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Abstract

The objective of this thesis is to develop and analyze model order reduction approaches for
the efficient integration of parametrized mathematical models and experimental measure-
ments. Model Order Reduction (MOR) techniques for parameterized Partial Differential
Equations (PDEs) offer new opportunities for the integration of models and experimental
data. First, MOR techniques speed up computations allowing better explorations of the
parameter space. Second, MOR provides actionable tools to compress our prior knowledge
about the system coming from the parameterized best-knowledge model into low-dimensional
and more manageable forms. In this thesis, we demonstrate how to take advantage of MOR
to design computational methods for two classes of problems in data assimilation.

In the first part of the thesis, we discuss and extend the Parametrized-Background
Data-Weak (PBDW) approach for state estimation. PBDW combines a parameterized best-
knowledge mathematical model and experimental data to rapidly estimate the system state
over the domain of interest using a small number of local measurements. The approach relies
on projection-by-data, and exploits model reduction techniques to encode the knowledge of
the parametrized model into a linear space appropriate for real-time evaluation.

In this work, we extend the PBDW formulation in three ways. First, we develop an exper-
imental a posteriori estimator for the error in the state. Second, we develop computational
procedures to construct local approximation spaces in subregions of the computational do-
main in which the best-knowledge model is defined. Third, we present an adaptive strategy
to handle experimental noise in the observations. We apply our approach to a companion’
heat transfer experiment to prove the effectiveness of our technique.

In the second part of the thesis, we present a model-order reduction approach to simulation-
based classification, with particular application to Structural Health Monitoring (SHM). The
approach exploits (i) synthetic results obtained by repeated solution of a parametrized PDE
for different values of the parameters, (ii) machine-learning algorithms to generate a classifier
that monitors the state of damage of the system, and (iii) a reduced basis method to reduce
the computational burden associated with the model evaluations. The approach is based
on an offline/online computational decomposition. In the offline stage, the fields associated
with many different system configurations, corresponding to different states of damage, are
computed and then employed to teach a classifier. Model reduction techniques, ideal for
this many-query context, are employed to reduce the computational burden associated with

!The experiments are performed by Dr. James D. Penn (MIT).



the parameter exploration. In the online stage, the classifier is used to associate measured
data to the relevant diagnostic class.

In developing our approach for SHM, we focus on two specific aspects. First, we develop
a mathematical formulation which properly integrates the parameterized PDE model within
the classification problem. Second, we present a sensitivity analysis to take into account the
error in the model. We illustrate our method and we demonstrate its effectiveness through

the vehicle of a particular companion experiment, a harmonically excited microtruss?.
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Chapter 1

Introduction

1.1 Mbotivation

In many applications, integration of mathematical models and experimental observations is
needed to perform accurate predictions. Mathematical models of physical systems are often
deficient due to the uncertainty in the value of the parameters representing material prop-
erties and input forces, and might also neglect important aspects of the system’s behavior.
On the other hand, experimental measurements are often scarce, corrupted by random and
systematic noise, and they might also provide indirect measurements of the quantity we
wish to predict.

Data Assimilation (DA) refers to the process of integrating information coming from a
mathematical model with experimental observations for prediction. In Numerical Weather
Prediction (NWP), DA refers to the process of combining mathematical models with data
to estimate the state of atmospheric or oceanic flow. In other fields such as control or
Structural Health Monitoring, the output of the procedure might be either a real-valued or
a discrete-valued function of the state.

DA tasks present several challenges for applied mathematicians and engineers. Math-
ematical models often consist of (systems of) Partial Differential Equations (PDEs) that
are typically extremely expensive to evaluate: since state-of-the-art DA procedures are cast
as optimization problems, which hence involve many model evaluations, the computational
burden might be unsustainable for real-time and in situ applications. This challenge be-
comes even more severe when the available mathematical model is affected by substantial

parametric uncertainty: in this case, current research focuses on the development of nu-
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merical techniques that (i) are designed to appropriately take into account the parametric
uncertainty in the model, (ii) are directly informed by the specific DA task at hand, and
(iii) meet the computational (time and memory) constraints.

Recent advances in Model Order Reduction (MOR) for parameterized systems offer new
opportunities for the integration of models and experimental data. First, MOR techniques
speed up computations allowing better explorations of the parameter space at an acceptable
computational cost. Second, MOR provides actionable tools to compress our prior knowledge
about the system coming from the parameterized mathematical model into low-dimensional
and more manageable forms. This thesis presents work toward the development of efficient
model reduction strategies for DA problems for systems modeled by PDEs. In more detail, we
shall focus on two distinct DA tasks: state estimation for stationary problems, and damage

identification for Structural Health Monitoring applications.

1.2 Model order reduction for parameterized PDEs

Parametric Model Order Reduction (pMOR) is a mathematical and computational field of
study that aims to systematically reduce the marginal computational cost of the solution
to a parametrized mathematical model. pMOR is part of the broader field of Model Order
Reduction (MOR), and is mainly motivated by real-time applications (control, parameter
estimation) and many-query applications (design and optimization, uncertainty quantifica-
tion). In real-time applications, the goal is to provide rapid responses with little or no
communication with extensive offline resources; in many-query applications, the goal is to
speed up the computational cost associated with the evaluation of a given quantity of interest
in the limit of many model evaluations. We observe that in both these contexts the premium
is on marginal cost (or perhaps asymptotic average cost) per input-output evaluation; we
can thus accept increased pre-processing or "Offline" costs, which are not tolerable for a
single or few evaluations. In this section, we shall discuss the general problem of parametric
model reduction, and we shall introduce the particular pMOR technique employed in this
work, the Reduced Basis method. We refer to the recent surveys [23, 53| for a thorough
introduction to pMOR. We further refer to [180, 106, 188] for a complete introduction to
the Reduced Basis method.

We define the best-knowledge (bk) mathematical model corresponding to the (stationary)
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phenomenon of interest as follows: given u € PP* ¢ RP, find uP¥(u) € VP* such that
GPOR (WK (), ) =0 Vv e Wbk (1.2.1)

The form GPRH : YPk x WPk 5 R denotes the mathematical model associated with the
particular physical system of interest; the model depends on a set of P parameters, u €
PPk« RP, where the region PP¥ corresponds to the expected parameter range. Here,
VP WPK are two suitable Hilbert spaces defined over a d-dimensional domain QP¥ c R
Finally, uP*(u) denotes the bk approximation of the system’s state over QP for a given
value of p in PPX. We further define the bk solution manifold associated with the solution

to (1.2.1) for each value of u € PPk:
MPK .= {uP¥(u) : p € PPk} c Pk (1.2.2)

Given the bk map u € PP% — u k() € VPX we introduce the rank-N approximation

([56]) to uPk, p > ukk(u) € VPX such that

(z; p) = Z dn(p) CK(x), z € QP e PPk, (1.2.3)

where ¢1,...,¢n5 : PPX = R, and Z,t\’,k = span{(}{k N c VP Based on this decompo-
sition, we can view the problem of parametric model reduction as the combination of two
distinct tasks: (i) the determination of the reduced space Z8 := span{¢t¥}2_;, and (ii) the
estimation of the coefficients {¢, (1) }_, for any value of y in PP%. If we denote by || - || bx
the norm over VX, the space ZR¥ should be chosen such that inf 2bk [uPk () — 2|l < tol
for any p € PP¥ and for a given tolerance tol > 0. On the other hand, the coefficients
{én(u)}AL, should be chosen such that inf,c sy [uP() — zllywe & [uP*(s2) — uRE(u)lyos,
and such that the maps p — ¢n(u) can be evaluated in a cost-efficient way in the limit of
many queries.

Reduced Basis (RB) method represents a very efficient approach to the problem of para-
metric model reduction. The method was first proposed in the late 1970s ([3, 159, 162, 82])
to address linear and nonlinear structural analysis problems, and was then extended to
fluid dynamics in the late 1980s ([170, 98]). Starting with the works of Maday, Patera and
coauthors in the early 2000s ([176, 223]), RB method was set on a more general mathemat-

25



ical ground with special emphasis on (i) efficient sampling strategies for the construction of
the hierarchical reduced spaces {Z}Q,k} N, (ii) rigorous a posteriori error estimation proce-
dures, and (iii) offline-online computational procedures for the efficient construction of the

coefficients {¢, (1)}, in the limit of many queries.

In the RB literature, several approaches have been considered for the construction of the
reduced space. In the early works, non-adaptive Taylor and Lagrange (|175]) and Hermite
([118]) spaces have been considered. More recent approaches rely on Proper Orthogonal De-
composition (POD, [28, 130, 122]), and Greedy methods ([176, 177]). Both these techniques
have been applied to several classes of PDEs and have also been studied theoretically. We
refer to [173] for an overview of the several applications of POD in model reduction, and to
[28] for the mathematical analysis. On the other hand, Greedy algorithms have been first
applied to stationary problems, and then extended to time-dependent problems in a space-
time setting ([219, 240}), or in combination with POD ([101]); we refer to [40, 32, 66, 56] for

a rigorous analysis of the convergence properties of Greedy algorithms.

Efficient offline/online strategies for the rapid computation of the RB state estimate
uB¥ () for a given u € PP* rely on (Petrov-) Galerkin projection. In more detail, following

the standard idea of Galerkin methods for PDEs, we seek uR¥(u) € ZR¥ that solves:
GPRR (B (), 0) =0 Vv e WE, (1.2.4)

where WR}‘ C WPkK is a suitable N-dimensional space, which is equal to Z}{,k in the Galerkin
case. During the offline stage, we construct the spaces Z% and WEK and we assemble
and store suitable parameter-independent quantities; during the online stage, we assemble
and solve the parameter-dependent reduced order model (1.2.4) to compute the coefficients
{#n(p)}Y_;. We note that the offline stage is computationally expensive and is performed
once, while the online stage is in general extremely inexpensive and is performed for each
model query. Since the cost of a single online evaluation is significantly less expensive than
the corresponding high-fidelity evaluation (based on a Finite Element or a Finite Volume
discretization), we can amortize the offline computational cost in the limit of many queries.
For parametric-affine linear problems (see, e.g., [188, 168]), it is easy to estimate the coeffi-
cients {¢n (1)}, at an online cost of O(N?); for nonlinear and /or non-parametrically-affine

problems Empirical Interpolation Method (EIM, [12, 97], see also [48]) can be employed to
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guarantee online efficiency.

Before concluding, we remark that RB method is still the subject of active research. In
particular, several recent proposals combine RB with domain decomposition strategies to
tackle large-scale problems ([145, 117, 171, 72, 203]) and multi-scale problems ([126, 2]). In
this thesis, we rely on the more standard RB method for linear elliptic PDEs as presented

in [188], and we refer to the above-mentioned literature for further details.

1.3 Thesis objective

The objective of this work is to develop model reduction approaches for the efficient integra-
tion of parameterized mathematical models and experimental measurements. In developing

our techniques, we focus on three aspects.

» Real-time and in situ predictions: we wish to develop algorithms that provide
rapid responses with little or no communication with extensive computational re-

sources.

e Reliability: we wish to quantify the level of uncertainty in our estimate, and thus

the degree of confidence the user should have in the prediction.

e Generality: we wish to develop techniques that can be applied to a broad range of

applications in continuum mechanics.

We shall focus here on two problems in data assimilation: state estimation and damage
identification (Structural Health Monitoring). The former deals with the reconstruction of
the true state associated with the system in a given region of interest. The latter, in its most
basic form, deals with the assessment of the state of damage (properly defined according to
the system specifications) of a given structure. In the next two sections, we discuss in detail
the mathematical formulation of these two classes of problems, and we provide definitions

used throughout the thesis.

1.3.1 Mathematical description of the objective: state estimation

true

The objective of state estimation is to approximate the state '™ associated with physical

true i

systems of interest over the domain of interest @ C R?. We shall here assume that u S
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deterministic and stationary (or time-harmonic). We shall further assume that »"™"¢ belongs
to a suitable functional space U/ defined over 2.
We shall afford two sources of information: a bk mathematical model of the form (1.2.1)

(here, stated in compact form),

GPor(uPk () =0,  peP, (1.3.1)
defined over a domain QP which contains 2, and M experimental observations £$°%, ... ,6‘1’\35
such that

€005 = L9, (u"™) + €. (1.3.2)

Here, the mathematical model (1.3.1) should be interpreted as the best-knowledge repre-
sentation of the physical phenomenon, while PP ¢ R” is a confidence region for the true
values of the parameters of the model. The functionals €9, ..., /9, are associated to the par-
ticular transducers employed, and are assumed to be linear: we anticipate that in this thesis
we consider observations associated to local averages of the state (e.g., local measurements
of the acoustic pressﬁre obtained using an acoustic microphone, local measurements of the
thermal field based on local thermal probes). Finally, {€,,}¥_, are unknown disturbances
caused by either systematic error in the data acquisition system, or experimental noise.

We summarise the state estimation task considered in this thesis in the next box.

State estimation: given the parametrized mathematical model GP*# (1.3.1) and the M

functionals £9,...,£3,, develop a computational algorithm A that takes as input M mea-
surements K‘l’bs, e ,fﬁ?s and returns
e an estimate u* = A(£3%, ..., £35%) € U of the state u'™"® over the domain 2, and

e an estimate of the error ||u* — u'"°||, in a suitable metric of interest.

The computational time should be independent of the high-fidelity solver used to discretize
(1.3.1).

We observe that our definition of the task is consistent with the requirements discussed
at the beginning of section 1.3. The metric || -||, might be associated with a norm over Q (e.g.

the L? error over ), or with the error in a given quantity of interest that depends on the
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state (e.g. the error in the output £™¢ = L£(u*"¥®) where £ : i/ — R is a given functional).
We anticipate that pMOR, is here crucial to develop algorithms that are directly informed
by the parametrized best-knowledge model (1.3.1). We further discuss this point in section
1.4.1.

1.3.2 Mathematical description of the objective: Structural Health Mon-

itoring

Structural Health Monitoring (SHM) refers to any automated monitoring procedure designed
to assess the state of damage of a given aerospace, civil, or mechanical structure of interest.
In the context of SHM, damage is formally defined as intentional or unintentional changes
to the system which adversely affect its current or future performance ([79]). The ultimate
objective of SHM is to identify (in an automated fashion) damage before failure occurs. For
civil engineering applications, SHM must provide real-time reliable assessment information
regarding the integrity of a structure ([64]). In the aerospace industry, monitoring systems
are required to assess the health of aircraft components during reconditioning or during the
mission. In these contexts, SHM is very similar in objective to Operational Loads Monitoring
(OLM, [236, 206]) and Integrated Vehicle Health Management (IVHM, [21, 166]).

Following [190, 238], we can formalize the objective of SHM into five levels of increasing
difficulty: (i) detection (is the system damaged?); (ii) localization (where is the damage in
the structure?); (iii) classification (which is the type of damage present in the structure?);
(iv) assessment (how severe is the damage?); and (v) prediction (how much residual life
remains?). In this thesis, we shall focus on the first two levels: as observed independently
by Farrar et al. in [78], and by Hurtado in [114], both these levels can be formulated
as classification problems. In the remainder of this section, we shall provide an abstract
formulation of the classification problem, which will be used to develop our approach. We
refer to Chapter 7 for the instantiation of the definitions below for a particular companion
experiment.

We denote by C € RPTP 3 set of parameters that uniquely identifies a system configu-
ration. To provide a concrete point of reference, C might include information related to the
geometry of the system, to the material properties, and to the boundary conditions. We
then characterize our system by a finite number K of exhaustive states of damage. In the

simplest case (Level 1), we have K = 2 states: the label y = 1 corresponds to undamaged
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systems, and the label y = 2 corresponds to damaged systems. We denote by y = y(C) the
state of damage associated with the configuration C. We further introduce the raw measure-
ments q®P € R? obtained experimentally. For reasons that will become clear soon, we also
introduce the set of Qfeat functions (features) of q®P, 2P = F(q®P) € R%eat; we refer to
the application F : q**P — z®*P(q®*P) as feature map.

In view of the definition of the mathematical model, we introduce the incomplete (bk)
configuration vector 4 € RF, and the hidden vector ¢ € RP such that C = (u,£&). We
further introduce the anticipated configuration set PPX ¢ RP, and the configuration set
Pexp — Ppbk Y < RPTD. We here postulate that there exists a function fdam . pbk

{1,..., K} such that

y(€ = (1,6) = F™(w),  V(w,§) € PP (1.33)

We observe that this implies that the state of damage associated with any configuration C
is uniquely determined by the subset of parameters included in .
Assuming that the raw measurements q®P® are based on a set of Qexp experiments, we

introduce Qexp bk models

Gg’k’”(ul;k(u)) =0, g=1,...,Qexp: (1.3.4a)
and the (non-necessarily linear) functional £ such that

2™(u) = L (), .., ull (1), LiUX ... xU — R, (1.3.4b)
Qexp

approximates the features z&P(C) for any u € PP and £ € V. We observe that the bk
models are intended to approximate the features z®*P rather than the raw data q®*P.

We summarise the damage identification task in the next box. Some comments are
in order. We observe that the damage identification task depends on a fair amount of
quantities: the raw data q®P, the feature map F : RS — R@feat the damage function
fdam . pbk 5 1 ... K}, and the mathematical model ({ng’“}?:e’ip,ﬁ) (1.3.4). Since
the objective of this thesis is the development of a general computational procedures that

maps experimental measurements to the corresponding state of damage, in this section, we

have implicitly assumed that all these quantities are given a priori. In section 1.4.2, we
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provide a general overview of a general Structural Health Monitoring procedure, and we
provide further details about each of these quantities. We further observe that although
we tailored the discussion to Structural Health Monitoring the task can be generalized to
a wide spectrum of inverse problems, which aim to estimate a discrete-valued QOI based
on experimental data. As an example, we mention Acoustic Pulse Reflectometry (APR,

[4, 200]): as SHM, APR can be recast as a classification problem.

Qexp
q

Damage identification: given the parametrized mathematical models {ng’“ e

(1.3.4a), the functional £ (1.3.4b), and the feature map F : q**P — z®P(q®*P), develop
a computational algorithm A that, for any configuration C, takes as input the raw measure-

ments q®P = q®*P(C) € R< and returns
e an estimate § = A(q®?P) of the state of damage y(C) € {1,..., K}, and
e a measure of the confidence in the estimate.

The computational time should be independent of the high-fidelity solver used to discretize
(1.3.4).

1.4 Background

1.4.1 Variational approaches to state estimation

We present an overview of state-of-the-art techniques that have been proposed to tackle the
problem of state estimation; we here place special emphasis on the treatment of parametrized
mathematical models, and on the application of model reduction techniques. Since in this
work we only consider stationary problems, we do not explore in this section methods for
sequential data assimilation. We refer to |24, 63, 217, 216] for a thorough introduction to
data assimilation from the perspective of ocean and atmospheric sciences. We further refer
to [233] for a survey about Bayesian methods for data assimilation. Finally, we refer to
[222, 44] and to the works by Navon and coauthors ([207, 208, 239]) for an application of
model reduction techniques to unsteady data assimilation (state estimation) tasks in the
framework of 4D-VAR ([59]).

We shall first consider the case of non-parametric background (PP% = {a}, ub* = uP%()).

In this case, if we assume that disturbances are uncorrelated, with zero mean and variance
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o2, the most popular approach is the so-called 3D-VAR:

M
1 2
ug := arg 1;(161&1 £llu — uPX)? + E ( EObS) . ‘ (1.4.1)
m:1

Here, (U, || - ||) is a suitable Hilbert space defined over (2 endowed with the inner product
(-,-) and the induced norm || - || = \/(:,-); uP¥ is either referred to as background, or first
guess, or forecast, while the state estimate uz is referred to as analysis. The parameter
£ > 0 regulates the relative importance of the background compared to the experimental
data. From a statistical perspective, the approach corresponds to a variational form of least-
squares statistical linear estimation ([216]), and can be interpreted as the application of the
Bayes’ rule for linear Gaussian systems ([182]). We recall that 3D-VAR was first proposed
by Lorenc in [138]: Lorenc further developed a Bayesian framework to link 3D-VAR to
a number of other proposals including optimal interpolation ([73, 22, 90, 139]), kriging
([149, 209]) successive corrections ([60, 37]), constrained inizialization ([22]), Kalman-Bucy
filter ([123, 134] ) and adjoint model data assimilation ([70]). Similarly, in [26], Bennett and
Mclntosh proposed the so-called generalized inverse method, which has been later proved

to be equivalent to optimal interpolation ( [25]) and thus to 3D-VAR.

The analysis uz can be written as the sum of the background u¥ and a correction term
associated with experiments. More precisely, if we introduce the Riesz representations of
the observation functionals in & — (Ry#2,,v) = £2,(v) foralve Yy and m =1,..., M —
and we define the M-dimensional space Uys = span{ Ry €%, }M_,, there exists a basis of Uy

P1,...,Yum (referred to as array modes in [25]) such that

M
ug = uPk g Z (f"bs bk)) (1.4.2)

m=1

We can consider two different strategies to extend (1.4.1) to parametrized backgrounds.
First, we can substitute u”* with «P(u) in (1.4.1), and then minimize with respect to p and

u at the same time:

M
. 1
(g ) i=axg | min  €llu— PR + o= Y ( eobS) . (1.4.3)
’ m:l _

Statement (1.4.3) corresponds to the partial-spline model (see, e.g., [226, Chapter 9}). As for
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3D-VAR, we can show that the solution is of the form (1.4.2), that is ug = ubk(pg) +ng with
= 211:14:1 (ETO,?S — 8?,1(ubk(/jg))> ¥m. However, statement (1.4.3) requires the solution to a
nonlinear, non-convex minimization statement, which is likely to be ill-posed, and requires
multiple evaluations of the bk map u ~ u*(u). Second, we might neglect the correction

term 7n*, and thus simply optimize with respect to u:

M
L : 1 o (, bk obs)2
w o= argurélggk i mZ:l (Em(u (m) —6°) . (1.4.4)

We can then estimate the system’s state using u* = uP%(u*). We observe that (1.4.4)
corresponds to a deterministic inverse problem for the values of the parameters p € PPK,
and can be interpreted as a (nonlinear) projection onto the manifold MP* = {uPk(u)|q :
u € PPk}, As observed by multiple authors, problem (1.4.4) might also be ill-posed, and
thus requires some form of regularization. In this respect, we observe that the Bayesian
framework provides a rigorous mathematical ground for addressing this problem. We refer
to [211] for a discussion about Bayesian approaches for inverse problems of the form (1.4.4).
We further observe that, due to the absence of a correction mechanism, our estimate might
be inaccurate if the bk model is not sufficiently accurate. In the remainder of this section,

we discuss how to exploit model reduction techniques to tackle problem (1.4.4).

A first application of model reduction to problem (1.4.4) is based on substituting in
(1.4.4) the high-fidelity map u — uP*(1) with the Reduced Order Model, p +— u2K(u) (1.2.3).
By doing so, we can reduce the computational cost of the evaluation of the model, and thus
reduce the overall cost associated with the application of an iterative scheme for (1.4.4). In
this respect, we recall [88, 135, 84], in which model reduction strategies are exploited in a
Bayesian setting to speed up computations associated with a MCMC procedure, and [131],
in which the authors apply reduced basis techniques to reduce the computational burden
associated with the application of deterministic and statistical approaches for solving an

inverse problem of the form (1.4.4).

A second strategy is based on the relaxation of problem (1.4.4). In more detail, if we

substitute u2¥(u) in (1.4.4), we obtain

M [N 2
.1
b B B 2 (qun(u)e:; (Cn)—ff,‘?) , (1.4.5)
m=1 \n=1
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where (, := (®¥|q € U is the restriction of the n-th basis of Z8K to Q. If we now assume

2
that N < M, we can relax (1.4.5) as ¢* = argmin ,cgn = an\le (Zf:f:l Ok, (Cn) — é?,t’s) ,
which can also be written as

M

2
u* := arg min (E;’n(z) - K,O,?S) , (1.4.6)
2€2N m=1

where Zy is the restriction of ZR¢ to Q, Zy = {z|q : z € ZR}. We observe that for
N = M, (1.4.6) corresponds to the Generalized Empirical Interpolation method (GEIM,
[140, 141}); while for N < M and Zpy built using POD, (1.4.6) corresponds to Gappy-
POD (|75, 234]). Both these approaches rely on pMOR techniques to generate background
spaces Zy informed by an underlying parametrized mathematical model. We observe that
by appealing to this approach we are no longer in position to estimate the parameters
of the model; on the other hand, we greatly reduce the computational complexity of the

state-estimation procedure.

1.4.2 A general paradigm for damage identification

We shall here discuss a general paradigm for the development of a Structural Health Moni-
toring procedure. This will clarify the definition of the damage identification task presented
in section 1.3.2. The paradigm was originally proposed by Farrar and collaborators in[78],
and is defined through the integration of four sequential procedures: operational evaluation,
data acquisition, feature extraction, and statistical inference. We anticipate that in this the-
sis we focus on the last stage of the paradigm, the statistical inference. As in the previous
section, we place special emphasis on the application of model reduction techniques.

Operational evaluation sets the limitations on what will be monitored and how the mon-
itoring will be accomplished. During this stage, a formal definition of the potential states of
damage is given. From a mathematical perspective, during this stage we define the damage
function fdam (1.3.3).

Data acquisition deals with the implementation of the sensing system. The sensing
system can be based on static responses (in terms of strain ([193]) or displacement ([194,
195])) or on dynamic (such as frequency) responses ([46, 191]). Furthermore, sensing systems
are referred to as passive if they rely on the ambient loading environment as an excitation

source, and active if they can provide a local excitation tailored to the damage detection
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process (see, e.g., [79, Chapter 4.11]).

Feature extraction identifies the vector-valued functions z*P

of the acquired raw data
q%*P. Modal analysis ([231]) is the most widely-used feature-extraction technique; monitor-
ing systems that rely on modal features are referred to as vibration-based SHM (|78, 77, 79]).
Features based on modal properties are used for both passive and active sensing systems:
Operational Modal Analysis (OMA, [6]) deals with the identification of modal properties
of structures based on vibration data collected when the structure is in operation. Other

popular techniques rely on Principal Component Analysis (PCA,[243]), or equivalently on
Proper Orthogonal Decomposition (POD,[15, 147]).

Finally, statistical inference deals with the development of a decision rule which serves
to monitor the system. There are two competing approaches to accomplish the inference
step: the "inverse-problem" or "model-based" approach, and the "data-based" approach.
Both approaches are based on an offline-online decomposition of the monitoring process:
the offline stage is performed before the structure of interest starts to operate, while the
online stage corresponds to the normal operations of the structure. We emphasize that
mathematical models do play a role in both approaches: the "model-based" vs "data-based"

taxonomy refers to the online stage of the process.

In the model-based approach ([85]), a physics-based model (typically consisting of a set
of differential equations) of the structure of interest is built and properly calibrated during
the offline stage. During the online stage, this model is updated on the basis of the new
measured data from the real structure. The solution to the updated model is then used
to assess the state of damage of the system. From a mathematical perspective, during the
online stage, given the measurements q**P = q®*P(C), and the features z®*P = F(q®™*P), we

first solve an inverse problem of the form!

*

p* :=arg min [|2°%(u) — 2P|, (1.4.7a)
pePok

where the map p — zP%(u) is defined implicitly in (1.3.4). Then, we return the estimate of

the state of damage as follows:

g = fom(w). (1.4.7b)

!The choice of the Euclidean norm is completely arbitrary and other options can be considered.

35



We note that (1.4.7a) is of the same form as (1.4.4) although here we potentially consider
the case of multiple mathematical models, which correspond to the different physical exper-
iments performed on the structure. Since (1.4.7a) is likely to be ill-posed, a form of (either
statistical or deterministic) regularization is needed. We refer to the works of Friswell, Mot-
tershead and coauthors (|87, 86, 154)) for further details. We observe that these approaches
were not originally developed for the estimation of discrete-valued quantities of interest (the

state of damage), and so they do not directly address the engineering task at hand.

Instead of proceeding from a law-based model, the data-based approach ([78, 79]) is
based on the collection of a dataset of offline training data from all the possible healthy and
damaged states of interest. The dataset can be collected (i) by performing experiments on
the structure itself or on similar structures (see, e.g., [79]), or (ii) by performing synthetic
experiments based on a (possibly parametrized) mathematical model of the structure of
interest (see, e.g., [115, 114, 132]). Given the dataset, machine learning algorithms are
used to train a classifier that assigns measured data from the monitoring phase to the
relevant diagnostic class label. This classifier is then employed to monitor the structure
during the online stage. We denote by Simulation-Based Classification (SBC) the particular
procedural choices "data-based" and "synthetic experiments". Exploiting the definitions in
section 1.3.2, in SBC, we first consider M different parameters p!,..., u™ € PP% and we

assemble the dataset

DRf = {(2™ (™), £ (™) =1 (1.4.8a)

Then, we appeal to a supervised learning (SL) algorithm for classification (see, e.g., [104, 157,

120]) that takes as input the dataset D2 and returns the classifier g%, : R@&at — {1,..., K}
[g}/] = SL-algorithm(DEK). (1.4.8b)

During the online stage, we simply acquire the new measurements, we compute the features

z%*P and we evaluate the classifier:
7 = gy (2P). (1.4.8¢)

The main challenge associated with the application of the data-based (or simulation-based)
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approach is the construction of the offline dataset used to train the classifier g. Since clas-
sification performance strongly depends on the amount of offline training data, the offline
dataset should be representative of all possible system configurations (characterized by dif-
ferent geometries, and operational and environmental conditions) that can potentially occur
online.

While several authors applied model reduction techniques to speed up computations
within the model-based framework, the use of parametric model reduction in a simulation-
based setting has yet to be fully explored. As regards the model-based framework, there
is a large body of literature that exploits parametric model reduction techniques to reduce
the overall cost associated with the solution to (1.4.7) (see [158, 137, 110| and [62, Chapter
9]). These techniques are similar in objective to the techniques presented in section 1.4.1
for solving problem (1.4.4). As regards the simulation-based framework, most of the early
literature ([105, 155]) resort to surrogate models to speed up computations of the dataset,
while more recent works focus on adaptive sampling schemes ([14, 17, 16]) to reduce the
number M of datapoints in (1.4.8a) without affecting classification performances. A notable
exception is provided by the work of Lecerf, Allaire and Willcox [132], which already incor-
porate important aspects of model order reduction to accelerate the dataset construction.
However, the reduction approach employed in [132] is based on a reduction of the dimension
of the underlying PDE, and it does not exploit the parametric nature of the mathematical

model.

1.5 Thesis overview

This thesis consists of two separate parts.

Part 1 deals with the development of a model reduction procedure for state estimation,
the Parametrized-Background Data-Weak (PBDW) approach. PBDW was first presented
in [142, 143] for stationary problems and perfect measurements (i.e., £3% = £9, (u'™®), m =
1,..., M). The key idea of the PBDW formulation is to seek an approximation u* = 2*+n*
to the true field «**“® employing projection-by-data. The first contribution to u’f, z* € 2Zn, is
the "deduced background estimate". The linear N-diniensional space Zy C U is informed
by the bk manifold M = {uP*(u)|q : u € PP¥}, which we hope is close to the true

field. The second contribution to u*, n* € Uy, is the “update estimate". The linear
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M-dimensional space Uy, is the span of the Riesz representations {Ry¢2, %:1 of the M
observation functionals {£3,}_,. While the background estimate incorporates our a priori
knowledge of the state, the update addresses the deficiencies of the bk model by improving
the approximation properties of the search space.

In this thesis, we extend the PBDW formulation in three directions. Some of the results

have been first presented in the papers [213, 212].

e We propose an experimental a posteriori estimation procedure for the L2(f2) state-
estimation error ||u""® — u*||2(q), and for the error in output L£(u*"®) — L(u*), where
L : L?(Q) — R. The procedure allows us to quantify the uncertainty in the state

estimate.

e We propose a computational procedure for the construction of the background space
Zn when Q C QPX. We remark that traditional model reduction strategies aim td
generate linear approximation spaces for the manifold MPk = {uPk(p) : p € PP}
over QPK. If Q is strictly contained in QP¥, these strategies might either be unfeasible

or might lead to inaccurate approximation spaces for the restricted manifold MPk.

e We consider the case of pointwise noisy measurements (£9°° = ut™u®(z908) 4 ¢.). In
more detail, we rely on the theory of Reproducing Kernel Hilbert Spaces (RKHS)
that allows us to consider spaces U for which the Riesz representers {K,,,, = Ryt }m
associated with the observation functionals {¢9, = 4, }m are explicitly known. We
demonstrate that explicit expressions for the representers greatly improve the flexibility
of the approach; in addition, we find much faster convergence with respect to the

number of measurements M than in the approach presented in [142, 143].

Part 2 deals with the development of a model reduction procedure for Simulation-Based
Classification with application to Structural Health Monitoring. As explained in section
1.4.2, we generate a dataset DEX = {(z°(u™), f42™(u™))}M_, by repeated solution of a
parametrized mathematical model for M different parameters !, ..., u™ € PP%. Then, we
appeal to a supervised learning algorithm to compute a classifier g3, to map features (and
thus experimental observations) to the corresponding configuration label.

We demonstrate that the use of pMOR techniques, which is enabled by the parametrized

description of damage, is crucial to reduce the computational burden associated with the
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construction of the dataset without sacrifying the accuracy of the approximation. We present
a rigorous mathematical formulation which integrates the PDE model within the classifica-
tion framework, and we provide a framework for error analysis, which takes into account
non-parametric model error. We illustrate the procedure and motivate the use of model
reduction techniques through a cradle-to-grave example: a physical harmonically-excited
microtruss system. Some of the results have been first presented in the paper [214].

We resort to a 2D-3D high-order continuous-Galerkin Finite Element solver. Our imple-
mentation is based on a suite of Matlab codes ([150]) that has been developed by Professor
Masayuki Yano (University of Toronto) during his stay at MIT. We refer to [107, Appendix
A] for details related to the implementation. Experimental apparata have been designed

and implemented by Doctor James D Penn (MIT).
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Part 1

Parametrized-Background Data-Weak

approach to state estimation
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Chapter 2

The PBDW approach: formulation

and analysis

In this chapter, we introduce the PBDW formulation. First, in section 2.1, we derive the
problem statement, and we highlight the role of model order reduction. Then, in section 2.2,
we study the well-posedness of the PBDW statement, we derive an important representation
formula for the PBDW state estimate, and we discuss the connection with the problem of
optimal recovery. In section 2.3, we exploit the representation formula proved in section
2.2.1 to derive an algebraic formulation that permits rapid computations. In section 2.4
we summarize the computational procedure, and in section 2.5 we relate our approach to
other data assimilation formulations presented in the literature. Finally, in section 2.6, we
summarise the main contribution of the PBDW formulation, and we present and motivate
the research goals addressed in the next chapters. We state upfront that in this chapter we
only consider real-valued problems. The formulation and the mathematical analysis can be

trivially extended to complex-valued problems.

2.1 Formulation

2.1.1 Problem statement

We aim to estimate the deterministic state u!*¢ € U over the domain of interest Q C R¢.

As explained in the introduction, we shall afford ourselves two sources of information: a bk
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mathematical model

GOk (u)) =0, € PP

defined over a domain QP* that contains Q; and M experimental observations é‘l’bs, . ,Eﬁ}}s
such that

005 = 00 (WY fe,, m=1,..., M,
where 4, ...,£5, € U’ are suitable observation functionals, P°* C RF is a confidence region

for the true values of the parameters of the model, and {ex,}M_; are unknown disturbances
caused by either systematic error in the data acquisition system or experimental random
noise. We further introduce the bk manifold M = {uP*(p) : 4 € P *} associated with the

solution to the parametrized model.

If PPk = {f}, we propose to estimate the state ut™® as follows:

M
1
uf = argmin £lu - u¥|? + — 3 ( eobs) , (2.1.1)
m:l

where & > 0 regulates the relative importance of the background uP¥(f) compared to the
data. We observe that if €;,..., ep are independent identically distributed random distur-
bances such that Elem] = 0, Elemém| = 026mm then (2.1.1) corresponds to the 3D-VAR
statement ([24, Chapter 2],[138]).

If PPk # {1}, we can generalize (2.1.1) as follows:

g

. 1 obs 2
(u ug) :==arg  min  Ellu—uPR()|? + Z ( — b ) : (2.1.2)

bk
(1,u)ePPlxis m=1

Formulation (2.1.2) is known as partial spline model (|226, Chapter 9]), and can also be
restated in terms of the update n; = uf — ubk(pg):

g

* * : 1 lo] obs 2
(ugmg) ==arg  min Elml® + 22 3 (€ (u(w) +m) - £7) (2.1.3)

bk
(m,m) €PPRxU el

We observe that (2.1.2) (and equivalently (2.1.3)) is non-convex in y; furthermore, evalu-
ations of the map p +— uPX(u) involve the solution to the bk model. Therefore, it is not

suitable for real-time computations.
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If we introduce the rank-N approximation ([56]) of the bk field uP¥ (1),

N
u?\}‘lg(z, p) = Z bn (1) Ca(z), rel, pe Pbk»
n=1

we can approximate statement (2.1.3) as

M N 2

. |

(g mg) :=arg  min &P+ D (Lo | Do da(t)n | +n(n) — L% ) . (2.1.4)
(wm)EPPRxXU T 1

Then, we can relax (2.1.4) as follows:

N 2
1
* ok : 2 0 0 obs
ok ) = m + =3 (¢ 0 () — 2|
( 3 775) arg (¢,n)€]1erlVXL{ 5“”” M —~ ( m ( 1¢n C’ﬂ) m(n) m )

n=

which can also be rewritten as

(Gtont) =g inf J(mn) =€l + o Y (B m -6F) ., (@215)
&N T8 ez ET M 2e \'m m)o A
where Zy = span{(,}"_; C U is the N-dimensional linear space induced by {¢,}2_,. We

further denote by u; = 2z} + 1} the corresponding state estimate.
£~ % T

Statement (2.1.5) is the Parametrized-Background Data-Weak (PBDW) formulation,
and uf = 27 + 7} is the PBDW state estimate. We observe that PBDW is a (convex) relax-
ation of the partial spline model for a parametric affine background: instead of penalizing
the distance between the state estimate and the manifold MP* = {uP¥(y) : p € PPk}, we
penalize the distance from the linear space Zy. The parameter £ should be chosen based
on the accuracy of the background space — hence on the accuracy of the bk mathematical
model — and on the magnitude of the disturbances €1, ..., epr, and might be typically set
adaptively. Our derivation allows us to interpret zg as the deduced background: zg is the
component of the state informed by the prior knowledge of the system, and represents antic-
ipated uncertainty in the mathematical model. Similarly, we can interpret 772 as the update,
the component of the state that accomodates unanticipated or non-parametric uncertainty.

Consistently, we refer to Zy as the background space.

Before concluding, we investigate the noise-free case (i.e., £20 = £9, (u¥), m = 1,..., M)

corresponding to the limit £ — 07. Proceeding formally, we obtain the noise-free PBDW
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formulation:

(z%,n*) := arg " n)ieri?fou |l subjectto £5,(z4+n) =€, m=1,...,M. (2.1.6)

We denote by u* = 2*+n* the corresponding state estimate. Formulation (2.1.6) corresponds
to the PBDW formulation first proposed in [142]. In section 2.5, we rigorously show that

lug — u*|| — 0 as & — 0F.

The assumption of smoothness

We observe that our formulation relies on the assumption that the true field u*“® belongs
to the Hilbert space U, which corresponds to the Sobolev space H*(2) for some s > 1.
Although in some cases this assumption might be justified by the existence of physical laws
with continuity and differentiability properties, it seems difficult to guarantee a priori that
the true field belongs to U.

As observed in [76, section 9.6], the assumption of smoothness corresponds to the as-
sumption that "similar" inputs — in this case spatial locations — correspond to "similar"
outputs in a proper metric. We argue that the latter, rather than being a technical as-
sumption required by our particular formulation, is a necessary condition for the existence

of accurate state estimation algorithms based on scattered data.

2.1.2 Role of model order reduction

If we denote by €P | = inf LEPbk [|lutrie—uPk(1)|| the modeling error, and by € = inf,cz,, |Jut™e—
z|| the best-fit error associated with Zy, we aim to choose Zy such that e?X | ~ e¥¥. Since
the stability of the PBDW formulation strongly depends on the value of N, we further wish

to keep N small compared to the number of observations M. We observe that we may
bound the best-fit error as follows:

bk

bk : . bk . bk true bk
= inf |[u""—z|| < f - f |lu —u =€
ev = inf | | < sup, i, ™ (1) — 2| + o, [[u™ (k) || = €dise, v + €mods

true

(2.1.7)

bk —

where €§ .y = sup,cpvk infezy |uP¥ (1) — z|| is the discretization error. Therefore, if €oX

mod

is small, we can practically construct Zy to minimise e}k, .
’
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Assuming that Q = Q¥ (i.e., the bk model is defined over the domain of interest), we
observe that the task of constructing the space Zp is equivalent in objective to the task of
constructing the reduced trial space in parametric Model Order Reduction (pMOR) briefly
outlined in the introduction. Therefore, we can resort to state-of-the-art techniques proposed
in the pMOR literature to generate Zpy, such as Proper Orthogonal Decomposition (POD,
[28, 130, 122]), Proper Generalized Decomposition (PGD, [54, 52]), Taylor expansions ([80}),

and Greedy algorithms.

In this work, we rely on the Weak-Greedy algorithm for the construction of the space
- Zn. The algorithm was first proposed in [223] in the context of Reduced Basis method, and
has been applied to elliptic and parabolic, linear and nonlinear, differential equations. The
convergence with respect to N of the reduced space obtained using this Greedy procedure
has been extensively studied in [40, 32, 66] and linked to the so-called Kolmogorov N-width
[172]. We refer to [180, Chapter 7] for a thorough overview of the computational procedure;

we further refer to [56, Section 8] for a review of the theoretical results.

We briefly summarise the procedure. Given the parametrized PDE GPX#(uPk(p)) = 0,
p € PPX we introduce the error indicator’: AR¥(u) ~ inf,cz, ||uP*(u)—z2|, u € PPk, Then,
the weak-Greedy algorithm constructs a Lagrange ([175]) hierarchical approximation space
ZNpay = span{ubk(u")}g;‘f‘“ such that pV = arg MaxXucs,, ;. Al]’\}‘_l(u), N =1,..., Npax,
where Zirain C PP¥ is a finite-dimensional discretization of the parameter domain Pk,

Algorithm 2.1.1 summarises the computational procedure.

We briefly address the more general case  C QPX. In this case, we might first appeal

to one of the techniques presented above to build a space z n for the manifold MPk

QY% Then, we might define Zy := {z|q : z € Zy}. If the manifold MPk is low-dimensional

over

and reducible?, this approach should guarantee accurate reduced spaces for the bk manifold
MPE. However, if MPK is not reducible, and Q is strictly contained in P, we envision that
this approach might either be unfeasible or lead to poor approximation spaces. We address

this issue in Chapter 5.

!The practical definition of A?\}‘(M) depends on the particular form of the PDE. We refer to the above-
mentioned literature for further details.

ZWe refer to [180, Chapter 5] for a formal discussion about the reducibility of parametric manifolds. In
Chapter 5 of the present thesis, we discuss the problem of reducibility in a special setting.
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Algorithm 2.1.1 Weak-Greedy algorithm

Input GPk» parametrized best-knowledge model
Pk parameter domain
ARk error estimate for inf,cz, [u(n) — z||

Output {2 N}%":"‘I" N-dimensional hierarchical background space

1: for N=1,..., Npax do

2 Identify the parameter associated with the largest error estimate,
luN = arg maxﬂeatrain A'j)\}'(_l(/l/)'
3: Evaluate the associated solution (y := uP*(uv).

4: Augment the background space Zy :=span{Zn_1,({n}.

5. end for

2.2 Mathematical analysis

2.2.1 Well-posedness analysis

In this section, we present well-posedness results for the PBDW statement together with
a finite-dimensional representation formula for the state estimate, which permits efficient
computations. Towards this end, we introduce the Riesz operator Ry : U’ — U such that
(Rut,v) = £(v) for all v € U and ¢ € U’, we further introduce the M-dimensional update

space Ups as
Uy = span{qm := Ry, }M_,. (2.2.1)
Finally, we introduce the stability constant Sy s as

, (2,9)
BN = inf sup ————. (2.2.2)
2€2n qeuy (1214l

Some comments are in order. For perfect measurements (i.e., £3% = ¢2 (u*¢)), the inner

product (u'™€ q) is a weighted sum of experimental observations

M M M
<utrue,q — Z aQO) — Z am(utrue’ (Im) _ Z amf%’s- (223)
m=1 m=1 m=1
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For this reason, we say that Uy, is experimentally observable. We further observe that the
stability constant Sy as is a non-increasing function of background span () and a non-
decreasing function of observable span (M). Furthermore, By = 0 for M < N.

Next two Propositions provide the well-posedness results; for purposes of exposition, we

consider the cases £ = 0 and £ > 0 separately.

Proposition 2.2.1. Suppose that Zy C U, and let Sy ar be defined in (2.2.2). Let us further
suppose that £2°5 = £2 (ut™®) form =1,..., M, and that Ups is M-dimensional. Then, the
following hold.

(i) Any solution (2*,m*) to (2.1.6) belongs to Zn X Z3 NUay.

(1) The pair (z*,1m*) is a solution to (2.1.6) if and only if u* = 2* +n* is a solution to the

problem:

u* := arg in{{ ||H21#u|| subject to  £2,(u) = £, m=1,..., M. (2.2.4)
ue

(iit) If Bns > 0, there exists a unique solution (2*,n*) to (2.1.6). Furthermore, (z*,n")

solves the following saddle-point problem:

(n*,q) + (z5,9) = (u™™,q) Vq €Uy,
(2.2.5)

Proof. We first prove (i). Let (z*,7*) be a solution to (2.1.6). We observe that (z*, I, 7*)

satisfies the constraints,

5,2+ gy 1) = (2" + T 7% m) = (7%, G ) = B (&% +17) = £35%, m = 1,..., M.
€U

Furthermore, recalling the projection theorem, we find ||7*||? = ||TL,,n*||%+ ”Hu1¢1 n*||%. Since

(z*,n*) is optimal, we must have Huzﬁ n* = 0. This proves that n* € Ups. We now consider

the pair (z* + HZNU*,Hzﬁﬂ*)- It is straightforward to verify that (z* + HZNW*,szL]ﬂ*)

satisfies the constraints. Therefore, appealing once again to the projection theorem, and

exploiting the optimality of (2*,7*), we must have IIz,n* = 0. Thesis follows.

We now prove (ii). Recalling statement (i), we have n* € Z3. This implies that we can
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restate (2.1.6) as follows:

(z%,n*) := arg inf |l subject to £2,(z+n) =4 m=1,...,M.
(zm)EZNXZ}

Thesis (ii) follows by observing that Zy & Zy = U.

We finally prove (iii). Exploiting (2.2.3), we restate (2.1.6) as follows:

(2*,n*) =arg min |||, subjectto (z+n—u""® q) =0Vq € Uy. (2.2.6)
(Z:TI)EZNXU

We can now introduce the Lagrangian £ : Zy % Upr X Ups — R associated with (2.2.6):
L(z,n,¢) = 5|Inl> + (z + n — u'™¢, ¢). By differentiating, we obtain
(

OpL=0= (n*+¢* dn) =0 Vo € Uns;

{ 0.L=0= (¢*,02)=0 Véz € Zn;

La¢£=0:> (7" + ¢* — ul™® 6¢) =0 V6o € Ups.

From the first equation, we obtain n* = —¢*. Then, if we substitute this identity in the
second equation, we obtain that any solution to (2.1.6) must solve (2.2.5). Recalling® [181,
Theorem 7.4.1}, since By ar > 0, there exists a unique solution (2*,7*) € Zn xUps to (2.2.5).

Thesis (iii) follows. g

Proposition 2.2.2. Suppose that Zn C U, and let By v be defined in (2.2.2). Let us
further suppose that Ups is M -dimensional. Let £ > 0. Then, the following hold.

(i) Any solution (2f,nf) to (2.1.5) belongs to Zy x Zx N U

(ir) The pair (zZ,ng) is a solution to (2.1.5) if and only if ug = 27 + g is a solution to the

problem
(1) 1 2
* . . . 2 0 __ pobs
ug 1= argangJ Je (u) = §|lﬂzﬁu|| + a7 mzzl (@m(u) o ) . (2.2.7)

(i) If BN,m > 0, there exists a unique solution (2f,7¢) to (2.1.5). Furthermore, (25, mg)

3We briefly present the correspondence between our notation and the notation used in [181, Theorem
741] M=2y, X =Uu, a(', ) = ('7')7 b(a ) = (’: ')7 (eﬁ ’U) = (utrue,v) and o = 0.

48



solves the following saddle-point problem:

260t ) + 7 Tomiy (Bl +12) = 65°) £(@) =0 Vaq €l 225,
(7, p) =0 Vpe Zy.

In view of the proof of Proposition 2.2.2, we first present two lemmas. The first lemma

is proven in [141, Proposition Appendix A.1]; we report the proof for completeness.

Lemma 2.2.1. Let Uy := span{qn}M_, and let By be defined as in (2.2.2). Then, we
have that

P

(2.2.9)
neug, Il

Proof. To simplify notation, given the linear space Q, we define Q) = {g € Q: ||q|| = 1}.
We now prove (2.2.9).

2
Bl = (mfzezf\}’ SUP,, ¢y (1 (Zav)> = inf 0 [T, zl* =1 =sup,_,a [Ty 211
2 2
= 1- (SuPzez,(\}) SUP () (z,q)) =1- (supqeult(l) SUP_ ¢z () (z,q))
= 1-suwp om [Mzyql® =inf 0 [Tzl

Thesis follows. O

Lemma 2.2.2. LetUyy = span{qm}""{'zl, M' < M. Let us introduce By = inf ez, SUPyet, |(le1]2 L
and the matriz KM ¢ RM" M’ KM (gm, qm')- Let us further define

m,m’

M'=1,..M 2 + Amin (K(M")
(2.2.108)

X . (1 ' Amin (K
cNM = max  En v, ¢n, M = min ('jAmin(K(M )), min ) ﬁJZ\J,M' :

where Amin (]K(M /)) denotes the minimum eigenvalue of the matriz KM,

Then, the following bound holds:

M
Tw) = ggul®+ > @) > enmlul?,  VYuel. (2.2.10b)

m=1
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Proof. We first claim that for any M’ such that Sy pr > 0 we have

MI
Tar(u) = Mgrul®+ ) (W) 2 évarlul®,  Yuel. (2:2.11)

m=1

Given (2.2.11), we find that
Tw) 2 T ) 2 exalall VM <M = T) > (maoe evar ) Il

which is the thesis.

We now show (2.2.11). Given u € U, we introduce u; = ILu u, upg = y,,u =
. Ml
Z%;I(UQ)mqm. Then, we observe that
u1(Tm) = ((gm , u1) =0, m=1,...,M. (2.2.12)
EUp
We further observe that
M’ .
> () = K™ ugf,  Jlugl? = uf KM w,

m=1

which implies that

M’ 0 2 (M") 2
: m=1 (fm(u2))” _ : K™ g3 (me (M)
ah, T TalP T itk uTROT) g, e (2219)
Combining (2.2.12) and (2.2.13), we obtain
M’ M’
Do (@)’ =D (€ (u2))® = Aunin (KM [lug®.
m=1 m=1

Now, recalling the identity 2ab > —%aQ — €b? valid for any € > 0, and Lemma 2.2.1, we

obtain:
Tar () = Jprr(ua +uz) 2 Hzgun|® + [zgusll? + 2 (Mzgur, Mzpus) + Amin(K) [lus?
> (1= arlul® + (1= 8) IMzpuzl® + Amin(K) fus||?
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Let us consider € € (—1——;— 1). Recalling that ||Hzﬁuz|| < ||uz]|, we obtain

T A (ROT)

T (@) 2 (1= B ap lur 2 + (min(KM) +1 = 1) g2

> min (/\min(]K(Ml)) +1-1 (- E)ﬂIQV,M') £||u1||2 + ||u2||22.

~
=[lulf?

Estimate (2.2.11) follows by considering € = O

2
2+)\min(K(Ml)) '

We observe that cy s is monotonic increasing with M; therefore, it is asymptotically
bounded from below in the limit M — oco. We further observe that )\min(K(M /)) > 0 if and

only if Uy is a M’-dimensional space.

Proof. (Proposition 2.2.2). We first prove that 7y € Uy NZ3 (Statement (i)). Thesis follows
by observing that Je(z,71) = Je(z, HuMU)-l-f”HulﬁnHQ, and Jg(z,n) = Je(2+1lzyn, zin)+
&||lIz,n||?. We omit the details.

We now show that (zf,7;) solves (2.1.5) if and onmly if uf = 2 + 77 solves (2.2.7)
(Statement (ii)). Exploiting Statement (i), we have

(z,n)ré‘ié;xu Jelz,m) = (z,n)gl;,rlezﬁ Te(zm).
Thesis follows by observing that Jél)(u) = Je(Mzyu, Iz L u), and recalling that U = Zy @
Z%.
We now prove (iii). Applying Lemma 2.2.2, we find that the objective function Jg(l) :
U — R is strictly convex if Sy > 0. Existence and uniqueness of the solution to (2.2.7)
then follow from [74, Theorem 3, Chapter 8.2]. Exploiting Statement (ii), we find that the
solution (g, 7g) to (2.1.5) exists and is unique. Furthermore, recalling that the solution ug

(1)

must be a zero of the first variation of Jg , we obtain

M
2
60 (uf,v) = 26(Tgpuf, 0) + — 3 (e;’n(ug) - e*;,';s) ©w=0. VYvel,
m=1

which implies (2.2.8). Thesis follows. d

Before concluding, we present a number of observations. First, in Propositions 2.2.1 and

2.2.2, we rely on the assumption that Zy C Y. This is required to define By s in (2.2.2),
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and also the single-field formulations (2.2.4) and (2.2.7). In section 2.3, we derive sufficient
conditions for the well-posedness of (2.1.5) and (2.1.6) that do not rely on the hypothesis
Zn C U. Second, statements (i) of Propositions 2.2.1 and 2.2.2 are extremely important
from a practical standpoint since they provide an a prior:i finite-dimensional representa-
tion formula for the solutions to (2.1.5) and (2.1.6). We rely on these finite-dimensional

representations to derive efficient algebraic counterparts of the variational statements.

2.2.2 Connection with the problem of optimal recovery

We illustrate the connection between the PBDW formulation presented in this chapter and
the problem of optimal recovery ([152]). This connection has first been observed by Binev
et al. in [33] for perfect observations; in this section, we briefly review part of the analysis
presented in [33], and we present the analogous result for noisy measurements.

Given the background space Zy C U and the linear functionals £9,...,£3, € U', we

introduce the compact sets

K (e, €°%%) = {u €U Mgl <e €(u) =625 m=1,.. M} (2.2.14)
and
1 & 2
Ko ele, £9%) = {u eu: IO ) = zpul®+ - (zgn(u) - egES) <e } , (2.2.15)
m=1
where € > 0, and €% = (€3vs, ...,Eﬁ‘,}s) is the vector of experimental observations. We

observe that the spaces Ky and Ky ¢ incorporate the two available pieces of information:
the proximity of u'™® to the linear space Zy, and the experimental observations. In the
former case, we impose that all elements of K interpolate data; in the latter case, we rely
on the parameter £ to properly balance between proximity to Zy and agreement with the
experimental observations.

Given the closed set K. C U, the problem of optimal recovery corresponds to identify
the field v* € U that minimizes the error ||u* — u'™¢|| in the worst-case scenario, provided
that u'™€ € K.. More formally, we can introduce the optimal recovery algorithms associated

with (2.2.14) and (2.2.15).
Definition 2.2.1. A recovery algorithm is any measurable mapping A : RM — Y. The

52



optimal recovery algorithm A;’\?t associated with Ky (e, -) satisfies

A®PY(g°PS) = arg inf sup [lw— &, (2.2.16)
uey (€,£°P%)

for any £°% € RM for which K N,s 18 not empty. Similarly, we can define the optimal recovery

A(I)\?tﬁ associated with Ky ¢.
Next Proposition shows that the PBDW formulation is the optimal recovery algorithm.

Proposition 2.2.3. Suppose that By > 0. Then, the PBDW algorithm AYBPW . RM —
(2.2.4) is the optimal recovery algorithm associated to Ky (e, ) for any € > 0. Similarly, the
regularized PBDW algorithm A?BDW : RM — Y (2.2.7) is optimal for Kne(e,-) for any

e>0.

Proof. The optimality of (2.2.4) is proved in [33, Theorem 2.8]. On the other hand, we

observe that?:

M
2
2(Mzyuf, v) + 2= D (zgl(ug) —zg*;S) ©.w)=0 YveU.
’ m=1
Thus, we find
1 M
1 1
TEP g +v) = I ) + €Mzl + 37 D ()

=1

This implies that uf +v € ICN,g(e,EObS) if and only if uf —v € K (e, £°%%). Then, optimality
of (2.2.7) is a direct consequence of Remarks 2.2 and 2.3 in [33]. We omit the details. O

2.3 Algebraic formulation

In this section, we present the PBDW algebraic formulation, and we study the stability
properties of the linear system. Then, as anticipated in section 2.2.1, we present a well-

posedness result that does not rely on the assumption that Zy C U.

*If v € U, this follows from (2.2.8); if v € Ujy, this follows by observing that £2,(v) = (gm,v) = O for
m=1,...,M, and (Hzﬁuz,v) = (n;,v) =0.
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2.3.1 PBDW algebraic statement

In view of the algebraic formulation, we first introduce the matrices K € RMM 7 € RV,

L € RMN guch that

Km,m’ = ((Im7Qm’)7 Zn,n’ = (Cny Cn’)a I[Jm,'n. = efn(gn)v (2'3'1)

for m,m’ = 1,...,M, and n,n’ = 1,...,N. Next Propositions show the algebraic coun-
terparts of the PBDW statements (2.1.5) and (2.1.6). We note that the state estimation

procedure does not require the calculation of the matrix Z.

Proposition 2.3.1. Let Bn,m > 0, and let £ > 0. Then, the solution to (2.1.5) ug = z; +n;

is given by

N M
ui() =D Zabn() + D Wmam(), (2.3.2a)
n=1 m=1

where the pair (z¢,m%) € RN x RM solves

gc;bs
MI+K L * £2bs
¢ Me | _ | M| e | (2.3.2b)
LT 0 EN 0
Eobs
M

Equation (2.3.2) can be extended to £ = 0 with the convention u* = U

Proof. We first consider the case £ > 0. Recalling Proposition 2.2.2 (Statement (i)), we have
that uf is of the form (2.3.2a). Then, substituting (2.3.2a) in (2.2.8) and choosing ¢ = ¢m,
p = (pn, we find
2K+ FK? ZKL | | o} ZKey®
LT 0 zg 0

Since K is invertible, thesis follows by multiplying the first equation by %K‘l.
We now consider the case £ = 0. Thesis follows by combining Proposition 2.2.1 (State-

ment (i)), and (2.2.5). We omit the details. O

We now wish to investigate the spectral properties of the linear system (2.3.2b). With

this in mind, we first present a standard result (see, e.g., [141, Lemma 3.3]).

54



Lemma 2.3.1. The inf-sup constant By, ar is the square root of the minimum eigenvalue of

the following eigenproblem:
LTK 'Lz, = v, Zzn, n=1,...,N. (2.3.3)

Proof. Since sup,¢y,, %’ﬁl = ||IIy,, z||, we obtain:

: m,2) \* . . T,z
:812VM = inf sup ( = ipf M=Mmel
’ z€Zn neuy \|IMllI2|l zezy |22

We observe that for any z € Zy the projection onto Ups can be written as I,z =

ZM nZ, @m, Where the vector 0 satisfies n* = K~! L z. Therefore, we find

m=1

Introducing the Lagrangian multiplier » € R, we can write the optimality conditions as
LK 'Lz —-vZz =0;
2! 7z =1.

Thesis follows. O

Next Proposition provides a bound for the minimum eigenvalue of the saddle point

system (2.3.2b).

Proposition 2.3.2. Suppose that By > 0, and let (1, ...,{n be an orthonormal basis
of Zn. Let )\g““ be the minimum (in absolute value) eigenvalue of the saddle point system

(2.3.2b). Then, the following bound holds:

(2.3.4)

T
IAZR| > min (Amm(KH&M, B a — M Smax L7 L) )

)\min (K) (§M + )\min (K))

and the bound holds with equality for £ = 0.

Proof. Following the argument in [27, Section 3.4], we observe that the saddle-point sys-
K+ EMI 0

tem (2.3.2b) is congruent to the block-diagonal matrix
0 ~LT(K + ¢MT)~ L
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Therefore, we find:
IANPR| = min (Amin(K) + €M, Amin (L7 (K + ¢MT)7'L)) .
We now estimate Amin (]LT(]K +E&M ]I)'I]L). Towards this end, we first observe that
(K+&EMD) =K' —eMXe, Xe=(K+eMD)TIK™

Therefore, recalling standard linear algebra results and Lemma 2.3.1, we find

vILT(K + ¢MI)~'Lv

Amin (LT(K + ¢MI)~!L) = min

v IvI3
TLTK™! TLTX L
2 minw—ﬁMmax——v 25 M
v Ivilz v Ivll3
2 IB?V,M - éM)‘max(Xg))\max(]LTL).
Thesis follows by observing that
vI(K +eMI) 1K1y ) 1
Amax(X¢) = max < Amin(K) +EM) ™ ———.
max( £) 3 HV”% __( mln( ) f ) Amin(K)

2.3.2 An improved well-posedness result

Proposition 2.3.3 shows a well-posedness result that does not rely on the assumption Zy C

Uu.

Proposition 2.3.3. Let X = X () be a Hilbert space Q2 such that Zy C X, and £3,...,63, €
X'. Then, the solution (z’g, 772‘) € ZN XU to (2.1.5) exists and is unique if and only if the ma-
triz L has rank N. Furthermore, the state estimate uf = 2§ + g satisfies the representation

formula (2.3.2). The same result holds for & = 0.

Proof. We only prove the case £ > 0 since the case £ = 0 can be studied using the same
argument. We observe that Je(z,n) = Je(2, Iy, m) +§ ||HMAL4 n||2. Therefore, any solution U
to (2.1.5) belongs to Up,. This implies that any solution to (2.1.5) is of the form (2.3.2a).
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Substituting (2.3.2a) in the minimization statement, we find

1
. T obs |12
min " Kn+ —|Kn+Lz—-£ .

By deriving the stationary conditions, we find

(K + 4K?) n* + LKLz* = LKy

(2.3.5)

LT Kn* + LTLz* =17y

By premultiplying (2.3.5); by MK™!, we find
(EMI+K)n* +Lz* = y. | (2.3.6a)

If we now premultiply the latter equation by L7 and we subtract (2.3.5)s, we obtain
LTp =o0. (2.3.6b)

Saddle system (2.3.6a) - (2.3.6b) is well-posed since K is invertible and L is full-rank by

hypothesis. Thesis follows. O

We observe that if Zy C U, the condition rank(L) = N is equivalent to Sy > 0 (cf.
Lemma 2.3.1). Therefore, Proposition 2.3.3 is equivalent to Propositions 2.2.2 and 2.2.1 if
ZNn C U. We further observe that the proof of Proposition 2.3.3 is closely related to the
proof of [127, Theorem 5.1].

2.4 Computational procedure: offline-online computational de-

composition

The algebraic formulation derived in section 2.3 allows us to decouple the computational
procedure into two distinct stages. During the offline stage, which is performed before
acquiring the experimental observations, we generate the approximation spaces Zx and
Up, and we assemble the linear saddle point system (2.3.2b). During the online stage,
which is performed during the operations and possibly in situ, we acquire the experimental

data é‘fbs, ... ,ﬁ‘}\’,}s, we select the regularizer weight £, and we compute the state estimate
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by solving (2.3.2b). We observe that the offline stage is computationally extensive since
we need to solve the bk model possibly several times. On the other hand, the online stage
requires O(N + M)3 operations.

Algorithm 2.4.1 presents the computational procedure. In Chapter 3, for noise-free
measurements, we present a Greedy procedure to select sensor locations (Step 3-Offline
stage). We further remark that in our setting the update space Uy, is induced by the
norm || - || and the observation functionals: in Chapter 6, for the special case of pointwise
measurements, we partially reverse this scheme. Finally, we have not yet discussed how to

practically choose the hyper-parameter £&: we address this question in Chapter 6.

Algorithm 2.4.1 PBDW approach. Offline-online computational procedure

Offline stage
1: Choose the space (U, || - ||)
2: Generate the background Zy C U
3: (If possible) Select the observation functionals ¢4,...,£%, € U’
4: Compute Ups = span{ Ry €2, }M_,
5: Assemble the matrix in (2.3.2b)

Onine stage

1: Acquire the measurements E‘fbs, . ,63},’5
2: Choose the regularizer weight &
3: Solve the linear system (2.3.2b)

4: (If needed) Evaluate the state using (2.3.2a).

2.5 Connection with other formulations

2.5.1 Connection with other data assimilation procedures

In the statistical learning literature, PBDW is closely related to the approach presented in
[127] by Kimeldorf and Wahba. In more detail, the two approaches are equivalent if we
choose Zy as the set of all polynomials of degree less or equal to x, kK > d/2 — 1, and
U = H**1(Q) endowed with a proper inner product. We further observe that, by exploiting

the connection with [127], we can re-interpret our formulation in a Bayesian setting as a
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Gaussian linear system with improper prior (see [225]). In this work, we do not pursue this
feature of the approach.

Furthermore, for N = M PBDW formulation is equivalent to the solution to the Gen-
eralized Empirical Interpolation Method (GEIM, [140]), while for £ — oo and Zy built
using a Proper Orthogonal Decomposition (POD, [130]), PBDW is asymptotically equiva-
lent to Gappy-POD (|75, 234]). We shall also observe that the use of the background space
— as opposed to a background singleton element in the original 3D-VAR — is also found
in nearfield acoustical holography (NAH, [47, 235]). We finally mention that the general
PBDW formulation (2.1.5) is asymptotically equivalent to the "noise-free" formulation in
the limit £ — 07: as stated in section 2.1.1, the latter corresponds to the original formulation

presented in [142]. Next Proposition shows the two asymptotic results.

Proposition 2.5.1. Let fy,n > 0. Let ug = ng + 27 be the solution to (2.1.5). Then, we

have
i gl = lim ;- =0 2.5.1
) im, lu* —ug|l =0, i l|ug — zvsl| , ( )

where u* = 2* +n* is the solution to (2.1.6), and z1s = argmingez, SM_ (49, (z) — £2P5)2,

Proof. Let us first consider the limit £ — 0*. We just have to show that

* *
lim | u;= e =ui_o= M=o
£—0t 3 * £=0 *

Exploiting Proposition 2.3.2, we can show that each eigenvalue of the saddle-point system
(2.3.2b) satisfies |A¢ ;| > 3 min(Amin(K), 612V,M) > 0 for all ¢ < ¢, for some £ > 0. Therefore,
we find ||u’£‘||2 < C forall ¢ <¢.

Let {£;}; be a positive sequence such that £; — 07, and let ug, be the solution to (2.3.2b)
for £ = &;. Since {uzj }; is uniformly bounded, applying Bolzano-Weierstrass theorem, we

obtain that, up to a subsequence, ugl — 4. We further observe that

035 K L oy I o | K L
- u ¢ UE -—
0 roo| 00| “ZILT o

u.

Since the linear system (2.3.2b) for { = 0 admits a unique solution, we must have 4 = uf_,.
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Using the same reasoning, we find that uE:o is the only limit point of the uniformly bounded
sequence {UE,. };. Therefore, the entire sequence is convergent (see, e.g., [148, page 67]).

We now consider the case £ — oo. As for the previous éase, we must prove that for
£ — o0

zz - ZLs = (]LT]L)'1 LT eg‘f, 772 - 0.

The proof exploits the same argument of the previous case, £ — 07. We omit the details. [

2.5.2 A two-stage regression procedure: connection with Kalman filter

We can rewrite the linear system (2.3.2b) as follows:

LT(¢MI+ K)~'Lzf = LT(EMT + K)~ L3
(2.5.2)
(EMI + K)nt = £57° — Lag.

Formulation (2.5.2) is the algebraic counterpart of the following two-stage procedure:

* . . __ pobs .
2f := arg nin 1Lr(2) — €31°llws
L M (2.5.3)
= arg min |l + i D (G n) - €2, T = e — £2,(2F),
m=1

where W = (K + ¢MI)™Y, Ly(2) = [(2),...,£5(2)], and ||d|w = VdTWd. Prob-
lem (2.5.3); corresponds to a weighted least-square (generalized) regression problem, while
(2.5.3)2 corresponds to a generalized smoothing problem applied to the error field u'*4¢ — Zg.

Equation (2.5.3) clarifies the connection of our approach with Kalman filtering techniques
([123, 134]). The deduced-background estimate z{ € Zy represents our predicted state
estimate based on prior knowledge (here encoded in the background space); on the other
hand, the update ng € U)s represents the innovation induced by the measurements and only
depends on the residuals £IF = £9Ps — € (2g).-

We further observe that — from the perspective of approximation theory — PBDW
formulation introduces a hierarchy between the approximation provided by the background
space Zy, and the approximation provided by Ups. In more detail, the background space Zn
should provide primary approximation, while the update space Uy is designed to complete

any deficiency in Zy. This asymmetry between Zx and Uy is motivated by the underlying
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assumption that elements of Zy have better generalization properties (see, e.g., [221]) than
elements in U since they are directly informed by the mathematical model. In this respect,
by adapting the parameter £, we can properly tune the relative importance of primary and

secondary approximation.

2.6 Conclusions and objective of the next chapters

In this chapter, we presented the PBDW formulation of the variational data assimilation
(state estimation) problem for systems modeled by PDEs. Below, we list the main features
of the methodology.

Projection-by-data: PBDW is an approximation method that seeks solutions based
on projection-by-data. In more detail, the bk model does not enter explicitly in the PBDW
variational formulation since it is only employed to generate the background space Zy.
This feature of the approach greatly simplifies the implementation of the computational
procedure, and ultimately speeds up computations. Projection-by-data — a problem in ap-
proximation theory — rather than projection-by-model — a problem in PDE discretization
— has also many advantages with respect to the mathematical theory. First, projection-by-
data eliminates many of the standard requirements of projection-by-model related to initial
and boundary conditions; for example, the domain  over which we reconstruct the state can
be a subset of the bk domain Q2% over which the mathematical model is well-posed. Second,
in projection-by-data, we can accomodate norms which may be considerably stronger than
the norms required for well-posedness in projection-by-model. We extensively exploit these

features of the formulation in Chapters 5 and 6.

Variational formulation: we remark that PBDW relies on a variational formulation.
The variational formulation facilitates the construction of a priori error estimates informed
by the analysis developed for PDEs and scattered data approximation. In Chapter 3, we
present theoretical a priori bounds for the state estimation error in absence of noise. Then,

in Chapter 6, we provide an error analysis for pointwise noisy measurements.

Background space: PBDW formulation incorporates background spaces that accom-
modate anticipated parametric uncertainty. The background space is constructed in two

steps: (i) the identification of a parametrized PDE that models the phenomenon under con-
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sideration and a suitable confidence region P°* for the parameters of the model, and (ii) the
application of a pMOR technique — such as the Weak-Greedy algorithm briefy summarised

in Algorithm 2.1.1 — to generate a linear space appropriate for real-time evaluations.

Correction of unmodeled physics: as explained in section 2.5, PBDW provides a

mechanism — the update 772 — to address the inevitable deficiencies of the bk model.

The PBDW formulation (2.1.6) was first presented and analysed in [142, 143] for perfect
measurements (€3> = £9, (ut™®)). In [142], for localised measurements, the authors proposed
a Greedy strategy for the selection of sensor locations. In [143], the authors extended the
analysis to imperfect measurements.

The original PBDW approach shows a number of deficiencies. First, in [142, 143], the
authors did not propose an actionable strategy to quantify the uncertainty in the state es-
timate — apart from the heuristic error indicator in [143, section 5.7]. Second, the authors
employed a traditional pMOR technique — the weak-Greedy algorithm reviewed in section
2.1.2 — to the manifold MP¥ defined over QP%: as explained in section 2.1.2, if € is strictly
contained in QP¥, this strategy might either be unfeasible or might lead to inaccurate ap-
proximation spaces for the restricted manifold MPX. Third, due to the absence of tunable
parameters, the original formulation did not provide tools to rationally balance inadequa-
cies in the bk model and noise in the measurements. In particular, there was no attempt
to incorporate the presence of noise in the actual state estimate. In addition, due to the
choice U = H'(Q), for localised measurements, the approximation properties of the update
are poor, and it is not possible to efficiently adapt the shape of the Riesz representers during
the online stage: this might lead to poor convergence in M.

Motivated by the previous discussion, in this thesis, we first review the PBDW formula-
tion for perfect measurements presented in [142], and then we propose three contributions

to the original formulation.

In Chapter 3, we present the PBDW formulation for perfect measurements. We review
and slightly improve the error analysis presented in [142], and we present the Greedy strategy
for the selection of sensor locations. We also contribute an analysis of a thermal experiment

not previously considered.

In Chapter 4, we propose an experimental a posteriori estimation procedure for the
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L?(Q) state-estimation error ||u™® — u*||12(q), and for the error in output £(u!™) — L(u*),
where £ : L?2(Q2) — R. The procedure allows us to quantify the uncertainty in the state
estimate. In addition, it can also be employed (i) to guide the data-driven enrichment of the
PBDW background space Zy (based on the algorithm first proposed in [143, section 5.8]),
(ii) to improve the estimate of the L? output of interest, and (iii) to adaptively select the

PBDW tunable parameters. The error estimation procedure has been presented in [213].

In Chapter 5, we present a computational procedure for the construction of the back-
ground space Zy when Q C QP%. Qur approach represents an extension of a computational
strategy first studied theoretically in the context of approximation theory ([172]), and then
applied in the context of generalized finite element method ([8]) and more recently in Port-

Reduced static condensation Reduced Basis Element method ([204]).

In Chapter 6, we study the case of pointwise noisy measurements (£9P5 = ,tT4¢(£9bs) 4
€m). We rely on the theory of RKHS, which allows us to consider spaces U for which the
Riesz representers { K, }m associated with the observation functionals {d,,, }. are explicitly
known. We demonstrate that explicit expressions for the representers greatly improve the
flexibility of the approach; in addition, we find much faster convergence with respect to the
number of measurements M than in the approach presented in [142, 143]. We present a
rigorous a priori error analysis for the L?()) state-estimation error, [|Jut™¢ — u*|| L2(e), for (i)
homoscedastic random noise (i.e., €, ’T\(o, 0?)), and (ii) systematic noise (i.e., |ey] < 6).
We further discuss an adaptive procedure for the selection of the hyper-parameters of the

PBDW formulation. The adaptive procedure and the error analysis have been presented in

[212].
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Chapter 3

The PBDW approach for perfect

observations

We discuss the PBDW formulation for perfect measurements (2.1.6): given the N-dimensional

background space Zy C U, find (z*,7*) € Zx x U such that

(2*,7*) =arg  min _ ||n|| subjectto £2,(z+mn) =5 m=1,...,M;
(z:m)€ZnxU

where (U, || - ||) is a Hilbert space over the domain of interest Q and ¢9,...,45, € U'. We
state upfront that in this chapter we rely on localized observations; in more detail, we
consider £2,(v) = [, wa, (|29 — y|)v(y) dy, where {z%25}M_| C Q denote the transducers’
locations, and wq, : R = R4 denotes a properly-chosen convolutational kernel associated
with the transducer. In Chapter 2, we discussed the well-posedness of problem (2.1.6), and
we presented a finite-dimensional formulation for the PBDW state estimate u* = 2* + n*,
which permits rapid computations. In this chapter, we provide an a priori bound for the
state estimation error ||u'™® — u*|| (section 3.1), and we discuss a Greedy procedure for the
selection of sensor locations {z}M_, (section 3.2). In section 3.3, we present results for

a synthetic acoustic problem. Finally, in section 3.4, we present the results for a physical

thermal patch configuration.

3.1 Error analysis

Next Proposition contains the key result.
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Proposition 3.1.1. (/241]) Suppose that Bn;ar > 0. Then, the PBDW state estimate u*

satisfies

1
true * : : true
U —ul| < — nf inf ||lu —z—7 3.1.1
” ” — ﬂ : 7]6 1 1{; ZGZN ” ”’ ( )

or, equivalently,

1
BN,Mm

“utrue _ u*“ < true

0™ — Tz, gz u™ |- (3.1.2)

Furthermore, the following estimates hold for background and update:

1
II true __ _*x < inf inf true _ _ _ , 3.1.3
Mz = < g inf i ™=z (3.1.39)

and

M. u —p*|| = inf inf ||ut™ — 2z —n. 3.1.3b
Moy~ = int ot | l (3.1.3b)

Proof. We observe that the error u™® — u* € UJJ\;[. Therefore, recalling Lemma 2.2.1, we

find

Iz &ll
By allue—ur|| < | inf —N— 1 |lute —u¥|| < (1T (ut™ —u*)||. (3.1.4a
” {EUI‘\L,I ”5” ” iy ZN )” ( )

By restricting (2.2.5)1 to g € Upr N 25, we find

true

(" —u™,q) =0 YgeUy N Zxy = n* = yfpnzsuw™
As a result, we obtain

Mgy (u*re =) = Mgy (u™ =" —2*)|| = Mgy (u™=n")|| = T z4 Mg,z u ™)

(3.1.4b)

Here, the first equality follows from u* = n* + 2*, the second equality follows from z* € Zy,

the third equality follows from n* =11, zi ut¥® and from the projection theorem. We can
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then rewrite the latter expression as

“HZﬁ (H(qu‘]ZIJ\;)J—utrue)“ = inszZN “H(UMQZIJ\;)lUtrue

true

= lanGZN infner\-,ﬂuM ”'U, -z n”'

(3.1.4¢c)

Here, the second equality follows from the fact that, since Uy N Z]%, C Zﬁ, we have Zy C
(LIM N Z]{,)l, As a result, H(MMOZ}V)LZ = z.
Combining (3.1.4a), (3.1.4b) and (3.1.4c), we obtain (3.1.1). Finally, (3.1.2) follows by

observing that, since Zn and Z]%, N Uy are orthogonal subspaces, we have that

inf inf true

”utrue _
2€EZN neZ{MUM

true | I

z = 77“ = ”u - HZNGB(MIWDZIJ\;)U

We now show (3.1.3a) and (3.1.3b). The former follows directly from (3.1.2), recalling

that n* € Z% and that the projection operator is linear with continuity constant equal to
n N J

one:
1
II utrue —2*|| = (III utrue — w9 < utrue —u*ll < inf inf u’true —z—nll.
Mz =) = [y () € [ <] € e i it | l
To show (3.1.3b), we observe that ||1—IZI%Iutrue - = ||I'Izl%l(utrue — u*)||, and then we
combine (3.1.4b) and (3.1.4c). O

Estimate (3.1.1) identifies three distinct contributions to the error in the field estimate.
The first contribution, m, takes into account the stability of the formulation. The second
contribution is the background best-fit error inf,cz, ||[ut™® — z||: as discussed in section
2.1.2, this depends on (i) the modeling error €3 = min,, e pok || —uPk(p)||, and (ii) on the
discretization error eg%‘sc, N = max,cpex [T 2y uPK (1) —uP¥ () ||; while the former is associated
to the accuracy of the best-knowledge model, the latter is associated to the compression
process. The third contribution is the update best-fit error infneuanﬁ I, N utree — g,
which depends on the approximation properties of the update space.

Estimates (3.1.3) strengthen the interpretation of the background and update given in

section 2.5.2. In particular, we observe that if u*™® € Zy, we obtain that ut™® = u* = 2*

and n* = 0. This observation shows that the update contribution is noticeable only if the
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true field is not well-represented by its projection onto the background space.

3.2 Construction of the update space

3.2.1 Theoretical considerations

Error estimate (3.1.1) shows that the update space Uy, should be designed based on two
criteria: (i) the maximization of the stability constant Sy to improve stability, and (ii)

true

the minimization of the approximation error mfneu M2 (|TT ZLU —nl| to improve approx-

imation. We thus seek a strategy that addresses both these issues.

o \M
mim=

With this in mind, we observe that the update space Ups := span{Ry¥ 1 depends
(i) on the choice of the ambient space U and on its inner product (-,-), and (ii) on sensor
locations {x2%},,. Since the use of high-order Sobolev spaces requires the use of proper
Finite Element discretizations, in this chapter we consider H}(2) Cc U ¢ H () endowed

with the inner product
(w, v) =/ Vw - Vv + y2wwv dz, (3.2.1)
Q

for some v > 0. Hence the choice of (U, || - ||) reduces to the choice of the parameter 7.
We observe that v influences the spatial length-scale of the Riesz elements {Ry£2,}M_,
and should be properly tuned based on the number of measurements available and on the
expected length-scale of the true field. Example 3.2.1 illustrates the influence of the choice

of v on Ry#° for pointwise measurements in one dimension.

Example 3.2.1. (Riesz element associated with different norms) Let us consider
Q = (=1,1) and the functional £° = &,obs where z°° = 0 and § is the Dirac delta. We

consider U = H}(—1,1) endowed with the inner product

1
(w,v) =/ w'v' + v wv dz.
-1

By tedious but straightforward calculations, we find that the Riesz element associated with

£° is as follows

Ryéo(z) = 5(1 — |al), v =0;
Ru(;o(aj) = Wl'y-f»_].) (627_7"' —_ e’ﬂxl) s f)/ > O
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Figure 3-1 shows the plot of the Riesz elements for three different values of v. To simplify

the comparison, we normalize the L°°(£)) norm of each Riesz representer to one.

—=0
=2
=8

-1 -0.5 0 0.5 1
x

Figure 3-1: Example 3.2.1: plot of the Riesz elements Ry;do for three different choices of 7. For
visualization purposes, we normalize the L (§2)-norm of the Riesz elements to one.

3.2.2 Computational procedure

We set the value of the constant « in (3.2.1) a priori, and we choose the observation points
{x9bs}M_ according to a Greedy strategy based on two stages. During the first (stability)
stage, we maximize the constant Sy in a Greedy manner. During the second (approxi-
mation) stage, we minimize the fill distance hy,, = sup,cq minm=1,. ||z — x%||5 in a
Greedy manner. Since the stability constant is a non-decreasing function of M for a fixed
N, the stability constant remains above the threshold in the second stage. We envision that
the constant 7 should be selected based on the characteristic length-scale of the error field

true _ »*. however, it might be extremely difficult to estimate a prior: this quantity. In

u
the numerical section, we study the effect of the choice of « for a two-dimensional model
problem.

Algorithm 3.2.1 summarises the computational procedure. Computational cost is domi-
nated by the computation of the Riesz representations of the functionals £9,s vunLyy Inithe
limit M > N and assuming that  is discretized using a Finite Element mesh of size N, the
selection of the observation points during the approximation step has complexity QN M?),
while the cost of the actual construction of the update space — which involves the solution
to M linear systems — is roughly O(N®M), where 1 < s < 3 is a suitable exponent, which
depends on the sparsity pattern of the matrix associated with the inner product.

If tol = 0, all the observation centers are selected through the approximation loop.

.On the other hand, if tol = 1, all the centers are selected through the stability loop. A
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representative value for tol used in our simulations is tol = 0.2. Computation of the least-

stable mode zmin,m involves the solution to the dense eigenproblem (2.3.3).

Algorithm 3.2.1 Greedy stability-approximation balancing (SGreedy-plus) algorithm

Input ZN background space
M number of sensors

tol > 0 threshold for the stability constant

Output Uy, update space

Stability
1: Compute 2 := argmax,cq |[(1(z)|, m =1

2: while m < M do

3: Compute BN m = mingez, MaxXyey,, ﬂ%ﬂﬂ'ﬁ%ﬂ
4 if Anm < tol then
5: Compute zminm = arg min ez, mMaxyey,, ”S‘z)u,vz .
6: Compute Tt := arg max,eq |2minm () = Mty Zmin,m (7).
£ Set Um+1 = Up U span{ Ry (-, 2% )}, m = m + 1.
8: else
9: Break
10: end if
11: end while
Approximation
1: while m < M do
2: Compute x%’il = arg maX,cq Miyy—1,  m ||z — 37?,?/8“2-

3: Set Umt1 = U U span{ Ry £(-, 255 1)}
4: m=m+ 1.

5. end while

Since Sy m = 0 for m < M, if tol > 0, at least the first M points are selected within
the first loop. As Sy m > tol, the algorithm selects well-separated points in the attempt to
reduce the approximation error. We further remark that in our implementation we control

whether or not each point selected by the stability loop (Line 6) is well-separated from the
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other observation centers: for m < N the stability loop might select points that are too close
to each other, especially for sufficiently large transducers’ widths; this would ultimately lead

to an ill-conditioned linear saddle-point system.

We observe that, for N = M, the point selection routine coincides with the routine
proposed in [140] for the Generalized Empirical Interpolation Method (GEIM). We also
observe that the stability stage is related to the E-optimality criteria considered in the
design of experiments ([83]). On the other hand, the strategy for the approximation step
is strongly related to the so-called farthest-first traversal approach to the minimax facility

location problem (see, e.g, [167]), first proposed by Rosenkrantz et al. in [186].

We can interpret our procedure as a stabilization for the saddle-point system (2.3.2b).
Assuming that (1, ..., (n is an orthonormal basis of Zy, and recalling (cf. Proposition 2.3.2)
that |A™"| = min (Amin(K), ﬂ?\;’ A1), We observe that the stability loop aims to maximize the
minimum eigenvalue by maximizing the inf-sup constant, while the approximation loop aims

to maximize |A\™"| by maximizing Amin(K). We have indeed that for localised observations

Amin (K) depends on the minimum separation distance hy = Milyy m/=1,... M, m#m/ [|acobs —
2P| between observation points. We refer to [197, 160] and [230, Chapter 12] for a rigorous

analysis for pointwise measurements; for localized measurements, we are not aware of any
theoretical result that relate Apin(K) to hat. However, we empirically observe a strong

correlation between these two quantities.

3.3 A synthetic problem: Helmholtz in R?

3.3.1 Problem definition

We illustrate the behavior of the PBDW formulation through a two-dimensional Helmholtz
problem!. Towards this end, we first introduce the domains QP and Q, Q = QP% = (0,1)2

and the mathematical problem:

—(1+dep) Aug(p) — pPug(p) = p (227 +€*2) + pg inQ,
(3.3.1)
Onug(p) =0 on 9%,

'The model problem is the same considered in [142, Section 3].
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where 4 > 0 is the wave number, e = 1072 is a fixed dissipation, and g € L2(f2) is a bias
term that will be specified later. Here, the parameter 1 > 0 constitutes the anticipated,
parametric uncertainty in the system, which might model our uncertainty in the speed of
sound, while the function g constitutes the unanticipated and non-parametric uncertainty in
the system. Since Q = Q¥ in what follows, we simply use the former to indicate both the

domain of interest and the domain in which the mathematical model is properly defined.

We can restate problem (3.3.1) in weak form as
Gl (ug(p), v) = a“(ugk(u),v) —Fv)=0 Vvel (3.3.2a)
where U = VP& = H1(Q),
a”(w,v)=(1+ieu)/QVw-V1’)dw — u? /Qwﬁda:; (3.3.2b)
and

Fi(v) = p /Q (23:% +€e"? +g) vda. (3.3.2¢)

To assess the performance of the PBDW formulation for various configurations, we define
the true field ¥ as the solution to (3.3.1) for some u*™¢ € PP% and for the following two

choices of the “bias" g

0 perfect model;
g:= (3.3.32)
g =0.5(e™™ + 1.3cos(1.3mzz)) imperfect model.

On the other hand, we define the bk manifold as

MPE = Ly _o(pn) : p € PP} (3.3.3b)

Figure 3-2 shows the true field for three choices of the wave number p and for the two
choices of the bias g. We approximate the solution using a triangular P° finite element dis-
cretization (N = 3312). The use of a high-order method is here motivated by the smoothness
of the true field.

72



o 1 0.1 1 -
n X
08 -0.1
0.9 e 0 == -0.15
5 02 '0'2
11 0.6 03 06 0-25
1.2 04 03
1.3 04 05 04 0'35
i 06 04
s 0.2 07 g2 045
8 ‘ i i
0 K o ’
o 02 04 06 08 1 0o 02 04 06 08 o 02 04 06 08 1
true oo - true — i true - i
(a) Ru™),np=2,9g=0 (b) R(u*™¢), p=5,9=0 (¢) Ru*™),p=10,g=0
1 4 1 1
-1.05 e 0.1
08 R 08 0.8 015
115 03 0.2
06 A2 06 04 08 025
1.25
'a i 03
0.4 L 04 - 0.4
Las 035
: 0.6 0.4
0.2 L 02 02
-1.45 07 -0.45
o & 415 o o ¥ 05
o 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
true - e true e s true == g
(d) R@u™), p=29=3 (e) R(u"™),p=5,9=4g (f) R(u™),p=10,9=4g

Figure 3-2: Application to a synthetic acoustic problem: visualization of the truth solutions
associated with the synthetic Helmholtz problem for perfect (9 = 0 ) and imperfect (g = §) models.

3.3.2 Construction of the PBDW spaces

Recalling the definition of the inner product for ¢ in (3.2.1), we build the background spaces

{Zn}n using the weak-Greedy algorithm based on the residual estimator
AR (n) = inf |G (u® (1))l
ZEZN

where || - ||+ denotes the dual norm. Figure 3-3 shows the behavior of the best-fit error over

Poam TP
Tz w"™(u)l|
ER = max ——E’\;rue—, (3.3.4)
pepBk,  [lutrue(p)||
where PPX, is a uniform discretization of PP |PPk. | = 20. We observe that for the perfect

model E'Jr\?l rapidly converges to zero as N increases. On the other hand, in the case of imper-
fect model, ER‘?I exhibits a plateau for N > 4. This can be explained recalling the discussion

in section 2.1.2: as NN increases, the modeling error dominates over the discretization error.

In this synthetic example, we model the observation by a Gaussian convolution with
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Figure 3-3: Application to a synthetic acoustic problem: best-fit error E%' (3.3.4) for perfect and
imperfect model (y = 1).

standard deviation r = 0.02:

t(v, 3) = 0(@) [ exp (~5r3le ~ vI3) o) dy

where C(z) > 0 is such that £(1, ) = 1 for all z € Q. Figure 3-4 shows the behavior of
the stability constant Sy a with M for three different choices of the threshold in Algorithm
3.2.1 and for three different values of N for v+ = 1. On the other hand, Figure 3-5 shows
the behavior of the condition number of the matrix (2.3.2b) with M. We remark that the
stabilization stage of Algorithm 3.2.1 is performed only for tol > 0, while the approximation

stage is performed only for tol < 1.

10° paar W — 10° —
T - R N e -
10! * { 107" # L 10" - L
- * = * = &
2107 z10? z107 .
SN =2 SN =2 S[N=2 et
0T N =4 0. N =4 0°H LN =4
« N=6 « N=6 . N=6
e 10 10°
"0 10 102 10° 10' 10% 10" 10 10?
M M M
(a) tol =1 (b) tol =0.2 (c) tol=0

Figure 3-4: Application to a synthetic acoustic problem: behavior of Sy s with M for three
different choices of the threshold tol in Algorithm 3.2.1 and for three different values of N (v =1).

We observe that the stabilization stage of Algorithm 3.2.1 significantly improves the
stability of the variational formulation and consequently of the saddle point linear system.
We further observe that for large values of M the condition number of the saddle system is

slightly smaller if we consider tol < 1.
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Figure 3-5: Application to a synthetic acoustic problem: behavior of the condition number of the
matrix (2.3.2b) with M for three different choices of tol in Algorithm 3.2.1 and for three different
values of N (v =1).

3.3.3 Results of the data assimilation procedure

We first visualize the PBDW state estimates for two distinct choices of u**"¢. We consider
p = 7.5, and we consider u*™® = ug—o(p) and u'™® = uy—z(pu); PBDW state estimates are
based on the background Zn—-5 and on M = 32 measurements chosen using Algorithm 3.2.1
with tol = 0.2. Figure 3-6 shows (the real part of) the true state, the PBDW state estimate
u*, the deduced background z* and the update n*. We observe that for u'™¢ = ug_o(u)
the update n* is negligible; the reason is that the true state is well-approximated by its
projection over Zx. On the other hand, for u'™® = uy_;(u) we observe that the update is
appreciable, and plays a significant role in improving the accuracy of the state estimate u*.
These results strenghten the interpretation of the components of the PBDW state estimate

provided in Chapter 2.

We now assess the performance of the data assimilation procedure. Towards this end,

we compute the maximum L? error over Pﬁ.‘;in PRk

utrue m —u* g
B s g [Ju'™e () — w* (W)l @ (335)

pePpbk. [lutrue(p) || L2(o)

where u*(u) denotes the PBDW state estimate associated with u'™(y), and |PEK, | = 20.

Figure 3-7 shows the behavior of ET¢. with M for three different choices of the threshold
in Algorithm 3.2.1 and for three different values of N. We observe that the stabilization
procedure for the selection of the sensors’ locations leads to a significant improvement of the

performances for small values of M. On the other hand, as M increases, our results show

that selecting well-separated observation points improves performances. We further observe
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Figure 3-6: Application to a synthetic acoustic problem: visualization of the PBDW state estimates
for N = 5, M = 32. The states in Figures (a) and (e) correspond to p = 7.5. The black points in
Figures (a) and (e) indicate the transducers’ locations.

that increasing N improves performances in the case of perfect model; on the other hand,

in the case of imperfect model, increasing N from 4 to 6 does not have any effect. This is

in good agreement with the plot in Figure 3-3.
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Figure 3-7: Application to a synthetic acoustic problem: behavior of E™. (3.3.5) with M for
three different choices of tol in Algorithm 3.2.1 and for three different values of V.
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Figure 3-8 shows the anticipated and unanticipated mean fractions of the state

ll2* ()l o
mean,, e pbk m, anticipated,
and
[l () : s
mean  .pbk T - unanticipated.
#EPuzain (|u ()|’

We observe that in the case of perfect model the update component of the state is essentially
negligible, while it is significant in the case of imperfect model to address the deficiencies of

the primary approximation. This confirms the results in Figure 3-6.
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Figure 3-8: Application to a synthetic acoustic problem: behavior of the anticipated and unantic-
ipated fractions of the state for perfect and imperfect models (N = 4, tol = 0.2, vy = 1).

Figure 3-9 investigates the behavior of E™ (3.3.5) with M for three different choices of
v in (3.2.1). We observe that while in the case of perfect model, performances are essentially
independent of the choice of 7, in the case of imperfect model — in which the secondary
approximation provided by the update is crucial to guarantee an accurate reconstruction —
the choice of the parameter v is extremely important for large values of M. As = increases,
the smoothing effect of the H! term in the inner product (3.2.1) decreases, and Ry/{2,
approaches C(z)exp (—%f” - —x9%8||2), which clearly is not suited to capture the low-order
components of the error u'™¢ — z*. On the other hand, for sufficiently large M, we envision
that too small values of 4 might not be able to capture high-order components of the error

ut™e — z*  We further address this point in Chapter 6.
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Figure 3-9: Application to a synthetic acoustic problem: behavior of E™! (3.3.5) with M for
three different choices of v (N = 4, tol = 0.2).

3.4 A physical system: the thermal patch experiment

3.4.1 Experimental apparatus

The thermal patch system consists of a 1.5[mm)] thick acrylic sheet heated from behind by
a resistive patch. Heat is generated through an electrical resistance with input power equal
to 0.667W. The goal of the data assimilation procedure is to estimate the temperature field

over a portion Q°P$diM of the external surface of the plate at the steady-state limit.

We use an IR camera (Fluke Ti 9) to take measurements in the rectangular region
Qobsdim — [_93 85 23.85] x [—17.85, 17.85][mm]| centered on the patch. Figure 3-10 shows
the IR camera. After the patch power is turned on, we take measurements using a sampling
time of 4 seconds until steady state is reached; the total duration of the experiment is
roughly 5 minutes. The external temperature is about 20°C, roughly constant throughout
the experiment. Each surface measurement taken from the IR camera corresponds to 160 x
120 pixel-wise measurements; the pixel size is roughly Ahdevice — 0.3[mm)], which is much
smaller than the spatial length scale of the phenomenon of interest.

In view of the mathematical description of the problem, we present formal definitions
for the geometric quantities involved. First, we introduce the domain QP&4im — R3 corre-
sponding to the three-dimensional acrylic sheet. We denote by I'Patch.dim — R2 the surface
of the sheet attached to the patch, and we denote by I'"™dim the face of the sheet that
contains ['Pateh.dim e recall that Qobsdim — gObkdim g ¢1o region in which the IR camera
takes measurements. Then, we introduce the Cartesian coordinate system z{imzgimzdim;
according to our definitions, the IR camera takes measurements in the z{™z$™ plane. Fig-

ure 3-11 clarifies the definitions of Qebs.dim Qbkdim = ppatchdim 5pq pindim 514 shows the
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Figure 3-10: Thermal patch experiment: IR camera.

characteristic dimensions of the patch.

Fin,dim
Qobs,dim

Fpatch dim

mgim HI

dim

1'2 -
L
dim
T

Figure 3-11: Thermal patch experiment: mathematical description of the acrylic sheet. L=
22.606mm, H = 9.271mm.

In order to estimate the noise level in the dataset, we compute the difference u°?$dim —
1AM where the field u®Pd™ is obtained directly from the IR camera, and wfHdim jg
obtained applying a Wiener filter (see, e.g., [136]) based on a 3 by 3 pixel averaging to the
field u°P>dim  Figure 3-12 shows two spatial slices of the difference yoPsdim _ 4filt.dim B

filt,dim obs,dim

comparing u and u , we deduce that the magnitude of noise in the measurements

is approximately +0.5°C, roughly independent of the spatial position.
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Figure 3-12: Thermal patch experiment: comparison between filtered and unfiltered fields. Figure

(a): observed thermal field u°®>9™  Figures (b) and (c): spatial slices of the difference u°>sdim —
filt.dim_

3.4.2 Engineering motivation

Full-field

information is typically not available; in practical applications, we envision a system with a

We shall now motivate this model problem from the engineering standpoint.

local sensor or a small sensor array. For this reason, we want to design a data assimilation
state estimation procedure that is able to reconstruct the full field based on a small amount
of local measurements.

Since the IR camera provides full-field information, in this work, we synthetize local
measurements — the experimental input to our methods — from the IR camera to obtain
03P = £(u°, 29%%) where the observation functional £(-,z%%) is designed to represent a
We observe that the IR camera

local measurement in the sensor location :r?,?s € obs,

permits us to conduct convergence studies that would typically not be feasible in actual

field deployment.

3.4.3 Mathematical model and background space

We resort to a steady-state heat-transfer model in which we rely on a Robin boundary
condition to describe the heat-exchange between the patch and the sheet. In more detail,

we consider the bk model for the thermal field »P&dim . Qbkdim _, .

( : ”
_Aubk,dlm == 0, in Qbk,c!lm7

) nanubk,dim il ’}/(ubk’dim _ @room,dim) e gdimpratch.dim on Pin,dim, (3'4'1)

I,,‘.‘an.u‘bk,dim =0 on aﬂbk,dim \ Fin,dim,
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where ~ is the convective heat transfer coefficient, « is the thermal conductivity of acrylic,
groomdim _ 90°C (= 293K) is the room temperature, and g4™ is the incoming flux, which
models the heat exchange between the patch and the plate. Textbook values for the model
parameters are k = 0.2[W/(m - K)], v = 10[W/(m? - K)]. We remark that the value of v is
computed as v = N—“Lﬁm Here, Kajr = 0.0257[W/(m - K)] is the thermal conductivity of air,
L = 22.606mm is the length of the edge of the patch (see Figure 3-11), Nu = 0.59(Ra)/4
is the Nusselt number, and Ra = 5.9 - 10% is the Rayleigh number defined as Ra = E%IZ,
where g = 9.81[m/s?], v = 1.81-1075[m?/s] is the kinematic viscosity of air, 3 = 1/300[1 /K]
is the thermal expansion coefficient, & = 1.9 - 107°[m?/s] is the thermal diffusivity of air,
and A® = 50°C(= 50K) is a rough approximation of the temperature difference between
the far-field and the center of the patch.

Given the thermal field uP%4™  we introduce the non-dimensional counterpart

bk,dim/ 7 room,dim
bk _ u- (L.T) — @ ?
(z) = s . (3.4.2)

u

We observe that u”¢ = uP*(u) satisfies

_Aubk('u,) = 0, inQbk,

{ Onul(p) + pu®(u) =g onl™, (3.4.3a)
8nubk(,u) =0 on 9Pk \ Tin,

\

where = Ly/k ~ 1.13 and g is defined as follows:

9(z) = C xppaten (). (3.4.3b)

We observe that uP* depends on the parameters p and C. Since the model is linear
with respect to C and our ultimate goal is to define a linear space associated with the bk
manifold, we can simply set C'= 1. On the other hand, assuming that the estimate of & is
accurate and that v & 104 5W/m?2, we obtain that u € PP* = [0.5650, 1.650]. We can thus
define the bk manifold as follows:

MPK = {ubk(u)|gobs D pE ’Pbk} . (3.4.4)
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We further introduce the weak form of the bk model (3.4.3): given u € PP¥, find uP*(u) €
VPK such that

GPRH(uPK (), v) = a#(uPK(p),v) — FH() =0  Vve VX (3.4.5a)
where VP& = H 1(Qbk)

at(w,v) = "Vw- -Voudzr + ,u,/ wvds; (3.4.5b)

Qbk in

and

F(v) = / vdzx. (3.4.5¢)
]_"patch ]

We observe that our parametrized model encodes the uncertainty in the material proper-
ties v and k. On the other hand, it does not take into account the nonlinear effects associated
to natural convection, and to the heat-exchange between the patch and the sheet. The latter
represent the non-parametric uncertainty in the model.

The background space Zy associated with (3.4.3)-(3.4.4) is built using the weak-Greedy

algorithm. More in detail, we apply the weak-Greedy algorithm based on the residual

estimator

AR () = inf  [[GPH (wP* (1)) | ey
2E€EZF

to build Z8¢ ¢ VPk where || - [|(vbry denotes the dual norm. Then, we restrict the space zhk
to the domain of interest = Q°P% to form Zy. To compute the solution to the bk model,
we appeal to a P2 continuous Finite Element discretization based on N = 40000 degrees of

freedom.

3.4.4 Best-knowledge and observed thermal fields

We now show plots of the observed and bk fields. For convenience, we consider non-
dimensional fields — which are based on the non-dimensionalization (3.4.2). Furthermore, to
simplify the comparlson we scale the bk fields such that max _cobs uPk(z) = max e u°PS(z).
This corresponds to adjust the value of C in the bk model (3.4.3). Figures 3-13(a), (b) and

(c) show the non-dimensional observed field u°* as measured by the IR camera, the bk field
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uP* for 1 = 1.13 and the error field u°* — uP%. Figures 3-13(d), (e) and (f) show the bk

field uP* for three different values of . We observe that uP¥ is symmetric with respect to

S

x3 = 0 for each value of i , while 4" is markedly asymmetric. This is clearly related to

the nonlinear effects of natural convection.
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Figure 3-13: Thermal patch experiment: comparison between observed field and bk solutions.

Figure 3-14 shows the basis (1, (2, (3 of the three-dimensional space Zp, while Figure

3-15 shows the behavior of the L? relative discretization error computed as

Erel,bk ”ubk(p') - HZN,L2 ubk(#) ”LZ(Qobs)
N = max

) (3.4.6)
HEPLSn [| Pk (1) ”LZ(Qobs)

where Il z, 12 denotes the projection over Zy with respect to the L? norm, Pﬁl;m is a uniform

discretization of P°K, Niain = 20, and of the L? relative best-fit error computed as

”’U.Obs = HZN,L2 uObS”LE(nnbs)

E}'Sl,best—ﬁt - (3.4.7)

[|uebS|| 2 (gobey

We observe that for N > 3 the best-fit error remains essentially constant, while the dis-

cretization error decreases exponentially with N.
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Figure 3-14: Thermal patch experiment: basis of the background space obtained using the weak-
Greedy algorithm.
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Figure 3-15: Thermal patch experiment: behavior of the L? relative discretization error (3.4.6)
and of the L? relative best-fit error (3.4.7) in linear (Figure (a)) and logarithmic (Figure (b)) scale.

3.4.5 Numerical results

We now present the results of the application of the PBDW data assimilation procedure to
the thermal patch problem. We here apply our procedure to the non-dimensional field, and

we synthesize local measurements to obtain £2°% = £(u°", 29P%) where

v, 7) = C(a) f

(Qobs

1
exp (~ gezlle = vl ) v(o) dy

r > 0 and C(z) > 0 is such that £(1, z) = 1 for all z € 2. Recalling the definitions of
Chapter 3.4, our goal is to estimate the thermal field in Q = Q°bs.

Figure 3-16 shows the behavior of ER?}Ma

o ) — a0y
l|uobs () || L2y

N.M = 5 (3.4.8)

with respect to M for four values of N and for two values of 7, = 0.02 (r4™ = 0.452[mm]),

and r = 0.1 (r4™ = 2.26[mm]). To build the update space, we set v = 1 in the inner product
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(3.2.1), and we run the SGreedy-plus algorithm using the threshold tol = 0.2. We observe
that reducing the value of r deteriorates the performance of our approach. This issue does
not seem to be solvable by simply tuning the value of v. We argue that this is related to
the fact that as 7 — 0%, the PBDW becomes inconsistent: we have indeed that as r goes to

zero the dual norm of the functional (-, z2P%) diverges.

10’ 10° 10’ 10°
M M
(a) TGauss = 0.02 (b) TGauss = 0.1

Figure 3-16: Application to the thermal patch experiment: behavior of ER?_IM (3.4.8) with M for
three values of N and for two values of rgauss (7 = 1, tol = 0.2).

Figure 3-17 shows the behavior of the anticipated and unanticipated fractions of the

state. We observe that due to the model error the unanticipated fraction is significant.
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Figure 3-17: Application to the thermal patch experiment: behavior of the anticipated and unan-
ticipated fractions of the state (v = 1, tol = 0.2, rgauss = 0.1, N = 2).

3.5 Conclusions

In this chapter, we discussed the PBDW approach for perfect measurements. We presented
an a priort error analysis, which shows the quasi-optimality of the PBDW state estimate,
and an adaptive procedure for the selection of the observation centers. Numerical results
illustrated the role of the different elements of the formulation — namely, the background

space, the inner product, and the choice of the observation centers.
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The use of rapid-convergent background spaces {Zy}n allows us to properly take into
account parametric uncertainty in the system, and thus leads to accurate state reconstruc-
tions in the case of moderate model error. In addition, the stabilization strategy for the
selection of the observation centers allows us to consider N ~ M. On the other hand, nu-
merical results showed that the main issue of the formulation is the slow convergence with
M. This is explained by the poor approximation properties provided by the update space,
especially for nearly pointwise measurements. We address this issue in the case of pointwise

measurements in Chapter 6.
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Chapter 4

A posteriort error estimation and

output prediction

We present and analyze an experimental L2-a posteriori error estimation procedure based on

Monte Carlo sampling of observation functionals. Given J possibly noisy local measurements

over the domain €2, {E?bs}jzl, and a state estimate u* for the true field u'*", we provide
confidence intervals for the L? error in state E = [[u™® — u*||;2(q), and the error in L?

outputs Ez = |L(u") — L(u*)|. We further present an adaptive strategy, which relies on
the proposed error estimation procedure, to automatically enrich the PBDW background
space Zn based on unmodeled physics identified through data assimilation of a select few

configurations.

We provide an outline of the chapter. In section 4.1, we introduce the problem of valida-
tion and we introduce our method; we further illustrate the application of our techniques to
three data assimilation tasks. In section 4.2, we derive a confidence interval 55 for the error
in L? functional outputs; we also unfold the confidence interval to develop estimates for the
output £(u'"®). In section 4.3, we discuss how to extend our technique to the estimation of
the L? error in state. Then, in section 4.4, we illustrate the application to subsequent state

estimation. Finally, in sections 4.5 and 4.6 we present a number of numerical results.
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4.1 Validation: definition and application to output prediction

and state estimation

4.1.1 A posteriori error estimation

According to the definition of ATIAA ([57]), validation ([163]) is the process of determining the
degree to which a model is an accurate representation of the real world from the perspective
of the intended uses of the model. From a mathematical standpoint, validation is the process
of estimating the error in our model in a suitable metric of interest, e.g. a suitable norm or
seminorm.

Given the estimate u* of the system’s state u'™® over a specified spatial domain Q C R,
our goal is to estimate the L?(f2) state-estimation error, and the error in L?(Q) output
functionals based on J experimental measurements {é;?bs}jzl. We shall denote by £ =
llut™ — w*||2(q) the L?(Q) state-estimation error, and by E; = |L(u'™®) — L(u*)| the
error in the L? output £ : L?(2) — R. We shall further describe the measurements as
E;?bs = L(u'rue, :c;’bs, v) + €;, where x;’bs €  is the transducer location, the constant v > 0
denotes the spatial width of the transducer, and ¢; is a random disturbance. The functional
e(-, :c‘]?bs, v) takes into account the averaging process performed by the experimental device.

In this work we follow a frequentist approach to derive confidence intervals for the error
in state and output. For either F, or E, we first build a Monte Carlo estimate for the
error (denoted by either EE or E) Then, we build lower and upper error bounds for the
difference between the estimated error and the true error (either E; — E[; or £ — E) based on
standard large-sample methods (see, e.g., [183, Chapter §]). In more detail, we identify three
different error sources, here called finite-v error, finite-J error, and finite-noise error. Finite-
. v error is related to the finite spatial width v of the transducer (which prevents us from
computing pointwise values of the error field). Finite-J error is related to the finite number
of measurements available. Finally, finite-noise error is related to the random error in the
measurements. We propose actionable lower and upper error bounds that take into account
finite-J and finite-noise error in the estimate. Furthermore, we develop a mathematical
theory to assess the conditions under which finite-v error is small. We observe that, while
we prescribe a probabilistic model for the observational disturbances, we do not make any
assumption on the error field u'*"¢ — 4* apart from a very weak regularity hypothesis.

Large-sample methods — on which we rely to address finite-J and finite-noise errors —
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have already been extensively used to assess the accuracy of computational models in the
field of Validation and Verification (see, e.g., [196]). However, the idea of applying a Monte
Carlo approach to estimate the L? error in state and the error in output evaluations is new:
rather than comparing experimental measurements of the output with simulation prediction
for the output, we exploit (quasi-)pointwise experimental measurements to deduce the error
in output functionals of interest.

From the perspective of uncertainty quantification, our method complements Bayesian
techniques [49, 50, 55, 164, 165] in that we make few assumptions on the error field u® —

u*.

If substantial prior information about the error field is available, we envision that
our approach might be outperformed by suitable Bayesian techniques. In absence of such
information our frequentist approach can still be applied and will yield good results in
particular if the model error is not too large.

From the perspective of uncertainty reduction, our approach may be viewed as the
experimental extension of recent efforts in variance reduction techniques for Monte Carlo
simulations. In more detail, the idea of using a surrogate model — in this case the state
estimate u* — to reduce the variance of a Monte Carlo process is related to the classical
control variates method (see, e.g., [189, Chapter 4]) and to a number of more recent works
for the estimation of statistical outputs of stochastic ODEs ([94, 95]), and stochastic PDEs
([13, 224, 161)).

Our method relies on the assumption that sensor locations are drawn randomly from a
given distribution and that the disturbance is homoscedastic. Measurements in arbitrary
spatial points can be acquired by appealing to robotic observation platforms. We refer to
[142] for an application of the former data acquisition system to acoustics. On the other
hand, we observe that in distributed sensor networks ([68, 187]) locations should be selected
among a set of candidate grid points; in section 4.2, we discuss how to extend our procedure
to this scenario. Finally, the assumption of homoscedastic random noise is convenient for
the analysis and is reasonably accurate in many engineering applications. In Appendix B,

we discuss the extension of our theory to heteroscedastic noise.

4.1.2 Applications

Although the validation procedure is primarily designed to assess the accuracy of the

(PBDW) state estimate u*, we further apply our error estimator to three different tasks:
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output prediction, data-driven empirical enrichment of the PBDW background space Zy,
and adaptive selection of the PBDW tunable parameters. The first two tasks are illustrated
in this chapter, while the third task is discussed in Chapter 6.

Output prediction: exploiting the linearity of £, we employ our technique to provide
lower and upper bounds for the quantity of interest L(u'%®). We demonstrate that, by
applying the Monte Carlo procedure to the output error instead of to the true field, and
exploiting the proximity of u* to u**"®, we can significantly reduce the variance of the process

and thus improve the output estimate £(u*) for the output £(u'"®).

Data-driven empirical enrichment of the PBDW background space Zy: we
provide a strategy to systematically incorporate the unmodelled physics identified by the
update n* € Ups to augment the background space Zn for subsequent data assimilation.
The goal is to reduce the number of observations for future configurations. The strategy,
which is designed for a many-query scenario and was first presented in [143], relies on the a

posteriori error estimator to guide the data-driven enrichment.

Adaptive selection of the PBDW tunable parameters: as explained in Chapter 2,
PBDW depends on the tunable parameter £ > 0, and potentially also on other parameters
related to the norm ||-|| of the space Y. In Chapter 6, we discuss a strategy to systematically

select the value(s) of the hyper-parameter(s) based on estimates of the error in state.

4.2 A posteriori error estimation in L? functionals

4.2.1 General framework

We first introduce the problem we wish to address together with a number of definitions
and assumptions. Given the true deterministic field ™ : Q°° — R, an estimate for w!™e,
u* : Q°PS 5 R, and the associated state estimation error e := u™ — u*, we wish to exploit

J local assessment observations to compute a confidence interval Cr for the error
where £ : L?(Q2) — R is of the form

L(w) :z/ﬂ((x)w(x)d:c, (4.2.2)
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and the kernel ¢ : Q@ — R is a L?(f2) function such that £ is bounded in L?().

In order to develop the mathematical analysis, we assume that the v-neighborhood €2,
of O, Q, :={ze€ Qobs : dist(z, Q) < v}, is compactly embedded in Q°%, Q, cC QO for

some v > 0.

We model the experimental observations at "point" I‘J?bs as
0% = (u™, v, 2% + g5, j=1,...,J. (4.2.3)
The random variables €1,...,e; are J independent identically distributed (i.i.d.) random

variables such that €; ~ (0,02) for j = 1,...,J. The functional 4(-, v, xObs) L2(Q°P%) - R

is defined as the convolution
0w, v, 29%) = / wanfz — 2w (z) de. (4.2.48)
Qobs

The convolutional kernel wg, is given by

wdu(r) = cd), (1) : (4.2.4b)

v v

where v, C(d) > 0 are given constants, and w(-) is a positive function such that w(p) = 0
for p > 1. We emphasize that the constant v > 0 reflects the filter width of the transducer,
assumed small compared to the characteristic length-scale of the true field, while :c;’bs e
reflects the transducer position. Finally, the function w describes the local averaging process
and is analogous to the spread function employed in blurring/deblurring of images. In

anticipation of the analysis, we also introduce the low-pass filter operator F, : L%(Q°%) —

L?(€) such that

Fo(w)(z) = (w, v, x), Vo e (4.2.5)

We can now introduce the limited observations error estimator E. as

|2 J
_ obs err
Er( = —J §= (a9 £ (4.2.6)
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Here, /7, ... ,£5" are defined as

z;rr — E;)bs _ e(u*, v, :C?bs). (4.2.7&)

We observe that {Z;’bs}j are taken experimentally, while {¢(u*, v, :c‘J?bS)}j are computed nu-

merically. Recalling (4.2.5) and (4.2.3), we also observe that

7 = 0(u'™®, v, 35%%) + &5 — 0(u*, v, 23) = Fy (e)(25) + ¢;. (4.2.7b)

In order to address the problem of estimating E, using the pointwise estimator Eﬁ, we

identify three different sources of error.

Finite-v error: since the transducers have finite spatial width, we can only measure an

approximation of the pointwise values of uu,

Finite-J error: since the number of measurements is limited, only a finite number of

error evaluations are available.

Finite-noise error: since measurements are affected by homoscedastic error, we can

only observe a noisy value of £(uf™®, v, :c;?bs).

To formalize these definitions, we introduce the perfect unlimited observations error

estimator
EZ(v) = L(Fu(e)), (4.2.8)
and then the finite-v error
Y(v) =B - ERW), (4.2.9)
and the combined finite-J and finite-noise error
AL (Jv) = |[EX(v) — Ec(J,v)]. | (4.2.10)

We emphasize that A% is deterministic, while A‘LI:’U is random.

We now present the outline of the remainder of this section. In section 4.2.2, we propose

an actionable procedure to estimate a confidence interval for Eff’(u) Then, in section 4.2.3,
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we illustrate how to exploit the confidence interval for EZO(V) to update the estimate of
the output £(u"®). In these two sections, we assume that the finite-v error is negligible.

Finally, in section 4.2.4, we provide conditions under which the finite-v error is small.

4.2.2 Construction of the confidence interval
Finite-noise and finite-J error

In order to derive an asymptotic bound for the finite-noise and finite-J error, it is first
convenient to introduce a probabilistic interpretation of the quantities introduced in section

4.2.1. Towards this end, we assume that the observation points {:c?bs ]le

are realizations of
the J i.i.d. random variables X1, ..., X; ~ Uniform(€2) such that X; and ¢; are independent
for each 4,7 = 1,...,J. As a consequence, recalling (4.2.7), we have that {6;"}37:1 are

realizations of the i.i.d. random variables L™ = F, (e)(X;) + ¢; and
EPW) = E [10¢(X;) LF] = E | 73], (4.2.11)

where Z;bs = |Q¢(X;)LS™ is introduced to simplify the notation.

We observe that E is the sample mean associated with the realizations {z}’bs = |Q|¢ (x?bs)f?r}}.]:l;
therefore, E'[; is an unbiased estimator for EZO(V), and we can apply the Central Limit The-
orem (see, e.g., [119, Theorem 21.1]) to derive an approximate confidence interval for E¥.

We thus obtain:

6L 0) = [BLp (v, Bl
(4.2.12)

= [EC(Ja I/) - ﬁ se%tf}tl_a/g(J - 1),E£(J, l/) + ﬁ Se%l??tl_a/2(J — 1)

where t;_q/9(J — 1) is the (1 — a/2) quantile of the t-distribution with J — 1 degrees of

freedom, and @?&’3 =4/ Ejzl(z;’bs — zobs)2, zobs = L ]le 29bs,

The confidence interval C’\Z" is asymptotically correct for E°°, its size vanishes as J
goes to infinity, and it can be computed in real time (O(J)-computational complexity).
In addition, the quantity %ﬁ:ﬂ’?tl_aﬂ(t} — 1) asymptotically bounds the finite-J and
finite-noise error Ai’” in (4.2.10) with confidence 1 — . We remark that this procedure
can be extended to the case of multiple outputs. We refer to [51] for a thorough analysis

of multivariate normal confidence regions. We further observe that other non-parametric
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strategies for the construction of confidence regions can be applied in lieu of the normal
confidence intervals employed in this work. In this respect , we mention bootstrap confidence
intervals (see [71, 69] and [228, Chapter 8] ).

Our construction relies on the assumption that we can take measurements in arbitrary
spatial points. Next remark shows how to extend our approach to the case in which sensor

locations should be selected among a set of candidate grid points.

Remark 4.2.1. We shall now discuss the case in which sensor locations should be selected
among a set of candidate grid points {xfrid}ﬁl. With this in mind, we shall define the
functional L84 : C(Q) — R as
B N . .
L5 (w) = 0] 3 u(@f) ¢@F) wi, (4.2.13)
i=1

where {w; Y | is a set of suitable weights such that Zﬁ cw; = 1. We shall further define
the probability distribution P& such that PEd(z8) = w;, i =1,... N,

Exploiting the definitions above, it is straightforward to verify that if X1,..., X  are i.i.d.

random variables such that X; ~ perid then
E [|QIC(G)LET] = LEYFu(e), G=1,..., .

Therefore, provided that |L8(F,(e)) — L(F,(e))| is small, we can rely on C*g" to estimate
EZO(V) This observation suggests (for smooth j)roblems) a grid informed by high-order

quadrature schemes.

Computational procedure

Algorithm 4.2.1 outlines the computational procedure to generate the confidence interval
52’0 for EZO(V) Provided that A%(v) is negligible, we can rely on the same procedure to
estimate E..

The computational cost associated with the procedure is very limited. If the approx-
imated field uw* is discretized through the Finite Element method ([18]), calculation of
L(u*r, v, :c;’bs) requires a search to find the element of the FE triangulation to which qubs
belongs. For structured grids, this operation is independent of the mesh size, while for un-

structured grids it scales in general with the size of the mesh. In both cases, the cost is
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negligible if compared to the cost of acquiring experimental data.

If sensor locations should be selected among a set of grid points {w%ﬂd}{il (cf. Remark
4.2.1), we first introduce the functional £8"9 (4.2.13) by selecting the weights {wi}{il; then
we draw {x?bs}j from X1,..., Xy ~ P#4 and we collect the corresponding experimental

results {£2P5};. The remainder of the Algorithm (steps 2-4) remains unchanged.
7 J

Algorithm 4.2.1 Confidence region for EZO(V)

Input J number of measurements

u* : Q°Ps s R approximated field

Output CJ° confidence interval for E%(v)

1: Draw {x?bs}}’:l from Xi,...,X; ~ Uniform(Q2), and collect the experimental results
obs J

2: Compute £ = é;?bs —(u*, v, w?bs) forj=1,...,J.

3: E‘g(], V)= @ ijl et;rr (I?bs).

4: Compute the confidence region Co” of (4.2.12).

4.2.3 Variance analysis énd output updates

Proposition 4.2.1 provides a formula for the asymptotic behavior of the square of 5\62’?

defined in (4.2.12).

Proposition 4.2.1. Let {X;}; and {;}; be two i.i.d. random sequences such that X; ~

Uniform($2) and &5 ~ (0,02). Then, if X; and €; are independent for all j, we have

Jim (#23) = [P (VIEX) A (X)) + BL(X)?)0?), (4.2.14)

where the limit is in the almost sure sense.

Proof. Recalling the law of large numbers, it is sufficient to show that
V[Z°%] = Q2 (VIC(X) Fu(e)(X)] + EL(X)%]0?),

where Z°% = |Q|¢(X)(F,(e)(X) + ¢), and X ~ Uniform(Q2) and ¢ ~ (0,02) are two inde-
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pendent random variables. Since X, ¢ are independent, E[f(X) g(¢)] = E[f(X)]E[g(¢)] for

any pair (f, g) of measurable functions (see, e.g., [119, Theorem 10.1]). Therefore, we obtain
E[Z°>] = E[QI¢(X)(F.(e)(X) +¢)]

= 1U(BR)F (X)) + EC(X)] El] ) = [QIBC(X)F(e)(X)),
=0

and

E[(2°%)") = 9P (EIC(X)F(e)(X))?] + BIC(X)?) E[*] +2B[C(X)*Ful(e) (O] Ele] ).

=O’2 =0

= |9 (BI(C(X)F(e)(X))) + B[ (X)?]0?).

Thesis follows recalling that V[W] = E[W?2] — (E[W])? for any random variable W. O

The limit (4.2.14) and the confidence interval (4.2.12) show that the variance of the
Monte Carlo process is the sum of two contributions: the first one is related to the accuracy
of the state estimate u*, the second one is related to the magnitude of the noise. The first
term vanishes when u"® = u* (perfect approximation), while the second term vanishes when
the measurements are noise-free. Provided that the noise is small, if the error e = u'"¢ — y*
is also small, we can accurately estimate the error for modest values of J.

Due to the linearity of £, and provided that the finite-v error is negligible, we can also

use our error estimator E[; to improve the estimate for the output. We have indeed that
Jlim L(u*) + EL(J, v) = L(u* — F,(u*) + L(F,(u™®)) ~ L(u'"e). (4.2.15)
—00

Clearly, the variance associated with the process £(u*) + Er(J,v) satisfies (4.2.14). On the

other hand, if we apply the Monte Carlo procedure to the true field, we obtain
2
Jim (5625)" = 102 (V [¢(X) F (u™)(X)] + E[(X)?] 02).

Thus, by applying the Monte Carlo procedure to the output error instead of to the true
field, we can significantly reduce the variance associated to the process and thus improve
the output estimate even for modest values of J. This idea is related to control variates

method for variance reduction ([189]), and also to multi-level Monte Carlo approaches ([94,
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95, 13, 224, 161]). In section 4.5, we assess numerically the practical relevance of (4.2.15).

4.2.4 Analysis of the finite-v error

In section 4.2.2, we have proposed an actionable procedure to compute a confidence region
éz,a' for EZO (v). In this section, we investigate under what assumptions we can neglect the
finite-v error A% (v) = |E. — Ezo(u)\ and then interpret é\g "% as an appropriate confidence

interval for E.. We refer to Appendix A for a rigorous discussion of the finite-v error.

We present the error bound for A%(v). We assume that the filter width v is such that
Q, CcC Q; we further assume that w(r) < M for all » > 0 and for some M > 0. Then, if

Ve € LI(Q),) for some g > d, we have
|Ec — EP| < Cov™™IQ1M2|¢ ) 2 @I Vel oo, (4.2.16)

where C,, depends on the exponent g, on the dimension d, and on the filter shape w. We
observe that bound (4.2.16) is not actionable since ||Ve||1q(q,) is unknown; in section 4.5,

we investigate numerically the actual magnitude of A% (v) for the problems considered.

Unlike finite-J and finite-noise error, finite-v error admits a physical interpretation: it
is a balance between the filter width v and the characteristic spatial length scale of the
error field. Furthermore, finite-v error is related to the so-called minimum detectable signal
in radar systems [185| since it represents a way of assessing the maximum accuracy of our
estimate. However, in radar systems this concept has a different physical interpretation: it

is the ratio between signal and noise.

4.3 A posteriori L? error estimation

4.3.1 General framework

We now tailor the analysis of section 4.2 to the a posteriori error estimation of the L2(Q)-
error E = [[u'™® — u*||12(q). Due to the nonlinearity of E, the procedure is more involved;

however, the same ideas apply also to this case.
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Given {E;’-"}jzl introduced in (4.2.7), we define the limited observations error estimator

|Q| . erry 2
5 > (g2, ‘ (4.3.1)
j=1

Then, we define the perfect unlimited observations error estimator

E®() == | F(e)ll 20, (4.3.2)
Finally, we define the finite-v error

A*(v) = |E — E®(v)|,  (4.3.3)
and the combined finite-N and finite-noise error

AP (J,v) = |E®(v) — E(J,v)|. (4.3.4)

In the remainder of this section, we first propose a confidence interval for E> (v), and

we present an error bound for A¥(v).

4.3.2 Construction of the confidence interval

Finite-noise and finite-J error

2 associated with the random noise is

We first consider the case in which the variance o
known a priori. Given J i.i.d. random variables X3,..., X ~ Uniform(Q2), we define the
random variables Yj"b32= |2( (L;f“)2 — 0?), where Le™ = F,(e)(X;) + €j. We observe that
E [Y}Obs] = (EOO(I/)) . Therefore, assuming that o2 is known and exploiting the positivity
of E*® (v), we can apply the Central Limit Theorem to derive an approximate confidence

interval for E°(v):

~ 2 1 ~
mod (J, ¥, a)) - —\/jtl_a/z(J — ].)SeYobs’J) ,
+

\/ ((Amod(,], n0) + %tl_mu — 1)y, J> +J
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Here, (a); = max{a,0}, the modified estimator Epoq is defined as

+

Broa(J,v,0) = \/ ((E(J, ,,))2 - |Q|02> , (4.3.5b)

while t;_4/9(J — 1) is the (1 — a/2) quantile of the t-distribution with J — 1 degrees of

freedom, and 3ey.ns ; is the sample standard deviation associated with yobs:

J

Seyone s 1= 71—1 3 (m| (&2 — (B0, y))2>2. (4.3.5¢)

j=1

We now consider the case in which o € [0y, oyg] for some known constants opg, oy >
0. Since 5eyobs ; is independent of o2, the noise variance o2 only shifts the confidence region
Clo along the real axis. Therefore, finite-J and finite-noise errors can be asymptotically
decoupled in the limit of J — oo. The latter observation helps us manage uncertainty
through the value of 02 if we are confident that o € [o1p,0uB], we can modify (4.3.5) as

follows:

~ ~ 2 1 ~
CJ’U(']’ v, «, 0') = [\/((Emod,LB(J> v, U)) - ﬁtl_a/z(tj - 1)S€yobs’J)

+

(4.3.62)
\/ ((Emod,UB(J, v, a))2 + 717~t1_a (T — 1)s?eyobs,,) J

where E\mod,LB(J, v,0), and E\mod,UB(J, v, o) are defined as

Emoda(Jv,0) = \/((E(J, V))2 - |QfUt2JB)+7 Emoa,us(J,v,0) = \/((E(l V))z - lﬂlde)+
© (4.3.6b)

Computational procedure

Algorithm 4.3.1 summarizes the computational procedure. Unlike the case of L? outputs,
we must provide an estimate for o2. As for L? functionals, if the finite-v error is modest,

we can employ the same procedure to estimate E.
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Algorithm 4.3.1 Confidence region for E>®(v)

Input J number of measurements
OLB,OUB lower and upper bound for the noise standard deviation o

u* : Q°Ps » R approximated field

Output C’° confidence interval for E°°(v)

1: Draw {x;’bs}j from Xj,...,X; ~ Uniform(2), and collect the experimental results
N

2: Compute £ = f;?bs —L(u*, v, x;?bs) forj=1,...,J.

3 B(J,v) = /L7 ey,
4: Compute the confidence region C” of (4.3.6).

4.3.3 Analysis of the finite-v error

Following the discussion in section 4.2.4, we assume that (i) , CC Q, (ii) w(r) < M for all
r > 0 and for some M > 0, and (iii) Ve € LI(Q),) for some ¢ > d. Then, it is possible to

prove the following estimate
AY(v) <-Co/ IV~ Vel o), (43.7)

where C,, > 0. As for L? functionals, finite-v error A”(v) depends on the balance between
filter width v and characteristic spatial length scale of the error field. We refer to Appendix
A for the proof of (4.3.7), and to the numerical results for a rigorous assessment of the

practical effect of this contribution for a controlled synthetic example.

4.4 Application to subsequent state estimation

We consider the scenario in which during the offline stage (cf. Algorithm 2.4.1, Chapter 2.4)
we have the opportunity to acquire data from a number of system configurations (associated
with different values of the parameter). Our goal is to exploit these offline experimental
data to reduce the number of observations for future configurations. Towards this end,
we wish to aﬁgment the background space Zy,, based on the results of the PBDW data
assimilation procedure. To differentiate between offline and online measurements, we denote

by Myg the amount of experimental measurements available offline, and by M, the amount
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of experimental measurements available during the online stage. We here assume that

Mon < Moff-

Algorithm 4.4.1 summarises the computational procedure used to augment the back-
ground space during the offline stage. This procedure was first proposed in [143, section 5.8].
The function [u*] = PBDW (Zy, {x0P5}M_, {£Ps}M_ ) indicates the application of the PBDW
state estimation procedure based on the background Zy, and on the measurements {£205 =
£(ufre, y, 2OPS)YM_ - the function E(J,v) = a-posteriori(u*, {m;?bs}le,{fgbs}j_l) refers
to the application of Algorithm 4.3.1 for org = oy = 0, and {E;’bs = f(u've, y, ObS)} i1 -
Finally, we denote by {Ck}f:1 the system configurations associated with the available offline
experiments, and we denote by u"®(Cy) and u*(Cy) the true state and the state estimate
associated with the configuration Cr. The procedure can be easily extended to noisy mea-

surements. In section 4.6, we present numerical results for a synthetic acoustic problem; we

refer to [143, section 5.8] for an application to a physical system.

Algorithm 4.4.1 Data-Driven Empirical Enrichment of the background space

Input ZNy background space
Mog (Jog) number of offline measurements used for training (validation)
My, number of online measurements used for training
Nmax maximum dimension of the background space
{C}E, system configurations available for comprehensive testing
Output Zy__ enriched background space

1: for N = Npk, ..., Nmax — 1 do

2. Choose transducers’ locations {z0Ps}Moft {x;?bs}qiﬂ

m=1?

3: for k=1,...,K do

4: Compute the state estimate [u*(Cy)] = PBDW (2, {m(r)r?s}rﬂr/{lnla {£bs(Cy )}Mo,. )
5: Estimate the L? error Ek( Joff, V) = a-posteriori(u* {wObS}j 4 {gobs(c )}Joff .
6: end for ~

E
7: Compute k* := arg max % (Joft, V)

k=LK |[u*(Ci)ll L2
8: Compute the state estimate [u*(Cg+)] = PBDW (2, {:c°bs}m , ﬁ;’,‘l’s(ck*)}%fl

9: Compute Zn4+1 = Zn @ span{u*(Cy+) — Iz, u*(Cex) }-
10: end for
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At each iteration of the external for loop, we first estimate the state for each configura-
tion Cy based on Mo, measurements, and we estimate the L? error [|u'™¢(Cy) — w*(Ci) || L2(q)-
Then, we compute the index k* that maximizes the error estimate over all configurations.
Finally, we estimate the state for the k*-th configuration based on My measurements and
we augment the space Zy with the update 7*(Cg+) = w*(Cgx) — 1z, u*(Cy+). We note that
the error estimator E plays the same role as the error bound AR¥(1) in the weak-Greedy
algorithm (cf. Algorithm 2.1.1, Chapter 2.1.2). This is possible because Greedy techniques
do not exploit the structure of the parameter (or configuration) space, which is not in general
observable in the current framework. We further observe that we perform state estimation

based on M,g measurements only once per iterations.

The value Nyax should be chosen based on (i) the offline computational and experimental
budget (i.e., the amount of offline experiments that can be performed), and (ii) the amount
of online experimental measurements My,. To explain the latter, we shall remember that we
should at least guarantee that the PBDW state estimation procedure is stable: this implies
that the inf-sup constant By az,, should exceed a given threshold for N = Ny, ..., Nmax.
The condition By a,, > tol for N = Npy, .. ., Nmax can then be easily imposed as additional

termination condition in the external for loop in Algorithm 4.4.1.

4.5 Numerical results (I): error estimation

4.5.1 Application to a synthetic thermal problem

We first assess our computational procedures through a synthetic problem. Towards this

end, we consider the parametric problem:

[V (k) V() =0 in Q%

{ w2 =g onT; UT, UT; (45.1a)

u(p) =0 onI'y
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where Q° = J7_, Q;, and

1 onl"l,
1 in$)y,

K(z, 1) = glz)=¢ 0 onTy, (4.5.1b)
Hi inQiH, 'i=1,...,8;
1-2x; onI.

Figure 4-1 shows the computational domain. We consider the domain of interest 2 = Q5. In

true

order to assess our method, we generate the true field «*™¢ and the approximate field u* by
considering the solution to (4.5.1) obtained using a Finite Element (FE) solver for different

choices of the parameter pu:
ute = g (pt = [1,1,1,1,1,1,1,1]), w* =u(x* =[1,1.2,1.5,0.6,1.6,1.3,1.1,1]).

We resort to a P Finite Element discretization with A’ = 37249 degrees of freedom. Figure
4-2 shows the true field and the error field over Q° and highlights the domain of interest
Q.

Local experimental observations are assumed to be truncated Gaussians with v = 2rgauss,

and standard deviation equal to rqayss:

2

r
2
2TG‘-a,uss

wq (1) = C(rGauss, d) exp (— ) X{r<2rcauss} (T)- (4.5.2)

In all the simulations, we consider observations of the form

obs __ true obs .
o> =1 (u YUy T3 ) + €5,

where €1, . . ., € are realizations of thei.i.d. Gaussian random variables €1, ...,e5 ~ N (0, 2).
3.5
[ Ty
3
25 Q3 Qg Qg

15T Qs Qs Qg | T2

05 Q| | &
I3

0 1 2 3

-0.5

Figure 4-1: Thermal block synthetic problem: computational domain.
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(a) utrue (b) utrue s u*

Figure 4-2: Thermal block synthetic problem: visualization of the true field and of the error field.
The domain €2 is the rectangular region inside the black boundary.

Error in L? outputs

We first consider the case of L? outputs. We wish to estimate the error associated with the

output
1
L(utrue) — _f utrue d:[.',
12 Ja

corresponding to ¢ = 1/|Q|. For this choice of £, we have
L(u'™€) = —1.9588, L(u*) = —1.8464.

Figure 4-3 shows the behavior of the error estimator EC and of the lower and upper
bounds EECIZB and E“ﬁi‘f[’jB with respect to J for two values of o. In this test, we consider
a = 0.1, rgauss = 0.1. We observe that in the noise-free case (o = 0), Eg is an accurate
approximation of Ey for J 2 5, and that 6;:"’ is a meaningful confidence interval for
E¢ for J 2 10. By comparing Figure 4-3(a), and Figure 4-3(b), we observe that the
convergence with .J depends on the magnitude of noise as expected from the theory (see
equation (4.2.14)).

Figure 4-4 shows that we can use our procedure to build a confidence interval for £(u*®).
This observation confirms the result in (4.2.15). We observe that we can use our strategy
to update the estimate for £(u""¢) for J = 10 in the noise-free case, and for J = 20 in the
noisy case.

Figure 4-5 shows the behavior of the size of the confidence interval, |5£“|, for two

different choices of o, and for u* = 0 and u* = wu(p*). We denote by aé’j the region
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0.4 ~Ja 0.4
° ?EI.LB |
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0 [ T _EC ; 0
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—0.4i- * | -0.4: 1
-06 : -0.6 : !
10° 10° 10° 10°
J d
(a) e=0 (b) ¢ =0.25

Figure 4-3: Thermal block synthetic problem: (1 — a)- confidence interval for the output error
( = 0.1, rgauss = 0.1, L(u'™ — u*) = —0.1124 ).

—L(u*) + B ‘ —L(u)+ B |
s o L(ut) + B, [0 A o L(w')+ B2,
* ode | " oo
« Llu*) + E‘é‘uaj ., + L(u*) + Ef|
-15 — L(u'™) | 15! o, —L(utre) |
° o L(u) | Y o L(u*) |
9 o ®g9 — r————r—————— = ¢ o sne
-25 ; | 25! + ’
10° 10° 10° 10?
J J
(a)o=0 (b) 0 =0.25

Figure 4-4: Thermal block synthetic problem: (1 — a)-confidence interval for the output (a = 0.1,
TGauss = 0.1, E(utrue) = —1.9288 )

associated with v* = u(p*), and by 55; the region associated with v* = 0. As in the
previous test, we set @ = 0.1, "Gauss = 0.1. We observe that |6;:”‘I(J = 10)| &= |6’g3(J =
150)| in the noise-free case, and |5£‘I(J = 10)| = |6’£§ J = 40)| in the noisy case. The
results show that our procedure takes advantage of the proximity of u* to u*™€ to reduce
the variance of the process. We observe that the variance reduction strategy is less effective

in the presence of experimental noise: this is in good agreement with estimate (4.2.14).

L? error

We now consider the problem of estimating the L? error. Figure 4-6 shows the behavior of
E, Emod, and the lower and upper bounds E{g and E’:{’J‘]’B with respect to J and for two
values of o. In this test, we consider & = 0.1, 7qauss = 0.05, and we assume that we know
the value of 0. We observe that our procedure provides a meaningful upper bound for the

error for J 2 5 in the noise-free case, and for J = 20 in the noisy case.
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‘ |
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10° 10° 10* 10° 10% 104
J J
(a) c=0 (b) ¢ =0.25

for two different

Figure 4-5: Thermal block synthetic problem: size of the confidence interval \5;"
choices of o, and for «* = 0 and v* = u(p*) ( @ = 0.1, rgauss = 0.1).

(a) o=0 (b) 6 =0.2

Figure 4-6: Thermal block synthetic problem: confidence intervals for the L?(£) error for two
different choices of o (@ = 0.1, Tgauss = 0.05, ||u™® — u*|| 2(q) = 0.1756).

Finite-r error

In Figure 4-7, we investigate the effect of the finite width v in output error and L? error
estimation!. Figure 4-7(a) a shows the behavior of EC, Eg‘iB and Eé"%B with respect to
TGauss for J = 2000. Similarly, Figure 4-7(b) shows the behavior of E, Eﬁg and Eé’g with
TGauss for the same value of J. We observe that as rqayss increases, E and the size of the
confidence regions Cé’a and C”? decrease. We further observe that, for our particular choice
of the linear functional and of the error field, the effect of the filter spread is extremely

limited.

'For rgauss = 0.5, condition €, CC Q°* does not hold; in this case, we simply adjust the constant
C = C(rgauss, d, ) in (4.5.2) by imposing that £(1,v,2) = 1 for any x € Q.
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Figure 4-7: Thermal block synthetic problem: confidence intervals for output error and L?(£2)
error for different values of rgayss (¢ =0, a = 0.1, J = 2000).

Analysis of the finite-grid case

We now consider the case in which sensor locations should be selected among a set of grid
points {x?rid}le. Towards this end, we consider two different cases: (i) a 10 by 10 grid of
equispaced sensors in €, and (ii) a 10 by 10 grid associated with the Gaussian quadrature
points in 2. Figure 4-8 shows the grids. For the first grid we define £&¢ (4.2.13) using
uniform weights w; = 155, while for the second grid we consider the weights associated with

Gaussian quadrature.

2 hd * * 2 ¥ * + L] L] ¥ L ¥
e - * - . - . L
. - - * - - * -
LR - * - . * - L
180 4 4 4 o o v o 18
L - * * - * - L
R R R
1'6 - * . . i . . + 1’6 - . - - * - - - LR |
= = .
S )
1.4 A A A . - S 14P°% * ¢ . . « e
- * - » * * * *
e L] - * * * L3 . o
1 2 * * * - * * * - 12
" Tl + . . . e e+ e
- - . * * L3 . -
e - - L . . * L
1 1 L] L] * L] * L] L] *
3 15 2 1 1.5 2
I Ty
(a) Uniform (b) Gaussian

Figure 4-8: Thermal block synthetic problem: sensor grids.

Figure 4-9 shows the behavior of the confidence intervals for Ez and for £(u™"¢). We
here set rgauss = 0.1. We observe that for the Gaussian case results are comparable with
the results shown in Figures 4-3 and 4-4; on the other hand, for the uniform case we observe

that £89(F,(e)) — L(F,(e)) is not negligible.
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Figure 4-9: Thermal block synthetic problem: confidence intervals for the output error and for the
L?(R) error for different values of rgauss for two finite grids (c =0, rgauss = 0.1, @ = 0.1).

Validity of the large-sample approximation

We now assess the validity of the normal approximation, which has been exploited to derive
the asymptotic confidence intervals @gg (4.2.12), and C° (4.3.6). With this in mind,
for given values of J and «, we select nyain = 10 different samples {{x%bs(i)}gzl}?;’f‘“
and, for each sample, we compute the error estimator Ec(J, v,1) and the confidence interval
aé'a(J, v,a,t), © = 1,...,Nrain- Then, we estimate the confidence level of the confidence
interval as

. card {z' €{1,...,Ntain}: Er € 6}”@1, v, a, z)}

CL{J) i= , (4.5.3)

MNtrain

where card{-} denotes the cardinality of the set. If the normal assumption holds, we expect
that ﬁ(J ) & 1 — a. Therefore, the difference |6'—E(J ) — 1 4+ «a can be exploited to assess
the validity of the normal approximation. We can then repeat the same analysis for the L?

CITOT.
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Figure 4-10 shows the results for the output error. In this simulation, we consider o = 0
(perfect measurements), a = 0.1 and rgauss = 0.03. Figures 4-10(a) and 4-10(b) show the
histograms of the distribution of E,;(J, v, 1) for two different values of J. The red continuous
line indicates the true value of the error, while the black dashed line denotes the mean of
EL;(J, v, i) over the niain samples. We observe that for both J = 3 and J = 8 the distribution
of EC(J, v, 1) is approximately normal. Figure 4-10(c) shows the behavior of ﬁ(J ) with J.

As expected, E"I(J ) converges to 1 — « as J increases.

i
1
8
6 0.9 s - R
z 2
4
0.8 e
2 | °.CL(J)|
=1-a |
0 %4 & 8 10 12
04 0.2 0 0.2 03 02 01 0.1 ¥
(2) J=3 (b) J=8 (c)

Figure 4-10: Thermal block synthetic problem: assessment of the Gaussianity assumption for
output error confidence intervals (rgauss = 0.03, = 0.1, ¢ = 0).

Figure 4-11 shows results for the L? error. While for J = 3 the distribution of E (J; &%)
is slightly asymmetric (Figure 4-11(a)), for J = 8 the distribution is approximately normal
(Figure 4-11(b)). This is a consequence of the Central Limit Theorem. We further observe
that the confidence level CL(J) associated with {C77(J, v, o, i) }ieein does not converge to

1 — «. This is a consequence of the shift determined by the presence of finite-v error.

!
|
0.9}
| ° L]
i -
o CL(J)
—1 -
BT 4
0.1 0.2 . ; 005 01 015 02 025 03 J d d
(a) J=3 (b) J=8 (c)

Figure 4-11: Thermal block synthetic problem: assessment of the Gaussianity assumption for
L?(Q) error confidence intervals (rgauss = 0.03, & = 0.1, 0 = 0).
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4.5.2 Application to the thermal patch experiment

We present results for the thermal patch problem introduced in Chapter 3.4. Given the
domain = (—0.5L,0.5L) x (-0.5L,0) (L = 22.606mm), we wish to estimate the error

associated with the output

1
obsy __ true j_.
L = 9] /g; u M dx,

and the L? error over €, ||u®® —u*|| 2 (2)- We recall that u°Ps corresponds to the dimensional
thermal field estimated by the IR camera, and that [z] = m. With some abuse of notation,
in this section we omit the superscript 4™ to indicate dimensional quantities.

We now introduce the state estimate u* generated by solving the bk model (3.4.3) for

1 = 1. We observe that
L(u°) = 50.0640°C,  L(u*) = 52.5965°C,

and?

”uobs _ U*HLZ(Q) - 00529[00 X Hl}.

Figure 4-12 shows the observed field 4°P%, the error field e°” = 4°"s — 4* and the domain

] 65 e 10

K 60 F 8

55 & - 6

— 3 B (™4
: 50 w w
o 2 1 2 2
= 45 9 | o
e 3 1 LK

- .0.005 a0 -2

-0. ; 35 1 M

30 6

25 i . :
002 -001 0 001 002 002 001 0 001 002

J‘n]hm[,”) _,allim(”’)
(a) uobs (b) T“,’obs —u*

Figure 4-12: Thermal patch problem: visualization of the observed field and of the error field.
The domain € is the rectangular region inside the black curve.

Figure 4-13 shows the results. We observe that for J =~ 10 the 90% confidence interval
for the output error contains the true value, and has a half-amplitude equal to 1°C' (Figure

4-13(a)); therefore, we can use Ez to update the estimate of the output (Figure 4-13(b)).

*To provide a benchmark value, we observe that ||u°"® — L(u®)|| 20 = 0.1275[C° x m].
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Similarly, we are able to construct meaningful confidence intervals for the L? error for J > 10
(Figure 4-13(c)). This shows that, also in this case, our procedure is able to provide accurate

confidence intervals for modest values of .J.

2/ o a5l = T 02
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3 4 P _E.C §55: . . E(u*) = 0. ‘ . |
g mlo | =
- E = . e & LI
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+ —E;: Lt E_ |
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10° 10? 10° 10° 10° 10’ 10?
J J J
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Figure 4-13: Thermal patch: confidence intervals for the output error, the output, and the L?(f)
error (o = 0.1, T@auss = 0.09mm, L(u°®® — u*) = —2.5325°C, ||u°®® — u*||L2(q) = 0.0529[C° x m)]).

4.6 Numerical results (II): data assimilation

We discuss the application of the data-driven enrichment procedure presented in section
4.4 to the acoustic model problem introduced in Chapter 3.3. For this test, we set Q =
Q°bs = (0,1)2, and we consider truncated Gaussians with v/2 = rGauss = 0.05; since 2,
is not embedded in Q°**, we adjust the constant C' = C(TGauss; ¥, ) by imposing that
¢(1,v,z) = 1 for all z € Q). We generate Zy,, =2 based on the bk model corresponding to
g = 0. Then, we consider n.;, = 15 offline experiments associated with the true model
corresponding to g = §, and Nyrain different frequencies in PPk = [2,10]. During the offline
stage, we consider either Myg = 32 or Myg = 64 for training, and J,g = 10 for validation.
We further assume that the number of measurements available during the online stage is
equal to My, = 10. During the online stage, we compute the PBDW solution for different
backgrounds and M,, = 10 experimental measurements, and we assess online performance

by computing the relative L? error

BP0 ) i= u™ () = (1) 20/ 167 () = 0 (1) 2, (46.1)

for nyest = 100 different values of the parameter p € Pk
Figure 4-14 shows the the behavior of the relative L? error E " for different background

spaces — we remark that the background NV = 2 corresponds to the case in which no offline

111



enrichment is performed — and for M,, = 10 online measurements. The black dots denote
the values of the parameters associated with the configurations Ci+ selected during the offline
Greedy procedure. We observe that the offline enrichment dramatically reduces the state
estimation error over all frequencies. This shows that acoustic applications are particularly
suited to the enrichment due to the modal structure of the solution to the PDE. Interestingly,

the Greedy procedure selects updates associated with resonance frequencies.

& + N =2 (no enrichment)| s o N=2
2100 N=3 [ 10N =3 |
5 ||-N=4 T |eN=4 ‘
= - N =5 = —-—N=5
100 - gt 3 100|‘ 4 i
= Z ‘
; o ,
¥ s
% 107 =107 |
. - . L . — - -
2 4 6 8 10 2 4 6 8 10
Iz "
(a) Mog = 32 (b) Mog = 64

Figure 4-14: Data-driven enrichment for a synthetic acoustic problem. Behavior of Erehon(y)
(4.6.1) with respect to p for several N (Nyk = 2, Mog = 32,64, J°F = 10, nyrain = 15, ngest = 100,
Mon = 10). The black dots denote the values of the parameters indirectly selected during the offline
Greedy procedure.

4.7 Conclusions

We proposed a Monte Carlo experimental procedure that provides confidence intervals for
the L? error in state and the error in L2 outputs. The procedure relies on a state estimate
u* for the true field u"™® and on J possibly noisy local experimental functionals, and is
based on the identification of three different sources of error: the finite-v, the finite-J error,
and the finite-noise error. Our approach implicitly takes advantage of variance reduction,
through the proximity of u* to u'™¢, to provide tight confidence intervals even for modest
values of J.

Numerical results for a synthetic model problem and for the experimental thermal patch
configuration illustrate the elements of the methodology, and clarify the role played by the
finite-v, the finite-J error, and the finite-noise error. While finite-J and finite-noise errors can
be bound through an asymptotically rigorous statistical procedure, the effect of v depends
on the spatial scale of the field and on the transducer resolution, and can only be assessed

on a case-by-case basis.

We also illustrated the application of our error estimation procedure to two data assim-
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ilation tasks: output prediction and data-driven enrichment of the background space Zx in
the PBDW framework. For output prediction, we exploit the linearity of the functional to
provide lower and upper bounds for the quantity of interest £(u*"¢). Due to the modest
variance of the process e = u'*"® — 4*, we can obtain meaningful confidence intervals for
L(u'®) for moderate values of J. For the enrichment of the background space Zy, we rely
on the a posterior: error estimator Eto properly enrich the background in a Greedy fashion.

Numerical results for a synthetic problem demonstrated the effectivity of the approach.
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Chapter 5

The PBDW approach for localised

state estimation

We study the application of PBDW to the problem of localised state estimation. In more
detail, we study the case in which the bk model is (i) defined over a domain QP¥ that
strictly contains the domain of interest (2, and (ii) depends on a high- (possibly infinite-)
dimensional set of parameters. Since in PBDW the bk model is only employed to generate
the background space, the focus of this chapter is on the development of efficient strategies
for the construction of local approximation spaces {Zx}xy, which can then be employed in
the PBDW formulation.

We first motivate the problem from an engineering standpoint, we introduce the general
idea of the localisation procedure, and we discuss a simple model problem that explains
under which condition localisation is feasible (section 5.1). Then, we propose the computa-
tional strategy (section 5.2), and we present a number of theoretical results concerning the
optimality of our construction (section 5.3). Finally, in section 5.4, we present numerical

results for two synthetic acoustic problems.

5.1 Preliminary discussion

5.1.1 Localisation strategy

For practical applications, bk mathematical models might be characterized by extremely

high-dimensional parametric uncertainty. In the process of defining the model, we have
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indeed to specify potential topology variations in the structure, material properties, initial
and boundary conditions, just to mention a few; since all these quantities are typically
subject to uncertainty, the effective number of parameters associated with the mathematical

model of a full engineering system might number in the hundreds.

In many cases, we are interested in performing state estimation in a subregion of the
whole system: for acoustic applications, active systems for noise cancellation rely on the
estimation of the sound pressure level in a particular region of interest; in damage identi-
fication, engineers are often able to anticipate the region of the structure of interest that
is more likely prone to failure, and consequently monitor only specific components of the
structure. Once we restrict the model to the domain of interest, we have to face two different
sources of uncertainty: (i) uncertainty in the physical parameters, and (ii) uncertainty in the
boundary conditions at the interface. While we might reasonably assume that the former
source of uncertainty leads to a low-dimensional parametrization, the latter clearly leads to

a high-dimensional and possibly infinite-dimensional parameter space.

To address the uncertainty related to boundary conditions, in this work we propose a
two-stage localisation procedure. If we denote by QPP the domain associated with the full
system, and by Q@ C QPP the domain of interest in which we want to estimate the state,
we introduce the bk domain QP¥ such that Q ¢ QP% ¢ QPP. The domain QP is chosen to
exclude many parameters associated with QPP \ QP%, We further denote by I''™ the portion
of OQPK in which boundary conditions are uncertain. Then, we define our bk mathematical

model as follows:
GPRR (P (p),v) = f(v), Vv EVE®, u¥|rm=g, ueP™ geT. (5.1.1)

Here, VPk = YPK(QPK) is a Hilbert space defined over QPK, VPk := {v € VP : o|pm = 0},
7 C T is a, possibly infinite-dimensional, subset of the Sobolev space T = T ('), 1 denotes
the parametric uncertainty in the model, GP%# : YPk x YPk — R is a parametrized variational
form defined over Q% and f € (V§¥)' is associated with the external forces acting on the

system. Based on the previous definitions, we can define the bk manifolds:

Pk = {ugk(u) L pePk ge %} cVk TcT, (5.1.2a)

116



and
M= Lulk()lg: weP™ geThcy, TcT, (5.1.2b)

where Y = Y(Q) is a suitable Hilbert space defined over 2.

The objective of this chapter is to propose a model-order-reduction strategy that gener-
ates local hierarchical approximation spaces Z; C ... C Zn,,,, for the bk manifold M in
(5.1.2b). We observe that if 7 is infinite-dimensional, we cannot expect that the manifold
MPK can be well-approximated by a low-dimensional linear space. In the next subsection, we

explain — through the vehicle of a particular model problem — why MP¥ might nevertheless

be well-approximated by a linear space.

5.1.2 A model problem

In order to get insights about the reduction task described in the previous section, we shall

consider the following differential problem associated with a semi-infinite wave-guide ([96]):

(

— AP (u) — p2ubk() = 0, in O = (0,00) x (0,1),

{ Onyug(a;p) =0 z € (0,00) x {0,1}, (5.1.3)

ubk(z; p) = g(x) z e IT™ = {0} x (0,1),

\

where g € T C T := HY/2(I'™). We then define the domain of interest Q = (L, 00) x (0,1).
For simplicity, we set PP* = {ji} and we omit the dependence on u. By exploiting separation

of variables, we obtain that

Nprop e o]
ng(l'l,xg) = Z cn(g) €% cos(nmxa) + Z cn(g)e” " cos(nmzs),
n=1 n:Nprop+1

where Nprop = L%J, a2 = |n?7? — i%| and the coefficients {c,}» depend on the boundary
condition g. We observe that the first Nprop modes do not decay as 1 — oo, while the
remaining modes decay exponentially as x; — oo. For this reason, we refer to the former as

propagating modes and to the latter as evanescent modes.

Let us now suppose that our goal is to approximate the bk manifold MP* through a N-
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dimensional linear space Zy under the assumption that 7 = {g € T : |cn(9)| < C, Vn > 1}.
For the sake of argument, we aim to guarantee that the L? best-fit error associated with the
bk manifold, €3 = sup,,c ok infrezy, |lw — 2|| 12(q), is below a fixed tolerance tol. We can

distinguish between two scenarios:

Nprop > N: since the dimension of the approximation space is less than the number
of propagating modes, we cannot accurately approximate the manifold MP¥ through a N-

dimensional linear space for any L > 0;

Nprop < N: in this case we can approximate all propagating modes; therefore, if the
effect of the evanescent modes is negligible, we can approximate the manifold MP* through

a N-dimensional linear space.

In the latter case, we can indeed choose Zy = span{(, }_, with {,(z1, z2) = e7®%1 cos(nrzs)
if n < Nprop, and G (z1, x2) = e™*n*1 cos(nmzy) if N > Nprop. Then, assuming that we are

interested in bounding the L%-error, it is easy to verify that

bk 2 > g e ok 2 o= el
Jnf flug = 2llfz gy = Y (en(9)) ——<C* 3
N n=N+1 n n=N+1

. bk,UB
€ .

4oy, N

If L is sufficiently large, elj)\],(’UB is below the specified tolerance tol. We have thus shown

that there exists a space Zy that meets our requirements; we then say that MP¥ is N-
reducible. We highlight that our definition of reducibility depends on the dimension N of
the approximation space — which is ultimately related in our setting to the number M of
available experimental observations — on the tolerance (tol > 0), and also on the norm of
interest (the L? norm).

The discussion of this section exemplifies two separate issues rélated to the problem at
hand. The first is related to the possibility of "reducing" a given bk manifold to a N-
dimensional linear space. This is strongly related to the PDE considered and is independent
of the particular reduction algorithm used to build Zy. The second issue is related to
the development of actionable computational procedures to identify the reduced space Zy:
in this respect, we observe that standard pMOR strategies — such as the Weak-Greedy
algorithm employed in the previous chapters — are not well-suited for this problem due to
the high-dimensionality of the parameter space. The remainder of this chapter is devoted
to the development of an actionable computational procedure to build rapid convergent

localised approximation spaces {Zn}n.
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5.2 Methodology

We shall first introduce some notation and preliminary assumptions. We define the solution

maps A:T x PPk 5 YPk and A : T x PPk — Y such that
Algip) = ugi(n), Alg;m) = wp*(w)le,  VgeT, pePb™ (5.2.1)

We assume that A and A are linear operators such that A(0; pu) = 0, and AO;p) = 0.
Recalling (5.1.1), this corresponds to assume that GP*# is a bilinear continuous inf-sup
stable form and f = 0. We note that the extension to f # 0 is straightforward, while the
extension to nonlinear operators appears difficult and is beyond the scope of this work. We
further endow the Hilbert space 7 with the inner product (-, )7 and the norm | - ||7. We
denote by (-,-)y the inner product of Y, and by || - ||y the induced norm. We also denote by
Hg() the projection operator onto Q C Y in ), and by Hg,(-) the projection operator onto
Q' C T in T. We remark that in our setting the space ) does not have to coincide with the
space U employed in the PBDW formulation.

We first consider the case PP% = {1} (section 5.2.1), and then we consider the extension
to the more general case PPX # {fi} (section 5.2.2). To simplify notation, if PP* = {z},
we omit the dependence on the parameter. We state upfront that our procedure intends —
but does not assume — that the bk manifold can be well-approximated by a N-dimensional

linear space. We come back to this point in the analysis.

5.2.1 The case P* = {f}

We introduce the transfer eigenproblem as follows: find (¢, An) € (T,R4) such that
(A(¢n), A(9)y = Mnldn, 9)T VYgeT, (5.2.2)
where A1 > Ao... > 0. Then, for any N > 0, we define the transfer eigenspace
2% .= span{A(¢n)}_;. (5.2.3)

If we introduce the finite-dimensional discretization of 7", Ta;, = span{g1,...,9n.} C 7,

we can define the semi-discrete transfer eigenproblem: find (¢2in Min) € (Th, , R, ) such
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that

(A(PNm), Alg))y = X (gh'm, g)yr Vg€ T, (5.2.4)

where /\f/i" > )\é\/‘" > )\j:[/‘:: > 0. Then, for any N > 0, we define the semi-discrete transfer

eigenspace:

ZteNin .~ span{ Al )1V, (5.2.5)
Eigenprobleni (5.2.4) can also be restated in a fully algebraic form as

Uglim = MfnTghin,  forn=1,...,Ma, (5.2.62)
where U, T € RNinNin gre given by

Ui,i’ == (A(gl)’ A(gt’))ya Ti,i’ = (gh gi')Ta ia 7:’ = 11 ‘e 7Mna (526b)

and the vectors {¢n},, are related to the transfer-eigenmodes {gb;.v‘“ }n by the relation

Nin
P = Z(dzvi“)igi- (5.2.6¢)

i=1
We observe that eigenproblem (5.2.6) is not fully actionable since evaluations of the map
A(-) involve the solution to a PDE: we should thus replace A with the corresponding FE

" counterpart AFE. To simplify notation, we here omit the superscript FE.

We recall that the transfer eigenproblem (5.2.2) has been first introduced and studied in
the approximation theory literature (see, e.g., [172]). More recently, Babuska and Lipton in
[8] employed the transfer eigenmodes to define local approximation spaces in the framework
of Generalized Finite Element method ([151, 7]). Similarly, Smetana and Patera in [204]
exploited the eigenmodes associated with the transfer eigenproblem in the context of Port-

Reduced static condensation Reduced Basis Element (PR-scRBE, [171, 72]) method.

The transfer eigenproblem is tightly connected to the eigenproblem obtained using POD.

In more detail, if we choose an orthonormal basis {gn}ﬁfiz“1 for Ta;,, (5.2.6) reduces to the
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eigenproblem

Ughin = MMM forn=1,..., My;

this corresponds to the eigenproblem obtained by applying POD based on the method of
snapshots ([202]) to the set {A(gn)}ﬁfi_“l. We observe that, unlike the reduced space generated

by POD, the reduced space thve’M" is independent of the particular basis of 7x;  employed.

5.2.2 The case P # {ji}

If PP% £ {i}, we adopt a two-stage procedure based on the combination of the method
presented above and POD. We first consider a finite-dimensional discretization of PPX,
PRk = {pt}pn. Then, we solve Mirain transfer eigenproblems, one for each value of
the parameter, to obtain nrain /N-dimensional transfer eigenspaces {Z;\?’N‘" (pt)}imein Fi-
nally, we generate the background space Zxy by applying POD to the set of snapshots
{A(¢n i"’i;,u")}i,n, where || ﬁfmzllT =1lforalli=1,...,Nan and n=1,..., N. Algorithm

5.2.1 summarises the computational procedure. We refer to [204] for a different strategy to

construct Zy when PPk £ {}.

Algorithm 5.2.1 Construction of the localized reduced space

Input PRk = {p}ipn C PPk discretized parameter space
N dimension of the background space
Output Zy background space

1: Define the basis {g1,...,9n;, } for Ta;, -

2: for i = 1...N4rain do

3: Compute the first N normalised eigenmodes {qﬁﬁ[‘“’i}fy:l associated with A* :=
A(+; ?) using (5.2.4), (Hgbﬁfimi”T =1,i=1,...,N%amn,n=1,...,N).

4: end for

. Apply POD to the set of snapshots {A( Q/i“’i; ui)}nzlqu, i=1,... nurain 1O generate Zy C

Y.

t
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We observe that
LA ™5 3 = (Algn™F '), Algn'nts uh)) = Mfimt (gl gpfimtyp = Mfint,

Therefore, the POD reduction implicitly takes into account the relative importance — quan-
tified by the value of the corresponding transfer eigenvalue — of the different snapshots.
Recalling the connection between transfer eigenspace and POD, we can reinterpret the pro-
cedure described in Algorithm (5.2.1) as a Hierarchical Approximate Proper Orthogonal
Decomposition (HAPOD, [108, 169]). Using terminology introduced in [108], our approach
corresponds to a distributed approximated POD. We exploit this connection in the analysis.
We finally observe that the construction of Zx requires the solution to miain - Nin PDEs
in the bk domain QP¥ the solution to Train eigenproblems of size Mj,, and the solution to
an eigenproblem of size ngpain - V. Although computations can be trivially parallelized, we
envision that Algorithm 5.2.1 is affordable only for moderate values of nyajn. Therefore, our

technique can be applied only to low-dimensional parameter spaces PPK.

5.3 Analysis

5.3.1 Opfimal approximation spaces

In view of the analysis, we present a first definition of optimality in the sense of Kolmogorov

([172)).

Definition 5.3.1. Given N > 0, we say that Z11§,°lm C Y is the optimal N-dimensional
approzimation space for A(T) := {A(g) : g € T} if and only if

Zkolm — . d(A P .
N argZNC)),ldIilelzNzN ( (ﬂv N), ( a)

where d (A(T), Zn) is defined as

(AT, Zn) = sup 129) 1y A(g)lly
geT lgllT

(5.3.1b)

We say that dy(A(T)) = d (A(T), ZK'™) is the Kolmogorov N-width associated with the
manifold A(T).
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Several variants of Kolmogorov N-width have been proposed in the literature. In the
MOR literature, provided that the manifold MP¥ is compact, Kolmogorov N-width is defined

as (see, e.g., [56])

dn(MPK) = inf sup flu— I ully. (5.3.2)
Zncy,dImZy=N yepbk N

Kolmogorov N-widths measure the performance of the best linear approximation space
of size N: they thus provide a lower bound for the best-fit error associated with any N-
dimensional linear space obtained using a model-reduction technique. For this reason, we can
interpret them as measures of the reducibility of the manifold MP%. A priori results for the
convergence of the N-width with NV are limited to a few model problems: see [100, Example
3.4], [188, Section 8.1.1], [215, Example 2.5, and [8, Theorem 3.3]. Several empirical studies
suggest that N-widths converge rapidly for diffusion-dominated problems, and significantly
less rapidly for advection-dominated problems. Recalling the example in section 5.1.2, this

is strongly related to the concept of evanescence.

Next Proposition shows an interesting relation between (5.3.1b) and (5.3.2).

Proposition 5.3.1. Let us assume that T is the ball of radius C in T, and let us consider

the bk manifold MP* = A('T') Let us further define the optimal space

kolm,2 . Y
Z = ar inf su u— Il ully.
N gZNcy,dimZN-:N UEJ\,It)bk Il Zn ”y

Then, Z&™?2 = zkolm - gng dn(MPK) = C d(A(T)).

Proof. Using the definition of MP*, we first obtain:

kolm,2 .
Zy = arginfzycy dimzy=N SUPyeppk ||u — HJZ)Ntu

= arginfzycy dimzy=N SUPgeT,|gllr<C ||A(9)—H%NA(9)H;V

Since A — H%NA : T — ) is a linear operator, we find

kolm,2 ;
Zy™ = arginfzycy,dimzy=N SUPger|glr=c [A(9) — Tz, A(9)lly
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Finally, multiplying by % and recalling (5.3.1), we find

14(g) -H%NA(g)IIy> _ kolm
_ glolm

Z}f})lm’Z =arg C inf
ZNCY, dimZy=N geT lgllT

This proves the first statement of the proof. The second statement can be shown using the

same argument. O

We now provide another definition of optimality. For simplicity, we state the definition
for a finite set of snapshots rather than a continuous manifold. We refer to [28, section 2.3]

for the generalization of this definition to manifolds.
Definition 5.3.2. Given N > 0, and the set of snapshots S = {ui}gl, we say that Zf\? cy
is the optimal N -dimensional approzimation space for S in the £2-sense if and only if

S|

1
Z8 = arg d® (S, Zn) = S 37 Jlui - T, a3 (5.3.3)
i=1

inf
ZNCY,dimZy=N

We further define d(S) := d**(S, Z%)

5.3.2 The case P = {ji}

We first state the key result of this section. We refer to [172, Chapter 4, Theorem 2.2] for

the proof.

Proposition 5.3.2. Let A: T — Y defined in (5.2.1) be a linear compact operator. Then,
for any N > 0 the space Z}\‘; defined in (5.2.3) is the optimal N -dimensional approzimation

space for A(T), i.e., Z8 = ZX'™  Furthermore,

d(A(T)) = A+t (5.3.4)

Exploiting Proposition 5.3.1, provided that T is the ball of radius C in T, it follows
that Z8¢ = Zjlf})lm’Q and dy (M%) = C\/An11. Next Proposition provides a bound on the

performance of the semi-discrete transfer eigenspace Z}\?’M“ (5.2.5).

Proposition 5.3.3. Let Ty;, = span{g1,...,gn;,} C 7T, and let Z}@’M“ be the corresponding
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semi-discrete transfer eigenspace (5.2.5) computed based on (5.2.6). For any g € T, we have

Nin
1A(g) = T2 ADly < Al gy 3y I0Ts gllr + /A5 lgllT, (5.3.5)
ZN 'A/lﬂ Nin

where )\f\\,{ij‘_l is the N + 1 eigenvalue of the semi-discrete eigenproblem (5.2.4).

Proof. Exploiting the linearity of the operator A and applying (5.3.4) in the finite dimen-

sional case, we find

inf,_prenia 14(9) = dlly < inf,_wiy 14(9) = A (W, ) lly + 114 (10, g) - @lly

< Wlerg, ) W07, olir + i peni 14 (I, g) - 6l
< Mlieery o 07, gl +d(A(Ta), 207 gl
W
Thesis follows. O

Proposition 5.3.3 is extremely important in the context of data assimilation. In many
engineering applications, the set of possible inputs might be very high dimensional, but it
might be well-approximated by a lower dimensional space. Proposition 5.3.3 shows that we
can reduce the dimension of the discrete input space without significantly deteriorating the

Z;\?’M". This leads to a two-step reduction, the former on the

approximation properties of
input port (based for instance on a polynomial expansion) and the second one in the interior
of the domain (based on the transfer eigenproblem). We observe that by reducing Nj,, we
can substantially reduce the offline computational cost, which is dominated by the solution

to Nin PDEs in the large domain QP

Sufficient conditions for compactness

Proposition 5.3.2 shows that the reduced space built by solving the transfer eigenproblem is
optimal in the sense of Kolmogorov if the solution map A (5.2.1) is compact. We now provide
sufficient conditions under which the solution map associated with a given mathematical

model is compact.

Hypothesis 1. (geometry and functional spaces) Let QP% C R? be a d-dimensional

Lipschitz domain, let T'™™ C 9QPX be an open set and let Q C 0% be either a d-dimensional
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open set or a (d— 1)-dimensional open set. Then, let us introduce the space V¥ = H*(QPX),
the space T = H5Y2(T'n), and the space Y to be either H5(Q) if Q is d-dimensional or
H1/2(Q) if Q is (d — 1)-dimensional.

We assume that Q and '™ satisfy the condition

dist(ﬁ,fin) =min min |z —yl2 > 0. (5.3.6)
e yef‘n

Furthermore, we assume that s is a strictly positive integer, s > 1.

Hypothesis 2. (solution operators) We assume that A : T — VPX is a linear continuous
operator, A € L(T, V%), and that GP* : VPK x VBX — R is a continuous bilinear form. We
further assume that for any d-dimensional domain Q* C QPk, dist(ﬁk,ﬁn) > 0, there exists

C = C(QP%, Q%) > 0 such that for any g€ T
I A(g) [l sy < C(Q%, Q)| Ag) ] ro—1(c200)- (5.3.7)

We briefly comment on the two hypotheses. Recalling the continuity of the trace oper-

ator, Hypothesis 1 implies that there exist C(VPX, 7)), C(VP%,Y) > 0 such that
lulpmll7 < COP Dllullyse, — llulally < OOV Dullype,  Vu e VPK,

Combining the latter with Hypothesis 2, since g = g(g)h«in, we find that

1 -~ ~
COME T2 IglF < 1A@I5e < NANZ v lglF-
This implies that we can endow 7 with the inner product (g,¢')7 = (A(g), A(g')) .

Next result motivates the previous hypotheses.

Proposition 5.3.4. Let Hypotheses 1 and 2 hold. Then, the operator A is compact from T
to ).

Proof. We must show that given the sequence {gn}n C T, |lgnl|l7 < C, then the sequence
{A(gn)}n admits a strongly convergent subsequence in ). Recalling that A € £(T, ybk),
the sequence {A\(gn)}n is bounded in VP¥. Then, due to Banach Alaoglu theorem (see,
e.g., [192, Theorem 6.12]), there exists a subsequence {A(gn, )}m that converges weakly to
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@ € VPK. Recalling the definition of weak convergence, and recalling that for any ¢ € VK,

GP%(-, ¢) € (VP we have that
0= 6% (A(gn,),0) = G (@) =0 Ve W~

This implies that 4 = A\('l_l/ll"in). Then, exploiting (5.3.7), we find that for any Q* C QP
dist (—ﬁ*,fin) > 0,

1% = A(gnm) 50y < CO, ) 8 = Algn)ll =109

Since VPK = H3(QPX) is compactly embedded in H3~1(QP¥) (see, e.g., [181, Theorem 1.3.5]),
we have that ||z — Z(gnm)lle_l(Qbk) — 0 as m — oo.

In order to complete the proof, we must distinguish two cases. If @ C R%, then thesis
follows by substituting Q* = ) and observing that ||z — A\(gnm)HHs(Q) = ||z — A(gn,,)|ly-
On the other hand, if @ c R¥1, thesis follows by considering Q2* such that Q C 99* and

then invoking the continuity of the trace operator from H*(Q0*) to H*~1/2(Q). O

Exploiting Proposition 5.3.4, given a particular bk model, we can assess whether or not
the reduced space based on the transfer eigenmodes is optimal by verifying Hypotheses 1
and 2. We observe that Hypothesis 1 depends only on the geometry and can be trivially
checked. On the other hand, Hypothesis 2 depends on the particular differential operator
and should be checked separately. Typically, the hardest condition to verify is inequality
(5.3.7), known as Caccioppoli’s inequality. In Appendix C, we show that the differential
operators associated with (i) linear damped elastodynamics, (ii) Stokes flow, (iii) advection-

diffusion-reaction equation, and (iv) Helmholtz equation satisfy this inequality.

5.3.3 The case P°* # {ji}

Exploiting the connection with Hierarchical Approximate Proper Orthogonal Decomposi-
tion, we can show the following Proposition. We refer to [108, Corollary 3.5] for the proof.
We observe that the result does not address whether or not our construction is optimal and

in which sense; this is the subject of ongoing research.

Proposition 5.3.5. Let {g1,...,97,,} C T be an orthonormal basis of Ty, . Let us define

61];3’1 = Zﬁf‘:"N +1 ANinst for i = 1,...,Nrain, where {An ""Z}Q/':"l are the transfer eigenvalues
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associated with (5.2.4). Let us further define €x°P = N7 Moein AFOD | where {APOD Nitrain

are the POD eigenvalues. Then, if € > 0 and w € (0,1) satisfy

N ) N
el < d € i=1,..., Nirain; POD < —iwe*, (5.3.8a)

S € S
N VNtrain — 1 ’ N Ntrain
the following holds
Mn Ntrain

303 1A ) — T2, Algn; i)} < (€92 (5.3.8b)

n
Mn train n=1 i=1

Furthermore, the number of POD modes associated with {A(g.u*)}in required to obtain the

accuracy € = ntlm:’_le is greater or equal than N:
N < min {N’ € {1, nerain - Nin} © A% ({Agn; 1) }ns) < 2’2} , (5.3.8¢)

where, dﬁ is introduced in Definition 5.5.2.

5.4 Numerical results

5.4.1 Application to a two-dimensional acoustic problem
Problem definition

We consider the following model problem:

(

~(1+ i) Autte () — p2utte(y) = f in QP

§ Onut™e(u) =0 on QPP \ T; (5.4.1)

utrue( u) — gtrue on 1'1;
\

where € = 1074, f(z) = %;exp( (17 ((z1 + 0.75)2 + (z2 — 1.5)%)), 0 = 0.2, QPP =
(—1,3) x (0,3) \ Q°ut, Qeut = (—0.75,—0.5) x (0,1), T' = {~1} x (0,3). In all numerical
simulations, we consider g*"¢ = g(z2) = sin(rkzs) for k = 1,2,3 and we consider different

choices of . We then consider the domain of interest Q = (2, 3)2.
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We consider the bk domain Q% = (0,3)? and the bk model

4

-1+ ei)AuEk(u) - uzugk(u) =0 in Qbk;

Onugt(p) =0 ~ on OOk \ Tin; (5.4.2)
{ “Ek(ﬂ) =9 on I'in;

where T'" = {0} x (0,3). We observe that for f|qex = 0 and for any g™ € HY/%(T) in
(5.4.1) we have that the true field belongs to the bk manifold associated with (5.4.2), that
is u'tue € MPK .= {ugk(u) = ug(p)a : u € PP¥,g € T = HY/2(I'™™)}. Provided that the
effect of the source term in QP¥ is limited, we expect that the true field is close to the bk

manifold MP%. Figure 5-1(a) shows the geometry.

Computations are based on a P4 FE discretization with N'P? = 12289 degrees of freedom
in QPP APk = 9409 degrees of freedom in QP%, and N/ = 1089 degrees of freedom in €.
Figure 5-2 shows the field u*™®(u) for different ¢g*™"® and u. Figure 5-3 shows the variations

true

in [|u*™®(u) || g1 ey @s a function of y for g'*™ = g;; note that there are ten resonances in

the parameter range PPk = [2, 4].

J

|

Qpb bk !
|

1

r Fin

|

Figure 5-1: Application to a two-dimensional acoustic problem: computational domain.

The case P°* = {i}

We first introduce the transfer eigenproblem and the transfer eigenspace. We consider
Y = H'(Q) endowed with the inner product (u,v)y = [, Vu - V0 + utdz; we consider
Vbk = H1(QPk) endowed with the inner product (u,v)ye = [ou Vu - VO + ud dz; and we

consider 7 = H/2(I'") endowed with the inner product (u,v)7 = (E(u), E(v))ybk, where
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Figure 5-2: Application to a two-dimensional acoustic problem: visualization of the true field
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Figure 5-3: Application to a two-dimensional acoustic problem: behavior of ||u'_;k(1u)|| H(qvky With
1 (g=g)

E : T — V% is defined as the solution to the following PDE:
~AE(g)+ E(g) =0 inQ°, 8,E(g) =0 ondQP*\T'™; E(g) =g onI™.

Finally, we consider a A, = 20-dimensional discretization of the input space 7 based on

Legendre polynomials.
Figure 5-4(a) shows the behavior of )\ﬁ_‘l‘_l with N for three different values of p, while
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Figure 5-4(b) shows the behavior of the relative H' best-fit error

true

e (D115
N

(5.4.3)

- lutre(u) — 11,
= Imax
N i)y

where u}™¢(u) is the solution to (5.4.1) for g'™¢ = g,. We observe that \/WI-T-I 2 E%: this
can be explained by recalling Proposition 5.3.2, and observing that the source term f in
(5.4.1) is negligible far from z* = (—0.75,1.5). We also observe that the transfer eigenvalues
increase as p Increases: this is in good agreement with the discussion in section 5.1.2 for the

semi-infinite wave-guide.

g
b
&
g
10710 [ =2 T
—— =14
=t =6
0 2 4 6 8 0 2 4 6 8
N N
(a) (b)

Figure 5-4: Application to a two-dimensional acoustic problem: transfer eigenproblem. Behavior

of \Mf\,r‘;l (Figure (a)), and of the H! best-fit error (5.4.3) (Figure (b)), for three values of u

(Mn = 20) .

Figure 5-5 shows the performance of the data assimilation procedure. We here apply
PBDW based on Gaussian functionals (rgauss = 0.1), with observation centers selected
based on SGreedy-plus algorithm (tol = 0.2) and &4 = Y. To assess performance, we both
consider L? and H! maximum relative error over the three choices of the Dirichlet datum
grk(z2) = sin(mkzy), k = 1,2,3. By comparing Figures 5-5(a) and (b) with Figure 5-4(b),
we observe that, for sufficiently large M, the state estimation error is of the same order as
[|utrue — H%N u'™"€||y: this is in agreement with the a priori result shown in Chapter 3. We
further observe that convergence with M due to the secondary approximation provided by
the update space is slow: the estimated convergence rate in L? norm is roughly M~ for all

values of N considered! we address this issue in Chapter 6.

In more detail, ErhE* &~ M~10 for N = 1,3, EFWY” &~ M~ for N = 5,6, 7.
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Figure 5-5: Application to a two-dimensional acoustic problem: behavior of the relative L? and
H! errors (p = 2).

The case P°* # {f}

We first study the behavior of the eigenvalues associated with the application of Algorithm
5.2.1. We here set ngyain = 11 and N, = 20, and we consider different values of N. Figure
5-6(a) shows the behavior of the transfer eigenvalues X\in for different values of u € [2,4],
while Figure 5-6(b) shows the behavior of the POD eigenvalues A\L©P for different choices of
N. We observe exponential convergence of the POD eigenvalues. We further observe that
POD eigenvalues are weakly affected by the value N: this means that only the first few

transfer eigenmodes contribute to the final background Zy.

0 10 20 30 40

(b)

Figure 5-6: Application to a two-dimensional acoustic problem: application of Algorithm 5.2.1.
Figure (a): behavior of the transfer eigenvalues XY for different values of u € [2,4]. Figure (b):
behavior of the POD eigenvalues AF©P for different choices of N (nrain = 11, Nin = 20).

Figure 5-7 shows the performance of the data assimilation procedure. As in the pre-
vious example, we here apply PBDW based on Gaussian functionals (rgauss = 0.1), with

observation centers selected based on SGreedy-plus algorithm (tol = 0.2) and U = Y. To
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assess performance, we consider H! maximum relative error over the three choices of the
Dirichlet datum gi(z2) = sin(mkzs), k = 1,2,3, and nes, = 5 different values of p in PPk,
To interpret results, we also report the behavior of the relative H' best-fit error. We observe

that our procedure is able to generate an extremely accurate background space for the bk

manifold MPk,

5 10°1 10°
£ e ——
g 5 i
€ 10 = «N=1|
- N=4|
~ N = 16|
10-4 i < 104 5 : 2 2 i
10° 10 10° 10° 10’ 102
N M
(a) (b) H!

Figure 5-7: Application to a two-dimensional acoustic problem: data assimilation results. Figure
(a): behavior of the H! best-fit error with N. Figure (b): behavior of the PBDW relative H! error

with M. (ntrain = 11, Nin = 20, gest = 5).

5.4.2 Application to a three-dimensional acoustic problem

We now consider the three-dimensional model problem:

;

—(1+ €ei)Aug(p) — pug(p) =0 in QPP = QPk;

§ Onug(p) =0 on ONPP \ Iin, (5.4.4)

ug(n) = g on T,

where e = 10~%, QPP = (1.5, 1.5)x(0,3) x (0, 3)\ Q1 Qeut — (0.5, 0.5)x (0.25,0.5)x (0, 1),
s = (-1.5,1.5) x {0} x (0,3), and we choose = (—1.5,1.5) x (2,3) x (2,3). Figure 5-8

shows the geometry. In this example, we consider the bk manifold MPk = {ugk(,u,)lg

ug(p)la: p € P* =[2,4,g€ T = H'Y2(I'n)}; for simplicity, we consider P = QPK_ and
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true

we consider u'™¢ = wu,(p) with

4

x1 cos(z3) k=1
9= gr(z1,23) = (z1 — 23)log(1 + (z1 + 23)%) k=2;
sin(3mrx23) k=3.

Computations are based on a P3 FE discretization with AP¥ = 50389 degrees of freedom
in QP% and AN = 6253 degrees of freedom in Q. Figure 5-9 shows the solution to (5.4.4)
for g = gr, k = 1,2,3, and p = 4. Figure 5-10 shows the variations in ||'u,';,"ue ()|l ey as

a function of pu for g = g1; note that there are several resonances in the parameter range

considered.
Ke Q
Qbk -----------------------
Tin I3 I3

(eut 1= __”:

E \cht. i
i) €Ty

(b) (c)

Figure 5-8: Application to a three-dimensional acoustic problem: bk and extracted domains.

The case PP* = {i}

We first introduce the transfer eigenproblem and the transfer eigenspace. We consider
Y =HY(Q), VP& = HI(QPK) and T = HY/2(I'"), each of them endowed with the same inner
products considered in section 5.4.1. We further discretize T through a 6 by G tensorized
Legendre polynomial expansion (N, = 36).

Figure 5-11(a) shows the behavior of /\ﬁfil with N for three different values of p, while
Figure 5-11(b) shows the behavior of the relative H' best-fit error E%! defined in (5.4.3).
We observe that eigenvalues decay exponentially with a rate that strongly depends on the
wave number p. We further observe that, for the choices of g considered, only a subset
of modes actively contribute to reduce the best-fit error. Interestingly, the same pattern

is also empirically observed in [204, Figure 6.4]. We recall that (cf. Figure 5-10) there

are several resonances close to u = 4 and p = 6, and, due to (approximate) symmetry,
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Figure 5-9: Application to a three-dimensional acoustic problem: visualization of the true field
true

wiPE(),
g

Figure 5-10: Application to a three-dimensional acoustic problem: behavior of ||u;”‘e(;1,)|| H(20K)
with u (g = g1).

many quasi-multiple eigenvalues: the former explains the slow convergence of the transfer
eigenvalues; the latter explains the staircase convergence of the best-fit error (essentially,
we must go through various symmetries which provide roughly the same eigenvalue before

finally arriving at the modal structure relevant to our particular solution).

The case PP* #£ {}

We first study the behavior of the eigenvalues associated with the application of Algorithm

5.2.1. We here set nyain = 8 and N, = 36, and we consider several values of N. Figure
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H! best-fit error

() (b)

Figure 5-11: Application to a three-dimensional acoustic problem: transfer eigenproblem. Behavior

of Aﬁ‘;‘,l (Figure (a)), and of the H! relative best-fit error for three values of u (N, = 36).

5-12(a) shows the behavior of the transfer eigenvalues X\i» for different values of u € [2, 4],
while Figure 5-12(b) shows the behavior of the POD eigenvalues AFOP for different choices

of N. As in the previous case, we observe exponential convergence of the POD eigenvalues.

Figure 5-12: Application to a three-dimensional acoustic problem: application of Algorithm 5.2.1.
Figure (a): behavior of the transfer eigenvalues AVi for different values of y € [2,4]. Figure (b):
behavior of the POD eigenvalues AFOP for different choices of N (ngrain = 8, Nin = 36).

Figure 5-13 shows the performance of the data assimilation procedure. As in the pre-
vious example, we here apply PBDW based on Gaussian functionals (rgauss = 0.1), with
observation centers selected based on SGreedy-plus algorithm (tol = 0.2) and & = Y. To
assess performance, we consider H! maximum relative error over the three choices of the
Dirichlet datum gg(z2) = sin(wkzs), k = 1,2,3, and nges; = 5 different values of p in PPk,
To interpret results, we also report the behavior of the H' best-fit error. We observe that,

as N increases, the background accurately represents the elements of the bk manifolds.
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Figure 5-13: Application to a three-dimensional acoustic problem: data assimilation results. Figure
(a): behavior of the H! best-fit error with N. Figure (b): behavior of the PBDW relative H! error

with M. (Ngrain = 8, Nin = 36, Niest = 5).

5.5 Conclusions

In this chapter, we presented a model reduction procedure for the construction of local
approximation spaces associated with parametric manifolds. This procedure is then em-
ployed to generate background spaces {Zy}n for localised state estimation in the PBDW
framework. The key elements of the technique are the transfer eigenproblem to manage
uncertainty in the boundary conditions, and a POD to manage uncertainty in the model
parameters. As explained in section 5.1, in developing our technique, we intended, but we
did not assume, that the localised solution manifold MP¥ is reducible.

Theoretical and numerical results were presented to demonstrate the effectivity of our
approach. If the uncertainty is confined to the boundary conditions of the PDE model, we
proved that our approach is optimal in the sense of Kolmogorov for a wide class of linear
inf-sup stable elliptic operators. In addition, numerical results for two acoustic problems
demonstrated that, for moderate wave numbers, it is possible to generate accurate local
approximation spaces even in presence of high-dimensional uncertainty at the boundaries of
the domain.

We finally highlight that our procedure relies on the assumption that the underlined
PDE model is linear and elliptic. Extensions of the procedure to nonlinear problems do not

appear to be straightforward.
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Chapter 6

The PBDW approach for noisy

measurements

We here discuss the PBDW formulation for pointwise noisy measurements. We introduce

the M experimental observations Yy = {y1,...,ynm} such that

Ym = w22 46, m=1,..., M. (6.0.1)
Here, €;,...,€ep are unknown disturbances caused by either systematic error in the data
acquisition system or experimental random noise, while Ay = {xObS Obs} denote the

M distinct observation centers contained in the domain of interest 2 C Rd associated with
the measurements Yys. Then, given the background space Zy C C(£2) and the Hilbert space
@, ]l - 1I), the PBDW state estimate u} associated with the dataset Dy = {200, ) YM_,

is the solution to the minimization statement:

M
1
*’ *Y — ar min 2 obs + obs _ 2,
(sgm) =org  min &l mzz:l (2(25®) + 0(25®) = ym);
which corresponds to (2.1.5) for £7, = §,0bs, and s — g om=1,..., M.

We provide an outline of the chapter. In section 6.1, we introduce the key elements
of the theory of Reproducing Kernel Hilbert Spaces (RKHS), and we comment on their
application to our framework. We then present a priori (section 6.2) and a posteriori
(section 6.3) error analyses for the L? state estimation error, and we discuss an adaptive

strategy to improve performance (section 6.4). Finally, we present numerical results for a

139



synthetic model problem, and for the experimental thermal patch configuration.

6.1 Reproducing Kernel Hilbert Spaces for PBDW

6.1.1 Theoretical background

Reproducing Kernel Hilbert Spaces (RKHS) are ubiquitous in several fields of applied mathe-
matics and engineering. The notion of Reproducing Kernel was first introduced by Stanislaw
Zaremba in 1907, and then systematically studied by Aronszajn in 1950 ([5]). Since then,
RKHS have become central in the modern theory of learning for regression and pattern
recognition ({201, 199]), scattered data approximation ([41, 230]), and meshless methods for
solving PDEs ([19]). General introductions of the theory of RKHS are provided in Berlinet,
Thomas-Agnan ([29]), and Wendland ([230]). We shall here present a brief overview of the
main definitions and central results from the perspective of scattered data approximation.

An Hilbert space (U, || - ||) is a RKHS if the point evaluation functionals are continuous,
ie. 0 € U for all z € Q. This is equivalent (cf. [230, Theorem 10.2]) to assume that
there exists a function K : Q@ x @ — R such that (i) K(-,z) € U for all z € §, and (ii)
(K(-,2),f) = f(x) for all z € Q and f € U. The function K is called Reproducing Kernel.
With some abuse, in what follows, we use notation K, = K(-,xz). We observe that K, is
simply the Riesz element associated with the point evaluation functional é,, K, = Ryd,.

A function K : Q x Q — R is a symmetric positive definite (SPD) kernel if (i) K(z,y) =
K(y,x) for all z,y € Q, and (ii) for any set of N distinct points in €, {zSP$}_, C €, the
matrix K € RN N defined as Ky, = K (23>, 29%) is positive definite. It is easy to verify
that if &/ is a RKHS such that point evaluation functionals are linearly independent then
the corresponding reproducing kernel is SPD (cf. [230, Theorem 10.4]). The converse is also
true: given the SPD kernel K there exists a RKHS for which K is the reproducing kernel,
which is referred to as native space of K. The latter result is known as Moore-Aronszajn
theorem and was first proved in [5].

Given the SPD kernel K, it is important to characterize the regularity of the correspond-
ing native space i = U(K). Next Theorem and the subsequent corollary address this point.

Given the function f € L%(R%), we denote by f the corresponding Fourier transform.

Theorem 6.1.1. (/230, Theorem 10.12]) Suppose that ® € C(R%) N L*(RY) is a real-valued
function such that K : Q x Q@ — R defined as K(z,y) = ®(z — y) is a SPD kernel. Then,
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the real space

G= {f e L2(RH) N C(RY) : \/ig € L2(]Rd)} | (6.1.1a)

endowed with the inner product

N

(fg) = — f( )g()“’) dw (6.1.1b)

w
(2m)4/2  Jga ‘i(w

is the native space of K.

Corollary 6.1.2. (/230, Corollary 10.13]) Suppose that ® € C(R?) N L} (RY) satisfies
a1+ [wlf)™* < B(w) < (14 [lwllf) ™, weRY (6.1.2)

for some ci,ca > 0 and s > d/2. Let us further suppose that K(z,y) = ®(x — y) is a SPD

kernel. Then, the native space associated with K coincides with the Sobolev space H®(R?).

An important class of kernels, which is employed in the numerical simulations, is given
by the compactly supported radial basis functions of minimal degree (csRBFs), also known
as Wendland functions. This class of kernels was first proposed by Wendland in [229], and
is defined as K, (z,y) = ¢qx(v|lz — yll2) where x = [k, ~] and

pak(r) 0<r <1,
Par(r) = (6.1.3a)
0 r>1.

The polynomial pg j has the following form for k£ = 0,1 and for all d:

(1 —r)bar k=0
pak(r) = (6.1.3b)
(T—r)fartl ((Lge+ Dr+1) k=1
and {q; = '_%J + k + 1. We observe that it is possible to generalize (6.1.3b) to the more
general case k € N; we refer to [230, Table 9.1] for the explicit formulas.
Next result clarifies the connection between csRBF and Sobolev spaces. We refer to [230,

Theorem 10.35] for the proof.

Theorem 6.1.3. Let us consider the compactly supported RBF K, , Ky(z,y) = ¢4ar(v|z —
yll2), introduced in (6.1.3). Let Q = R%, and let either one of these conditions hold: (i)
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d>3, k>0, o0r (4W)d>1, k>0. Then, the native space for K, is the Sobolev space
H@HD/2+k (R,

We observe that by restricting ourselves to csRBF kernels, the choice of the inner product
reduces to the choice of the parameters x = [k,~]: the parameter k& determines the Sobolev
regularity of the native space, while the constant + influences the characteristic length-scale
of the elements of the update space. Recalling the scaling property of Fourier transform and
(6.1.1), for fixed k we find that the Kernel K,(z,y) = ¢qr(7||z — y||2) induces the inner

product f(w)§
a4 OHC
(f,9)y = (27r)d/2 R (/I;(UJ/'Y) @

where @ is the Fourier transform of ®(z) = dak(]|z|l2). We observe that as v decreases, we

penalize more and more high-frequency modes.

6.1.2 PBDW for pointwise measurements with explicit kernels

Algorithm 6.1.1 PBDW approach for pointwise measurements. Offline-online computa-
tional procedure
Offline stage

1: Choose a family of kernels (e.g. (6.1.3))

2: Generate the background Zy C U

w

. (If possible) Select the observation centers z$%, ..., z% € Q

4: Compute the matrix L (2.3.1)

Onine stage

—

: Acquire the measurements y1,...,ynm
2: Choose the parameters of the kernel and the regularizer weight £ (cf. section 6.4)

3: Assemble the matrix (2.3.2b) and solve the linear system (2.3.2b)

'

: (If needed) Evaluate the state using (2.3.2a).

The duality between RKHS and SPD kernels has important implications for our discussion.
In Chapters 3, 4 and 5 we first proposed an inner product (-,-) and then we appealed

to a FE discretization to compute the Riesz representations of the observation functionals
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(cf. Algorithm 2.4.1, Chapter 2). For pointwise measurements, we might first propose an
explicit SPD kernel, and then appeal to Moore-Aronszajn theorem to recover the variational
formulation. This prevents us from having to solve M FE problems to build the update space
Ups. In addition, since K is known explicitly, we can efficiently adapt the characteristic
length-scale of the elements of the update space during the online stage. As discussed in
Chapter 3, this might be extremely important for sufficiently large values of M.

Algorithm 6.1.1 summarises the computational procedure. We observe that during the
online stage we should first select the parameters of the kernel. We discuss how to practically
select these parameters in section 6.4. We further observe that, although we can compute
the solution to (2.3.2b), the matrix Z (2.3.1) is not in general computable. As a consequence,
we cannot estimate the inf-sup constant Sy ar (2.2.2). Therefore, we cannot directly apply

the SGreedy-plus algorithm described in Chapter 3 to select the observation centers.

6.2 A priori error analysis for pointwise noisy measurements

We present a priori estimates for the L?(Q) state-estimation error Hutr“e—ugH r2()- Westate
upfront that in this section we assume that Zy C U. The importance of the error analysis
is twofold. First, it motivates our formulation from a theoretical viewpoint. Second, it
providés insights about the role of the different pieces of our formulation: the regularization
parameter &, the background space Zy, the kernel K and the centers Xy.

In order to derive error bounds for the L?(Q) state-estimation error ||ut™® — ug| L2 (@)
we must first introduce assumptions on our dataset Dys. To our knowledge, three different

scenarios have been considered so far.

1. Random-design regression: the pairs {(z9, y,,)}M_, are drawn independently from a
joint unknown distribution p(x yy. In this case, the objective of learning is to estimate

the conditional expectation E[Y|X = z].

2. Fized-design regression: the centers Xjs = {x‘l’bs, e ,xﬁ}}s} are fixed (non-random)
points in §, while the responses Vs = {ym }M_; satisfy yn,, = ut™®(292%) + €,,, where
utu® : ) — R is the deterministic field of interest and ey, ...,ep are independent

identically distributed (i.i.d.) random variables with zero mean and variance 02, €, ~

(0,02).
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3. Scattered data approrimation: both centers Xjs and responses Yps are non-random,
and we assume that there exists some unknown § > 0 such that |y, — u'™(z90%)| < §

forallm=1,..., M.

The first scenario has been extensively studied in the statistical learning literature (see, e.g.,
[174, 221]). We refer to [99] for a complete review of the error bounds available. The second
scenario has also been studied in statistics; we refer to the survey [91] for further details
about a specific class of kernels. Finally, the third scenario has been studied in approximation
theory and radial basis functions (see, e.g., [230]). From the modeling perspective, the first
scenario refers to the case in which we do not have control on the observation centers, the
second scenario addresses the problem of random error in the measurements, and the third
scenario addresses the problem of systematic deterministic error. In this thesis, we provide

error bounds for the second and the third scenarios.

6.2.1 Preliminaries

In view of the proofs of the error bounds, we introduce a regularized formulation of the

APBDW statement proposed in this work: given A > 0, £ > 0, find u} ¢ € U such that

uf ¢ = argmin J{(w) = &l + - ‘fjl ()~ m) (6:2.1)
m=
where the seminorm || - || » is defined as
lwliX v = MiTzywl|* + Tz wl|. (6.2.2)
We observe that for any A > 0, the function || - ||z » is a norm equivalent to || - ||. We also

observe that for A = 0, problem (6.2.1) corresponds to (2.2.7).

Next Proposition summarizes a number of properties of problem (6.2.1).
Proposition 6.2.1. Let 8y, > 0. Then, the following hold.

1. For any A > 0, the solution to (6.2.1) exists and is unique. Furthermore, if we introduce
Mhe = Hzﬁu:{,g’ 23 ¢ = zyu} ¢, we have that 1} . € span{HZﬁ Kx%)s}%f:l and 23 ¢ €

span{Ilz, Km%?s}%:l.
2. For any § > 0, the solution uj . converges to the solution uf to (2.2.7) when A — 0.
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3. For any A > 0, the following bounds hold:

* r 6
“utrue _ UA,§||/\,N < 2“ut ue”/\’N + 5_\/_27 (6.2.3&)
and
V€
0 = e < VT (5+ GE 1l ) (6:2:30)

M
where [[ulle ) =/ Sh (u(zg)2.
We prove each statement separately.

Proof. (statement 1) For any A > 0, u — l|u“§N is strictly convex, while u — Vis(u) is
convex. This implies that for any £ > 0 the objective function Jy¢(u) = f”““i,N + Vi (u)
is strictly convex. Therefore, existence and uniqueness of the solution to (6.2.1) follow from
[74, Theorem 3, Chapter 8.2]. We observe that z € Q — o = iHZNKx + HgﬁKx, is
the Riesz representer associated with 6, in (U, || - ||x,n). We have indeed that for all v € U
and z € ()

A
(@3N, V)N = 3 Mz Ko, v) + (54 Kz, 0) = (Ko, Tz v + T530) = (Ko, v) = v(x).

Exploiting the representer theorem (see, e.g., [230, Theorem 16.1]), we have that u}, €
@)\ N

span{@*obs}m 1- As aresult, we have that n} . € span{l'[zl obs}mzl, and 23 € span{Ilz, xobs}m 1

for any A > 0. . |

Proof. (statement 2) Let {)\;}; be a real sequence such that A; — 0. Exploiting the first
statement of Proposition 6.2.1, we have that sequences {ﬂij,g}j, {zjj’g}j belong to finite
dimensional spaces that do not depend on A. Furthermore, applying Lemma 2.2.2, it is
possible to verify that they are uniformly bounded for all j. Therefore, applying Bolzano-
Weierstrass theorem, the sequence {u)\ &= 7))\ et z)\ E}J admits a strongly convergent
subsequence {u}, ¢}x to Uz € U.

We now show that UA*g = ug. We first observe that

M
1), o« * 1 1)/~
Tt ) = M I8, e+, el + 12 3 (wh,e@h®) —wm) = J0@), koo
DS m=1

<c
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We further observe that for any Ay > 0
IOl ) S TVewd), k=12,
and by taking the limit on both sides, we obtain
@) < I wp)

Since ug is the unique minimizer of (2.2.7), we must have ug = . Furthermore, by the
same argument, uz is the only limit point of the sequence; therefore, the entire sequence

converges to u'\'é Thesis follows. O

Proof. (statement 3) For A > 0, || - ||» ~ is a norm for U; therefore, estimates (6.2.3a) and
(6.2.3b) follow directly from [129, Corollary 4.3] and [129, Lemma 4.5]. The extension to

A = 0 follows by observing that u} ¢ converges to u’é‘ when A — 0 (cf. statement 2). O

Given the observation centers Xy, and the background space Zy, we define the constant

Cnx,, as
HUH%Z(Q)
CnN,x,, = sup (6.2.4)
M e W Tl 1 W, Tl
where hy,, is the fill distance defined as
hx, =sup min |z — z°%|s. (6.2.5)

ref) m=1,...,M

We anticipate that the constant Cy x,, enters in the upper bounds for the state-estimation

error. Next Lemma shows a bound for Cn x,, that depends on the constant ¢y, as introduced

in (2.2.10).

Lemma 6.2.1. Let Q2 be a Lipschitz domain and let U be the Sobolev space H™ (2) with
T > d/2. Let us assume that the inf-sup constant Sy ar defined in (2.2.2) is strictly positive
and hx,, < 1. Then, the constant Cn x,, defined in (6.2.4) is bounded by

|
CN,XM < — 2r—d C, . (6-2-6)
min{cy am, 1 — hXTM
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where cy,pr ts defined in (2.2.10) and C' depends on the domain 2 and on (-,-).

Proof. Let us define the constant

o ||U||2L2(Q)
Xy -— Sup
M weu B Il + B lullZ

Recalling [129, Theorem 4.8], Cl,, is bounded from above by a constant C that does not

depend on M.

Since Bn,m > 0, recalling Lemma 2.2.2, we have that
Iz g wll? + lullfe ) = enarllull?,
where cy ps > 0 is given by the expression in (2.2.10). Then, we observe that

hZ, Izl + b, b,y = B3, (Izgul® + lulhe,,)) + (A, —1%,) Nk,

> ek, Il + (1-13,%) i, lulZ
> minfewar 1 - b3} (2, Nul? + Ay, ullae,,) ) -
As a result,
lull32(q lullZ2 g 1

CN,x,, = sup < ( up - —
M uel hXM ”Hzlullz + h ||u”32 (Xnr) UEU h’ ”“”2 + h “u”gz v) mln{CN,Ma 1- th 4

<C

Thesis follows. O

Exploiting the definition of ¢y as (2.2.10), we find that Cy x,, is asymptotically bounded
as M — oo for fixed N; on the other hand, the dependence on N heavily depends on
the background Zy. Practical estimates of Cy x,, require the solution to a a generalized
eigenproblem!, which involves the matrix Z in (2.3.1); this requires that the basis (1, ...,y

satisfies (,(-) = Zfz"l ank Kz, . (-) for some {anx}x and {Zp} CQ,n=1,...,N.

'We refer to [103] for a discussion on the use of meshless methods based on csRBF for the solution to
eigenproblems.
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6.2.2 An a priori error bound for scattered data approximation

We state the main result of this section.

Proposition 6.2.2. Let 2 be a Lipschitz domain and let U be the Sobolev space H™ () with
T >d/2. Let By in (2.2.2) be strictly positive. Let us further assume that measurements
are of the form ym, = ut™(x9P%) + €, with |em| < 6 form=1,..., M.

Then, if ut™® € U, the following holds:

”utrue_u*”2 <C h2'r 2“1-[ utrue“_*_éi 2+hd M6+ __\/_E”H utrue” ?
(3 LQ(Q) - N, Xpg Xnm ZIJ\} 2\/2 X 2 ZIJ\; ’

(6.2.7)

where Cn x,, is defined in (6.2.4), and hyx,, is defined in (6.2.5).

Proof. The proof replicates the argument of [129, Theorem 4.11]. Recalling the definition

of Cn,x,,, we have
2 2 2 d 2
[ — ug||72(q) < ONxn (thM gy (6