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Abstract

Efficient design of energy converters heavily depends on the capacity of the designer
to accurately predict the device's dynamic, which ultimately leads to the power ex-
traction. This is specially true for wave energy converters (WEC), which usually
present a high cost per kWh generated. In this thesis a particular WEC which uses a
rotating mass for power extraction is studied. A numerical model for the prediction of
its motion and power extraction is presented. The nonlinear dynamic model consists
of a time-domain three dimensional Rankine panel method coupled, in the time inte-
gration, with a MATLAB algorithm which solves for the equations of the gyroscope
and Power Take-Off (PTO). The former acts as a force block, calculating the forces
due to the waves on the hull, which is then sent to the latter through TCP/IP, which
couples the external dynamics and performs the time-integration using a 4th order
Runge-Kutta method.

With the proposed code, two case studies are examined. The first consists of two
gyroscopes, rotating in opposite directions, to negate undesirable yaw effects on the
WEC's hull. The device's optimum PTO damping value and flywheel spin are then
shown, which change for different sea states. The second is a comparison against
results from experimental testing of a 1:50 model at the Davidson Laboratory during
the Wave Energy Prize.

Thesis Supervisor: Stefano Brizzolara
Title: Visiting Research Scientist, PI
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Chapter 1

Introduction

In December 2015, the 21st Conference of Parties (COP21) gathered in Paris to decide

on goals for reduction of carbon-dioxide emissions and limit Global Warming. The

accord achieved a major goal by limiting the average global warming to 2 degrees

Celsius above pre-industrial temperatures, while striving for a limit of 1.5 degrees

Celsius, if possible. This agreement has been well received by the media, since it was

stipulated by a joint effort of countries which previously diverged on greenhouse gas

emission controls such as India, China, United States and the European Union.

According to the International Energy Agency (IEA), the electric sector con-

tributes with roughly two thirds of all the greenhouse gas emissions [17]. The world's

energy generation major source is coal, accounting by 39% of all production, followed

by gas, which accounts for 22%, while oil retains 5% of the share [18]. This is a sce-

nario bound to change in the following years, especially with large scale adoption of

renewable energy generation, which is receiving ever increasing attention from both

the United Stated and the European Union, which included multilateral agreements

on development and deployment of renewable technology through the IEA.

Another important player in the shift of a dominant fossil fuel energy generation

to a renewable one is the rising in gas and oil prices in the following years. According

to the projections of the 2015 Annual Energy Outlook (AEO), prices of crude oil and

natural gas are expected to rise. Particularly for latter, even in the most conservative

scenario, prices should double by 2040. The rise of oil and gas prices depends on as-

19



sumptions such as resource availability and growth in demand, especially in countries

not in the Organization for Economic Co-operation and development [191. Regarding

energy consumption in the US the AEO states the following:

"Although projections see a modest growth in US energy consumption, the rising

long-term natural gas prices, the high capital costs of new coal and nuclear genera-

tion capacity, state-level policies, and cost reductions for renewable generation in a

market characterized by relatively slow electricity demand growth favor increased use

of renewables."

1.1 The Wave Energy Resource

Wave energy is receiving increased attention and (governmental) support as a promis-

ing renewable resource to replace part of the global energy supply [1]. However, wave

power conversion is still based on less mature technology compared to other renew-

able source converters. Available wave power is enormous with a density of about 2-3

kW/m 2 [1]. Other benefits include the larger percentage of time in which continuous

capacity of energy production by Wave Energy Converters (WEC) is available over a

year (versus 20-30% of wind and solar devices) [201, the easier predictive capability

for wave climates than for winds and solar radiation [21] and better correlation be-

tween resource and demand (about 3 billion people in the world live in coastal areas)

[1].

Figure 1-1 shows the available energy per meter of wave front in different areas of

the ocean, averaged over one year time (results obtained over an observation period

of 10 years, from satellite, spot measurements and visual observations). As can be

noticed, the most energetic areas of the oceans are in the south hemisphere (400-600

S), but also between 401 and 600 N both on the Pacific and in the Atlantic sides, the

energy density is quite relevant. Seasonal variations are in general considerably larger

in the northern than in the southern hemisphere, which makes the south coasts of

South America, Africa and Australia particularly attractive for exploitation [1].

Several different Wave Energy Converters (WEC) designs have been introduced

20



Figure 1-1: Global annual mean wave power estimation in kW/m spanning 10 years
period [1].

throughout the years, with very distinct working principles. While most are dedicated

devices operating offshore, some onshore solutions have been proposed. However, the

mean wave energy decays rapidly when the measurement point gets close to the coast,

be it due to wave breaking, bottom friction, diffraction or refraction. Therefore, it is

expected that the greatest opportunity for wave energy extraction is not on the coast,

but rather offshore, in deeper waters of the order of several hundreds of meters.

1.2 Outlook of Current Wave Energy Converters

Technological developments and studies on WECs have flourished over the last three

decades. It is usual to classify the different types of WECs on the basis of the physical

principle utilized for the generation of electrical energy, as it is done in the schematic

diagram of Figure 2. Among the various types of WECs, which comprise concepts

which made to prototype stage, few are designed to operate offshore. Most of them,

like those based on the oscillating water columns (OWC) or on overtopping waves,

need to be installed into rigid maritime structures directly on the coastal line or at a

short distance from it. The so called onshore or near-shore devices necessarily suffer

from an energy decay due to hydrodynamic transformation processes that affect waves

21



Isolated: _Pico, LIMPET
Fixed structure

Oscillating water In breakwater: Sakata, Mutriku

(with air turbine) Floating: Mighty Whale, Ocean Energy, Sperboy, Oceanlinx I

Overtopping
(with low-head {
hydraulic turbine)

Essentially translation (heave): AquaBuoy,

Floating IPS Buoy, F03, Wavebob, PowerBuoy

Essentially rotation: Pelamis, PS Frog, SEA REV

S Essentially translation (heave): AWS

Submerged Rotation (bottom-hinged): WaveRoller, Oyster

Shoreline (with concentration): TAPCHAN
Fixed structure

In breakwater (without concentration): SSG

Floating structure (with concentration): Wave Dragon

Figure 1-2: Classification of WECs per working principle [2].

propagating from offshore (where the sea bottom proximity effects are negligible)

to near-shore areas, where the shallow water effects drastically reduce the available

transported energy by the waves.

Salter summarizes the WEC design challenge very well: "The essential problem is

finding a method to convert dispersed, random, alternating forces into concentrated,

direct force, using a mechanism which is efficient at low levels and yet robust enough

to withstand the worst conditions" [22]

The European Marine Energy Centre provides a very illustrative collection of an-

imations of different WECs [23], complementing Figure 1-2. In the following sections

we will take a look on these ideas and how they operate. This will later lead to the

Inertial Ocean Wave Energy Converter (IOwec), the case study of this thesis, which

could be classified as an oscillating body.

22
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1.2.1 Oscillating Water Column

Modern wave energy research started with Yoshio Masuda's studies on Oscillating

Water Columns (OWC) [2]. One of the first wave converters invented, the OWC

works by trapping air inside a chamber sitting on the water surface. As the surface

oscillates due to waves, the air is pushed in and out of the chamber. By placing a

turbine inside the air intake/outtake, electric energy is generated by the turbine's

torque (Figure 1-3a). Masuda's first creation in this sense was a navigation buoys

whose lights were powered by an OWC [2].

To simplify the energy conversion problem, a Wells turbine is traditionally used

in OWCs (Fig. 1-3b). This particular turbine rotates in the same way, regardless of

the airflow direction. This is necessary, since the air flows in both directions from the

chamber, depending whether a wave crest or trough is passing through the structure

[4].

Oscillating water column
Generator

Turbine Air out Air in

Wave
crest Wave

trough

Rising
water column Falling,

water column

(a)

Figure 1-3: a) Illustration of the OWC working
commonly used in OWCs [4].

Generator

Oscillating airflow ------

I,- -

Hu

Wells turbine

Rotation

Oscillating airflow

(b)

principle [3]; b) The Wells turbine,

Still inside the spectrum of OWCs we have onshore (Fig. 1-3a) and offshore

structures. The former, being located inland, is easier and cheaper to build, but

suffers from the aforementioned bottom effects. Examples of onshore OWCs are the

500kW LIMPET, built in Islay, Scotland and the 400kW PICO, built in the Azores
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Islands [24]. Examples of offshore OWCs are the Mighty Whale [7, 25] (Figure 1-4c)

and 1MW greenWAVE from Oceanlinx (Figure 1-4d).

(a) (b)

Ax

~ocennxf

(c) (d)

Figure 1-4: a) LIMPET power plant in Islay, Scotland [5]; b) The Wells turbine,
commonly used in OWCs 16]; c) Mighty Whale 1/ 2 0th scale model [7]; d) Oceanlinx
greenWAVE plant.

1.2.2 Oscillating Bodies

Oscillating bodies in waves are, by far, the most used concept for wave energy con-

verters. A myriad of designs have been proposed, ranging from simple buoys oscil-

lating in heave driving a generator, to carpet-like structures positioned underwater

[22, 26, 27, 28, 29, 30]. Designers tend to focus on extracting energy from one degree

of freedom of the longitudinal diamnetral plane, usually heave or pitch. The Norwe-

gian wave buoy is a typical example of single body heaving devices, which utilizes the

relative motion of a floating unit against a pole hinged at the bottom of the sea to
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generate electricity [26, 31] (Fig. 1-5a). This design is also categorized as a point-

absorber, meaning its characteristic length is much smaller than the predominant

wave length. A 200MW power station composed by an array of 410 of such buoys is

also envisioned. Unfortunately, however, at the publication date, this station was not

economically competitive, mainly due to high labor costs [26].

Another interesting point absorber was WaveBob, a device consisting of two heav-

ing bodies with different inertia and restoring characteristics (Fig. 1-5b). Energy was

converted by a Power-Take Off (PTO) from the relative motion between two buoys

[28]. In 2013 WaveBob Ltd. failed to raise the necessary funds to continue its opera-

tions and had to liquidate its assets [32].

PTO
system

Body I

(a) (b)

Figure 1-5: a) Norwegian wave buoy [21; b) Wavebob [2].

WECs utilizing body angular motion (e.g. pitch) for energy extraction have found

a more consistent success. Salter's famous Nature article on his rotating double
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cylinder-like body first focused the attention on these kind of designs, inspiring mod-

ern converters [22]. The design, later called Duck, uses gyroscopes inside its smaller

cylinder, extracting energy from the torque produced by the gyroscopes when the

body oscillates (Fig. 1-6a).

An effective recent development is the Pelamis, an attenuator-type WEC (i.e.

characteristic length of a few wave lengths). It is composed of four long cylinders

connected by hinged joints on the extremities. A hydraulic PTO inside such hinges is

actuated by the relative motion of the bodies. Three Pelamis are currently operational

on the coast of Portugal, delivering 750kW each [2].

(a) (b)

Figure 1-6: a) Artist impression of Salter's Duck 18]; b) ISWEC 1/ 8 h scale model [9].

The WEC technology which this thesis focuses on is a second generation of the

Inertial Sea Wave Energy Converter (ISWEC), a device inspired by Salter's idea.

The ISWEC, developed at the Politecnico de Torino, is an oscillating body with a

gyroscope inside. As the hull pitches it induces a roll of the spinning flywheel and, by

placing a PTO on the roll axis, energy can be extracted (Fig. 1-6b). The uniqueness

of this proposal lies in the fact the entire mechanical system is isolated from sea

water, lowering corrosion and drastically reducing maintenance costs. Early scale

model tests indicated a rating of about 300kW for a 34m device [9].
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Figure 1-7: Wave Dragon working principle [10].

1.2.3 Overtopping

Overtopping devices have a very peculiar way of operating. While OWCs and oscil-

lating bodies use, in their own way, motion induced by the waves, this technology

doesn't. It works by capturing water close to the wave crest on a pool sitting above

sea-level and driving such stored water through a low-head hydraulic turbine [2]. The

main advantage of this technology is the capability of storing energy in form of a

potential, driving it through the PTO when convenient. One of the most famous

projects is the Wave Dragon, which uses wave deflectors to direct and concentrate

waves until they reach and spill into the reservoir (Fig.1-7). The designers expect a

rating of 4-10MW of energy for the full scale Wave Dragon 1101.
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Chapter 2

Dynamics in Waves for WEC Design

The most common ocean gravity waves are formed by wind action over the free-

surface. The process can be better understood by idealizing the effects of wind blowing

with constant speed over a surface at rest. At first the driving force will be friction,

with the existence of a boundary-layer on the surface. This friction creates short

(capillary) waves of high frequency. If the wind was to suddenly stop, this waves

would quickly decay due to viscous effects [111.

As the wind becomes stronger the capillary waves grow large enough to be greatly

affected by Bernoulli effects. Crests now start being pulled upwards due to a local

increase of wind speed over it, which corresponds to a local pressure decrease (much

like a foil), while also being propelled forward due to separation. The wave grows

larger and faster up to the point when its speed equals the wind speed. Therefore,

larger sea states are due to stronger winds acting on large fetches [111.

The mechanics of progressive waves on the ocean surface is well described by

ideal fluid effects. The following section summarizes the derivation of some relevant

formulae concerning free surface waves that will be widely used for the analysis in the

next sections. Further details can be found in classical text books [12, 33, 34].
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Figure 2-1: Monochromatic wave diagram.

2.1 Linear (Airy) Wave Theory

Assuming inviscid (v = 0), incompressible ( V - ' = 0) and irrotational (V x & = 0)

fluid flow, there exists a potential function for which,

V5= # (2.1)

The continuity equation, which express mass conservation, becomes a Laplace

equation.

20 120 a2qs a2qs
V2q5= + 2 + = 0 (2.2)

Ox 2  (y2 1z2

Thanks to equation 2.2, the velocity potential and pressure are decoupled. The

latter can be calculated through the unsteady Bernoulli equation, a statement of

conservation of momentum for potential flow.

p = -p[ + 1V#2 + gy + F(t) (2.3)
[ t 2

In the potential flow framework just introduced, we define the equation of linear

free surface progressive waves (Fig. 2-1). We assume the wave slope is small (i.e.

A/A < 1) and, by keeping only linear terms in # and r, we can write the kinematic

and dynamic boundary conditions (BC) as per Table 2.1.

A single free surface BC can be written by taking the time derivative of the
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Table 2.1: Boundary Value Problem (BVP) for Airy waves in finite and infinite depth

Boundary Condition Finite depth (-h < y < 0) Infinite depth (h -+ oc)

Body Kinematic O = 0 at y = -h V 0 as y -+ -oo

Free Surface Kinematic -= = 0

Free Surface Dynamic 2 + g = 0

dynamic BC stated in table 2.1,

2 =77 0 (2.4)
at2 at

and replacing a by -, as given by the kinematic BC of table 2.1,

+ g = 0 (2.5)
at2 g

The plane progressive wave is a solution to equation 2.2. It is a 2D sinusoidal prop-

agation of frequency w = 27r/T and phase velocity V. The elevation and potential

can be written (assuming no phase angle), respectively,

7 (x, t) A cos (kx - wt) (2.6)

#I(x, y, t) = eky sin (kx - wt) (2.7)

The wavenumber is defined as k = 27r/A and the phase velocity V = w/k. By

substituting equation 2.7 in the free surface BC (Eq. 2.5) we get the dispersion

relation.

w 2 = gktanh(kh) (2.8)

In deep waters, i.e. h -+ oc, equation 2.8 reduces to w 2 = gk = LT2. One

great advantage of linearizing the wave problem is the possibility of representing any

complicated wave pattern as a superposition of monochromatic waves of different

heading, frequency and amplitude [11] (Fig. 2-2). The wave elevation, dependent on
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wave direction 0 and frequency w, becomes,

Figure 2-2: Complicated sea state as a superposition of different monochromatic
waves [111.

z, t) =Re [jdwj dA(w, O)e-ik(w)(x cos o+z sin o)+iwtt (2.9)
.f 0 

(29

The superposition of monochromatic waves of nearly equal wave length and direc-

tion results in a wave group. The individual waves travel at phase speed, while the

entire group travels with a group velocity V, which can be written as,

Figure 2-3: A wave group, resulting from the superposition of two similar monochro-
imatic waves [121.
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VP

E = E per area

Figure 2-4: A wave group flowing through a control volume V with inlet surface S.

V 2 sinh2kh ) (2.10)

The total energy in a wave is the summation of the kinetic and potential compo-

nents. Integrating such summation along the depth yields the energy density E per

unit area of the mean free surface [12],

E p j| 2 + dy = pgA2 + pgA2 cos(kx - wt) (2.11)

Averaging equation 2.11 over one wave period allows a better estimate of the

energetic content of a wave.

E= !pgA2 (2.12)
2

Wave energy propagates with the group velocity V. This can be seen by calcu-

lating the energy flux a across a control volume V as per Fig. 2-4. The flux averaged

over one wave period,

d= ( pgA2) (w'( + kh (2.13)
dt 2 k 2 sinh2kh (

Falnes rewrites equation 2.13 by considering deep water (i.e. k = w 2/g) and

knowing that the wave height is twice the amplitude [34]. The transported wave

power per unit width of wave front becomes,
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dE - p2
= = TH2  (2.14)

dt 327r

2.2 Irregular Ocean Waves

Waves in the ocean are dispersive and random. This environment is usually treated

stochastically by considering the superposition described previously (Fig. 2-2). Tra-

ditionally, ocean waves are assumed to be ergodic, i.e. a stationary random process

fully characterized by one ensemble, a simplification which allows the derivation of

all statistics from only one set of data [351. The total free surface deformation can be

written as a summation of equation 2.6,

n n

r(, t) = X(t) = Ai (kis - wit + ci) (2.15)
i=1 i=1

Where c is the phase of the component. Usually Xi(t) does not possess a Fourier

transform (i.e. the Fourier integral does not converge). To overcome this the wave

signal is truncated after some periods [35],

Xb~TM= Xi(t), if - T/2 < t < T/2 (2.16)
0, otherwise

The Fourier transform of the truncation above is,

G1(w) = X (t)e--tdt (2.17)

It can be shown that the mean square of X+(t) over the range T is [351,

((Xi(t)) 2 ) = lim [IGT(w)12 > Sxx(w)dw (2.18)

Where Sox is defined as the mean square spectral density, and is a real and even

function of w. The auto-correlation function of XT(t) is [351,
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1T /2
Ri(X) - X (t )X +tT) dt (2.19)

T _T/2

The auto-correlation and spectral density are related by Fourier transform through

the known Wiener-Khintchine relation 135],

1 t
S.,(w ) = 1RXX(T je~-iwtdT

.

2w R" r(2.20)

R.. (T-) = Sxx(w) eiwtdw

Since both the auto-correlation and spectral density are real and even functions,

the latter is rewritten as a one-sided spectrum [351,

000R.. (T) = j0 2S-,,(w) cos(wT) dw j 0S(W) COS(WT)dw (2.21)

where,

SX(w) = 2S,,(w), for w > 0 (2.22)
0, otherwise

This one-sided spectrum, being defined only for positive frequencies, is able to be

measured experimentally. The relation in equation 2.20 has important ramifications.

By making T = 0, the auto-correlation function in equation 2.19 yields the expected

mean square value [35],

Rox(0) = E [rq2 (X, y, t)] = liM _ r 2 (x, y, t)dt = S(w)dw (2.23)
T ->oo _C~o

This means the process variance, which relates to the total energy in the system,

is given by the area under the spectrum. Rewriting equation 2.11 to reflect the

stochastic nature of the waves gives an even clearer relation between the total process

energy and the spectral area,
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E = pgE [r1
2(x, y, t)] = P9 S(w)dw (2.24)

The significant wave height is a very important quantity. It is the 1/3 highest

average wave height and is defined as four times the square-root of the zero moment

of the spectrum,

Hs = 4 j S(w)dw (2.25)

The energy spectrum is usually described by semi-empirical relations such as the

Bretschneider or JONSWAP (Joint North Sea Project) spectra [36, 37]. The latter is

widely used in closed fetches and its equation can be seen below.

S(w) = e-Y C? (2.26)

Where w, is the peak frequency and y is the peak enhancement coefficient, which

varies between 1 and 7 with mean of 3.3. # is usually taken as }. a and r model the4.

intensity and peak of the spectrum, respectively,

a = 5.061 H2 (1 - 0.287ln(-y)) (2.27)

r = exp - _ WP)2 with o - 0.07 if W P (2.28)
- 2w~ 1  10.09, if W > WP

With the sea spectrum at hand, remembering the definition of the transported

energy by each individual monochromatic wave component (eq. 2.13), the transported

wave power per unit width of wave front can be written again, this time as a function

of the significant wave height and energy period Te.

dE = p 00  P9 Hg2T
dt =a = pg j S (w) Vg dw - 64wr (2.29)
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2.3 Seakeeping in WEC Design

The design of WECs of the oscillating body type (Sec. 1.2.2) require the evaluation of

the concept's motion in waves very early on. The objective is to tune the converter's

natural frequency (be it translation, rotation or both) with the predominant wave

period from the operating site spectrum. Traditionally, the solution of the equations

of motion involves linearizing the problem (i.e. small wave amplitude and body motion

compared to the device's nominal size) and solving them in Fourier domain, as done

for ships [9, 38, 39, 40, 41, 42, 43, 44, 45]. The body response to a monochromatic

wave, in frequency domain [121,

6

E j [-w 2 (Mij + aij) + iwbij + cij] = AXi (2.30)
j=1

The determination of the added mass and damping coefficients and the wave

exciting forces are calculated by solving the radiation potential (the scattering can

be found through the Haskind relations from the radiation case [46]). The Boundary

Value Problem is the same as in table 2.1, with the addition of the body BC.

ao= vn (2.31)
an

The linearization of the motion allows the decomposition of the total fluid potential

as a summation of the radiation and diffraction wave potentials. The latter is the

superposition of incident and scattered waves [47].

# = OR + #D = OR + #1 + #s, where = 0 (2.32)
an

The radiation potential models the waves generated by the moving body (with

the same frequency as the incident wave) in calm water. It can be represented by the

summation of each Degree of Freedom (DoF) displacement, subject to its own body

BC [471.
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6

OR$ = E iwZ o (2.33)
j=1

3= n (2.34)
On

Where nj is the normal vector n pointing out of the body and into the fluid for

j = 1, 2, 3 and Y x n for j = 4, 5, 6. The added-mass and damping come from the real

and imaginary components of the radiation forces [47]. The exciting forces may be

calculated straight from Haskind relations. All of these integral equations come from

Green's theorem [48].

aij - (i/w)bij = p #j 00i dS (2.35)

Xi = -iwp ( 1 -i i dS (2.36)

Finding the velocity potential of this Boundary Value Problem means solving the

integral equations derived through Green's theorem. WAMIT, an industry standard

panel method code, presents the equation in the form below, solving it for discretized

panels of the body wetted surface with center at [49].

27r$ 3 (Y) + I G d =J njG( ' I)d~' (2.37)

+ + (k (2.38)

= xi+ yj + z (2.39)

The Green function G(61; Y) used by WAMIT is the wave source potential. It is

the fluid potential at point Y due to a point source of strength -47r at 61 (J(x) is the

zero order Bessel function)[49].

1 1 (k + K) cosh k(z + h) cosh k(( + h)
G (Y; 6) =-+-+2f dk c-"J,(kR) (2.40)

r r" 0 k sinh kh - K cosh kh
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r 2 _ (x 2 + (y - TI)2 + (z -()2 (2.41)

r/2 = 2 + (y - n)2 + (z + ( + h)2 (2.42)

With the computation of the hydrodynamic coefficients of equation 2.30 from the

solution of the BVP (equation 2.37), the transfer function, or Response Amplitude

Operator (RAO), can be calculated. It is the response, in frequency domain, to a

monochromatic wave of frequency w and amplitude A [121.

Z(w) -- - + (2.43) A ( Mij + aij ) + iwbij + cij

The response of the body to a given sea state S(w) can be calculated through a

simple multiplication. This justifies the work in frequency domain, as time domain

would require the evaluation of a convolution integral for the same purpose.

SM(w) = S(w)Z(w)|2  (2.44)

Cummins developed general equations of motion in time domain which are the

primary tools used by engineers and designers to bridge frequency (evaluated by

solving the BVP) and time domain quantities [50]. These equations are based on

impulsive motion, by decomposing the flow around the body into two components,

one due to an impulsive displacement on the body and another representing the

decaying wave motion generated by such displacement. For a body translating on the

water surface, the equation of motion becomes:

6-=

Mij + ao) -j + bo j + cijt + Kij (t - T j9 (T)dT] fA(t) (2.45)

The kernel of the convolution integral is related to the frequency dependent quan-

tities through Fourier transform [50, 51, 52]. It tells us how the radiation forces keeps

influencing the body's motion for some time (i.e. fluid memory effects).

39



aij (w) = a-j K(t) sin(wt) (2.46)

00a = lim aig(w) (2.47)

bi = (w) = K(t) cos(wt)dw (2.48)

Ki(r) = - bi (w) cos(wt)dw (2.49)
70

Equations 2.45 is widely used, together with frequency domain panel methods

(e.g. WAMIT [49]), to describe the motion of WECs in time domain. This is a

very powerful and accurate approach for most bodies, yielding results with a very

small computational effort. However, the description of the problem through Fourier

transform makes it impossible to incorporate nonlinear effects into these models.

Recent developments on panel methods have been focusing on solving the equations

of motion directly, in time domain, introducing the possibility of extension to some

nonlinearities. Kring tackled this problem, developing a time domain Rankine panel

method, capable of solving both the body and free surface motions directly [14]. This

work was further developed by himself, leading to the Boundary Element Method

(BEM) code Aegir, capable of importing non-uniform basic spline surfaces of arbitrary

bodies, discretize them and solve for the motions.

Aegir will be used in this work to study the converter presented in chapter 3. This

particular WEC utilizes gyroscopes to extract energy from the hull motion. To model

this, the state-space vector and external forces calculated by Aegir at every time-step

will have to be corrected to account for the spinning flywheel dynamics. The change

in angular momentum of the gyroscope will induce torques in all 3 directions, coupling

all the rotation Degrees of Freedom (DoF). The corrections and time marching were

implemented in a MATLAB code, which constantly shares information with Aegir

through TCP/IP protocol.
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Chapter 3

The Inertial Ocean Wave Energy

Converter (IOwec)

The Inertial Ocean Wave Energy Converter (IOwec) is the case study of this thesis.

It is an evolution of the ISWEC described in chapter 1.2.2 1, meaning it also relies on

gyroscopic mechanisms for power extraction. This concept was developed and first

presented as a contender in the Department of Energy Wave Energy Prize (WEP)

[53].

The first task was to determine the operation site. Since the reference wave

climate announced by the WEP would be representative of the American west coast,

the Oregon sea was chosen, due to its high energy content throughout the year (Fig.

1-1). Figure 3-1 presents the statistical description of the Oregon sea, showing T = 8s

as the most probable wave period [13]. A more comprehensive table is also presented

in appendix B.

3.1 Hull Design and Internal Arrangement

The hull was sized by University of Torino researchers, with input from Dr. Stefano

Brizzolara. It can be interpreted as an evolution of the ISWEC's old shape by intro-

'The ISWEC was initially designed to work in the open sea, like the Atlantic or Pacific oceans,
instead than closed sea like the Mediterranean
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Figure 3-1: Probability of occurrence of a given Hs and T, [131.

ducing a tapered top and sides, with the ultimate scope of increasing the resonance

period of the ISWEC up to typical prevalent periods of open oceans. In fact, a nar-

rower waterline beam at the extreme bow and stern means a reduction of the inertia

moment, which in turn implies a reduction of the longitudinal metacentric height and

an increase of natural resonance period (Eq. 3.1) [331. Figures 3-2a and 3-2b show

the evolution, from the ISWEC to the IOwec shape.

C55 = pgV (ZB - VCG) + pg Jj x 2dS = pgVGML (3.1)

Inside the hull we find two main components, the gyroscope housing and the U-

Tanks (fig. 3-3a). The latter design and analysis will be addressed in Appendix A.

The former is self explanatory, housing the flywheels and power take-off systems.

It also provides a very low pressure atmosphere inside to minimize air friction (i.e.

energy losses) on the flywheels, which are detrimental to maintain the spin. This

chamber was also envisioned in a modular manner, such that, in case of failure of

one of the components inside or loss of vacuum, the housing can be removed by a

supply vessel and transported onshore for repairs (fig. 3-3b). This procedure leaves

the hull in free floating condition, ready to receive a spare modulus or to wait for the
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(a) (b)

Figure 3-2: a) ISWEC hull, with its taper from bottom to top; b) IOwec hull, with
additional tapper at the stern and bow.

old one, which saves the unnecessary trouble of disconnecting the entire body from

the mooring lines.

A great advantage of the IOwec is evident from the choice of an isolated gyroscope

housing. It avoids contact of all the moving parts and mechanisms of the device with

salt water, which greatly impedes the corrosion process. This guarantees very low

maintenance costs, specially when compared to devices with open moving parts (e.g.

WaveBob, fig. 1-5b). This isolation, as well as a welded construction of the hull with

bolted hatches designed to resist to high outside pressures, creates the possibility of

completely submerging the body in case of severe storm forecast, mitigating damage

to the mooring lines and the hull. This is achievable thanks to the isolation of

the mechanisms from the sea. This "survival mode" mitigates many risks typically

associated with WEC technologies.

Figure 3-4 shows the pitch and heave RAOs generated by WAMIT for such values.

It is interesting to notice how the natural period matches the desired 8s value. The

two transfer functions are normalized as follows,

Z3( =3 (3.2)
A

Z5o =A (3.3)
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(a) (b)

Figure 3-3: a) IOwec internal arrangement; b) IOwec modular design, the gyroscope
housing may be removed if repairs are needed.
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Figure 3-4: Heave and pitch RAO versus wave period.

Table 3.1 presents the design characteristics of the JOwec, which will be used

for all subsequent studies. A preliminary structural design was also performed to

clarify the hull's subdivision and bare weight. This was performed by a combination
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of the ABS Rules for Building and Classing for Barges [541 and for Steel Vessels

[551, both considering unrestricted navigation. The former was utilized to find the

minimum thickness of the deck, bottom, side and bulkheads plating, while the latter

was used to determine the required Section Modulus of the reinforcements, their

minimum thickness and, consequently, their minimum size. The bottom structures of

the gyroscope compartment were dimensioned with the equations valid for machinery

spaces, this was done to account for the considerable bending moments exerted by

the gyroscopes on the IOwec structure.

Table 3.1: IOwec Main Dimensions.

Dimension Value Unit

L 45 m

B 20 m

D 10 m

Td 7 m

VCG -1.485 m

A 5217.87 ton

RXX 8.45 m

RYY 14.65 m

RZZ 3.84 m

Following the rules, the spacing between Primary (e.g. girders) and Secondary

Structural Members (e.g. longitudinals) are, respectively, 2500mm and 500mm [55J.

Both are reduced by half beneath the gyroscope housing. Figure 3-5 shows the mid-

ship cross section, with all reinforcements at the right scale. Table 3.2 summarizes

the contribution of each individual element.

The final mass of the steel structure must account for the existence of brackets,

bars and other members not considered before. Therefore, 2% more mass will be

added for extra elements and another 3% for general allowance. This yields a total

of 544.89t of structural mass alone. The IOwec has 4672.98t of extra displaced mass

to accommodate the PTO and gyroscopes.
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Figure 3-5: IOwec midship cross section.

Table 3.2: Hull structure components discretization and weight contribution

Element Area Thickness Volume Mass Group

[-] [m2] [mm] [m"] [ton] [-
Deck 900.00 7.00 6.30 49.46
Sides 734.57 7.00 5.14 40.36

Bottom 1094.18 7.00 7.66 60.13
Bulkheads 801.86 5.50 4A1 34.62
U-tanks 482.86 5.50 2.66 20.85

Gyro Housing 500.00 5.50 2.75 21.59
Bottom Girder 463.73 7.50 3.48 27.30

Deck Girder 67.31 4.50 0.30 2.38 Primary Support
Side Girder 142.70 4.50 0.64 5.04 Members

Bulkhead Girder 288.27 4.50 1.30 10.18
Bottom Longitudinals 924.32 4.50 4.16 32.65

Side Longitudinals 401.96 4.50 1.81 14.20 Secondary
Deck Longitudinals 480.24 4.50 2.16 16.96 Support Members

Bulkhead Longitudinals 1132.44 4.50 5.10 40.00

Web Frame 3693.37 4.50 16.62 130.47 Transversal
Bulkhead Web 360.91 4.50 1.62 12.75 Reinforcements

Total Surface Area [m2] 3711.61
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3.2 Two Gyroscopes Test Case

As presented in section 4.1.2, the gyroscope roll will induce torques in both pitch and

yaw directions. The former activates the angular motion of the PTO shaft and it

is used to directly produce electric power from a variable frequency alternator. The

latter, however, is extremely undesirable, as it excites the yaw motion of the hull.

In this case an offset between the prevalent sea direction and the hull's longitudinal

symmetry plane will always exist, and part of the wave energy will be transmitted to

undesirable modes in the horizontal diametral plane, i.e. sway, roll and yaw.

To mitigate the yaw torque pairs of counter-rotating gyroscopes is used. Both

flywheels will generate the same pitch torque, with equal magnitude and direction, but

for yaw the torque will be opposite, negating the z-axis induced rotation completely

(Fig. 3-6).

TCo -To

Figure 3-6: Pair of gyroscopes spinning counter to each other. The yaw torque is
canceled, while the pitch is doubled.

In fact, the counter-rotating gyroscope pair solution is also desirable for other

reasons, it creates redundancy of the power extraction system. This means the device

will continue to extract energy, even if one of the gyroscope system fails.

For this specific case, the gyroscopes were sized to have the largest diameter

possible, while still leaving gaps on the sides, bottom and top to allow for a complete

3600 turn. Figure 3-7 shows the dimensions of gyroscope and hull of this case.
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45m

I
12m 20m

17.64m

Figure 3-7: Dimensions of the 2 gyroscope case.

For this case the flywheel size and relative mass moment of inertia were chosen on

the basis of practical design considerations which included criteria to minimize the

construction costs. However, the quantity of interest is angular momentum, i.e. the

product Jp, which is not known a priori. One idea is to use the bare hull's pitch RAO,

make an educated guess of both the gyroscope's rotation amplitude at resonance and

the desired nominal power output, through equation 4.42 estimate a value for the

spin [9]. This complication can be avoided by using the ISWEC's design spin, scale it

for our case and perform a sensibility analysis by means of the forthcoming numerical

model.

The ISWEC model of 0.56m length has a design spin of 2150RPM. This quantity

scales with the square root of the scaling ratio and, assuming half the value,

S ISWEC 0.56 e 120RPM (3.4)
2 45

Table 3.3 summarizes all the characteristics of the two gyroscopes sized for this

case. The VCG is measured from the free-surface, positive upwards, while the rest

of the vertical quantities are measured from the keel.
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Table 3.3: Gyroscope pair main dimensions.

Dimension Value Unit

d 6.8 m

mf 140 ton

I,2 5.17. 105 kg -m 2

IYY 5.17. 105 kg m 2

J 1.02. 106 kg m 2

Ixf 3.82- 103 kg - m2

If/ 3.32. 104 kg -m 2

If 3. 104 m

3.3 1/50th Scale Model Test Case

As part of the WEP program, a 1/ 5 0th scale model experiment was carried out in

the Davidson Laboratory from Stevens Institute of Technology. The model accounted

for only one gyroscope, equipped with torque and rotational velocity measurement

sensors, and a DC motor to drive the flywheel to the correct spin rate. The hull's

motion tracking was done by placing four reflective spheres on the deck. These objects

reflect infrared light, which are observed by a set of special cameras throughout the

experiment. Figure 3-8 shows the model built for the tests, with its flywheel and load

cells.

Table 3.4 presents all the dimensions of the scale model. A better discussion on

the experimental setup and results will be presented later in chapter 7.
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Figure 3-8: IOwec's 1 / 50 th scale model.

Table 3.4: 1/ 50th scale model dimensions.

Body Dimension Value Unit

L 0.9 m

B 0.4 m

D 0.2 m

Td 0.14 m

Hull VCG -0.0297 m

A 38.22 kg

Rxx 0.169 m

RYY 0.299 m

Rzz 0.077 m

d 0.11 m

Gyroscope

mf

Ix

I
y
J

Iz:

1.45

6.00. 10-3

2.377- 10-2

3.13. 10-3

5.11 . 10-4

50

kg

kg . M2

kg - m2

kg - 2

kg M2



Chapter 4

Physical Model

This chapter covers the derivations of all dynamics of the IOwec, especially the cou-

pling between hull and gyroscopes, as well as the Boundary Value Problem solved

by Aegir. Since this work utilizes AEGIR as the BVP solver, the derivations of the

hull motion will follow the same outline originally presented by Kring [14]. We will,

however, limit ourselves to the dynamics of a stationary body. In case the reader de-

sires a better understanding of the problem, including body translation, please refer

to Kring's work.

4.1 Equations of Motion

4.1.1 Hull

Figure 4-1 shows an unrestricted floating body, free to move in its six, rigid-body,

degrees of freedom about a non inertial frame of reference xyzi fixed to its equilibrium

position. The body is stationary. The surfaces which constitute the problem are,

1. The sea free surface SF, which contains the incoming wave signal and the body

radiated waves;

2. The body surface SB on which the waves pressure act. The integration of the

pressures over this surface will later yield the external forcing;
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3. The border surface S,,, infinitely far from the body. The radiation condition is

enforced on it (eq. 4.55).

SF

'Soo

z

X

y

S5

Figure 4-1: Submerged body reference frame [14].

The displacement 6(, t) of any point within the rigid body can be described by

combining translation &(t) and rotation R(t).

(4.1)

From conservation of momentum (i.e. Newton's second law) we know the body's

acceleration is proportional to the external forcing.

Mij j(t) =Fj (lj , gj7t) - cij (t)

ij = 1, 2, ...,7 6
(4.2)

The hydrostatic restoring coefficients cij are easily calculated from the traditional

naval architecture knowledge [121. The hydrodynamic forces Fh represent all the

action of the waves on the body, depending on the displacement and its first and

second derivatives of the latter. Since waves are intrinsic nonlinear, so are these

forces [14].
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The biggest simplification to this problem is the assumption of small body motions

and wave disturbance with respect to the body's nominal size. This linearizes the

problem, allowing the application of potential flow together with impulse theory and

the decomposition of the forcing into impulsive (local) and wave (memory) forces, as

proposed by Cummins [501. We end up with an equation very similar to 2.45.

(Mij + ao) j (t) + cij j = F" (jI, jt) (4.3)

The fluid memory (wave) force F" is independent of the body's acceleration,

making the system solvable for j. Such forces may be written 114],

Fm = Xj(t) - K(t - T)j(-r)dT (4.4)

Where K(t) is the velocity impulse function and Xj(t) is the excitation force in

the jt' mode. Figure 4-2 shows the IOwec's xyz reference frame, where equation 4.3

is applicable, as well as the gyroscope's local frame xyz 2 -

Figure 4-2: Hull Frame of Reference.
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4.1.2 Gyroscope and Power Take-Off

Figure 4-3: Gyroscope Frame of Reference.

To derive the motion of the rotating mass it is useful to describe it with respect to

its own non-inertial reference frame and transform it back to the hull frame. Figure

4-3 shows both the gyroscope (xyz 3 ) and its support (xyz 2 ) reference frames. Both

frames are non-inertial and the former rotates about the x-axis of the latter. The

gyroscope has all DoFs fixed with respect to the moving hull, except for the x-axis

rotation 0, where it is allowed to move freely.

Knowing that infinitesimal rotations can be treated as vectors, we can write the

angular velocities of the flywheel (wf) and of the whole structure (wS):

f =Oi3 + 6r +3 (+ )k (4.5)

WS= 0'i3 + 073 + (k 3  (4.6)

Both reference frames coincide with the gyroscope principal axes of inertia. The

inertia matrix of the flywheel can then be diagonalized and written as:
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Ixx

11I]3 = I (4.7)

The contribution of the gyroscope structural frame to the inertia will be added

later on. With the angular velocities outlined we can proceed with the derivation of

the equation of motion of the gyroscope.

We are interested in the frame following the gyroscope flywheel (Eq. 4.5), which

is also the system's principal axis, sitting on top of the Center of Gravity (CoG). The

angular momentum can be written as:

Ixx 0

Hf =1 [I3 -Wf IVY (4.8)

H1 = IxxOi3 + yyQ]j3 +J(( + b)k3  (4.9)

The principle of angular momentum conservation states that external torques

applied to the system equal the change in angular momentum.

-. dH(
Text = (4.10)

dt

Since the Xyz 3 frame is not inertial, taking the time derivative of the angular

momentum means also evaluating the variation of the axes versors.

Text =Ixx 6i 3 + 0- + I1y, 1j + &
dt dt

(4.11)
-- .dk3 A

+ J (k 3 + (- + 3 + P )
dt dt

The versors time derivatives are due to the frame rotation.

d =s X ^3 = 03- 63 (4.12)
dt
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d = W X 13= jk3 -(3  (4.13)

d 3

dt S X k3 = i3 - j 3  (4.14)dt

Substituting the versors time derivatives into equation 4.11 yields the gyroscope

equation for the xyz 3 frame.

Text = ixze + (J - IvY)&a + Jc] 3 + I. + (Ix - J) - J 3 (4.15)

+ [JP +~) k3

To transform the above equation from the xyz 3 to the xyz 2 frame we consider the

following simple rotation matrix.

1 0 0

R 0 Cos 0 sin ] (4.16)

0 -sin0 cos0

0 1 0 0 0

6r= 0 Cos 0 sin 0 Co= s cos + sin 0 (4.17)

[0 -sin0 cosO k -sin0+ cos0

Previously, in section 4.1.1, we defined the hull as a rigid-body. This makes

rotation on xyz 2 and xyzl frames essentially the same thing, turning the xyz 2 frame

useful only as a mean of grabbing the mind by the hand and walking with it through

very easy to follow derivation steps. Let's jump straight into the hull's xyzi frame,

which is the one we really care about.

6 = 5 cos 0 + 6 sin0 (4.18)

= - 5 sin 0 + 6 cos 0 (4.19)

We have now started to explicitly couple the gyroscope to the hull. The acceler-

ations come from the time derivatives of the two equations above.
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& = 6 cos 0 - 6sin0+ 6 sin0+0cos6 (4.20)

= sin 0- 50COSO + 6 COS0 - 6 sin0 (4.21)

The torque equation suffers the same transformation from equation 4.17.

Tx3 1 0 0 TX 1 TX i

T] = cos 0 sin 0 Ty I Ty cos 0 + TI sin 0 (4.22)

Tz3 0 - sin 0 cos 0 T 1 -Ty 1 sin 0 + Tz1 cos 0

The Power Take-Off (PTO), responsible for the conversion of mechanical energy

to electricity, acts on the gyroscope x-axis, as illustrated in figure 4-3. The simplest

model for it is a linear spring-dashpot, where the spring represents a reactive control,

responsible for tuning the PTO's natural frequency to that of the incoming waves,

and the dashpot represents the mechanics of power extraction, as a damping term.

T1 TPTO = -k0 - ci (4.23)

The gyroscope roll acceleration is independent of the hull's, making this specific

DoF uncoupled and solvable by just rearranging the terms of equation 4.15 and mak-

ing use of relations 4.18, 4.19 and 4.23.

IXX0 =(Ivy - J) [ 5 6 (cos2 0 - sin2 0) + ( 2 -2) sin 6 cos (
(4.24)

- J( ( cos 0 + 6 sin0) - k10 - c10

The pitch and yaw torques induced by the gyroscope on the hull:

T 1 =(IY cos 2 0 + J sin2 0)5 + (Ivy - J) sin 0 cos 0 6

+ (2J - I22 - Iyy)&5Ocos0 + (sin2 0 - cos 2 0)J&6 O (4.25)

+ (IXX + IvY) cos 2 &6O - J oO cos 0
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Ti =(Iy - J) sin 9 cos 9 5 + (I,, sin2 0 + J cos2 0) 6

- (Ixx + Iy - J) 59 sin2 0 - (Izz + Iy - 2J)e6 sin 9 cos 0 (4.26)

- J 5 b COS2 0 - J bb Sin 9

The gyroscope moments of inertia from relation 4.7 consider only the distribution

of the flywheel mass. To write the final equations of motion we must incorporate the

gyroscope frame. The total system inertia matrix is:

Ix Izz + If X

[1 = [I = x1Y + If + (4.27)

IZ- J + ifz-

The final equations of motion of the gyroscope reduce to:

1A =(Iy - Iz) E 5 6(cos2 0 - sin2 0) + ( 2 - 2) sin 0 cos 0

- J@( cos 0 + 6 sin 0) - k19 - c 5(

T 1 = (IY cos2 0 + Iz sin2 0) 7 + (Iy - I,) sin Ocos K 6

+ (2Iz - Ix - Iy) 5b cos 0 sin 0 + (sin2 0 - cos 2 0) J 6 b (4.29)

+ (IX + IV) cos29 00 - J0 cos 0

Tz1 =(1y - Iz) sin 9 cos K5 + (IIy sin2 0 + Iz cos 2 0)6

- (IX + Jy - Iz) 5b sin2 0 - (Ix + Iy - 21z)O36 sin 9 cos 0 (4.30)

- Iz 5 cos20 - Jb sin 0

It is interesting to notice the difference between the yaw and pitch induced torques.

The dominating terms for both are, respectively, J b9 sin 9 and J 0 cos 9. Considering

small oscillations of the gyroscope, these two terms reduce to J 0O and J 9. This

means, due to the product 90, the yaw rotation induced by the flywheel should have

a frequency equivalent to twice that of the wave, while pitch retains the same period.
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4.1.3 Gyroscope Linearization and Power Prediction

To better understand the system we should linearize equation 4.28. Doing so will

allow us to draw early conclusions on how the PTO should be setup. Getting rid of

all terms of order Q( j2 , 02) and above, while also considering small roll angles for the

gyroscope, we find,

Ix = J~p 5- c10 - k10 (4.31)

We are now allowed to apply the Fourier Transform and move into frequency

domain. The relevant variables assume the form below.

0 =-(w)eiWt

5 =iwB5(w)e

Substituting the relations in 4.32 into equation 4.31 and rearranging the terms we

find a relation between the hull pitch and the gyroscope roll,

J~piw -E = IXW2
- iwc, - (4.33)

Now, we know the PTO acts on the flywheel. We can then substitute the reactive

control spring by introducing a PTO natural frequency WPTO 191,

2 (4.34)WPTO =

Equation 4.33 then becomes,

0 = J 5 (4.35)
(IXW2 -J2r)--ic

It is clear now that we must tune WPTO to match the wave's incoming frequency.

The ideal PTO spring constant becomes,
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ki = I. - w2 (4.36)

The power is extracted by the PTO through the linear damping coefficient cl. In

time-domain, the instantaneous power extracted can be expressed as,

PE' (t) = C, . 2 (4.37)

It is easier to evaluate the average power extracted over one wave period, since

this will directly relate the PTO with equation 2.14, giving us a more reasonable

metric for efficiency,

PE c 2 (.8)T

The averaged power extracted over one wave period can also be written in the

frequency domain,

1 . 2 1 22 (439)
PE(W)~CIO = -Clwe

2 2

Substituting equation 4.35 into 4.39,

cj (JCw2 ) 2

2 (Iw 2 - JWPO)2 + w 2c1
2

For the optimum reactive control, the power extracted becomes,

PE(w) = (JPWE 5 ) 2  (4.41)
2c,

We know, from equation 4.39, that cl = 2PE W2 6 2 . The relation for the averaged

extracted power takes the final form,

2

We now have a very easy way to estimate what would be the power prediction

of the device by just knowing the hull and gyroscope motions. Also, the optimum
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reactive control can be designed for every incoming wave frequency, guaranteeing

resonance. The damping would always be optimized for such condition.

4.1.4 State-Space Model

The mathematical formulations regarding the hull, stated in sections 4.1.1 and 4.1.2,

are written in a state-space format in Aegir. The MATLAB code which implement

the gyroscope and PTO mechanics also has to follow the same convention. Going

down the same path as outlined by Kring, the six DoF, second order, equations of

motion can be modified into twelve of first degree [14].

=t f (t) (.3

With the state vector ' written as a combination of displacements and velocities.

Y~) 1(t M (4.4)
Y2( W g[(t)J

Gyroscopic terms Ta(t), proportional to the hull's acceleration, will go alongside

mass terms, just like the added-mass. The forcing vector becomes:

+f) Kt(4.45)
f2 (t)

[M! + ao + En 1 Ta(t)]l1 Cy(t) +1 t t)]]T

Where n is the total number of gyroscopes inside the hull. Both acceleration

and velocity proportional gyroscope torque matrices, coming from equations 4.29 and

4.30, are non-zero only for pitch and yaw.
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Ta( 1,4t) =

0

T aT56,i

0

T55, =IY cos 2 0 + I, sin 2 0

T6, =(Iy - Iz) sin 6 cos 6

Ta5 , =(I - I-) sin 0 cos 0

T =Iy sin2 0 + I, cos 2 0

The gyroscope velocity proportional vector,

TV (Yi, t) =

T - (2I -x - Iy)&56 cos 6 sin 0 - (sin2 9 - cos2 0) J 66

- (IX + IY) cos 2 O 6e + (-1)i J b6 cos 6

T6, =(Ix + Iy - Iz) 5 sin2 + (Ix + Iy - 2Iz) 6O sin 0 cos 0
(4.49)

+ IzO5 cos 2 0 + (-1)' J12'sin 0

As will be seen in section 5.2.2, the time scheme used for body motion is a 4th order

Runge-Kutta. This means we have predictor and corrector steps before computing
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the next state vector. Aegir will give us the hull state without any external dynamics,

and we consider that these values can be used for 5 and 6, allowing us to retain all

the terms in the gyroscope equation of motion. The solution is expected to converge

for a time-step small enough.

4.2 The Time-Domain Boundary Value Problem

Here we consider the fluid flow incompressible, irrotational and inviscid, making all the

derivations of chapter 2 applicable to this hull with gyroscopes problem. This means

the flow can be represented by a velocity potential I(i, t), which must satisfy the

conservation of mass stated by equation 2.2. The flow pressure can also be calculated

in the xyz, frame by equation 2.3. The kinematic and dynamic free-surface boundary

conditions are treated the same way as in table 2.1, respectively [141,

+ Vf(, t) -v [z - (xy,t)] = 0 applied on z = 7 (x, y, t) (4.50)

'I 1
= -g?7 - -V' -VT applied on z = 2j (x, y, t) (4.51)dt 2

We now have the body surface inside the domain. Its boundary condition states

no fluid may flow through it [141,

aqf(Yj t)
an)= VB -n applied on SB (4.52)an

The body velocity VB is further divided into steady and unsteady components

[14]. The former is, for our purposes, null.

VBS = 0 applied on SB (4.53)

V 6 = applied on S(454)

The radiation condition must also be imposed, it states that the velocity potential
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must decay to zero infinitely away from the body within a finite period of time.

VP -+ 0 at S,, (4.55)

Kring follows the same approach first presented by Cummins, and considers the

total disturbance potential I(7, t) to be a superposition of three flows, the basis (D,

the local #1 and the memory (wave) 4 [50].

F( , t) = D(i) + #(, t) + 0(, t) (4.56)

The basis flow J(DZ) is only important for ships translating on the free-surface,

which is not our case. The local flow #1(Y, t) represents the instantaneous fluid re-

sponse due to the impulsive body motion, which "talks" to the memory flow 4(X, t),
which represents the wave flow, through the free-surface boundary condition [14].

To arrive at the linear boundary conditions we first drop second order terms. Then

we apply a Taylor expansion about the mean body position for the body condition

and about z = 0 for the free-surface, keeping only its linear terms [14].

1. Kinematic Free-Surface Condition

- -+ applied on z = 0 (4.57)at az az

2. Dynamic Free-Surface Condition

a 1
( +) = -g - .V- V applied on z = 0 (4.58)

at 2

3. Body Boundary Condition

- - V0 - n applied on SB (4.59)
an at

Substituting equation 4.1 into 4.59 yields the body boundary condition in Ogilvie

and Tuck's notation, minus the m-terms. These omitted terms would be fundamental
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if our body had a translation velocity [14, 56].

(4.60)

j=1

Where,

(ni,n2 ,n3 ) = n(4.61)

(n4 , n5 , n6 ) = x x n

Particularly for the pressure calculation, the linearized Bernoulli equation can be

decomposed into local pl, memory pm and hydrostatic Ph components. The total

pressure is p = pi + APh [14].

a#i
P = Pat (4.62)

Pm = " at (4.63)

Ph -pgZ (4.64)

Finally, the force acting on the body is the integration of the pressure on SB.

F I/= p-ndS for j=1,...,6 (4.65)

4.2.1 The Local Flow Contribution

The local flow can be decomposed into terms proportional to the acceleration, velocity

and displacement of the body. Only the ones due to acceleration are non-zero for a

stationary body (i.e. the basis flow is absent), yielding the a0 term written in equation

4.3 [141.

a = P I/ )ndS (4.66)

Where,
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NA'=O on z=0

= on SB (4.67)
an

for k =1,...,6

4.2.2 The Memory Flow Contribution

If an incident wave is imposed in the domain, it is represented as an extra component

of the memory flow (0 = + IF, and n = q + rj1). The body boundary condition

becomes [14],

-_ =- on SB (4.68)
an an

The free-surface conditions outlined in equations 4.57 and 4.58 have the unknown

velocity potentials. They will be solved by Aegir at every time-step, calculating the

free-surface deformation [14].

4.2.3 The boundary integral formulation

Green's second identity is applied to the boundary value problem in the very same

way as previously described in section 2.3, yielding a very similar equation to 2.37

[14],

2__r _ ) G' (dV'+'; X') =0 (469)

SFUSB Xx JJSFUSB an On

Finally, Aegir is called a Rankine panel method due to its choice on the Rankine

source potential as the known function in the integral,

1
G~' )= (4.70)
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4.3 Nonlinear Effects in Aegir

Resolving the free-surface deformation allows Aegir to be extended to consider some

nonlinearities. The first of them are nonlinear incident (Froude-Krylov) and restoring

forces, which, despite linearization of the boundary conditions, can now have the

pressure integral up to the actual, deformed, free-surface.

The second is nonlinear body boundary condition. This means that, instead

of using the mean body position, Aegir will re-mesh the hull and re-compute the

waterline intersection at every time-step.

Unfortunately, nonlinear body boundary condition is prohibitive due to its high

computational cost. As we will see in section 5.2.2, a 4 th order Runge-Kutta will be

used for motion integration, meaning the re-meshing has to be performed four times

for every time-step. In a standard workstation, with 8 nodes of 3.6GHz processing

speed, it takes about 25 minutes to compute one time-step, meaning it would take

about 11 days to finish a run of only one wave period.
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Chapter 5

Numerical Model

With the boundary value problem outlined in section 4.2 we are ready to describe

the numerical method utilized to solve it. We will need to do both space and time

discretization, transforming equations 4.57 to 4.59 and 4.69 into a discrete represen-

tation.

Aegir in particular is a high-order panel method, meaning the surfaces are rep-

resented mathematically as non-uniform basic spline surfaces (NURBS) which will

be broken down into the desired number of discreet quadrilateral facets. As stated

previously, it is a Rankine panel method due to the choice of the Ranking source as

the Green function in the boundary integral formulation (eq. 4.70).

Finally, in a discrete scenario, our domain is bounded. This means the radiation

condition (eq. 4.55) must be imposed on the edges of the domain somehow. This is

achieved in Aegir by placing "numerical beaches" which will artificially dampen the

outgoing waves far from the body.

5.1 Spatial Discretization

Applying Green's second identity to the boundary value problem in section 4.2 trans-

formed it into surface integrals across the boundaries. This is where panel methods

do a fantastic job, taking those surfaces and breaking them down in discrete pieces

for numerical analysis of the governing equations.
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In the spatial discretization we are concerned in representing the free-surface and

the body. The former has elevation 7(X, y, t), potential O(2, t) and vertical velocity

00/az as unknowns. The latter has the potential O(z, t) on the body as unknown.

Space is discretized in Aegir through B-splines weighted by specific time-dependent

coefficients [14],

(s, t) ~ j (t) Bj z

q(X, t) ~ j (t) Bj (X') (5.1)

(Y, t) ~i- (Oz)j(t) Bj ( )

with,

B(x, y) = b(x)b(y) (5.2)

The basis functions within a panel is a second-order B-spline, meaning first and second

derivatives can be obtained analytically [141,

b 1) =2 + 1 2 on - P < x (5.3)

z+) x ,on -< x < 2

Where l, is the panel width. Applying such basis function on equations 4.57,

4.58 and 4.69 yields the discreet formulation of the kinematic and dynamic boundary

conditions and boundary integral formulation, respectively. The first two are time

dependent, while the last is a linear system of equations whose size depends on the

number of panels in the problem [14].

aBi= + -iBij (5.4)at az z

Bij = j -g Bij (5.5)atB 3 =
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27rV Bij + VDij - _Sij = 0 (5.6)az

Where,

Bij =BjXOi = Bi _j

Dij =Jj Bj (:') dG(Xi; ') d: = Dj-j (5.7)

Si1 =Jj Bj(:')G(i ;:i')d' = Sjj

5.2 Temporal Discretization

5.2.1 Free-Surface Boundary Condition

The free-surface temporal discretization uses what Kring calls an emplicit method,

which is a mix of explicit and implicit euler schemes. Equations 5.4 through 5.6

become [14],

'1 n + 1 __ * n & i +(5n
B 

At = -+ B -(5.8)

?O+1 _ p

At Bi = -rn+gBij (5.9)

270n+B = 0 (5.10)

5.2.2 Body Motion

The time marching scheme for the body motion is the Runge-Kutta 4 th order. It

consists of four steps, the first is a forward euler of half-step, the second an implicit

euler corrector, still with half-step, but now using the previous prediction as current

state-vector. The third is a full step mid-point rule, using the predicted value. Finally,

the last consists of a Simpson's rule which uses all previous steps to build the true

state-vector [57]. Using a multi-point method allows the use of larger time-steps

while still maintaining numerical stability, while, in particular for the Runge-Kutta,

not needing extra points for calculation.
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1. Forward Euler Predictor
At din

n+. = Yn + t1 (5.11)
2 2 dt

2. Implicit Euler Corrector

'At dy
n + -2(5.12)

2n 2 dt

3. Midpoint Rule Predictor

#*+1 = Yn + At dt 2 (5.13)

4. Simpson's Rule Corrector

n+1 = Yn + + + + (5.14)
6 dt dt dt dt

Finally, Figure 5-1 better illustrates the information exchange between Aegir and

the MATLAB code. The latter calculates the true state vector from Aegir's bare hull

estimation.

5.3 Radiation Condition

Since the free-surface is finite in a numerical analysis, we need to force the outgoing

waves to decay to zero at the borders. If we don't do that we could have undesirable

numerical reflection, with waves bouncing back into the domain. Aegir achieves the

radiation condition by placing an artificial beach on an area close to the borders,

dO
dt
dt d$ V2  (5.15)

dt dz g

where v is an artificial viscosity imposed on the waves for their decay near the

edges.
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Figure 5-1: Schematics describing the information change between Aegir and the
MATLAB code for each time-step. Where FP(t) and Fm(t) are the incident and
memory force vectors, respectively.
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Chapter 6

Two Gyroscopes Case Study

In chapter 4 we outlined the physical model, making clear the main dynamics that

govern hull, gyroscope and PTO. Then, in chapter 5, the numerical model was de-

scribed, not only coupling the dynamics outlined previously, but also applying the

appropriate time and spatial discretization of the governing equations.

We can now start to quantitatively evaluate the IOwec design outlined in chapter

3. We will start by defining the domain size, mesh density and time-step in a way

to guarantee numerical accuracy and stability, while reducing computational costs.

Then we will analyze the two gyroscope design case outlined in section 3.2. Chapter

7 follows with the simulation of the 1/50th scale model and its comparison to the

experiments undertaken in Davidson Laboratory, for the Wave Energy Prize.

Before starting, however, it is worth pointing out that all Aegir outputs are raw

time-domain signals. Every related quantity had to be calculated from them and for

that Fourier transform was used a number of times. The FFT algorithm was used for

quick processing and its implementation, as well as other insights, are summarized in

appendix C.

6.1 Sensibility Analysis

All the analyses carried out are done with monochromatic waves in head seas, with

periods ranging from 5s to 12s. The numerical simulation has to, therefore, be stable
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and accurate within that range. The dispersion relation outlined by equation 2.8

connects wave period with length, a metric which is easier to use to size the domain.

Considering infinite depth, the wave lengths range from 39m to 225m, the higher one

driving the domain size. Time-step and mesh density must then be fine enough to

perceive the 5s one.

6.1.1 Domain Size

The geometry was prepared using the CAD commercial package Rhinoceros, with

the same full scale measures as reported in table 3.1. The IOwec was subdivided into

NURBs surfaces with the correct orientation with respect to the incoming flow, with

its surfaces extending above the free-surface. The linearized wave mechanics collapse

the water surface to its mean level, making any piece of body surface extending after

it virtually useless. That won't be the case, however, for the later nonlinear analysis,

where Froude-Krylov forces will be calculated up to the actual deformed free-surface

defined by equations 5.8 and 5.9. Figure 6-1 shows the final geometry utilized for the

sensibility analyses.

Figure 6-1: NURBS representation of the IOwec's hull.

The domain initial sizing was based on the model length and the longest wave to

be simulated, which has a period of 12s and length A = 225m. Table 6.1 presents the
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values used.

Table 6.1: Initial Domain Size.

Extent Direction Reference Value Unit

Upstream A 112.5 m

Domain Downstream -3. A -337.5 m

Side 3-L 135 m

Upstream - 45 m

Beach Downstream - 112.5 m

Side - 54 m

To be certain the domain was sized correctly, the longest wave (T = 12s) with

amplitude A = im was run for three domain multipliers of 1.0, 1.5 and 2.0 applied to

all three distances. The pitch motion is plotted against the simulation time in Figure

6-2. For this run a 60s of Ramp Time and 0.1s time-step was used, which should

be more than enough for the considered wave. Also, a simulation time of 150s was

enough to achieve steady state motion. No noticeable difference was observed between

the first two multipliers, while the last diverged in less than 0.2%. The domain size

corresponding to the 1.5 multiplier was selected.

6.1.2 Mesh Density

Three mesh density factors were tested against the smallest wave: 0.5, 1.0 and 1.5,

corresponding to panel sizes of 3.75m and 2.50m and 1.25m, respectively. For this

run, the same ramp and time-step inputs presented in section 6.1.1 were used. Figure

6-3 shows the IOwec's pitch motion plotted against the simulation time, it can be

seen that the coarse mesh, with 3.75m panel size, yielded results which diverged about

2.36% from the finest one. Since no noticeable difference was observed between the

two finest meshes, the 2.5m panel width was chosen for subsequent runs.
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Figure 6-2: Domain Sensitivity Analysis.

6.1.3 Time Step

The simulation time-step had to be chosen to accurately solve the smallest wave

period. To select a proper step, four values were tested while simulating the T = 5s

wave: 0.05s, O.s, 0.2s and 0.5s. Figure 6-4 shows the pitch motion versus simulation

time for each time-step, with the exception of 0.5s which diverged. It was observed

that the least fine step, 0.2s, showed a deviation of about 0.35% from the 0.05s one

and was, therefore, was chosen for the subsequent runs.

Finally, table 6.2 shows all the best domain, mesh and time inputs based on the

sensibility analyses carried. Figure 6-5 shows the final domain, with the free-surface

and body meshing.
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Figure 6-3: Free-Surface Mesh Sensitivity Analysis.

Table 6.2: Final Domain Size.

Extent Direction Reference Value Unit

Upstream 1.5 - A 168.75 m

Domain Downstream -4.5 - A -506.25 m

Side 4.5 - L 202.5 m

Upstream - 67.5 m

Beach Downstream - 202.5 m

Side - 81 m

Time Ramp Time - 60 s

Time-step - 0.2 s

6.2 Bare Hull Motion

Before assessing the gyroscope dynamics and power extraction we will take a look

into the hull's bare motion. This will serve as a sanity check against WAMIT results.
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Figure 6-4: Time-Step Sensitivity Analysis.

The inputs were defined earlier in tables 3.1 and 6.2. Figures 6-6 and 6-7 show the

heave and pitch RAO, respectively. The former has an excellent agreement, while the

latter is just slightly off at the resonant peak.

It is easier to assess the accuracy of Aegir's pitch RAO by bringing the time-

domain problem into the frequency-domain. As stated in section 2.3, WAMIT solves

the radiation potential and, through equations 2.35 and 2.36, calculate the added-

mass, damping and exciting forces. To be able to represent such quantities with Aegir

we will need to borrow the abstract thinking of classical seakeeping, which explain the

motion by exploiting its linearity and decomposing it into the radiation and diffraction

problem. Starting with the latter, let's imagine the IOwec fixed while the incident

waves hit the hull, diffracting. The integration of the pressure over the hull will yield

the classical exciting force (i.e. Froude-Krylov plus diffraction forces). Figures 6-8
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Figure 6-5: Final domain and meshing.

and 6-9 show the comparison between Aegir and WAMIT exciting force and moment.

This problem was well modeled and didn't show any meaningful discrepancy between

both methods (the incident pressure integration is being performed correctly).

Now, instead of having the body fixed, we will oscillate it under a prescribed

motion of amplitude A and frequency w on an undisturbed free surface. The hull

will generate outgoing waves whose, pressure, when integrated on the hull, describes

a force out of phase with the motion. This "lag" between motion and force allows

us to break the latter into a component in phase with the acceleration (i.e. added-

mass) and another in phase with the velocity (i.e. damping). Both coefficients can

be calculated by knowing the force signals magnitude and phase with respect to the

motion. The diagonal elements are,

Xi cos (E5 - E.)
a=i 2 (6.1)

Xi sin (Ef - em)
bei = (6.2)
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5

Figure 6-6: Heave RAO comparison
(i.e. no gyroscope).

between WAMIT and Aegir for the bare hull case

Figures 6-10 a) through d) show both Aegir and WAMIT added-mass and damping

coefficients for heave and pitch. We can see an excellent agreement for the former,

while pitch presents higher damping at resonance and a slight offset on the added-

mass for A/L starting at 3. This means the memory potential in Aegir, which accounts

for the radiation problem, yields a slightly different solution than WAMIT. The extra

damping may explain why the pitch RAO peak is a bit smaller for Aegir.

Both DoF considered are in excellent agreement between WAMIT and Aegir. We

are now safe to proceed with the implementation of the gyroscope and PTO mechanics

outlined in chapter 4.

6.3 Gyroscope Spin Sensibility

The hull has guaranteed pitch resonance at T, = 8s as required by the predominant

sea at the coast of Oregon. The first step after that is to use equation 4.36 to size

our PTO spring. Ideally, we would need to specify a value for each incoming wave

frequency, but at this time we will only consider hull resonance. The reactive control

constant becomes,
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Figure 6-7: Pitch RAO comparison between WAMIT and Aegir for the bare hull case
(i.e. no gyroscope).
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Figure 6-8: Heave scattering force coefficient.

kg -m
ki = I, _ W2 604,921.50 2

n 8s
(6.3)

As stated before, what matters for this system is the angular velocity Jp. The

inertia is prescribed by table 3.3. The base spin rate was defined by relation 3.4. We
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Figure 6-10: a) Heave added-mass coefficient; b) Heave damping coefficient; c) Pitch
added-mass coefficient; d) Pitch damping coefficient.
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still don't know the appropriate PTO damping, so equation 4.42, which only uses

hull pitch and gyroscope roll amplitudes, will be utilized to estimate the averaged

power extraction over one wave period. Figure 6-11 shows such power by different

multipliers of the base spin rate.

:.6
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3
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b0
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-e0.
-e-1.

-e-1.

-e-1.
e 2.
- 3.

7.

50
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1 2 3 4 5

A/L

Figure 6-11: Average power extracted for different multiples of the base spin rate.

This is estimated through equation 4.42, since we still don't know the appropriate
PTO damping. The waves have amplitude of 0.1m.

We can notice that, starting from low spin rates, the power extracted increases

until an optimum value. After that the peak extraction moves to longer waves, until

it is not noticeable within the selected wave bandwidth. Increasing the flywheel spin

makes the system stiffer, moving the hull's natural frequency towards longer waves,

as can be seen in Figure 6-12.

The best spin found, considering operation in the Oregon sea, is 1.250 (i.e. 150

RPM). This rate will be used for the subsequent runs.

6.4 PTO Damping Sensibility

Maintaining the same PTO spring, optimized for the hull natural frequency, and

with the chosen spin rate, we can do a sensibility analysis with the PTO damping.
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Figure 6-12: Pitch RAO for different multipliers of the basis spin rate. We can see a
shift in the natural frequency towards longer waves as the spin is increased and the
system gets stiffer.

Equation 4.39 can be utilized, using the power predicted during the spin analysis, to

estimate the required damping.

c1 = W2E) ~455, 667.00 kg . m 2 /s (6.4)

This time around we can actually calculate the average power extraction over

one wave period through the instantaneous power signal. For that equation 4.38 is

used. We can observe, from figure 6-13, a shift of the peak energy extracted towards

smaller waves as the damping is increased, due to the decrease of gyroscopic roll.

An optimum damping of 5c, is attained, after which the device quickly loses energy

extraction efficiency, especially for longer waves.

The effects of damping are evident on the hull's pitch as well. The optimum

damping guarantees that its natural frequency remains at 8s, while minimizing the

motion as much as possible. Figure 6-14 shows how the pitch RAO changes for all

the damping variation.

Reporting power extracted by itself is not a good representation of the IOwec's
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Figure 6-13: Average power extracted over one wave period. The optimum damping

identified is 2c1 , after which the device quickly loses efficiency for longer lengths. All
waves have amplitude of 0.1m.
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Figure 6-14: Pitch RAO for all the damping values considered. We can see the optimal

damping of 2c, tries to minimize the motion throughout all wave lengths, while still

retaining the natural frequency at 8s.

capabilities, especially since it varies with the wave amplitude. A better way to

quantify efficiency is to plot the capture width, which is the ratio between the average

87



powers extracted and incoming from a 2D section of the wave profile.

PE (t) 327 t+T
Cw - 9 P(t)dt (6.5)

Spg2T2H2

Figure 6-15 shows the IOwec is capable to, at resonance, extract a monochromatic

wave 25m wide, 1.25 times its beam.

25-

S20 -

14 -
15 -

10 -

5-

0
0 1 2 3 4 5

A/L

Figure 6-15: Capture width of the IOwec. The device is able to, at resonance, extract
a wave equivalent to 1.25 its beam.

The yaw torque induced by both counter-rotating flywheels is seen to cancel one

another. Figure 6-16 shows the torques from both gyroscopes for the T = 8s wave,

with frequency exactly twice that of the wave.
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Figure 6-16: Yaw torque from both counter-rotating gyroscopes for the T 8s wave.

Their summation goes perfectly to zero, ad the frequency is exactly twice that of

the wave.

89



90



Chapter 7

1/ 5 0 th Experimental Model Testing

As part of the Wave Energy Prize, a 1/ 5 0th scale model test of the IOwec was tested

at the Davidson Laboratory, part of the Stevens Institute of Technology. The model

dimensions are summarized in table 3.4.

7.1 Test Setup

Davidson's wave tank is 95.4m long, 5m wide and 1.97m deep. Seven monochromatic

waves were demanded by the prize judges, ranging, in full scale, from 6s to 15s.

This means the longer waves are in the shallow water regime, which demands special

attention when running the numerical model. Table 7.1 states the waves considered,

as well as the height and depth condition, all head-seas.

The two most important quantities to be measured are torque and angular velocity

of the gyroscope shaft. The first was captured by a LCMFD Omega load cell, which

supplies a signal with varying voltage proportional to the torque. The second was

captured by a Bourns AMS22S analog encoder, which supplies voltage proportional

to the shaft's angular velocity.

The flywheel was spun by a Allied Motion CL 29 Series DC motor. The rotation

rate was controlled by an Arduino motor shield speed and measured by a XS6 M8

inductive sensor. It was observed, during the tests, that the DC motor was undersized

for the flywheel inertia, causing small variations of the spin during experiments. The
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Table 7.1: Monochromatic waves tested for the Wave Energy Prize in model scale

Index Period Length Height Depth Condition

[-] [s] [m] [mn] [-1

1.11

1.75
2.51

3.46

4.51

5.58

6.75

0.0098

0.0214

0.0371

0.0414

0.0597
0.0694
0.0901

Deep Water

Deep Water

Deep Water

Deep Water

Intermediate Depth

Shallow Water

Shallow Water

mean spin was reported and used

Figure 7-1 shows the variation of

cc

585

580

575

570

565

560

555

for the comparative numerical simulations to come.

the spin along the acquisition of the sensor.

-Flywheel Spin
- - - Mean value

0 500 1000 1500
Acquisition

2000 2500

Figure 7-1: Flywheel spin
567.4RPM.

variation during the M4 wave period. The mean is

Regarding the hull, oscillation in all 6 DoF was measured by a motion tracking

device. It is composed of two cameras capable of capturing infrared frequencies

reflected by spheres placed on the hull. The mooring system consisted of a cable

running from the bow to a weight, which ran through a second cable to a submerged

buoy (Fig. 7-2).

A wave probe was positioned ahead of the device, far enough to measure the
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incident wave train without disturbance from the body radiated waves or diffraction.

These values were used to calculate the actual wave frequency and height, which were

used in the analysis.

Figure 7-2: IOwec's 1/ 5 0th scale model positioned in Davidson's Laboratory wave
tank. The mooring buoy and weight can be seen beneath the water, as well as the
flywheel under the acrylic screen.

7.2 Results

Despite our participation during the experiments, the post-processing was done by

the testing facility to guarantee transparency on the submitted data. The final values

of motion amplitude, PTO damping and power extracted were release to us after

the examination. The damping coefficient was estimated through a linear correlation

between measure shaft torque and angular velocity.
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If the coefficient is expected to be linear, than a line fit should yield the desired

damping as its derivative. However, during experiments, the torque sensors were seen

to introduce a frictional damping, as it gripped the shaft. In fact, we could observe

the gyroscope locking in position for frequencies outside the resonance, showing it

was unable to win this coulomb damping. Figure 7-3 shows the correlation between

torque and angular velocity for the M4 wave. Particularly for monochromatic waves,

the WEP judges considered only the points of maximum angular velocity and its

corresponding torque, so as to minimize the system's inertial effects influence on the

measurements. Table 7.2 presents all PTO damping coefficients and flywheel spin

reported.

0.06-

x Experimental Values
Linear Fit

0.02-

0-

-0.02 -

P -0.04-

-0.06 ' ' '
-4 -2 0 2 4 6

PTO Angular velocity [rad/s]

Figure 7-3: PTO damping for the M4 wave measured through the correlation between
PTO torque and angular velocity. The line fit derivative yields the desired coefficient.

The motion amplitude was calculated by averaging the steady state response

peaks. Figure 7-4 gives an example of the pitch motion after transient effects die

out.

Finally, figures 7-5 and 7-6 show the heave and pitch RAO, respectively. The

former showed what seems to be a resonant peak which was not observed in Aegir (or

WAMIT, as shown earlier in figure 6-6). The motion, however, quickly approaches

the numerical solution at the long wave limit.

94



Table 7.2: Flywheel spin and PTO damping reported for each monochromatic wave
studied.

Index Flywheel Spin PTO Damping

[-1 [RPM] [in]

Ml

M2

M3

M4

M5

M6
M7

10

0:

0-

a3

5

0

-5

-10
0 5

480.1

314.7

468.4

567.4
464.0

538.5
524.2

10

0.1263

0.0316
0.0199
0.0118

0.0556

0.0715

0.0569

15 20 25 30
Time [s]

Figure 7-4: Steady state pitch motion for the M4 wave.
estimated by averaging the peaks of each oscillation.

The motion amplitude was

Numerical solution for pitch, on the other hand, seems better than heave, matching

the experiments everywhere but close to resonance. The numerics never consider

viscous effects, which will introduce some extra damping. Considering the fairness

of the hull, bow and stern symmetry and nonexistence of sharp curvatures leads to

believe that most of the viscous damping comes from friction rather than pressure

effects.

Aegir's pitch RAO curves alone tell us another thing. Adding the PTO damping

to the simulations barely change the hull motion. This most likely means that such
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damping is either too low or too high - probably the latter, due to the aforementioned

coulomb damping introduced by the shaft velocity sensor - indicating an inefficient

power absorption.
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Figure 7-5:
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Figure 7-6: Pitch RAO comparison between Aegir and scale model test measurements.

Besides fluid friction, two other factors contribute to the differences in both pitch
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and heave motion. The first is the mooring system. It the mass which maintains the

cables under tension was deemed too heavy early on and replaced by another, lighter,

but still significant, which was also observed to enter in a harmonic swinging motion

during tests. Such swing of the mooring mass might explain the slower oscillation

perceived in the yaw motion induced by the gyroscope (Fig. 7-7). Also, the cable

connecting to the mooring mass was placed on the bow, creating an artificial pitch

moment.

3

- -

0

0 5 10 15 20 25 30
Time [s]

Figure 7-7: Yaw motion captured during the same time interval as the steady pitch
motion shown in figure 7-4. We notice two superposed patterns, of low and high
frequency. The high frequency oscillation is induced by the gyroscope, since it is
exactly twice the incoming wave frequency. The low frequency is probably caused by
the lateral swing of the mooring mass.

The second factor was the occurrence of green water, i.e. water on the deck,

which happens due to the tapering on the bow and stern top. This phenomenon is

not captured by Aegir, and affects both translational and rotational motions. Figures

7-8a and 7-8b show two moments of the IOwec motion under resonance, first a bow

displaced high up, followed by the plunging, with the green water effect.

The average power extracted was calculated, for the experiments, through the

product of torque and shaft angular velocity measured by the sensors. The numerical

model, on the other hand, gives us the instantaneous power signal, which we can

integrate and average over one wave period. By dividing both by equation 2.14

we get the capture width as in relation 6.5, which states the width of the wave
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(a) (b)

Figure 7-8: a) Bow view of the IOwec, on the moment of largest negative pitch; b)
The same view, right after the bow plunging into the water, showing the green water
effect.

train carrying the energy captured. Figure 7-9 shows the capture width, in full scale

for both experimental and numerical tests. We can see how inefficient this model

is, probably due to the combination of poorly chosen spin and bad PTO damping,

especially when comparing to the study case shown in figure 6-15.
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Figure 7-9: Capture width
data.

comparison, at full scale, between Aegir and experimental
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Chapter 8

Conclusion

After certifying excellent agreement between WAMIT and Aegir heave and pitch

RAO, the dynamics of the gyroscopes and Power Take-Off were successfully imple-

mented. The MATLAB code managed, as expected, to use the time-domain panel

method as a force block, correcting its output to account for the external dynamics

at every time-step. Using Aegir's motion predictions, we were able to keep all terms

from the gyroscope equations of motion.

The test case with two gyroscopes presented in chapter 6 showed how such system

does have an optimum PTO damping and flywheel spin rate. A designer resorting to

the developed code could, very early on, find the best configuration for his device. In

fact, this could be extended to consider other mechanics for energy extraction such

as pendulums, masses free to rotate in more than one DoF, etc. It was also shown

how two counter-rotating gyroscopes can eliminate the negative effects of yaw torque,

while doubling the pitch influence, as well as power extraction.

Aegir's use for this design exercise was justified by its capabilities of solving the

deformed free-surface and extension to nonlinear effects. However, performing calcula-

tions with incident and restoring pressure integration up to the deformed free-surface

yields strange results. For one, the exciting forces divided by the wave amplitude are

always larger for the nonlinear case. The motion also shifts by exactly -90" with

no apparent explanation. Nonlinear body boundary condition could never be fully

tested for different wave periods and amplitudes, due to its high computational de-
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mands from re-meshing at every time-step, which eliminates the advantage of using

a panel method for early design.

Experiments performed for the Wave Energy Prize, although limited to the rules

of the competition, allowed us to attempt a validation of the proposed model. Both

pitch and heave RAOs have the same trend as the experimental points, but disagree

on their magnitude close to resonance. The capture width for the experiments showed

two outliers generating more energy than predicted by the panel method, which is not

possible. New tests are needed, with better torque sensors to eliminate the frictional

damping exerted on the shaft and with repeatability of the results. The mooring

should also be redesigned, as it was seen to influence the hull motion considerably.

Future work must concentrate on understanding and correcting the nonlinear cal-

culations. Also, better PTO control techniques should be investigated, the linear

spring-damper used, for example, could have its value varying over different wave

periods.

Regarding the design of the IOwec, it was noticed that the device needs a con-

siderable amount of ballast. This opens the door to devising movable masses inside

the hull, allowing for changes of the system's pitch inertia and, consequently, natural

frequency, during operation, tuning it to the incoming wave frequency.

During the development of this project the author participated in the MIT Sand-

box, an initiative to foment entrepreneurship and student ideas. The program re-

source's were mainly used in an attempt to identify the costs associated with the

construction, installation and operation of the IOwec. Only with such a number,

could a true metric of efficiency (e.g. US$/kWh) be identified and compared to other

WECs currently in development and operation. However, talks with specialists in

ship construction didn't result in an accurate quantification of the costs, as many di-

vergent values were suggested. It is recommended that next steps of this project look

for a solution to the cost problem, which is fundamental to understand the IOwec's

place in the renewable energy market.
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Appendix A

U-Tank Basic Design

The IOwec was originally designed with motion detuning passive tanks, which are

usually u-shaped structures filled with water. As the hull moves, the water oscillates

inside, with a natural frequency defined by its longitudinal shape. If the tank's

resonance is achieved, then an anti-resonance effect on the hull occurs, drastically

reducing the motion for that particular frequency. However, this hull-tank coupling

only detunes the motion, meaning that two resonant peaks are created after and

before the anti-resonance frequency. Figure A-1 shows an illustration of such passive

tanks. Active ones would include pumps underwater or increased pressure over the

free-surface to control the flow of water.

Figure A-1: Passive U-Tank used to stabilize roll motion of ships [15].

In his book, Lloyd linearizes the water flow problem inside these tanks, arriving

at a very simple analytical solution. Figure A-2 shows Lloyd's illustration of the tank
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dimensional variables.

w/2
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Figure A-2: Passive U-Tank dimensional variables [16].

In frequency domain, using equation 2.30 for a tank acting on the pitch direction,

we find [161,

6 [-w 2 (155 + ass) + iwb55 + cs] - r [- 2as, + c5,] = AX 5 (A.1)

For the water inside the tank,

T [-w 2ar + iwbT,- + cTr ] + 6 [-w 2aTs + cT5] = 0 (A.2)

The tank coefficients take the simple form [16],
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a5 -a5- = Qt (rd + hr)

CT5 =C5r = CTT = Qtg

W hr
a-r- =QtWr + -

(2hd Wr (A.3)

2Q7( 2W+h

bTT =2?tQt gwr (2hd +

Where 7t is the non-dimensional tank damping coefficient, which is usually calcu-

lated through a simple free-decay test. The tank's natural frequency, in rad/s, takes

the familiar form (also outlined by Belvins, in his Applied Fluid Dynamics Handbook)

[16, 581,

= 2+g (A.4)
2 hr + rW

and the maximum moment generated by the tank, ignoring damping,

wa + h,M = Qg1 ))(A.5)

A simple optimization can now be programmed using Microsoft Excel's solver. We

will force the natural period defined through equation A.4 to be 8s while maximizing

the moment given by relation A.5. However, some restrictions must be placed upon

the variables, as they may not be larger than the hull itself, or interfere with the

gyroscope housing.

Starting with known dimensions, if the gyroscope housing is 20m long and 5m

deep, then w, < 20m and hd < 5m. There is no reason to make the tank height

less than the maximum, so ht = 10m. Immediately we see the tank should be filled

halfway, so as to maximize the flow,

ht - hd hd
hr = + = 7.5m (A.6)

2 2
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By noticing that Wr = w - Wd, we can rewrite equation A.4 into a second order

polynomial for w, which upon solving, should yield the right tank length for the

desired frequency,

W 2 W -W h + (14 -)j = 0 (A.7) d W2

Excel's solver was asked to change Wd, hd and Xt (tank's width) to maximize

equation A.5 while respecting, not only the aforementioned constraints, but also a

maximum of 78% on the ratio between mass inside the tank and the hull's displace-

ment. The last constraint made sure the tank wouldn't consume more than the avail-

able ballast. Table A.1 summarizes the dimensions found to satisfy anti-resonance at

T = 10s. This single, large tank, will be divided into two smaller ones with half the

depth and, consequently, volume, in each one.

Table A.1: U-Tank optimal dimensions for resonance at T = 10s.

Dimension Value Description

hr 7.50m Water level height

hd 5.00m Connection duct height

Wr 5.89m Reservoir width

w 30.72m Reservoir spacing

Wd 24.83m Connection duct length

Xt 11.78m U-Tank depth

mt/A 46% Ratio between the mass inside a tank and the IOwec's displacement

Using the exciting forces, added-mass and damping found by WAMIT for the

bare hull case, we can get a sense on how the tank is changing the hull's motion.

The IOwec's hull pitch rotation, in the frequency domain, uncoupled from heave and

surge, takes the form,

5 X 5 (-W
2 a., + iwbT, + c. (A8)

A [-w 2 (155 + ass) + iwb55 + cs] [-w2 a- 1a + iwb, + cr ] + [w2as5 - c5,-]
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Finally, figure A-3 shows how the IOwec's hull pitch motion, uncoupled from

heave, changes when the tank acts on it. For simplicity, we consider b, = 0, even

though it could be estimated through a free-decay test or a Moody diagram for pipes.

We can notice the anti-resonance effect exactly at T = 10s. However, it is worth

to notice that, during his derivations, Lloyd assumes the tank's cross-sectional area

doesn't change along its length. This will never be true for the IOwec due to its

bottom-up tapering. In fact, there is a big change in cross-sectional area from the

connecting duct extremes to its center. A more thorough analysis is required in the

next design iteration of the U-tanks.

0.4 F
e IOWEC Pitch with Tanks

-G - Original IOWEC
G U-Tank

G
1&

I \

/ \

G \-e o

2 4 6 8 10 12 14 16
Wave Period [s]

A-3: U-tank action on the IOwec's bare hull when sized for resonance at
S.
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Table B.1: Probability of occurrence of a given H, and T,, with cells highlighted for values to be used in the 1/ 2 0th scale test
of the WEP 113].

4887 I4887

Tp

6
17240

7
20231

8 9 10 11
4- 4 - - -

13972 13972 7445

12

3798 2193

13 14

1139 1139

15

538

16

253

17

124

1 3237 3237 25177 33879 24486 24486 13305 7028 3959 1974 1974 911 428 206
1.5 599 1 99 17363 39698 36051 36051 19730 10622 5942 2888 2888 1302 601 285

2 0 0 3499 29877 42619 42619 26072 14274 7868 3799 3799 1698 767 357
2.5 0 0 0 11612 38585 38585 30829 17735 9574 4646 4646 2103 938 427

0 1076 25506 25506 29917 19922 I 10955 5390 I 5390 2487 1107 496

0_ 0 0 9989 9989 21876 19844 11858 1 5985 1 5985 1 2821 266 564

0 0 0 1733 1733 13390 22068 15898 8657 1 8657 1 4256 1 1955 874

0 0 0 0 0 7490 27843 23375 13502 13502 6823 3181 1429

0 0 0 3780 18418 20286 13662 I 13662 7240 3504 1603

0 0 0 0 70 8993 17196 13821 13821 7656 3827 1777

0 0 0 0 35 1 4715 12185 11382 11382 7116 - 1862

0 0 0 0 0 1 436 7174 1 8943 8943 6576 : 11947
0 0 0 0 218 6194 I 6194 5358 3583 1896

0 0 0 0 1 0 821 3445 3445 4140 3255 1844

0 11 j411 2168 2168 3007 2578 1616

0_ 0 Ck 0 0 890 90 1873 1900 1388
0 0 0 01_ 847 847 1806 1845 1361

00

4

0.5
5

A 0

Hs

3

3.5
4

4.5

5

5.5

6

6.5
7

7.5
8-

8.5-
9



Appendix C

Fourier Transform

Aegir outputs everything as time-domain signals. Usually we are interested in the am-

plitude and frequency of such signals, which means Fourier transform must be applied

to move between time and frequency domains. Figure C-1 illustrates a pitch motion

signal for T 8s of the 2 gyroscope case after both spin and damping sensibilities.

0.01 -

ce 0.005-

0
0 0

- -0.005-

-0.0 1 ' ' ' ' ' '
0 20 40 60 80 100 120 140

Simulation Time [s]

Figure C-1: Pitch motion signal for T = 8s of the 2 gyroscope case after both spin

and damping sensibilities.

The first step is to exclude the ramp function. We know, from table 6.2, that the

steady state should be achieved around 60s of simulation time. If this is the case, then

applying the Fourier transform to this cropped signal should yield a delta function.

Figure C-2 shows the absolute value of the Fourier transform applied to the cropped
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signal, where, in discrete time f591,

JX5 (w)I =

r/4

00

0 5[n]e-j"n
0

7r/2

Frequency

37r/4

(C.1)

7r

[rad/s]

C-2: Absolute value of the Fourier transform applied to the 8s wave motion

The delta function expected is found, located exactly at 8s. By multiplying its

magnitude by two and dividing by the number of samples yields the motion amplitude.

Particularly for the added-mass and damping calculations shown in section 6.2,

not only the forces amplitudes are needed, but also their phase. The latter can be

easily found through the ratio between the transform imaginary and real parts,

"= atanr
Im{X5 }
Re{X5}

(C.2)
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