shows the core density-size relationship

computed by matching J2 and total mass of the two-layer model to the corresponding

observed values. The core flattening range was chosen taking into account hydrostatic

equilibrium of the core figure.

The above constraints are not sufficient to define the axes of the core and mantle

ellipsoids uniquely. The shape of the core should satisfy hydrostatic equilibrium for
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the rotation rate at the moment of its freezing (see Section 3.3.1). This paleorotation

rate can be constrained by the flattening of the northern shape (Fu et al., 2014).

However, the sensitivity of the gravity field to the core flattening or orientation is

small because of the small mass fraction of the core (Asmar et al., 2012; Russell

et al., 2012). We solve for the semiaxes of the mantle ellipsoid (and therefore ) by

assuming the core radius and crustal density and computing the hydrostatic shape

of the core with a numerical algorithm (Tricarico, 2014). This solution provides a

baseline interior structure model.

To avoid non-physical solutions for the crust-mantle interface, we choose the crit-

ical degree n, = 5. This value of n, most effectively minimizes the power of the

residual anomaly. At higher values of nc, the power of the residual anomaly at high

degrees becomes larger than the original, which indicates that there is not a satis-

factory solution to the residual anomaly in the least-squares minimization problem.

The resulting low-pass filter wn is shown in Fig. 3-10. Since the power of the residual

anomaly is significantly smaller than the power of the total gravity field, the residual

anomaly power spectrum (Fig. 3-2) intersects the error power spectrum at degree 15,

which corresponds to the spatial resolution of 55 km. Using equation (2.26), we

iteratively minimize the residual anomaly field and find the spherical harmonic coef-

ficients acn, that represent the crust-mantle interface. The power of the minimized

residual anomaly is also shown in Fig. 3-2.

We observe a significant contribution of non-zonal, second-degree terms in the

residual gravity anomaly, which indicates spatial variability of the internal interfaces.

The residual anomaly is shown in Figs. 3-11 and 3-12. The residual anomaly in

Rheasilvia has a local high at the central peak but is asymmetric in the floor of the

basin. A major positive anomaly is apparent in the Vestalia Terra region. For a

given crust-mantle density contrast we can estimate the minimum crustal thickness

at which the Vestalia Terra anomaly can be explained by crustal thinning. For a

density contrast of 300 kg/mI3 , if the mean crustal thickness is less than 25 km; the

magnitude of the anomaly is high enough that it cannot be explained by crustal

thickness variation, indicating a local density increase. For density contrasts of 400
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Figure 3-10 - The filter applied to the residual anomaly.

and 500 kg/m3 , the corresponding minimum mean crustal thicknesses are 22 and 18

km, respectively.

Given only gravity and topography data, an absolute mean crustal thickness can-

not be computed. However, we can choose densities based on the geochemistry of

HEDs to invert for the crust-mantle interface to study relative crustal thickness vari-

ations. We adopt values given in Table 3.3; the core volume is adopted from Russell

et al. (2012). A characteristic solution for the crustal thickness of Vesta is shown in

Figs. 3-13 and 3-14. Alternatively, we show the deviation of the mantle from ellip-

soidal shape in Figs. 3-15 and 3-16. The thinnest crust is observed in the floors of

the Rheasilvia and Veneneia basins, which correspond to a diogenite-rich region as

inferred from the Dawn VIR (McSween et al., 2013). Areas of thickest crust are as-

sociated with the rims of the impact basins and could be at least partially associated

with impact ejecta.

In this model, there is not a degree-one term in crustal thickness since the COM-

COF offset was compensated by shifting the core from the center of mass (see Fig.

3-8). However, the COM-COF offset can also be interpreted as due to a hemispheric-
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Figure 3-11 - Topography and the residual gravity anomaly in Mollweide projection.
The reference ellipsoid for the residual gravity anomaly is 293.2 km x 266.5 km. The
reference ellipsoid for topography is 280.9 km x 226.2 km.

Unit Density (kg/M 3 ) Size (km) | Mass fraction (%) |

Core (iron) 7800 102.3 x 114.1 16.8
Mantle (olivine) 3200 198.8 x 253.3 66.0

Crust (HED) 2900 226.2 x 280.9 17.2

Table 3.3 - Interior structure model parameters that were used to derive crustal
thickness and the deviation of the mantle from ellipsoid.
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Figure 3-12 - Topography and the residual gravity anomaly in stereographic pro-
jection of the southern hemisphere. The reference ellipsoid for the residual gravity
anomaly is 293.2 km x 266.5 km. The reference ellipsoid for topography 280.9 km x

226.2 km.

95



60' 60

30 

-
50 30'3 20

30

-30~~~ 2 *- -- -0

-690 -63'60

km

0 10 20 30 40 50
Crustal thickness

Figure 3-13 - Crustal thickness of Vesta in Mollweide projection based on the internal
structure from Table 3.3. The mean crustal thickness is 23.9 km. The thick dashed
black curve shows the boundary of the northern terrain, which we define as unaffected
by the giant impacts. The black curve (AAo) shows of the location of the profile across

the Rheasilvia basin (see Fig. 3-18).
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Figure 3-15 - Deviation of the mantle from ellipsoid in Mollweide projection.

scale (degree-one) difference in the crustal thickness. One possibility is that the core's

center is at the current center of mass. The other possibility is that the core's center

is at the center of the northern ellipsoid (see Table 3.1). In the first case the COM-

COF offset directly goes into a degree-one term in crustal thickness. In the second

case, the degree-one term in crustal thickness is defined by a combination of mostly

southward offset of the core (see Table 3.1) and the COM-COF offset that points

approximately towards Vestalia Terra. Crustal thickness was computed for these two

cases. The main characteristic feature common to both models is the belt of thicker

crust around the Rheasilvia and Veneneia basins. The main difference compared to

the maps shown in Figs. 3-13 and 3-14 is a region of thin crust in northern latitudes

of the eastern hemisphere. This crustal thinning in the North-East is of the same

magnitude or even greater than crustal thinning in the impact basins. Ruesch et al.

(2014) shows that most of the olivine detections at Vesta's surface are located in a

lobe of diogenite-enriched material that extends north from Matronalia Rupes. If

the core center is placed in the center of the northern ellipsoid, most of the olivine

detections would correspond to a region with thin crust.
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The average crustal thickness for the densities adopted in Table 3.3 is equal to

23.9 km. For a crust mass fraction less that 15%, we observe a region of negative

crustal thickness in the Rheasilvia basin towards Vestalia Terra. The core is computed

to be approximately 15-17% by mass, which is consistent with Russell et al. (2012).

However, the choice of densities shown in Table 3.3 is not unique. We explore the

range of possible crust, mantle and core densities. The mean crustal thickness as

a function of the three densities is shown in Fig. 3-17. The core size is fixed and

corresponds to the volume-equivalent sphere with a radius of 110 km. This size was

chosen because it is in agreement with most representative geochemical models (e.g.

Toplis et al. 2013). If we assume that the crustal thickness cannot be negative, the

minimum mean crustal thickness is estimated (Fig. 3-17) to be 16 km. The maximum

crustal thickness, in general, cannot be estimated only from gravity/topography data.

Geochemical models place an upper limit on crustal thickness to be 42 km (Ruzicka

et al., 1997), 41 km (Mandler and Elkins-Tanton, 2013), and 21 km (Toplis et al.,

2013). Note that these authors differ in their definition of the crustal layer. In Toplis

et al. (2013), only the eucritic portion is defined as crust; whereas in Mandler and

Elkins-Tanton (2013) and Ruzicka et al. (1997), the crust comprises both eucritic and

diogenitic layer.

3.4 Discussion

We used spherical harmonics representations of gravity and topography to inves-

tigate the interior structure of Vesta. For an oblate body such as Vesta, spherical

harmonics have a significant limitation in that the expansion converges only outside

of the Brillouin sphere. An alternative approach is to use ellipsoidal harmonics that

converge outside of the Brillouin ellipsoid (Garmier et al., 2002; Hobson, 1931; Park

et al., 2014b). For Vesta, the volume of the Brillouin ellipsoid is about 80% of the

Brillouin sphere volume. With ellipsoidal harmonics it is possible to map gravity

anomalies closer to the surface, which amplifies the geophysical signal in the gravity

anomaly and eliminates the divergence problem. Our approach allows us to rapidly
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converge on a solution for the interior structure and is not affected by the slightly

lower resolution relative to an elliptical harmonic model.

Vesta's global shape and gravity field are not in hydrostatic equilibrium (Konopliv

et al., 2014a; Park et al., 2014b; Bills et al., 2014). Given Vesta's high oblateness and

rapid rotation, using the first-order theory (Dermott, 1979) to assess the hydrostatic

state of Vesta could be inaccurate; hence we used a numerical approach (Tricarico,

2014) to compute hydrostatic equilibrium of a multilayered body. Vesta's global

flattening factor corresponds to a faster rotation (r4.3 hours). The flattening factor

of the northern terrains is smaller but still requires more rapid rotation (e4.9 hours)

for hydrostatic equilibrium.

The 1.4-km COM-COF offset in the equatorial plane can be interpreted as an

offset of the core from the present day center of mass, which implies that the position

of the core is not in equilibrium, or it could represent a degree-one crustal thickness

variation in which thin crust dominates the eastern hemisphere. Further hydrody-

namic impact simulations could establish if the COM-COF offset can be the result of

core disequilibrium resulting from a high-angle impact, and therefore the possibility

that the core was displaced as a result of the giant impact(s).

Vesta's degree-two gravity coefficients are also inconsistent with hydrostatic equi-

librium. Matsuyama and Nimmo (2011) estimated reorientation and despinning due

to the south polar (Rheasilvia) impact event based on the pre-Dawn HST shape

model. The discrepancies between their prediction and the observed gravity coeffi-

cients are plausibly due at least in part to the low resolution and errors in the HST

shape model. With second-degree gravity coefficients accurately measured by Dawn,

it is possible to redo the reorientation analysis. Our analysis of the northern shape

Vesta does not show an evidence of significant reorientation.

The local analysis of the gravity field reveals regions of major geophysical interest,

one of which is the Vestalia Terra region. Distinctive attributes of Vestalia Terra

include the fact that it is the region of highest topography on the surface, it lies in

the direction of the COM-COF offset, and it has the highest positive gravity anomaly

on Vesta. Given density constraints from the HEDs, the anomaly cannot be explained
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by thinning of the crust. Alternative possibilities include piling up of ejecta that was

excavated from the deep mantle (Jutzi et al., 2013; Jutzi and Asphaug, 2011) and

was subsequently covered by thick regolith (Schenk et al., 2012a), or a primordial

intrusive body (Raymond et al., 2013a).

Another region of interest is the south polar area that is the site of two giant

impact basins: Rheasilvia and Veneneia. Our crustal thickness models confirm that

these are the regions of the thinnest crust. Based on the derived crustal thickness,

we can identify which craters are most likely to penetrate into the mantle. These

craters are concentrated on the floors of Rheasilvia and Veneneia. No olivine has

been detected within these craters, indicating a pure olivine mantle was not sampled

by these impacts. This likely means that there is no pure olivine mantle at the depth

expected for a magma ocean scenario (30-41 km based on Mandler and Elkins-Tanton

2013).

A number of hydrocode simulations have been produced of the Rheasilvia and

Veneneia basins (Ivanov and Melosh, 2012, 2013; Jutzi and Asphaug, 2011; Jutzi

et al., 2013), which predict substantial mantle uplift in the basins (Fig. 3-18). The

redistribution of mass in the impact basins as predicted from hydrocode simulations

results in a characteristic gravitational anomaly - positive in the basin's peak and

negative in the floor. Our crustal thickness inversion shows a moderate mantle uplift

in the Rheasilvia basin. However, it does not show evidence for uplifted mantle in

the Veneneia basin. The central peak of the Rheasilvia basin, particularly on its

northwestern side, is associated with a modest gravity high of ~100 mGal, which is

consistent with the predictions from hydrocode modeling.

Central positive mass concentrations or mascons have been observed for large

impact basins on the Moon (Muller and Sjogren, 1968), Mars (Smith et al., 1993) and

Mercury (Smith et al., 2012), and reflect contributions from mantle uplift beneath

the basin, and in some cases flooding by volcanic material within the basin cavity

(cf. (Neumann et al., 1996; Melosh et al., 2013)). Uplift is consequently believed

to be a characteristic feature of basin formation on solid planetary bodies. The fact

that the Veneneia basin lacks evidence for such uplift implies either a sufficiently
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thick crust such that mantle uplift cannot be detected at the resolution of Vesta's

gravity field, which would be inconsistent with geochemical constraints from HEDs

as discussed above, or that the crust-mantle boundary has subsequently relaxed due

to viscous flow (cf. Fu et al. 2014). Additionally, the relaxation could have had a

non-thermal nature. For a relatively small body impact shaking may result in a slow

creep of granular material (Richardson et al., 2005). Another possibility is that the

younger Rheasilvia impact could have destroyed all preexisting structures associated

with older Veneneia.

It is also worth considering whether porosity variations, rather than compositional

variations, are the main source of the observed gravity anomalies on Vesta. If so, the

upper two layers of our three-layer model could be interpreted as a higher-porosity

shell that overlies a lower-porosity shell instead of compositionally different crust

and mantle. The gravity discrepancy with hydrocode in the Veneneia basin might

indicate that the porosity of the impacted region is higher, which would decrease the

bulk density of uplifted mantle material. This could occur due to dilatancy of the

material in the two giant basins. Collins (2013) predicts a greater porosity increase

for low-gravity environments. The prediction for the Moon is for porosity as high as

17% beneath a 60-70 km crater, assuming zero initial porosity. The GRAIL gravity

measurements revealed a high mean porosity of 12% with local variations between

6% and 18% (Wieczorek et al., 2012). In the case of Vesta, the porosity variations

and the local density decrease due to dilatancy can be even higher due to a lower

surface gravity (g = 0.2-0.27 m/s 2 , 6-8 times lower than on the Moon), and less

volcanic activity. Therefore, we conclude that porosity variations on Vesta can be

an important source of gravity anomalies because they can create density contrasts

comparable to the geochemical density contrast. A porosity of 10 - 15% results in a

density contrast of 300 - 500 kg/m 3 , assuming HED densities.

The hydrocode modeling showed that the displacement field is not very sensitive to

the crust-mantle density contrast. The dry friction coefficient as well as parameters of

the acoustic fluidization model are the dominant parameters that control the impact

displacement geometry (Ivanov and Melosh, 2013). In our future work, we plan to use
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the derived displacement field in combination with a set of density profiles to find a

match between the Dawn-observed and hydrocode-predicted gravity anomaly in the

basins.

Hydrocode impact simulations by Jutzi et al. (2013) predict excavation depth to be

about 60-100 km, and the maximum excavation depth is located in the region where

the two basins overlap. The models predict a large area of exposed mantle olivine

in the basins and olivine ejecta extending into the northern hemisphere. However,

olivine was not detected in the impact basins, although the detectability threshold

is estimated at 25% olivine concentration (McSween et al., 2013; Beck et al., 2013).

A possible explanation could be much thicker eucritic crust (~100 km) intruded by

diogenitic plutons. However, this would contradict geochemically-derived constraints

on maximum crustal thickness, which are based on the assumption that initial com-

position of Vesta was chondritic (e.g. Toplis et al. 2013; Mandler and Elkins-Tanton

2013; McSween et al. 2013).

If the mantle material was not brought to the surface in association with Vesta's

large impacts, then the existence of ultamafic vestoids (Reddy et al., 2011) requires

alternative interpretation. Ivanov and Melosh (2013) propose that the absence of

olivine-rich ejecta could be explained by the two subsequent giant impacts. The

first impact (Veneneia) produces an uplift of mantle material; the second impact

(Rheasilvia) launches the uplifted mantle material into space. Since Veneneia does

not show a sign of mantle uplift, the existence of mantle vestoids is another challenge

in making a self-consistent Vesta model.

One obvious simplification in our model is that we treat the interior density dis-

tribution as three constant-density regions. This allows a simple solution for the

crust-mantle relief from the residual anomaly (Wieczorek and Phillips, 1998). How-

ever, there surely exist density perturbations in the crust and probably to a lesser

extent in the mantle. Tricarico (2012) suggests an alternative algorithm for inte-

rior structure inversion, where the density field is represented as an expansion using

Chebyshev polynomials. This inversion produces the exact gravity field, unlike that of

Wieczorek and Phillips (1998) which gives a least-squares, minimized-misfit approxi-
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mation. However, the inversion problem is underdetermined and possesses an infinite

number of solutions. Tricarico (2012) shows possible ways to eliminate non-physical

solutions (such as ones with negative density), but even so, the results are highly

unconstrained. The two approaches can be combined. The first-level solution can

be found from a three constant-density layer inversion. This solution can be refined

using the Chebyshev polynomial algorithm. For example, the algorithm can be forced

to seek density variations only in the upper layer leaving constant density core and

mantle. This approach would help to constrain intracrustal density variations and to

estimate the effect of the density variations in the mantle on the gravity field.

Despite the above-discussed crust and mantle density perturbations, the surface

of Vesta appears to be more laterally homogeneous than the terrestrial planets, as

demonstrated by the correlation between the observed gravity and the gravity due to

shape at the observed wavelengths. In a contrasting example, the gravity/topography

correlation on the Moon is substantially reduced at spatial scales corresponding to

the maria-filled major impact basins; the maria are negative topographic features

that possess a strong positive gravity signature (e.g.: Zuber et al. (2013); Wieczorek

(2007b)).

Future work will include assessment of reorientation and despinning of Vesta from

the observed gravity field and moments of inertia. The spectral characteristics and

roughness of Vesta topography at different scales will be compared for the SPG and

SPC shape models as well as to that of the planetary analogues. Also, regional

spectral topography analysis based on local geology should be conducted. It would

also be useful to perform analytical calculations of viscous relaxation on the interior

structure in spherical or ellipsoidal symmetry.

3.5 Conclusions

The topographic spectrum of Vesta is distinctive compared to those of the terres-

trial planets; with its smaller mass and gravitational attraction Vesta is rougher at

all length scales. Vesta is currently not in a state of hydrostatic equilibrium. Low
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degrees of the topographic model are dominated by the Rheasilvia basin, which is

the primary non-hydrostatic perturbation of the shape. The pre-impact rotation rate

of Vesta derived from the shape of the northern hemisphere that lacks comparable

large impact structures, allows new constraints on the shape of the vestan core. Re-

fined calculation of moments based on Dawn data provide quantitative support for

pre-Dawn analysis that suggested that Vesta may have reoriented due to the giant

impacts. The reorientation is estimated by fitting an ellipsoid to the northern part

of Vesta. We conclude that up to 3' of reorientation is consistent with the Dawn

data. From the observed shape, gravity field and geochemical data available from the

analysis of the HED meteorites, we derive models of the interior structure of Vesta.

The largest gravity anomaly is observed in the Vestalia Terra region. The power of

this anomaly cannot be explained entirely by crustal thickness variations for plausible

crust-mantle density contrasts, and implies lateral variations in crustal and/or mantle

density, or alternatively, substantial lateral variations in impact-related porosity.
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Chapter 4

Comparison of the SPG and SPC

shape models of Vesta and Ceres

Frank Preusker and Ryan Park contributed to this work.

Abstract

The shapes of Vesta and Ceres were constructed using the images from the Fram-
ing Camera (FC) of the Dawn spacecraft. The shape models were developed by two
different groups using two techniques: stereophotogrammetry (SPG) and stereopho-
toclinometry (SPC). The SPC models were produced by Planetary Science Institute
(Gaskell, 2012) for Vesta and by JPL for Ceres (Park et al., 2016). The SPG models
of Vesta and Ceres are produced by the German Aerospace Center (DLR) (Preusker
et al., 2012, 2015, 2016). In this chapter, we provide an analysis of the systematic
and stochastic differences between the shape models. After subtracting the system-
atic difference, we assess the remaining residual difference, which appears to have
less structure and therefore better reflects statistical noise in the shape reconstruc-
tion. The main goal of this chapter is to inform the future users of the shape models
of their effective resolution, possible artifacts and systematic differences that might
affect the results of geophysical analysis.

4.1 Introduction

Knowledge of a body's shape is crucial for geophysical, geological and geomor-

phological studies. The Dawn mission images have been used to construct the shape

models of Vesta and Ceres. The Dawn mission has the following mission requirements
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pertaining to the shape (Rayman et al., 2006; Russell and Raymond, 2011)

" Obtain images of > 80% of the surface of Vesta with a sampling of < 100 m

per pixel, and a signal-to-noise ratio of at least 50 in the clear filter and in > 3

color filters.

" Obtain images of > 80% of the surface of Ceres with a sampling of < 200 m

per pixel, and a signal-to-noise ratio of at least 50 in the clear filter and in > 3

color filters.

" Obtain a topographic map of > 80% of the surface of Vesta, with a horizontal

spatial resolution of < 100 m, and a vertical accuracy of < 10 m.

" Obtain a topographic map of > 80% of the surface of Ceres, with a horizontal

spatial resolution of < 200 m, and a vertical accuracy of < 20 m.

In this Chapter, we describe the orbits of the Dawn mission from which the images

were collected. Second, we compare the basic characteristics of the shape models

such as dimensions of fitted ellipsoids. Third, we compare the shape models in spatial

domain and identify the systematic differences between shape models. Additionally,

we study the crater depth differences for Vesta. Finally, we compare the models in

the spectral domain and provide conclusions of our findings.

4.2 Shape models

4.2.1 Vesta shapes

The Dawn spacecraft collected data on the orbit around Vesta from July 2011 to

September 2012. Table 4.1 summarizes the parameters of the Dawn science orbits at

Vesta.
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Orbit name beginning end altitude (km) pixel scale (i)

Survey 11-08-2011 30-08-2011 2750 258

HAMO 1 27-09-2011 28-10-2011 680 63

LAMO 07-12-2011 10-04-2012 210 20

HAMO 2 24-05-2012 12-06-2012 680 63

Table 4.1 - Parameters of the Dawn science orbits at Vesta.

4.2.1.1 Stereophotoclinometry - SPC

The SPC technique (Gaskell et al., 2008) has previously been applied to produce

shape models of the Earth's Moon (Gaskell and Mastrodemos, 2008), asteroid 433

Eros (Gaskell et al., 2007), Martian moons Phobos and Deimos (Ernst et al., 2015)

and will be used for the future OSIRIS-REx mission to characterize the shape of

asteroid Bennu (Palmer and Gaskell, 2015). Table 4.6 summarized the SPC shape

models of Vesta built over the course of the Dawn mission.
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Table 4.2 - List of SPC shape models of Vesta. The semimajor axes (a, b and c)
and the magnitude of the center-of-ellipsoid-center-of-mass offset of the ellipsoidal
fits with 9 degrees of freedom are shown.

4.2.1.2 Stereophotogrammetry - SPG

Table 4.3 summarized the SPG shape models of Vesta built over the course of the

Dawn mission. The SPG technique used for constructing the shape model of Vesta is

summarized in Jaumann et al. (2012).

Model name a (km) b (km) c (kmi) IAr (ki)

2013-06-29 HAMO-1-2 285.145 277.615 226.611 1.231

Table 4.3 - List of SPG shape models of Vesta. The semimajor axes (a, b and c)
and the magnitude of the center-of-ellipsoid-center-of-mass offset of the ellipsoidal
fits with 9 degrees of freedom are shown.
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Model name a (km) b (km) [ c (km) Ar I (ki)

GASKELL SHAPE SURVCYC3 285.014 277.564 226.678 2.850

GASKELLSHAPE SURV _CYC4 285.118 277.577 226.645 2.830

GASKELLSHAPE SURV_ CYC7 285.275 277.670 226.252 2.523

GASKELL SHAPE _VTH_ OPNAV2 285.190 277.733 226.283 2.528

GASKELLSHAPEHAMOCYCi 285.381 277.785 225.642 1.129

GASKELLSHAPEHAMOVi 285.059 277.517 226.767 1.459

GASKELLSHAPEHAMO2_07_09 285.083 277.432 226.743 1.276

GASKELLSHAPEHAMO2 285.099 277.507 226.582 1.245

HASTALAVESTASHAPE 284.959 277.501 226.554 1.293

GASKELLCLAUDIA 2013_02_13 284.915 277.512 226.571 1.245

GASKELLCLAUDIA 2013_05_22 285.003 277.519 226.531 1.193

GASKELLSHAPEPOSTVESTA 284.945 277.551 226.548 1.246

GASKELL CLAUDIA 2014_05_13 285.067 277.439 226.540 1.233



4.2.2 Ceres shapes

The Dawn spacecraft have been collecting data on the orbit of Ceres from March

6. Table 4.4 summarizes the parameters of the Dawn science orbit at Ceres.

Orbit name beginning end altitude (km) pixel scale (i)

RC3 23-04-2015 09-05-2015 13500 1300

Survey 06-06-2015 30-06-2015 4400 410

HAMO 17-08-2015 23-10-2015 1450 135

LAMO 16-12-2015 - 375 35

Table 4.4 - List of the Dawn science orbits at Ceres

4.2.2.1 SPC

Table 4.5 summarizes the shape models of Ceres built over the course of the Dawn

mission. The methods used for constructing the shape model of Ceres are presented

in Park et al. (2016).

Model name a (km) b (km) c (km) ]Arj (km)

OpNav5 484.161 481.421 447.784 0.896

Ceres SPC 2015-05-28 through_RC3 483.529 481.74 445.422 11.484

CERES 150604 GRAVITYSPC 483.806 481.646 445.590 0.910

CERES SURVEY 150702_GRAVITY_SPC 483.456 481.408 445.690 0.719

CERES SURVEY 150716_GRAVITY_SPC 483.403 481.334 445.640 0.787

CERESSURVEY_150828_GRAVITY_SPC 483.001 481.316 446.029 0.960

CERESHAMO 151123 GRAVITY SPC 483.20 481.067 445.883 0.981

Table 4.5 - List of SPC shape models of Ceres. The semimajor axes (a, b and c)
and the magnitude of the center-of-ellipsoid-center-of-mass offset of the ellipsoidal
fits with 9 degrees of freedom are shown.
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4.2.2.2 SPG

Table 4.6 summarizes the shape models of Vesta built over the course of the Dawn

mission.

Model name Data included a (km) [b (km) f c (km) ArI (km)

PreSurvey up to RC3 483.004 480.880 446.502 1.002

Survey up to HAMO 483.069 480.891 446.086 1.039

HAMO up to LAMO 483.233 481.005 445.947 1.027

Table 4.6 - List of SPG shape models of Ceres. The semimajor axes (a, b and c)
and the magnitude of the center-of-ellipsoid-center-of-mass offset of the ellipsoidal
fits with 9 degrees of freedom are shown.

4.3 Comparison in the spatial domain

4.3.1 Height difference

4.3.1.1 Vesta

We first compare the shape models in the spatial domain. Fig. 4-1 shows the

difference of ellipsoidal heights between the SPG and SPC Vesta shape models. The

first systematic difference that we notice is an offset between the prime meridians.

After making the latitude dependent adjustment for this mutual rotation (see Sec.4.5),

the height difference is somewhat smaller as seen in Fig. 4-4. However, the main

systematic difference is a J2 -like offset. It can be seen in Fig. 4-2 that the SPG model

is more oblate than the SPC model. After fitting this latitude dependent signal and

subtracting it, we produce a map presented in Fig.4-3. This map better represents the

statistical difference between the two shape models and allows identification of finer

scale systematic differences. The most apparent difference can be seen in the high
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north latitudes. The illumination conditions in the north high regions were poorer

because the sub-solar point was in the southern hemisphere for the most part of the

mission. In the north pole region there is a systematic difference in the crater depths.

The craters are systematically shallower in the SPC shape model.
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Figure 4-1 - Vesta height difference map (SPG - SPC). The 2013-06-29 HAMO-1-2 and
CLAUDIA 2014_05_13 models were used (SPG and SPC, respectively)
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Fig. 4-4 shows how the difference between the two shape models changes as we

subtract the systematic effects.
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Figure 4-4 - Vesta height difference histograms. The red histogram corresponds to

the uncorrected shape models. The green histogram corresponds to the shape models

after a latitude-dependent prime meridian offset was applied. The blue histogram

corresponds to the shape models after the J2 -like difference was empirically fit and

subtracted. Finally, the yellow histogram is shown for the data points that lie below

50'N to eliminate the poor illumination regions.

4.3.1.2 Ceres

We have also performed similar analysis for the Ceres shape models. The height

difference map for the Ceres shape models is dominated by the craters (Fig. 4-5).

The craters are systematically shallower in the SPC shape model. This is observed

both for the Survey and HAMO shape models. However, the difference is less ap-

parent in the HAMO shape. Besides the systematic crater depth difference, there

are extended regions with a consistent height difference that cannot be attributed to

impact features. The most noticeable example of such a feature is located near the

equator at a longitude of 1800 E. Such extended regions are mostly present in the

Survey height difference map (Fig. 4-5a). However, they are still visually noticeable

in the HAMO height differences (Fig. 4-5b).
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Figure 4-5 - Ceres height difference maps from the Survey and HAMO models.

Fig. 4-6 shows the histogram of the height difference for the Ceres shape models.

The standard deviation of the difference is 510 m for the Survey models and 342 m

for the HAMO models.
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Figure 4-6 - Ceres height difference histogram.

4.3.2 Vesta Crater depths

Craters are the most abundant and easily observable landforms on the asteroidal

surfaces. Circular forms of craters make them a very useful tool for visual inspection

of the height difference maps. For example, a small solid rotation between the shape

models creates a characteristic positive and negative difference at the opposing crater

walls. To compute the crater depths, we used a crater catalogue (Marchi et al., 2012)

for craters bigger than 1 km in diameter. For each crater we computed 50 radial

profiles from the center of the crater. We find the minimum point in the portion

of the profile that extends from the center to the half of the crater radius. We also

find the maximum point in each profile between 0.8 and 1.2 crater radius. We define

the crater depths as the difference between the averaged maximum and minimum

height. The spread in the minimum and maximum point heights allows to assign an

uncertainty to crater depths as:

2 2 +a2
O'depth O'bottom top' (4.1)
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2 _ 1 N2
atop/bottom = N - 1 J h - htop/bottom) (4.2)

i= 1

htop/bottom is the mean and o- ot2 is the variance of the topographic height of either

the lowest point on the floor or the highest point on the crater rim, respectively.

In our analysis, we keep only craters where this uncertainty is less than 20% of the

determined crater depth. The main source of this uncertainty is "geological noise" and

not the errors in the shape model. Fig. 4-7 shows an example of crater determination

for a vestan crater.
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(a) Oblique view of a crater. Azimuthal pro- (b) All azimuthal profiles.

files are shown as black lines.

Figure 4-7 - Illustration of average crater depth determination. The blue triangles
show the maximum height at the rim. The red triangles show the minimum height
at the crater floor.

We computed crater depths for 5631 craters on Vesta using the SPG and SPC

shape models. The difference in crater depths is shown in Fig. 4-8.
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Figure 4-8 - Vesta crater depth difference map. Each circle represents a crater color-
code according to the crater depth difference.

As expected, the crater depth difference is larger near the polar regions where

the illumination conditions were poor. Fig. 4-9 summarizes the results of the crater

depth study. It can be seen in Fig. 4-9a, that the crater depth difference are typically

less than 100 m. The standard deviation of the crater depth difference is 133 m.

The standard deviation of the crater depth difference are typically higher at high

south polar latitudes (Fig. 4-9b and Fig. 4-9d). There is not a systematic trend of

crater depth difference as a function of crater size (Fig. 4-9c), at least for the crater

diameters over 1 km.
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Figure 4-9 - Statistics of Vesta crater depth difference.

4.4 Comparison in the spectral domain

We use SHTOOLS software (Wieczorek, 2014) to expand the shape models of

Vesta and Ceres in a spherical harmonic series. SHTOOLS allows expansions up to

degree 2800.
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4.4.1 Power spectral density

The power spectral density or PSD is proportional to the total magnitude of spher-

ical harmonic coefficients (Eq. 2.10). Typically, PSDs of rocky planetary bodies as a

function of spherical harmonic degree follow a power law (Turcotte, 1987). Deviations

from the power law might occur due to inaccuracies in the shape model as well as due

to geophysical processes such viscous relaxation (Fu et al., 2016) or isostasy (Nimmo

et al., 2011). It can be seen in Fig. 4-10a-4-10b that as more images are collected

from progressively lower altitude orbits, the PSD spectra pick up more power at the

high spherical harmonic degrees.
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Figure 4-10 - Power spectral density for various shape models.
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4.4.2 Correlation

The correlation function is a measure of phase agreement between the two shapes.

The correlation between the SPG and SPC models is shown in Fig. 4-11a. The corre-

lation decreases to - at the degrees of 1100 and 800 for Vesta and Ceres, respectively.2

Due to lower orbits and therefore higher image resolution the shape models of Vesta

have higher mutual correlation compared to those of Ceres.
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Figure 4-11 - Correlation between SPC and SPG models.

4.4.3 Isotropic ratio

The isotropic ratio is a ratio of the mean squared North-South to the East-West

slope. It is a measure of isotropy of the shape (See Section 2.4.5). This ratio is

expected to be close to unity. The isotropic ratios for Vesta and Ceres are presented

in Fig. 4-12a and 4-12b. As can be seen in Fig. 4-12a-4-12b, both for the models

of Vesta and Ceres, the SPG shape model strongly deviates from isotropy at high

spherical harmonic degrees.
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Figure 4-12 - Isotropic ratio.

4.5 Potential artifacts

4.5.1 J2-like pattern

We have observed a number of potential artifacts while comparing the SPG and

SPC shape models. However, it is hard to determine what model these artifacts

originate from. First, we observe a systematic torsion between the two Vesta shapes.

In other words, one model is rotated with respect to the other one around the z-axis,

however the amount of rotation is latitude-dependent. The maximum rotation is at

the poles and the minimum is at the equator (Fig. 4-13).
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Figure 4-13 - Prime meridian offset as a function of latitude. The red points show
the prime meridian offset which minimizes the sum of squared difference of heights.
The blue error bars represent the found offsets binned into 3 degree bins.

Another, more significant effect is the J2-like difference between the SPG and SPC

Vesta shapes. The SPG model is more oblate than the SPC model as seen in Fig.

4-14. However, this systematic difference does not exactly follow the J2-pattern. The

maximum difference is centered at a latitude of ~ -150. Moreover, we observe a

similar pattern if we difference the two subsequent SPC models, which might indicate

the source of this systematic difference is in the SPC modeling. It is curious that the

latitude of -15' is the latitude of the sub-solar point during the HAMO phase of the

mission.
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Figure 4-14 - Longitude-averaged height difference map. The scattered red points

represent the data points in the shape model. The blue error bars represent the

shape model data points binned into 1-degree bins.

4.5.2 Discontinuities at the poles

The SPG model of Vesta has problems with a discontinuity near both poles as

well as in polar regions along the prime meridian as seen in Fig. 4-15. Such artifacts,

being essentially very high-frequency features, affect the spectral characteristics of

the shape models that increase unrealistically the power in the high degrees due to

the amplification of noise.
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Figure 4-15 - Discontinuity at the poles is present for the SPG models. The heights
of Vesta polar regions are shown in a stereographic polar projection.

4.6 Conclusions

We have analyzed the difference between the SPG and SPC shape models of

Vesta and Ceres in the spectral and spatial domains. The main conclusion even after

subtracting the apparent systematic differences between the SPG and SPC models,

the residual differences are greater than the stated formal uncertainties of the model.

After the observed systematic effects were removed:

e For the LAMO shape models of Vesta, 24% of the shape model data points have

height differences between SPC and SPG less than 10 m.
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* For the HAMO shape models Ceres, 5% of the shape model data points have

height differences between SPC and SPG less than 20 m. A better agreement

is expected for the subsequent LAMO shape models.

The SPG shape models of both Vesta and Ceres strongly deviate from isotropy at

high spherical harmonic degrees. For Vesta shape models, we have observed a number

of potential artifacts while comparing the SPG and SPC models. We observe a

systematic torsion between the two shape models of Vesta. Additionally, there is the

J2 -like difference between the SPG and SPC Vesta shapes. The SPG model is more

oblate than the SPC model, the magnitude of this systematic deviation reaches as

high as 150 meters. There are no such systematic differences for Ceres. The largest

differences in Vesta's crater depths are in high northern latitudes where the Dawn

illumination conditions were poorer. The difference reaches several kilometers in deep

craters due different methods of gap filling.

While this relative analysis is useful in pointing out inconsistencies between mod-

els, it does not and cannot distinguish which model is closer to truth, because image-

derived topography lacks an absolute reference. In models where image-derived to-

pography has been compared to topographic observations from laser altimetry, long

wavelengths in image-derived models are the most poorly determined.
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Chapter 5

Evaluation of the GRAIL gravity

models using line-of-sight data and

spectral analysis

Ryan Park, Alex Konopliv and Gregory Neumann contributed to this work.

Abstract

The GRAIL (Gravity Recovery and Interior Laboratory) was NASA's mission to
determine the gravity field of the Moon with unprecedented accuracy (Zuber et al.,
2013; Konopliv et al., 2013; Lemoine et al., 2014). The GRAIL twin spacecrafts were
launched to the Moon on a low-energy transfer trajectory on September 10th , 2011.
The primary mission started on March 1st 2012 and finished on May 29th, 2012 with
mean orbital altitude of 55 km and measurement cadence of 5 seconds. The extended
mission started on August 30th, 2012 and finished on December 14th, 2012 with mean
altitude of 23 km and measurement cadence of 2 seconds. The gravity field model is
recovered by processing line-of-sight (LOS) range-rate in combination with the Deep
Space Network (DSN) tracking for orbit determination. Over 6 million range-rate
measurements were collected. At the time of this writing, degree and order 1200,
1500 and 1620 gravity models were produced. The goal of this chapter is to evaluate
GRAIL gravity models using LOS acceleration data. First, we compute and compare
the global spectral properties of the gravity and gravity from topography models.
These spectral properties include power spectral density (PSD), correlation, isotropic
ratio and effective density spectrum. Second, we compute localized correlation using
the spectral-spatial localization method. This, in combination with the LOS mag-
nitude squared coherence, allows the characterization how the gravity field model is
correlated with topography both in spatial and spectral domain. Third, we compute
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the magnitude-squared coherence for the LOS acceleration time series produced by
the gravity models and by the gravity from topography model on arc-per-arc basis. It
is expected that at progressively higher spherical harmonic degree (i.e. smaller spatial
scale) the gravity signal is dominated by topographic variations as opposed to local
density variations. The topography of the Moon is known to higher resolution than
gravity due to Lunar Orbiter Laser Altimeter (LOLA) (Smith et al. (2016) and refer-
ences therein) onboard of Lunar Reconnaissance Orbiter (LRO, (Chin et al., 2007)).
Therefore, the gravity created by topography provides a useful reference for gravity
model determination. The caveat, however, is that the density of the topographic
masses is not independently known. This precludes direct comparison of the magni-
tudes of topographic and observed gravity potential. We find strong contributions of
resonances to the coherence spectrum. The resonances occur at spherical harmonic
degrees that correspond to integer multiples of spacecraft separation.

5.1 Introduction

The first model of lunar gravity dates back to the Soviet Luna-10 mission (Akim,

1966), which determined the full degree-2 field, degree-3 field except the n = 3, m = 3

term and the zonal degree-4 term. After that, the data from four Lunar Orbiter mis-

sions have been used to further improve the knowledge of lunar gravity (Muller and

Sjogren, 1969; Lorell and Sjogren, 1968). Muller and Sjogren (1968) using a new

technique of differentiating the Doppler residuals produced a gravity map of the near

side and showed that the low-lying maria regions are associated with positive grav-

itational anomalies, which were called "mascons" for mass concentrations. The data

from the Apollo 15 and 16 were also subsequently used for gravity field determina-

tion (Sjogren et al., 1974; Muller et al., 1974). Improved computational resources in

the 1990s allowed determination of lunar near-side gravity up to degree-60 using the

above-mentioned historical data (Konopliv et al., 1994). Later, the combination of

Clementine laser altimetry data (Smith et al., 1997) with the S-band tracking data

for gravity (Lemoine et al., 1994, 1997) gave new insights intro the geophysics of the

Moon. It was revealed that lunar highlands are nearly compensated, whereas the

impact basins possess a variety of compensation states. The crustal thickness was de-

termined to be lower under the impact basins. In late 1990s and early 2000s, Lunar

Prospector data led to further improvement of the lunar gravity models (Konopliv
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et al., 2001). However, it was until the Japanese Kaguya mission that there was a

large discrepancy between the precision of the gravity models for the near and far

sides of the Moon due to lack of tracking data for far side. In 2007, four-way radio

tracking of the main satellite in the far side and a subsatellite for very long base-

line interferometry enabled for the first time a determination of the far-side gravity

(Goossens et al., 2011). The Kaguya-derived models achieved global determination

of the gravity field up to degree-70 (Wieczorek, 2007a). Finally, in 2011-2012 the

inter-satellite tracking of the dual GRAIL spacecraft - a technique with a major her-

itage from the Earth's Gravity Recovery and Climate Experiment (GRACE) mission

(Tapley et al., 2004) - has been used to improve the accuracy and precision of the

gravity model of the Moon by an order of magnitude in terms of the achieved spherical

harmonic resolution and two to three orders of magnitude in terms of accuracyZuber

et al. (2013); Lemoine et al. (2013, 2014); Konopliv et al. (2013, 2014b).

The goals of this Chapter are to evaluate spectral characteristics of the GRAIL

gravity models of the Moon, compute the coherence between gravity and gravity-

from-topography, reveal possible artifacts in the gravity models and inform the users

of the gravity models of the model limitations. We begin with the description of the

available data in Section 5.2. Then, we describe methods of computing the line of

sight accelerations in Section 5.3. Our results are discussed in Section 5.4. Finally,

we summarize our findings in Section 5.5.

5.2 Data

5.2.1 Gravity models

We used three GRAIL gravity models produced at the Jet Propulsion Laboratory

and expanded up to degree-1200, 1500 and 1620. The models were constructed by

analysis of primary and extended mission data. The three gravity models used in

this study differ, apart from the maximum spherical harmonic degree of expansion,

in the a priori constraint applied to the gravity field spectrum. For the 1200 model,
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model name maximum Rref PM XM
degree (km) weights weights

(pm/sec) (pm/sec)
JGGRAIL_1200C12ASHA 1200 1738.0 0.03 to 0.05

0.06
JGGRAIL_1500C13ASHA 1500 1738.0 0.03 to 0.05

0.06
JGGRAIL_1620C14_SHA 1620 1738.0 0.03 to 0.05

0.06

Figure 5-1 - Summary of the GRAIL gravity models.

a constant constraint (10-9) was applied starting at n = 701. For the 1500 model, a

constant constraint (8 x 10-10) was applied starting at n = 701. For the 1620 model,

a constraint is applied starting after n = 501 with a zero a priori value and the a

priori uncertainty of 1.25 times the gravity from topography coefficient value.

5.2.2 Gravity from shape

The gravity from topography model was provided by Greg Neumann (Goddard

Space Flight Center). The model was computed keeping 15 powers of topography

in the expansion using a gridded LOLA dataset. In order to estimate how many

powers of topography should be kept in the expansion, we recompute gravity from

topography. We estimate contributions of the powers of topography to the power

spectral density and compare them to the error spectrum of the gravity model. We

conclude that keeping at least 8 powers of topography is required in order to achieve

the accuracy of the gravity models (Fig. 5-2).

5.3 Methods

5.3.1 Gravity acceleration

Gravitational acceleration is the gradient of the gravitational potential
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Figure 5-2 - Power spectral density contributions from the powers of topography.

We show the power spectral density of the difference of the two gravity-from-shape

expansion in which h and h + 1 powers of topography were kept. Additionally, we

show in black the power of the gravity-from-shape for max(h) = 10. The grey curve is

the power spectrum from the 1620 degree gravity model (JGGRAIL _1620C14_SHA)
and the magenta curve is the error power spectrum of that model.

ax

at= a. (5.1)

az

To compute the gravitational acceleration we first compute the derivatives of potential

with respect to spherical coordinates. We then multiply the potential derivatives by

the Jacobian of the spherical coordinates to obtain the gravity acceleration vector.

u= U U I (5.2)

where J is the Jacobian matrix of partial derivatives:

Ox Ox Ox

j =L ar . (5.3)
9Y Oz a/

az az az
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The column of J are given by expressions:

/r y/r z/r },

S-xz/r 2 -yz/r 2 1 - z2 /r2

aA _1 X T.
= x2y 2 { -y .

To simplify notation we introduce:

Anm = Onm cos(mA) + Snm sin(mA),

A'm C=-nm sin(mA) + Snm cos(mA).

The derivatives of potential are given by:

Anm+ ccnR

n=2 m=O r

OU GM
- (1

Pn+i,m sin(0)(m - n - 1)<Dnm - (n +

cos(#)

0Cn (Ro n
+ 1:1

n=2 m=O

mA'nm'nm sin(#)

1) sin(O)Pm sin(#)

(5.9)

(5.10)

OU GM 1+
Or r2

where 1 nm =

(n + 1)AnmPnm sin(#) ). (5.11)
00 n Ro 

1: E r
n=2 m=O r)

(2n+1)(n+m+1) is the ratio of normalization factors for degree n and

n +1.

5.3.2 Line-of-sight acceleration and range-acceleration

To derive the range-acceleration we follow Kim (2000). We start with the LOS

vector:
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f12 = T1 - 42, (5.12)

which can be also written as range P12 multiplied by a unit vector:

_ 12 = p 12 s 12 , (5.13)

Range rate is obtained by differentiating the expression for range:

p = r12 - e12, (5.14)

By differentiating range-rate, we obtain range acceleration:

r 12 *s 12 + r12 - C12 (5.15)

Range acceleration can be simplified to the following expression:

1 12 _ 2

r r 12 - 612 + -(I122 _ 2) (5.16)
p

where the first term is just the LOS acceleration gLOS = 412 * 62

5.4 Results

5.4.1 Spectral analysis

Fig. 5-3 shows the spectral density for the two gravity models as well as for the

gravity from topography model as a function of spatial scale. The power of the gravity

of topography model levels off at the shortest scales (~10 km).

5.4.1.1 Correlation between gravity and topography

Fig. 5-4 shows the global correlation between the gravity models and topography

as well as between gravity and gravity-from-topography. It can be seen in Fig. 5-

4a that the correlation between gravity and topography quickly approaches zero at
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Figure 5-3 - Power spectral density of the gravity models.

high degrees (n > 100), whereas the correlation between gravity and gravity-from-

topography (Fig. 5-4b) is close to unity for 100 < n < 600 and decreases at n > 600.

This difference between the correlation spectra arises due to the importance of the

finite-amplitude correction at progressively higher n. As evidenced in Fig. 5-2, the

contribution of higher powers of topography is more important for high n than for

low n, which leads to a strong non-linearity of gravity coefficients as a function of

topography coefficients.

5.4.2 Isotropy

The isotropic ratio was in Bills and Lemoine (1995) and is a measure of directional

isotropy of the variance. The North-South and East-West power are defined as follows.

The isotropy coefficient is the ratio of the North-South to the East-West power. If the

isotropic coefficient is greater than unity, the field has more North-South variations,

if the isotropic coefficients is less than unity the field has more variation in the East-

West direction.

In = 1 NS (5.17)
fW
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Figure 5-4 - Correlation spectrum of the gravity models.

We computed the isotropy coefficient of the GRAIL gravity modes (Fig. 5-

5), LOLA-based topography model as well as for the LOLA-based gravity-from-

topography model. The topography isotropic coefficient is close to unity. It becomes

larger than unity at high degrees. The possible cause of this might be the fact that

LOLA tracks are meridionally aligned, therefore making the North-South resolution

better. However, the gravity from topography isotropic ratio steadily decreases. The

isotropic ratio of the GRAIL gravity models decreases as well up to approximately

degree 700. After degree 700, the isotropic ratio of the GRAIL gravity models ex-

hibits a complex behavior with a local maximum at degree 1000 and local minimum

at degree 1100.

In order to understand this significant anisotropy of the Moon's gravity and

gravity-from-shape, we decided to compute isotropic ratio for the other planetary

bodies that have their shape measured to high accuracy, namely for Venus, Earth

and Mars. Fig. 5-6 shows the isotropic ratio for these bodies. Interestingly, Earth

and Mars have strong deviations between the isotropic ratio of the shape and of the

gravity-from-shape whereas Venus does not. The key characteristic that makes Venus

different from the Earth and Mars is its near-sphericity due to slow rotation. In fact,

if we remove the rotational flattening from the Earth and Mars, the isotropic ratio of

gravity-from-shape and of the shape become closer to each other and closer to unity.
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We conclude that for highly non-spherical bodies, the gravity-from-shape is intrinsi-

cally non-isotropic according to the Bills and Lemoine (1995) definition of isotropy.

Moreover, for highly non-spherical bodies, the isotropic ratio of gravity-from-shape

might deviate from the isotropic ratio of the shape.

5.4.3 Effective density

The effective density spectrum is defined as the ratio of the gravity power to the

gravity from topography power multiplied by the mean density of the body:

MG
pn MGT P (5.18)

Given an assumption about the character of the density profile (e.g. linear or

exponential increase of density with depth), the effective density spectrum can be

used to invert for the density structure (Besserer et al., 2014). Fig. 5-7 shows the

effective density spectra for the GRAIL gravity models. The lower degrees have rapid

oscillations of the effective density due to the density anomaly effect from the maria.
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The brighter colors correspond to the isotropic ratio of the gravity-from-shape. The

darker colors correspond to the isotropic ratio of the shape.

The higher harmonics sample shallower structures, therefore in the band from degree

100 to 700 the effective density spectrum shows a steady decrease. After degree 700,

the effective density spectra start to diverge. This can be explained by the fact that

the different constraints were applied to the models after degree 700.

The Bouguer anomaly is the difference between the observed gravity and gravity

induced by topography. In order to compute the Bouguer anomaly, a crustal density

needs to be assumed. Typically, a constant density crust is assumed. However, as can

be seen in Fig. 5-7, the effective density decreases with spherical harmonic degree.

This leads to a bias in the Bouguer anomaly if a constant density is assumed: the

low degrees get underweighted and the high degree overweighted. As a result, the

Bouguer anomaly is correlated with topography (Fig. 5-9). The Bouguer anomaly

is positively correlated with topography at low degrees and negatively correlated at

high degrees. The correlation spectrum crosses zero at the spherical harmonic degree

at which the effective density is equal to the assumed crustal density.

We propose a correction to the Bouguer anomaly in order to compensate for the
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degree dependence of the effective density spectrum. In order to do so, we first

fit the global effective density spectrum with a polynomial within the range where

the effective density spectrum behaves linearly (see Fig. 5-8) and then weight the

gravity-from-topography according to the fit of the effective density:

Ucorrected BA obs _ shape (Pcrust) Pn
fl fl n -Ip

(5.19)

where ~a"pe (Pcrust) are the coefficients of the gravity-from-shape computed for the

crustal density peust.

This effectively decorrelates the Bouguer anomaly from topography (Fig. 5-9).

Alternatively, a corrected Bouguer anomaly can be computed regionally given a lo-

calized effective density spectrum.

Correlation of the Bouguer anomaly with topography is problematic for studies

that focus on comparing the Bouguer anomaly of features at different spatial scales.

For example, Soderblom et al. (2015) studied the residual Bouguer anomaly in the

highland craters and found that the residual Bouguer anomaly has a weak dependence
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Figure 5-10 - Nature of porosity in the crust and under a crater.

on the crater diameter (Fig. 5-11a). We have repeated the analysis of Soderblom et al.

(2015) with a corrected Bouguer anomaly field. As seen in Fig. 5-11, the correlation

of the residual Bouguer anomaly with crater diameter is reduced but not vanished

when the corrected Bouguer anomaly field is used. (Fig. 5-11). This leads us to a

better understanding of the intracrustal porosity field. The porosity field is composed

of two components: the first is the bulk decrease of porosity with depth, the second

is the impact induced porosity under individual craters (Fig. 5-10).

5.4.4 Spectral-spatial localization using Slepian functions

We used the spectral-spatial localization technique (Wieczorek and Simons, 2005;

Simons and Dahlen, 2006; J.S., 2014) to find the localized correlation spectra with

help of Slepian functions. Slepian functions have been previously used for localized

gravity-topography analysis of the GRAIL and LOLA data (Besserer et al., 2014;

Gong et al., 2016). First, we used icosahedron tessellation of a sphere to find the cen-

ters of localization windows (Fig. 5-12) The use of icosahedron tessellation has two

main advantages. First, it is easily implementable in a recursive procedure. Second,
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Figure 5-11 - Residual Bouguer anomaly in the highland crater for the Bouguer
anomaly and corrected Bouguer anomaly.

it allows quasi-uniform sampling of a sphere as opposed to geographic grid sampling.

The gravity and gravity from topography fields were localized in spherical cap win-

dows with a radius of 9 degrees. The localized correlation spectra were interpolated

from the localization centers to a regular grid using spherical harmonic expansion

of degree 45. Fig. 5-13 shows all 2556 localized spectra. Fig. 5-14-5-16 show the

interpolated correlation coefficient for degrees 50, 300, 900, respectively.

At lower degrees, the correlation is dominated by the maria signal (Fig. 5-14).

The correlation approaches unity after degree 100 almost uniformly over the surface

of the Moon (Fig. 5-15). The correlation starts to decrease first on the near side,

most noticeably in the maria regions in the South Pole-Aitken basin at degree 500

and higher (Fig. 5-16). The topography in these regions is low with respect to the

mean sphere, therefore spacecraft altitudes were larger making GRAIL less sensitive

to the gravity signal. On the other hand, the strongest correlation is observed in the

highlands.

5.4.5 Gravity gradiometry

The spatial pattern of correlation (Fig. 5-14-5-16) manifests itself in the gravity

gradients which are particularly sensitive to small-scale structures. Gravity gradients
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are second derivatives of the gravitational potential (see Section 2.7). Fig. 5-17 shows

the two ways of computing the gravity gradients and illustrates characteristic numer-

ical problems. In Fig. 5-17a, the maximum amplitude gravity gradient eigenvalue

Amax (see Eq. 2.38) is mapped onto a sphere with a radius of 1738 km. The lunar

highlands lie typically 5-10 km above this sphere. Therefore, the high frequency geo-

logical noise is significantly amplified due to downward continuation in these regions

making such a map useless in the highlands. To tackle this problem we can compute

the Amax at the actual surface of the Moon, which results in the map shown in Fig.

5-17b. Apparent noisiness is reduced and is more uniformly distributed. However,

another problem is evident: there is still significant noise in the regions with low

degree strength and low correlation (Fig. 5-16), primarily in the maria and the South

Pole-Aitken (SP-A) basin.

5.4.6 Coherence on arc-per-arc basis

Up to this point we have used the global expansions of the GRAIL gravity models.

However, it is advantageous to evaluate the gravity models at the locations where the

inter-satellite measurements were collected in order to avoid the errors associated with

off-track interpolation. Computing LOS accelerations between the GRAIL spacecraft
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provides a way to investigate the surface and subsurface structures at the highest

possible resolution achievable with GRAIL data.

We computed the range-acceleration for the primary (PM) and extended mission

(XM) using the gravity and gravity from topography models. Range accelerations

have been previously used to estimate local density and porosity variations (Han,

2013; Han et al., 2014). We compute the magnitude-squared coherence for the two

time series using the Welch's periodogram method Welch (1967). This allows us to

study the gravity-topography relationship on arc-per-arc basis. Since the spacecraft

orbit is nearly circular, the orbital velocity (Vorb) of the spacecraft is nearly constant.

GM
V r h, (5.20)R + h'

where h is the spacecraft altitude, M is the mass of the Moon, R is the radius of the

Moon and G is the gravitational constant. Therefore, we can easily translate the time

frequency of measurements f to spatial frequency and spherical harmonic degree:

n 2r(R + h)f. (5.21)
Vorb

We can compute the maximum spherical harmonic degree for which the Nyquist

sampling condition is satisfied. Taking the appropriate values for the XM (V .b ~ 1.6

km/s, h=23 km, and f = 0.5 Hz), we get nNyquist = 1656.

The coherence was computed using Matlab mscohere routine with a segment

length of 4096 samples using the Hamming window and 50% overlap. Fig. 5-18-

5-20 show coherence computed for two arcs of the XM. The drops of coherence occur

at the degrees that correspond to integer multiples of the spacecraft separation. It

is interesting to note that the drops of coherence are not observed in all arcs (e.g

Fig. 5-20). The resonant degrees nres are shown as green vertical lines. The resonant

degrees are defined as:

2irR
nres = d m, (5.22)

d

where d is the spacecraft separation and m - the resonance order - is a positive
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integer. The coherence drops occur only at degrees higher than 500 where the model

is dominated by the XM data (Fig. 5-18-5-19).

5.5 Conclusions

The GRAIL gravity models are not consistent with a single power law. We ana-

lyzed degree 1200, 1500 and 1620 GRAIL gravity models. The gravity models power

spectra are similar up to degree 700. After degree 700 the difference in power spectra

is caused by different constraints applied to the models. The improvement in coher-

ence between 1200 and 1620 is not uniform. The biggest improvement is in the low

altitude Orientale arc. The near side always has a lower coherences than the far side

due to the presence of low-lying maria.

The isotropic ratio is puzzling; it decreases at smaller spatial scales for both grav-

ity models and the gravity-from-topography model. However, the isotropic ratio of

lunar topography remains at nearly unity. We conclude that for highly non-spherical

bodies, the gravity-from-shape is intrinsically non-isotropic according to the Bills and

Lemoine (1995) definition of isotropy. Moreover, for highly non-spherical bodies, the

isotropic ratio of gravity-from-shape can deviate from the isotropic ratio of the shape.

Spectral-spatial localization with Slepian functions allowed us to study correlation

of gravity and topography both spectrally and spatially. The correlation coefficient

starts to decrease at degrees between 500 and 800, first in the maria and SP-A regions

and later in the highlands. We computed the magnitude-squared coherence for all

arcs of the mission.

Perhaps, the most interesting effect is observed in the XM arcs. For certain

arcs the coherence spectrum drops substantially at degrees corresponding to integer

multiples of the spacecraft separation. The spacecraft separation was variable during

the PM but relatively constant during the XM. Therefore, the coherence drops are

observed only at degrees after 500 where the models are dominated by XM data. The

arc coherence is highly variable: coherence can be as high as 0.9 at n = 1200 for

certain arcs and be as low as 0.5 at n = 800 for other arcs.
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Figure 5-18 - Magnitude-squared coherence for the 08-NOV-2012 arc. The vertical
green lines at the top graph represent the resonant degrees that correspond to the
mean spacecraft separation and the yellow vertical lines correspond to the minimum
and maximum separation for this arc. The red and blue curves are coherences for the
1200 and 1620 degree gravity models. The grey curve is the global coherence. The
bottom graph shows the ground track of the arc.
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Figure 5-19 - Magnitude-squared coherence for the 13-NOV-2012 arc. For this arc,
the arc coherences are significantly larger than the global coherence. The vertical

green lines at the top graph represent the resonant degrees that correspond to the
mean spacecraft separation and the yellow vertical lines correspond to the minimum
and maximum separation for this arc. The red and blue curves are coherences for the
1200 and 1620 degree gravity models. The grey curve is the global coherence. The
bottom graph shows the ground track of the arc.
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Figure 5-20 - Magnitude-squared coherence for the 17-NOV-2012 arc. For this arc,
the arc coherences are significantly lower than the global coherence. The vertical
green lines at the top graph represent the resonant degrees that correspond to the
mean spacecraft separation and the yellow vertical lines correspond to the minimum
and maximum separation for this arc. The red and blue curves are coherences for the
1200 and 1620 degree gravity models. The grey curve is the global coherence. The
bottom graph shows the ground track of the arc.
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Figure 5-21 - Magnitude-squared coherence for the 08-DEC-2012 arc. This is one
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resonant degrees that correspond to the mean spacecraft separation and the yellow
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red and blue curves are coherences for the 1200 and 1620 degree gravity models. The

grey curve is the global coherence. The bottom graph shows the ground track of the
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Chapter 6

Constraints on Ceres' internal

structure and evolution from its

shape and gravity measured by the

Dawn spacecraft

Roger Fu, Carol Raymond, Ryan Park, Frank Preusker and Julie Castillo-Rogez

contributed to this work.

Abstract

Ceres is the largest body in the asteroid belt with a radius of approximately
470 km. In part due to its large mass, Ceres more closely approaches hydrostatic
equilibrium than other major asteroids. Pre-Dawn mission shape models of Ceres
revealed a shape consistent with a hydrostatic ellipsoid of revolution. Since March
2015, images from the Framing Camera (FC) of the Dawn spacecraft have been used
to construct shape models of Ceres with a resolution of 130 meters/pixel, while the
gravity field of Ceres has been accurately determined to a spherical harmonic (SH)
degree-12 (Park et al., 2016; Konopliv, 2016).

Here we use these shape and gravity models to constrain Ceres' internal struc-
ture. We find a negative correlation and admittance between topography and gravity
at degree-2 and order-2. Low admittances between SH degrees 3 and 12 are well

explained by an Airy isostasy mechanism with a 46.3+4- km thick shell that has
a density of 1379+i' kg/m 3 , overlying a 423.7+ km radius core with a density of
2442i+5 kg/m 3 . At the same time, the topographic power spectrum of Ceres and
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its latitude-dependence suggest that viscous relaxation occurred at the longest wave-
lengths (>100 km). Viscoelastoplastic finite element (FE) modeling of the viscous
relaxation process on Ceres suggests that the rheology of the shallow surface is most
consistent with a rock, ice, salt and methane clathrate mixture (Fu et al., 2016).
Based on this constraint, we show that the minimum density of the cerean core is
2415 kg/m3 while the shell has a minimum thickness of 29 km, which is consistent
with the thickness inferred from admittance analysis.

6.1 Introduction

Ceres possesses both asteroid- and planet-like properties. It is sufficiently large to

attain a shape close to hydrostatic equilibrium, similar to planets. However, its surface

is uniformly heavily cratered, more resembling asteroid surfaces. Ceres' mean density

of 2161 kg/m 3 (Park et al., 2016) and its location in the Solar System (~2.8 AU from

the Sun) indicate that it likely consists of a combination of silicates and water ice.

McCord and Sotin (2005) estimate that Ceres has from 17% to 27% of free water

by mass. In this respect, Ceres is similar to icy satellites or even Trans-Neptunian

Objects (TNOs, see McKinnon 2008). Important factors in the evolution of Ceres

as identified in McCord et al. (2011); Castillo-Rogez and McCord (2010); Neveu

and Desch (2015) include: 1) the abundance of water in its interior, which controls

internal dynamics and energy transport; 2) the time of accretion, which determines the

abundance of short-lived radioactive nuclides ( 26Al, 60 Fe) constituting the dominant

heat source during the early epoch of evolution; 3) the amount of long-lived radioactive

elements (4 0K, 2 32 Th,2 35 U, 23
8U) that provide a continuous heat source throughout all of

Ceres evolution; and 4) the surface temperature, an important boundary condition.

In this paper, we address constraints on the internal structure and composition of

Ceres from shape and gravity measurements from the Dawn mission.

Two end-member models of Ceres' internal structure have been proposed. In the

model proposed by McCord and Sotin (2005) and elaborated in Castillo-Rogez and

McCord (2010), Ceres accreted as a mixture of ice and rock just a few My after the

condensation of Calcium Aluminum-rich Inclusions (CAIs), and later differentiated

into a water mantle and a mostly hydrated silicate core. The possibility of an inner
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iron core was excluded based on the pre-Dawn shape measurements (Thomas et al.,

2005). In the second model presented in Zolotov (2009), Ceres formed relatively

late from planetesimals consisting of hydrated silicates. This model suggests that

Ceres could have undergone little internal evolution and is today made up of porous

hydrated silicates and has no free volatiles. These two end-member models predict

different degrees of physical differentiation: the former being more differentiated and

the latter more homogeneous.

The two models also predict different surface morphologies. In the first model,

viscous relaxation is expected to be important in the outer icy shell whereas little

viscous relaxation is expected for the second model. Bland (2013) predicts that craters

as small as 4 km in diameter should be substantially relaxed and, in addition, suggests

that there should be a strong latitude-dependent variation of crater morphology due

to the change in surface temperature within the icy shell.

A number of techniques had been used prior to Dawn to determine Ceres' radius

and shape (see Section 6.2). Ground and space-based telescopic observations revealed

that Ceres has a shape consistent with hydrostatic equilibrium to the measurement

accuracy (Thomas et al., 2005; Carry et al., 2008; Drummond et al., 2014). Images

from the Dawn spacecraft Framing Camera (FC) suggest that there is a substantial

non-hydrostatic component in the shape of Ceres.

Gravity and shape data provide constraints on the internal structure and the

degree of physical differentiation. Internal structure models can be parameterized

in a number of ways. For this paper, we chose a two-layer model with uniform

density layers, which is the most parsimonious model of a differentiated Ceres than

can explain the data. Such a model has only five parameters: two densities, two radii

and the rotation rate of the body. While some previous work (e.g., Castillo-Rogez and

McCord (2010)) has invoked more complicated internal structure models, we stress the

inherent problem of solution non-uniqueness when solving for free parameters given

constraints only from gravity and shape data, particularly when only low degree data

is available.

This chapter is organized as follows: we describe the available data in Section
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6.2; results are presented in Section 6.3; we discuss the implications of our results in

Section 6.4 and make conclusions in Section 6.5.

6.2 Data

6.2.1 Shape model

Size and shape determinations of Ceres have been documented previously in the

literature beginning with filar micrometer measurements by Barnard (1895). Later,

lunar occultations (Dunham et al., 1974), polarimetry (Morrison and Zellner, 1979),

radio (Johnston et al., 1982), infrared imaging (Brown et al., 1982; Lebofsky et al.,

1984), stellar occultations (Millis and et al., 1987), adaptive optics systems (Saint-Pe

et al., 1993; Drummond et al., 1998; Carry et al., 2008; Drummond et al., 2014),

radar (Mitchell et al., 1996), and Hubble Space Telescope observations (Parker et al.,

2002; Thomas et al., 2005) were used to determine Ceres' size and shape. Some of the

methods were sensitive only to Ceres' radius, others were able to constrain the body's

shape, typically approximating it with an ellipsoid of revolution, with an exception

of Drummond et al. (1998), who attempted to solve for a triaxial ellipsoid. Table 6.1

summarizes pre-Dawn Ceres' shape determinations in the chronological order.
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Source rvol (km) a= b (km) c (km) (a - c)/a

Barnard (1895) 391 + 44 - - N/A

Dunham et al. (1974) 600 125 - - N/A

Morrison and Zellner 508 25 - - N/A

(1979)

Johnston et al. (1982) 409 41 - - N/A

Brown et al. (1982) 477 25 - - N/A

Lebofsky et al. (1984) 481 15 - - N/A

Millis and et al. 468.9 2.1 479.6 2.2 453.4 4.5 0.0546 0.0103

(1987) (solution 1)

Millis and et al. 470.9 1.7 481.6 2.4 450.1 2.0 0.0644 0.0062

(1987) (solution 2)

Saint-Pe et al. (1993) 489 14 499 20 469 + 20 0.0601 0.0550

Mitchell et al. (1996) 471 14 480 11 454 + 5 0.0542 0.0454

Drummond et al. 486.3 6.4 490.4 8.3 445.5 5.0 0.0915 0.0184

(1998) (solution 1)

Drummond et al. 486.0 6.0 489.4 7.6 445.5 + 5.0 0.0897 0.0174

(1998) (solution 2)

Parker et al. (2002) 478.6 t 3.9 484.8 5.1 466.4 5.9 0.0380 0.0158

Thomas et al. (2005) 476.2 1.3 487.3 i 1.8 454.7 t 1.6 0.0669 0.0045

Carry et al. (2008) 467.6 1.6 479.7 2.3 444.4 2.1 0.0736 0.0062

Drummond et al.

(2014)

470.6 3.7 483.5 5.0 446.0 5.0 0.0776 0.0141

Table 6.1 - Ceres' shape determinations prior to Dawn. l- uncertainties are shown.

Since the arrival of the Dawn spacecraft at Ceres in May 2015, images from the

Framing Camera were used to construct Ceres shape model using two techniques. The

first technique is stereophotogrammetry (SPG) used by the German Aerospace Center

(DLR) (Preusker et al., 2015, 2016). The second technique is stereophotoclinometry
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used by NASA's Jet Propulsion Laboratory (JPL) (Park et al., 2016). We compute

ellipsoidal fits to the shape models. The results of these fits are shown in Table 6.2

and 6.3.

mean
volume

Model RV01  a (km) b (km) c (km) (a - c)/a (a - b)/a density

(km) I (kg/M 3 )

SPC 469.79 483.02 481.29 446.01 0.0766 0.0036 4.3429 2161

Survey

(JPL)

SPG

Survey

(DLR)

Table 6.2 -
FC images.
ellipsoid.

Parameters of ellipsoid fits for Ceres' shape models constructed from the
R,,, is the radius of a sphere that has the same volume as the best-fit

Model AX AY Az A7i)(k{)a(0) b(0) Ac() Oa() () ( c ()

(km) (km) (km)

SPC -0.66 -0.33 0.60 0.95 46.49 136.50 132.82 -0.01 -0.81 89.19

Survey

(JPL)

SPG -0.85 -0.41 0.38 1.02 45.50 135.50 133.55 -0.04 -0.67 89.33

Survey

(DLR)

Table 6.3 - Ellipsoid center coordinates and axes' orientation for Ceres' shape models
constructed from the FC images. A is longitude and q is latitude.

Observations prior to the Dawn mission indicated that Ceres' shape is oblate and

consistent with a hydrostatically-relaxed body. However, the accuracy of the pre-

Dawn shape determinations did not allow a robust estimation of non-hydrostatic ef-
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fects such as tri-axiality. Nevertheless, the determined rotationally-symmetric shapes

in combination with the hydrostatic equilibrium assumption have been cited as ev-

idence for differentiation of the body (Thomas et al., 2005; Carry et al., 2008). In

all pre-Dawn shape determinations the formal error of the ellipsoidal fits was likely

dominated by the noise in the measurements as opposed to non-hydrostatic effects in

the shape.

The images acquired by the Dawn spacecraft enable Ceres' shape determination to

much higher accuracy and precision. The residuals of the ellipsoidal fits are dominated

by actual non-hydrostatic topography rather than measurement noise. Dawn data

reveal that Ceres' shape is significantly triaxial. The difference between the two

equatorial axes a and b is on the order of 2 km, which corresponds to an equatorial

flattening factor fq = (a - b)/a of 0.004. The equatorial flattening factor fq is a

proxy for the body's non-hydrostaticity as a body in hydrostatic equilibrium would

have fq = 0 at the Ceres' rotation rate. It can be seen from Fig 6-4 that Ceres is

less oblate than expected for a homogeneous body. However, Ceres deviates from

homogeneity by the same order as it deviates from hydrostaticity. Therefore, non-

hydrostatic effects need to be taken into account when interpreting Ceres' shape and

gravity field.

Ceres also possesses a moderate center-of-mass - center-of-figure (COM-COF)

offset. We define the COM-COF offset as the vector between the body's center of mass

and the center of mass of the body assuming it has uniform density. The COM-COF

offset can be loosely used as a metric for planet's general deviation from spherical

symmetry with regard to interior structure. The magnitude of the offset is 1.0 km or

0.2% of Ceres' radius. This value is substantially larger than the COM-COF offsets

for the terrestrial planets but smaller than for Vesta (Table 6.4). This observation

again demonstrates the intermediate nature of dwarf planet Ceres. A global map

of Ceres topographic heights computed with respect to the best-fit ellipsoid with

five degrees of freedom (polar and equatorial axes and offset vector) confirms its tri-

axiality, which is evident as regions of alternating positive and negative topography

(Fig. 6-1).
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Body Offset magnitude (km) [ Fraction of radius Reference

Mercury 0.144 0.0059% Perry et al. (2015)
Venus 0.19 0.0031% Yoder (2013)
Earth 0.8 0.0126% Yoder (2013)
Moon 1.982 0.1141% Yoder (2013)
Mars 2.501 0.0738% Yoder (2013)
Vesta 1.44 0.5517% Ermakov et al. (2014)
Eros 0.83 12.077% Zuber et al. (2000)

Ceres 1.02 0.2128% This paper

Table 6.4 - COM-COF offsets for terrestrial planets, Moon, Vesta and Ceres.
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Figure 6-1 - Map of Ceres ellipsoidal heights based on the SPG HAMO model. The
reference ellipsoid of revolution has axes 482 and 446 km.

Even though it might seem from Fig. 6-1 that Ceres possesses highlands and

lowlands, the histogram of Ceres elevations (Fig. 6-2) is unimodal.
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Figure 6-2 - Histogram of Ceres heights with respect to the equipotential surface.

6.2.2 Gravity field model

We use a degree-18 gravity field model derived from Dawn's radio-tracking data

from the approach phase to LAMO. The model is accurate up to degree 9-12. Ob-

served degree-2 gravity spherical harmonic coefficients (Park et al., 2016) as well as

the coefficients computed assuming a homogeneous interior are shown in Table 6.5

Comparing the magnitude of the sectorial to zonal degree-2 coefficients power, it

should also be noted that Ceres' gravity is non-hydrostatic at a 3% level at degree-2.

On the other hand, Ceres' tri-axiality (a - b)/a is 6% of its polar flattening (a - c)/a.

Therefore, Ceres is more non-hydrostatic in its shape compared to its gravity, which

indicates that degree-2 topography is largely compensated (see Section 6.3.4).

n m Cnm Snm I CnmPC SP

2 0 -1.19- 10-2 - -1.3279- 10-2 - -1.3180- 102 _

2 1 -8.35- 10-7 7.02- 10-7 -1.7327- 10-4 -2.1191 _ 10-4 2.0139- 10-4 -2.1778- 10-4

2 2 2.47- i0-4 -2.74- 10-4 -3.8998 - 10-5 5.7610- 10-4 -5.3365- 10-6 7.3199- 10-4

Table 6.5 - Degree-2 gravity model from the HAMO orbit and computed from the

SPC and SPG shape models. (Park et al., 2016)
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6.2.3 Gravity from shape

We compute gravity-from-shape spherical harmonic coefficients &-shPe as detailed

by Wieczorek and Phillips (1998), where gravitational coefficients are expanded in

a series of powers of shape. We find that due to Ceres' significant non-sphericity

three terms need to be retained in Eq. 2.11 to compute gravity from shape with an

accuracy matching the accuracy of the observed gravity (Fig. 6-3).

100

>% 1O10 __ _2-1
103-2

4-3
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error
10-4

2 4 6 8 10 12 14 16 18
Spherical Harmonic Degree

Figure 6-3 - Power spectral density contributions from the powers of topography. We
show the power spectral density of the difference between the two gravity-from-shape
expansions in which h and h + 1 powers of topography were retained. Additionally,
we show in black the power of the gravity-from-shape for max(h) = 10. The grey
curve is the power spectrum from the degree-18 JPL gravity model (CERES18BO1)
and the magenta curve is the error power spectrum of that model.

6.3 Results

6.3.1 Hydrostatic equilibrium

Fig. 6-4 shows the flattening factor of Ceres assuming homogeneous interior as

a function of rotation period. Due to Ceres' fast rotation, it is necessary to take

into account high-order effects when computing the body's equilibrium shape. The

accuracy of first order theory of figure methods such as Dermott (1979) is not sufficient
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for rapid rotators such as Ceres or Vesta.

Even so, Ceres rotates sufficiently slowly such that it is in the Maclaurin regime,

i.e., its equilibrium shape is an ellipsoid of revolution. In this case, we should note

that the shape of an equipotential surface can be an ellipsoid only for a homoge-

nous body. This fact is known as the Hamy-Pizzetty theorem: Hamy (1889); Moritz

(1990); Poh.Anka (2011); Rambaux et al. (2015). However, we find that the accu-

racy of the Tricarico (2014) approximation using ellipsoids of revolution to represent

equipotential surfaces is on the order of 10 m for a Ceres-like multilayer body. This

estimate is found by evaluating the potential at ellipsoidal interfaces and converting

it to equipotential surface heights.
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Figure 6-4 - Ceres' hydrostatic equilibrium polar flattening as a function of rotation
period assuming a homogeneous interior is shown in thick black. Also shown are
Pre-Dawn Ceres shape flattening determinations with their corresponding la error
bars. The pre-Dawn data points are shown in chronological order from left to right
and do not correspond to different rotation periods. The green region corresponds
to the flattening of the Dawn-derived shape. The width of the region is due to the
tri-axiality of Ceres, i.e., range between (a - c)/a and (b - c)/b. The vertical red line
indicates Ceres' current rotation period. It can be seen that the body's deviation from
hydrostaticity (the width of the green region) is of the same order as its deviation
from homogeneity.
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6.3.2 Shape harmonic analysis

6.3.2.1 Comparison with terrestrial planets

Fig. 6-5 shows the power spectrum of Ceres' topography compared to those of

the terrestrial planets and asteroid 4 Vesta. Vesta is perhaps the most useful body

to be compared against Ceres due to its location in the asteroid belt, which suggests

a similar impact history (O'Brien and Sykes, 2011; Fu et al., 2016). The spectrum of

Ceres lies below that of Vesta indicating that Ceres' topography is smoother. As the

main process in building topography is impact cratering on both Vesta and Ceres, the

difference in the topography power is likely due to different target properties. Ceres

appears to be a weaker target than Vesta. We also note that the Vesta spectrum at the

lowest degrees displays substantial variability, which is likely due to the effect of the

two giant impact basins Rheasilvia and Veneneia. The spectra shown in Fig. 6-5 are

integral characteristics; they contain information from all acting physical processes

that can affect bodies' shape. For example, the spikes at degree-2 (second data point

in all spectra) mostly represent the hydrostatic response to rotation. In subsequent

figures we remove this hydrostatic signal from the spectra. The power spectra for

Ceres and Vesta curve down at high frequencies (k > 2 - 10- 3 km-1) as they reach

the resolution limit of the shape reconstructing process.
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Figure 6-5 - Topographic spectral density spectrum of Ceres compared with spectra
of the terrestrial planets, the Earth's Moon and Vesta. Data for the Moon, Venus
and Mars are taken from Wieczorek (2007a). Data for the Earth is are taken from

Hirt and Kuhn (2012).

6.3.2.2 Viscous relaxation in the spectral domain

Bland (2013) argued that if Ceres contains an outer water ice layer, craters as small

as 4 km should be significantly relaxed at the equatorial regions. At mid-latitudes, all

craters older than 10 Ma and larger than 16 km should be completely relaxed. On the

other hand, if Ceres is a rocky body, Bland (2013) predicted that crater relaxation

should be negligible.

The topographic power of Ceres behaves as a power law (Fig 6-5). However, we

observe a decrease of power at low degrees with respect to the power law. In order to

assess the statistical significance of the deviation of the power spectrum from a power

law at low degrees, we performed a least-squares linear fit and computed confidence

intervals, which are shown in Fig. 6-6. The hydrostatic signal was removed from the

spectrum in order not to bias the fits. As shown in Fig. 6-6, the deviation of the

observed spectrum from a power law at low degrees is statistically significant, i.e.,
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the spectrum lies outside of the 95% confidence interval.

We interpret the decrease of power at low degrees to be due to viscous relaxation.

The observed topographic spectrum then implies that viscous relaxation does occur

on Ceres but, unlike modeled in Bland (2013), it is important only at the lowest

degrees that correspond to scales of several hundreds of km. There are only a few fea-

tures on Ceres of that size and at least one of them (a hexagonal-shaped basin named

Kerwan with a diameter of 275 km and Coniraya crater with a diameter of 131 km)

is morphologically relaxed (Hiesinger et al., 2016; Bland et al., 2016). Therefore, due

to a low sample size and the lack of confirmed craters at longer wavelengths, crater

morphology cannot be effectively used as a statistical means to study viscous relax-

ation on Ceres at the low degrees (n < 20) where most deviation from the power law

is observed. In reality, the topographic power spectrum reflects all ongoing processes

(e.g., impact cratering, internal activity such as convection, tectonic processes) which

could balance viscous relaxation contribution to the spectrum (Fu et al., 2016).
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Figure 6-6 - Ceres and Vesta topographic power spectral density with hydrostatic
signal removed. A linear fit is shown. The dashed curves indicate the 95% confidence
interval. It can be seen that Ceres' power spectrum, unlike that of Vesta, deviates
from the power law at long wavelengths.
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6.3.2.3 Regional variations of viscous relaxation

To confirm the occurrence of viscous relaxation on Ceres, we studied regional vari-

ations of the topographic power spectrum. Since Ceres has a low obliquity (~ 40), a

strong systematic difference exists in the insolation between the polar and equatorial

regions. As such, equatorial regions are expected to have more relaxed topography

due to their higher temperatures Bland (2013). Latitude-dependent crater relaxation

at the scale that was modeled in Bland (2013) has not been observed on Ceres by

Dawn from crater morphology Marchi et al. (2016). However, an insufficient number

of confirmed impact basins may exist in the wavelength range affected by viscous

relaxation (see above). Furthermore, crater morphology might be affected by pro-

cesses other than viscous relaxation, such as infilling with ejecta from subsequent

impacts. Therefore, we focus on a more basic surface property, the localized topog-

raphy power spectrum, using a spectral-spatial localization algorithm described in

Simons and Dahlen (2006). We adopted a spherical cap localization window with a

radius of 20 degrees and a bandwidth of 20 spherical harmonic degrees and computed

the topographic power within each window. We tesselate a unit sphere using the 3rd

order icosahedron tessellation to find centers of the localization windows. This gives

642 points uniformly distributed on a sphere.

Fig. 6-7 shows a strong dependence of topographic power at low spherical har-

monic degrees on latitude. Specifically, topographic power is lower near the equator

and increases poleward for degrees n < 40. This observation is consistent with the

geometry of viscous relaxation as calculated by Bland (2013). However, it is not con-

sistent with the magnitude of relaxation in the case of a water ice-dominated shell,

which would predict nearly no topography at equatorial latitudes. The observed

latitudinal dependence of topographic power is an indication that Ceres' outer shell

cannot be supported by water ice rheology as was modeled by Bland (2013). We ob-

serve that viscous relaxation is important only at large scales (over 100 km). At very

high latitudes (> 800), the topographic power is constant to slightly decreasing. This

can be explained by the fact that Ceres' shape models have lower resolution near the

171



poles due to poorer illumination conditions and therefore lack topographic power in

these regions. Fig. 6-8 shows topographic spectral density localized in latitude bands.

It is evident that the difference between the topographic spectra is more pronounced

at the low degrees. The power spectra are essentially statistically indistinguishable

at spherical harmonic degrees higher than 40. The fact that Ceres' equatorial regions

have a reduced topographic power also implies that the dwarf planet has not expe-

rienced a true polar wander or obliquity change that would significantly affect the

insolation pattern over the geologic time scale.
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Figure 6-7 - The spectral density of Ceres' localized topography as a function of
latitude at spherical harmonic degrees 23 (wavelength of 123 kin) and 40 (wavelength
of 74 kin). The error bars correspond to data points binned into 5-degree bins.
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Figure 6-8 - Topography power spectral density localized at different latitude bands

6.3.3 Internal structure constraints

As indicated above, a two-layer model is the most parsimonious structure possible

to explain the topography and gravity data. We therefore adopt this basic struc-

ture and explore the parameter space of two-layer models constrain the permitted

range of plausible internal density structures. Fig. 6-9 shows the parameter space

for the two-layer model and a family of hydrostatic solutions given the observed

shape and gravity field of Ceres. The difference between the equatorial axes and

the difference between shape and gravity solutions demonstrates the degree of Ceres'

non-hydrostaticity. Since Ceres is triaxial, we choose to use the reduced flattening

factor fp,red (a - c) /x/a in our hydrostatic computation for the shape solu-

tion. The family of solutions lies above the homogeneous line indicating an increase

of density towards the center of Ceres. The two-layer model solution based on the

gravity field appears to be more differentiated than the solution based on the shape.

This is likely due to some topography being compensated at degree-2 (see below).
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The polar moment of inertia factor A = C/Ma2E1 is 0.373 (which corresponds

to C/MR ~0 1  0.392) based on the gravity solution and 0.390 based on the shape

solution. This value is greater than that of the Earth (0.33), Mercury (0.35) and Mars

(0.366), but more similar to that of the Moon (0.39). As observed by Dawn, Ceres

appears to be less differentiated than based on some of the pre-Dawn shape models

(Thomas et al., 2005).

Also, we note that the contour lines for constant A on Fig. 6-9 do not exactly

correspond to the contour lines of constant i2 or f,. The shell densities between

900 kg/m3 and 1800 kg/M 3 correspond to A between 0.3734 and 0.3738 (Fig. 6-16).

This range is rather small. Effectively, this means that for Ceres' mean density and

rotation rate there is a one to one correspondence between A and J2 or f,. The

Radau-Darwin (RD) relation is typically used to find the relationship between the

polar moment of inertia and J 2 (Zharkov and Trubitsyn, 1978). For the case of Ceres,

RD gives C/Ma2 of 0.370 or, equivalently, C/MRV,, = 0.390.

'aHE refers to the equatorial axis of the ellipsoid in hydrostatic equilibrium. aHE is different
from the observed a.
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Figure 6-9 - Parameter space of the 2-layer internal structure model. The green lines

indicate the moment of inertia factor C/(MaHE). The dashed line at the bottom

corresponds to a homogeneous model. Two solution families for the present rotation

period (T = 9.07 hours) are shown: gravity solution from the J2 coefficient in blue

and shape solution from f, in red. The two solutions are noticeably different. Notice

the larger uncertainty in the shape solution compared to the gravity solution. Since

some of the degree-2 shape can be compensated, we later adopt the gravity solution

to derive constraints on the internal structure. The uncertainty in the shape solution

comes from the difference between (a - c)/a and (b - c)/b. The uncertainty in the

gravity solution due to non-hydrostaticity is taken to be 3%, which is the ratio of

the total magnitude of the non-hydrostatic sectorial degree-2 term to the hydrostatic

zonal term C2 + S2 2/J2 . Changing the rotation period affects the gravity and

shape solutions. At a rotation period T = 8.46 hours, the two solutions are identical,

which is shown as a magenta curve. The faster rotation rate solution corresponds

to a smaller value of C/MaHE and therefore yields a more differentiated structure.

Finally, the gray curve shows the locus of points at which the isostatic admittance

matches in the least-squared sense with the observed admittance. We note that the

moment of inertia factor A shown in this figure is normalized using the hydrostatic

equilibrium semimajor axis aeq which is not constant at different points on the figure.

We chose to normalize the moment of inertia in such way in order for the homogeneous

model to have A = 0.4.

Fig. 6-15 shows the shell thickness as a function of shell density as well as the core

offset required to compensate for the COM-COF offset. Ceres is more oblate in its

topography than in its gravity. Therefore, Ceres' internal structure solution is more
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differentiated based on gravity compared to topography. If Ceres was perfectly in

hydrostatic equilibrium, the two solutions would be identical. Some of this degree-2

topography can be compensated. However, the mechanism for creating such degree-2

pattern in shell thickness is unclear. The negative correlation between gravity and

topography at {n = 2, m = 2} is also a puzzle. It is possible that viscosity at great

depths increases due to a compositional boundary, therefore making this deep interior

resistant to relaxation and able to support a significant deep interface topography over

geologic time-scales. This could potentially explain the observed non-hydrostaticity.

Also, see the supplementary materials Table 6.6 for the two-layer solution in a

table form.

6.3.3.1 Possible despinning

As seen in Fig. 6-9, the hydrostatic solutions from the gravity and shape are

different. Mao and McKinnon (2016) suggests than the gravity and topography can

be simultaneously hydrostatic by changing the rotation period. In fact, the solution

for the internal structure from gravity ( 2 ) and shape (fp,,,d) are identical for a

rotation period of 8.46 hours. The moment of inertia of such hydrostatic equilibrium

model is smaller (C/MaHE 0.353) than for the shape or gravity solutions given the

present rotation rate implying stronger differentiation. The required dispinning is

significant (~7.2%). The most likely mechanism capable of imparting the necessary

angular momentum is a giant impact. However, Ceres lacks big impact features on

its surface. Marchi et al. (2016) suggests that the low topography region centered

at 135YE and 20'N is an ancient, heavily eroded basin some 700 km in diameter.

However, the observational evidence is so far inconclusive whether this topographic

depression is an impact feature. The impactor that formed this hypothetical basin

could have potentially been large enough to change the rotation rate of Ceres by 7%.

Mao and McKinnon (2016) stated that the faster rotation hydrostatic solution is

applicable for modeling Ceres' internal structure if the fossil bulge is frozen in. In

other words, Ceres' polar flattening factor f, and gravity coefficient J 2 should not

have appreciably changed since the despinning event, which likely happened more
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than 4 Gy ago. However, finite element modeling of Ceres' relaxation (Fu et al.,

2016) suggests that the fossil bulge quickly relaxes to isostatic equilibrium. The

topography power spectrum suggests a decrease of viscosity with depth. Therefore,

the deeper structures, having lower viscosity, are involved in a faster relaxation. This

results in the gravity anomalies relaxing faster than the outer shape features. As

such, the frozen in condition is violated and the faster rotation rate solution (shown

in magenta in Fig. 6-9) is likely not representative of the internal structure of Ceres.

6.3.4 Admittance and correlation

Admittance (Z) and correlation (R) are spectral characteristics that allow to cross-

analyze gravity and shape data. The admittance estimate Zr, is a ratio of gravity-

shape cross power to the power of shape. This definition of admittance is appropriate

for the case when noise in the gravity data dominates noise in the topography data

(McKenzie, 1994). In order to give admittance units of mGal/km, we multiply the

ratio by GM/R3 (n + 1).

Snt GM
Z = - R3 -(n + 1) (6.1)

Rn = Sg (6.2)
V/ Sntg g!

where Sni is gravity topography cross-power.

Even though Ceres is close to hydrostatic equilibrium, its fast rotation distorts

the shape to the degree that non-linear effects in computing gravity from the shape

become important. Non-linearity also affects admittance and correlation. The cor-

relation between observed gravity and gravity-from-shape for the degree-2 sectorial

term is ~ -0.7. The admittance is therefore also negative ~ -57 mGal/km. This

term dominates the non-hydrostatic signal at degree-2. Negative admittances are rare

(see discussion in Hemingway et al. 2013). A possible explanation of the negative ad-

mittance at degree and order 2 could be a combination of a buoyant bottom loading

and a thick/rigid shell. The load's contribution to the gravity is negative and the
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surface uplift contribution is positive. However, if the shell is rigid it would not bend

enough to compensate the negative contribution of the load and the total effect will

be negative. This hypothesis will be further tested with higher degree gravity models.

6.3.5 Bouguer anomaly and shell thickness variations

The Bouguer anomaly (BA) is computed as a difference between the observed

gravity coefficients and the gravity coefficients of the model:

BA = obs _ &~hydrostaticmodel (6.3)
nm nm nm

Similarly to Ermakov et al. (2014), model gravity is computed as a weighted sum

of gravity-from-shape and gravity of the internal layers. Since the model is assumed

to be hydrostatic, the degree-2 zonal term in the Bouguer anomaly is zero. The

Bouguer anomaly is presented in Fig. 6-10, which shows that regions of negative

Bouguer anomaly correspond to regions of positive topography. Fig. 6-11 shows a

map of Ceres' shell thickness based on the solution for the shell-core interface that

minimizes the Bouguer anomaly. Gravity and shape data do not allow an absolute

estimation of the shell thickness since either densities of layers or the shape of the

interface between different density layers must be assumed. A core density of 2442

kg/m3 and shell density of 1379 kg/M 3 were assumed to compute shell thickness

shown in Fig. 6-11. This choice of densities lies in the range allowed by rheological

constraints (Fu et al., 2016) and is justified further below. We would also like to note

that, the choice of densities affects the amplitude of the Bouguer anomaly and the

amplitude of the shell-core interface variations, it does not affect the pattern of the

anomalies.
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Figure 6-10 - Bouguer anomaly based on the HAMO SPC shape model and degree-12
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Figure 6-11 - Ceres' relative shell thickness.

6.3.6 A self-consistent two-layer isostatic model

It is clear from the Bouguer anomaly map (Fig 6-10) that there is a negative cor-

relation between the Bouguer anomaly and topography, which implies compensation
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of topography. FE modeling of Fu et al. (2016) constrains the rheological structure

of Ceres, which, given the existence of plastic failure, is consistent with no significant

intact elastic lithosphere at 4 Gy time scale; therefore, full isostatic compensation is

expected for Ceres. Low values of admittance are also suggestive of isostatic com-

pensation. In the case if Airy isostatic compensation, admittance can be computed

as follows

ZA=GM 3(n + 1) Pshell (6.4)n R 3 2n-+1 pmean 1 R '

where DOMP is the depth of compensation, which is taken to be the mean shell

thickness in our two-layer model. Equation 6.4 is valid if the departure from sphericity

is small. We compute isostatic compensation following Rummel et al. (1988). Firstly,

we compute an equipotential surface based on the gravity field and shape models.

Secondly, assuming Airy compensation mechanism, we find the crustal root t as a

function of equipotential height. The isostatic equilibrium condition presented in

(Rummel et al., 1988) reduces to a third-order equation in t. With a change of

variables it can be written as:

T3 - 3T2 + 3T - (H3 + 3H2 + 3H) = 0 (6.5)

where T = H = h/R and 71 = p, ( RD) 3; D is the depth of compensation, h

is the height with respect to the equipotential surface, which can be found using the

gravity and shape models. We numerically solve this third order polynomial equation

for t. We assume a model in which compensation occurs at the interface between the

layers. We can choose which part of the hydrostatic family (Fig. 6-9) fits best with

isostasy. Once we find t, we know the shape of the isostatic interface between the

inner and outer layer and can use Equation 2.11 to find its gravitational attraction.

We find the best-fit isostatic solution by varying the shell density between 1200 kg/m3

and 1800 kg/m 3 to minimize the power of the isostatic anomaly (IA), which is found

in a similar manner to the Bouguer anomaly, i.e. by subtracting the gravitational

attraction of a isostatic model from the observed gravitational attraction:
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bs = e - &isostaticmodel (6.6)
&nm mm m

Due to non-hydrostaticity, the exact hydrostatic value of j 2 is uncertain. In order to

estimate the uncertainty in the isostatic solution, we varied the J2 by 3% and found

the confidence intervals for the shell and core density as well as the core radius. We

choose to minimize the isostatic power at degrees from 3 to 12, since degree-2 has

a negative admittance and cannot be explained purely by isostasy (Fig. 6-12). The

power of the isostatic anomaly is minimized for the shell density of 1379t4 kg/M 3.

This corresponds to a shell thickness of 46.3+9 km and a core radius of 423.7+5- km.
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Figure 6-12 - Gravity-topography admittance of Ceres. The observed admittance

(black curve) is negative at degree-2 after hydrostatic contribution is removed. The

admittance at degrees 3 to 12 is positive. Blue curves are isostatic admittances for

different shell densities.

We show a map of the isostatic anomalies for degrees from 1 to 12 in Fig. 6-13.

The range of the isostatic anomaly (from -104 mGal to +104 mGal) is much smaller

than that of the Bouguer anomaly (from -270 mGal to +207 mGal), indicating that

isostasy can indeed explain the great majority of the Bouguer anomaly. The sectorial
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degree-2 component dominates the isostatic anomaly. Possible sources of this signal

include core fossil topography or a bottom buoyancy-driven load (see Section 6.4) If we

compute the isostatic anomaly for degrees from 3 to 12 (Fig. 6-14), the range is smaller

(from -59 mGal to +69 mGal). Interestingly, the biggest basins (Kerwan, Yalode

and Urvara) appear to have isostatic negative anomaly, which could be evidence for

a localized volatile enrichment and/or increased impact induced porosity in these

regions.
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Figure 6-13 -Ceres' isostatic anomaly including all degrees.
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Figure 6-14 - Ceres' isostatic anomaly from degree-3 to degree-12.

6.4 Discussion

Based on the observed latitudinal patterns of topography power and comparison

to rocky bodies such as Vesta, we attribute the reduction of topographic power at

low degrees as due to viscous relaxation. We also explore other processes that may

contribute to the observed topography. For instance, Nimmo et al. (2011) discussed

how a fiexural response can reduce low-degree power. We repeated the analysis of

Nimmo et al. (2011) for Ceres. We multiplied the power law fit for Ceres' topography
/);2

(Fig. 6-6) by the factor F,2 1/ (j + C , where C, is the degree of compen-

sation (Turcotte et al., 1981) for a spherical harmonic degree n. The parameter Ca

depends on such lithospheric properties as Young's modulus, effective elastic thick-

ness, Poisson's ratio, as well as shell and mantle densities. We varied the effective

elastic thickness between 0.1 km and 100 kin, Young's modulus between its ice value

of 9 GPa to a typical rock value of 40 GPa. Shell and core densities were taken

according to Fig. 6-15. Given these reasonable ranges, we were not able to achieve

a satisfactory fit to the observed Ceres topography spectrum. Therefore, a flexural

response is likely not the source of the low-degree topography power reduction.
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Crustal inversions show the magnitude regional heterogeneity of Ceres' crust. Two

regions with larger crustal thickness are centered near equator at 45'E and 135'W.

The magnitude of the crustal thickening in the two regions is different (Fig. 6-11)

due to the non-zero COM-COF offset. The 135'W high topography region has a

larger crustal thickness and contains a crater named Occator that has a unique set of

bright spots in its topographic center. Furthermore, the regions of high topography

and negative Bouguer anomaly surrounding the Occator crater are associated with

so called "bluish material". This material is presumed to be Occator's ejecta. An-

other region with bluish material is the flanks of Ahuna Mons - a pyramid shaped

mountain located at 11.5'S and 44.2*W. Paradoxically, unlike the Occator region, the

region around Ahuna Mons has one of the strongest positive Bouguer and isostatic

anomalies. The Occator and Ahuna Mons regions have been proposed to be sources

of cryovolcanic activity on Ceres. Having the strongest negative and positive gravity

anomalies, the physical mechanism responsible for these two features appears to be

fundamentally different.

The topographic spectrum indicates that there is substantial salt and/or silicate

content in the outer shell of Ceres (Fu et al., 2016). This claim will be further

tested with the spectroscopic measurements by the VIR and elemental abundance

measurements by the GRaND instrument onboard Dawn.

The negative gravity-topography correlation for the sectorial degree-2 term is puz-

zling. A possible mechanism is a combination of bottom buoyant loading with a rigid

shell. This could imply a present-day global-scale convection or a frozen-in anomaly

for such convection in the past. Travis et al. (2015) suggested that liquid water could

still be present and active in Ceres' interior and that hydrothermal convection in a

mud ocean and wet rocky core is currently ongoing. The Travis et al. (2015) model

can potentially explain the observed negative correlation, although further modeling

is necessary to establish that the magnitude of the gravity and topography anomaly

due to this source is quantitatively consistent with the data. Another interpretation

of the negative anomaly in the 135'W high topography region region around the Oc-

cator crater is salt tectonics. (Buczkowski et al., 2016) identifies extensional features
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that are consistent with the salt dome interpretation. This mechanism would imply

a local salt diapir rising due to its lower density and bending the surface. A possible

connection of such salt tectonics mechanism to the bright spots in Occator, the com-

position of which is still to be spectrally identified, is intriguing and merits a separate

study. A higher-degree gravity model will be highly advantageous in determining a

possible source of the anomaly.

Higher-degree gravity field models expected from Dawn's Low Altitude Mapping

Orbit (LAMO) will allow improved localization of the gravity anomalies. It is ex-

pected that the Dawn measurements will enable the determination of a degree 13-14

(Park et al., 2016; Konopliv, 2016) gravity model, which corresponds to a wavelength

of approximately 220 km. Ceres lacks large-scale topographic features that can be

morphologically identified with high confidence. However, the gravity signature of

the putative giant impact basins Marchi et al. (2016) will likely be resolvable in the

future gravity data and will allow constraining the magnitude of the uplift of the

subsurface layers.

6.4.1 Rheological constraints

Ceres' topographic power spectrum provides an important constraint on the rhe-

ologic structure of the interior. Finite-element modeling of viscous relaxation (Fu

et al., 2016; Bland et al., 2016) (Add new Bland's paper here) shows that a pure icy

shell is not consistent with the observed spectrum, as relaxation in an icy shell would

occur too quickly. The simplest explanation is that Ceres' outer shell is not purely

ice (the case studied in Bland, 2013) nor purely rock but an ice-rock-salt mixture

that allows some relaxation at the longest wavelengths. Such a heavily-contaminated

icy shell is required to support the observed topographic spectrum. Shell contamina-

tion with respect to pure water ice also increases its density, implying that the shell

density must exceed a minimum value to provide the required mechanical strength.

Given this minimum density, we can thereby constrain the minimum shell thickness.

Without invoking any geochemical evolution models to constrain the maximum

salt to rock ratio, we can adopt 40% ice and 60% meridianiite with density 1504 kg/m 3
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(Fortes et al., 2008). This is essentially the lightest salt, and yields an absolute

minimum mean shell density of 1273 kg/m3. This density corresponds to a shell

thickness of 44 km and minimum core density of 2460 kg/m3 . If we assume the

60% is half meridianiite and half phyllosilicates (2500 kg/M 3 ), then the minimum

shell density is 1573 kg/m3 . This composition yields a shell thickness of 68 km. An

alternative constraint is to assume that the salt content is similar to that of a CI

chondrite, the most aqueously-altered type known. The density of these meteorites

is 2260 kg/m3 after removing the effect of porosity (Britt and Consolmagno S.J., G.,

2003a). This density yields a minimum shell density of 1730 kg/m3 , which corresponds

to a shell thickness of 95 km. Clathrates are also a possible constituent of Ceres' outer

shell. Methane clathrate has a density of 950 kg/m3 similar to that of water ice and

is rheologically strong. Mixing 40% water ice with 60% methane clathrate gives a

density of 938 kg/m3 , which would correspond to a low bound of the shell thickness

of 29 km.

While insight from the topographic spectrum shows that Ceres' outer shell is not

currently consistent with a fully ice composition, it could have had more ice in its

early history. Bowling et al. (2015) predicts removal of order of 10 km of ice due

to impact-driven sublimation in a Gy time scale. This scenario would imply a bulk

density change on the order of 10%. Castillo-Rogez et al. (2016) updates this estimate

to 50 km in the case if Ceres formed in the outer Solar System. Alternatively, Ceres'

low density was hypothesized due to its porous interior in the absence of a substantial

ice content Neumann et al. (2015). However, Castillo-Rogez (2011) argues that high

interior porosity is unlikely. However, the porosity of the upper layers can be greater

due to impact gardening.
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Figure 6-15 - Ice shell thickness as a function of shell density.
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Figure 6-16 - Hydrostatic solution for the normalized moment of inertia (C/Ma2E)

as a function of the core size derived from the gravity and shape constraints. The
dashed line is the solution from the Radau-Darwin relationship.
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6.4.2 Isostatic constraints

While rheology can give a lower bound on the shell density, isostasy can give

the upper bound. Isostatic admittances are low compared to the uncompensated

case. However, if there is a lithosphere, it will be able to, at least partially, support

topographic loads. Therefore, admittance will be higher in the presence of an elastic

lithosphere. Therefore, as can be seen in Fig. 6-12, a lower shell density will be

required to match the observed admittance.

We find that a density of 1379ji5 kg/m3 is most consistent with full isostatic

compensation at degrees 3 to 12. This gives a shell thickness of 46.3149 km and

core density of 2442+5 kg/M 3 . Surprisingly, the range of shell densities/thicknesses

allowed both by rheological and isostatic constraints is quite small. However, we want

to emphasize that given all simplifications in our model (two constant density layers,

compensation happens at the only internal interface), the small range allowed by

rheological and isostatic constraints should be taken with a grain of salt, as perhaps

the best manifested by the negative admittance for the sectorial degree-2 component,

which cannot be explained within the framework of an isostatic model.

Several models with inverted density structure have been proposed (Neveu and

Desch, 2015). In such models, primordial crust overlays either pure water ice or ice-

rock mixture layer. For such structure, the density of the top layer is higher than the

density of the lower layer, therefore it is gravitationally unstable. Formisano et al.

(2016) studied whether or not Rayleigh-Taylor instability could reverse all or part of

the crust. A range of structures was identified for which the crust is stable over the

age of the Solar System. We note that the concept of isostasy is inconsistent with

such inverted structure. Therefore, either the instability occurred and the primordial

crust foundered or such inverted structure never existed.

6.4.3 Occator and Hanami planum

Hanami planum is the region of high standing terrain around the Occator crater.

The Occator crater corresponds approximately to the the location where the eleva-
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tions are the highest within the Hanami planum. This region is associated with the

strongest negative Bouguer anomaly. Hanami planum is large enough (~600 km) to be

resolved in current the gravity model, that is accurate up to degree from 9 to 12. Since

the region has positive topography and a negative gravity anomaly, it is expected that,

at least partially, this negative anomaly is a consequence of isostatic compensation.

However, even after computing isostatic correction, the isostatic anomaly is also neg-

ative, indicating supercompensation. Alternatively, a regional density decrease can

create such a negative isostatic anomaly.
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Figure 6-17 - Occator and Hanami planum.
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6.4.4 Kerwan

With a diameter of 281 km, Kerwan is the biggest unambiguous impact basin on

Ceres (Fig. 6-18). It is located near the equator in Ceres' eastern hemisphere. Its

subdued topography could indicate that this feature has experienced viscous relation.

The negative isostatic anomaly within the basin indicates that the basin is subiso-

static. Bland et al. (2016) argued that viscous relaxation of Kerwan can only be

achieved if the ice content in the subsurface is enhanced relative to the rest of Ceres,

which would be consistent with a negative isostatic gravity anomaly.
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Figure 6-18 - Kerwan crater

192



6.4.5 Urvara and Yalode

Urvara and Yalode are the two adjacent impact features in the southern hemi-

sphere. Their diameters are 163 and 271 km, respectively. Similarly to Kerwan, the

two basins have negative isostatic anomalies indicating subisostasy.
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Figure 6-19 - Urvara and Yalode basins.
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6.4.6 Ahuna Mons

Ahuna Mons is a pyramid-shaped mountain near the equator in the western hemi-

sphere of Ceres. This feature has a unique morphology that cannot be found anywhere

else on Ceres. This curious feature is associated with a strong positive Bouguer and

isostatic anomaly. However, since the feature is only 20 km wide, it is not possible

to associate the anomaly with the feature itself, rather with the general surrounding

area.
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Figure 6-20 - Ahuna mons isostatic anomaly maps plotted over projected Dawn clear
filter mosaic.

6.5 Conclusions

The gravity and shape indicate that Ceres is a physically-differentiated object.

However, the extent of differentiation is less than based on some of the pre-Dawn
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shape data (Thomas et al., 2005) and is more consistent with more recent ground

telescope-based studies Drummond et al. (2014); Carry et al. (2008). The tri-axiality

of Ceres indicates the magnitude of the non-hydrostatic influence is on the order

of its deviation from a uniform body. Ceres' topography at degree-2 appears to be

overcompensated as indicated by the negative correlation between sectorial gravity

and topography at degree-2. A possible explanation for this observation could be

a combination of a buoyancy-driven anomaly with a high-rigidity/thick shell at the

time scales relevant to the buoyant process.

We observe that the topographic power of Ceres deviates from a power law at

low degrees and that equatorial regions have lower topographic power. This indicates

that viscous relaxation plays a role at Ceres. However, we find that viscous relaxation

is important only at low degrees that correspond to spatial scales of more than 100

km. At smaller scales, or, equivalently, higher spherical harmonic degrees, there is

not a systematic latitude variation of the topographic power nor there is a deviation

of the topography power from a power law.

An isostatic model reproduces the observed gravity very well as demonstrated by

the low magnitude of isostatic gravity anomalies compared to the Bouguer anomaly.

The best fit two-layer isostatic model has the shell density of 1379t5 kg/M3 and

shell thickness of 46.3 +4 -9 km. Finite element modeling of Ceres' topography (Fu

et al., 2016) shows that the topographic power cannot be supported by a solely ice

rheology over billion year timescales. Shell contamination by silicates is required for

strengthening, and doing so increases its density. Using a lower bound for shell density

based on rheology, we derive constraints on the shell thickness using the assumption

of hydrostatic equilibrium. Using the mixture of methane clathrate and water ice, we

find the minimum plausible shell thickness to be 29 km, which is consistent with the

above-derived isostatic constraints.
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Supplementary materials

Two-layer internal structure solution

central min max central mn maxi P2 IP2 P2 r 2r

(kg/m3 ) (kg/m3 ) (kg/m3 ) (kg/m3 ) (km) (km) (km)
900 2414 2367 2464 441.86 437.10 446.52
1000 2418 2370 2469 439.35 434.09 444.42
1100 2423 2373 2476 436.35 430.57 441.89
1200 2428 2377 2484 432.69 426.25 438.84
1300 2435 2381 2494 428.14 420.93 435.08
1400 2444 2387 2508 422.33 414.06 430.29
1500 2458 2396 2529 414.65 404.95 423.99
1600 2478 2409 2560 403.98 392.22 415.18
1700 2512 2430 2614 388.20 373.23 402.31
1800 2581 2469 2731 362.35 341.75 381.51
1900 2785 2572 3149 311.54 277.74 341.56
1960 3347 2780 5260 245.58 183.94 292.64
1990 5064 3118 - 178.29 - 249.01

2020 - 5089 - - - 167.05

Table 6.6 - Two-layer internal structure model solution based on the observed value of

J 2 and observed non-hydrostaticity for the present-day rotation rate. The minimum
and maximum values are the solutions corresponding to the value of J2 varied by

3%. pi and P2 are the densities of the shell and the core, respectively; r2 is the core
radius.
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Chapter 7

Ceres obliquity history and

implications for the permanently

shadowed regions

Erwan Mazarico, Stefan Schr6der, Uri Carsenty, Frank Preusker and Norbert

Schorghofer contributed to this work.

Abstract

Because of the small current obliquity of Ceres (e~ 40), permanently shadowed
regions (PSRs) exist on the surface of Ceres. Some craters in Ceres' polar regions

possess bright crater floor deposits (BCFDs), which are hypothesized to be volatiles
that accumulated in PSR cold traps. The existence and persistence of the PSRs

depends on Ceres' obliquity. We integrate the obliquity of Ceres over the last 3 My
and find that it undergoes large oscillations with a period of 24.5 ky and a maximum

of max~ 19.7'. At such large obliquity most of the present-day PSRs receive direct
sunlight. We find an apparent correlation between BCFDs and the most persistent

PSRs. In the north, we find that only two PSRs remain at emax These PSRs contain

BCFDs. In the south, we find that only one crater with a BCFD remains in shadow at

Emax. Our results support the cold trapping mechanism for formation of the observed
BCFDs.
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7.1 Introduction

7.1.1 Pre-Dawn Ceres pole determinations

The location of the Ceres spin pole had been constrained in several studies prior

to the Dawn mission (Thomas et al., 2005; Drummond and Christou, 2008; Carry

et al., 2008; Drummond et al., 2014). The uncertainties of these determinations were

typically on the order of 5'.

Skogl6v et al. (1996) conducted a study of the obliquity variations of ten large

asteroids including Ceres using the then available spin vectors and ellipsoidal shape

models from the ground-based observations and concluded that orbital evolution char-

acteristic frequencies are typically higher than precession frequencies. No indication

of chaos in 2 My integrations was found.

Bills and Nimmo (2011b) predicted that Ceres has a tidally-damped obliquity. If

the obliquity is tidally damped, it presents an additional constraint on the internal

structure, as it would depend on the moments of inertia. However, Rambaux et al.

(2011) argued that the damping period is on the order of 10" years, much longer

than the Solar System age, and, therefore, it is highly unlikely that the present-day

obliquity is damped.

7.1.2 Ceres' permanently shadowed regions

Images from the Dawn spacecraft's Framing Camera (FC) and radio tracking of

the spacecraft from ground-based stations have allowed the precise determination of

the Ceres' rotational pole (Park et al., 2016) and, therefore, of Ceres' obliquity (c).

Presently, Ceres obliquity is about 4'. Because of this low obliquity, permanently

shadowed regions have been detected on Ceres' surface using the Dawn Framing

camera images and shape-based illumination modeling (Schorghofer et al., 2016; Platz

et al., 2016). This makes Ceres only the third body in the Solar System after the

Moon (Zuber and Smith, 1997; Mazarico et al., 2011) and Mercury (Chabot et al.,

2012; Neumann et al., 2013) with identified PSRs.
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Additionally, some craters at high northern and southern latitudes on Ceres pos-

sess bright crater floor deposits, or BCFDs, (Platz et al., 2016). Despite being in

shadow in the Dawn FC images, these crater floors are partially illuminated by light

scattered from the crater rims. We hypothesize that BCFDs are volatile deposits ac-

cumulated in the PSR cold traps similarly to the Moon and Mercury (Watson et al.,

1961; Arnold, 1979; Paige et al., 2010; Sanin et al., 2012; Moores, 2016). Temper-

atures in Ceres' PSRs are low enough to retain volatiles for long durations (Fanale

and Salvail, 1989; Schorghofer, 2008; Titus, 2015; Hayne and Aharonson, 2015b). In

at least one of such deposits (later referred to as NP5), water has been detected

spectrally (Platz et al., 2016).

The observation of BCFDs on Ceres is similar to the observations within Mercury's

PSRs by the MESSENGER spacecraft (Chabot et al., 2014). The MESSENGER

images show regions with higher reflectance inside some PSRs, with the boundary

of the higher-reflectance units matching the PSR boundaries well (Deutsch et al.,

2016). The critical difference between the PSR inventory from the MESSENGER

and Dawn data is that the heights of Mercury's topography were derived from laser

altimetry (Cavanaugh et al., 2007; Zuber et al., 2012), which is independent of the

illumination conditions, whereas Ceres' elevations are derived from stereo-analysis of

the FC images.

The analysis of the Gamma Ray and Neutron Detector (GRaND) data shows that

Ceres' regolith is rich in hydrogen (Prettyman et al., 2016). Neutron and gamma ray

count data reveal a strong latitude variation with suppressed counts at high latitudes.

The lower bound of H concentration near the poles exceeds that found in carbonaceous

chondrites, which are thought to be the best meteoritic analogues of Ceres. Therefore,

the GRaND observations indicate that water ice and/or other volatile species may be

concentrated in the polar regions on or very near (~1 m) the surface.

Siegler et al. (2016) provides an example of a feedback between knowledge of

volatile distribution and body orientation history. The existence of the PSRs critically

depends on the body's obliquity. Understanding temporal obliquity variations in the

past can shed light on the history of PSRs and can help constrain the time scales
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required for water ice deposition and its lifetime on the surface (Schorghofer, 2008).

7.1.3 Outline

We start with describing the integrator and illumination modeling in Section 7.2.

We then summarize the available shape and orientation data as well as observations

of Ceres' BCFDs in Section 7.3. The results on Ceres' obliquity and PSR history and

their relation to BCFDs are presented in Section 7.4. We discuss the implications our

results in Section 7.5 and summarize our findings in Section 7.6.

7.2 Methods

7.2.1 N-body dynamics

The symplectic mapping for the N-planet problem was developed by Wisdom

and Holman (1991). It has been proven to be an efficient algorithm for long-term

integrations of planetary systems. The mapping requires that the Hamiltonian can

be split into two individually solvable parts.

H = Hi + H2 . (7.1)

In the case of the N-planet problem, H, = HKepler corresponds to the Keplerian un-

perturbed motion and H 2 = HInteraction includes mutual interactions between planets

and satellites. H 2 is viewed as a perturbation and is required to be much smaller than

H1, which is why the term "N-body problem" is not used. In order to obtain the

mapping Hamiltonian, we multiply H 2 by a periodic sequence of Dirac delta functions:

Hmap = Hi + 27r62 1 (Qt)H2 , (7.2)

with

00 00

2 =(t) = 36(t - 27rn) = cos(nt), (7.3)
n=-oc n=-oo
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where Q is the mapping frequency. The time step size h is related to Q as h = 27r/Q.

The Hamiltonian for the N-planet problem can be written as

n-I 2 m j
H=E - Gm (74)

i=1 2m <j j

where G is the gravitational constant, n is the number of bodies, mi is the mass of

the i-th body. This Hamiltonian can be split into the Keplerian part, which can be

efficiently solved using the Gauss f and g functions and the interactions part, which

would depend only on the bodies' coordinates. The Kepler Hamiltonian has the usual

form

HKepler - (7.5)

We use Jacobi coordinates to eliminate the central object dynamics. We first

designate each body with a tuple of the body's mass and position in heliocentric

coordinates (mi, ri). Then we define a tuple of n bodies (bo, bi, ... , b,_ 1). The linking

transformation Lk takes a tuple of n bodies and returns a new tuple, where all the

bodies are the same b' = bi except bodies j and k:

(M, r'j) = (m m/(mj -+ mk), rk - rj), (7.6)

(m',r'k ) = (M + nk, (mjrj + mkrk)/(M + M k)). (7.7)

The velocities and accelerations are transformed in the same way as coordinates.

The complete transformation from the heliocentric to Jacobi coordinates is done as a

composition of n linking transformations:

Ln-l,n o E1,2 0 ... o Lo,,. (7.8)

The Hamiltonian in Jacobi coordinates takes the form (Wisdom and Holman, 1991):
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HTranslation HKepler + HInteraction,

with

HKepler -P t Grimo (7.10)
1i i

and

n-1 
:G m j WHInteraction = Gmimo - - Gm+ZW , (7.11)

= m (ri <i<j i:c

where the Jacobi coordinates are primed, rij is the geometric distance between bodies

i and. In our case, we take into account the second degree potential of Ceres in the

MacCullagh form (Touma and Wisdom, 1994):

Gm_ 3 Gm
We=- 3 Tr() + -2mi RiIR , (7.12)

2r 3 2 r 5

where rei is the distance between i-th body and Ceres and mi is the mass of the

i-th body. To include the effect of Ceres' triaxiality, we introduce a new coordinate

system R linked to Ceres. The coordinate axes of R are aligned with the principal

axes of inertia of Ceres. In this coordinate system, I - the inertia tensor of Ceres - is

diagonal, and its components can be estimated from the measured gravity coefficients

of Ceres (Park et al., 2016). However, there is not a one-to-one correspondence be-

tween the measured second degree coefficients and moments of inertia. The situation

is complicated by any non-hydrostaticity of Ceres. Therefore, we decided to explore

a range of moment of inertia values.

The choice of the time step h is crucial for the accuracy of the mapping. In our

work, we choose the time step to be 1/20 of the fastest periodic motion considered. We

performed integrations both with biaxial and triaxial Ceres. For the case of triaxial

Ceres, the shortest period is the rotational period of Ceres (9.07 hours). Therefore,

for these integrations we set h = 1620 seconds. For the case of a biaxial Ceres, the
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shortest period is the orbital period of Mercury (~88 days). In this case, we set

h = 4.4 days.

7.2.2 Rotational dynamics

The symplectic mapping for the rigid body dynamics was developed by Touma

and Wisdom 1994. We already introduced the coordinate system R linked to Ceres

principal axes of inertia. The coordinate system R is related to the heliocentric

inertial coordinate system r by:

r = CR, (7.13)

where C is the rotation matrix. To produce the opposite transformation, C should

be replaced by C 1 = CT. In the coordinate system R, the Hamiltonian that governs

rigid body dynamics takes a simple form

L2 L2 L2
HEuler+= LA B C

2A 2B 2C'

where Is are the principal moments of inertia of the body and Li are angular momenta

projected onto the principal inertia axes. As it is shown in (Touma and Wisdom,

1994), we can split this Hamiltonian into an unperturbed axisymmetric term and a

triaxial term that acts as a perturbation:

L 2+ L2 L 2 L 1
HEuler = HAxisymmetric + HTriaxial = + L C + LA B . (7.15)

HAxisymmetric HTriaxial

The two parts are individually integrable. The solution method is given in (Touma

and Wisdom, 1994). However, we notice that the Hamiltonian splitting (7.15) pro-

posed in (Touma and Wisdom, 1994) is not symmetric in A and B. It can be shown

using formula (7.1.14) from (Touma and Wisdom, 1994) that for A < B < C and

assuming principal rotation (about the axis of highest inertia), the mapping produces
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an evolution with a biased rotation frequency. The apparent rotation is faster by a

factor of AB/(AB - AC + BC), which is ~ 0.997 for Ceres. We propose a different

Hamiltonian splitting, that is symmetric in A and B:

A-i-B Q2C 2 1 ~ ~ ( 2
HEuler = HAxisymmetric+HTriaxial - + + LA A B

HAxisymmetric HTriaxial

(7.16)

The axisymmetric term has a solution of the same form as before, but with the

correct frequency. The triaxial term is a sum of two quadratic monomials, each of

which are of the same order. Using the Poisson bracket from (Touma and Wisdom,

1994), we find that the solution of the triaxial term, in general, can be found in

terms of elliptic integrals. We choose not to use the exact solution of the triaxial

term, rather we solve HTriaxial by parts. We split it into two quadratic monomials

HTriaxia,1 and HTriaxial,2. The two terms are individually solvable and their solutions

are simple rotations (Touma and Wisdom, 1994). The fact that the two terms are of

the same order does not affect the overall accuracy of the algorithm since HTriaxiaI

itself is regarded as a perturbation. We choose to solve the two parts using a leap-frog

scheme (see Section 7.2.3).

We should note that the derived splitting is still not symmetric with respect to

C - the highest moment of inertia. Such splitting can cause problems with a biased

rotation frequency for the bodies with significant deviations from the principal axis

rotation. However, this is not the case for Ceres.

7.2.3 Mapping description

We use a symplectic leap-frog algorithm, in which an accuracy of O(h2 ) is achieved

by shifting the phase of the Dirac delta functions by a half of the mapping period.

General leap-frog mapping for the Hamiltonian splitting (7.1) can be written in the

form:
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A(h/2) o B(h) o A(h/2), (7.17)

where A(h/2) corresponds to the evolution governed by H1 for a half of the time step

and B(h) corresponds to the evolution according to H2 for the whole time step. Our

total Hamiltonian consists of the translational and rotational Hamiltonians:

H HTranslation + HRotation - (7-18)

HRotation is of Euler form (7.14). HTranslation has the form as in Eq. (7.9). The

term W that couples rotational and translational dynamics can be included either

in HTranslation, as we did in (7.11), or in HRotation, or can be even treated as an

independent term. Each Hamiltonian is split into two parts. Therefore, the complete

mapping can be written as the rotational dynamics leap-frog mapping nested into the

translational dynamics leap-frog mapping:

AK(h/2)oA 2 (h/4)OB3(h/2)oA2 (h/4)oBTI (h)13RI(h)AK(h/2)oA 2 (h/4)OB3(h/2)oA2 (h/4),

(7.19)

where AK is the Keplerian motion, A 2 is the axisymmetric rigid body motion, B3

is the perturbation in the rigid body motion due to the body's triaxiality, BTI is

the translational interactions between the bodies, BR is the rotational interactions

between Ceres and other bodies, i.e. the Sun and the planets. In our case, the

spit-orbit coupling term W acts in BTI.

7.2.4 Wobble damping

Non-principal rotation adversely grows as the numerical integration proceeds. We

implemented an ad-hoc wobble damping procedure to suppress non-principal rotation

growth based on the analytically computed time scale of wobble damping. The time

scale of wobble damping is given by Burns et al. (1973):
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pLQ
p = Q (7.20)
pK 2 R 2W3'

where p is the rigidity; Q is the quality factor; p is the mean density; K3 is the

shape factor, which is about 10-2 for nearly spherical bodies and 10-If 2 for non-

spherical bodies with oblateness f (Burns et al., 1973). Taking A = 4 - 109 Pa,

Q = 100, K3 = 10-2, we get -r=374 years. To damp the non-principal rotation, at

each integration step, we first multiply the angular momentum components La and

Lb by the damping factor exp(-h/), where h is the time step of integration. This

modifies the total magnitude of the angular momentum. We upscale each component

of L to preserve the total magnitude. Then, we make sure that the orientation of

the angular momentum in inertial space is unchanged. We do so by modifying the

configuration matrix C using the matrix form of the Rodrigues rotation formula:

J = I + sin(O)K + (1 - cos(O))K2  (7.21)

where 0 denotes the angle of between the undamped and damped angular momenta

and K is the cross-product matrix. The elements of K are vector components of the

normalized cross-product of the undamped and damped angular momentum vectors

in space.

0 -k 3  k2

K k3  0 -ki (7.22)

-k 2  k1  0

To preserve the orientation of the angular momentum in space, we adjust the config-

uration matrix, multiplying it by the inverse of J:

Caijusted = J 1 C (7.23)

Additionally, we tested how non-principal rotation damping affects the obliquity his-

tory by varying Q from 1 to 1000. We concluded that it does not have any measurable

impact on the obliquity history.
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7.2.5 Validation of the integrator

In order to check the accuracy of the integrator, we performed several numerical

tests. The method of Touma and Wisdom (1994) should conserve the angular mo-

mentum and the energy error should be periodic and bounded. We test numerically

the conservation of angular momentum for the case of Ceres on a fixed circular orbit

around the Sun. We find that ALIL = 10-". For such an orbit, as shown in Wisdom

(1987), a Jacobi-like integral exists. The conservation of this integral can be used to

validate the integrator's accuracy. Fig. 7-1 shows that the Jacobi-like integral is

conserved to 3 x 10-10 (Fig. 7-1).

3 x10~1
0

2

1

0
2

1i

-2

-3

-4
-3000 -2500 -2000 -1500 -1000 -500 0

Time from now [ky]

Figure 7-1 - Jacobi-like integral conservation.

We also compute the conservation of the HTransiation in the absence of the orbital-

rotational coupling. As seen in Fig. 7-2, the total mechanical energy is conserved to

10-10.
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Figure 7-2 - Energy conservation.

As a further validation of our integrator in a more realistic case, we performed an

integration of the obliquity of Mars over the last 4.5 My and compared our results with

Laskar et al. (2004). There is excellent agreement between the two obliquity histories,

and the growing divergence is likely due to the difference in the initial condition and

the fact that the martian obliquity is known to be chaotic.
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Figure 7-3 - Obliquity of Mars over the last 4.5 My.

7.2.6 Illumination modeling using DTM

In order to assess the illumination conditions at Ceres over a range of past obliq-

uities, we performed numerical illumination modeling using a shape model of Ceres.

This approach has been used in the past for the Moon and Mercury, using a shape

model derived from laser altimetry data (Mazarico et al., 2011; Neumann et al., 2013).

We follow the approach described in Schorghofer et al. (2016) using raytracing over

multi-level, multi-resolution triangulated meshes. The extended nature of the Sun

as a light source is handled by discretizing its disc into 500 point sources. For the

present-day orientation of Ceres, we use the current best estimates consistent with

the adopted shape model (Preusker et al., 2015, 2016). While Schorghofer et al.

(2016) resampled the HAMO-derived Digital Terrain Model (DTM) onto a grid of

points uniformly spaced in north polar stereographic projection, we took advantage

of the full resolution of the DTM high-level products by implementing the Lambert-

Azimuthal Equal Area projection (Snyder, 1982) and performing the simulations in

that projection at a resolution of 135 m/pixel down to 53.5' latitude. For com-
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putational reasons and because of Ceres' fast spin (rotational period -9.07 h) and

long orbital period (4.6 years), we restricted our simulations to a full rotation at each

pole's respective solstice, which is the time that provides the best constraint regarding

the presence of long-lived shadows.

7.3 Data

7.3.1 Ceres shape

The shape model of Ceres was produced using a stereophotogrammetry technique

applied by the German Aerospace Center (DLR) (Preusker et al., 2015, 2016). The

stereophotogrammetric (SPG) method of shape reconstruction is purely geometrical

and does not rely on simultaneously solving for surface heights and albedo. The global

shape model used here was computed from images acquired during Dawn's HAMO

phase (6 weeks at e1500 km altitude), at a resolution of r135 meters/pixel. Thanks

to the high sensitivity of the Dawn's Framing Camera (Sierks et al., 2011; Schr6der

et al., 2013)) it is possible to utilize features seen in scattered light to constrain the

shape of the floors of shadowed polar craters, despite larger ray intersection errors and

the need for some interpolation near those locations. The comparison of the area in

permanent shadow derived from numerical illumination simulations performed with a

shape model (Schorghofer et al., 2016) and that obtained from a survey of minimum

shadows observed by FC near northern solstice (Platz et al., 2016) shows an agreement

to r2%, which brings confidence in the modeling methodology and DTM quality

for illumination modeling. However, we find that the HAMO DTM resolution and

accuracy are typically not sufficient to model the conditions within small craters (<4

km). We also used the shape reconstructed for the southern hemisphere. Despite the

unfavorable lighting conditions, as Dawn visited Ceres during southern winter, the

HAMO DTM allows illumination modeling, outside of the immediate polar region

(85'-90'S) which was poorly illumination and in seasonal darkness.
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7.3.2 Ceres rotational pole and rotation rate

The arrival of the Dawn spacecraft to Ceres made it possible to substantially

improve the accuracy of Ceres' pole position and rotation rate. The present day

obliquity of Ceres is ~ 4'. For the present study, we used the spin pole location

derived from the Dawn measurements (Table 7.1). 1

S(0) Q(0) o-U (O) a(0)

66.75988 291.42592 0.01 0.01

Table 7.1 - Ceres pole position at JD = 2451545.0. 6 and a are the declination and

right ascension of the spin axis in the J2000 frame, respectively; o- and a are the
corresponding uncertainties. NEED TO CHECK UNCERTAINTIES

7.3.3 Ceres moments of inertia

We can constrain the moments of inertia of Ceres using the observed degree-2

gravity field coefficients and a hydrostatic equilibrium assumption. It was shown

in subsection 6.3.3 that Ceres' polar moment of inertia factor C/MR2,0 1  0.392

(Ermakov et al., 2016), where R,,, = 469.7 km - the radius of a sphere that has the

volume equivalent to the volume of Ceres. Using the relations between moments of

inertia and unnormalized gravity coefficients (Park et al., 2016), we have:

A/(MR 2 ) - 2{o = (C/(MR 01) - J2 ) + CS2 + S 2  { . (7.24)

B/(MR2,01) VVC2+S2 +2 (.4

We used a two-layer model and hydrostatic equilibrium method from Tricarico (2014)

to derive moments of inertia from the observed gravity coefficients. The major un-

certainty in deriving the moments of inertia from the observed gravity coefficients is

due to non-hydrostaticity of Ceres. The non-hydrostatic effects can change C/MR2

by as much as 0.005, which corresponds to 3% of non-hydrostaticity in the degree-2

gravity field. We, therefore, chose to vary C/MR'21 between 0.387 and 0.397 for our

'A PCK SPICE kernel dawnceresSPC160422.tpc was used for Ceres' initial orientation.
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orbital integrations. For the triaxial Ceres, the equatorial moments of inertia A and B

are computed according to 7.24. For the biaxial case, we take the equatorial moment

to be (A + B)/2.

7.3.4 Bright crater floor deposits

A number of bright crater floor deposits (BCFDs) in PSRs have been identified

(Table 7.2). In general, BCFDs are rare: only 5 out of 49 present-day PSRs greater

than 10 km 2 contain BCFDs. All of the deposits considered for this study lie entirely

within the present-day PSRs, except NP5. Light reflected from the high-standing,

illuminated crater rims allows identification of the surface features within the shadows.

However, this illumination is much weaker than direct sunlight and resolving the

surface requires substantial stretching of the image. This inevitably enhances the

image noise and artifacts due to image compression. Careful visual inspection of

images taken with different illumination geometries and compression ratios is therefore

required to recognize real surface brightness variations.

The surface brightness of the BCFDs, with a exception of NP5, is typically 1.4 -

3.0 times higher than the surrounding area. It is important to note that the deposits

are seen in diffuse, secondary, illumination. As such we cannot derive an albedo,

which is defined at phase angle zero. The fact that NP5 is not entirely in permanent

shadow possibly indicates that the nature of this deposit may be different from the

others considered in this study.
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ID < ( ) A (0) BCFD brightness crater comments

area ratio diameter

(km2 ) (km)

NP4 central 16.9 3.0 0.8 contains a PSR
+86.2 79.3 6.5

part up to c = 200

NP4 outer 2.4 1.4 0.3

part

contains a PSR

NP7 +77.6 353.9 0.9 1.8 0.3 4.6 up to at least

c = 12'

No PSR at

NP5 2.7+0.2 DTM resolution.
+69.9 114.0 2.4 3.5

shadowed

part

Water ice

NP5 2.8t0.2 detected by VIR

illuminated 
(Platz et al.,

part 
2016)

contains a PSR

NP26 +79.0 259.1 16.0 - 8.6 up to at least

E = 20'

contains a PSR

NP19 +81.3 313.9 10.8 - 6.5 up to at least

E = 12'

contains a PSR

SPI -71.3 31.2 6.9 1.6 0.2 6.9 up to at least

e = 200

not well resolved
SP2 -69.7 168.5 < 1 - 2.2

in DTM

Table 7.2 - Summary of the BCFDs.
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7.4 Results

7.4.1 Obliquity history

We performed a number of orbital integrations with triaxial and biaxial Ceres, as

well as with different number of perturbing planets. As long as Jupiter and Saturn

are included and interact with Ceres, we get a essentially the same obliquity history.

The initial positions and velocities of planets were taken from the DE430 ephemeris

(Folkner et al., 2014) using the SPICE ancillary information system (Acton, 1996).

We find that the obliquity history is not sensitive to the triaxiality of Ceres. This

allows us to use much longer integration time steps because there is no need to resolve

the Ceres' rotation period, and the triaxial step B(h) can be skipped. Our integrations

show that the obliquity history is essentially identical for biaxial and triaxial Ceres.

The results are also not sensitive to the relativistic effects, which were modeled as an

additional velocity kick.

Currently, the value of the osculating obliquity of Ceres is 4.030 and is on an

increasing trend. The Ceres obliquity passed its local minimum 1340 years ago when

the obliquity was 2.42'. The most recent obliquity maximum of 18.560 was reached

13950 years ago (Fig. 7-4).
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Figure 7-4 - Recent Ceres obliquity history for C/MRQ = 0.392.

Our long-term integrations show that the obliquity of Ceres undergoes large os-

cillations (Fig. 7-5-7-7). The main period of the oscillation is 24.5 ky (Fig. 7-8).

Obliquity can reach ~ 200, which is much larger than the present day 4'. The pat-

tern of oscillations is very regular and with no evidence of chaos even past 3 My. The

Ceres obliquity is skewed towards the higher values (Fig. 7-9), with a mean obliquity

of Ceres of 12.26' and a median of 13.27'. The obliquity is greater than 15' more

than 40% of the time. Curiously, nature has given us a unique opportunity to observe

Ceres at the time when the polar winters are minimal, which enables more and higher

quality observations of the polar areas.

The range of obliquity oscillations does not have a strong dependence on the as-

sumed moments of inertia within the limits considered given the Dawn gravity mea-

surements (Table 7.3). The obliquity oscillations are driven by the periodic change in

Ceres' orbit inclination which happens with a period of 22 ky and the pole precession

period which is 210 ky. The obliquity cycle period is therefore close the synodic pe-

riod between the precession period Tp and inclination period T. This synodic period

is (TiT,) / (T, - T) ~24.6 ky. The Dawn observations disagree with the prediction of
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Bills and Nimmo (2011a): the obliquity of Ceres is not tidally damped to the lowest

energy state. However, this might not be surprising given the long tidal damping

period of the obliquity (Rambaux et al., 2011).
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Figure 7-5 - Ceres obliquity history for C/MR ,, = 0.387.
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Figure 7-6 - Ceres obliquity history for C/MR21 = 0.392.
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Figure 7-7 - Ceres obliquity history for C/MR 0 1 = 0.397.
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Figure 7-8 - Periodogram of Ceres' obliquity for C/MR 01 = 0.392.

C/MRQ 1  min (E) max (c)

0.387 2.060 19.760

0.392 1.970 19.710

0.397 1.950 19.640

Table 7.3 - Range of obliquity (c) variations for the 3 My integration.
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Figure 7-9 - Ceres obliquity histogram over 3 My for C/MRV1 = 0.392.

We also find that there is no a hemispheric asymmetry in terms of insolation over

long (100 ky and longer). The distribution of the sub-solar point latitude at the

perihelion is symmetric with respect to the equator.

7.4.2 PSR history

The initial illumination modeling by Schorghofer et al. (2016) revealed dozens of

craters hosting PSRs. The total area of PSRs is a strong function of the body's obliq-

uity. As expected, the total area in permanent shadow decreases at larger obliquity.

As illustrated in Fig. 7-10, simulations performed over a range of obliquity values

(20 - 20') indicate a reduction in PSR area from ~3400 km2 at c = 2' to only =2.4

km 2 at c = 18.56' and ~1.6 km 2 at E = 20'.
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Figure 7-10 - Area of PSRs.

In the northern hemisphere (Fig. 7-11), we find that only two crater floors remain

partly in permanent shadow at c = 200: NP4 (D = 6.6 km) and NP26 (D = 4.5 km).

Fig. 7-13 shows the shrinking outlines of the shadow at NP4 as obliquity increases.

Among the other identified northern BCFDs, NP7 (D = 4.6 km) maintains an area

of permanent shadow up to e = 12', while NP5 is likely too small (D = 3.5 km) to

be resolved by the DTM with confidence.

In the southern hemisphere, we find that part of the floor of crater SPI remains

in permanent shadow at the maximum obliquity. Although we did not identify other

areas in permanent shadow at c = 20', due to severe DTM artifacts near the South

Pole (Fig. 7-12), it is an intriguing fact that SPI is the only such example in our

results. The other southern bright deposit (SP2) is inside a very small crater (~2.2

km), below what the DTM can confidently model. Both NP4 and SPI are 6-7 km

craters with steep walls (400-450 slope), the primary reason for the persistence of

their shadowed floor at high obliquity.
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heights are with respect to a 482 km x 446 km ellipsoid.

7.4.3 Relationship of persistent PSRs and BCFDs

We will an apparent correlation between the most persistent PSRs, i.e. regions

that stay in permanent shadow at the maximum obliquity of 200 and BCFDs. Fig.
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7-13 shows FC images of the BCFDs and the outlines of PSRs computed using illu-

mination modeling. The grey scale of the images is piecewise linear. This is done in

order to show both the shadowed and illuminated parts of the surface.
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7.4.3.1 NP4

The outline of the PSR in crater NP4 corresponds to boundary of the BCFD at

the maximum obliquity (Fig. 7-13). Interestingly, the NP4 deposit appears to have

two brightness gradations of the bottom which will be referred to as central deposit

and the outer deposit. The central deposit is XX times brighter than the outer one

and lies in the center of the PSR. The outer deposit appears to have a well defined

boundary that approximately coincides with the PSR boundary at an obliquity of 20.

7.4.3.2 NP7

The appearance of the BCFD in NP7 (Fig. 7-13) is similar to that in NP4. The

NP7 crater remains in shadow up to an obliquity of 120. However, it is possible that

due the crater's smaller size (D = 4.6 km), its real depth is larger than the depth

derived from the HAMO DTM and thus possible that permanent shadow remains at

higher obliquity.

7.4.3.3 NP5

The NP5 crater is not permanently shadowed at the resolution of the DTM, but

the shadow-stacking method reveals a small PSR (Platz et al., 2016). The brightness

of the BCFD in NP5 is significantly larger than those of the other BCFDs in this

study. Part of the BCFD in NP5 sticks out of the shadow (Fig. 7-13) and is known

to be water ice from the VIR spectroscopic measurements (Platz et al., 2016).

A standard one-dimensional thermal model is used to estimate the sublimation

rate of an ice deposit at 70' latitude (Schorghofer, 2008). Assuming a Bond albedo

of 0.2 and thermal properties appropriate for bulk ice, the sublimation rate of ice

exposed on the surface is -3iO kg m- yr- 1. In this case the peak temperature is

~135 K and the mean temperature ~130 K. For lower thermal inertia, appropriate if

the ice is not in bulk form, the peak temperature would be higher and the sublimation

loss faster. This calculation demonstrates that a sunlit macroscopic ice deposit at this

latitude must be geologically young.
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7.4.3.4 NP19

The NP19 crater remains in shadow at an obliquity of 12' (Fig. 7-13). Its bright

deposit is qualitatively similar to the one of NP26 and the outer deposit of NP4. We

should note that the BCFD inside NP19 has the weakest brightness contrast with

respect to the surrounding terrain among the deposits considered in this study.

7.4.3.5 NP26

The NP26 crater remains in shadow up to the maximum obliquity of 200. Its

floor deposit is offset from the crater center and lies partially on the crater wall. The

deposit has a sharp and round boundary. There appears to be no morphological

difference in the region covered by the bright deposit compared to the surrounding

terrain indicating a low thickness of the deposit. The apparent brightness contrast

of the deposit in crater NP26 with respect to the surrounding area is lower than for

features NP7, NP5 and the central deposit of NP4. Qualitatively, it is similar to the

outer deposit in crater NP4 or to the deposit in NP19.

7.4.3.6 SP1

The SPI crater is one of the two regions in the southern hemisphere that remains

in shadow at an obliquity of 20'. The brightest part of the BCFD well corresponds to

the location of the PSR at c = 200. Further identification of PSRs and BCFDs in the

southern polar region will critically depend on the subsequent observing campaign as

the sub-solar point moves southward.

7.5 Discussion

Unlike the Moon or Mercury, Ceres' obliquity undergoes rapid and large periodic

oscillations. The unique set of crater floor deposits in Ceres appears to be correlated

with the most persistent of PSRs, i.e. the area that remain in shadow even at the

highest obliquity (c = 200). In the northern hemisphere, at an obliquity of 200,
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only two PSRs remain, which were shown to host bright deposits. In the southern

hemisphere, despite poorer data from Dawn at the time of writing, there remain two

PSRs at an obliquity of 200 and, one of them has a definite bright deposit. The second

most prominent BCFD in the southern hemisphere is located in a 2 km crater that

is not well resolved in the HAMO shape model.

Craters NP4, NP19, NP26 and SP1 also possess weaker brightness contrast de-

posits. Interestingly, the boundaries of those areas approximately correspond to the

PSR boundary at the present-day obliquity of 4'. We suggest that we could be due

to events of mass waisting that might expose the ground ice. Once the PSR bound-

ary shrinks due to increasing obliquity, these weak constant deposits are likely to

sublimate due to an increased solar incidence flux.

A Monte-Carlo model of thermal ballistic hops is used to estimate the fraction of

water molecules that will ultimately fall into cold traps. For present-day Ceres this

fraction is 0.14% (Schorghofer et al., 2016). We carried out the same type of Monte-

Carlo calculation for an obliquity of 100 and a corresponding PSR area of 167 km2

We find that the fraction trapped is proportional to the PSR area. Hence, the ratio

of fraction trapped to the cumulative PSR area, also known as trapping efficiency, is

independent of obliquity. This suggests that permanent shadow at maximum obliquity

is a necessary condition for the formation of the BCFDs, which are likely composed

of volatiles deposited via the cold trapping mechanism.

7.6 Conclusions

We have integrated the obliquity of Ceres over the last 3 My for a range of moments

of inertia constrained by the Dawn gravity observations. We discovered that obliquity

undergoes large oscillations with a period of ~~25 ky. Within the range of the Dawn-

constrained moments of inertia, our integrations show that obliquity goes to values

as high as ~ 200. At such high obliquity, most of the present day PSRs receive direct

sun light. However, there are still PSRs at an obliquity of 200. We find a correlation

between BCFDs and the most persistent PSRs. In the northern hemisphere, we find
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that only two PSRs remain at Emax these two PSRs contain BCFDs. In the southern

hemisphere, we also find that only one crater with a BCFD remains in shadow at 6
max.

Our results support the permanent shadow cold trapping mechanism of volatiles for

formation of the observed BCFDs.
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Chapter 8

Conclusions and future work

8.1 Conclusions

We have investigated Vesta, Ceres and the Moon using gravity and topography

data. Gravity and topography provide insight into a planetary body's internal struc-

ture. We find that Vesta was once hot and hydrostatic and is no longer either. It was

despun by two giant collisions that produced the two largest basins on the asteroid's

surface - Rheasilvia and Veneneia. These two basins in the southern hemisphere rep-

resent the largest deviation of Vesta from a hydrostatic equilibrium shape. On the

other hand, the northern hemisphere is well approximated by an ellipsoid and repre-

sents the fossil shape of Vesta prior to the giant impacts. We used a combination of

gravity/topography data with geochemical data from the HED meteorites and find

constraints on the core size. Taking densities similar to iron meteorites for the core

and the range of crustal densities corresponding to the HED meteorites, the core ra-

dius ranges from 110 to 138 km. The gravity model of Vesta has an effective resolution

of 18 spherical harmonic degrees. The power of the Bouguer anomaly is lower and

therefore the effective resolution of the Bouguer anomaly is lower (15 degrees). Vesta's

topography is not compensated. After computing the Bouguer anomaly, we find that

there are a limited number of interpretable gravity signals that can be attributed to

geomorphologic, geologic or other features identified from remote sensing data. The

two most characteristic features are the region of highest topography - Vestalia Terra
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- with the strongest positive anomaly and the central peak of Rheasilvia, which is

also associated with a positive anomaly which likely represents the deeper and denser

layers excavated by the Rheasilvia impact. It is likely that the porosity field controls

a substantial fraction of the remaining gravity signals.

Unlike Vesta, Ceres possesses plenty of interpretable gravity anomalies even though

the gravity model of Ceres has a lower resolution (degree 9-12). Gravity/topography

admittance analysis reveals that Ceres' topography is isostatically compensated. We

combine the gravity/topography data and finite element modeling to constrain Ceres'

rheology and density structure. We find that Ceres' crust is light and mechanically

strong with the volumetric water ice content <30 vol%. Ceres has experienced limited

viscous relaxation as evidenced by the deviation of its topographic power spectrum

from the power law at low degrees.

The divergent geodynamic evolutions of Vesta and Ceres may be attributed to

several factors. The main difference between Vesta and Ceres is their size. Being

smaller, Vesta cooled more quickly than Ceres and developed an elastic lithosphere

before acquiring most of its topography. Ceres, on the other hand, had a longer

cooling time and has not developed an appreciable lithosphere at a 4.5 Gy timescale.

Consequently, Ceres' topography is isostatically compensated. Additionally, having

accreted further out in the asteroid belt Ceres accreted and subsequently retained

more volatiles, unlike mostly silica-dominated Vesta. This compositional difference

affects the rate viscous relaxation of topography making Ceres' near surface viscosities

several orders of magnitude lower than those of Vesta.

Using the moments of inertia constrained by the Dawn gravity data we study

the obliquity history of Ceres. We find that Ceres' obliquity has undergoes large

oscillations with the main period of 25 ky and a maximum of 19.7. The obliquity

oscillations are driven by the periodic change of Ceres' orbit inclination and the

pole precession. Interestingly, the present day obliquity is close to the minimum

obliquity. Ceres passed a local obliquity minimum 1327 years ago (Emi,=2.4*). The

most recent maximum was 13895 years ago (Em,,=18.50 ). At such high obliquity,

most of the present-day permanently shadowed regions receive direct sunlight. We
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find a correlation between bright crater floor deposits (BCFD) and the most persistent

PSRs. In the northern hemisphere, we find that only two PSRs remain at 6 max.

Interestingly, these PSRs contain BCFDs. In the southern hemisphere, we also find

that only one crater with a BCFD remains in shadow at maximum obliquity.

The GRAIL mission has provided an incredible gravity set. We have investigated

the spatial and spectral characteristics of the GRAIL gravity models. The GRAIL

gravity models have highly non-uniform resolution. We compute the coherence be-

tween the GRAIL gravity and gravity-from-topography models. For most of the

arcs coherence drops significantly at degrees corresponding to integer multiples of the

spacecraft separation. Therefore, care should taken if the characteristic scale of the

feature of interest is comparable to one of the resonant scales.

8.2 Future work

8.2.1 Vesta

In our future work, we plan to localize the gravity and topography of Vesta using

Slepian functions in order to constrain the lateral density variations of the crust.

8.2.2 Ceres

We plan to analyze the geophysical structure of the biggest impact basins on Ceres

(Kerwan, Urvara and Yalode) using the observed isostatic gravity anomalies from the

LAMO gravity model. Additionally, we plan to study the possibility of the recent

or present-day geologic activity in the Occator and Ahuna Mons regions using the

gravity/topography data and finite element modeling. Ongoing work also includes

computation of the irradiance of individual BCFDs given the orbital and obliquity

history.

233



8.2.3 The Moon

We plan to conduct a study on correlations between the radar data collected by

the Kaguya spacecraft and GRAIL gravity data. The Lunar Radar Sounder (LRS;

Ono et al. 2010) on JAXA's Kaguya spacecraft (Kato et al., 2010) investigated the

geologic subsurface structure of the Moon to a depth of a few km. GRAIL gravity

models are potentially sensitive to subsurface structure at such depths in some regions

of the Moon. GRAIL gravity and LRS radar data are complementary since both are

sensitive to density/compositional heterogeneities. Cross-correlation of GRAIL and

LRS data has the potential to produce new constraints on the structure and evolution

of the lunar maria.

Subsurface radar reflections have been observed primarily in the maria. Originally,

subsurface reflections were detected with Lunar Sounder Experiment aboard Apollo

17 (Phillips et al., 1973). Subsurface layering was attributed to multiple episodes

of volcanism (cf. Sharpton and Head 1982). Later, Kaguya's LRS produced similar

measurements but with global-scale coverage (Ono et al., 2009; Oshigami et al., 2009,

2014).

Laboratory measurements (Kiefer et al., 2012) show that density variations among

mare basalts can be up to ~200 kg/m3 or ~7%. The LRS measurements have detected

subsurface reflection in the upper 1 km of the crust. Combining these two estimates

and using the Bouguer slab approximation, we estimate that anomalies of order 1-10

mGal are expected due to potentially varying density of surface and/or subsurface

horizons. This accuracy is achievable with the latest GRAIL gravity models (Konopliv

et al., 2014b; Lemoine et al., 2014).

The LRS surface backscattering power is indicative of surface and near sub-surface

dielectric properties, which are sensitive to target density and roughness. We investi-

gate the northwestern part of the Procellarium basin because it is the region with the

strongest signal-to-noise ratios in gravity model within maria. To examine shallow

subsurface structure, we map the surface received power by tracking the first return

of radar echoes and compare it with gravity gradients (Andrews-Hanna et al., 2013),
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which are particularly sensitive to small-scale structures.
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