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Abstract

This thesis solves the classical problem of simultaneous localization and mapping
(SLAM) in a fashion which avoids linearized approximations altogether. Based on cre-
ating virtual synthetic measurements, the algorithm uses a linear time-varying (LTV)
Kalman observer, bypassing errors and approximations brought by the linearization
process in traditional extended Kalman filtering (EKF) SLAM. Convergence rates of
the algorithm are established using contraction analysis. Different combinations of
sensor information can be exploited, such as bearing measurements, range measure-
ments, optical flow, or time-to-contact. As illustrated in simulations, the proposed
algorithm can solve SLAM problems in both 2D and 3D scenarios with guaranteed
convergence rates in a full nonlinear context.

A novel distributed algorithm SLAM-DUNK is proposed in the thesis. The al-
gorithm uses virtual vehicles to achieve information exclusively from corresponding
landmarks. Computation complexity is reduced to 0(n), with simulations on Victoria
Park dataset to support the validity of the algorithm.

In the final section of the thesis, we propose a general framework for cooperative
navigation and mapping. The frameworks developed for three different use cases
use the null space terms of SLAM problem to guarantee that robots starting with
unknown initial conditions could converge to a shared consensus coordinate system
with estimates reflecting the truth.

Thesis Supervisor: Jean-Jacques Slotine
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

Autonomous mobile robots are changing this world. During the past few years, we

witnessed efforts from both academia and industry pushing the frontier of research

and applications of robotic autonomy. Big companies like Google, Amazon, Tesla,

BMV, Toyota, DJI, Uber, together with top research institutes around the world

have all been investing huge amount of funding and established large research teams

to conquer the most difficult challenges in this area. Technology is developing so

fast that algorithms we use on the Mars rovers 5-10 years ago are maybe now im-

plemented on the $2000 quadcopter in our hands. It seems that we are very closed

to a future taking rides with self-driving cars, ordering groceries with autonomous

delivery drones, cleaning home with robot vacuum cleaners, and further mowing the

lawn, shoveling the snow, taking care of elder people, feeding the pets and so on.

However, there are still key problems to be solved, so that we can be one step closer

to that beautiful future.

Simultaneous localization and mapping is one of these key problems, especially in

mobile robotics research. SLAM is concerned about accomplishing two tasks simulta-

neously: mapping an unknown environment with one or multiple mobile robots and

localizing the mobile robot/robots. Suppose that we are riding with a self-driving
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car in the city. The car needs to have a global map and localize itself in the map,

accounting for sensor information from global positioning system (GPS) and inertial

measurement unit (IMU), and observation of surrounding landscape features, such as

buildings, traffic lights, lamp posts etc. On the other side, the vehicle also needs to

map the surrounding environments, such as trees, pedestrians, other vehicles, and the

roads, for better route planning to avoid obstacles and stay in its own lane. Some-

times, a vehicle could even enter an unknown environment without any pre-equipped

global map. In such cases, mapping and localization need to be done simultaneously.

On the other side, sensors develop to be more and more powerful and cost less

and less. Top performance cameras used in academic research 20 years ago cost

thousands of dollars, while a higher performance camera nowadays costs only two

to three dollars. Novel sensors like lidar and depth camera also become more and

more affordable and it is very common that one mobile robot could be equipped with

multiple sensors.

Not only sensors, robots themselves are also becoming more and more accessible.

We can even use groups of robots for both research study and practical applications.

Group of drones can be deployed for exploring unknown environment or embarking

on rescue missions. Smaller and smaller robots like robot bees [157] or Kilobots [1231

also emerge. The recent development of light-weighted and distributed swarms of

robots is very recent and obvious trend.

In this thesis, we focus on the SLAM problem with new perspectives. We change

the view of sensor information and propose virtual measurements to use direct mea-

surements in a new way. Relying on new concepts of virtual measurements, our

proposed algorithms are totally free of linearization. It enables our proposals to use

linear time varying Kalman filters instead of the extended versions, and relieve in-

consistency and divergence problems that are two of the most important problems

in the SLAM area. New types of sensor information could also be exploited under

18



the same framework of LTV Kalman filter, with special interest in machine vision re-

lated applications. Furthermore, we extend the algorithms to global versions and also

propose a distributed version to keep computation complexity to be 0(n). Finally

we develop new algorithms for multi-robot SLAM scenarios to better meet the rising

need of cooperative navigation and mapping.

1.1 Motivation and problem statement

Researchers in SLAM area have made tremendous progress over the past few decades.

However, there still remain some major challenges that require better solutions and

new challenges emerge as new technology and applications keep developing.

One of the most major challenges is the convergence and consistency of the algo-

rithms. For two of the most popular categories of techniques implemented on SLAM

problems, the Kalman filter methods and the particle filters methods, there are still

significant approximations and linearization involved in the algorithms. For example,

in the extended Kalman filter SLAM, as discussed in [6], nonlinear models are lin-

earized around the estimates to have approximate observation models that may not

accurately match the "true" first and second moments. And due to nonlinearity, as

discussed in [66], [61] and [21] on EKF-SLAM consistency, eventually inconsistency

of the algorithm will happen for large-scale applications, and the estimated uncer-

tainty will become over-optimistic when compared to the truth. Also as suggested

in [6], even novel methods like iterated EKF (IEKF) [8] and unscented Kalman filter

(UKF) [148] fail to provide fundamental improvement over plain EKF-SLAM, and

as a result fail to prevent inconsistency. Further, it is suggested in [6] that inconsis-

tency can be prevented if the Jacobians for the process and observation models are

always linearized about the true states, which is not practical as the true states re-

main unknown all the time. So naturally it raises the question, would it be possible to

19



avoid linearization and use linear time varying Kalman filter instead of the extended

versions of Kalman filter at all?

One other major challenge is the computation complexity of the Kalman filter

related methods. In traditional EKF-SLAM methods, the covariance matrix grows

quadratically with the number of features, since all landmarks are correlated with

each other. During implementations of the algorithms, updating the Kalman filter

through matrix multiplications turns out to be computationally expensive in time of

0(n2 ). Recent research has proposed different methods to handle larger number of

features. For example, methods like [84] and [521 try to deal with the challenge by

decomposing the problem into multiple smaller submaps. FastSLAM introduced by

Montemerlo et al. [1001 represents the trajectory by weighted samples [10;] [381 and

then computes the map analytically. In general FastSLAM takes advantage of an

important characteristic of the SLAM problem as stated in [140] and [107]: landmark

estimations are conditionally independent from each other given the robot's path.

That idea from FastSLAM gives us an inspiration: can we decouple the covariance

matrix by using hierarchical framework of algorithms? More specifically, is it pos-

sible to treat observations of each landmark to be independent measurements from

a corresponding exclusive virtual sensor? And we can relax the constraint that all

these virtual sensors came from the same robot, by assigning them each with a vir-

tual vehicle. Then the problem of SLAM turns to be sensor fusion about independent

observations from all virtual vehicles and finally reach to a consensus as best estimate

for the true vehicle.

New requirements also emerge for researchers in SLAM. Sensors become more

and more available during the past few years. Accessibility of cameras, even depth

cameras along with developments in machine vision boosts research in visual SLAM

[471. Research like [271 [115] [124] [76] [26] [11.4] [8.1] [1.28] [1021 has investigated

different methods using cameras as main sensors to solve the SLAM problem. Besides
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camera, other sensors are also widely used in SLAM: range sensors such as sonar [42]

[241 [113] [1.38], lasers [112] [146], and bearing-only SLAM such as [] [80 [9].

Also, more frequently we see robots equipped with multiple types of sensors, such

as [20] [90] [91] [111]. Then one question arises: can we develop some algorithm

that can be extended to multiple types of sensor information, bearing, range, or even

beyond?

Last but not least, new trends of groups or even swarms of robots emerge as

robots themselves become more and more affordable and less complex. Under such

circumstances, collaborative navigation and collective localization attract much at-

tention in academia. When multiple vehicles share navigation and sensor information,

it would be beneficial to have algorithms to coordinate and process information from

all robots and improve their own position estimate beyond performance with a single

vehicle. Results from [43] [130] [15] [28] [1 [951 [120 12 ] [60] []211 [137] provide

promising and encouraging insights into the problem of multi-robot SLAM. However,

for most of results in this area, it is commonly assumed that different robots start

in a predefined global coordinate system, with known initial headings and positions,

which may not be guaranteed in real world applications, as robots could be far away

from each other and not even have the chance to meet and transfer information. It

broadens our research interest that would it be possible to have an algorithm, such

that without any prior global information or calibration, different robots with un-

known initial conditions could make distributed judgments and eventually reach to a

consensus about both the map with landmarks and their own locations and headings

in a shared coordinate system.
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1.2 Contributions of this thesis

Overall, this thesis focuses on proposing novel algorithms in SLAM for global and

exact estimations using linear time varying Kalman filters. Further, we are interested

in developing a distributed version of algorithm used in global coordinates with linear

computation complexity. Based on these results, we study how to provide general

rules for cooperative SLAM among a group of robots without prior calibration.

The first contribution of this thesis is a new approach to the SLAM problem

based on creating virtual measurements. This approach yields simpler algorithms and

guaranteed convergence rates. The virtual measurements also open up the possibility

of exploiting LTV Kalman-filtering and contraction analysis tools in combination.

Our method generally falls into the category of Kalman filtering SLAM. Compared

to the EKF SLAM methods, we do not suffer from errors brought by linearization,

and long term consistency is improved. The mathematics involved is simple and fast,

as we do not need to calculate any Jacobian of the model. And the result we achieve

is global, exact and contracting in an exponential favor.

The major contributions are:

e Completely free of linearization, the proposed new approach based on creating

virtual measurements is global and exact without any estimated Jacobian. The

algorithm is mathematically simple and straightforward, as it exploits purely

linear kinematics constraints.

* Following the same LTV Kalman filter framework, the algorithm can adapt to

different combinations of sensor information in a very flexible way. We illustrate

the capability of our algorithm by providing accurate estimations in both 2D

and 3D settings with different combinations of sensor information, ranging from

traditional bearing measurements and range measurements to novel ones such

as optical flows and time-to-contact measurements.
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* The algorithm extends to more applications in navigation and machine vision

like pinhole camera model and structure from motion and even contact based

localization like [.37 and 1681 or SLAM on jointed manipulators like [77].

e The algorithm is fully capable of achieving estimations in a global map with

two different proposals. Performances on the classical benchmark Victoria Park

dataset are presented and compared favorably to Unscented FastSLAM and

FastSLAM 2.0.

* Contraction analysis can be easily used for convergence and consistency analysis

of the algorithm, yielding guaranteed global exponential convergence rates.

* Noise analysis about the transformed virtual measurements is provided along

with simulations to support the theoretical discussions. It is shown that the

transformed noise, even with a small bias shift, has little influence over perfor-

mance of the LTV Kalman filter.

The second contribution of the thesis is the proposal of a novel algorithm called

Decoupled Unlinearized Networked Kalman filter (SLAM-DUNK). It uses the idea

of pairs of landmarks and virtual vehicles to decouple the covariances between land-

marks. The idea is practical, as we can think of observation to one certain landmark

to be sensitive to one specific sensor. The problem then transforms to a sensor fusion

problem, where we need to guarantee that these sensors are fixed to each other in the

same coordinate system.

The major contributions are:

" A novel algorithm developing the idea of virtual vehicles to track each single

landmark, and then find consensus among all virtual vehicles for best estimates.

" The proposed algorithm utilizes the conditional independence property of the
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SLAM problem, similar to FastSLAM. It decouples the covariance matrix be-

tween different landmarks and reduce computation complexity to O(n).

The proposed algorithm is tested on the classical benchmark Victoria Park

dataset with favorable performance over Unscented FastSLAM and FastSLAM

2.0.

The third and final contribution of the thesis is a framework for multiple robots

in a certain environment to perform cooperative SLAM without knowing their initial

starting positions and headings.

The major contributions are:

" We develop algorithms for different use cases of cooperative SLAM: the full

observation for all robots case, the robots with partial information case and the

robot-only collective localization case.

" Simulations for each different use case are presented to prove validity of the

algorithms. We can see from simulations that even with no prior calibration

among robots, their coordinate systems converge gradually to a consensus, and

estimations of the same landmarks converge to each other.

" For the case the robots only observe partial information, from the simulations

we observe the achievements that small patches of local maps transform and

stitch up to a large global map.

1.3 Related literature review

In this section, we will introduce related literature in our three major parts of con-

tributions, the LTV Kalman filter, the Decoupled Unlinearized Networked Kalman

filter (SLAM-DUNK) and the framework for multiple robots to perform cooperative

SLAM.
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1.3.1 The LTV Kalman filter

Our contribution in proposing the LTV Kalman filter is mainly about rewriting the

nonlinear observation model into linear constraints with virtual measurements. Using

the proposed LTV Kalman filter, we fully avoid linearization.

There are methods like [91 and [2] proposing the idea of using coordinate trans-

formation to avoid nonlinearity in observation model.

The method [9] takes is to map everything in spherical coordinates with only

bearing measurements, and estimate directly the landmarks' spherical coordinates as

states. In that case, the observation model is changed to linear. But the kinematics

is sacrificed to have a nonlinear model. Then linearization is still required, especially

for states predictions and covariance updates.

The idea in [21 is similar to Anders Boberg et al.'s work in [9]. The difference is to

use modified polar coordinates instead of spherical coordinates while still performing

similar substitution of coordinates. 12] is also developed specifically for bearing-only

tracking and mapping.

Difference between these polar coordinates related methods and our proposals is

obvious. We do not have any coordinate transformation to either polar or spherical

coordinates nor substitute anything to replace the original Cartesian states. What

we do is to re-write the nonlinear observation model and use the direct measurements

like 0 not as simple measurements but as inputs to observation matrices. We do

not sacrifice the linearity of the kinematics model, and our method can accommo-

date many more possible types of sensor information and further extend to machine

vision related applications. The fundamental difference is in the mindset. We use

direct measurements not simply as measurement to compare, but more generally as

information. We then utilize such information to ensure that the rewritten linear

constraints can be satisfied with designed virtual measurements. In the end, what we

care about is information, regardless of using it as measurement or not.
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Besides coordinate transformations, there are also other algorithms focused on

improving consistency of SLAM algorithms [35]. [59] and [58] provide insights about

improving consistency from observability prospective. [4], [10], [149] work on bounding

accumulated nonlinearity with submaps, or even robocentric submaps like [191 [94].

Multi-state constraint Kalman filter in [1021 propose the idea of using geometric

constraints that arise when a static feature is observed from multiple camera poses.

However, it is still approximate and influenced by the linearization error. Informa-

tion filtering SLAM methods like [14] [14114] [15-1] [1521 [68 are more stable than

EKF methods. But they require inversion of the information matrix, which is com-

putationally expensive, or they would need to sparsify the information matrix, which

brings in approximation. Unscented Kalman filter SLAM 9 3] [153] use a minimal set

of carefully chosen sample points to capture the true mean and covariance.

However, for our algorithm, the inconsistency problem caused by linearization is

dealt with improved performance as by using virtual measurements, our proposed al-

gorithm is linear, global and exact, enabling usage of LTV Kalman filter. Consistency

and convergence of the algorithm are inherently guaranteed by the combination of

LTV Kalman filter and contraction analysis. In such case, we do not need to specifi-

cally pay efforts to tune the gain of the Kalman filter for consistency problems, and

the argument is supported by our analysis of noises in Chapter 3.

1.3.2 Decoupled Unlinearized Networked Kalman filter (SLAM-

DUNK)

Our contribution in proposing SLAM-DUNK is to decouple the convariance between

landmarks and reduce complexity of the problem to 0(n).

One major drawback of extended Kalman filter methods of SLAM is that the

complexity grows quadratically with number of landmarks. So for each update step

of the covariance, computational cost makes the algorithms impractical with large
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numbers of features. Power-SLAM [109] deals with the problem by employing the

power method to analyze only the most informative of the Kalman vectors. Meth-

ods like [151] [1521 utilize sparsity of information filters to approximate and reduce

computation. But both these methods may be less accurate, as approximations come

in and loss of information occurs. Methods such as [40] and [134] propose ideas to

select and process only the most informative features based on their covariance and

remove the remaining features from the state vector. However, they introduces ap-

proximations since not all available map features are processed. A series of methods

like [1561 [T8] [64] [52] [3] use submaps to decompose large scale map to smaller

submaps and then stitch the submaps together to save computation to linear time.

D-SLAM [154] introduce the idea of decoupling the SLAM problem into solving a

nonlinear static estimation problem for mapping and a low-dimensional dynamic es-

timation problem for localization. And FastSLAM [100] takes advantage of an impor-

tant characteristic of the SLAM problem that landmark estimates are conditionally

independent given the robotaAZs path. FastSLAM algorithm is able to decompose

the SLAM problem into a robot localization problem, and a collection of landmark

estimation problems that are conditioned on the robot pose estimate.

Our algorithm is more similar to the motivation of FastSLAM, which is to utilize

the conditional independence between landmarks. The difference is that we do not use

any particle filters for sampling. We don't make approximations about the covariance

matrix and information matrix. And we don't need to break the large-scale map

apart. The general idea is to transform the SLAM problem to a sensor fusion or

multi-robot problem, as we can think of observation to one certain landmark to be

sensitive to one specific sensor equipped on one virtual vehicle. It means we make the

relaxation about the constraint that measurements to different landmarks come from

the same sensor on one single robot. Then we use the consensus of virtual vehicles and

the following consensus behavior to compensate that relaxation and guarantee that
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these sensors are fixed to each other in the same coordinate system. The benefits of

such relaxation is the conditional independence between different landmarks, which

decouples full covariance matrix into smaller patches and reduce the computation

load to 0(n).

1.3.3 Cooperative SLAM

Our final contribution is in cooperative SLAM. The algorithms we proposed in the

section utilize the null space characteristic intrinsically in the SLAM problem. So the

group coordination we add onto each robot has no influence over the original SLAM

behavior for each individual robot. And our focus in this part of research is how can

we make sure, different robots starting with various initial states could converge to a

consensus global coordinate system without prior calibration.

There has been very active research in the field of cooperative mapping and col-

lective localization. Research in the field is focused on mainly two parts: cooperative

mapping [161 [57] [143] [461 [72] and cooperative localization [137] [122] [119]. How-

ever, most of these efforts assume prior knowledge of starting states of the vehicles in

a predefined global map, which may be impractical for most of application scenarios.

Efforts like [.159] and [147] provide insightful analysis about robot to robot coordinate

transformation, however, they may not be suitable to scale up to groups of robots.

Algorithms like [18] [12] [17] [158] attempt to perform group SLAM without know-

ing initial states of the robots. However, they have various requirements, such as,

robots need to meet the other robots for either mutual measurement and coordinate

transformation, or information exchange. Cases requiring robots to observe share

landmarks at the same time are also required in some algorithms.

Our algorithm is more general in requirements. Robots without any prior infor-

mation about their own global positions and headings could converge to a consensus

global coordinate system. The only requirement is that robots have observed some
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shared landmarks in there history records. Robots don't need to meet each other or

measure relative poses from one to another. Different coordinate systems will evolve

in the null space without influencing the SLAM performance and gradually converge

to a shared consensus automatically.

1.4 Overview

In this section we give an overview of the thesis:

Chapter 2: Background Material

We start by introducing several topics related to this thesis. We first give a brief

introduction about the Kalman filter and its variations, the Kalman-Bucy filter and

the extended Kalman filter. Then we provide an extensive review of SLAM and

main categories of SLAM algorithms. Finally the contraction analysis is presented,

which will be later used to guarantee convergence and consistency of the proposed

algorithms.

Chapter 3: Landmark Navigation and LTV Kalman Filter SLAM in Local

Coordinates

In this chapter, we introduce the idea of using fictive measurements to transform

nonlinear measurements in SLAM to linear models to avoid linearization. We present

five use cases, each with different sensor information, together with simulation results

to prove usability of the proposed algorithms. Noise analysis of the virtual mea-

surements is also included and we further extend the algorithm to pinhole camera

model.
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Chapter 4: LTV Kalman filter in 2D global coordinates

With proved results in local azimuth model, we then discuss the LTV Kalman filter

in 2D global coordinates. We propose two different algorithms to achieve global

results and run simulations on the popularly used benchmarks, Victoria Park dataset,

in comparison to Unscented FastSLAM and FastSLAM 2.0. We then extend the

algorithms to second order dynamics and applications like structure from motion.

Chapter 5: Decoupled Unlinearized Networked Kalman filter (SLAM-

DUNK)

Further we propose novel algorithm using virtual vehicles to track each different

landmark and then find consensus among all virtual vehicles to get the best estimation

for vehicle states. Such algorithm is decentralized and distributed, which can reduce

computation complexity to O(n). We run the simulation on Victoria Park dataset

and present the result.

Chapter 6: Distributed Multi-robot Cooperative SLAM without Prior

Global Information

This chapter presents novel algorithms for multi-robot cooperative SLAM without

prior global information. With the proposed algorithm, robots starting with different

initial states could automatically calibrate themselves and gradually converge to a

consensus coordinate system. We provide discussions and simulations of three use

cases, the full observation for all robots case, robots with partial information case

and the robot-only cooperative localization case.

Chapter 7: Concluding Remarks

The last chapter presents the concluding remarks, presents the directions for future

research and summarizes the contributions of this thesis.
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Chapter 2

Background Materials

In this chapter, we provide a review of related background materials about the Kalman

filter, simultaneous localization and mapping (SLAM) and contraction analysis that

will be referred to frequently in our later chapters.

2.1 The Kalman filter

The Kalman filter I 11, named after Rudolf E. Kalman, is a linear quadratic estimator

that uses a series of measurements or observations to predict and update estimations

of unknown state variables over time. Such measurements and observations could

potentially contain noise and inaccuracy. Kalman filter has been used extensively

in different areas of applications, including vehicle localization and navigation [4],

signal processing, control theory and so many other scenarios related to estimating

unknown states.

For most of real world applications, we could not estimate an unknown variable

as easy as reading the data from a precise sensor. Noise in sensor data, imperfect

modeling of system dynamics and complex external factors contribute to uncertainty

in the system and create challenges to estimate any unknown variable. The Kalman

filter is an effective tool used to deal with uncertainties and noises. The algorithm
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uses a weighted average of predictions and updates from observations to make sure

that predictions or observations with better certainty from their estimated covariances

are given more trust and weighed more in system estimation. Update steps based

on system model and system inputs and prediction steps incorporating measurement

information are performed alternatively at every time step, which assures that the

Kalman filter is an online version of estimation about best guesses at the moment,

using information from the last step states and making no corrections about historical

states.

More specifically, we use a common model of discrete linear system as example:

Xk = Fkxk-1 + Bkuk + Wk

with observation model

Yk = Hkxk + Vk

where, Fk is the state transition model for evolution of the system, Bk is the control-

input model, wk is the process noise with covariance Qk, Hk is the observation model

and vk is the observation noise with covariance Rk.

We can have the corresponding Kalman filter of two steps as:

Predict

Predicted (a priori) state estimate

Xkjk-1 = Fkx-kljk-l + Bk_1uk_1

Predicted (a priori) estimate covariance

Sk=k-1 = FkPk-Ik-_FT + Qk

Update
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Innovation or measurement residual

Yk = Yk - Hkkkik-1

Innovation (or residual) covariance

Sk = HkPkik_1H + Rk

Optimal Kalman gain

Kk -- Pklk_1H S-1Kkk k

Updated (a posteriori) state estimate

Xkk = Xkjk-1 + Kk~k

Updated (a posteriori) estimate covariance

Pkjk = (I - KkHk)Pklk-

2.1.1 The Kalman-Bucy filter

The Kalman-Bucy filter [70] [69] [151 [641 is a continuous version of the Kalman filter.

For a system with model:

k(t) = F(t)x(t) + B(t)u(t) + w(t)

and with measurements

y(t) = H(t)x(t) + v(t)
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where Q(t) and R(t) respectively represents covariance of the process noise w(t) and

the measurement noise v(t). The Kalman-Bucy filter merges the two steps of predic-

tion and update in discrete-time Kalman filters into continuous differential equations,

one about state estimate and one about covariance:

*c(t) = F(t)R(t) + B(t)u(t) + K(t)(y(t) - H(t)k(t))

P(t) = F(t)P(t) + P(t)FT(t) + Q(t) - K(t)R(t)K T (t)

and the Kalman gain K(t) is given by

K(t) = P(t)H T(t)R- 1(t)

2.1.2 The extended Kalman filter

For a lot of applications in the real world including navigation systems, the problem

is nonlinear and cannot be written into a linear system that Kalman filter could deal

with. That is the reason that the extended Kalman filter as a nonlinear version of the

Kalman filter is applied to these problems. The general idea of the extended Kalman

filter is to linearize about the current estimate of mean and covariance.

For a continuous nonlinear system with model

k(t) = f(x(t), u(t)) + w(t),

and with nonlinear measurement model

y(t) = h(x(t)) + v(t), v(t) ~ N(O, R(t))
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we can have the extended Kalman filter with both prediction and update as

i(t) = f(x(t), u(t)) + K(t)(y(t) - h(R(t)))

P(t) = F(t)P(t) + P(t)FT (t) + Q(t) - K(t)R(t)K T (t)

where

K(t) = P(t)H T(t)R- 1 (t)

Of
F(t) = f kI(t),u(t)

Oh
H(t) = | (t)

2.2 Simultaneous localization and mapping

Simultaneous localization and mapping (SLAM) [831 [14] [142] [41] [36] [11] [1101

[5] is one of key problems in mobile robotics research. There are a lot of cases

where agents like mobile robots, drones, vehicles or vessels etc. enter into some

unknown environment without any pre-defined map. Scenarios of these cases could

be explorer rovers on mars, underwater robots navigation in deep ocean, drones for

package delivery, self-driving cars, and autonomous robots for operation or rescue in

disaster or hazardous locations. In such cases, agents need to have capabilities to

form a map of the environment while also locate themselves in the environment, and

these two tasks are exactly the two parts of problems in the study of SLAM.

2.2.1 Formulation of landmark based SLAM

One common model of the environment consists of multiple landmarks. Such land-

marks could be any feature points. They can be corners, salient points or visual

features in images. They can also be physical landmarks like lighthouses, trees, build-
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ings, furniture, etc. They can even be wireless beacons, satellites, or signal towers.

In a map, these landmarks are usually represented by points, and a coordinate vector

is used to describe the location of each landmark in 2D or 3D space. For example,

in 2D space, a landmark can be represented by xi = [xil, xi2]T and in 3D it can be

represented by xi = [xa, Xi 2, xi ]T.

Similarly, the robot or vehicle can also be represented by a point x, (t) in the space.

However, more than just the positions, we also need to account for attitudes of the

vehicle, where in 2D space, it is a heading angle 0(t) and in 3D space, it includes

the angles of row, yaw and pitch, which we can represent as a vector. With control

inputs to the robot represented by u(t), we can model the motion of a robot as

xC, = f (x, U, 3) + w (t)

where w(t) is the noise from motion that could be caused by sensor noise in mea-

surement of inputs, model uncertainty, slippery contact with ground, etc. With such

model, robot states can be updated based on different kinds of odometry measure-

ments for input u(t). Odometry measurements provide measured information about

relative changes in position and pose of the robot between measurement intervals.

Traditional sensors like wheel encoders and IMUs are usually used to provide such

information. Recently there has been active research on deriving odometry informa-

tion from images of the environment, also known as visual odometry. However, if

we purely rely on odometry measurements to update states of the robot, which is

dead-reckoning, the estimated results will drift away from the truth over time due to

accumulation of random errors from noise.

On the other side, robot could have measurements of landmarks in the environ-

ment. Such measurements usually come with noises. They can be modeled as

yj = H(xV, xi) + vi(t)
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Here vi (t) is the noise from measurement. For the measurements, there could be

multiple types. Two most popular types of measurements are bearing and range.

Bearing measurement is the angle between the heading direction of the robot and

a landmark, which can be usually achieved from camera, lidar, etc. For 2D cases,

bearing measurement only has the angle 0, and for 3D cases, an additional pitch

bearing angle 0 can be measured. Range measures the distance from robot to a

landmark, normally denoted as r. Sensors like lidar, sonar, ultrasonic, etc. could

provide range information. Other sensor measurements like 0 and '- are also possible

information, but are not used very often.

The problem of SLAM is to merge information from both odometry measurements

and landmark measurements to have the best estimation for both the map, which

means positions of landmarks xi's and states of the robot x,. It is essentially a

"chicken-and-egg" problem: given a predestined map, localizing the robot can be

straightforward; and if given the exact robot trajectory, estimating all landmarks

is also easy as measuring constants with noise. In other words, it is an algorithm

that allows a robot, placed at an unknown location in an unknown environment,

to build a consistent map while estimating its location. Solutions to the problem

generally fall into one of two types: online SLAM or full SLAM. For full SLAM

solutions, the algorithms are targeted to provide the best estimation of landmarks

with entire trajectory of the robot taking into consideration of all history data. And

online SLAM is focused on current estimations with latest information and most

recent history, without capability to correct estimations of previous poses. In this

thesis, we focus on providing algorithms for online SLAM, as it can help robots

with realtime localization and mapping, which is more useful in applications like

autonomous driving and unmanned navigation.
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2.2.2 Azimuth model of the SLAM problem

Here we introduce the azimuth model of SLAM, in an inertial reference coordinate C,

fixed to the center of the robot and rotates with the robot (Fig.2-1), as in [88]. The

robot is a point of mass with position and attitude.

The actual location of a landmark is described as x = (X1 , X 2 )T for 2D and

(x 1 , x 2 , X 3 )T for 3D. The measured azimuth angle from the robot is

0 = arctan(-)
X 2

In 3D there is also the pitch measurement to the landmark

= arctan( X 3

1~ + X2

The robot's translational velocity is u = (Ui, U 2 )T in 2D, and (U 1 , U 2 , u3 )T in 3D. Q is

the angular velocity matrix of the robot: in 2D cases

Q [: :1
and in 3D cases

0

WZ

_W1

0

WX

WY

wJ

In both cases the matrix Q is skew-symmetric.

For any landmark xi in the inertial coordinate fixed to the robot, the relative
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Figure 2-1: Various types of measurements in the azimuth model

motion is:

i = -Qxi - U

where both u and Q are assumed to be measured accurately, a reasonable assumption

in most applications.

If available, the range measurement from the robot to the landmark is

r= fx+x in 2D, and r= x.-+x +x in 3D.

2.2.3 A brief survey of existing SLAM results

In this section we provide a brief survey of simultaneous localization and mapping

(SLAM). We review the three most popular categories of SLAM methods: extended

Kalman filter SLAM (EKF-SLAM), particle SLAM and graph-based SLAM, and

discuss some of their strengths and weaknesses.
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Figure 2-2: Position error between estimation and true landmark in Cartesian coor-
dinates
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EKF-SLAM

One of the most popular methods in SLAM field is to use extended Kalman filter to

estimate the map along with states of the vehicle. Remember that in SLAM problems,

two most common types of measurements are bearing and range as

6 = arctan(-)
X2

and

So measurement model of both bearing and range are nonlinear by nature. EKF-

SLAM [104I [231 [103, 132] uses the extended Kalman filter [64] [71], which linearizes

and approximates the originally nonlinear problem using the Jacobian of the model

to get the system state vector and covariance matrix to be estimated and updated

based on the environment measurements. The way that extended Kalman filter takes

to solve the problem is to linearize measurements with estimated Jacobian Hi(ft) as

y =Hx + v(t)

1 J -V/ - 62 0 -V/q1 -3q62H(k) =

62 -J1 q -62 61

where

61 [ il -4~1

[62J [X 2 -Xv2Ji

and

q =6

For EKF SLAM, the size of the system covariance matrix grows quadratically
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with the number of features or landmarks, so heavy computation needs to be carried

out in dense landmark environment. Such issue makes it unsuitable for processing

large maps. Also, since the linearized Jacobian is formulated using estimated states,

it can cause inconsistency and divergence of the algorithm [62] [6]. Furthermore, the

estimated covariance matrix tends to underestimate the true uncertainty.

Particle method for SLAM

The particle method for SLAM relies on particle filters [961, which enables easy rep-

resentation for multimodal distributions since it is a non-parametric representation.

The method uses particles representing guesses of true values of the states to approx-

imate the posterior distributions. The first application of such method is introduced

in [381. The FastSLAM introduced in [1.00 and [99] is one of the most important

and famous particle filter SLAM methods. There are also other particle filter SLAM

methods such as [29].

For particle methods in SLAM, a rigorous evaluation in the number of particles

required is lacking; the number is often set manually based on experience or trial

and error. Second, the number of particles required increases exponentially with the

dimension of the state space. Third, nested loops and extensive re-visits can lead to

particles depletion, and make the algorithm fail to achieve a consistent map.

Graph-based SLAM

Graph-based SLAM [791 [98] [51- [44] [439] [30] [145] uses graph relationships to model

the constraints on estimated states and then uses nonlinear optimization methods

to solve the problem. The SLAM problem is modeled as a sparse graph, where the

nodes represent the landmarks and each instant pose state, and edge or soft constraint

between the nodes corresponds to either a motion or a measurement event. Based

on high efficiency optimization methods that are mainly offline and the sparsity of
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the graph, graphical SLAM methods have the ability to scale to deal with much

larger-scale maps.

For graph-based SLAM, because performing the advanced optimization methods

can be expensive, they are mostly not online. Moreover, the initialization can have a

strong impact on the result.

2.3 Introduction to contraction analysis

Contraction theory [86] is a relatively recent dynamic analysis and design tool, which

is an exact differential analysis of convergence of complex systems based on the knowl-

edge of the system's linearization (Jacobian) at all points. Contraction theory con-

verts a nonlinear stability problem into an LTV (linear time-varying) first-order sta-

bility problem by considering the convergence behavior of neighboring trajectories.

While Lyapunov theory may be viewed as a "virtual mechanics" approach to stability

analysis, contraction is motivated by a "virtual fluids" point of view. Historically,

basic convergence results on contracting systems can be traced back to the numerical

analysis literature [85] [3 1, 55]

Theorem in [861: Given the system equations x = f(x, t), where f is a differentiable

nonlinear complex function of x within C'. If there exists a uniformly positive definite

metric M such that
Of Of T

MY+M-+- M<-3MM

with constant ,3 M > 0, then all system trajectories converge exponentially to a sin-

gle trajectory, which means contracting, with convergence rate 3M. If a particular

trajectory is always a solution to the system, then all trajectories regardless of their

starting states will converge to that particular trajectory.

Depending on specific application, the metric can be found trivially (identity or

rescaling of states), or obtained from physics (say, based on the inertia tensor in a

43



mechanical system as e.g. in [87, 89]). The reader is referred to [86] for a discussion

of basic features in contraction theory.
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Chapter 3

Landmark Navigation and LTV

Kalman Filter SLAM in Local

Coordinates

In this section we illustrate the use of both LTV Kalman filter and contraction tools

on the problem of navigation with visual measurements, an application often referred

to as the landmark (or lighthouse) problem, and a key component of simultaneous

localization and mapping (SLAM).

The main issues for EKF SLAM lie in the linearization and the inconsistency

caused by the approximation. Our approach to solve the SLAM problem in general

follows the paradigms of LTV Kalman filter. And contraction analysis adds to the

global and exact solution with stability assurance because of the exponential conver-

gence rate.

We present the results of an exact LTV Kalman observer based on the Riccati

dynamics, which describes the Hessian of a Hamiltonian p.d.e. [8S]. A rotation term

similar to that of [50] in the context of perspective vision systems is also included.
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3.1 LTV Kalman filter SLAM using virtual measure-

ments in local coordinates

A standard extended Kalman Filter design [1,4] would start with the available non-

linear measurements, for example in 2D (Fig.2-1)

0 = arctan (X)
X2

r 1

and then linearizes these measurements using the estimated Jacobian, leading to a

locally stable observer. Intuitively, the starting point of our algorithm is the simple

remark that the above relations can be equivalently written in Cartesian coordinates.

3.1.1 Basic inspiration from geometry

Let us simply take another look at the coordinates. Indeed in the azimuth model,

the exact position of a landmark in 2D would be

x = (X 1 , x 2)T = (r sin 0, r cos 9) T

and in 3D, we have another dimension with an extra pitch angle #.

x = (Xi, x 2 )T = (r cos # sin 0, r cos 0 cos 0, r sin #)T

In such case, we can have a unit vector pointing to the direction of the landmark,

which we call here the bearing vector h*.

In 2D

h* = (sin 0, cos 9)
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And in 3D

h* = (cos # sin 0, cos # cos 0, sin #)

The inner product between any vector and h* would give the result of the length of

projection of that specific vector along the direction of the bearing vector h*. That

is the reason why in 2D

" sin 0
h*x = (sin 0, cos 0) L cos 0

= r sin2 0 + rcos 2 0

= r

And in 3D

r cos $ sin 0
h*x = (cos 0 sin0, cos cos 0, sin) r Cos cos 0

r sin J
= r cos 2 # sin2 0 + r cos 2 # cos2 0 + r sin 2 o

= r

That means when we take inner product between x and h*, we get the projected

length along the bearing direction, which is exactly the range to the landmark. Such

inner product provides a linear form of constraint that for any estimation X with the

measured bearing 0 and q, and it should be constrained to satisfy:

h x = r

Geometrical meaning of this constraint is to constrain the estimations in a subspace

that is perpendicular to the vector from the vehicle to the landmark. In such case,
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the subspace has one degree of freedom in 2D scenarios, which is a line, and has two

degrees of freedom in 3D scenarios, which is a plaiie. Fig. explaiins the constraint

in 2D case.

hix

TX 2

4

r

Figure
straint,

3-1: Radial constraint in 2D case: the red dashed line is the nonlinear con-
xTx = r2 and the blue solid line is the linear constraint h*x = r

Similar constraints can be achieved from the null space of h*. We can easily find

the orthonormal null space represented by h, the geometrical meaning of which will

be introduced later:

for 2D scenarios

h = (cos 0, - sin 0)

and for 3D scenarios:

cos 0 - sin 0

-sin0sin0 -sincos0

The inner product between any vector and basis vectors in h would give the result of

the length of projection of that specific vector along the tangential directions of the
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bearing vector h*. That is the reason why in 2D

hx = (cos 0, - sin 0) r sin 0

r cos 0

= rcos0sin0-rsin0cos0

=0

And in 3D

rcos#sin0
cos6 -sin6 0

lix r Cos 0Cos 6Isin sin0 -sin cos0 cos) rsinco

r cos # sin 0 cos 0 - r cos # sin 0 cos 0 + 0

-r cos # sin # sin2o - r cos # sin # cos26 + r cos sin (

=0

Geometrically, it measures the length of projections of any vector along the tangential

directions of the bearing, which means that if a vector is parallel to the bearing mea-

surements, the projection on any tangential direction should be 0. Such geometrical

relationship provides another linear form of constraints which constrain the estima-

tions in a subspace along the direction of the bearing measurement, which is a line.

So for any estimation k with the measured bearing 0 and #, it should be constrained

to satisfy:

hk = 0
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3.1.2 Virtual measurement with linear model

Remember that in classical Kalman filter framework, observation is modeled as:

y = Hx + v

While traditional extended Kalman filter methods are linearizing the nonlinear ob-

servation models:

r = V/xTx

and
x 10 = arctan(-)
X2

We can actually change the perspective of the view at the measurement, where instead

of directly comparing the measurement and the observation of 0 and r, we choose to

have feedbacks on the tangential and radial position errors between estimated and

true landmark positions using simple geometrical transformation. Let us take a step

back to review the linear constraints we got in the section before.

For

0 = hx

even when we have the bearing measurement, we do not use it directly as measured

result. Instead, we use the bearing measurement as inputs to the observation matrix

H. And the measured result is replaced by 0, which remains consistent with any

sensor input, but just as constrained by geometry. In other words, this 0 here is not

any existing actual measurement, but a virtual measurement from reconstructing the

original nonlinear bearing observation into a linear model.

The same method can be taken for

r = h*x
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When we have both bearing and range measurements, instead of directly comparing

the measured range with estimation, we use the newly constructed observation matrix

H = h* to remodel the observation. Therefore, even though the measured result is

still r, which is real measurement, the model is now linear.

In other words, instead of directly comparing the measurement and the observation

of 0 and r, we choose to have feedbacks on the tangential and radial Cartesian posi-

tion errors between estimated and true landmark positions using simple geometrical

transformation. To replace nonlinear observations, we can have the linear substitutes

using virtual measurements and further exploit these exact linear time-varying ex-

pressions to achieve a globally stable observer design. This simple philosophy can be

easily extended to a variety of SLAM contexts with different measurement inputs,

especially in the visual SLAM field.

3.1.3 General model of linear time varying Kalman filter in

local coordinates

Here we propose a general continuous LTV Kalman filter structure for SLAM in local

coordinates in the azimuth model. The LTV Kalman filter framework itself is not

much different from a continuous version of Kalman filter, or say Kalman-Bucy filter.

The filter consists of two differential equations, one for the state estimations and one

for the covariance updates.

State estimation:

x= -u- QxQ+K(y - HR)

Covariance updates:

P =Q - KHP - QP + PQ
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with the Kalman gain K given by

K=PHTR-

and

y = Hx + v(t)

Q = cov(w)

Here u is the velocity of the vehicle and so that -u is the relative velocity of the

landmark in the local inertial coordinate system fixed to the vehicle; Q is the angular

velocity of the vehicle; y is the observation vector, which includes both actual and

virtual measurements; H is the observation model matrix, which consists of state-

independent measurement vectors such as h and h*; v(t) is a zero-mean white noise

also in Cartesian coordinates with the covariance R; and w(t) is a zero-mean white

noise included in u (due e.g. to motion measurement inaccuracy, or rough or slippery

terrain).

This general model of linear time varying Kalman filter is compatible with var-

ious types of measurements extending well beyond just range and bearing. In later

sections, we will provide examples using different combinations of sensor information

with detailed analysis and corresponding simulation. In each example, the framework

of LTV Kalman filter stays the same, while definitions of y and H change according

to the type of measurements available, as allowed by the sensors.
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3.1.4 Landmark based SLAM simulation model

We experiment the 2D version of our cases with simulations in Matlab. As shown in

Fig. 3-3, in the simulations, we have three lighthouses with locations

x= [0, 1 0 ]T

X2= [-15, 0 ]T

X3= [15, 0 ]T

The diameter of each landmark

we choose

is d = 2m. For the initial estimation of the locations,

:1 = [-10, 10]T

R2 = [-25, - 5 ]T

R3 = [25, - 1 0 ]T

The initial position of the vehicle is xO = [5, 1 0 ]T, and the vehicle first moves from its

initial position to [15, IO]T and then circles around [0, 10]T in the clockwise direction

with radius 15m. We have run simulations on all five cases. The noise signals that

we use in the simulations are:

standard variance for zero-mean Gaussian noise of 0 is

ao = 2'

standard variance for noise of 9 is

a = 501s
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standard variance for measurement noise of r is

o=2TI

and standard variance for noise of a is

a= 0.50

In Fig. 3-2, the red lines indicate the trajectories of landmark estimations for

Case 1, 11, 111, IV and V. The blue lines are the movement trajectory of the vehicle.

Lighthouse estimation
40

30 -

21-

0

.10t-

21
-20 .0 0 0 20 30

x [I'l
)

Figure 3-2: Landmark based SLAM simulation model: three lighthouses with loca-
tions x1 = [0, 1 0]T, x 2 = [-15, 0 ]T, x3 = [15, O]T. True location as green dots and
estimations are black dots.
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3.1.5 Five use cases with different sensor information

In this section we present five use cases with different sensor information: bearing

measurement only, bearing with range measurement, bearing with independent 0

information, bearing with time to contact measurement T, and finally range measure-

ments only. All use cases share the same LTV Kalman filter framework, while we only

change y and H correspondingly. In each case, we also provide simulation results in

synthetic landmark environment and also convergence rate analysis in 2D cases.

For convergence rate analysis, we provide contraction analysis on the direct ob-

server of 2D cases by making R = I and P = I to discuss the contracting direction

and convergence rate. The system we analyze would be

i= -U- R+ HT(y - HR)

where we only need to analyze the eigenvalues of the Jacobian of the system -HTH.

Case I: bearing measurement only

The bearing sensor measures the direction toward features from the robot through

a sensor such as a camera. The case that a vehicle has bearing measurement only

is actually very popular, especially when a vehicle or a drone has only a monocular

camera on board. Since for flying vehicles, the payload is constrained by a significant

degree, which may make lidar impossible to be equipped, camera is the only option.

Meanwhile, camera is becoming more inexpensive while more machine vision tech-

niques become accessible for feature extraction and data association. A camera based

SLAM algorithm with only bearing information would be very useful for restructuring

a 3D world map while also localizing the vehicle itself. Bearing only measurement is a

difficult case partially because the nonlinearity measurement makes the computation

of useful posterior statistics for recursive filtering methods such as Kalman filters very
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difficult, since that requires linearization near the true state to be useful.

This original version of bearing-only SLAM was presented in [881. It came directly

from the geometrical constraint that we discussed in earlier sections where:

y=o
H = h

H=h

Geometrically, the virtual measurement error term hx corresponds to rewriting an

angular error as a tangential position error between estimated and true landmark

positions. As the vehicle moves, at any instant the system contracts exponentially in

the tangential direction if R > 0, and it is indifferent along the unmeasured radial

direction. For the bearing only case, the two eigenvalues of the Jacobian -HTH are

A,= 1 and A= 0

This suggests that our system is semi-contracting exponentially in the tangential

direction and indifferent in the un-measured radial direction. As shown in Fig. .- 3,

we can see the true locations of landmarks are located with in the 3- covariance

ellipses. Fig. -4 shows that more than 99.7% of the direct virtual measurement

residues stay in the 3- bound obtained from the diagonal elements of the innovation

matrix, which matches well with statistics. From Fig. 3--5, we confirm that more than

95% of transformed Cartesian measurement residues remain within the 3- bounds.

And we show in Fig. 3-6 the long term residue in the last 20 seconds after 5000

seconds of simulation suggesting that the estimate does not drift, even over a long

period of time.
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Landmark simulation for bearing olny
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Figure 3-3: Landmark estimation for Case I with bearing only measurements
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Figure 3-4: Direct virtual measurement residuals (solid) and corresponding 3- bounds
(dashed) for Case I
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Landmark II
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Figure 3-5: Transformed Cartesian measurement residuals (solid) and corresponding
3- bounds (dashed) for Case I
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Figure 3-6: Long term measurement residuals (solid) and
(dashed) for Case I

corresponding 3or bounds
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Case II: bearing with range measurement

Sometimes, the robot is equipped with a camera with depth measurement, like Kinect,

or a lidar sensor onboard, especially for ground vehicles, or even combination of

different sensors that give both bearing measurement 0 and < and range measurement

r. In these scenarios when we have both bearing and range measurements, we can

apply another new constraint in addition to the bearing introduced in Case I:

y 1 = hx= 0

Y2 = h*x = r

So that for both 2D and 3D environments, the virtual measurement is:

Y1 0
Y=

LY2 J LrJ

h
H =

h*

For Case 1I(2D), the two eigenvalues of the Jacobian -HTH are

A = 1 and A 2 = 1

. The system is contracting on both tangential and radial directions since some

measurements associated with radial information are provided. From simulation in

Fig. .3-7, we can see that the estimations contract faster than Case I, because now

the system is also contracting exponentially on radial direction.

Also shown in Fig. 3-37, we can see the true locations of landmarks are located

with in the 3o- covariance ellipses. Fig. 3-8 shows that more than 99.7% of the
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Landmark simulation for range and bearing
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* Estimated Landmark Position
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Figure 3-7: Landmark estimation for Case II with both bearing and range measure-
ments
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direct virtual mleasurement residues stay in the 3T i)ounid obtained from the diagonal

elements of the innovation matrix, which matches well with statistics. From Fig.

,-9, we confirm that more than 95% of transformed Cartesian measurement residues

remain with in the 3u- bounds. And we show in Fig. I-10 the long term residue in

the last 20 seconds after 5000 seconds of simulation to confirm that the estimates do

not drift away after a long period of time.

Figure 3-8: Direct virtual measurement residuals (solid) and
(dashed) for Case II

lii

corresponding 3a bounds

Case III: bearing with independent 9 information

In this case we utilize 0 as additional information. 0 is the measured relative angular

velocity from the robot to the landmark and we also have in the 3D case. Indepen-

dent 0 measurement could be achieved either computationally from 0 or through opti-

cal flow algorithms with visual sensors. We propose here that 0 gives us an additional

dimension of information that helps the LTV Kalman filter with radial contraction.

The additional constraint or observation we get is based on the relationship

range x angular velocity = tangential velocity
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where in our case h*k is the length of vector k projected along azimuth direction to

represent the estimated range.

So if the estimation is precise, 6h*k + hQ should equal to -hu, which is the

relative velocity projected along the tangential direction.

In this case, yi = hx = 0 is still the constraint on bearing measurement. Addi-

tional constraints taking consideration of rate of bearing measurements in 2D

Y3 (Oh* + hQ)x = -hu

and in3D [[ sicos9 oh
d =n (D + hQ )x = - hu

h*

are the constraints about relative angular velocity, radial distance and the tangential

velocity.

The same constraint could be derived similarly from:

d
-hx = 0 -+x + hx = 0
dt

which means

hx + h(Qx + u) = 0

where in 2D

h=Gh*

and in 3D

= [[sin 9 cosO oi
s h*

Such derivation achieves the same result as the constraint we proposed earlier about
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tangential velocity. So the virtual measurement consists of two parts:

Y1 0

y = 3 K = -hu

with the observation model in 2D

h
H=

[h* + h]

and in 3D

For Case III in 2D, the

h

H = [ sin0 cos0 0 +h]

t g h*

two eigenvalues of the Jacobian of the system are

A, = 1 and A2 = (0 + wz) 2

The system contracts in both tangential and radial directions when

A2 = (O +WZ) 2 :O

When A2 = ( + wz) 2 = 0, the robot doesn't have any tangential movement relative

to the landmark, and no extra information is flowing in, which changes the system

from fully contracting into semi-contracting only on the tangential direction. Since

considering bearing measurements 0 and 0 alone, which is the case in Case I, only cares

about the error on the tangential direction, it hasn't fully exploited the information

that bearing measurement provides. By taking consideration about 0, we are actually

exploiting an extra constraint, which is about the relationship between tangential
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velocity, radial distance and angular velocity. Such constraint only exists when A2

(9 + w')2 # 0. As a result, additional information only flows in when the robot

has relative tangential movement, and that is reasonable and intuitive. Simulation

results are shown in Fig. 3-11., which also guarantees that the estimated locations of

landmarks stay in the 3a covariance ellipse.

Landmark simulation for bearing 0 and 9

30

20

10

-10

.1 .
.30 -20

X, fm
10 20 30

Figure 3-11: Landmark estimation for Case III with both bearing 0 and independent
9 measurements

Fig. 3-12 shows that more than 99.7% of the direct virtual measurement residues

stay in the 3- bound obtained from the diagonal elements of the innovation matrix,

which matches well with statistics. From Fig. 3-13, we also confirm that more than

95% of transformed Cartesian measurement residues remain with in the 3- bounds.

And the long term residue shown in Fig. 3-14 in the last 20 seconds after 5000 seconds
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of simulation remains in the bound without drifting away.
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Figure 3-12: Direct virtual
bounds (dashed) for Case III

measurement residuals (solid) and corresponding 3-

Case IV: bearing with time to contact measurement T

In this case we utilize the "time to contact" measurement as additional information.

Time-to-contact [:A] [1 j [t] measurement provides an estimation of time to reach

the landmark, which could suggest the radial distance to the landmark based on local

velocity information. This is a popular measurement for sailing and also utilized by

animals and insects, such as pigeons who have cells that respond to time to contact.

The basic theory of time to contact can be derived from the pinhole camera model.

For a robot, the 'time to contact" measurement could be potentially achieved by

optical flows algorithms, direct gradient based methods like [5(], or some novel sensors

specifically developed for that purpose.

As shown in Fig. -1, we can get the measurement T = j where a is an small
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angle measured between two feature points, edges on a single distant landmark for

example. In our case, we use the angle between two edges of the cylinder landmark

so that
d

a ~r,- arctan( )r

where d is the diameter of the cylinder landmark and r is the distance from the robot

to the landmark. Thus in this case besides the bearing constraint yi = hx = 0, we

propose a novel constraint y4 utilizing the "time to contact" T.

As we know r = h*x so that

d
S= -dh*x

dt

= -h*u - h*Qx + h*x

Since h* is the unit vector with the same direction of x, and both h*Qx and h*x are

equal to 0, so simply? = -h*u, and

r h*x

r -h*u|

which means:

ITh*ul ~ h*x

so we can have

Y4 = ITh*ul

combined with the bearing measurement we have

Y1 0

L 4 | rh*ul
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h
H=

h*

So that y = Hx + v, which is applicable to both 2D and 3D cases. One thing to

note is that the time-to-contact measurement is an approximation. In addition, when

uh ~ 0, r would be reaching infinity, which reduces the reliability of the algorithm

near that region.

Same as Case II(2D), the two eigenvalues of the Jacobian -HTH are

A = 1 and A2 = 1

. The system is contracting on both tangential and radial directions since some

measurements associated with radial information are provided. Fig. 3-4 suggests

that more than 99.7% of the direct virtual measurement residues stay in the 3a bound

obtained from the diagonal elements of the innovation matrix, which matches well

with statistics. From simulation in Fig. 3- 15, we can see trajectories of converging

estimations while the estimations stay in the 3- bound. Also from Fig. 3,17, we

confirm that more than 95% transformed Cartesian measurement residues remain

within the 3- bounds. And the long term residue do not drift away as shown in Fig.

3- in the last 20 seconds after 5000 seconds of simulation.

Case V: range measurement only

If the robot has no bearing information, it may still perform SLAM if range measure-

ments and their time-derivatives are available. This case is still very popular because

the robot may be equipped with Doppler radar or sonar. Since

r2 = T
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Landnark simulation for bearing 0 and time-to-contact T
4011 1
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Figure 3-15: Landmark estimation for Case IV with both bearing 0 and time to
contact measurement T
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we can have

dr
dt

d T
dt

- (uT + xTQT)X

= -(uTx

measurements of both r and r (e.g. from a Doppler sensor) can be used in the LTV

Kalman filter framework, in which case

y = ri = Hx

H = uT

in both 2D and 3D.

The same converging property can be observed from the simulation shown in Fig.
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, with confirmation that the estimations stay in the 3a bound in the covariance

ellipse. Fig. shows that more than 99.7% of the direct virtual measurement

residues stay in the 3- bound obtained from the diagonal elements of the innovation

matrix, which matches well with statistics. In addition, more than 95% of transformed

Cartesian measurement residuals stay in the 3- bound for all landmark estimations

in Fig. 3-21. And the long term residue shown in Fig. 3-22 in the last 20 seconds

after 5000 seconds of simulation remains consistent.

Landmark simulation for bearing 0 and time-to-contact -r
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Figure 3-19: Landmark estimation for Case V with range only measurements
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Figure 3-20: Direct virtual
bounds (dashed) for Case V
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74

X

31



3 -

40

Landmark I Landmark 11

4 -

500 1000 1500 2000 0 So 1000 100 2000

K

500 1000 1500 2000 0 000 1000 1500 2000
Time Step (0.025 scotvd)

Figure 3-22: Long term measurement residuals (solid) and
(dashed) for Case V

Landrmark 111

0 500 1000 100 2000

0 SWA 1000 1500 2000

corresponding 3- bounds

Experiments for 3D landmarks estimation

We also have simulation results for Case I and Case III in 3D settings. Here we have

three lighthouses with different locations. The results shown in Fig. 3-23 suggest

that our algorithm is capable of estimating landmarks positions accurately in 3D

space with bearing angle for both yaw and pitch. Animations of all simulation results

are provided at t -s 9

Remarks

As shown in the diagram, trajectories of estimations from Case II, III, and IV are

more smooth and directed than the original Case I and Case V. This is because the

trajectory exploits additional information. In particular, for Case III and IV, since the

"time-to-contact" measurement and radial distance measurement both contains in-

formation on the radial direction, they converge to the true position directly, without

waiting for the vehicle movement to bring in extra information.

The estimated landmark positions are based on the azimuth model in the iner-
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3D Landmark simulation for case I and III
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Figure 3-23: 3D landmarks estimation in Case I and III
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tial coordinate system fixed to the robot. Thus, the positions of the landmarks are

positions relative to the robot rather than global locations. Denoting the states of

the visible landmarks by xi1 , and corresponding measurements 65 and ri, each with

independent covariance matrix P.

i= -u - Qkij + K(y - Hilkis)

Pi = Q - PiHTR1 HiPi - QPj + Pj2

Since the relative landmark positions are conditioned on the local inertial coordi-

nates of the robot, covariances on each pairs of landmarks are fully decoupled, which

shrinks the covariance matrix down to the dimension of single landmark's coordi-

nates. Furthermore, complexity in all local cases scales linearly with the number of

landmarks. Algorithms that we proposed in this section above successfully transform

the original nonlinear measurements to linear constraints, which enable application

of linear time varying Kalman filter on the problem.

3.2 Contraction analysis for the local LTV Kalman

filter

Since all our cases follow the same LTV Kalman filter structure, we can analyze

the contraction property in general for all cases simultaneously. The LTV Kalman

filter system we proposed in previous section contracts exponentially for each single
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landmark, with metric Mi = P7', as analyzed in 1881:

0 fT Of-19f Mi + Mi--9f- + M~i
&xi axi

= -MiPiMi - Mi(Q + PiHTR4Hi)-(Q+PiHR- Hi)TM,

= -MiQMi - HTR 1 Hi - MQ - QTM, + M,(QP, - PQT)Mi

= -MiQMi - HYR-'Hi

The result above leads to global exponential Kalman observer of landmarks (light-

houses) around a vehicle. Hence for any initial value, our estimation will converge to

the trajectory of true landmarks positions exponentially. It gives stability proof to the

proposed LTV Kalman filter and boundedness of M is given with the observability

grammian. However, LTV Kalman cannot compute the convergence rates directly,

because the convergence rate is given by the eigenvalues of -MiQiMi - HTR'Hil,

which is related to M.

3.3 Noise analysis

A basic assumption for the Kalman filter is that the noise signal v(t) = y-Hx is zero-

mean. Since the actual measurements obtained from a robot are 0, #, 0, <, r, and T,

we need to verify that the mean of noise remains zero after incorporating them into the

virtual measurements to transform direct errors of measurements to Cartesian errors

between estimation and truth. Similarly, the variance estimates in the initial noise

model have to be ported to the new variables. The general philosophy of this paper

is that typically the noise models themselves are somewhat coarse estimates, so that

this translation of estimated noise variances to the new variables can be approximate

without much practical loss of performance. Recall also that the LTV Kalman filter

is the optimal least-squares LTV filter given the means and variances of the driving
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and measurement noise processes, regardless of the noise distribution. In addition,

the precision on Q and R does not affect the filter's stability and convergence rates,

but only its optimality.

For our proposed algorithm using LTV Kalman filter on SLAM problem, the

measurement model can be generally formulated as

v(t) = y - H(0,# 01 , )x

For components of the measurement y, they can be both virtual measurements like

0 = hx

(Oh* + hQ)x = -hu

ITh*ul = h*x

r- = uTx

and actual measurements like

r = h*x

And noise come from both the measurements y and the model matrix H(0, , 9, s),

since the model matrix takes noisy measurements of 9, #, 0, e as inputs. For the

measurements part, if it comes from actual measurement, then noise analysis comes

directly from sensor specifications. If it comes from virtual measurements, it is easy

to use different methods like the Monte Carlo to calibrate mean and variance of the

virtual measurement noises. Therefore, in this section we focus on analyzing noises

that come from model matrices. More specifically, we discuss about noise from

hx and h*x
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For Cases 1, 11, 111 and IV, assume the bearing angle 0 we measure comes with a

zero-mean white Gaussian noise

wo ~ N(0,o)

and # with a zero-mean white Gaussian noise

w4 - N(0, or)

then

E[cos(0 + w)] = E[cos cos(w) - sin0sin(w)]

= cos 0E[cos(w)] - sin OE[sin(w)]
s2

= e 2 COS 0

and similarly

E[sin(0+w)] = E[cos0sin(w)+sin0cos(w)]

= cos OE[sin(w)] +sin OE[cos(w)]
2

= e 2 sin0

Combined with the geometry:

(2D)

x1 = rsin0

x 2 = r COs0

(3D)

x1 = r sin 0 sin 0
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X2= r cos 0 sin p

X3= r sin 0

For our virtual measurement

y = hx +v

where

h = [cos 0, - sin 6]

the noise

v = 0 - hx =

so that the mean of the noise

E[v]

-(x1 cos 0 - x 2 sin0)

= E[O - hx]
2

S-e-2 (x 1 cos - x 2 sin 0)

-0

(3.2)

which means there is no bias in this case.

In the 3D case

cos 0 -sin

- sin q sin 0 - sin $ cos 0
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= E[O - hx]

-e-f(x 1 cos9-x 2sin9)
2 O2

-e 2 )Cos q5Sill )
0

-e 2 )cos sin)

So there would be a small bias in the second term.

And for virtual measurement

y = h*x + v

where

h* = [sin 0, cos 0]

the noise

V = r - h*x = r - (x 1 sin 0 - x2 cos 0)

so that the mean of the noise

E[v] = E[r - h*x]
2

= r- e 2 (x1

S(1-e-2)r

sin 0+ X 2 COS 9)

(3.3)
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which means there is small bias in mean value, where in the 3D case

E[v] = E[r - h*x]
2 2 _2

= r-e 2 (e- 2 xisin sinq$+e 2 x 2 cos 0 sin#+ x3 cos )
_02 2

r(1 - e 2 sin#- e 2 cos

(3.4)

Besides theoretical analysis about the noises of hx and h*x, we also provide simu-

lation results supporting the analysis. We set up a simple 2D simulation environment

as r = 4m, Or = 0.2m, 0 = 45' and co = 5'. We use 10000 samples to estimate

and analyze the errors. Fig. 3-24 shows the plot of hx and h*x combined. More

specifically, we can see from the histogram of hx in Fig. 3-25 that the ported noise

is bias free, and close to a Gaussian distribution. Combined with the Monte Carlo

method we get that the mean-shift of 10000 samples is -0.0016, which supports the

analysis that the noise stays bias free. From histogram of h*x, error distribution

of (rreai - h*x) is one-sided, which means there is a bias that makes the noise not

zero-mean. The reason of the mean-shift can also be referred to Fig. 3-1. We then

plot the change of noise distribution between the original range measurement o and

the ported noise rmeasured - h*x as shown in Fig. 3-27. The means-shift is very small

under the setting and negligible. The Monte Carlo result about the mean shift of

10000 samples is 0.0151, which is consistent with our analytical result of the bias

(1 - e~ 2 )r = 0.0152 when we substitute in the numbers. Such a bias is small enough

to ignore considering that a, = 0.2m.
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Error distribution of hx and h*x
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Figure 3-24: Error distribution of hx and h*x
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Figure 3-25: Error distribution of hx
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Figure 3-26: Error distribution of real - h*x
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Error comparison between range measurement and virtual measurement
350)
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-
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Figure 3-27: Error comparison about range measurement between actual and virtual
measurements r and r = h*x

Following the same logic and process, we get that in Case II (3D)

0

-r(e2 - e 2 )cos #sin4)

r(1 - e- sin 2 # - e 2 cos 2 4)I
In Case III (3D),

E[v]

2

2

0
2 2

- e. 2 0) Cos 0 sin4
,2 2 

q2

7 'k 0+ - SoOin2
- e-)rsin2q$+ (e-2 - e 2 )r cos2

(e2 -e e- )(n3 cos# -4)r sin24) /

In Case IV (3D),

0
_2 r2 +a2

-'(C2 - e- )cos sin#
-

2  
2 )

(e 5 -e 2 )(TU 3 sin )r sin)
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We can see that in each case, the means of noise only shifts with a scale coefficient

of (e 2 - e- 2 ) or (1 - e2 ). When the variances o- and oa are small, that

coefficient is almost zero. Even when we increase in simulations the actual variances

of the bearing measurements to 100 (which is unrealistic based on the performances of

current instruments), the mean shift is still in on the scale of 10- 2m. It thus remains

negligible and does not need to be subtracted.

For Case V, since H = uT and

be no mean-shift for the noise

radius r are measured independently, there would

V = U x+r-

which means

E[v] = 0

in both 2D and 3D cases.

Remark

The variance of the noise on the virtual measurements can also be easily approx-

imated. For the bearing and range virtual measurements, one has

hx = r(cos(0 + w) sin(0) - sin(O + w) cos(O))

= -r sin w

(3.5)
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r - h*x = r - r(sin(6 + w) sin(0) + cos(6 + w) cos(6))

= r(1-cosw)

= 2r sin2 (w/2)

(3.6)

In such case

Var(hx) - E[r 2 sin2 W]

- r 2E[sin2 W]

; r2 E[w 2]

= 0 2 2

(3.7)

and

Var(r - h*x) = E[2r sin2(w/2)]

4r2 E[sin4 (w/2)]

4r2 E[(w/2)4]
04

2r
4

(3.8)
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For covariance between the radial and tangential errors, we have

Cov(r - h*x, hx) = E[r(1 - cosw) * (-rsinw)]

Sr 2E [cos w sin w] - r2 E [sin W]

-0

(3.9)

Since the exact r is not known, when computing matrix R it may be conservatively

replaced by a known upper bound rmax , or more finely by

r* = min(rmeasured + 3 9r , rmax)

where a-, is the variance of the range measurement noise.

3.4 Extension on pinhole camera model

X3
"X2

Rmg p

Image plane

Figure 3-28: Pinhole Camera Model
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The principle of transforming a nonlinear measurement into a LTV representation

is applicable to other contexts, for instance the pinhole camera model. The geometry

related to the mapping of a pinhole camera is illustrated in the Fig. 3-2. The pinhole

camera model is an ideal camera, whose aperture is described as a point and no lenses

are used to focus light. The model describes the mathematical relationship between

the coordinates of any feature point in 3D world and its projection onto the image

plane of the pinhole camera. All projection lines must pass the "pinhole" aperture of

the camera. Such pinhole aperture is assumed to be infinitely small as a point. It is

also often referred to as the "optical (or lens or camera) center".

Image plane
P

11

Figure 3-29: Geometry of Pinhole Camera Model

The absolute 3D orthogonal coordinate system in 3D global world is fixed at its

origin at point 0. This is also where the "camera aperture" is located. The three

axes of the coordinate system are X1, X2, X3. Axis A 3 is the viewing direction of the

camera and also the "optical axis" or "principal axis". An image plane where the 3D

world is projected to through the aperture of the camera is parallel to axes X1 and

X2. It is located at distance f, which is the focal length from the origin 0 in the

negative direction of the X3 axis. An actual point in world coordinates P is positioned

at (X 1 , X2, X 3 )T relative to the axes X1, X2, X 3. The projection line of point P into

the camera is the green line which passes through point P and the point 0. The

projection of point P onto the image plane is denoted by Q, which is the intersection
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point of the projection line and the image plane. The coordinates of point Q relative

to the local coordinate system on the image plane is (yi, y 2 )T. From simply geometry

analyzing similar triangles as shown in Fig. 3-29, we can have:

Y1 f Xi

which can be rewritten as LTV constraints on the states (X 1, X2, X3)

f z] j2 =Hx=O

0 f Y2
L J X3

based on the measured yi and Y2. If in addition we measure the velocity u of the

camera center and the angular velocity matrix Q describing the vehicle's rotation, the

kinematics model is

i = -u - Qx

So we can extend the same LTV Kalman system to estimate the local position of the

target shown on the image plane as:

x = -u - Q2 - PHTR-1Hk

with covariance updates

P = Q - PHTRlHP - QP+ PQ
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Chapter 4

LTV Kalman Filter in 2D Global

Coordinates

What we introduced in the chapter above is based on a local coordinate system

fixed to the vehicle. The result we achieve is more about mapping the surrounding

environment rather than localization, since localization requires putting the robot in

a global coordinate system. In this chapter we propose two methods to obtain global

mapping and localization results. The first method concern directly transforming

what we achieve in local coordinates as inputs to a second stage of Kalman filter and

use the poses of a vehicle x8 = C osj as new states instead of using 3 directly.
[sin# J

The second method is about extracting the pose of vehicle )3 out of the states and

have a nonlinear optimization specifically for the pose and further feed it into a full

LTV Kalman filter that is proved to be contracting to the truth exponentially. Fig.

4-1. explains the different coordinate systems we use in this thesis.
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<

Figure 4-1: Different coordinate systems we use: the global coordinates CG, the local
coordinates C and the rotational coordinates CL
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4.1 Direct transformation to 2D global coordinates

In this section, we feed the local estimations of all landmarks relative to the vehicle

to a next stage of Kalman filter as inputs. When we try to transform the local

observations to global coordinates recovering both the map and the location of the

vehicle, we need to consider the robot heading /3. We use the local estimations xi1's in

the first stage as inputs to the second stage. Remember that we have the coordinates

transformation for each landmark xi (global) and the vehicle position xv as:

cos3 sin# xii
xi- x, =[-sn] ]

csin cosJ xi2

which we can transform and hence use

cos 1
X/ =

sin#3

as new states related to the heading of the vehicle, where

XT 1
X 3 = I

So that once again we have linear constraint as

[xin xll i F cos 31

[i12 -Xill sin 3
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So we can use an LTV Kalman-like system updated as:

d
dt

x1

x2

xn

X

xP
0

0

0

0

U

0
x13

+ PHTR-'(

0

0

0

1-

I

0

0

0

0

I

0

0

-I

-I

-I

0

-H

-H 2

T-Ha

x1

x2

xn

Xy

Lx)3

)

Covariance updates

P=Q-PHTR-1HP - QP -PQT

where the observation model matrix H is

I

0

0

0

0

I

0

0

-

-I

-I

0

-H

-H 2

-H

xj T

and the skew-symmetric matrix Q is

0

0=
[0

0

0 -w]

0

Here only the constraint xO x# = 1 is nonlinear. All the remaining constraints of the

system are all time varying linear constraints. Note that in this stage of transforming
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local estimations to global coordinates, we are utilizing a full state Kalman filter with

results from the first stage as virtual inputs. Computationally, the LTV Kalman filter

at this stage takes as much computation as the traditional EKF methods. The differ-

ences are: first, our LTV Kalman filter is mostly linear except for the part xOxf = 1;

second, our LTV Kalman filter can solve problems where radial measurements are

not available.

4.2 Full LTV Kalman filter in 2D global coordinates

The algorithm we proposed above still has several potential concerns: first, the con-

straint xx/ = 1 is still a nonlinear virtual observation, which makes the Kalman

filter not linear anymore; second, the two stage framework having local estimations

first and feeding the results to a second stage for global results may be redundant and

complex. These concerns encourage us to explore a more compact version of algo-

rithm for global results. Before introducing the full LTV Kalman filter in 2D global

coordinates, we first analyze the Kalman filter in an intermediate local coordinate

system CL.

4.2.1 LTV Kalman filter in 2D rotation only coordinates

The local coordinate CL is fixed to the origin of the robot at t = 0, and has the same

attitude as the robot, which means CL has no translation movement but rotates as

the robot. Here we use the bearing only case (Case I) as an example to explain the

structure, and it can be easily extended to other measurement models. Recall:

0 = arctan( c)X2

h = (cos 0, - sin 0)
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0 --

We name the local coordinates in CL for each landmark's position XiL and the vehicle's

position XVL. For the bearing only case we have the linear constraint

h(XiL -XvL) = 0

For the kinematics of the system we have both linear velocity and angular velocity

on the vehicle and angular velocity alone on the landmarks:

kXL = U + QXvL

kiL = QXiL

So similar to the LTV Kalman filter proposed in Chapter

another LTV Kalman system updated as:

X1L

X2L

XnL

XvL

0

0

0

U

Here

+ diag(Q)

hi

0

0

X1L

X2L

XnL

XvL_

0

h2

0

- PHTR-lH

0

0

--- hn

3 before, we can use

X1L

X2L

XnL

XvL
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And the covariance matrix updates as:

P = Q - PHTR-lHP + diag(Q)P - Pdiag(Q)

This system is contracting while free of attitude of the vehicle (heading angle 3 in 2D

case). Since the true positions of landmarks and vehicle are particular solutions to

this contracting system, all estimated trajectories are guaranteed to converge to the

true trajectory exponentially.

4.2.2 Full LTV Kalman filter in 2D global coordinates

Now we look at the problem of LTV Kalman filter in 2D global coordinates. We call

the coordinate system CG, which is fixed at the starting point of the robot. Positions

of landmarks in global coordinates are xiG and position of the vehicle is XvG- So a

transformation matrix from coordinate system CG to C is simply a rotation matrix

T(O). It means

XiL =T(#)xiG

and

XL = T(#)xvG

Substituting these transformations into the LTV Kalman filter proposed in 4.2.1, we

can have a LTV Kalman filter in global coordinates describing the same model using
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virtual measurements as:

KX1G

X2G

XnG

XvG

0

0

0

u cos 13

u sin 0

- PH GR- 1HG

X1G

X2G

XnG

kvG

Where

hiT(3) 0 --- 0 -hiT(O)

HG 0 h2T() ... 0 -h 2T(3)

0 0 ... hnT(3) -hnT(,3)

In this LTV Kalman filter, we extract the attitude of the robot from of the state

vector and treat it as a component in the virtual measurement, which helps eliminate

the nonlinearity in the model. The value of 3 is determined based on the model by

tracking a desired value 3d,

where !d minimizes the quadratic residue error,

ia= argmrin/3E[ 7 I.J1xT H T Hx

In the 2D case,

1 Z*[- sin 20i(x2 1  G X2) + 2 cos 20ixiGlXiG2]
= - arctan

2 L [- cos 2Oi(x G1 - iG2) 2 XiG1XiG2 sin 20i]
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when at every instant the sums are taken over all visible landmarks. Since this LTV

Kalman filter is obtained simply from a coordinate transformation from the Kalman

filter proposed in 4.2.1, which is contracting regardless of the attitude states, this

LTV Kalman filter in the global coordinate system is contracting as well exponentially

towards the true states.

Because all cases analyzed in previous sections using different combinations of

sensor information follow the same framework, they can all be treated in global co-

ordinates as same as the bearing only case. In each of these cases

HG = HLdiag(T())

with a different /d minimizing the residue error (y - Hx)T(y - Hx) in each case.

Note that for estimating the positions of landmarks and the vehicle in global

coordinates, we actually utilize a full state Kalman filter, so that, computationally, the

proposed LTV Kalman filter takes as much computation as traditional EKF methods.

However, our LTV Kalman filter is linear, global and exact. Furthermore, it uses

a common framework to solve problems involving different combinations of sensor

information, and contracts exponentially to the true states.

Remark I: Nonlinearity in vehicle kinematics

When traditional EKF SLAM methods are applied to ground vehicles, another non-

linearity arises from the vehicle kinematics. This is easily incorporated in our model.

The vehicle motion can be modeled as

= u sin13

Xv2 = U cos/3

99



/3= w =- tan 0.
L

where u is the linear velocity, L is the distance between the front and rear axles and

0, is the steering angle.

For the direct transformation method to global coordinates, since we use cos3 and

sin/3 as states to estimate instead of #, vehicle kinematics can be described in the

linear form:

xV1 0 0 U 0 xV1

d Xv2 0 0 0 U Xv2

dt sin 0 0 0 0 -w sin3

cos13 0 0 w 0 cos/3

For the proposed full LTV Kalman filter, as the heading angle / is an independent

input generated by an upstream level of the filter dynamics, the kinematics of the

vehicle remains linear time-varying.

d xv1i u sin3
dt Xv 2 u cos/3J

Remark II: 3D capability

It is obvious that our proposals in all cases in local coordinates have full capability

to deal with 6 DOF problem. That is to say, when based on the local coordinate

system fixed on the robot, or based on a local coordinate system fixed at the origin

rotating with the robot, we can deal with 3D problems very easily. Such scenarios

are more popular for the flying vehicles to map the surrounding environment rather

than large scale long history global mapping. For large scale global mapping, LTV

Kalman filter proposed in 4.2.2 has been fully proven to work in 2D applications. In
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3D (6DOF) scenarios, the LTV Kalman filter by itself still works with no question, but

we may need some other nonlinear optimization methods to find the desired attitude

states for the estimated states to track to minimize the residue error. We further put

the estimated value of the attitudes into the LTV Kalman filter as inputs as same as

the 2D case.

Remark III: Second-order vehicle dynamics

The algorithm can be easily extended if instead of having direct velocity measure-

ment, the vehicle dynamics model is second-order,

xvG = U

where u is now the translational acceleration instead of the translational velocity, and

the state vector is augmented by the linear velocity vector xvG of the vehicle. Cases

I, II, III and IV extend straightforwardly to second-order vehicle dynamics since the

constraints

hiT(xiG - XVG) = 0

h*T(xiG XvG) ='ri

(9th* + hiQ)T(xiG - XvG) = -hik-G

ITh*xUG = h*T(xiG - XvG)

remain linear. Only case V (range only) does not, as it relies on the product of the

position and velocity of the vehicle x'GXiG in the model. Therefore, the Kalman filter

could not stay linear any more.
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4.3 Contraction analysis for the global algorithms

4.3.1 Contraction analysis for transforming to global coordi-

nates

For the proposal to transform local results to global results, only the x'xo = 1 is

nonlinear. All the remaining constraints of the system are all time varying linear

constraints. This system also contracts with metric M = P-1, since

OfT O
M+M-+M

ax Ox

= -MPM - M(Q + PHTR-1(H +

0 - 0

-(Q+PHT R-1(H + : :

0 0 x T

- -MQM - HTR-1H - MQ - QT

0 .. 4 0 0

-H TR-1

0 0 x T 0

= -MQM-HTR-H-

0

0

0 --- 0

0 0 xT

))T[ M

M + M(QP -PQ T )M

0

R-1H

0 xO J

0

2rxoxo T

K3M

Therefore, the system is also contracting at the second stage. Since the second

stage only use the results of the first stage as pure inputs, and both stages are con-

102

(4.1)

0



tracting, according to the hierarchical combination of the contraction analysis, the

whole system consisted of two stages is contracting. Since the true locations of land-

marks and path of the vehicle are particular solutions to the system, all trajectories

of the state vectors would converge exponentially to the truth.

4.3.2 Contraction analysis for the global LTV Kalman filter

Contraction analysis for the full LTV Kalman filter in 2D global coordinates is similar

to the analysis for local algorithms, since they follow the same LTV Kalman filter

frameworks. We can similarly have:

OfT Of
-M + M-- + M
Ox Ox

-MPM - M(Q + PHTR-lH)-(Q+PHTR-lH)TM

= -MQM - HTR-1H - MQ - QTM + M(QP - PQT)M

= -MQM - HTR-1H

This system is also contracting with metric M = P- 1 in global coordinates. Since

the true locations of landmarks and path of the vehicle are particular solutions to

the system, all trajectories of the state vectors would converge exponentially to the

truth.

4.4 Experiment on Victoria Park benchmarks

We applied our algorithm to Sydney Victoria Park dataset, a classic dataset in the

SLAM community. The vehicle path around the park is about 30 minutes, covering

over 3.5 kilometers. Landmarks in the park are mostly trees. Estimation results

are compared with intermittent GPS information as ground truth to validate the

states of the filters as shown in Fig. 4-2. Our estimated track compares favorably to
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benchmark result of Unscented FastSLAM I

FastSLAM 2.0 [99] in Fig. 5, which highlights the consistency of our algorithm in

large scale applications. Full simulation video of the Victoria Park dataset is provided

at t : /i _e o co r/ 13: 2 1 6. Screenshots of different stages of the simulation

is shown in Fig. 4-K.Covariance ellipses are also included in the simulation.
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Figure 4-2: Path and landmarks estimation of full LTV Kalman filter.
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asterisks are the estimated positions of the landmark.
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Figure 4-3: Victoria Park benchmarks results in real-world Google map background.
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Figure 4-4: Victoria Park benchmarks results with Unscented Fast SLAM as com-

parison. The thick blue path is the GPS data and the solid red path is the estimated

path; the black asterisks are the estimated positions of the landmark.
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Figure 4-6: Simulation of Full LTV Kalman filter on Victoria Park benchmarks with
covariance ellipse
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Figure 4-7: Principle of structure-from-motion estimation: a 3D object point P
projected in the camera image at time k gives the tracked 2D feature point P,k
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4.5 Extension on structure from motion

Structure from motion [133] [134] [135] [53] is a problem in machine vision field

dealing with range imaging, mainly introduced in photogrammetry and computer

vision literature. In structure from motion problems, monocular images captured by

cameras are used to reconstruct the scene along with the position and pose of the

camera. No a priori knowledge of the scene and no a priori knowledge of the camera

positions and poses are known in advance. The problem is to recover the 3D model

of a structure (building, furniture, etc.) from a series of 2D images, as shown in Fig.

[-7. The simplified structure from motion problem can be modeled as a combination

of SLAM and pin-hole camera. Intuitively, it may be a global version of the pin-hole

camera model that we previously introduced, where estimations on local positions

of the features are replaced by estimations on global positions of features along with

global pose and attitude of the camera. Remember that for the pinhole camera model

(Fig. 3-28),

Ei f X1[i
which can be rewritten as LTV constraints on the states (X 1 , x 2, X 3 )

f 0Y1 2 =Hx = 0

0 f Y2 LX

based on the measured yi and Y2.

Therefore, similar to the discussions in the pin-hole model, we can use the rotation

transformation of T(13)(xi - x,) to replace the original local vector (xi1, x,2, x,3) in

the camera coordinate system. We can then easily write the LTV constraints about
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any observation as:

f ~ T (6) (xi - x,) = 0
0 f yi2

where T(3) is the rotation matrix from global coordinates to local coordinates on the

camera, and xi, x, are respectively position of a feature and position of the camera.

As in the method we used in the global SLAM discussion, we can have a separate

estimation on # and treat it as an input to the LTV Kalman filter as:

#d = argmiri [-7r_, r]xT H T Hx

and

while kinematics of the estimated states are simply:

xi = 0

xc ~ Uc
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Chapter 5

Decoupled Unlinearized Networked

Kalman-filter (SLAM-DUNK)

One of the main problems for the proposed full LTV Kalman filter in global coor-

dinates is computation complexity. As shown in Fig. 5-1., since all landmarks are

coupled to each other by the vehicle's state, we will have to deal with a full covari-

ance matrix, which requires 0(n2 ) storage and 0(n3 ) computation in each step, where

n is the number of landmarks. This key limitation restrains the algorithm from being

applied to large-scale environment models that could easily contain tens of thousands

of features.

Actually the SLAM problem exhibits important conditional independence: that is,

conditioned on the vehicle's states of path, all landmarks are decoupled and indepen-

dent of each other, as suggested in [100]. In other words, if we feed the vehicle states

estimated by other methods into the filters as prior information, we can decoupled

the full LTV Kalman filter into n independent location estimation problems, one for

each landmark. For example, in [1.00] factorized the SLAM problem into a graph

model like Fig. 5-.2, where they use M particle filters to update the states of vehicle,

and each particle of vehicle is connected to n independent EKF estimators, so that
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there would be tnM filters in total, which means O(nrM) computation complexity.

We are proposing a novel algorithm that can decouple the covariance between land-

marks into smaller independent estimators and requires less computation even coin-

paring to FastSLAM. Instead of dealing with all measurements and landmarks as

one whole state vector to estimate, which is done by full filters like EKF are doing,

we want to process information from each single measurement independently with

one specific virtual vehicle. Then we establish a consensus summarizing all the in-

formation and feedback to the individual observers. Graph model of the proposed

algorithm is shown in Fig. 5-3, and detailed algorithm design is introduced below.

Figure 5-1: Graph model of EKF-SLAM: all states including both the landmarks
and the vehicle are coupled together
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Figure 5-2: Graph model of Fast-SLAM: states of landmarks are fully decoupled
conditioned on each particle of vehicle states

Figure 5-3: Graph model of SLAM-DUNK: states of each landmark are only coupled
with the corresponding virtual vehicle, and consensus of virtual vehicles as maximiza-
tion of likelihood is used as best estimate

115

Landmark

Virtual
Vehicle

Consensus

Landmark

A Vehicle
Particle



5.1 Distributed sensing

For each landmark xi, we assign a virtual vehicle xrn exclusively to process any in-

formation generated from that landmark. Using the case where we have both range

and bearing measurements for example, the linear constraints between landmark xi

and virtual vehicle xvj would be:

xi
Yii = Hi[

Xvi

where

0
yi = 1

and

Hi = sin6i -cos6 -sin O cos O T(O)
cos O sin Oi - cos Oi -sin oi

Such constraint is similar with the one we discussed before, with additional rotation

term due to global coordinates. In that case, each landmark xi is coupled with a

virtual vehicle xmj exclusively. Using LTV Kalman filter for each pair, information

from observation of any single landmark gets conveyed to the virtual vehicle layer.

Xi 0 + PZ-H TR-1(yj - Hi )

=vi HU LviHP

Pi = Q-PiH TR--1HjPj
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5.2 Consensus among virtual vehicles

In the layer of virtual vehicles, we then summarize information from all observations

to get a consensus, and use that consensus to guide all virtual vehicles to follow,

which makes the virtual vehicle layer a "leader-follower" network. The consensus xVC

is achieved from a weighted average among all virtual vehicles whose corresponding

landmarks are observed right now as:

= (S F-1  E E1 X

iGO iEO

Here 0 is the set of landmarks observed by the robot at that moment. Covariance

matrices Ei's are the components related to the states xvi's in the covariance matrices

Pi's from each distributed small scale Kalman filters.

Pi= E Ev

Evii Evi

The weighted average above is the least square result summarizing information from

all observations. Since we already have the virtual vehicle estimations at xvi's with

covariance matrices Evi's, we can use the virtual vehicles xvi's as noisy measurements

about true xv. To summarize information from all virtual vehicles, we want to find

the best estimation of x, among these measurements to minimize the quadratic error:

ev = E(5 I1xv - xi II2)
iEO

whose solution is

iEO iEO

This weighted average result can also be thought of as a Kalman filter for a system
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with no dynamics, with virtual vehicles corresponding to the measurements.

We can simultaneously feed the consensus result to the whole network as a leader

for all xm 's, by treating the consensus x,, as a virtual measurement that each virtual

vehicle xn could observe.

Yi2 = Xvc

Hi2 = [0 I]

Similar to the full Kalman filter we introduced in Chapter 4, we can update the

heading state 13 using a separate optimized estimator following 3d , which minimizes

the quadratic residue error

3d = argmif/3dE[_,,7] (yT - xTHT) (y - Hxvc)

and

For the motion of the vehicle, we also have

u sin[1

U cos J

We want all virtual vehicles to converge to the consensus because we want information

gathered from all landmarks being summarized at the consensus to be able to get

distributed back to influence mapping of all landmarks. Thus, update on the vehicle's

location is not isolated, but it can provide corrections for landmarks through virtual

vehicles. In such case, even though we don't have covariance matrix to correlate

different landmarks with each other, the virtual strings of virtual vehicles to the

consensus still would be able to linkage different landmarks through virtual vehicles

and distributed small scale covariance matrices.
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5.3 Complete algorithm

In summary, the algorithm we propose here is composed of two levels of computation:

the first level uses separate LTV Kalman filters for each single pair of landmark and

virtual vehicle, including both the measurements and the following behavior towards

the consensus for the virtual vehicle. The second level is to gather information from

all virtual vehicles that have their corresponding landmarks under observation. The

consensus x, is the best estimation from the weighted average that minimize the

square error.

For all landmarks xi and virtual vehicles xvj:

yi= and H.=

Lyi2i Hi2

And the LTV Kalman filter for each virtual vehicle is:

[. = + PjHTR-1(y - Hi ])

Li J u J vi

iEO iEO

1d = g ni~ d 1- jP i = Q - H i R - )T( , - H i [
and

u sin $

1 Cos
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5.4 Experiment on Victoria Park benchmarks

Similar to the full LTV Kalman filter, we applied our algorithm to Sydney Victo-

ria Park dataset. Our algorithm still achieves satisfying result shown in Fig.

comparing favorably to benchmark result of Unscented FastSLAM [73] in 4 and

benchmark result of FastSLAM 2.0 199] in

Park dataset is provided at https: vi

Full simulation video of the Victoria

o /7 4. Screenshots of different

stages of the simulation is shown in Fig. 5-5. Covariance ellipses are also included in

the simulation.
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Path and landmarks estimation of full SLAM-DUNK. The thick blue
path is the GPS data and the solid red path is the estimated path; the black asterisks
are the estimated positions of the landmark.
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Victoria Park benchmark using SLAM-DUNK
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L- ----- --------- --

Figure 5-5: Simulation of SLAM-DUNK on
ance ellipse

Victoria Park benchmarks with covari-
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5.5 Remarks

Under certain situations, there would be some special cases for the proposed algo-

rithm. When the landmark i is not observed by the vehicle, the observation parts

of the first level estimator would be dropped, that means yii and Hil would not be

included. When the vehicle sees no landmark at any moment, Yi2 and Hi2 would be

dropped, because there would be no way to achieve x,, from weight average.

When the vehicle sees a new landmark for the first time, the corresponding virtual

vehicle is initialized at the location of current best estimation, which can be computed

from weight average among all virtual vehicles as:

X =o XS 1 (z-xvj)
jEall jEall

Furthermore, data association to match the observed landmarks with the ones in the

memory can be simply carried by matching the measurements with the saved pairs

of landmarks and virtual vehicles.

Note that for each pair of landmark and virtual vehicle, we design an LTV Kalman

filter specifically. That means we would have n filters in total, where n is the total

number of landmarks. For each filter, it would have two states to estimate. The total

computation complexity would be O(n), which would be comparable to FastSLAM

with only two particles, while FastSLAM with only two particles would sacrifice on

performance significantly. Moreover, for filters whose landmarks are not observed,

they only have the behavior of following, so the computation is even lighter.

The whole idea of the proposed algorithm is to break the full LTV Kalman filter

containing both the landmarks and the vehicle states into n small estimators to get

the best estimation locally and one optimization of least squares to achieve the best

estimation on consensus. We successfully decouple the landmarks, in addition, since

each single estimator still follows the same structure as the full ones proposed before,
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contraction analysis that is identical to the full LTV Kalman filters can be exploited

to ensure the estimations would finally converge to the noise-free true states.

Despite the authors' lack of enthusiasm for acronyms, it is hard to resist calling

the final algorithm SLAM-DUNK , for simultaneous location and mapping using

distributed unlinearized networked Kalman-filtering.

'We thank Geoffrey Hinton for the suggestion.
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Chapter 6

Distributed Multi-robot Cooperative

SLAM without Prior Global

Information

In this chapter we inherit the proposed distributed algorithm SLAM-DUNK and fur-

ther extend the discussion to algorithms for multi-robot cooperative SLAM. Multi-

robot cooperative SLAM has become more and more an important and meaningful

problem to study. As light robot systems like drones or ground vehicles become more

and more inexpensive and accessible, research on how to utilize distributed computa-

tion power and swarms of robots to benefit performance of localization, mapping and

exploration would give insights to future developments. In this chapter, we propose

algorithms for cooperative SLAM in different scenarios, an all-observable setting, a

case where robots have incomplete observations and finally a robot-only case. Discus-

sion in this chapter has also drawn inspirations from quorum sensing, a phenomenon

of group behavior coordination in nature. The focus of this chapter is on how to make

sure robots starting from different poses and positions could share information and

all converge to a shared global map for collaborative exploration.
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6.1 Inspiration from quorum sensing

Quorum Sensing [971 [1,5] [129] [117] [1081 [92] [22] [1] is a biological process, by

which a community of bacteria cells interact and coordinate with their neighboring

cells locally without global information. This kind of local interaction is not achieved

through direct cell-to-cell communication. In reality, each cell sends out signaling

molecules called autoinducers that diffuse in the local environment and builds up

local concentration. These auto inducers that carry introduction information can be

captured by the receptors, which can activate transcription of certain genes that are

equipped in the cells. In V. fisheri cells, the receptor is LuxR. There is a low like-

lihood of a bacterium detecting its own secreted inducer. When only a few cells of

the same kind are present in the neighborhood, diffusion can reduce the density of

the inducers to a low level, so that no functional behavior will be initiated, which is

"energy efficient". However, when the concentration of the surrounding area reaches

a threshold, more and more inducers will be synthesized and trigger a positive feed-

back loop to fully activate the receptors. Almost simultaneously, specific genes begin

being transcripted in all the cells in the local colony, and the function or behavior

expressed by the genes will be performed collectively in the swarm. For instance, if

only one single Vibrio fischeri exists in the environment, then producing the biolumi-

nescent luciferase would be a waste of energy. However, when a quorum in vicinity is

confirmed, such collective production can be useful and functional. Fig. 6-1 gives a

pictorial view of the process in Vibrio fischeri.

In this context, quorum sensing gives the inspiration that instead of agent-to-agent

communication, we can build a medium that receives information from each single

agent and feeds them back with mingled and processed information. In that case, a

network of O(n2 ) could be reduced to the complexity of O(n).
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Figure 6-1: Quorum sensing model

6.2 Basic assumptions in this chapter

Before we introduce the proposed algorithms for cooperative SLAM, let us introduce

the basic assumptions for defining the setting of the problem.

* A group of M independent robots move in a 2D space with N features. Each

robot moves on their own with their respective kinematics and dynamics. They

have proprioceptive sensing devices to measure the self motion of the robot.

" The robots also carry exteroceptive sensing devices to monitor and observe the

environment for localization features such as landmarks. Such devices could be

cameras, lidars, sonars, etc. to measure different information like bearing or

range, or even more.

" Each robot also has the capability to measure the other nearby robots with rel-

ative measurements. Such measurements are not constrained to the traditional

127



bearing and range, but also relative pose difference such as heading, which can

be analyzed from camera images.

" Agent-to-agent information communication is not necessarily required. How-

ever, we assume the robots could communicate with a central medium, submit-

ting their local map of landmarks and their velocities. The central medium is

able to feedback each agent with mingled information for them to synchronize

with the medium and indirectly to each other.

" We also assume that data association is not of our major concern in discussion

here. As visual features become more and more accessible, identifying features

from one to another also becomes easier.

" We do not require the robots to know their initial global positions and poses.

Our algorithms are designed to deal with the differences between coordinates

systems of robots automatically.

In comparison to most of the existing works that solve the problem with one

complete state vector including all landmarks and all robots, we focus on developing

a general framework of distributed Kalman filters, where each robot keeps its own

map of environment, and tunes the map based on feedback from the medium to finally

converge with all other maps to reach a consensus.

6.3 Basic idea of null space

Let us take another look at the algorithm we proposed in Chapter 5:

Xi0 i
=+ PHTR-'(yi - Hi)

Xvi U L vi

Pi= Q - PiHR-1 HiPi
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The basic idea of all algorithms discussed in this chapter is that there is a null space

problem, or sometimes described as observability problem in the SLAM model. For

the map consisted of landmarks and the vehicle, if there is no global information

available, it is free of translation and rotation.

=i (V + X ) + + PiI-'(yi - Hi )k

Xvi Xvi i vi

That means as shown in the equation above, we can freely add any translation or

rotation term

(vi

to the equation as long as the inputs v and Q are the same for all landmarks belong to

the map of the same robot. We call such freely added translation and rotation terms

as null space terms. Such action will have no impact to the map and localization of

the robot, since all relative constraints between landmarks stay the same because for

Vij and v, I|xi + v - (x + v)=I |xi - xj1

and

Vi, j and R, I Rrotatjonxi - Rrotationxj II = I Ixi - xj

where Rrotation is a rotational matrix. In such case, all relative constraints are pre-

served, and the map after such transformations has not been influenced at all.

Therefore, the problem to consider is how to make use of this null space and get

maps from different robots to converge to a unified map with the same coordinate

system. We will introduce in the following sections on detailed algorithm design.

Here we introduce the terms we use to define the environment and the model.

Assume there are M robots and N landmarks in the environment, Xik is the position
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of landmark k in the ith robot's coordinates. xi, and 3i are the position and heading

of the ith robot. vi is the translation velocity in null space and Qi = is the
W 0

corrective angular velocity in null space. For the other terms, we inherit them from

Chapter 5. So the system turns to

S(Vi + Qi + + PikHR- 1 (ik - Hi
Xiv Xiv Ui Xiv

And for the covariances:

Pik - Q - PikHR-1HikPik

6.4 Cooperative SLAM with full information

In this section we introduce the algorithm for the case when all robots could observe

all landmarks all them time, which we call the scenario "all-know-all". In such a

setting, we assume that each robot has measurements of all landmarks, so that every

robot has the same level of information, and the problem turns to how to merge all

information in a shared coordinate system.

As we have defined earlier, xik is the position of landmark k in the ith robot's

coordinates. We denote the virtual center of all landmarks observed in the ith robot's

coordinate system as
1

Xic = kXik
N

For all coordinate systems to converged to a consensus, the first step is the have their

average center to converge to each other and then finally to the same point. That

means, for the final result

Vi, j, I||xic, - xicd I= 0
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We can rewrite the null space term's rotation part to have the rotation center at

xic:

Xikv - Xic

In this case, the translation and rotation parts of the null space terms are entirely

independent from each other. When we think about how to get all xic's to converge

to each other, only the choice of vi as an input matters, and the rotation parts have

no influence here. We can easily choose vi to minimize

ec = Ei I Xic - Xjc1|2

To minimize the center error, we can choose

Vi= YiE X - xic)

To further borrow ideas from quorum sensing, we have no need to take computation

for each pair, but just obtain a shared medium as the consensus of the center of each

robot-landmark system as
1

Xcc = M ixic

And we can change the inputs of vi's to be

Vi =-Y-Ti(Xcc - xic)

Simply making sure the centers of all coordinate systems converge to the same

consensus does not guarantee all coordinate systems to be the same, because there

still leave differences among headings. As we use the rotation part in the null space

Xik -- Xic
term Qi to help the systems to converge to a shared heading, we bring

Xikv - Xic
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up a new metric to optimize, as the ideal system should have

Vi, j and k, I Xik - Xic - (Xjk - Xje)I| = 0

That means we should minimize the so defined heading error

eh = EkEi kIIXik - Xic - (Xjk - Xjc)II2

with input Qj =
0

[~w 0

To find the proper input wi, we analyze as:

= EkEj(iik - *ic)'[Xik - Xic -

= k Ej(Xik - Xic

W~k J(Xik - Xic

i-wi0

0

(Xjk -Xe)]

[Xik -- - (Xjk - Xic)

(Xjc - Xjk)

(6.1)

Here we are inspired by quorum sensing again, to utilize another medium variable as

1
Xck = -ZiXik

This medium variable is the temporary average of any feature k among all robot-
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landmarks coordinate systems. Since x, = -gE xi, we can have

= WEkEYj (Xik - xief

= WME(xik - xic) T

0 1

-1 0

0 1

-1 0

(xyc - x)jk)

(Xcc - Xck)

(6.2)

Since Ek(Xik - xi,) = 0

d
-eh
dt

= WMEk(xik -xc)T

0

L-1 0
(xe - Xck)

-wMEk(Xik - xic) [ 1 xck
-1 0

(6.3)

To make sure d eh < 0, and that eh keeps getting reduced, we can choose inputs wi's

to be

Wi = YwiEk(Xik - xiC)T 0 1 Xck

-1 0

To summarize, we can keep reducing center differences e, and heading differences eh

as we utilize medium variables xic's, xcc's, Xck's and implement the inputs vi's and

wi's as

i 'yvi(Xcc - xic)

Wi = 'Ywir-k(Xik - xic)
0

--L

Xck

01
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And use them as inputs to null space terms in the SLAM-DUNK algorithms as

[ik ik Xic 0 T kik
(Vi + Qi )+ + PikHikR-(yik Hik)

[ik Xikv - [ic Ui Xikv

Pik - PikHTR-1 HikPik

where

= 1)_ 1 Z(~X1ivk)

kEO kEO

3 di = argmingh/dE[-,r]Ek(yik - Hi[ (yik -Hik [ik

Cikv kikv

Oi= u~i + wi+ -y,6, A ikv]i

U sin ,i
ui =

Ui cos iJ

As we stated earlier, the null space terms has no influence over the main algorithm,

so the contraction property is preserved and the true locations of both the landmarks

and the robots in the shared global coordinate system consist a particular solution to

every robot's distributed filters. As all the states finally converge to be static, so will

vi's and wi's converge and stay zero, which ensures eh and e, to reduce to zero. Thus,

benefiting from both the filters and the null terms, all robots will converge to the

same coordinate system regardless of their initial states. Information transmission

between each single robot and the central medium is shown as Fig. 6-2

6.4.1 Simulation results

Here we provide simulation results for the proposed algorithm on cooperative SLAM

with full information. As shown in Fig. (-3, we have 13 landmarks and 4 vehicles in
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Figure 6-2: Information transmission between each single robot and the central
medium for cooperative SLAM with full information

a synthetic environment. The thirteen landmarks are located at [-30, 30], [0, 30], [30,

30], [-30, 0], [0, 01, [30, 0], [-30, -30], [0, -30], [30, -30], [0, 10], [0, -101, [-20, 0], and [20,

0], and the four vehicles are located in the four quadrants among the landmarks. The

four vehicles are circling respectively around the centers c, = [-15, 15], c 2 = [15, 15],

C3 = [-15, -15] and c4 = [15, -15] with radius 15m. Their angular velocities are

different as w,, = 1 rad/s, W,,2 =1.5 rad/s, W,3 = -1 rad/s, and Wm4 = 0.5 rad/s.

All vehicles start from different initial positions and different initial headings as

x10 = [-15, 0] and #1o = 0

x 2 0 = [0, 15] and 0320 = -
2

7
X30 = [-7.5, -7.5 - 7.5v/3] and #30 = -7r

6

3
x4 o =[15 +7.5x/, -15 +7.5x/] and / 4 0 =-ir

4
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But since all vehicles have no prior global information about their starting posi-

tions and starting headings, they all start in their own local coordinates at xo = [0, 0]

with heading 30 = 0. Then we implement our proposed algorithm for cooperative

SLAM with full information on the synthetic simulation environment. As we can

see from the full video on https: //vimeo. com/ 193489754 and in the screenshots

provided at Fig. 6-4, even with no prior global information and simply using their

local coordinates as starting points, coordinate systems from different vehicles shift

and rotate to converge to each other. The red, green, blue and cyan landmarks and

dashed lines of vehicle trajectories correspond respectively to estimations from vehi-

cles 1, 2, 3 and 4. We can see that after roughly 10 seconds, landmark estimations

from different vehicles converge to reach consensus, and trajectories of vehicles also

converge to the circles as they are expected to be. Keep in mind that since we have

no global information available, the achieved consensus result is a rotated and shifted

transformation from the truth. As long as relative constraints remain intact, we can

consider the algorithm to achieve a true map from the consensus.

6.5 Cooperative SLAM with partial information

In the section above we discussed about algorithm to be used when all robots keep

observing all landmarks. However, that is not a usual case because oftentimes, robots

could not see all landmarks in the map due to distance, occlusion, feature selection

and other factors. In addition, one of the major advantages for cooperative SLAM is

the capability to gather partial information from each robot and stitch them together

for complete and global information. For example, one can use a group of robots to

explore an unknown area and achieve information in a more accurate and much faster

way as they can be sent to different directions, heights, and even be equipped with

different sensors. In this section we propose a general algorithm that could perform
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Figure 6-3: Simulation environment for cooperative SLAM with full information. We
have 13 landmarks as circles and 4 vehicle as triangles
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Figure 6-5: Simulation results for cooperative SLAM with full information. The red,
green, blue and cyan landmarks and dashed lines of vehicle trajectories correspond
respectively to estimations from vehicles 1, 2, 3 and 4
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cooperative SLAM among robots with potentially partial information.

6.5.1 Nearest neighbor as feature

One problem in cooperative SLAM in different coordinates is that global information

is not accessible, and how to build connections between different coordinate systems

becomes a problem. As we suggested in earlier sections, relative positions between

landmarks |xi-xjj| is invariant in different coordinates, and that extends to |lxi -xc|,

which is used in the earlier section. Yet, when we start to looking into relative

positions between landmarks, the complexity turns to 0(n2 ). Since only some of the

landmarks can be observed by one robot, it would be hard to use a common metric

for all different robots. That is also why we used I xi - xjjI in the last section. Thus,

we also need to develop an algorithm that keeps the complexity to be 0(n), while

making sure that the metric is invariant to translations and rotations. That is the

reason in this section we use nearest neighbors as feature vectors.

The general process is relatively straightforward. For each robot i, and any land-

mark k observed by the robot, the robot finds the nearest landmark k' that is closest

to k, which means

Xik' = argTfink/#kO II Xik - Xik'I

where Oi is the set of features that robot i observes. Then robot i report the identity

of closest neighbor k' along with the observed vector aik = Xik - Xik, to the central

coordinator. The central coordinator collects information from all robots that can

observe landmark k and compare the results ||aik's to determine the true nearest

neighbor of landmark k as k*. Each robot will receive the feedback to confirm whether

k' = k*. If it does not match, then robot i would not have a nearest-neighbor feature

for landmark k, but if it does match as k' = k*, robot i will have the observation of
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the nearest-neighbor feature for landmark k as

aik = Xik - Xik'

In such case, the shared map that all robots will converge to is a map of unidirec-

tional vectors aik's and the number of these nearest-neighbor feature vectors would be

same as number of landmarks N. Since nearest neighbor is translation and rotation

invariant, it provides a shared anchor for all robots.

6.5.2 Algorithm for cooperative SLAM with partial informa-

tion

After we defined the nearest-neighbor feature vectors, the algorithm part becomes

much more straightforward and the structure is similar to what we have in the pro-

posal for full information.

First we have a similar same structure here:

Xik Xik 0 ik(Vi + Q) + + PZkHikR-'(yik - Hik )
L iv i iv i i I :iv

and same as before we use vi and wi as inputs to help different coordinate systems

to converge to a consensus.

Since we are not guaranteed that all landmarks can be observed, there is no way

to calculate xi, and xc, so we use the other medium variable

1
Xck = iEO'Xik

here O is the set of robots who can observe landmark k. and Nk is the number of

robots who can observe landmark. We do not require complete observation of the
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landmark from all robots, with partial information being sufficient.

In that case we design

Vi= 7viEk(Xck - Xik)

For the rotational part we try to rotate to match up aik's, as they are translation

invariant. To minimize heading error

eh = ZD Haik - ajk||

Since

d
-eh
dt

- lkZjaik(aik - ajk)

- ZkZgaik i (aik - ajk)

k j 0

=-WiEkEja Ti 1 aik
-1 0

(6.4)

Here we introduce another medium variable ck as

1
Ck = *aikNAie~ k

where O'* is the set of robots that can observe the nearest-neighbor feature aik and
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Nk* is the number of robots who can do that. Thus we have

d
-eh
dt

-aT 0 1
- -wi'kEZak aik

-1 0

=-wi-kai Ck
-- 1 0

and to make sure eh < 0 we can choose to have wi as

Wi = AE kak K 1 Ck

-1 0

To summarize, for cooperative SLAM with partial information, we can add a null

space term as inputs to the SLAM-DUNK algorithms as

=(vi + [i X )k +
Xikv

0

UiI+ P kH TR--(yik - Hik

Pik = Qi - PikHT R-HikPik

XiVc = (Z E')

kEO

/3di = argmindE _,,rEk(yik - Hik

= Wjp~

[
k(Xivk)

kEO

Xik

Xikv

+ Wi + 7,6,(/3d A ~)

ui sin 1
Lu i Cos 3i
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[Xik

Xikv I [Xik

Xikv

)'yik - Hik I)[ik
Xikv



where

vi = 'YviEk(xek - Xik)

and

Wi = ' ,j~kak T7.
- 1 0

For definition
1

Xck NA )iEO'Xik
Xck k

and

1
Ck ~ N, *aiNk* k

Same as we discussed in the case with full information, the null space terms have

no influence over the main algorithm. So the contraction property is preserved with

the noise-free true locations of both the landmarks and the robots in the shared

global coordinate system as a particular solution. As all the states finally converge

to be static, so will vi's and wi's converge to and stay at zero, which ensures eh and

e, to reduce to zero. Thus, all robots will converge to the same coordinate system

regardless of their initial states and starting points. Information transmission between

each single robot and the central medium is shown as Fig. 6-i

6.5.3 Simulation results

The simulation environment for cooperative SLAM with partial information is almost

identical to the one we proposed in the section with full information, the only dif-

ference being that now'the robots cannot observe all landmarks. They can only see

the landmarks in their respective quadrants while some of them can be observed by

multiple vehicles, as shown in Fig. (- 7. We use the same initial conditions for the

simulation and implement algorithm for cooperative SLAM with partial information.

As we show in the full video on https: //vimeo. con/193489764 and in the screen-
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Figure 6-6: Information transmission between each single robot and the central
medium for cooperative SLAM with partial information

shots provided at Fig. 8, with no prior global information and only partial obser-

vation of landmarks, coordinate systems from different vehicles shift and rotate to

converge to each other. Similarly, the red, green, blue and cyan landmarks and vehi-

cle trajectories correspond respectively to estimations from vehicles 1, 2, 3 and 4. We

can see that landmark estimations from different vehicles converge to reach consensus,

and trajectories of vehicles also converge to the circles they are expected to be. As

stated before, the achieved consensus result is a rotated and shifted transformation

from the truth, and we can consider the algorithm to achieve a true map from the

consensus.
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Figure 6-8: Screenshots of simulation for cooperative SLAM with partial information
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Figure 6-9: Simulation results for cooperative SLAM with partial information. The
red, green, blue and cyan landmarks and dashed lines of vehicle trajectories corre-
spond respectively to estimations from vehicles 1, 2, 3 and 4
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6.6 Algorithm for collective localization with robots

only

There are cases that a swarm of robots need to localize each other and have a common

map, also known as collective localization in literature. In these cases, there are no

landmarks, and only robots in the map move around and localize each other and

themselves. In such setting, a single robot i will be able to measure relative heading

difference between robot i and robot j as Oij, most likely through a camera. In

addition, it is normally assumed that all robots can observe all other robots in the

swarm. Since in this problem there are no landmarks, we change the definition of

Xik to be the estimated location of robot k in robot i's coordinates. In this way, the

problem of collective localization with only robots is very similar to the problem we

presented in the first section about cooperative SLAM with full information. The

only difference is that the previous landmarks are now moving vehicles. Since the

vehicle is no different from the other vehicles it observes, we can use xii to denote

robot i in its own map instead of xi,. In that case, we can change what we have in

Section 6.1 slightly into the same form, but with different variables as

ik Xik - Xic 1ij + PkHTR(yik - H ik
. = (vi + i ) + +Pik ik

Xikv L ikv - iL Uii Xkv i

Pi = - PikHT R-'HkPik

=ii (1: Ei-vl)-l Z(EivJXitk)
kEO kEO

where

Vi = yti(xcC - xic)
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i = -- T

and

/3di =argminIgd ,,Lk(ysk - Hik[
W + Wji + y

Xi
01

:ikv

/3

- Hik

ti~ sin/3u s/3us i il

Ui Cos 1i

uj sin(Oi + O)
U-ij =I

L zt cos(/3i + Oij

Information transmission between each single robot and the central medium is shown

as Fig.

Central Mledium

U , xiA Xc(- Xck

Robots

Vi, Wi

Figure 6-10: Information transmission between each single robot and the central
medium for collective localization with robots only
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6.6.1 Simulation results

The simulation environment for collective localization with robots only is slightly

different from the ones we proposed before. Without any landmark, vehicles can

observe each other and also measurements of relative headings. We use the same

initial conditions for the simulation to implement algorithm for collective localization.

As we show in the full video on https: //vimeo. com/193489767 and in the screen-

shots provided at Fig. 6-11, with no prior global information and only observation of

other vehicles, coordinate systems from different vehicles shift and rotate to converge

to each other. We can see that estimated positions of different vehicles converge to

reach consensus, and trajectories of vehicles also converge to the circles they are ex-

pected to be. The achieved consensus result is a rotated and shifted transformation

from the truth, which can be considered as the true map.

6.7 Remarks

6.7.1 Extension to 3D applications

For the cases we discussed above, they are all in 2D settings. However, extending to

3D is very straightforward. For the translation part of the null space term

Vi= 'Yvi (XCC - Xic)

it doesn't need to change from 2D to 3D. For the rotation part, since we are choosing

the input Qi to minimize the heading error eh to zero. In the 2D case, we express the

time derivative of heading error as a function of Qi as eh(wi) and choose wi to assure

1h(W) 0
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Figure 6-11: Screenshots of simulation for collective localization with robots only
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Figure 6-12: Simulation results for collective localization with robots only. The red,
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estimations from vehicles 1, 2, 3 and 4

153



So in the 3D case, it is nothing different. Since in 3D, the rotation part turns to

[o -wA~i W 1
Wi o -Wj I

we can also use a vector wi = [Wi, W Wiz] to model the time derivative of heading

error as a function of wi as eh(wj) and choose wi to assure

6h(Wi) < 0

In that case, extending our proposed algorithms to 3D is easy and straightforward.

6.7.2 Extension to multi-camera pose estimation

Small unmanned aerial vehicles (UAVs) have become popular robotic systems in re-

cent years. Estimation of a small UAV's 6 degree of freedom (6 DOF) pose, relative to

its surrounding environment using onboard cameras has also become more important.

Results from the field of multi-camera egomotion estimation [12(-] [75] [136] [67 [1- I

S[7] [7 [1 16 [54] show that such problem can be better solved by using multiple cam-

eras positioned appropriately. When all cameras have been calibrated with precise

positions and attitudes on the robot, it is straightforward to implement algorithms

we proposed in Chapter 3 for multi-camera sensor fusion. As multiple cameras only

add linear constraints to the LTV Kalman filter.

However, more frequently, it might be too complex or unrealistic to calibrate all

cameras in advance. In such case, we can treat each single camera as a small "robot"

with independent measurements. And the algorithm we proposed for multi-robot

cooperative SLAM with partial information can be implemented on such applications,

and poses of different cameras could be automatically calibrated, with one extra
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constraint that these cameras are fixed to one same robot and should have same

translational and rotational velocities.

6.7.3 Utilization of shared knowledge

The algorithms we proposed in this chapter mainly provide methods to get all coordi-

nate systems of all robots to converge to a consensus global coordinate system without

any initial global information. Once all robots share the same coordinates and the

same map, we can start thinking about how to utilize shared knowledge among the

group. Here we can point several directions to further study on.

" First, shared information on newly discovered landmarks could help other robots

in the area on data association, since memory from one robot that was located

a certain landmark at a certain area could help other robots that observe that

landmark for first time to identify and refer to.

" Second, shared knowledge and consensus over the map could help resist noise

from sensors or other factors. We can further develop algorithms to feed con-

sensus information to each single robot for better SLAM performance.

" Third, swarm of robots exploring an unknown environment could speed up the

exploration and mapping to be much faster than a single robot, as submaps can

be patched up together to achieve much larger global maps.

" Fourth, information from any single robot could spread to other members in

the network. For example, only a limited number of robots need to be equipped

with GPS and such global anchoring information can benefit other robots in

the group.

" Fifth, more structures of network could be studied, such as leader-follower net-

work, which can also be combined with research in combinations of contracting

155



systems.
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Chapter 7

Concluding Remarks

In this paper, we propose using the combination of LTV Kalman filter and contraction

tools to solve the problem of simultaneous mapping and localization (SLAM). By

exploiting the virtual measurements, the LTV Kalman observer does not suffer from

errors brought by the linearization process in the EKF SLAM, which makes the

solution global and exact. Convergence rates can be quantified using contraction

analysis. The application cases utilize different kinds of sensor information that range

from traditional bearing measurements and range measurements to novel ones like

optical flows and time-to-contact measurements. They can solve SLAM problems in

both 2D and 3D scenarios.

The first contribution of this thesis is a new approach to the SLAM problem

based on creating virtual measurements. This approach yields simpler algorithms and

guarantees convergence rates. The virtual measurements also open up the possibility

of exploiting LTV Kalman-filtering and contraction analysis tools in combination.

Our method generally falls into the category of Kalman filtering SLAM. Compared

to the EKF SLAM methods, we do not suffer from errors brought by linearization

process, and long term consistency is improved. The math is simple and fast, since

we do not need to calculate any Jacobian of the model, and the result we achieve is
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global, exact and contracting in an exponential favor.

The second contribution of the thesis is the proposal of a novel algorithm called

Decoupled Unlinearized Networked Kalman filter (SLAM-DUNK). It uses the idea

of pairs of landmarks and virtual vehicles to decouple the covariances between land-

marks. The idea is practical, because we can think of observation to one certain

landmark to be sensitive to one specific sensor. The problem then transforms to a

sensor fusion problem, where we need to guarantee that these sensors are fixed to

each other in the same coordinate system.

The third and final contribution of the thesis is a framework for multiple robots

in a certain environment to perform cooperative SLAM without knowledge of their

starting positions and headings. We develop algorithms for different use cases of

cooperative SLAM: the full observation for all robots case, the robots with partial

information case and the robot-only collective localization case.

7.1 Remarks

Note that

" Bounding of the covariance matrix P may be done analytically based on the

observability Grammian [ 14 [].

" Our approach is particularly suitable for exploiting the recent availability of

vision sensors at very low cost, rather than relying on range sensors like lidars.

" In the Victoria Park benchmark dataset, features are mostly trees in the park.

As a result, some regions have dense landmarks, while others have sparse land-

marks. Landmarks in dense areas and landmarks with high uncertainty pro-

vides less information for the updates on the states. Thus, incorporating fea-

ture selection to use landmarks with richer information could reduce compu-

tation workload as suggested in [105] . Such active sensing could be achieved
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in [32J [3] [1 1] by exploiting the fact that the posterior covariance matrix

can be computed before taking any specific measurement. More generally, path

planning may also be adjusted according to a desired exploration/exploitation

trade-off [150] [1271 [1Wc].

It may be interesting to consider whether similar representations may also be

used in biological navigation, e.g. in the context of place cells or grid cells [S01]

or sensing itself [1491.

7.2 Future works

This section provides a brief overview of some potential application areas and exten-

sions of the work presented in the thesis.

7.2.1 LTV Kalman filter SLAM

We believe that the idea of virtual measurements opens up a new world of utiliz-

ing measurement, or more generally, information. Instead of directly comparing the

measurement with prediction, we can now use them for building linear constraints

and use these constraints as virtual measurements for LTV Kalman filters. We have

introduced in the thesis the extensions to pinhole camera and structure from motion.

It is possible to extend the idea further to other applicable fields, like machine vision

and more.

7.2.2 SLAM-DUNK

For this part, it would be interesting to implement the proposed algorithm on real

robots in real environment and investigate long-term performance in large-scale ap-

plications.
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7.2.3 Cooperative SLAM

We have shown in the thesis that robots with full or partial information can suc-

cessfully converge to a consensus without any calibration for initial states. There

remain two valuable and interesting research extensions. The first is to apply and

test the proposed algorithms on real robots running in real environments. The second

part is on utilization of shared information. Once the robots have converged to the

same coordinate system, what is the next step to empower SLAM performance with

group computation and group decision making? How can swarm intelligence help

each individual robot to better localize itself and how can swarms of robots to get a

better and more precise mapping of the environment? How to collect and stitch up

information from individual robot for larger map building and exploration? They are

all interesting problems to investigate in the future.
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