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Abstract

The objective of this thesis is to develop and analyze model order reduction approaches for
the efficient integration of parametrized mathematical models and experimental measure-
ments. Model Order Reduction (MOR) techniques for parameterized Partial Differential
Equations (PDEs) offer new opportunities for the integration of models and experimental
data. First, MOR techniques speed up computations allowing better explorations of the
parameter space. Second, MOR provides actionable tools to compress our prior knowledge
about the system coming from the parameterized best-knowledge model into low-dimensional
and more manageable forms. In this thesis, we demonstrate how to take advantage of MOR
to design computational methods for two classes of problems in data assimilation.

In the first part of the thesis, we discuss and extend the Parametrized-Background
Data-Weak (PBDW) approach for state estimation. PBDW combines a parameterized best-
knowledge mathematical model and experimental data to rapidly estimate the system state
over the domain of interest using a small number of local measurements. The approach relies
on projection-by-data, and exploits model reduction techniques to encode the knowledge of
the parametrized model into a linear space appropriate for real-time evaluation.

In this work, we extend the PBDW formulation in three ways. First, we develop an exper-
imental a posteriori estimator for the error in the state. Second, we develop computational
procedures to construct local approximation spaces in subregions of the computational do-
main in which the best-knowledge model is defined. Third, we present an adaptive strategy
to handle experimental noise in the observations. We apply our approach to a companioni
heat transfer experiment to prove the effectiveness of our technique.

In the second part of the thesis, we present a model-order reduction approach to simulation-
based classification, with particular application to Structural Health Monitoring (SHM). The
approach exploits (i) synthetic results obtained by repeated solution of a parametrized PDE
for different values of the parameters, (ii) machine-learning algorithms to generate a classifier
that monitors the state of damage of the system, and (iii) a reduced basis method to reduce
the computational burden associated with the model evaluations. The approach is based
on an offline/online computational decomposition. In the offline stage, the fields associated
with many different system configurations, corresponding to different states of damage, are
computed and then employed to teach a classifier. Model reduction techniques, ideal for
this many-query context, are employed to reduce the computational burden associated with

'The experiments are performed by Dr. James D. Penn (MIT).
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the parameter exploration. In the online stage, the classifier is used to associate measured

data to the relevant diagnostic class.
In developing our approach for SHM, we focus on two specific aspects. First, we develop

a mathematical formulation which properly integrates the parameterized PDE model within

the classification problem. Second, we present a sensitivity analysis to take into account the
error in the model. We illustrate our method and we demonstrate its effectiveness through
the vehicle of a particular companion experiment, a harmonically excited microtruss.

Thesis Supervisor: Anthony T. Patera
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation

In many applications, integration of mathematical models and experimental observations is

needed to perform accurate predictions. Mathematical models of physical systems are often

deficient due to the uncertainty in the value of the parameters representing material prop-

erties and input forces, and might also neglect important aspects of the system's behavior.

On the other hand, experimental measurements are often scarce, corrupted by random and

systematic noise, and they might also provide indirect measurements of the quantity we

wish to predict.

Data Assimilation (DA) refers to the process of integrating information coming from a

mathematical model with experimental observations for prediction. In Numerical Weather

Prediction (NWP), DA refers to the process of combining mathematical models with data

to estimate the state of atmospheric or oceanic flow. In other fields such as control or

Structural Health Monitoring, the output of the procedure might be either a real-valued or

a discrete-valued function of the state.

DA tasks present several challenges for applied mathematicians and engineers. Math-

ematical models often consist of (systems of) Partial Differential Equations (PDEs) that

are typically extremely expensive to evaluate: since state-of-the-art DA procedures are cast

as optimization problems, which hence involve many model evaluations, the computational

burden might be unsustainable for real-time and in situ applications. This challenge be-

comes even more severe when the available mathematical model is affected by substantial

parametric uncertainty: in this case, current research focuses on the development of nu-
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merical techniques that (i) are designed to appropriately take into account the parametric

uncertainty in the model, (ii) are directly informed by the specific DA task at hand, and

(iii) meet the computational (time and memory) constraints.

Recent advances in Model Order Reduction (MOR) for parameterized systems offer new

opportunities for the integration of models and experimental data. First, MOR techniques

speed up computations allowing better explorations of the parameter space at an acceptable

computational cost. Second, MOR provides actionable tools to compress our prior knowledge

about the system coming from the parameterized mathematical model into low-dimensional

and more manageable forms. This thesis presents work toward the development of efficient

model reduction strategies for DA problems for systems modeled by PDEs. In more detail, we

shall focus on two distinct DA tasks: state estimation for stationary problems, and damage

identification for Structural Health Monitoring applications.

1.2 Model order reduction for parameterized PDEs

Parametric Model Order Reduction (pMOR) is a mathematical and computational field of

study that aims to systematically reduce the marginal computational cost of the solution

to a parametrized mathematical model. pMOR is part of the broader field of Model Order

Reduction (MOR), and is mainly motivated by real-time applications (control, parameter

estimation) and many-query applications (design and optimization, uncertainty quantifica-

tion). In real-time applications, the goal is to provide rapid responses with little or no

communication with extensive offline resources; in many-query applications, the goal is to

speed up the computational cost associated with the evaluation of a given quantity of interest

in the limit of many model evaluations. We observe that in both these contexts the premium

is on marginal cost (or perhaps asymptotic average cost) per input-output evaluation; we

can thus accept increased pre-processing or "Offline" costs, which are not tolerable for a

single or few evaluations. In this section, we shall discuss the general problem of parametric

model reduction, and we shall introduce the particular pMOR technique employed in this

work, the Reduced Basis method. We refer to the recent surveys [23, 53] for a thorough

introduction to pMOR. We further refer to [180, 106, 188] for a complete introduction to

the Reduced Basis method.

We define the best-knowledge (bk) mathematical model corresponding to the (stationary)
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phenomenon of interest as follows: given p E pbk C RP, find ubk(tt) E Vbk such that

gbk/,t (bk (/),V) = 0 Vv E Wbk. (1.2.1)

The form gbk,[ : Vbk x Wbk -+ R denotes the mathematical model associated with the

particular physical system of interest; the model depends on a set of P parameters, P E

Pbk C Rp, where the region pbk corresponds to the expected parameter range. Here,

Vbk, Wbk are two suitable Hilbert spaces defined over a d-dimensional domain Qbk C Rd .

Finally, ubk(y) denotes the bk approximation of the system's state over Qbk for a given

value of p in pbk. We further define the bk solution manifold associated with the solution

to (1.2.1) for each value of p E pbk:

bk : fUbk(A) : A E pbk C Vbk. (1.2.2)

Given the bk map p E pbk + Ubk(M) E Vbk, we introduce the rank-N approximation

([56]) to ubk I p b- k (p)E Vbk such that

N

uN(X; ) n bk , E Qbk I p pbk, (1.2.3)
n=1

where 1.. . , ON : pbk -+ R, and Z7k := span{bk}N 1 C Vbk. Based on this decompo-

sition, we can view the problem of parametric model reduction as the combination of two

distinct tasks: (i) the determination of the reduced space Z N := span{(k}N 1 , and (ii) the

estimation of the coefficients {n(P)}IN I for any value of p in pbk. If we denote by 11 -IlVbk

the norm over Vbk, the space Zb should be chosen such that inf zbk IIubk((p) - zIIvbk < tol

for any t E pbk and for a given tolerance tol > 0. On the other hand, the coefficients

{n(M)}N should be chosen such that infzpzk lubk (P) - zvbk I ubk(t _ b Vbk,

and such that the maps A + #n(P) can be evaluated in a cost-efficient way in the limit of

many queries.

Reduced Basis (RB) method represents a very efficient approach to the problem of para-

metric model reduction. The method was first proposed in the late 1970s ([3, 159, 162, 821)

to address linear and nonlinear structural analysis problems, and was then extended to

fluid dynamics in the late 1980s ([170, 98]). Starting with the works of Maday, Patera and

coauthors in the early 2000s ([176, 223]), RB method was set on a more general mathemat-
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ical ground with special emphasis on (i) efficient sampling strategies for the construction of

the hierarchical reduced spaces {Zk}N, (ii) rigorous a posteriori error estimation proce-

dures, and (iii) offline-online computational procedures for the efficient construction of the

coefficients {#((p)}JN__1 in the limit of many queries.

In the RB literature, several approaches have been considered for the construction of the

reduced space. In the early works, non-adaptive Taylor and Lagrange ([175]) and Hermite

([118]) spaces have been considered. More recent approaches rely on Proper Orthogonal De-

composition (POD, [28, 130, 122]), and Greedy methods ([176, 177]). Both these techniques

have been applied to several classes of PDEs and have also been studied theoretically. We

refer to [173] for an overview of the several applications of POD in model reduction, and to

[28] for the mathematical analysis. On the other hand, Greedy algorithms have been first

applied to stationary problems, and then extended to time-dependent problems in a space-

time setting ([219, 240]), or in combination with POD ([101]); we refer to [40, 32, 66, 561 for

a rigorous analysis of the convergence properties of Greedy algorithms.

Efficient offline/online strategies for the rapid computation of the RB state estimate

u (A) for a given p E pbk rely on (Petrov-) Galerkin projection. In more detail, following

the standard idea of Galerkin methods for PDEs, we seek ub() E Zk that solves:

(U= 0 V E W , (1.2.4)

where Wb C Wbk is a suitable N-dimensional space, which is equal to ZJ( in the Galerkin

case. During the offline stage, we construct the spaces Zbk and Wbk and we assemble

and store suitable parameter-independent quantities; during the online stage, we assemble

and solve the parameter-dependent reduced order model (1.2.4) to compute the coefficients

{qn(b)}N_ 1 . We note that the offline stage is computationally expensive and is performed

once, while the online stage is in general extremely inexpensive and is performed for each

model query. Since the cost of a single online evaluation is significantly less expensive than

the corresponding high-fidelity evaluation (based on a Finite Element or a Finite Volume

discretization), we can amortize the offline computational cost in the limit of many queries.

For parametric-affine linear problems (see, e.g., [188, 168]), it is easy to estimate the coeffi-

cients {n(t)}IN 1 at an online cost of O(N 3 ); for nonlinear and/or non-parametrically-affine

problems Empirical Interpolation Method (EIM, [12, 97], see also [48]) can be employed to
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guarantee online efficiency.

Before concluding, we remark that RB method is still the subject of active research. In

particular, several recent proposals combine RB with domain decomposition strategies to

tackle large-scale problems ([145, 117, 171, 72, 203]) and multi-scale problems ([126, 2]). In

this thesis, we rely on the more standard RB method for linear elliptic PDEs as presented

in [188], and we refer to the above-mentioned literature for further details.

1.3 Thesis objective

The objective of this work is to develop model reduction approaches for the efficient integra-

tion of parameterized mathematical models and experimental measurements. In developing

our techniques, we focus on three aspects.

" Real-time and in situ predictions: we wish to develop algorithms that provide

rapid responses with little or no communication with extensive computational re-

sources.

" Reliability: we wish to quantify the level of uncertainty in our estimate, and thus

the degree of confidence the user should have in the prediction.

" Generality: we wish to develop techniques that can be applied to a broad range of

applications in continuum mechanics.

We shall focus here on two problems in data assimilation: state estimation and damage

identification (Structural Health Monitoring). The former deals with the reconstruction of

the true state associated with the system in a given region of interest. The latter, in its most

basic form, deals with the assessment of the state of damage (properly defined according to

the system specifications) of a given structure. In the next two sections, we discuss in detail

the mathematical formulation of these two classes of problems, and we provide definitions

used throughout the thesis.

1.3.1 Mathematical description of the objective: state estimation

The objective of state estimation is to approximate the state utrue associated with physical

systems of interest over the domain of interest Q C Rd. We shall here assume that utrue is
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deterministic and stationary (or time-harmonic). We shall further assume that utrue belongs

to a suitable functional space U defined over Q.

We shall afford two sources of information: a bk mathematical model of the form (1.2.1)

(here, stated in compact form),

GbkP(Ubk()) = o, p pbk, (1.3.1)

defined over a domain Qbk which contains Q, and M experimental observations Lbs,..., fobs

such that

obs f (Utrue) + (1.3.2)

Here, the mathematical model (1.3.1) should be interpreted as the best-knowledge repre-

sentation of the physical phenomenon, while pbk C RP is a confidence region for the true

values of the parameters of the model. The functionals f, ... , f ' are associated to the par-

ticular transducers employed, and are assumed to be linear: we anticipate that in this thesis

we consider observations associated to local averages of the state (e.g., local measurements

of the acoustic pressure obtained using an acoustic microphone, local measurements of the

thermal field based on local thermal probes). Finally, {Em}Mj are unknown disturbances

caused by either systematic error in the data acquisition system, or experimental noise.

We summarise the state estimation task considered in this thesis in the next box.

State estimation: given the parametrized mathematical model Gbk,' (1.3.1) and the M

functionals Ly, ... , Ly, develop a computational algorithm A that takes as input M mea-

surements &obs, ... , Jos and returns

" an estimate u* = A(fobs , s) E U of the state utrue over the domain Q, and

" an estimate of the error Iu* - utruelI in a suitable metric of interest.

The computational time should be independent of the high-fidelity solver used to discretize

(1.3.1).

We observe that our definition of the task is consistent with the requirements discussed

at the beginning of section 1.3. The metric 11-11, might be associated with a norm over Q (e.g.

the L' error over Q), or with the error in a given quantity of interest that depends on the
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state (e.g. the error in the output Ctrue _ C(Utrue) where L : U -+ R is a given functional).

We anticipate that pMOR is here crucial to develop algorithms that are directly informed

by the parametrized best-knowledge model (1.3.1). We further discuss this point in section

1.4.1.

1.3.2 Mathematical description of the objective: Structural Health Mon-

itoring

Structural Health Monitoring (SHM) refers to any automated monitoring procedure designed

to assess the state of damage of a given aerospace, civil, or mechanical structure of interest.

In the context of SHM, damage is formally defined as intentional or unintentional changes

to the system which adversely affect its current or future performance ([79]). The ultimate

objective of SHM is to identify (in an automated fashion) damage before failure occurs. For

civil engineering applications, SHM must provide real-time reliable assessment information

regarding the integrity of a structure ([641). In the aerospace industry, monitoring systems

are required to assess the health of aircraft components during reconditioning or during the

mission. In these contexts, SHM is very similar in objective to Operational Loads Monitoring

(OLM, [236, 206]) and Integrated Vehicle Health Management (IVHM, [21, 166]).

Following [190, 238], we can formalize the objective of SHM into five levels of increasing

difficulty: (i) detection (is the system damaged?); (ii) localization (where is the damage in

the structure?); (iii) classification (which is the type of damage present in the structure?);

(iv) assessment (how severe is the damage?); and (v) prediction (how much residual life

remains?). In this thesis, we shall focus on the first two levels: as observed independently

by Farrar et al. in [78], and by Hurtado in [1141, both these levels can be formulated

as classification problems. In the remainder of this section, we shall provide an abstract

formulation of the classification problem, which will be used to develop our approach. We

refer to Chapter 7 for the instantiation of the definitions below for a particular companion

experiment.

We denote by C c RP+D a set of parameters that uniquely identifies a system configu-

ration. To provide a concrete point of reference, C might include information related to the

geometry of the system, to the material properties, and to the boundary conditions. We

then characterize our system by a finite number K of exhaustive states of damage. In the

simplest case (Level 1), we have K = 2 states: the label y = 1 corresponds to undamaged
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systems, and the label y = 2 corresponds to damaged systems. We denote by y = y(C) the

state of damage associated with the configuration C. We further introduce the raw measure-

ments qexP E R obtained experimentally. For reasons that will become clear soon, we also

introduce the set of Qfeat functions (features) of qexP, zexP = y(qexP) E RQfeat; we refer to

the application F: qexP i zexP(qexP) as feature map.

In view of the definition of the mathematical model, we introduce the incomplete (bk)

configuration vector p E RP, and the hidden vector c E R D such that C = (P, ). We

further introduce the anticipated configuration set pbk C RP, and the configuration set

-pexp _ pbk X V C RP+D. We here postulate that there exists a function fdam . pbk

{1, ... , K} such that

y(C = (A, )) = fdam V (y ) E pexp. (1.3.3)

We observe that this implies that the state of damage associated with any configuration C

is uniquely determined by the subset of parameters included in A.

Assuming that the raw measurements q*xP are based on a set of Qexp experiments, we

introduce Qexp bk models

G bk,(Uk(P))0, q=, .. .,Qexp, (1.3.4a)

and the (non-necessarily linear) functional L such that

zbk (P Uk ([) bk
zbk~p p (~~t,...,uj (tz)), C : U x ... x . U j Qfea-t, (1.3.4b)

Qexp

approximates the features zexP(C) for any p E pbk and E V. We observe that the bk

models are intended to approximate the features zexP rather than the raw data qexP.

We summarise the damage identification task in the next box. Some comments are

in order. We observe that the damage identification task depends on a fair amount of

quantities: the raw data qexP, the feature map F : RQ -÷ RQfat, the damage function

fdam . pbk - {1,... , K}, and the mathematical model ({Gk' q= 1 , L) (1.3.4). Since

the objective of this thesis is the development of a general computational procedures that

maps experimental measurements to the corresponding state of damage, in this section, we

have implicitly assumed that all these quantities are given a priori. In section 1.4.2, we
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provide a general overview of a general Structural Health Monitoring procedure, and we

provide further details about each of these quantities. We further observe that although

we tailored the discussion to Structural Health Monitoring the task can be generalized to

a wide spectrum of inverse problems, which aim to estimate a discrete-valued QOI based

on experimental data. As an example, we mention Acoustic Pulse Reflectometry (APR,

[4, 200]): as SHM, APR can be recast as a classification problem.

Damage identification: given the parametrized mathematical models {Gqk q1P

(1.3.4a), the functional L (1.3.4b), and the feature map F : qexP -+ zexP(qexP), develop

a computational algorithm A that, for any configuration C, takes as input the raw measure-

ments qexP - qexP(C) E RQ and returns

" an estimate y = A(qexP) of the state of damage y(C) E {1, ... , K}, and

" a measure of the confidence in the estimate.

The computational time should be independent of the high-fidelity solver used to discretize

(1.3.4).

1.4 Background

1.4.1 Variational approaches to state estimation

We present an overview of state-of-the-art techniques that have been proposed to tackle the

problem of state estimation; we here place special emphasis on the treatment of parametrized

mathematical models, and on the application of model reduction techniques. Since in this

work we only consider stationary problems, we do not explore in this section methods for

sequential data assimilation. We refer to [24, 63, 217, 216] for a thorough introduction to

data assimilation from the perspective of ocean and atmospheric sciences. We further refer

to [233] for a survey about Bayesian methods for data assimilation. Finally, we refer to

[222, 44] and to the works by Navon and coauthors ([207, 208, 239]) for an application of

model reduction techniques to unsteady data assimilation (state estimation) tasks in the

framework of 4D-VAR ([59]).

We shall first consider the case of non-parametric background (pbk _ bk _ ubkfbk

In this case, if we assume that disturbances are uncorrelated, with zero mean and variance
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a 2 , the most popular approach is the so-called 3D-VAR:

U12+ I ~ ~(U) -fos) 2 .141
u : arg min 1ju - ub2+ m 1: fo s2

Here, (U, - ||) is a suitable Hilbert space defined over Q endowed with the inner product

(-,-) and the induced norm V/(,=); Ubk is either referred to as background, or first

guess, or forecast, while the state estimate u* is referred to as analysis. The parameter

> 0 regulates the relative importance of the background compared to the experimental

data. From a statistical perspective, the approach corresponds to a variational form of least-

squares statistical linear estimation ([216]), and can be interpreted as the application of the

Bayes' rule for linear Gaussian systems ([182]). We recall that 3D-VAR was first proposed

by Lorenc in [138]: Lorenc further developed a Bayesian framework to link 3D-VAR to

a number of other proposals including optimal interpolation (73, 22, 90, 139]), kriging

([149, 209]) successive corrections ([60, 37]), constrained inizialization ([22]), Kalman-Bucy

filter ([123, 134] ) and adjoint model data assimilation ([70]). Similarly, in [26], Bennett and

McIntosh proposed the so-called generalized inverse method, which has been later proved

to be equivalent to optimal interpolation ( [25]) and thus to 3D-VAR.

The analysis u* can be written as the sum of the background ubk and a correction term

associated with experiments. More precisely, if we introduce the Riesz representations of

the observation functionals in U - (Ruf' , v) = f'm(v) for all v E U and m = 1, ... , M -

and we define the M-dimensional space Um = span{Rue~mI= 1 , there exists a basis of Um

1, . . . , OM (referred to as array modes in [25]) such that

M

u*=ubk * *bs _ o bk)>m. (1.4.2)
m=1

We can consider two different strategies to extend (1.4.1) to parametrized backgrounds.

First, we can substitute ubk with ulbk([L) in (1.4.1), and then minimize with respect to , and

u at the same time:

(/*, u*) := arg min- 2 + -m (1.4.3)
(t,u)EPbk xU + M (=) (

Statement (1.4.3) corresponds to the partial-spline model (see, e.g., [226, Chapter 9]). As for
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3D-VAR, we can show that the solution is of the form (1.4.2), that is u* = ubk(pt) +t with

f= m=1 (obs - to 4bk() m. However, statement (1.4.3) requires the solution to a

nonlinear, non-convex minimization statement, which is likely to be ill-posed, and requires

multiple evaluations of the bk map p F-+ ubk(p). Second, we might neglect the correction

term q*, and thus simply optimize with respect to p:

M

p*: arg min - ( 2obs. 2

PEPbk M =J
m=1

We can then estimate the system's state using u* = ubk((p*). We observe that (1.4.4)

corresponds to a deterministic inverse problem for the values of the parameters t E pbk

and can be interpreted as a (nonlinear) projection onto the manifold Mbk = {Ubk(At)IQ

p E pbk}. As observed by multiple authors, problem (1.4.4) might also be ill-posed, and

thus requires some form of regularization. In this respect, we observe that the Bayesian

framework provides a rigorous mathematical ground for addressing this problem. We refer

to [211] for a discussion about Bayesian approaches for inverse problems of the form (1.4.4).

We further observe that, due to the absence of a correction mechanism, our estimate might

be inaccurate if the bk model is not sufficiently accurate. In the remainder of this section,

we discuss how to exploit model reduction techniques to tackle problem (1.4.4).

A first application of model reduction to problem (1.4.4) is based on substituting in

(1.4.4) the high-fidelity map /t i-+ ubk(p) with the Reduced Order Model, /t - u(k(p) (1.2.3).

By doing so, we can reduce the computational cost of the evaluation of the model, and thus

reduce the overall cost associated with the application of an iterative scheme for (1.4.4). In

this respect, we recall [88, 135, 84], in which model reduction strategies are exploited in a

Bayesian setting to speed up computations associated with a MCMC procedure, and 11311,

in which the authors apply reduced basis techniques to reduce the computational burden

associated with the application of deterministic and statistical approaches for solving an

inverse problem of the form (1.4.4).

A second strategy is based on the relaxation of problem (1.4.4). In more detail, if we

substitute ubk(p) in (1.4.4), we obtain

M(N 2

p* := arg min 1S O tn m -( , (1.4.5)
m=1 n=1
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where (n := I E U is the restriction of the n-th basis of Z Q to Q. If we now assume

that N < M we can relax (1.4.5) as <k* arg minOERN _L EM== 1 (EN=1 () - s

which can also be written as

M2
arg min ZE f(z) -MW s , (1.4.6)

zEZN m=1

where ZN is the restriction of Zbk to Q, ZN = {Z2 Z C Zbk}. We observe that for

N = M, (1.4.6) corresponds to the Generalized Empirical Interpolation method (GEIM,

[140, 1411); while for N < M and ZN built using POD, (1.4.6) corresponds to Gappy-

POD ([75, 234]). Both these approaches rely on pMOR techniques to generate background

spaces ZN informed by an underlying parametrized mathematical model. We observe that

by appealing to this approach we are no longer in position to estimate the parameters P

of the model; on the other hand, we greatly reduce the computational complexity of the

state-estimation procedure.

1.4.2 A general paradigm for damage identification

We shall here discuss a general paradigm for the development of a Structural Health Moni-

toring procedure. This will clarify the definition of the damage identification task presented

in section 1.3.2. The paradigm was originally proposed by Farrar and collaborators in[78],

and is defined through the integration of four sequential procedures: operational evaluation,

data acquisition, feature extraction, and statistical inference. We anticipate that in this the-

sis we focus on the last stage of the paradigm, the statistical inference. As in the previous

section, we place special emphasis on the application of model reduction techniques.

Operational evaluation sets the limitations on what will be monitored and how the mon-

itoring will be accomplished. During this stage, a formal definition of the potential states of

damage is given. From a mathematical perspective, during this stage we define the damage

function fdam (1.3.3).

Data acquisition deals with the implementation of the sensing system. The sensing

system can be based on static responses (in terms of strain ([193]) or displacement ([194,

195])) or on dynamic (such as frequency) responses ([46, 191]). Furthermore, sensing systems

are referred to as passive if they rely on the ambient loading environment as an excitation

source, and active if they can provide a local excitation tailored to the damage detection
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process (see, e.g., [79, Chapter 4.111).

Feature extraction identifies the vector-valued functions zeXP of the acquired raw data

qexP. Modal analysis ([231]) is the most widely-used feature-extraction technique; monitor-

ing systems that rely on modal features are referred to as vibration-based SHM ([78, 77, 79]).

Features based on modal properties are used for both passive and active sensing systems:

Operational Modal Analysis (OMA, [61) deals with the identification of modal properties

of structures based on vibration data collected when the structure is in operation. Other

popular techniques rely on Principal Component Analysis (PCA,[243]), or equivalently on

Proper Orthogonal Decomposition (POD,[15, 147]).

Finally, statistical inference deals with the development of a decision rule which serves

to monitor the system. There are two competing approaches to accomplish the inference

step: the "inverse-problem" or "model-based" approach, and the "data-based" approach.

Both approaches are based on an offline-online decomposition of the monitoring process:

the offline stage is performed before the structure of interest starts to operate, while the

online stage corresponds to the normal operations of the structure. We emphasize that

mathematical models do play a role in both approaches: the "model-based" vs "data-based"

taxonomy refers to the online stage of the process.

In the model-based approach ([85]), a physics-based model (typically consisting of a set

of differential equations) of the structure of interest is built and properly calibrated during

the offline stage. During the online stage, this model is updated on the basis of the new

measured data from the real structure. The solution to the updated model is then used

to assess the state of damage of the system. From a mathematical perspective, during the

online stage, given the measurements qexP = qexP(C), and the features zexP = y(qexP), we

first solve an inverse problem of the formi

p* := arg min |zbk(A) - zexP 112, (1.4.7a)
pEPbk

where the map .t '-+ zbk(p) is defined implicitly in (1.3.4). Then, we return the estimate of

the state of damage as follows:

y = fdam(P*) (1.4.7b)

'The choice of the Euclidean norm is completely arbitrary and other options can be considered.
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We note that (1.4.7a) is of the same form as (1.4.4) although here we potentially consider

the case of multiple mathematical models, which correspond to the different physical exper-

iments performed on the structure. Since (1.4.7a) is likely to be ill-posed, a form of (either

statistical or deterministic) regularization is needed. We refer to the works of Friswell, Mot-

tershead and coauthors (187, 86, 154]) for further details. We observe that these approaches

were not originally developed for the estimation of discrete-valued quantities of interest (the

state of damage), and so they do not directly address the engineering task at hand.

Instead of proceeding from a law-based model, the data-based approach ([78, 79]) is

based on the collection of a dataset of offline training data from all the possible healthy and

damaged states of interest. The dataset can be collected (i) by performing experiments on

the structure itself or on similar structures (see, e.g., [79]), or (ii) by performing synthetic

experiments based on a (possibly parametrized) mathematical model of the structure of

interest (see, e.g., [115, 114, 132]). Given the dataset, machine learning algorithms are

used to train a classifier that assigns measured data from the monitoring phase to the

relevant diagnostic class label. This classifier is then employed to monitor the structure

during the online stage. We denote by Simulation-Based Classification (SBC) the particular

procedural choices "data-based" and "synthetic experiments". Exploiting the definitions in

section 1.3.2, in SBC, we first consider M different parameters pi,... A E pbk, and we

assemble the dataset

Then, we appeal to a supervised learning (SL) algorithm for classification (see, e.g., [104, 157,

120]) that takes as input the dataset Db and returns the classifier g* :Rfat -+ {1, .. ., K}

[g*] = SL-algorithm(DU). (1.4.8b)

During the online stage, we simply acquire the new measurements, we compute the features

zexP and we evaluate the classifier:

= gM(ze*). (1.4.8c)

The main challenge associated with the application of the data-based (or simulation-based)
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approach is the construction of the offline dataset used to train the classifier g. Since clas-

sification performance strongly depends on the amount of offline training data, the offline

dataset should be representative of all possible system configurations (characterized by dif-

ferent geometries, and operational and environmental conditions) that can potentially occur

online.

While several authors applied model reduction techniques to speed up computations

within the model-based framework, the use of parametric model reduction in a simulation-

based setting has yet to be fully explored. As regards the model-based framework, there

is a large body of literature that exploits parametric model reduction techniques to reduce

the overall cost associated with the solution to (1.4.7) (see [158, 137, 110] and [62, Chapter

91). These techniques are similar in objective to the techniques presented in section 1.4.1

for solving problem (1.4.4). As regards the simulation-based framework, most of the early

literature ([105, 155J) resort to surrogate models to speed up computations of the dataset,

while more recent works focus on adaptive sampling schemes ([14, 17, 16]) to reduce the

number M of datapoints in (1.4.8a) without affecting classification performances. A notable

exception is provided by the work of Lecerf, Allaire and Willcox [132], which already incor-

porate important aspects of model order reduction to accelerate the dataset construction.

However, the reduction approach employed in [1321 is based on a reduction of the dimension

of the underlying PDE, and it does not exploit the parametric nature of the mathematical

model.

1.5 Thesis overview

This thesis consists of two separate parts.

Part 1 deals with the development of a model reduction procedure for state estimation,

the Parametrized-Background Data-Weak (PBDW) approach. PBDW was first presented

in [142, 1431 for stationary problems and perfect measurements (i.e., tobs = t, (Utrue) m -

1, ... , M). The key idea of the PBDW formulation is to seek an approximation u* = z* + *

to the true field utrue employing projection-by-data. The first contribution to u*, z* E ZN, is

the "deduced background estimate". The linear N-dimensional space ZN C U is informed

by the bk manifold Mbk _ {Ubk(,)IQ . / E pbk}, which we hope is close to the true

field. The second contribution to u*, 7* E UM, is the "update estimate". The linear
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M-dimensional space UM is the span of the Riesz representations {RuO m}Z=1 of the M

observation functionals {to}$=1. While the background estimate incorporates our a priori

knowledge of the state, the update addresses the deficiencies of the bk model by improving

the approximation properties of the search space.

In this thesis, we extend the PBDW formulation in three directions. Some of the results

have been first presented in the papers [213, 2121.

" We propose an experimental a posteriori estimation procedure for the L 2 (Q) state-

estimation error HU true - U* I2(f), and for the error in output L(utrue) - (u*), where

L : L2(Q) -+ R. The procedure allows us to quantify the uncertainty in the state

estimate.

* We propose a computational procedure for the construction of the background space

ZN when Q c Qbk. We remark that traditional model reduction strategies aim to

generate linear approximation spaces for the manifold y bk - {Ubk([ . p E pbk}

over Qbk. If Q is strictly contained in Qbk, these strategies might either be unfeasible

or might lead to inaccurate approximation spaces for the restricted manifold Mbk.

" We consider the case of pointwise noisy measurements (fmbs = Utrue(Xobs) + m). In

more detail, we rely on the theory of Reproducing Kernel Hilbert Spaces (RKHS)

that allows us to consider spaces U for which the Riesz representers {Kxm = Rue~m

associated with the observation functionals {to = xm}m are explicitly known. We

demonstrate that explicit expressions for the representers greatly improve the flexibility

of the approach; in addition, we find much faster convergence with respect to the

number of measurements M than in the approach presented in [142, 143].

Part 2 deals with the development of a model reduction procedure for Simulation-Based

Classification with application to Structural Health Monitoring. As explained in section

1.4.2, we generate a dataset Dbk = {(zbk(m) fdamQAm))}M i by repeated solution of a

parametrized mathematical model for M different parameters pi, ... 7PM E pbk. Then, we

appeal to a supervised learning algorithm to compute a classifier g* to map features (and

thus experimental observations) to the corresponding configuration label.

We demonstrate that the use of pMOR techniques, which is enabled by the parametrized

description of damage, is crucial to reduce the computational burden associated with the
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construction of the dataset without sacrifying the accuracy of the approximation. We present

a rigorous mathematical formulation which integrates the PDE model within the classifica-

tion framework, and we provide a framework for error analysis, which takes into account

non-parametric model error. We illustrate the procedure and motivate the use of model

reduction techniques through a cradle-to-grave example: a physical harmonically-excited

microtruss system. Some of the results have been first presented in the paper [214].

We resort to a 2D-3D high-order continuous-Galerkin Finite Element solver. Our imple-

mentation is based on a suite of Matlab codes ([150]) that has been developed by Professor

Masayuki Yano (University of Toronto) during his stay at MIT. We refer to [107, Appendix

A] for details related to the implementation. Experimental apparata have been designed

and implemented by Doctor James D Penn (MIT).
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Part I

Parametrized-Background Data-Weak

approach to state estimation
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Chapter 2

The PBDW approach: formulation

and analysis

In this chapter, we introduce the PBDW formulation. First, in section 2.1, we derive the

problem statement, and we highlight the role of model order reduction. Then, in section 2.2,

we study the well-posedness of the PBDW statement, we derive an important representation

formula for the PBDW state estimate, and we discuss the connection with the problem of

optimal recovery. In section 2.3, we exploit the representation formula proved in section

2.2.1 to derive an algebraic formulation that permits rapid computations. In section 2.4

we summarize the computational procedure, and in section 2.5 we relate our approach to

other data assimilation formulations presented in the literature. Finally, in section 2.6, we

summarise the main contribution of the PBDW formulation, and we present and motivate

the research goals addressed in the next chapters. We state upfront that in this chapter we

only consider real-valued problems. The formulation and the mathematical analysis can be

trivially extended to complex-valued problems.

2.1 Formulation

2.1.1 Problem statement

We aim to estimate the deterministic state utrue E U over the domain of interest Q c Rd.

As explained in the introduction, we shall afford ourselves two sources of information: a bk

41



mathematical model

Gbkp(Ubk(P)) = 0, p E pbk

defined over a domain qbk that contains Q; and M experimental observations .s,..., tobs

such that

fmbs = o (Utrue) m = 1, ... . M,

where f', ... , to E U' are suitable observation functionals, pbk C RP is a confidence region

for the true values of the parameters of the model, and {Em}M are unknown disturbances

caused by either systematic error in the data acquisition system or experimental random

noise. We further introduce the bk manifold Mbk _ {ubk() p E pbk} associated with the

solution to the parametrized model.

If pbk = {f}, we propose to estimate the state utrue as follows:

M2

U :=arg min |U - ubk 2 + -Z(E)es)2 , (2.1.1)
uEU ~~~M=1 (U M)I

where ( > 0 regulates the relative importance of the background ubk(p) compared to the

data. We observe that if Ei, ... , EM are independent identically distributed random distur-

bances such that E[Cm] = 0, E[EmEm'] = c.26Sm, then (2.1.1) corresponds to the 3D-VAR

statement ([24, Chapter 2],[1381).

If pbk $ {f}, we can generalize (2.1.1) as follows:

M2

(pc, u*) := arg min (I| - u ) 2 + ) o (U)- obs) (2.1.2)
(M,u)Epbkxu -UW1 M M

Formulation (2.1.2) is known as partial spline model (1226, Chapter 9]), and can also be

restated in terms of the update 77 = u* - ubk(/):

(p4,r*) := arg min (I|r||2 + k + (U - (s. 2.1.3)
~ (/_,7)Epbk xu M=

We observe that (2.1.2) (and equivalently (2.1.3)) is non-convex in y; furthermore, evalu-

ations of the map p -+ ubk(tl) involve the solution to the bk model. Therefore, it is not

suitable for real-time computations.
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If we introduce the rank-N approximation ([56]) of the bk field ubk(i)I

N

uNklQ(X, P) = Wp (nW,
n=1

XE, pE pbk

we can approximate statement (2.1.3) as

(p, Tl) arg min
(p,') Epbk xU

(2 + I tn(o)(n + - fobs (2.1.4)11q M E m O P n?

Then, we can relax (2.1.4) as follows:

(47, i) = arg min
(,) ERN XU

which can also be rewritten as

(z*, q) := arg inf
(z,?7)EZN XU

where ZN span((nIN i C U

further denote by u* = z*+ i4

Th771 2 + M
M=m1

N 2

+ tod - obs
On( n ?

(2.1.5)J 7(,') := flrqfl2 + I o-fb
M=1

is the N-dimensional linear space induced by {(n}N_1. We

the corresponding state estimate.

Statement (2.1.5) is the Parametrized-Background Data-Weak (PBDW) formulation,

and u* = z + 17 is the PBDW state estimate. We observe that PBDW is a (convex) relax-

ation of the partial spline model for a parametric affine background: instead of penalizing

the distance between the state estimate and the manifold .Mbk _ Ubk( 1) : p E pbk}, we

penalize the distance from the linear space ZN. The parameter c should be chosen based

on the accuracy of the background space - hence on the accuracy of the bk mathematical

model - and on the magnitude of the disturbances c1,..., cM, and might be typically set

adaptively. Our derivation allows us to interpret z* as the deduced background: z* is the

component of the state informed by the prior knowledge of the system, and represents antic-

ipated uncertainty in the mathematical model. Similarly, we can interpret ic as the update,

the component of the state that accomodates unanticipated or non-parametric uncertainty.

Consistently, we refer to ZN as the background space.

Before concluding, we investigate the noise-free case (i.e., tobs o (utrue), m = 1, ... , M)

corresponding to the limit ( -0+. Proceeding formally, we obtain the noise-free PBDW
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formulation:

(z*, 7*) := arg inf |J|qJ subject to f'(z + M) = robs m = 1,... , M. (2.1.6)
(z,n)eZN XU

We denote by u* = z*+,q* the corresponding state estimate. Formulation (2.1.6) corresponds

to the PBDW formulation first proposed in [142]. In section 2.5, we rigorously show that

I|u* - u*II - 0 as ( - 0+.

The assumption of smoothness

We observe that our formulation relies on the assumption that the true field utrue belongs

to the Hilbert space U, which corresponds to the Sobolev space HS(Q) for some s > 1.

Although in some cases this assumption might be justified by the existence of physical laws

with continuity and differentiability properties, it seems difficult to guarantee a priori that

the true field belongs to U.

As observed in 176, section 9.6], the assumption of smoothness corresponds to the as-

sumption that "similar" inputs - in this case spatial locations - correspond to "similar"

outputs in a proper metric. We argue that the latter, rather than being a technical as-

sumption required by our particular formulation, is a necessary condition for the existence

of accurate state estimation algorithms based on scattered data.

2.1.2 Role of model order reduction

If we denote by Eb inf4Epbk HUtrue-Ubk(A)II the modeling error, and by cbk = infEzN true

zi the best-fit error associated with ZN, we aim to choose ZN such that fb ~Eb. Since

the stability of the PBDW formulation strongly depends on the value of N, we further wish

to keep N small compared to the number of observations M. We observe that we may

bound the best-fit error as follows:

Ebk = inf I|utrue < sup inf Ilubk(p)-zlI + inf lubk _)tru cbk, bk
ZGZN Z1 pbk ZEZN Epbk discN mod'

(2.1.7)

where EscN = supPpbk infzN ||ubk([1) - z1l is the discretization error. Therefore, if Ebmod

is small, we can practically construct ZN to minimise c bk~disc,N~
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Assuming that Q = Qbk (i.e., the bk model is defined over the domain of interest), we

observe that the task of constructing the space ZN is equivalent in objective to the task of

constructing the reduced trial space in parametric Model Order Reduction (pMOR) briefly

outlined in the introduction. Therefore, we can resort to state-of-the-art techniques proposed

in the pMOR literature to generate ZN, such as Proper Orthogonal Decomposition (POD,

[28, 130, 122]), Proper Generalized Decomposition (PGD, [54, 52]), Taylor expansions ([801),

and Greedy algorithms.

In this work, we rely on the Weak-Greedy algorithm for the construction of the space

ZN. The algorithm was first proposed in [223] in the context of Reduced Basis method, and

has been applied to elliptic and parabolic, linear and nonlinear, differential equations. The

convergence with respect to N of the reduced space obtained using this Greedy procedure

has been extensively studied in [40, 32, 661 and linked to the so-called Kolmogorov N-width

[172]. We refer to [180, Chapter 71 for a thorough overview of the computational procedure;

we further refer to [56, Section 81 for a review of the theoretical results.

We briefly summarise the procedure. Given the parametrized PDE GbkfI(ubk(pj)) = 0,

/ E pbk, we introduce the error indicator': Abk(p) ~ infZEZN ubk (Aj-ZI E pbk. Then,

the weak-Greedy algorithm constructs a Lagrange ([175]) hierarchical approximation space

ZNmax = spanfubk(,n)}Ntrain such that pN = argmaxP Etrain 1  ), N = 1, ... max,

where -Etrain C pbk is a finite-dimensional discretization of the parameter domain pbk

Algorithm 2.1.1 summarises the computational procedure.

We briefly address the more general case Q C Qbk. In this case, we might first appeal

to one of the techniques presented above to build a space ZN for the manifold ) jbk over

.bk. Then, we might define ZN := {zQ : z E ZN}. If the manifold fvbk is low-dimensional

and reducible 2 , this approach should guarantee accurate reduced spaces for the bk manifold

Mbk. However, if ) Thk is not reducible, and Q is strictly contained in Qbk, we envision that

this approach might either be unfeasible or lead to poor approximation spaces. We address

this issue in Chapter 5.

'The practical definition of Ab(p) depends on the particular form of the PDE. We refer to the above-

mentioned literature for further details.
2 We refer to [180, Chapter 5] for a formal discussion about the reducibility of parametric manifolds. In

Chapter 5 of the present thesis, we discuss the problem of reducibility in a special setting.
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Algorithm 2.1.1 Weak-Greedy algorithm

1: for N = 1, ... , Nmax do

2: Identify the parameter associated with the largest error estimate,

N A=b
PN =- ag maXpEEtrain N--1P)

3: Evaluate the associated solution (N ubk (pN).

4: Augment the background space ZN span {ZN--1, (N}-

5: end for

2.2 Mathematical analysis

2.2.1 Well-posedness analysis

In this section, we present well-posedness results for the PBDW statement together with

a finite-dimensional representation formula for the state estimate, which permits efficient

computations. Towards this end, we introduce the Riesz operator RU : U' -+ U such that

(Rut, v) = f(v) for all v E U and f E U', we further introduce the M-dimensional update

space UM as

UM = span{qm := Rut}m"=. (2.2.1)

Finally, we introduce the stability constant #N,M as

(z, q)
ON,M := inf sup . (2.2.2)

ZEZN qEUm IJjIjjqjj

Some comments are in order. For perfect measurements (i.e., fobs to true)), the inner

product (utrue, q) is a weighted sum of experimental observations

M M M

Utrue _ qm=utrue obs. (2.2.3) ( am m a qm= m=1
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For this reason, we say that UM is experimentally observable. We further observe that the

stability constant 3 N,M is a non-increasing function of background span (N) and a non-

decreasing function of observable span (M). Furthermore, /N,M = 0 for M < N.

Next two Propositions provide the well-posedness results; for purposes of exposition, we

consider the cases = 0 and > 0 separately.

Proposition 2.2.1. Suppose that ZN C U, and let ON,M be defined in (2.2.2). Let us further

suppose that MUs o (ue) for m 1,..., M, and that UM is M-dimensional. Then, the

following hold.

(i) Any solution (z*,r,*) to (2.1.6) belongs to ZN X ZN n UM.

(ii) The pair (z*,r,*) is a solution to (2.1.6) if and only if u* = z*+r* is a solution to the

problem:

u* := arg inf ||HIzuJJ subject to E,(u) = f~bs, m = 1, ... , M. (2.2.4)
uEU N

(iii) If /N,M > 0, there exists a unique solution (z*,rq*) to (2.1.6). Furthermore, (z*, 7*)

solves the following saddle-point problem:

(r/*, q) + (z*, q) =(utrue, q) V q E Um;

(2.2.5)

(I*,P) = 0 VP EZN-

Proof. We first prove (i). Let (z*, r/*) be a solution to (2.1.6). We observe that (z*, flum)

satisfies the constraints,

S(z*+ um , qm= (z*+*, qm f (Z* +*)M = 1, .. M.

eUm

Furthermore, recalling the projection theorem, we find ||j*j| 2 +1*= IHum2*11 2 I1fl 7*I11. Since

(z* 17*) is optimal, we must have lU r/* = 0. This proves that r1* G UM. We now consider

the pair (z* + HZN *, fIZ lr*). It is straightforward to verify that (z* + flzN,*, flz q*)

satisfies the constraints. Therefore, appealing once again to the projection theorem, and

exploiting the optimality of (z*, r*), we must have HZNrq*= 0. Thesis follows.

We now prove (ii). Recalling statement (i), we have rq* E Zk. This implies that we can
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restate (2.1.6) as follows:

(z*, 7*) :=arg inf ||qJ| subject to (Z + ) m =1, ... ,M.
(Z,77) EZN X ZN

Thesis (ii) follows by observing that ZN G Zk =

We finally prove (iii). Exploiting (2.2.3), we restate (2.1.6) as follows:

(Z* 1*) = arg min |ITI|, subject to (z+,- utrue,q) = OVq E UM. (2.2.6)
(ZM)EZN XU

We can now introduce the Lagrangian L : ZN x UM X Um -*I R associated with (2.2.6):

L(z, ) = _|II12 + (z + q - utrue, #). By differentiating, we obtain

0,,L = 0 (*+ #*6) = 0 V 6T E UM;

zL = 0 6(*,6z) =0 V6z E ZN;

4O = 0 (7* + 0* - utrue, g) = 0 V # E UM.

From the first equation, we obtain 7* = -4* Then, if we substitute this identity in the

second equation, we obtain that any solution to (2.1.6) must solve (2.2.5). Recalling3 [181,

Theorem 7.4.11, since /N,M > 0, there exists a unique solution (z*, i7*) E ZN X UM to (2.2.5).

Thesis (iii) follows. E

Proposition 2.2.2. Suppose that ZN C U, and let ON,M be defined in (2.2.2). Let us

further suppose that UM is M-dimensional. Let > 0. Then, the following hold.

(i) Any solution (z*, q*) to (2.1.5) belongs to ZN X ZN flUM.

(ii) The pair (z*,r 7) is a solution to (2.1.5) if and only if u* = z +r1 is a solution to the

problem

arg:=farg J (u) := (||IIzuI 2 + m (u) - tobs). (2.2.7)
UEU C ~ M =1(

(iii) If /N,M > 0, there exists a unique solution (z*,rq) to (2.1.5). Furthermore, (z*)4, )

3We briefly present the correspondence between our notation and the notation used in [181, Theorem
7.4.11: M = ZN, X = Um, a(.,-) (,-) b(-,-) (- *), (f, v) = (U t ", v) and o- = 0.
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solves the following saddle-point problem:

2 (*, q) + -M zmA= 1  M()z + - ms om(q)

(7*, p)

=0 VqEUM;

=0 VPEZN-

In view of the proof of Proposition 2.2.2, we first present two lemmas. The first lemma

is proven in [141, Proposition Appendix A.1]; we report the proof for completeness.

Lemma 2.2.1. Let UM := span{qm} 1 and let #N,M be defined as in (2.2.2). Then, we

have that

#N,M inf (2.2.9)

Proof. To simplify notation, given the linear space Q, we define Q() = {q E Q : |IqI = 1}.

We now prove (2.2.9).

= (Jnf~zw, 511pv eU( (z'v) = - i
=N,M 1 -EM

=1-(supzEZ(1 >supqCU,-L (z, q) 2

Z I MII ZEZ(1 ) L 1
2

=1 -

1 =q (1) IIrz~q 11
2 = inf supqE N E

Thesis follows. ED

Lemma 2.2.2. Let UM' := span{qm}m 1 , M' KM. Let us introduce /N,M'= infzEZN SUPVCUME

and the matrix K(M') E RM',M', KM) =q, qm'). Let us further define

CN,M := max CN,M',
M'=1 .. M

CN,M' = min Amin(K(M'))'
Amin (K(M'))

2 + Amin (K(M'))

where Amin (K(M')) denotes the minimum eigenvalue of the matrix K(M')

Then, the following bound holds:

M

J(U) = ||fZLU11 2 + E (o(U))2 ; CN,MIIU12, Vu C 1.
m=1

,M'(N2MI)

(2.2. 10 a)

(2.2.10b)
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Proof. We first claim that for any M' such that 1N,M' > 0 we have

M'(U) = IlNzull 2 + (to (U))2 cN,M'IIUI2,
m=1

Given (2.2.11), we find that

J(u) JM'(u) N,M'Iul 2 VM' ; M =- J(u) ( max CN,M') lull 2,

which is the thesis.

We now show (2.2.11). Given u E U, we introduce ul = fUl 'a, u2 = IIUM,U

m=l (u2)mqm. Then, we observe that

(2.2.12)ui(xm) ( qm , ui) = 0,
EUM,

We further observe that

M'

Z, (fMO (u2))2
M=1

- IIK(M')u 2 21 11u 2 112 = U K(M') u2,

which implies that

min EM=' (fm(U2))2
U2 EUM/ 1U2 112 min K(M)U 2 112 = Amin (K(M'))

u 2EIRM' uT K(M')u2

(2.2.13)

Combining (2.2.12) and (2.2.13), we obtain

M'/

M=1

M'

E (fM (U2 ))2 > Amin(K(M')) JJ2 12

M=1

Now, recalling the identity 2ab > -- a - Eb2 valid for any E > 0, and Lemma 2.2.1, we

obtain:

JM'(u) = JM(ul + U2) > IZ_ 2 + I I + I zU2|112 + 2 zL1, rzN U2) + Amin(K(M')) ||u112

(1- )3fMIlu |I2 + (1 - ) ||Hz-L 2I 2 + Amin(K(M'))lU2 |2
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Let us consider E E 1 (' 1 . Recalling that N|rZ-U2|| lII U2, we obtain

JM'(u) ;> (1 -- )#,M' 2i + (Amin(K(M')) + 1 - J) IU2||2

> min (Amin(K(M')) 1M' 2  1 2 2)

=zIIUIj2

Estimate (2.2.11) follows by considering E 2 AmK(M'))'

We observe that CN,M is monotonic increasing with M; therefore, it is asymptotically

bounded from below in the limit M -+ oo. We further observe that Amin(K(M')) > 0 if and

only if UM, is a M'-dimensional space.

Proof. (Proposition 2.2.2). We first prove that T/ E UMnZk (Statement (i)). Thesis follows

by observing that J(z, 1) = J (z, Hu' 7) + IfuLq11 2, and J (z, I) = J (z+HzN, HZi7) +

IPfzN11 2. We omit the details.

We now show that (z*, l) solves (2.1.5) if and only if u- = z + oI solves (2.2.7)

(Statement (ii)). Exploiting Statement (i), we have

min J(z,r1 ) = min J (z, ).
(z,r))EZN XU (Z,T))EZNXZN

Thesis follows by observing that J (u) = J,(rzNu HZu), and recalling that U = ZN D

ZI.

We now prove (iii). Applying Lemma 2.2.2, we find that the objective function J(:

U --+ R is strictly convex if #N,M > 0. Existence and uniqueness of the solution to (2.2.7)

then follow from [74, Theorem 3, Chapter 8.2]. Exploiting Statement (ii), we find that the

solution (z*, *) to (2.1.5) exists and is unique. Furthermore, recalling that the solution u*

must be a zero of the first variation of J(, we obtain

JJ(u*, v) = 2(Z Uz, v) + (u ) - robs) eomv) = 0. Vv E U,
M=1

which implies (2.2.8). Thesis follows.

Before concluding, we present a number of observations. First, in Propositions 2.2.1 and

2.2.2, we rely on the assumption that ZN C U. This is required to define #N,M in (2.2.2),
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and also the single-field formulations (2.2.4) and (2.2.7). In section 2.3, we derive sufficient

conditions for the well-posedness of (2.1.5) and (2.1.6) that do not rely on the hypothesis

ZN C U. Second, statements (i) of Propositions 2.2.1 and 2.2.2 are extremely important

from a practical standpoint since they provide an a priori finite-dimensional representa-

tion formula for the solutions to (2.1.5) and (2.1.6). We rely on these finite-dimensional

representations to derive efficient algebraic counterparts of the variational statements.

2.2.2 Connection with the problem of optimal recovery

We illustrate the connection between the PBDW formulation presented in this chapter and

the problem of optimal recovery ([152]). This connection has first been observed by Binev

et al. in [331 for perfect observations; in this section, we briefly review part of the analysis

presented in [331, and we present the analogous result for noisy measurements.

Given the background space ZN C U and the linear functionals f ,..., f' E U', we

introduce the compact sets

KN(eobs) = {E cU: zI , o (U)- fb, m = 1,... ,M}, (2.2.14)

and

KN,(Eb) { u E U J 1 (u) = I LU 2 + (obs 2 c, , (2.2.15)
m=1

where e > 0, and eobs (obs... , s) is the vector of experimental observations. We

observe that the spaces KCN and ICN, incorporate the two available pieces of information:

the proximity of utrue to the linear space ZN, and the experimental observations. In the

former case, we impose that all elements of KN interpolate data; in the latter case, we rely

on the parameter to properly balance between proximity to ZN and agreement with the

experimental observations.

Given the closed set C. c U, the problem of optimal recovery corresponds to identify

the field u* E U that minimizes the error Iju* - utruell in the worst-case scenario, provided

that utrue E KC.. More formally, we can introduce the optimal recovery algorithms associated

with (2.2.14) and (2.2.15).

Definition 2.2.1. A recovery algorithm is any measurable mapping A : RM -+ U. The
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optimal recovery algorithm A'pt associated with kN(E, -) satisfies

AoPt(Lobs) = arg inf sup Hu - 11, (2.2.16)
$Eu UCN (Ebs,)

for any Lobs E RM for which /CN,6 is not empty. Similarly, we can define the optimal recovery

AN associated with ICN, -

Next Proposition shows that the PBDW formulation is the optimal recovery algorithm.

Proposition 2.2.3. Suppose that /3 N,M > 0. Then, the PBDW algorithm APBDW RM - U

(2.2.4) is the optimal recovery algorithm associated to ICN(E, -) for any e > 0. Similarly, the

regularized PBDW algorithm APBDW :M - U (2.2.7) is optimal for KN,E(e,-) for any

e > 0.

Proof. The optimality of (2.2.4) is proved in [33, Theorem 2.8]. On the other hand, we

observe that4 :

24(Uziug, v ) + to(u) - 0mbs o(v) 0 Vv C U.
m=1

Thus, we find

(U* + v) = JM(u ) + M (toV2 + (V))2.
M=1

This implies that u* + v E ICN,C (e, Lobs) if and only if u* - v E KN, (E, Lobs). Then, optimality

of (2.2.7) is a direct consequence of Remarks 2.2 and 2.3 in [33]. We omit the details. E1

2.3 Algebraic formulation

In this section, we present the PBDW algebraic formulation, and we study the stability

properties of the linear system. Then, as anticipated in section 2.2.1, we present a well-

posedness result that does not rely on the assumption that ZN C U.

4
1f v E Um, this follows from (2.2.8); if v E UjL, this follows by observing that e'm(v) = (qm, v) = 0 for

m =,..,M, and (Hz-Lu*, v) = (71*, v) = 0.
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2.3.1 PBDW algebraic statement

In view of the algebraic formulation, we first introduce the matrices K E RM,M, Z E RN,N

L E RM,N such that

Km,m' = (qm, qm), Zn,n' = ((n, n'), Lm,n = tom((n), (2.3.1)

for m, M' = 1,... , M, and n, n' = 1, ... , N. Next Propositions show the algebraic coun-

terparts of the PBDW statements (2.1.5) and (2.1.6). We note that the state estimation

procedure does not require the calculation of the matrix Z.

Proposition 2.3.1. Let 1N,M > 0, and let > 0. Then, the solution to (2.1.5) u* = z* +

is given by

N M

U*C(-)= Cz*n(n(-) + E ( (2.3.2a)
n=1 m=1

where the pair (z*, iq) E RN x RM solves

-obs

(Ml + L *jobs1MR+ L jbs (2.3.2b)
L T 0 z* 0

Equation (2.3.2) can be extended to { = 0 with the convention u* u- 0 -

Proof. We first consider the case ( > 0. Recalling Proposition 2.2.2 (Statement (i)), we have

that u* is of the form (2.3.2a). Then, substituting (2.3.2a) in (2.2.8) and choosing q = qm,

p = (n, we find

2K + _?K2  2KL 2Ks[ M M 7k9
L T 0 z*0

Since K is invertible, thesis follows by multiplying the first equation by -HK-1.

We now consider the case = 0. Thesis follows by combining Proposition 2.2.1 (State-

ment (i)), and (2.2.5). We omit the details.

We now wish to investigate the spectral properties of the linear system (2.3.2b). With

this in mind, we first present a standard result (see, e.g., [141, Lemma 3.31).
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Lemma 2.3.1. The inf-sup constant /N,M is the square root of the minimum eigenvalue of

the following eigenproblem:

LT K-1 L zn = Vn Z zn, n = 1, ... , N.

Proof. Since SUPnE UM Tz= 1111uM zI1, we obtain:

N=inf supZEZN 77EUM ( 11 z4 )
- inf IuzZEZN 1z1

We observe that for any z E ZN the projection onto U-M can be written as IuMZ =

n=i r i7 qm, where the vector i1 satisfies 7z = K-1 L z. Therefore, we find

32 .
N,M = inf

zERN

zT L T K- 1 Lz
ZTZZ

Introducing the Lagrangian multiplier v E R, we can write the optimality conditions as

SLT K-1 L z - vZz

z T Zz

= 0;

Thesis follows.

Next Proposition provides a bound for the minimum eigenvalue of the saddle point

system (2.3.2b).

Proposition 2.3.2. Suppose that fN,M > 0, and let (1, .. -, (N be an orthonormal basis

of ZN. e min be the minimum (in absolute value) eigenvalue of the saddle point system

(2.3.2b). Then, the following bound holds:

( ~Am (LTL)JAmnf"| > min Amin(K) + M, N,M - M AM +T )
C - Ok , M Amin (K) ( M + Amin (K))

and the bound holds with equality for = 0.

Proof. Following the argument in [27, Section 3.4], we observe that the saddle-point sys-

tem (2.3.2b) is congruent to the block-diagonal matrix
K + MI

0

0

-LT(K+ MI)-L
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Therefore, we find:

IAT" I = min (Amin(K) + M, Amin (LT(K + M[)~-L)) .

We now estimate Amin (LT (K + MI[)- 1 L). Towards this end, we first observe that

(K + M)-= K 1 - MX, X = (K + MI)- 1 K- 1 .

Therefore, recalling standard linear algebra results and Lemma 2.3.1, we find

Amin (LT (K + MRi) -L) - min vTILT(K + 2MI)
1 LvVJItVII2

ill IIvM vTLTXILv>T milnv- (Mmax IVI

> o2, - MAmax(X )Amax(L T L).

Thesis follows by observing that

Amax(X ) = max v (K2+ M )Kv < (Amin(K) + M)- 1
V |v II2 Amin (K)

D-

2.3.2 An improved well-posedness result

Proposition 2.3.3 shows a well-posedness result that does not rely on the assumption ZN C

U.

Proposition 2.3.3. Let X = X(Q) be a Hilbert space Q such that ZN C X, and f ,.... f -

X'. Then, the solution (z*, o) E ZN xU to (2.1.5) exists and is unique if and only if the ma-

trix L has rank N. Furthermore, the state estimate u* = z* + 1 satisfies the representation

formula (2.3.2). The same result holds for = 0.

Proof. We only prove the case ( > 0 since the case = 0 can be studied using the same

argument. We observe that J(z, r j) = J r(z, fluMr) + IIunrI1 2 . Therefore, any solution n*

to (2.1.5) belongs to Um. This implies that any solution to (2.1.5) is of the form (2.3.2a).

56



Substituting (2.3.2a) in the minimization statement, we find

mi 7 i + 1 r + ILz -,~s1

(z*,77*)CRN xRm M M

By deriving the stationary conditions, we find

({ K + K2) 17* + kKLz* = 1Ky
(2.3.5)

LT Kq*+ LTLz* = LTy

By premultiplying (2.3.5), by MK- 1 , we find

( Mi + K)r,* + Lz* = y. (2.3.6a)

If we now premultiply the latter equation by LT and we subtract (2.3.5)2, we obtain

LT77 = 0. (2.3.6b)

Saddle system (2.3.6a) - (2.3.6b) is well-posed since K is invertible and L is full-rank by

hypothesis. Thesis follows. E

We observe that if ZN C U, the condition rank(L) = N is equivalent to #N,M > 0 (cf.

Lemma 2.3.1). Therefore, Proposition 2.3.3 is equivalent to Propositions 2.2.2 and 2.2.1 if

ZN C U. We further observe that the proof of Proposition 2.3.3 is closely related to the

proof of [127, Theorem 5.1J.

2.4 Computational procedure: offline-online computational de-

composition

The algebraic formulation derived in section 2.3 allows us to decouple the computational

procedure into two distinct stages. During the offline stage, which is performed before

acquiring the experimental observations, we generate the approximation spaces ZN and

UM, and we assemble the linear saddle point system (2.3.2b). During the online stage,

which is performed during the operations and possibly in situ, we acquire the experimental

data *bs * s, we select the regularizer weight , and we compute the state estimate
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by solving (2.3.2b). We observe that the offline stage is computationally extensive since

we need to solve the bk model possibly several times. On the other hand, the online stage

requires O(N + M) 3 operations.

Algorithm 2.4.1 presents the computational procedure. In Chapter 3, for noise-free

measurements, we present a Greedy procedure to select sensor locations (Step 3-Offline

stage). We further remark that in our setting the update space UM is induced by the

norm 11 - 11 and the observation functionals: in Chapter 6, for the special case of pointwise

measurements, we partially reverse this scheme. Finally, we have not yet discussed how to

practically choose the hyper-parameter : we address this question in Chapter 6.

Algorithm 2.4.1 PBDW approach. Offline-online computational procedure

Offline stage

1: Choose the space (U, - II)

2: Generate the background ZN C U

3: (If possible) Select the observation functionals f',. . ., f E U'

4: Compute UM = span{Rufo}=1

5: Assemble the matrix in (2.3.2b)

Onine stage

1: Acquire the measurements fobs, fobs

2: Choose the regularizer weight

3: Solve the linear system (2.3.2b)

4: (If needed) Evaluate the state using (2.3.2a).

2.5 Connection with other formulations

2.5.1 Connection with other data assimilation procedures

In the statistical learning literature, PBDW is closely related to the approach presented in

[127] by Kimeldorf and Wahba. In more detail, the two approaches are equivalent if we

choose ZN as the set of all polynomials of degree less or equal to r,, r, > d/2 - 1, and

U - H+1 (Q) endowed with a proper inner product. We further observe that, by exploiting

the connection with [127], we can re-interpret our formulation in a Bayesian setting as a
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Gaussian linear system with improper prior (see [225]). In this work, we do not pursue this

feature of the approach.

Furthermore, for N = M PBDW formulation is equivalent to the solution to the Gen-

eralized Empirical Interpolation Method (GEIM, [140]), while for -+ oo and ZN built

using a Proper Orthogonal Decomposition (POD, [130]), PBDW is asymptotically equiva-

lent to Gappy-POD ([75, 234]). We shall also observe that the use of the background space

- as opposed to a background singleton element in the original 3D-VAR - is also found

in nearfield acoustical holography (NAH, [47, 235]). We finally mention that the general

PBDW formulation (2.1.5) is asymptotically equivalent to the "noise-free" formulation in

the limit -+ 0+: as stated in section 2.1.1, the latter corresponds to the original formulation

presented in [142]. Next Proposition shows the two asymptotic results.

Proposition 2.5.1. Let /N,M > 0. Let u= + z be the solution to (2.1.5). Then, we

have

lim I|u* - u*II = 0, lim IJu* - zLSII = 0, (2.5.1)
(40+ - oo

where u* = z* + 1* is the solution to (2.1.6), and ZLS = arg minz(-Z Em= z - obs)2

Proof. Let us first consider the limit ( a 0+. We just have to show that

lim (1 = = = = =

Exploiting Proposition 2.3.2, we can show that each eigenvalue of the saddle-point system

(2.3.2b) satisfies A|,~j > - min(Amin(K), 02,M) > 0 for all ( (, for some > 0. Therefore,

we find 11u*|| 2 < C for all < .

Let {j} be a positive sequence such that j -+ 0+, and let u* be the solution to (2.3.2b)

for = (j. Since {u* }j is uniformly bounded, applying Bolzano-Weierstrass theorem, we

obtain that, up to a subsequence, u, -+ U. We further observe that

obs K L UI 0 K L

0 LT 0 0 0 LT o

Since the linear system (2.3.2b) for c = 0 admits a unique solution, we must have - = u*0 .
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Using the same reasoning, we find that u_= is the only limit point of the uniformly bounded

sequence {U I,. Therefore, the entire sequence is convergent (see, e.g., [148, page 671).

We now consider the case -+ oc. As for the previous case, we must prove that for

-4 00

z -+ ZLS = (LTL)-l LT M ", o .

The proof exploits the same argument of the previous case, ( a 0 . We omit the details. E

2.5.2 A two-stage regression procedure: connection with Kalman filter

We can rewrite the linear system (2.3.2b) as follows:

LT( MRi + K)-Lz* - LT( MI + K)-iobs

(2.5.2)
(CMI + K)q = job - Lz*.I C M CL~

Formulation (2.5.2) is the algebraic counterpart of the following two-stage procedure:

- ~bsIIW;
z *: arg zin ||Lm(z) -- Mys

{ 7:= 1i min(||2 (fM(?) - err)2 eerr ._ robs - to (Z*), (2.5.3)
M =1

where WC = (K + Mfi)- 1 , LM(z) = [Vt(z),...Jo(z)], and lidliw = /dTWd. Prob-

lem (2.5.3)i corresponds to a weighted least-square (generalized) regression problem, while

(2.5.3)2 corresponds to a generalized smoothing problem applied to the error field utrue - z.

Equation (2.5.3) clarifies the connection of our approach with Kalman filtering techniques

([123, 134]). The deduced-background estimate z* E ZN represents our predicted state

estimate based on prior knowledge (here encoded in the background space); on the other

hand, the update * E UMp represents the innovation induced by the measurements and only

depends on the residuals r = obs _ o(z).

We further observe that from the perspective of approximation theory - PBDW

formulation introduces a hierarchy between the approximation provided by the background

space ZN, and the approximation provided by UM. In more detail, the background space ZN

should provide primary approximation, while the update space Um is designed to complete

any deficiency in ZN. This asymmetry between ZN and UM is motivated by the underlying
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assumption that elements of ZN have better generalization properties (see, e.g., [221]) than

elements in tIM since they are directly informed by the mathematical model. In this respect,

by adapting the parameter , we can properly tune the relative importance of primary and

secondary approximation.

2.6 Conclusions and objective of the next chapters

In this chapter, we presented the PBDW formulation of the variational data assimilation

(state estimation) problem for systems modeled by PDEs. Below, we list the main features

of the methodology.

Projection-by-data: PBDW is an approximation method that seeks solutions based

on projection-by-data. In more detail, the bk model does not enter explicitly in the PBDW

variational formulation since it is only employed to generate the background space ZN.

This feature of the approach greatly simplifies the implementation of the computational

procedure, and ultimately speeds up computations. Projection-by-data - a problem in ap-

proximation theory - rather than projection-by-model - a problem in PDE discretization

- has also many advantages with respect to the mathematical theory. First, projection-by-

data eliminates many of the standard requirements of projection-by-model related to initial

and boundary conditions; for example, the domain Q over which we reconstruct the state can

be a subset of the bk domain Qbk over which the mathematical model is well-posed. Second,

in projection-by-data, we can accomodate norms which may be considerably stronger than

the norms required for well-posedness in projection-by-model. We extensively exploit these

features of the formulation in Chapters 5 and 6.

Variational formulation: we remark that PBDW relies on a variational formulation.

The variational formulation facilitates the construction of a priori error estimates informed

by the analysis developed for PDEs and scattered data approximation. In Chapter 3, we

present theoretical a priori bounds for the state estimation error in absence of noise. Then,

in Chapter 6, we provide an error analysis for pointwise noisy measurements.

Background space: PBDW formulation incorporates background spaces that accom-

modate anticipated parametric uncertainty. The background space is constructed in two

steps: (i) the identification of a parametrized PDE that models the phenomenon under con-
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sideration and a suitable confidence region pbk for the parameters of the model, and (ii) the

application of a pMOR technique - such as the Weak-Greedy algorithm briefy summarised

in Algorithm 2.1.1 - to generate a linear space appropriate for real-time evaluations.

Correction of unmodeled physics: as explained in section 2.5, PBDW provides a

mechanism - the update * - to address the inevitable deficiencies of the bk model.

The PBDW formulation (2.1.6) was first presented and analysed in [142, 1431 for perfect

measurements (obs _ to (Utrue)). In [1421, for localised measurements, the authors proposed

a Greedy strategy for the selection of sensor locations. In [1431, the authors extended the

analysis to imperfect measurements.

The original PBDW approach shows a number of deficiencies. First, in [142, 1431, the

authors did not propose an actionable strategy to quantify the uncertainty in the state es-

timate - apart from the heuristic error indicator in [143, section 5.71. Second, the authors

employed a traditional pMOR technique - the weak-Greedy algorithm reviewed in section

2.1.2 - to the manifold %ibk defined over Qbk: as explained in section 2.1.2, if Q is strictly

contained in fbk, this strategy might either be unfeasible or might lead to inaccurate ap-

proximation spaces for the restricted manifold .Mbk. Third, due to the absence of tunable

parameters, the original formulation did not provide tools to rationally balance inadequa-

cies in the bk model and noise in the measurements. In particular, there was no attempt

to incorporate the presence of noise in the actual state estimate. In addition, due to the

choice U = H1 (Q), for localised measurements, the approximation properties of the update

are poor, and it is not possible to efficiently adapt the shape of the Riesz representers during

the online stage: this might lead to poor convergence in M.

Motivated by the previous discussion, in this thesis, we first review the PBDW formula-

tion for perfect measurements presented in [142], and then we propose three contributions

to the original formulation.

In Chapter 3, we present the PBDW formulation for perfect measurements. We review

and slightly improve the error analysis presented in [142], and we present the Greedy strategy

for the selection of sensor locations. We also contribute an analysis of a thermal experiment

not previously considered.

In Chapter 4, we propose an experimental a posteriori estimation procedure for the
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L2 (Q) state-estimation error |utrue - U* IL2(Q), and for the error in output L(Utrue) -

where L : L2(Q) -+ R. The procedure allows us to quantify the uncertainty in the state

estimate. In addition, it can also be employed (i) to guide the data-driven enrichment of the

PBDW background space ZN (based on the algorithm first proposed in [143, section 5.81),

(ii) to improve the estimate of the L 2 output of interest, and (iii) to adaptively select the

PBDW tunable parameters. The error estimation procedure has been presented in [213].

In Chapter 5, we present a computational procedure for the construction of the back-

ground space ZN when Q C Qk. Our approach represents an extension of a computational

strategy first studied theoretically in the context of approximation theory ([172]), and then

applied in the context of generalized finite element method ((8]) and more recently in Port-

Reduced static condensation Reduced Basis Element method ([204]).

In Chapter 6, we study the case of pointwise noisy measurements (jobs = true obs)+

em). We rely on the theory of RKHS, which allows us to consider spaces U for which the

Riesz representers {Kxm }m associated with the observation functionals {xm }m are explicitly

known. We demonstrate that explicit expressions for the representers greatly improve the

flexibility of the approach; in addition, we find much faster convergence with respect to the

number of measurements M than in the approach presented in [142, 143]. We present a

rigorous a priori error analysis for the L 2 (Q) state-estimation error, HU true - U* IIL2(Q), for (i)
iid

homoscedastic random noise (i.e., cm~ '(0, o.2 )), and (ii) systematic noise (i.e., JEml < 6).

We further discuss an adaptive procedure for the selection of the hyper-parameters of the

PBDW formulation. The adaptive procedure and the error analysis have been presented in

[212].
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Chapter 3

The PBDW approach for perfect

observations

We discuss the PBDW formulation for perfect measurements (2.1.6): given the N-dimensional

background space ZN C U, find (z*, 7*) E ZN x U such that

(z*, 77*) = arg min 11711 subject to f'm(z + T) = fobs, m= 1, ... . M;
(Z,?)EZN Xtl

where (U, -||) is a Hilbert space over the domain of interest Q and ",.. ., E U'. We

state upfront that in this chapter we rely on localized observations; in more detail, we

consider fom(v) = fQ wd,,( xobs - yI)v(y) dy, where {xbslM} 1 c Q denote the transducers'

locations, and Wd, : R -* R+ denotes a properly-chosen convolutational kernel associated

with the transducer. In Chapter 2, we discussed the well-posedness of problem (2.1.6), and

we presented a finite-dimensional formulation for the PBDW state estimate u* = z* + 77*,

which permits rapid computations. In this chapter, we provide an a priori bound for the

state estimation error Hutrue - u*I (section 3.1), and we discuss a Greedy procedure for the

selection of sensor locations {xmIM I (section 3.2). In section 3.3, we present results for

a synthetic acoustic problem. Finally, in section 3.4, we present the results for a physical

thermal patch configuration.

3.1 Error analysis

Next Proposition contains the key result.
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Proposition 3.1.1. ([2411) Suppose that ON;M > 0-

satisfies

||strue - u*I < IN inf inf utrue - z - T11,1
,8N,M 7(EumnzN- ZEZN

Then, the PBDW state estimate u*

(3.1.1)

or, equivalently,

||utrue - u*I 1 Ilu true - HzN~(umflk)U true
ON,MN

(3.1.2)

Furthermore, the following estimates hold for background and update:

I|lZN Utrue z*
1
, inf inf

- 1N,M ?7EumnLZJ ZEZN
Ilutrue zr-nl

I11|z utrue - 7*11 = inf inf Iutrue - z - MI.
N qEuMnzNL ZEZN

(3.1.3b)

Proof. We observe that the error utrue u* E UM. Therefore, recalling Lemma 2.2.1, we

find

#N,MII true -u * |inf 0 1i true _ *
u I|iI

=Utrue-u*

IIZ- (U true - u*)

By restricting (2.2.5)i to q E UM n Z, we find

(* - utrue q)=0 VqEUM nZN :- q* Hunz ue

As a result, we obtain

|HZI (Ut rue U*)II true -7*-Z*)|| = |nzH (u true- 7 *)II ((umnz-Lutrue

(3.1.4b)

Here, the first equality follows from u* = r* + z*, the second equality follows from z* E ZN,

the third equality follows from * = Unz-Lutrue and from the projection theorem. We can
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then rewrite the latter expression as

1Z (U(umnz-LUtrue)1 = infzeZN IAI(uMfzJ)-U true - zII = infEzN IIHumfL)-L(u te- Z)

= infzEzN inf qEZJ-lAM IIUtrue - - M71

(3.1.4c)

Here, the second equality follows from the fact that, since um n ZL c Zk, we have ZN C

(um n Zk) . As a result, 11(uMnZ

Combining (3.1.4a), (3.1.4b) and (3.1.4c), we obtain (3.1.1). Finally, (3.1.2) follows by

observing that, since ZN and Z OnUM are orthogonal subspaces, we have that

inf inf Iutrue - z - 7|| = |U true - UZN&(umnz- true
ZCZN qE zkluM

We now show (3.1.3a) and (3.1.3b). The former follows directly from (3.1.2), recalling

that 1* E Zk and that the projection operator is linear with continuity constant equal to

one:

IIIZN true _ Z* = IH N (true - *) < 11 true -* 1j 1 inf inf jl true - 1 7 1I

ONM qEumlnz- ZEZN

To show (3.1.3b), we observe that JTHzn true - 17*11 =lfl1z(Utrue - u*)lI, and then we

combine (3.1.4b) and (3.1.4c). E

Estimate (3.1.1) identifies three distinct contributions to the error in the field estimate.

The first contribution, 1 ,takes into account the stability of the formulation. The second,N, M

contribution is the background best-fit error infzezN 11Utrue - z!I: as discussed in section

2.1.2, this depends on (i) the modeling error cb=k = minuEpbk Iutrue ubkp)|l, and (ii) on the

discretization error Ei, maxpbk II-zNubk () _ubk(A) 11; while the former is associated

to the accuracy of the best-knowledge model, the latter is associated to the compression

process. The third contribution is the update best-fit error infgEuMnz Nza true

which depends on the approximation properties of the update space.

Estimates (3.1.3) strengthen the interpretation of the background and update given in

section 2.5.2. In particular, we observe that if utrue E ZN, we obtain that utrue = U* = Z*

and q* = 0. This observation shows that the update contribution is noticeable only if the
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true field is not well-represented by its projection onto the background space.

3.2 Construction of the update space

3.2.1 Theoretical considerations

Error estimate (3.1.1) shows that the update space UM should be designed based on two

criteria: (i) the maximization of the stability constant fN,M to improve stability, and (ii)

the minimization of the approximation error infqcEuMnz IIyutrue - to improve approx-

imation. We thus seek a strategy that addresses both these issues.

With this in mind, we observe that the update space UM := span{Rut}miM-1 depends

(i) on the choice of the ambient space U and on its inner product (-, -), and (ii) on sensor

locations {xmbs m. Since the use of high-order Sobolev spaces requires the use of proper

Finite Element discretizations, in this chapter we consider Ho (Q) c U c H'(Q) endowed

with the inner product

(w,v) = Vw - Vv + -Y2 wv dx, (3.2.1)

for some -y > 0. Hence the choice of (U, - II) reduces to the choice of the parameter y.

We observe that 7 influences the spatial length-scale of the Riesz elements {RufM1

and should be properly tuned based on the number of measurements available and on the

expected length-scale of the true field. Example 3.2.1 illustrates the influence of the choice

of -y on RUPe for pointwise measurements in one dimension.

Example 3.2.1. (Riesz element associated with different norms) Let us consider

Q = (-1,1) and the functional IY = 6&.b. where xobs = 0 and 6 is the Dirac delta. We

consider U - H'(- 1,1) endowed with the inner product

(wIv) = w'v' + 2wv dx.

By tedious but straightforward calculations, we find that the Riesz element associated with

P is as follows

Rudo(x) = !(1 - IxI), y = 0;

Rudo(x) = 2y(e+1) (e 2 --ylx _ eylxI), y > 0
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Figure 3-1 shows the plot of the Riesz elements for three different values of Y. To simplify

the comparison, we normalize the L (Q) norm of each Riesz representer to one.

0.8-

0.6

0.4

0.2 - -- =2
-'=8

0'
-1 -0.5 0 0.5 1

x

Figure 3-1: Example 3.2.1: plot of the Riesz elements Ruo for three different choices of -Y. For
visualization purposes, we normalize the L (Q)-norm of the Riesz elements to one.

3.2.2 Computational procedure

We set the value of the constant -y in (3.2.1) a priori, and we choose the observation points

{obslmM 1 according to a Greedy strategy based on two stages. During the first (stability)

stage, we maximize the constant #N,M in a Greedy manner. During the second (approxi-

mation) stage, we minimize the fill distance hxM := supxc minm=.M lix - 4~1 | 2 in a

Greedy manner. Since the stability constant is a non-decreasing function of M for a fixed

N, the stability constant remains above the threshold in the second stage. We envision that

the constant -y should be selected based on the characteristic length-scale of the error field

utrue - z*: however, it might be extremely difficult to estimate a priori this quantity. In

the numerical section, we study the effect of the choice of 7 for a two-dimensional model

problem.

Algorithm 3.2.1 summarises the computational procedure. Computational cost is domi-

nated by the computation of the Riesz representations of the functionals t?, ... , f. In the

limit M >> N and assuming that Q is discretized using a Finite Element mesh of size Ar, the

selection of the observation points during the approximation step has complexity O(ArM2 ),

while the cost of the actual construction of the update space - which involves the solution

to M linear systems - is roughly O(KSM), where 1 < s < 3 is a suitable exponent, which

depends on the sparsity pattern of the matrix associated with the inner product.

If tol = 0, all the observation centers are selected through the approximation loop.

On the other hand, if tol = 1, all the centers are selected through the stability loop. A
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representative value for tol used in our simulations is tol = 0.2. Computation of the least-

stable mode zmin,m involves the solution to the dense eigenproblem (2.3.3).

Algorithm 3.2.1 Greedy stability-approximation balancing (SGreedy-plus) algorithm

Input ZN background space

M number of sensors

tol > 0 threshold for the stability constant

Output UM update space

Stability

1: Compute xobs arg max~s I(i(x)I, m = 1

2: while m < M do

3: Compute /N,m= minwEZN m(wv)

4: if ON,m < tol then

5: Compute zmin,m := argminZEzN maxvEum (v)

6: Compute xm+ 1 := argmaxxf I zmin,m(X) - IlUm zmin,m( )I.

7: Set Um+l = Um U span{Rut(, x 1)}, m = m+ 1.

8: else

9: Break

10: end if

11: end while

Approximation

1: while m < M do

2: Compute xmbs := argmax~an minm=1,.m lix - Xs

3: Set Um+ =Um U span{Rue(-, Xmbs 1 )1

4: m = m +1.

5: end while

Since 1N,m = 0 for m < M, if tol > 0, at least the first M points are selected within

the first loop. As #N,m > tol, the algorithm selects well-separated points in the attempt to

reduce the approximation error. We further remark that in our implementation we control

whether or not each point selected by the stability loop (Line 6) is well-separated from the

70



other observation centers: for m < N the stability loop might select points that are too close

to each other, especially for sufficiently large transducers' widths; this would ultimately lead

to an ill-conditioned linear saddle-point system.

We observe that, for N = M, the point selection routine coincides with the routine

proposed in [140] for the Generalized Empirical Interpolation Method (GEIM). We also

observe that the stability stage is related to the E-optimality criteria considered in the

design of experiments ([83]). On the other hand, the strategy for the approximation step

is strongly related to the so-called farthest-first traversal approach to the minimax facility

location problem (see, e.g, [167]), first proposed by Rosenkrantz et al. in [186].

We can interpret our procedure as a stabilization for the saddle-point system (2.3.2b).

Assuming that (1, .. . , (N is an orthonormal basis of ZN, and recalling (cf. Proposition 2.3.2)

that I Am |i min (Amin(K), /2kM), we observe that the stability loop aims to maximize the

minimum eigenvalue by maximizing the inf-sup constant, while the approximation loop aims

to maximize I Am"I by maximizing Amin (K). We have indeed that for localised observations

Amin(K) depends on the minimum separation distance hM = minm,m'=1,...,mm' -obs

Xbs 12 between observation points. We refer to [197, 160] and [230, Chapter 12] for a rigorous

analysis for pointwise measurements; for localized measurements, we are not aware of any

theoretical result that relate Amin(K) to hM. However, we empirically observe a strong

correlation between these two quantities.

3.3 A synthetic problem: Helmholtz in R2

3.3.1 Problem definition

We illustrate the behavior of the PBDW formulation through a two-dimensional Helmholtz

problem1 . Towards this end, we first introduce the domains Qbk and , = bk = (0, 1)2

and the mathematical problem:

{ (1 + ip) Aug(p) - p2Ug(p) = p (2X + eX2) + ag in Q,
(3.3.1)

(, Umde 1) =p 0 o [

'The model problem is the same considered in [142, Section 31.
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where p > 0 is the wave number, e = 10-2 is a fixed dissipation, and g E L 2(&) is a bias

term that will be specified later. Here, the parameter p > 0 constitutes the anticipated,

parametric uncertainty in the system, which might model our uncertainty in the speed of

sound, while the function g constitutes the unanticipated and non-parametric uncertainty in

the system. Since Q = Qbk, in what follows, we simply use the former to indicate both the

domain of interest and the domain in which the mathematical model is properly defined.

We can restate problem (3.3.1) in weak form as

g1(ug (p), v) = a' (ubk(p), V) - FI(v) = 0 VV E U; (3.3.2a)

where U = Vbk = H(Q),

a,(w,v) = (1 + iqP) Vw -Viidx - p 2 j w'U dx; (3.3.2b)

and

FgP (v) =p (2X2 + eX2 + g) ;v d x. (3.3.2c)

To assess the performance of the PBDW formulation for various configurations, we define

the true field utrue as the solution to (3.3.1) for some strue CPbk and for the following two

choices of the "bias" g

0 perfect model;

g := (3.3.3a)

I = 0.5(e-x + 1.3 cos(1.37rX2)) imperfect model.

On the other hand, we define the bk manifold as

Mbk := {ug=o(p): p E pbk}._ (3.3.3b)

Figure 3-2 shows the true field for three choices of the wave number y and for the two

choices of the bias g. We approximate the solution using a triangular P5 finite element dis-

cretization (AF = 3312). The use of a high-order method is here motivated by the smoothness

of the true field.
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Figure 3-2: Application to a synthetic acoustic problem: visualization of the truth solutions
associated with the synthetic Helmholtz problem for perfect (g = 0 ) and imperfect (g = )models.

3.3.2 Construction of the PBDW spaces

Recalling the definition of the inner product for U in (3.2.1), we build the background spaces

{ZN}N using the weak-Greedy algorithm based on the residual estimator

AIk(tr ) = inf ue(ubk(1L))jIu';
E :ZEZN

where 11 I 1u' denotes the dual norm. Figure 3-3 shows the behavior of the best-fit error over

~trainCpb

1 ii I utrue(P)EW max N (3.3.4)

where ptbain is a uniform discretization of Pbk PbI = 20. We observe that for the perfect

model E' rapidly converges to zero as N increases. On the other hand, in the case of imper-

fect model, E' exhibits a plateau for N > 4. This can be explained recalling the discussion

in section 2.1.2: as N increases, the modeling error dominates over the discretization error.

In this synthetic example, we model the observation by a Gaussian convolution with
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Figure 3-3: Application to a synthetic acoustic problem: best-fit error Ej' (3.3.4) for perfect and
imperfect model (-y = 1).

standard deviation r = 0.02:

f(v, x) = C(x) exp x- y) v(y) dy;

where C(x) > 0 is such that f(1, x) 1 for all x E Q. Figure 3-4 shows the behavior of

the stability constant /N,M with M for three different choices of the threshold in Algorithm

3.2.1 and for three different values of N for -y = 1. On the other hand, Figure 3-5 shows

the behavior of the condition number of the matrix (2.3.2b) with M. We remark that the

stabilization stage of Algorithm 3.2.1 is performed only for tol > 0, while the approximation

stage is performed only for tol < 1.

100 100 10

-N= 2 ----N=-2 ----N=2 *-
10-1 .N=4 10 1N=4 .N=4

.N=6 . N=6 . N=6 --

410 10-2 10 01
100 10 10 10 10 10 10 0 10

Mf M M

(a) tol =1 (b) tol = 0.2 (c) tol= 0

Figure 3-4: Application to a synthetic acoustic problem: behavior of 3 N,M with M for three
different choices of the threshold tol in Algorithm 3.2.1 and for three different values of N (-y = 1).

We observe that the stabilization stage of Algorithm 3.2.1 significantly improves the

stability of the variational formulation and consequently of the saddle point linear system.

We further observe that for large values of M the condition number of the saddle system is

slightly smaller if we consider tol < 1.
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Figure 3-5: Application to a synthetic acoustic problem: behavior of the condition number of the
matrix (2.3.2b) with M for three different choices of tol in Algorithm 3.2.1 and for three different
values of N (-y = 1).

3.3.3 Results of the data assimilation procedure

We first visualize the PBDW state estimates for two distinct choices of utrue. We consider

p = 7.5, and we consider utrue = ug=o(p) and Utrue = ug=j([); PBDW state estimates are

based on the background ZN=5 and on M = 32 measurements chosen using Algorithm 3.2.1

with tol = 0.2. Figure 3-6 shows (the real part of) the true state, the PBDW state estimate

u*, the deduced background z* and the update 1*. We observe that for utrue = Ug0 (/1)

the update 7* is negligible; the reason is that the true state is well-approximated by its

projection over ZN. On the other hand, for utrue = ug= (p) we observe that the update is

appreciable, and plays a significant role in improving the accuracy of the state estimate u*.

These results strenghten the interpretation of the components of the PBDW state estimate

provided in Chapter 2.

We now assess the performance of the data assimilation procedure. Towards this end,

we compute the maximum L 2 error over c pbk

E _:= max HUtrue(P) - u*(A)IIL2(Q) (3.3.5)
ra tb..in . Iutrue(p At)IL2(Q)

where u*(pt) denotes the PBDW state estimate associated with utrUe(A), and 0tni = 20.

Figure 3-7 shows the behavior of Er with M for three different choices of the threshold

in Algorithm 3.2.1 and for three different values of N. We observe that the stabilization

procedure for the selection of the sensors' locations leads to a significant improvement of the

performances for small values of M. On the other hand, as M increases, our results show

that selecting well-separated observation points improves performances. We further observe
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Figure 3-6: Application to a synthetic acoustic problem: visualization of the PBDW state estimates
for N = 5, M = 32. The states in Figures (a) and (e) correspond to A = 7.5. The black points in
Figures (a) and (e) indicate the transducers' locations.

that increasing N improves performances in the case of perfect model; on the other hand,

in the case of imperfect model, increasing N from 4 to 6 does not have any effect. This is

in good agreement with the plot in Figure 3-3.
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Figure 3-7: Application to a synthetic acoustic problem: behavior of E*Le (3.3.5) with M for
three different choices of tol in Algorithm 3.2.1 and for three different values of N.
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Figure 3-8 shows the anticipated and unanticipated mean fractions of the state

Iz* (p)|
meanP IIu* ) anticipated,

and

mean 1 I , unanticipated.
1"E rai I * (p)

We observe that in the case of perfect model the update component of the state is essentially

negligible, while it is significant in the case of imperfect model to address the deficiencies of

the primary approximation. This confirms the results in Figure 3-6.
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Figure 3-8: Application to a synthetic acoustic problem: behavior of the anticipated and unantic-
ipated fractions of the state for perfect and imperfect models (N = 4, tol = 0.2, y = 1).

Figure 3-9 investigates the behavior of Em (3.3.5) with M for three different choices of

- in (3.2.1). We observe that while in the case of perfect model, performances are essentially

independent of the choice of -y, in the case of imperfect model - in which the secondary

approximation provided by the update is crucial to guarantee an accurate reconstruction -

the choice of the parameter y is extremely important for large values of M. As y increases,

the smoothing effect of the H' term in the inner product (3.2.1) decreases, and Rut',

approaches C(x)exp (--2I- -obs2), which clearly is not suited to capture the low-order

components of the error utrue - z*. On the other hand, for sufficiently large M, we envision

that too small values of -y might not be able to capture high-order components of the error

Utrue _ z*. We further address this point in Chapter 6.
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Figure 3-9: Application to a synthetic acoustic problem: behavior of E (3.3.5) with M for

three different choices of y (N = 4, tol = 0.2).

3.4 A physical system: the thermal patch experiment

3.4.1 Experimental apparatus

The thermal patch system consists of a 1.5[mm] thick acrylic sheet heated from behind by

a resistive patch. Heat is generated through an electrical resistance with input power equal

to 0.667W. The goal of the data assimilation procedure is to estimate the temperature field

over a portion Qobs,dim of the external surface of the plate at the steady-state limit.

We use an IR camera (Fluke Ti 9) to take measurements in the rectangular region

Qobs,dim = [-23.85,23.85] x [-17.85, 17.85][mm] centered on the patch. Figure 3-10 shows

the IR camera. After the patch power is turned on, we take measurements using a sampling

time of 4 seconds until steady state is reached; the total duration of the experiment is

roughly 5 minutes. The external temperature is about 20'C, roughly constant throughout

the experiment. Each surface measurement taken from the IR camera corresponds to 160 x

120 pixel-wise measurements; the pixel size is roughly Ahdevice = 0.3[mm], which is much

smaller than the spatial length scale of the phenomenon of interest.

In view of the mathematical description of the problem, we present formal definitions

for the geometric quantities involved. First, we introduce the domain Qbk,dim c R3 corre-

sponding to the three-dimensional acrylic sheet. We denote by fpatch,dim c R2 the surface

of the sheet attached to the patch, and we denote by fin,dim the face of the sheet that

contains ppatch,dim. We recall that Qobs,dim c aqbk,dim is the region in which the IR camera

takes measurements. Then, we introduce the Cartesian coordinate system xdimXimxdim;

according to our definitions, the IR camera takes measurements in the xdimxim plane. Fig-

ure 3-11 clarifies the definitions of Qobs,dim Qbk,dim ppatch,dim and fin,dim and shows the
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Figure 3-10: Thermal patch experiment: IR camera.

characteristic dimensions of the patch.

bk,dim

Qobs,dim

dim

dimx
2

XdimI1

pin,dim

Figure 3-11: Thermal patch experiment: mathematical
22.606mm, H = 9.271mm.

pin,dim

patch dim

L

description of the acrylic sheet. L =

In order to estimate the noise level in the dataset, we compute the difference Uobsdim _

ufilt,dim where the field obs,,dim is obtained directly from the IR camera, and Ufilt,dim is

obtained applying a Wiener filter (see, e.g., [136]) based on a 3 by 3 pixel averaging to the

field uobs,dim. Figure 3-12 shows two spatial slices of the difference uobs,dim - ufit,dim. By

comparing ufilt,dim and uobs,dim, we deduce that the magnitude of noise in the measurements

is approximately 0.50C, roughly independent of the spatial position.
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Figure 3-12: Thermal patch experiment: comparison between filtered and unfiltered fields. Figure
(a): observed thermal field nobs,dim. Figures (b) and (c): spatial slices of the difference uobs dim _
ufilt,dim

3.4.2 Engineering motivation

We shall now motivate this model problem from the engineering standpoint. Full-field

information is typically not available; in practical applications, we envision a system with a

local sensor or a small sensor array. For this reason, we want to design a data assimilation

state estimation procedure that is able to reconstruct the full field based on a small amount

of local measurements.

Since the JR camera provides full-field information, in this work, we synthetize local

measurements - the experimental input to our methods - from the JR camera to obtain

i(m obs s) where the observation functional i(-, ions) is designed to represent a

local measurement in the sensor location yFrt s E obs. We observe that the iR camera

permits us to conduct convergence studies that would typically not be feasible in actual

field deployment.

3.4.3 Mathematical model and background space

We resort to a steady-state heat-transfer model in which we rely on a Robin boundary

condition to describe the heat-exchange between the patch and the sheet. In more detail,

we consider the bk model for the thermal field ubk,dim : Qbk,dim -+ R:

_Aubk,dim = 0, in qbk,dim

'OUbkdim + (Ubkdim _ Eroomdim) Xim patch,dim on pin,dim (3.4.1)

r, Aubkdim = 0 on 0~bk,dim \ pin,dim
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where -y is the convective heat transfer coefficient, K is the thermal conductivity of acrylic,

Eroom,dim - 20 0 Q= 293K) is the room temperature, and gdim is the incoming flux, which

models the heat exchange between the patch and the plate. Textbook values for the model

parameters are K = 0.2[W/(m - K)], = 10[W/(m 2 K)]. We remark that the value of -y is

computed as -y = Nu . Here, Kair = 0.0257[W/(m- K)] is the thermal conductivity of air,

L = 22.606mm is the length of the edge of the patch (see Figure 3-11), Nu = 0.59(Ra) 1/ 4

is the Nusselt number, and Ra = 5.9 .10
4 is the Rayleigh number defined as Ra = ,gAEL

vce

where g = 9.81 [m/s2], V = 1.81 -10- 5 [M 2 /s] is the kinematic viscosity of air, 1 = /300[1/K]

is the thermal expansioncoefficient, a = 1.9 . 10- 5 [m 2/s] is the thermal diffusivity of air,

and AE = 50'C(= 50K) is a rough approximation of the temperature difference between

the far-field and the center of the patch.

Given the thermal field ubk,dim, we introduce the non-dimensional counterpart

u bk W)-=Ubkdim(LX) _ Eroom,dim (3.4.2)
AE

We observe that ubk ubk ([I) satisfies

-Aubk (1) = 0, in Qbk,

n"ubk() +Aubk(p) = g on t in, (3.4.3a)

I9ubk(I) = 0 on&Qbk \ in,

where /t = L- /K ~ 1.13 and g is defined as follows:

g (X) = C Xrpatch (X). (3.4.3b)

We observe that ubk depends on the parameters p and C. Since the model is linear

with respect to C and our ultimate goal is to define a linear space associated with the bk

manifold, we can simply set C = 1. On the other hand, assuming that the estimate of K is

accurate and that -y ~ 10 5W/m2 , we obtain that p E pbk = [0.5650,1.650]. We can thus

define the bk manifold as follows:

Mbk _ bk() -os. : p E Pbk (3.4.4)
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We further introduce the weak form of the bk model (3.4.3): given p E pbk, find ubk() E

Vbk such that

gbk,,(Ubk(P) v) = a' (ubk (/_), v) - F"(v) = 0 Vv E Vbk; (3.4.5a)

where Vbk = H1(Qbk),

a"(w, v) = j Vw -Vvdx + p j wvds; (3.4.5b)

and

F(v) = rpatch vdx. (3.4.5c)

We observe that our parametrized model encodes the uncertainty in the material proper-

ties -y and K. On the other hand, it does not take into account the nonlinear effects associated

to natural convection, and to the heat-exchange between the patch and the sheet. The latter

represent the non-parametric uncertainty in the model.

The background space ZN associated with (3.4.3)-(3.4.4) is built using the weak-Greedy

algorithm. More in detail, we apply the weak-Greedy algorithm based on the residual

estimator

Abk([) = inf ||Gk'U bk (t,))II(
V= -bk VN

to build Z C Vbk, where ||-I(vbk), denotes the dual norm. Then, we restrict the space Zbk

to the domain of interest = Qobs to form ZN. To compute the solution to the bk model,

we appeal to a P3 continuous Finite Element discretization based on K = 40000 degrees of

freedom.

3.4.4 Best-knowledge and observed thermal fields

We now show plots of the observed and bk fields. For convenience, we consider non-

dimensional fields - which are based on the non-dimensionalization (3.4.2). Furthermore, to

simplify the comparison, we scale the bk fields such that max eobs ubk(x) = max eobs Uobs W

This corresponds to adjust the value of C in the bk model (3.4.3). Figures 3-13(a), (b) and

(c) show the non-dimensional observed field Uobs as measured by the IR camera, the bk field
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ubk for ft = 1.13 and the error field uobs - Ubk. Figures 3-13(d), (e) and (f) show the bk

field ubk for three different values of p. We observe that ubk is symmetric with respect to

X3 = 0 for each value of p , while uobs is markedly asymmetric. This is clearly related to

the nonlinear effects of natural convection.
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Figure 3-14 shows the basis (1,(2,(3 of the three-dimensional space ZN, while Figure

3-15 shows the behavior of the L 2 relative discretization error computed as

relbkE := max
Npbrkin

U (i) _ HZN,L2 Ubk L2 (f0bs)

Ubk(PI) IIL2 (Qob.)

(3.4.6)

where 1 ZN,L2 denotes the projection over ZN with respect to the L2 norm, Ptrainis a uniform

discretization of pbk, Ntrain = 20, and of the L2 relative best-fit error computed as

relbest-fitEN'
INobs - riZN,L2 UObs IIL2(QObs)

11uobs IL2(Qobs)
(3.4.7)

We observe that for N > 3 the best-fit error remains essentially constant, while the dis-

cretization error decreases exponentially with N.
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3.4.5 Numerical results

We now present the results of the application of the PBDW data assimilation procedure to

the thermal patch problem. We here apply our procedure to the non-dimensional field, and

we synthesize local measurements to obtain tmbs = (uobs, Xobs) where

f(v, X) = C(x) exp (- IIX - Y112 v(y) dy,

r > 0 and C(x) > 0 is such that f(1, x) = 1 for all x E Q. Recalling the definitions of

Chapter 3.4, our goal is to estimate the thermal field in Q = Qobs

Figure 3-16 shows the behavior of El

Ere' . =, M --
Robs (A) _ UN,M() L2(Q)

I obs (1 1 L2 (Q)

(3.4.8)

with respect to M for four values of N and for two values of r, r = 0.02 (rdim = 0.452[mm]),

and r = 0.1 (rdim = 2.26[mm]). To build the update space, we set -y = 1 in the inner product
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(3.2.1), and we run the SGreedy-plus algorithm using the threshold tol = 0.2. We observe

that reducing the value of r deteriorates the performance of our approach. This issue does

not seem to be solvable by simply tuning the value of -y. We argue that this is related to

the fact that as r -4 0+, the PBDW becomes inconsistent: we have indeed that as r goes to

zero the dual norm of the functional j(., ombs) diverges.
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Figure 3-16: Application to the thermal patch experiment: behavior of EM(3.4.8) with M for
three values of N and for two values of rGauss (y = 1, tol = 0.2).

Figure 3-17 shows the behavior of the anticipated and unanticipated fractions of the

state. We observe that due to the model error the unanticipated fraction is significant.
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Figure 3-17: Application to the thermal patch experiment: behavior of the anticipated and unan-
ticipated fractions of the state (y = 1, tol = 0.2, rGauss = 0.1, N = 2).

3.5 Conclusions

In this chapter, we discussed the PBDW approach for perfect measurements. We presented

an a priori error analysis, which shows the quasi-optimality of the PBDW state estimate,

and an adaptive procedure for the selection of the observation centers. Numerical results

illustrated the role of the different elements of the formulation - namely, the background

space, the inner product, and the choice of the observation centers.
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The use of rapid-convergent background spaces {ZN}N allows us to properly take into

account parametric uncertainty in the system, and thus leads to accurate state reconstruc-

tions in the case of moderate model error. In addition, the stabilization strategy for the

selection of the observation centers allows us to consider N ~ M. On the other hand, nu-

merical results showed that the main issue of the formulation is the slow convergence with

M. This is explained by the poor approximation properties provided by the update space,

especially for nearly pointwise measurements. We address this issue in the case of pointwise

measurements in Chapter 6.
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Chapter 4

A posteriori error estimation and

output prediction

We present and analyze an experimental L 2- a posteriori error estimation procedure based on

Monte Carlo sampling of observation functionals. Given J possibly noisy local measurements

over the domain Q, {fbs} 1 , and a state estimate u* for the true field utrue, we provide

confidence intervals for the L2 error in state E = HU true - U*IIL2(Q ), and the error in L 2

outputs EL = IL(utrue) - 1(u*)I. We further present an adaptive strategy, which relies on

the proposed error estimation procedure, to automatically enrich the PBDW background

space ZN based on unmodeled physics identified through data assimilation of a select few

configurations.

We provide an outline of the chapter. In section 4.1, we introduce the problem of valida-

tion and we introduce our method; we further illustrate the application of our techniques to

three data assimilation tasks. In section 4.2, we derive a confidence interval CL for the error

in L 2 functional outputs; we also unfold the confidence interval to develop estimates for the

output L(utrue). In section 4.3, we discuss how to extend our technique to the estimation of

the L 2 error in state. Then, in section 4.4, we illustrate the application to subsequent state

estimation. Finally, in sections 4.5 and 4.6 we present a number of numerical results.
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4.1 Validation: definition and application to output prediction

and state estimation

4.1.1 A posteriori error estimation

According to the definition of AIAA ([57]), validation ([163]) is the process of determining the

degree to which a model is an accurate representation of the real world from the perspective

of the intended uses of the model. From a mathematical standpoint, validation is the process

of estimating the error in our model in a suitable metric of interest, e.g. a suitable norm or

seminorm.

Given the estimate u* of the system's state utrue over a specified spatial domain Q C Rd,

our goal is to estimate the L2 (Q) state-estimation error, and the error in L 2 (Q) output

functionals based on J experimental measurements {obs}J. We shall denote by E =

HUitrue - u *11L2 (Q) the L 2 (Q) state-estimation error, and by EL = IL(utrue) - L(u*) the

error in the L 2 output L : L2 (Q) -+ R. We shall further describe the measurements as

eobs - e 3true ohs v) + ej, where xobs E Q is the transducer location, the constant v > 0

denotes the spatial width of the transducer, and ej is a random disturbance. The functional

f(., xybs, V) takes into account the averaging process performed by the experimental device.

In this work we follow a frequentist approach to derive confidence intervals for the error

in state and output. For either E or E, we first build a Monte Carlo estimate for the

error (denoted by either EL or E). Then, we build lower and upper error bounds for the

difference between the estimated error and the true error (either EL - EL or E - E) based on

standard large-sample methods (see, e.g., [183, Chapter 8]). In more detail, we identify three

different error sources, here called finite-v error, finite-J error, and finite-noise error. Finite-

v error is related to the finite spatial width v of the transducer (which prevents us from

computing pointwise values of the error field). Finite-J error is related to the finite number

of measurements available. Finally, finite-noise error is related to the random error in the

measurements. We propose actionable lower and upper error bounds that take into account

finite-J and finite-noise error in the estimate. Furthermore, we develop a mathematical

theory to assess the conditions under which finite-v error is small. We observe that, while

we prescribe a probabilistic model for the observational disturbances, we do not make any

assumption on the error field utrue - u* apart from a very weak regularity hypothesis.

Large-sample methods - on which we rely to address finite-J and finite-noise errors -
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have already been extensively used to assess the accuracy of computational models in the

field of Validation and Verification (see, e.g., [1961). However, the idea of applying a Monte

Carlo approach to estimate the L 2 error in state and the error in output evaluations is new:

rather than comparing experimental measurements of the output with simulation prediction

for the output, we exploit (quasi-)pointwise experimental measurements to deduce the error

in output functionals of interest.

From the perspective of uncertainty quantification, our method complements Bayesian

techniques [49, 50, 55, 164, 165] in that we make few assumptions on the error field utrue _

U If substantial prior information about the error field is available, we envision that

our approach might be outperformed by suitable Bayesian techniques. In absence of such

information our frequentist approach can still be applied and will yield good results in

particular if the model error is not too large.

From the perspective of uncertainty reduction, our approach may be viewed as the

experimental extension of recent efforts in variance reduction techniques for Monte Carlo

simulations. In more detail, the idea of using a surrogate model - in this case the state

estimate u* - to reduce the variance of a Monte Carlo process is related to the classical

control variates method (see, e.g., [189, Chapter 41) and to a number of more recent works

for the estimation of statistical outputs of stochastic ODEs ([94, 95]), and stochastic PDEs

([13, 224, 161]).

Our method relies on the assumption that sensor locations are drawn randomly from a

given distribution and that the disturbance is homoscedastic. Measurements in arbitrary

spatial points can be acquired by appealing to robotic observation platforms. We refer to

[142] for an application of the former data acquisition system to acoustics. On the other

hand, we observe that in distributed sensor networks ([68, 187]) locations should be selected

among a set of candidate grid points; in section 4.2, we discuss how to extend our procedure

to this scenario. Finally, the assumption of homoscedastic random noise is convenient for

the analysis and is reasonably accurate in many engineering applications. In Appendix B,

we discuss the extension of our theory to heteroscedastic noise.

4.1.2 Applications

Although the validation procedure is primarily designed to assess the accuracy of the

(PBDW) state estimate u*, we further apply our error estimator to three different tasks:
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output prediction, data-driven empirical enrichment of the PBDW background space ZN,

and adaptive selection of the PBDW tunable parameters. The first two tasks are illustrated

in this chapter, while the third task is discussed in Chapter 6.

Output prediction: exploiting the linearity of L, we employ our technique to provide

lower and upper bounds for the quantity of interest L(utrue). We demonstrate that, by

applying the Monte Carlo procedure to the output error instead of to the true field, and

exploiting the proximity of u* to utrue, we can significantly reduce the variance of the process

and thus improve the output estimate L(u*) for the output L(utrue).

Data-driven empirical enrichment of the PBDW background space ZN: we

provide a strategy to systematically incorporate the unmodelled physics identified by the

update r* E UM to augment the background space ZN for subsequent data assimilation.

The goal is to reduce the number of observations for future configurations. The strategy,

which is designed for a many-query scenario and was first presented in [143], relies on the a

posteriori error estimator to guide the data-driven enrichment.

Adaptive selection of the PBDW tunable parameters: as explained in Chapter 2,

PBDW depends on the tunable parameter > 0, and potentially also on other parameters

related to the norm 11- 1 of the space U. In Chapter 6, we discuss a strategy to systematically

select the value(s) of the hyper-parameter(s) based on estimates of the error in state.

4.2 A posteriori error estimation in L 2 functionals

4.2.1 General framework

We first introduce the problem we wish to address together with a number of definitions

and assumptions. Given the true deterministic field utrue . Qobs -+ R, an estimate for utrue,

U Qobs -* R, and the associated state estimation error e := utrue - u*, we wish to exploit

J local assessment observations to compute a confidence interval CL for the error

EL = L (e), (4.2.1)

where L : L 2 (Q) -+ R is of the form

L(w) := o( (x) w(x) dx, (4.2.2)
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and the kernel ( : Q - R is a L2 (Q) function such that L is bounded in L2 (Q).

In order to develop the mathematical analysis, we assume that the v-neighborhood Q,

of Q, QV := Ix E Qobs : dist(x, Q) < v}, is compactly embedded in sobs,, . C obs, for

some v > 0.

We model the experimental observations at "point" Xobs as

obs __ (true, vobs) + Ej, j = 1, ... , J. (4.2.3)

The random variables E1, ... , Ej are J independent identically distributed (i.i.d.) random

variables such that Ej - (0, U 2 ) for j = 1, ... , J. The functional f(., V, Xzbs) . L 2 (Qobs) -* R

is defined as the convolution

i, ) job Wd,v(I 3 1) xsw (x) dx. (4.2.4a)

The convolutional kernel Wd,v is given by

wd,v(r) = (d) (r (4.2.4b)
Vd vi

where v, C(d) > 0 are given constants, and w(.) is a positive function such that w(p) = 0

for p > 1. We emphasize that the constant v > 0 reflects the filter width of the transducer,

assumed small compared to the characteristic length-scale of the true field, while Xobs C Q

reflects the transducer position. Finally, the function w describes the local averaging process

and is analogous to the spread function employed in blurring/deblurring of images. In

anticipation of the analysis, we also introduce the low-pass filter operator YF : L 2 (Qobs)

L 2 (Q) such that

Yv(w)(x) = f(w, v, x), Vx E Q. (4.2.5)

We can now introduce the limited observations error estimator EL as

EL (J, v) := ((bs) err. (4.2.6)
Sj=1
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Here, ferr err are defined as

Serr _obs _ * Xobs (2a)

We observe that {b, are taken experimentally, while {e(u*, V, Xqbs)}j are computed nu-

merically. Recalling (4.2.5) and (4.2.3), we also observe that

ferr = f(Utrue oXbs) + oj (u*,V, bs) (xbs) + Ej.

In order to address the problem of estimating EL using the pointwise estimator E, we

identify three different sources of error.

Finite-v error: since the transducers have finite spatial width, we can only measure an

approximation of the pointwise values of utrue

Finite-J error: since the number of measurements is limited, only a finite number of

error evaluations are available.

Finite-noise error: since measurements are affected by homoscedastic error, we can

only observe a noisy value of f(utrue I ).bs

To formalize these definitions, we introduce the perfect unlimited observations error

estimator

EC(v) = L(v (e)), (4.2.8)

and then the finite-v error

A (v) := IEL - E (v), (4.2.9)

and the combined finite-J and finite-noise error

AJ (J, V) := fEL(v) - EL (J, v)I. (4.2.10)

We emphasize that Av is deterministic, while A " is random.

We now present the outline of the remainder of this section. In section 4.2.2, we propose

an actionable procedure to estimate a confidence interval for EL(v). Then, in section 4.2.3,
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we illustrate how to exploit the confidence interval for Eg(v) to update the estimate of

the output L(utrue). In these two sections, we assume that the finite-v error is negligible.

Finally, in section 4.2.4, we provide conditions under which the finite-v error is small.

4.2.2 Construction of the confidence interval

Finite-noise and finite-J error

In order to derive an asymptotic bound for the finite-noise and finite-J error, it is first

convenient to introduce a probabilistic interpretation of the quantities introduced in section

4.2.1. Towards this end, we assume that the observation points {xbs} are realizations of

the J i.i.d. random variables Xl,... , Xj - Uniform(Q) such that Xi and Ej are independent

for each i,j = 1, ... , J. As a consequence, recalling (4.2.7), we have that {frr} are

realizations of the i.i.d. random variables L rr= Y(e)(Xj) + ej and

Er (v) = E [IQI ((Xj) Lerr] E Zbs] , (4.2.11)

where Zqbs = IQ((X.)Lerr is introduced to simplify the notation.33

We observe that EC is the sample mean associated with the realizations {zbs _ s

therefore, EL is an unbiased estimator for EL (v), and we can apply the Central Limit The-

orem (see, e.g., [119, Theorem 21.1]) to derive an approximate confidence interval for EL.

We thus obtain:

Of"(J, v, a) = [ jB , a) UB )
(4.2.12)

0 1=-eJ ,)jer87q-/ 2 (J -1), EL(J, v) + 1sgeObs% -/(J - 1)] (21)

where t-1 ,/ 2 (J - 1) is the (1 - a/2) quantile of the t-distribution with J - 1 degrees of

- b =V1 1_ I(jbs- os , os' J ,ziosfreedom, and ohs = - - (zybs _ gobs)2, 7obs - ohs

The confidence interval Q'a is asymptotically correct for E, its size vanishes as J

goes to infinity, and it can be computed in real time (0(J)-computational complexity).

In addition, the quantity s ~eLst1-a/2(J - 1) asymptotically bounds the finite-J and

finite-noise error A, 5 in (4.2.10) with confidence 1 - a. We remark that this procedure

can be extended to the case of multiple outputs. We refer to [51] for a thorough analysis

of multivariate normal confidence regions. We further observe that other non-parametric
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strategies for the construction of confidence regions can be applied in lieu of the normal

confidence intervals employed in this work. In this respect , we mention bootstrap confidence

intervals (see [71, 69] and [228, Chapter 8] ).

Our construction relies on the assumption that we can take measurements in arbitrary

spatial points. Next remark shows how to extend our approach to the case in which sensor

locations should be selected among a set of candidate grid points.

Remark 4.2.1. We shall now discuss the case in which sensor locations should be selected

among a set of candidate grid points {xrid} 1 . With this in mind, we shall define the

functional L grid : C(Q) -+ R as

AF

Lgrid(U) - I~I u(4rid) ((Xrid) w,, (4.2.13)
i=1

where {wi 1 is a set of suitable weights such that E Mi w= 1. We shall further define

the probability distribution pgrid such that pgrid(X rid) = wi, i = 1, .. ./.

Exploiting the definitions above, it is straightforward to verify that if X1, .. , Xj are i. i. d.

random variables such that Xj ~ pgrid then

E [|QI((XJ)Lyrr = grid(y(e)) j = 1, ... J

Therefore, provided that j|grid(Fy(e)) - L (FT(e))I is small, we can rely on J to estimate

E (v). This observation suggests (for smooth problems) a grid informed by high-order

quadrature schemes.

Computational procedure

Algorithm 4.2.1 outlines the computational procedure to generate the confidence interval

C ' for Eg (v). Provided that A' (v) is negligible, we can rely on the same procedure to

estimate EL.

The computational cost associated with the procedure is very limited. If the approx-

imated field u* is discretized through the Finite Element method ([18]), calculation of

f(u*, V, xgbs) requires a search to find the element of the FE triangulation to which xobs

belongs. For structured grids, this operation is independent of the mesh size, while for un-

structured grids it scales in general with the size of the mesh. In both cases, the cost is

94



negligible if compared to the cost of acquiring experimental data.

If sensor locations should be selected among a set of grid points {zfrid},IV (cf. Remark

4.2.1), we first introduce the functional jgrid (4.2.13) by selecting the weights {wi}Yi 1 ; then

we draw {bs } from X1, ... , Xj pgrid, and we collect the corresponding experimental

results {bs} . The remainder of the Algorithm (steps 2-4) remains unchanged.

Algorithm 4.2.1 Confidence region for E (v)

Input J number of measurements

u* : Qobs - R approximated field

Output CO' confidence interval for EL (v)

1: Draw {Xbs}J from X1 , ... , Xj - Uniform(Q), and collect the experimental results

2: Compute err tobs _ f* Xbs)for=1,...,J

3: EC (J, v) :=err( (obs)

4: Compute the confidence region C5' of (4.2.12).

4.2.3 Variance analysis and output updates

Proposition 4.2.1 provides a formula for the asymptotic behavior of the square of sebs

defined in (4.2.12).

Proposition 4.2.1. Let {Xj}3 and {e}j be two i.i.d. random sequences such that X ~

Uniform(Q) and ej ~ (0, o, 2). Then, if Xj and ej are independent for all j, we have

lim (sebs 2 (V[(X)Yv(e)(X)] + E[((X) 2]o 2), (4.2.14)
J-+oo

where the limit is in the almost sure sense.

Proof. Recalling the law of large numbers, it is sufficient to show that

V[Zobs] = IQ1 2 (V[((X) F(e)(X)] + E[((X) 2] U2 ),

where Zobs = IQ(X)(F,(e)(X) + E), a.nd X ~ Uniform(Q) and e ~ (0, C,
2 ) are two inde-
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pendent random variables. Since X, e are independent, E[f(X) g(E)] = E[f(X)] E[g(F)] for

any pair (f, g) of measurable functions (see, e.g., [119, Theorem 10.1]). Therefore, we obtain

E[Zobs] = E[I QI(X)F,(e) (X) + E)]

= AQI(EK(X).F(e)(X))] + IE[((X)] E[]= I[()J, e X
=0

and

E[(Zobs) 21 = KI 2 (E[(((X)Fv(e)(X))2] + E[((X) 2] E[E 2] +2E[((X) 2.F,(e)(X)] E[e]).

2 =0

= |0| 2 (E[(((X)J7,(e)(X))2] + E[(X)2] 2).

Thesis follows recalling that V[W] = E[W2 ] - (E[W]) 2 for any random variable W. El

The limit (4.2.14) and the confidence interval (4.2.12) show that the variance of the

Monte Carlo process is the sum of two contributions: the first one is related to the accuracy

of the state estimate u*, the second one is related to the magnitude of the noise. The first

term vanishes when utrue = U* (perfect approximation), while the second term vanishes when

the measurements are noise-free. Provided that the noise is small, if the error e = utrue - *

is also small, we can accurately estimate the error for modest values of J.

Due to the linearity of L, and provided that the finite-v error is negligible, we can also

use our error estimator E to improve the estimate for the output. We have indeed that

lim L(u*) + EL(J, v) = L(u* - F(u*)) + L(h,(utrue)) L(Utrue). (4.2.15)
J-+oo

Clearly, the variance associated with the process L(u*) + E(J, v) satisfies (4.2.14). On the

other hand, if we apply the Monte Carlo procedure to the true field, we obtain

lim (sebs) 2 -
2 (V[C(X) Jv(Ut rue)(X)] + E[((X) 2]o.2)

J-+00

Thus, by applying the Monte Carlo procedure to the output error instead of to the true

field, we can significantly reduce the variance associated to the process and thus improve

the output estimate even for modest values of J. This idea is related to control variates

method for variance reduction ([1891), and also to multi-level Monte Carlo approaches ([94,
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95, 13, 224, 161]). In section 4.5, we assess numerically the practical relevance of (4.2.15).

4.2.4 Analysis of the finite-v error

In section 4.2.2, we have proposed an actionable procedure to compute a confidence region

C ' for EL(v). In this section, we investigate under what assumptions we can neglect the

finite-v error A'c(v) = IEL - Ec(v) and then interpret C'"I as an appropriate confidence

interval for EL. We refer to Appendix A for a rigorous discussion of the finite-v error.

We present the error bound for A' (v). We assume that the filter width v is such that

Q, cc Q; we further assume that w(r) < M for all r > 0 and for some M > 0. Then, if

Ve E Lq(Q,) for some q > d, we have

I Ic -E11L2Q CI~(Q) (4.2.16)

where C, depends on the exponent q, on the dimension d, and on the filter shape w. We

observe that bound (4.2.16) is not actionable since ||Ve1iLq (Q,) is unknown; in section 4.5,

we investigate numerically the actual magnitude of A' (v) for the problems considered.

Unlike finite-J and finite-noise error, finite-v error admits a physical interpretation: it

is a balance between the filter width v and the characteristic spatial length scale of the

error field. Furthermore, finite-v error is related to the so-called minimum detectable signal

in radar systems [185] since it represents a way of assessing the maximum accuracy of our

estimate. However, in radar systems this concept has a different physical interpretation: it

is the ratio between signal and noise.

4.3 A posteriori L2 error estimation

4.3.1 General framework

We now tailor the analysis of section 4.2 to the a posteriori error estimation of the L 2(Q)_

error E = Ilutrue - u*IL2(Q). Due to the nonlinearity of E, the procedure is more involved;

however, the same ideas apply also to this case.
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Given {rr}J introduced in (4.2.7), we define the limited observations error estimator

E(J, v) :(tgrr)2. (4.3.1)
j=1

Then, we define the perfect unlimited observations error estimator

E (v) := ||Tv(e)||y (Q. (4.3.2)

Finally, we define the finite-v error

A"(v) := IE - Ec(v), (4.3.3)

and the combined finite-N and finite-noise error

A "(J, V) := IZ (v) - E(J, v)I. (4.3.4)

In the remainder of this section, we first propose a confidence interval for E'(v), and

we present an error bound for AV(v).

4.3.2 Construction of the confidence interval

Finite-noise and finite-J error

We first consider the case in which the variance o 2 associated with the random noise is

known a priori. Given J i.i.d. random variables Xl, ... , Xj - Uniform(Q), we define the

random variables Yobs - II( (Lerr) 2 _ a2 ), where Ljrr = 7'(e)(X) + Ej. We observe thatradm aials3j 3

jE Ybs _ (go(v) . Therefore, assuming that 2 is known and exploiting the positivity

of E (v), we can apply the Central Limit Theorem to derive an approximate confidence

interval for E0 (v):

CJ (J, V,, 1_J,)- - 2 (J - b1)sje),
Sa) [\((mod (J, V, ar) ) - -t //J + I (4.3.5a)

((mod (J, V, 0))2 + / til-a/ 2 (J - 1)s eyobsJ)j
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Here, (a)+ = max{a, 0}, the modified estimator Emod is defined as

Emod (J, V, 0) = E(,I) (4.3.5b)

while tl-,/2(J - 1) is the (1 - a/2) quantile of the t-distribution with J - 1 degrees of

freedom, and seyobsj is the sample standard deviation associated with yobs:

bsJ : - 1 IQI(err)2 - (E(J, v))) (4.3.5c)

We now consider the case in which a c [JLB, UUBJ for some known constants ULB, OUB >

0. Since gyobs g is independent of o 2, the noise variance a 2 only shifts the confidence region

C"'' along the real axis. Therefore, finite-J and finite-noise errors can be asymptotically

decoupled in the limit of J -* oc. The latter observation helps us manage uncertainty

through the value of o2: if we are confident that a E [JLB, JUB], we can modify (4.3.5) as

follows:

CJ(J, V, a, 0-) = (Emod,LB(PUVU)) - 1-a/ 2 (J- )Seyobsj )

L)' -(4.3.6a)

2 t i c/ J-1 yb
(Emod,UB PVI)) + 7 / seYobsj)

where Emod,LB(J, V, a), and EmodUB(J, v, a) are defined as

Emod,LB(J, (( 2 V, B)7 Emod,UB(J, V, 2 B

(4.3.6b)

Computational procedure

Algorithm 4.3.1 summarizes the computational procedure. Unlike the case of L 2 outputs,

we must provide an estimate for a2 . As for L 2 functionals, if the finite-v error is modest,

we can employ the same procedure to estimate E.
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Algorithm 4.3.1 Confidence region for E (v)

Input J number of measurements

OLB, clUB lower and upper bound for the noise standard deviation a

U* : Qobs - R approximated field

Output CJ4" confidence interval for E'(v)

1: Draw {xbs} from X1 ,...,Xj - Uniform(Q), and collect the experimental results
{fobs}

2: Compute fkrr _ robs -e *,v,x s) for j =,.,

3: Z (J, V) := 1 Q(f rr)2.

4: Compute the confidence region C0"" of (4.3.6).

4.3.3 Analysis of the finite-v error

Following the discussion in section 4.2.4, we assume that (i) v Cc Q, (ii) w(r) < M for all

r > 0 and for some M > 0, and (iii) Ve E Lq(Q,) for some q > d. Then, it is possible to

prove the following estimate

A"(v)Q .C V1n vl-/4IVe||te (,), (4.3.7)

where C, > 0. As for L 2 functionals, finite-v error A"(v) depends on the balance between

filter width v and characteristic spatial length scale of the error field. We refer to Appendix

A for the proof of (4.3.7), and to the numerical results for a rigorous assessment of the

practical effect of this contribution for a controlled synthetic example.

4.4 Application to subsequent state estimation

We consider the scenario in which during the offline stage (cf. Algorithm 2.4.1, Chapter 2.4)

we have the opportunity to acquire data from a number of system configurations (associated

with different values of the parameter). Our goal is to exploit these offline experimental

data to reduce the number of observations for future configurations. Towards this end,

we wish to augment the background space ZNbk based on the results of the PBDW data

assimilation procedure. To differentiate between offline and online measurements, we denote

by Moff the amount of experimental measurements available offline, and by Mon the amount
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of experimental measurements available during the online stage. We here assume that

Mon < Moff -

Algorithm 4.4.1 summarises the computational procedure used to augment the back-

ground space during the offline stage. This procedure was first proposed in 1143, section 5.8].

The function [u*] = PBDW (ZN, {Xobs}M, {eobs}M=1) indicates the application of the PBDW

state estimation procedure based on the background ZN, and on the measurements {obs

f(1true, , oMs 1; the function E(J, v) = a-posteriori(u*, {xbs. os}f) refers

to the application of Algorithm 4.3.1 for -LB = oUB = 0, and f ebs true o)bs= 1

Finally, we denote by {Ck IK the system configurations associated with the available offline

experiments, and we denote by utrue(Ck) and U*(Ck) the true state and the state estimate

associated with the configuration Ck. The procedure can be easily extended to noisy mea-

surements. In section 4.6, we present numerical results for a synthetic acoustic problem; we

refer to 143, section 5.8] for an application to a physical system.

Algorithm 4.4.1 Data-Driven Empirical Enrichment of the background space

Input ZNbk background space

Mff (Jff) number of offline measurements used for training (validation)

Mon number of online measurements used for training

Nmax maximum dimension of the background space

{Ck iK system configurations available for comprehensive testing

Output ZN,,,x enriched background space

1: for N= Nbk,...,Nm-ax-1 do
2: Choose transducers' locations {x m sIM", {xqhs}Jgf

3: for k = 1, ... , K do
4: Compute the state estimate [u*(Ck)] PBDW (ZN, {Imobs I { ys(Ckob M o)

5: Estimate the L2 error Ek(Joff, v) = a-posteriori(u*, {xohs}jofk, {fohs(Ck)}jo-)

6: end for

7: Compute k* := arg max Ek(Joff, V)
k=1,...,K Iju*(Ck)11L2(Q)

8: Compute the state estimate [u*(Ck*)] = PBDW (ZN, bs M bs(Ck*) M

9: Compute ZN+1 ZN E spanfu*(Ck*)- HZN U(Ck*)I
10: end for
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At each iteration of the external f or loop, we first estimate the state for each configura-

tion Ck based on M0 , measurements, and we estimate the L2 error Ilutrue(C) - U*(Ck) IIL2(Q).

Then, we compute the index k* that maximizes the error estimate over all configurations.

Finally, we estimate the state for the k*-th configuration based on Meff measurements and

we augment the space ZN with the update * (Ck-) = u* (CA) - 1 ZN u* (C-). We note that

the error estimator E plays the same role as the error bound AN(p) in the weak-Greedy

algorithm (cf. Algorithm 2.1.1, Chapter 2.1.2). This is possible because Greedy techniques

do not exploit the structure of the parameter (or configuration) space, which is not in general

observable in the current framework. We further observe that we perform state estimation

based on Moff measurements only once per iterations.

The value Nma should be chosen based on (i) the offline computational and experimental

budget (i.e., the amount of offline experiments that can be performed), and (ii) the amount

of online experimental measurements Mor. To explain the latter, we shall remember that we

should at least guarantee that the PBDW state estimation procedure is stable: this implies

that the inf-sup constant #N,MO. should exceed a given threshold for N = Nbk, ... , Na.

The condition 3 N,M > tol for N = Nbk, .. . , Nma can then be easily imposed as additional

termination condition in the external f or loop in Algorithm 4.4.1.

4.5 Numerical results (I): error estimation

4.5.1 Application to a synthetic thermal problem

We first assess our computational procedures through a synthetic problem. Towards this

end, we consider the parametric problem:

-V - (r([p)Vu([)) = 0 in qobs

r (P)at"L) =g on I 1 U F2 U r 3  (4.5.1a)

UWp) = 0 on F 4
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where Qobs = U9= 1 Qj, and

(X , /)I = { in Q1,

in Qj+j, i = 1,.. ., 8;
g(x) = 0

1 - 2x,

on F1,

on F 2 ,

on F 3.

(4.5.1b)

Figure 4-1 shows the computational domain. We consider the domain of interest Q = Q5. In

order to assess our method, we generate the true field utrue and the approximate field u* by

considering the solution to (4.5.1) obtained using a Finite Element (FE) solver for different

choices of the parameter p:

Utrue true = [1, 1, 1, 1, 1, 1, 1, ]), U* = U(/* 1, 1.2, 1.5, 0.6, 1.6, 1.3, 1.1, 1

We resort to a IP3 Finite Element discretization with K = 37249 degrees of freedom. Figure

4-2 shows the true field and the error field over Qobs and highlights the domain of interest

Q.

Local experimental observations are assumed to be truncated Gaussians with v = 2 rGauss,

and standard deviation equal to rGauss:

Wd,v (r) = C(rGauss, d) exp (24 )X{r<2rGauss}(r).
Gauss)

(4.5.2)

In all the simulations, we consider observations of the form

pos _ f true IoXcbs + C.,

where E, ... , ej are realizations of the i.i.d. Gaussian random variables 61,..., ej ~ .A(0, o.2 )
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Figure 4-1: Thermal block synthetic problem: computational domain.
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Figure 4-2: Thermal block synthetic problem: visualization of the true field and of the error field.
The domain Q is the rectangular region inside the black boundary.

Error in L2 outputs

We first consider the case of L2 outputs. We wish to estimate the error associated with the

output

(Utrue) _ - j true dx,

corresponding to = 1/I0. For this choice of L, we have

(utrue) = -1.9588, C(u*) = -1.8464.

Figure 4-3 shows the behavior of the error estimator EL and of the lower and upper

bounds ''LB and E'UB with respect to J for two values of -. In this test, we consider

a = 0.1, rGauss = 0.1. We observe that in the noise-free case (a = 0), EL is an accurate

approximation of EL for J > 5, and that C '' is a meaningful confidence interval for

EL for J > 10. By comparing Figure 4-3(a), and Figure 4-3(b), we observe that the

convergence with J depends on the magnitude of noise as expected from the theory (see

equation (4.2.14)).

Figure 4-4 shows that we can use our procedure to build a confidence interval for L(utrue)

This observation confirms the result in (4.2.15). We observe that we can use our strategy

to update the estimate for (utrue) for J > 10 in the noise-free case, and for J > 20 in the

noisy case.

Figure 4-5 shows the behavior of the size of the confidence interval, 1 C"I, for two

different choices of a, and for u* = 0 and u* = u(p*). We denote by C 'j the region
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Figure 4-3: Thermal block synthetic problem:

(a = 0.1, rGauss = 0.1, C(utrue - u*) = -0.1124 ).
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Figure 4-4: Thermal block synthetic problem:
rGauss = 0-1, 1(Utrue) 1.9288 ).
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(b) a = 0.25

(1 - a)-confidence interval for the output (a = 0.1,

associated with u* = u(p*), and by CO'2 the region associated with u* = 0. As in the

previous test, we set a = 0.1, rGaus = 0.1. We observe that IjC (J = 10)1~ 10L(J=

150)1 in the noise-free case, and 'C2(J = 10)1 ~ IC '7(J = 40)1 in the noisy case. The

results show that our procedure takes advantage of the proximity of u* to utrue to reduce

the variance of the process. We observe that the variance reduction strategy is less effective

in the presence of experimental noise: this is in good agreement with estimate (4.2.14).

L2 error

We now consider the problem of estimating the L 2 error. Figure 4-6 shows the behavior of

E, Emod, and the lower and upper bounds E h and E B with respect to J and for two

values of -. In this test, we consider a = 0.1, rGauss = 0-05, and we assume that we know

the value of a. We observe that our procedure provides a meaningful upper bound for the

error for J > 5 in the noise-free case, and for J > 20 in the noisy case.
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Figure 4-5: Thermal block synthetic problem: size of the confidence interval I" I for two different
choices of o-, and for u* = 0 and u* = u(p*) ( e = 0.1, rGauss 0-1).
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Figure 4-6: Thermal block synthetic problem: confidence intervals for the L2 (Q) error for two
different choices of a (a = 0.1, rGauss = 0.05, 1U true - U*IIL2(Q) = 0.1756).

Finite-v error

In Figure 4-7, we investigate the effect of the finite width v in output error and L 2 error

estimation1 . Figure 4-7(a) a shows the behavior of EL, Ej ,LB and E'UB with respect to

rGauss for J = 2000. Similarly, Figure 4-7(b) shows the behavior of E, ELB andEf with

rGauss for the same value of J. We observe that as rGauss increases, E and the size of the

confidence regions C' and Cj'" decrease. We further observe that, for our particular choice

of the linear functional and of the error field, the effect of the filter spread is extremely

limited.

'For rGauss > 0.5, condition Qt, CC Qob does not hold; in this case, we simply adjust the constant
C = C(rcauss, d, x) in (4.5.2) by imposing that f(1, v, x) = 1 for any x E Q.
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Figure 4-7: Thermal block synthetic problem: confidence intervals for output error and L2 (Q)
error for different values of rGauss (or = 0, a = 0.1, J = 2000).

Analysis of the finite-grid case

We now consider the case in which sensor locations should be selected among a set of grid

points { Xrid }= 1 . Towards this end, we consider two different cases: (i) a 10 by 10 grid of

equispaced sensors in Q, and (ii) a 10 by 10 grid associated with the Gaussian quadrature

points in Q. Figure 4-8 shows the grids. For the first grid we define Lgrid (4.2.13) using

uniform weights wj = _, while for the second grid we consider the weights associated with

Gaussian quadrature.
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Figure 4-8: Thermal

2
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1.4................
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(b) Gaussian

block synthetic problem: sensor grids.

Figure 4-9 shows the behavior of the confidence intervals for Er: and for L(utrue). We

here set rGauss = 0.1. We observe that for the Gaussian case results are comparable with

the results shown in Figures 4-3 and 4-4; on the other hand, for the uniform case we observe

that Lgrid(y(e)) - I(.F,(e)) is not negligible.
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Figure 4-9: Thermal block synthetic problem: confidence intervals for the output error and for the
L 2(Q) error for different values of rGauss for two finite grids (a- = 0, rGauss = 0.1, & = 0.1).

Validity of the large-sample approximation

We now assess the validity of the normal approximation, which has been exploited to derive

the asymptotic confidence intervals C ' (4.2.12), and C0"" (4.3.6). With this in mind,

for given values of J and a, we select ntrain = 103 different samples {{x4b s(i)}.. }tin

and, for each sample, we compute the error estimator EC(J, v, i) and the confidence interval

0 , (J, , a, i), i = 1,..., ntrain. Then, we estimate the confidence level of the confidence

interval as

CL(J) :=
card i E {l, ... ,ntrain} : E, E J (j, V, a,i)

ntrain
(4.5.3)

where card{.} denotes the cardinality of the set. If the normal assumption holds, we expect

that CL(J) ~ 1 - a. Therefore, the difference |CL(J) - 1 + al can be exploited to assess

the validity of the normal approximation. We can then repeat the same analysis for the L2

error.
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Figure 4-10 shows the results for the output error. In this simulation, we consider 0- = 0

(perfect measurements), a = 0.1 and rGauss = 0.03. Figures 4-10(a) and 4-10(b) show the

histograms of the distribution of E,(J, v, i) for two different values of J. The red continuous

line indicates the true value of the error, while the black dashed line denotes the mean of

E (J, v, i) over the ntrain samples. We observe that for both J = 3 and J = 8 the distribution

of EL(J, v, i) is approximately normal. Figure 4-10(c) shows the behavior of CL(J) with J.

As expected, CL(J) converges to 1 - a as J increases.
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Figure 4-10: Thermal block synthetic problem: assessment of
output error confidence intervals (rGauss = 0.03, a = 0.1, ou = 0).
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Figure 4-11 shows results for the L' error. While for J = 3 the distribution of E(J, v, i)

is slightly asymmetric (Figure 4-11(a)), for J = 8 the distribution is approximately normal

(Figure 4-11(b)). This is a consequence of the Central Limit Theorem. We further observe

that the confidence level CL(J) associated with {C (J, V, a, j)}Ifr does not converge to

1 - a. This is a consequence of the shift determined by the presence of finite-v error.
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Figure 4-11: Thermal block synthetic problem: assessment of
L 2(Q) error confidence intervals (rGauss = 0.03, a = 0.1, 0 = 0).
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4.5.2 Application to the thermal patch experiment

We present results for the thermal patch problem introduced in Chapter 3.4. Given the

domain Q = (-0.5L,0.5L) x (-0.5L,O) (L = 22.606mm), we wish to estimate the error

associated with the output

L(uobs) j ftrue d
AG JO

and the L2 error over Q, IIUobs -u*IIL2(Q). We recall that Uobs corresponds to the dimensional

thermal field estimated by the IR camera, and that [x] = m. With some abuse of notation,

in this section we omit the superscript dim to indicate dimensional quantities.

We now introduce the state estimate u* generated by solving the bk model (3.4.3) for

/ = 1. We observe that

L(uobs) = 50.06400C, L(u*) 52.59650C,

and2

Hluobs - U*IL2(Q) = 0.0529[C x in].

Figure 4-12 shows the observed field Uobs, the error field eobs - Uobs - U and the domain

0.015 65 0.015 10

0.01 550 001

0.005 50 - 0.005 4

0 45V 0 2

~-0.005 40 ~ -0.005 --0.01 30 i0.1i-
-0.015 25 -0.015 -6

-0.02 -0.01 0 0.01 0.02 -0.02 -0.01 0 0.01 0.02

(a) uobs (b) Uobs - U*

Figure 4-12: Thermal patch problem: visualization of the observed field and of the error field.
The domain Q is the rectangular region inside the black curve.

Figure 4-13 shows the results. We observe that for J ~ 10 the 90% confidence interval

for the output error contains the true value, and has a half-amplitude equal to 1'C (Figure

4-13(a)); therefore, we can use EL to update the estimate of the output (Figure 4-13(b)).

2 To provide a benchmark value, we observe that ||uobs - (uobs)H|L2 (o) = 0.1275[C" x M].
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Similarly, we are able to construct meaningful confidence intervals

(Figure 4-13(c)). This shows that, also in this case, our procedure

confidence intervals for modest values of J.
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Figure 4-13: Thermal patch: confidence intervals for the output error, the output, and the L2 (Q)
error (a = 0.1, rGauss = 0.09mm, L(uobs - u*) = -2.5325 0 C, I|uobs - U* II2(n) = 0.0529[Co x m]).

4.6 Numerical results (II): data assimilation

We discuss the application of the data-driven enrichment procedure presented in section

4.4 to the acoustic model problem introduced in Chapter 3.3. For this test, we set Q =

Qobs = (0, 1)2, and we consider truncated Gaussians with v/2 = rGauss = 0.05; since Q,

is not embedded in Qobs, we adjust the constant C = C(rGauss, v, x) by imposing that

i(1, v, x) = 1 for all x E Q. We generate ZNbk=-2 based on the bk model corresponding to

g = 0. Then, we consider ntrain = 15 offline experiments associated with the true model

corresponding to g = , and ntrain different frequencies in pbk = [2, 10]. During the offline

stage, we consider either Moff = 32 or Moff = 64 for training, and Jeff = 10 for validation.

We further assume that the number of measurements available during the online stage is

equal to Mon = 10. During the online stage, we compute the PBDW solution for different

backgrounds and Mon = 10 experimental measurements, and we assess online performance

by computing the relative L2 error

Ereon(,,) := Iutrue(A) - u*(A)IIL2(Qn/IIUtrue(P) - u*(A) IIL2(), (4.6.1)

for n7 test = 100 different values of the parameter pa E pbk

Figure 4-14 shows the the behavior of the relative L2 error Erei,on for different background

spaces - we remark that the background N = 2 corresponds to the case in which no offline
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enrichment is performed - and for Mn = 10 online measurements. The black dots denote

the values of the parameters associated with the configurations Ck* selected during the offline

Greedy procedure. We observe that the offline enrichment dramatically reduces the state

estimation error over all frequencies. This shows that acoustic applications are particularly

suited to the enrichment due to the modal structure of the solution to the PDE. Interestingly,

the Greedy procedure selects updates associated with resonance frequencies.

* N = 2 (no enrichment) N = 2 (no enrichment)
10 N3 102 . N=3

N=4 N=4
N=5 N=5

__100 * 100 * L*

9 10-2 -2

2 4 8 ' 10 2 4 6 8 10
p p

(a) Mff= 32 (b) Moff =64

Figure 4-14: Data-driven enrichment for a synthetic acoustic problem. Behavior of Ereon
(4.6.1) with respect to IL for several N (Nbk = 2, Mff = 32, 64, Joff = 10, ntrain = 15, ntest = 100,
Mon= 10). The black dots denote the values of the parameters indirectly selected during the offline
Greedy procedure.

4.7 Conclusions

We proposed a Monte Carlo experimental procedure that provides confidence intervals for

the L 2 error in state and the error in L 2 outputs. The procedure relies on a state estimate

u* for the true field utrue and on J possibly noisy local experimental functionals, and is

based on the identification of three different sources of error: the finite-v, the finite-J error,

and the finite-noise error. Our approach implicitly takes advantage of variance reduction,

through the proximity of u* to utrue, to provide tight confidence intervals even for modest

values of J.

Numerical results for a synthetic model problem and for the experimental thermal patch

configuration illustrate the elements of the methodology, and clarify the role played by the

finite-v, the finite-J error, and the finite-noise error. While finite-J and finite-noise errors can

be bound through an asymptotically rigorous statistical procedure, the effect of v depends

on the spatial scale of the field and on the transducer resolution, and can only be assessed

on a case-by-case basis.

We also illustrated the application of our error estimation procedure to two data assim-
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ilation tasks: output prediction and data-driven enrichment of the background space ZN in

the PBDW framework. For output prediction, we exploit the linearity of the functional to

provide lower and upper bounds for the quantity of interest L(utrue). Due to the modest

variance of the process e = utrue - U*, we can obtain meaningful confidence intervals for

L(Utrue) for moderate values of J. For the enrichment of the background space ZN, we rely

on the a posteriori error estimator E to properly enrich the background in a Greedy fashion.

Numerical results for a synthetic problem demonstrated the effectivity of the approach.
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Chapter 5

The PBDW approach for localised

state estimation

We study the application of PBDW to the problem of localised state estimation. In more

detail, we study the case in which the bk model is (i) defined over a domain Qbk that

strictly contains the domain of interest Q, and (ii) depends on a high- (possibly infinite-)

dimensional set of parameters. Since in PBDW the bk model is only employed to generate

the background space, the focus of this chapter is on the development of efficient strategies

for the construction of local approximation spaces {ZN}N, which can then be employed in

the PBDW formulation.

We first motivate the problem from an engineering standpoint, we introduce the general

idea of the localisation procedure, and we discuss a simple model problem that explains

under which condition localisation is feasible (section 5.1). Then, we propose the computa-

tional strategy (section 5.2), and we present a number of theoretical results concerning the

optimality of our construction (section 5.3). Finally, in section 5.4, we present numerical

results for two synthetic acoustic problems.

5.1 Preliminary discussion

5.1.1 Localisation strategy

For practical applications, bk mathematical models might be characterized by extremely

high-dimensional parametric uncertainty. In the process of defining the model, we have
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indeed to specify potential topology variations in the structure, material properties, initial

and boundary conditions, just to mention a few; since all these quantities are typically

subject to uncertainty, the effective number of parameters associated with the mathematical

model of a full engineering system might number in the hundreds.

In many cases, we are interested in performing state estimation in a subregion of the

whole system: for acoustic applications, active systems for noise cancellation rely on the

estimation of the sound pressure level in a particular region of interest; in damage identi-

fication, engineers are often able to anticipate the region of the structure of interest that

is more likely prone to failure, and consequently monitor only specific components of the

structure. Once we restrict the model to the domain of interest, we have to face two different

sources of uncertainty: (i) uncertainty in the physical parameters, and (ii) uncertainty in the

boundary conditions at the interface. While we might reasonably assume that the former

source of uncertainty leads to a low-dimensional parametrization, the latter clearly leads to

a high-dimensional and possibly infinite-dimensional parameter space.

To address the uncertainty related to boundary conditions, in this work we propose a

two-stage localisation procedure. If we denote by Qpb the domain associated with the full

system, and by Q C Qpb the domain of interest in which we want to estimate the state,

we introduce the bk domain Qbk such that q c Qbk c Qpb. The domain Qbk is chosen to

exclude many parameters associated with QPb \ Qbk. We further denote by Fi" the portion

of 0 fbk in which boundary conditions are uncertain. Then, we define our bk mathematical

model as follows:

gbk, -(Ubk ()V) (v), V pbk g ET . (5.1.1)

Here, Vbk _ Vbk(Qbk) is a Hilbert space defined over Qbk, Vbk {v E Vbk : Vif =}

'T C T is a, possibly infinite-dimensional, subset of the Sobolev space T = T(P"), P denotes

the parametric uncertainty in the model, gbk,1, : Vbk X V~k - R is a parametrized variational

form defined over Qbk, and f E (V-bk)' is associated with the external forces acting on the

system. Based on the previous definitions, we can define the bk manifolds:

)kbk bk~) : t (E pbk, g (E '} c Vbk, C T, (5.1.2a)
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and

Mbk . {k(P)IQ: (E pbk, g E 'T C Y, C T, (5.1.2b)

where Y = Y(Q) is a suitable Hilbert space defined over Q.

The objective of this chapter is to propose a model-order-reduction strategy that gener-

ates local hierarchical approximation spaces Z1 C ... c ZNmax for the bk manifold Mbk in

(5.1.2b). We observe that if f is infinite-dimensional, we cannot expect that the manifold

12bk can be well-approximated by a low-dimensional linear space. In the next subsection, we

explain - through the vehicle of a particular model problem - why Mbk might nevertheless

be well-approximated by a linear space.

5.1.2 A model problem

In order to get insights about the reduction task described in the previous section, we shall

consider the following differential problem associated with a semi-infinite wave-guide ([96]):

A [ubk ) 2 bk(p) = 0, in Qbk = (0, oo) X (0, 1),

&x2 ubk(X; ,) = 0 X E (0, cO) X {, } (5.1.3)

ubk(X;p) g(X) x E Fin := {0} X (0, 1),

where g E t C T:= H1 / 2 (Pin). We then define the domain of interest Q = (L, oo) x (0, 1).

For simplicity, we set pbk = {i} and we omit the dependence on pt. By exploiting separation

of variables, we obtain that

Nprop 00

ubk(Xi, x2 ) = cn(g) e-icnxi cos(n7rX 2 ) + cn(g)e-nx cos(n7rX2 ),
n=1 n=Nprop+l

where Nprop - , a2 = In 27r 2 
- 12 and the coefficients {cn}, depend on the boundary

condition g. We observe that the first Nprop modes do not decay as xr -÷ oc, while the

remaining modes decay exponentially as xi -* oo. For this reason, we refer to the former as

propagating modes and to the latter as evanescent modes.

Let us now suppose that our goal is to approximate the bk manifold Mbk through a N-
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dimensional linear space ZN under the assumption that T = {g E T : I cn (g) 1 C, V n > 1 }.

For the sake of argument, we aim to guarantee that the L2 best-fit error associated with the

bk manifold, Eb SUPwEMbk infzEZN 11W - ZIIL2(Q), is below a fixed tolerance tol. We can

distinguish between two scenarios:

Nprop > N: since the dimension of the approximation space is less than the number

of propagating modes, we cannot accurately approximate the manifold Mbk through a N-

dimensional linear space for any L > 0;

Nprop < N: in this case we can approximate all propagating modes; therefore, if the

effect of the evanescent modes is negligible, we can approximate the manifold Mbk through

a N-dimensional linear space.

In the latter case, we can indeed choose ZN = span{(n}N I with (n(Xi, X2) = eainxi cos(nirx 2 )

if n < Nprop, and (n(x1, X2) = e anx1 cos(n7rX2) if N > Nprop. Then, assuming that we are

interested in bounding the L2 -error, it is easy to verify that

0aL00 -onL
inf I Iu bk _ Z1122  - O N ((g)) 2 e -nL <_2_ e _ :C bk,UB

ZnZN L2 (cn 4ak,
n=N+1 n=N+1

If L is sufficiently large, ebk,UB is below the specified tolerance tol. We have thus shown

that there exists a space ZN that meets our requirements; we then say that Mbk is N-

reducible. We highlight that our definition of reducibility depends on the dimension N of

the approximation space - which is ultimately related in our setting to the number M of

available experimental observations - on the tolerance (tol > 0), and also on the norm of

interest (the L 2 norm).

The discussion of this section exemplifies two separate issues related to the problem at

hand. The first is related to the possibility of "reducing" a given bk manifold to a N-

dimensional linear space. This is strongly related to the PDE considered and is independent

of the particular reduction algorithm used to build ZN. The second issue is related to

the development of actionable computational procedures to identify the reduced space ZN:

in this respect, we observe that standard pMOR strategies - such as the Weak-Greedy

algorithm employed in the previous chapters - are not well-suited for this problem due to

the high-dimensionality of the parameter space. The remainder of this chapter is devoted

to the development of an actionable computational procedure to build rapid convergent

localised approximation spaces {ZN}N.
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5.2 Methodology

We shall first introduce some notation and preliminary assumptions. We define the solution

maps A: T X pbk _+ Vbk and A: T x pbk Y such that

A(g; t) =ubk(,), A(g; p) = u)k VgET p EPbk. (5.2.1)

We assume that A and A are linear operators such that A(; [t) 0, and A(0; /t) = 0.

Recalling (5.1.1), this corresponds to assume that gbk,/ is a bilinear continuous inf-sup

stable form and f = 0. We note that the extension to f 5 0 is straightforward, while the

extension to nonlinear operators appears difficult and is beyond the scope of this work. We

further endow the Hilbert space T with the inner product (-, -)T and the norm 11 -|IT. We

denote by (., -)y the inner product of Y, and by 11. |y the induced norm. We also denote by

II (-) the projection operator onto Q c Y in Y, and by IIT,(.) the projection operator onto

Q' c T in T. We remark that in our setting the space Y does not have to coincide with the

space U employed in the PBDW formulation.

We first consider the case pbk = {J} (section 5.2.1), and then we consider the extension

to the more general case pbk # {} (section 5.2.2). To simplify notation, if Pbk = JAI

we omit the dependence on the parameter. We state upfront that our procedure intends -

but does not assume - that the bk manifold can be well-approximated by a N-dimensional

linear space. We come back to this point in the analysis.

5.2.1 The case pbk - f}

We introduce the transfer eigenproblem as follows: find (On, An) C (T, R+) such that

(A(#n), A(g))y = An(#n, g)r Vg E T, (5.2.2)

where A1 2 4... > 0. Then, for any N > 0, we define the transfer eigenspace

Z := span{A(#n)}, . (5.2.3)

If we introduce the finite-dimensional discretization of T, T~in = span{gi,... , gWin } C T,

we can define the semi-discrete transfer eigenproblem: find (#/i, A") E (T1 in, R+) such
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that

(A(#fin), A(g))y = AAin(#ni-, g)r Vg E Tin, (5.2.4)

where A>i" > A " ... > Ain > 0. Then, for any N > 0, we define the semi-discrete transfer

eigenspace:

ZteNi := span{A(Ain)}N 1 .(5.25)

Eigenproblem (5.2.4) can also be restated in a fully algebraic form as

U "=Af"Ti in for n =I,..Nn (5.2.6a)

where U, T E Rinin are given by

Ujj = (A(gi), A(ggi))y, Tjj, = (gi, gi,)., i, j' = 1, ... , din, (5.2.6b)

and the vectors {n I }n are related to the transfer-eigenmodes {f$} by the relation

in

#hr = (#in)i gi. (5.2.6c)
i=1

We observe that eigenproblem (5.2.6) is not fully actionable since evaluations of the map

A(.) involve the solution to a PDE: we should thus replace A with the corresponding FE

counterpart AFE. To simplify notation, we here omit the superscript FE.

We recall that the transfer eigenproblem (5.2.2) has been first introduced and studied in

the approximation theory literature (see, e.g., [172]). More recently, Babuska and Lipton in

[8] employed the transfer eigenmodes to define local approximation spaces in the framework

of Generalized Finite Element method ([151, 7]). Similarly, Smetana and Patera in [204]

exploited the eigenmodes associated with the transfer eigenproblem in the context of Port-

Reduced static condensation Reduced Basis Element (PR-scRBE, [171, 721) method.

The transfer eigenproblem is tightly connected to the eigenproblem obtained using POD.

In more detail, if we choose an orthonormal basis {gn}Ar- for Tvi., (5.2.6) reduces to the
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eigenproblem

U )'n - A , forn = 1, ... ,. in;

this corresponds to the eigenproblem obtained by applying POD based on the method of

snapshots ([2021) to the set {A(gn)}'"1. We observe that, unlike the reduced space generated

by POD, the reduced space teAj'i" is independent of the particular basis of T 1 n employed.
ZN'

5.2.2 The case pbk # {}

If pbk 4 {ft}, we adopt a two-stage procedure based on the combination of the method

presented above and POD. We first consider a finite-dimensional discretization of pbk,

{train ={i}=". Then, we solve ntrain transfer eigenproblems, one for each value of

the parameter, to obtain ntrain N-dimensional transfer eigenspaces {Z 'M (pi)}gj". Fi-

nally, we generate the background space ZN by applying POD to the set of snapshots

{A(#On "; Ypi)}i,, where 11Tni'jj| = 1 for all i = 1, . . , ntrain and n= 1, ... , N. Algorithm

5.2.1 summarises the computational procedure. We refer to [204] for a different strategy to

construct ZN when pbk 5 p.

Algorithm 5.2.1 Construction of the localized reduced space

Input rain {i=}1" c pbk discretized parameter space

N dimension of the background space

Output ZN background space

1: Define the basis {gi, ... , gg1in} for Ty, n.

2: for i = 1 ... ntrain do

3: Compute the first N normalised eigenmodes { n}_1 associated with A :

A(.; pi) using (5.2.4), (||4on 1'|r = 1, i = 1, ... , ntrain, n= 1,..., N).

4: end for

5: Apply POD to the set of snapshots {A(#fYn'; A'; i)}n=,.Ni=1.,train to generate ZN C
On A)Iny, =1.nri
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We observe that

; = (A(q5.n; pI), A(#Xnz;,pI)) - Ani (#en , # "n)z)T = AA .

Therefore, the POD reduction implicitly takes into account the relative importance - quan-

tified by the value of the corresponding transfer eigenvalue - of the different snapshots.

Recalling the connection between transfer eigenspace and POD, we can reinterpret the pro-

cedure described in Algorithm (5.2.1) as a Hierarchical Approximate Proper Orthogonal

Decomposition (HAPOD, 1108, 1691). Using terminology introduced in 11081, our approach

corresponds to a distributed approximated POD. We exploit this connection in the analysis.

We finally observe that the construction of ZN requires the solution to ntrain - Xi, PDEs

in the bk domain Qbk, the solution to ntrain eigenproblems of size Ni, and the solution to

an eigenproblem of size ntrain - N. Although computations can be trivially parallelized, we

envision that Algorithm 5.2.1 is affordable only for moderate values of ntrain. Therefore, our

technique can be applied only to low-dimensional parameter spaces pbk

5.3 Analysis

5.3.1 Optimal approximation spaces

In view of the analysis, we present a first definition of optimality in the sense of Kolmogorov

(11721).

Definition 5.3.1. Given N > 0, we say that Z7lm C Y is the optimal N-dimensional

approximation space for A(T) := {A(g) : g E T} if and only if

ZN =arg inf d (A(T), ZN), (5.3.1a)
ZN CY, diMZN=N

where d (A(T), ZN) is defined as

JA(g) - I11 A(g)fly
d (A(T), ZN) = sup ZNA (5.3. 1b)

9ET I1gilT

We say that dN(A(T)) = d (A(T), Zklm) is the Kolmogorov N-width associated with the

manifold A(T).
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Several variants of Kolmogorov N-width have been proposed in the literature. In the

MOR literature, provided that the manifold Mbk is compact, Kolmogorov N-width is defined

as (see, e.g., [56])

dN(M) = inf sup Nu - fl- ully. (5.3.2)
ZNCy, dimZN=N uEMbk ZN

Kolmogorov N-widths measure the performance of the best linear approximation space

of size N: they thus provide a lower bound for the best-fit error associated with any N-

dimensional linear space obtained using a model-reduction technique. For this reason, we can

interpret them as measures of the reducibility of the manifold Mbk. A priori results for the

convergence of the N-width with N are limited to a few model problems: see [100, Example

3.41, [188, Section 8.1.11, [215, Example 2.51, and [8, Theorem 3.3]. Several empirical studies

suggest that N-widths converge rapidly for diffusion-dominated problems, and significantly

less rapidly for advection-dominated problems. Recalling the example in section 5.1.2, this

is strongly related to the concept of evanescence.

Next Proposition shows an interesting relation between (5.3.1b) and (5.3.2).

Proposition 5.3.1. Let us assume that t is the ball of radius C in T, and let us consider

the bk manifold Mbk = A('t). Let us further define the optimal space

ZkN,2 := arg inf sup Iu - fly ully.ZNCY,dimZN=N uEMbk N

Then, Zlm, 2  ZNol, and dN(Mbk) = Cd(A(T)).

Proof. Using the definition of Mbk, we first obtain:

Z =,2 arg infZNCydimz=N supUEMbk jfu - flNu

= arg infZNCydimzN=N supgeTlg|j|<c A(g) - fly A(g)fy

Since A - HN A : T - 3 is a linear operator, we find

= arginfZNcY,diMZN=N supgET,|g||=C - NA(g)ly
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Finally, multiplying by f and recalling (5.3.1), we find

kolm,2 II9g - IYNAg l kolm
ZN =arg C inf s = ZN *

ZNCY,dimZN=N gET ||g11

This proves the first statement of the proof. The second statement can be shown using the

same argument.

We now provide another definition of optimality. For simplicity, we state the definition

for a finite set of snapshots rather than a continuous manifold. We refer to [28, section 2.3]

for the generalization of this definition to manifolds.

Definition 5.3.2. Given N > 0, and the set of snapshots S = {ui}J, we say that ZN C Y

is the optimal N-dimensional approximation space for S in the j
2 -sense if and only if

Z/ = arg inf de2(S, ZN) I ||2 . (5.3.3)
ZNCY,dimZN=N A - ZN ui .

We further define d 2 (S) :dP(S, Zf)

5.3.2 The case pbk - {}

We first state the key result of this section. We refer to [172, Chapter 4, Theorem 2.2] for

the proof.

Proposition 5.3.2. Let A : T -+ Y defined in (5.2.1) be a linear compact operator. Then,

for any N > 0 the space Zt defined in (5.2.3) is the optimal N-dimensional approximation

space for A(T), i.e., Zte= Zkolm. Furthermore,

d(A(T)) = V/AN+1. (5.3.4)

Exploiting Proposition 5.3.1, provided that T is the ball of radius C in T, it follows

that Ze = Zkom,2 and dN(Mbk) = C/AN+1. Next Proposition provides a bound on the

performance of the semi-discrete transfer eigenspace Z ' " (5.2.5).

Proposition 5.3.3. Let T 1i = span{g1, .. iggn} c T, and let Z'ten be the corresponding
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semi-discrete transfer eigenspace (5.2.5) computed based on (5.2.6). For any g C T, we have

|A(g) - ,1,1 A(g)|i y ||A||l 7 y) | g||IT + A ilg|lg|T, (5.3.5)
ZN'TIi

where Aiin is the N + 1 eigenvalue of the semi-discrete eigenproblem (5.2.4).

Proof. Exploiting the linearity of the operator A and applying (5.3.4) in the finite dimen-

sional case, we find

inf xteAin IIA(g) - $iy inf zteNi. IIA(g) - A (UI( g) Ily + 11A (117 g) - O||y

||A| III gllT + inf xte,A I|A ( g) - O|ly

||A|7 y) |uhf g|lT + d( i n), in) ligT,

Thesis follows. E

Proposition 5.3.3 is extremely important in the context of data assimilation. In many

engineering applications, the set of possible inputs might be very high dimensional, but it

might be well-approximated by a lower dimensional space. Proposition 5.3.3 shows that we

can reduce the dimension of the discrete input space without significantly deteriorating the

approximation properties of Z 'Ai". This leads to a two-step reduction, the former on the

input port (based for instance on a polynomial expansion) and the second one in the interior

of the domain (based on the transfer eigenproblem). We observe that by reducing in, we

can substantially reduce the offline computational cost, which is dominated by the solution

to A/in PDEs in the large domain Qbk.

Sufficient conditions for compactness

Proposition 5.3.2 shows that the reduced space built by solving the transfer eigenproblem is

optimal in the sense of Kolmogorov if the solution map A (5.2.1) is compact. We now provide

sufficient conditions under which the solution map associated with a given mathematical

model is compact.

Hypothesis 1. (geometry and functional spaces) Let Qbk c Rd be a d-dimensional

Lipschitz domain, let irn C aQbk be an open set and let Q C Q be either a d-dimensional
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open set or a (d - 1)-dimensional open set. Then, let us introduce the space Vbk = Hs (Qbk),

the space T = Hs-1/ 2 (pin), and the space Y to be either HS(Q) if Q is d-dimensional or

Hs-1/2( () if Q is (d - 1)-dimensional.

We assume that Q and '" satisfy the condition

dist(Ki, F'") =min min I|x - y112 > 0. (5.3.6)

Furthermore, we assume that s is a strictly positive integer, s > 1.

Hypothesis 2. (solution operators) We assume that A: T -+ Vbk is a linear continuous

operator, A E 1(T, Vbk), and that Vbk . Vbk 0 Vbk - R is a continuous bilinear form. We

further assume that for any d-dimensional domain Q* C Qbk, dist(W, r1 l) > 0, there exists

C = C(Qbk, Q*) > 0 such that for any g E T

||Z(g)11H-(Q-) ! C(Qbkl Q*) 11 A 1H3-1(Qbk). (5.3.7)

We briefly comment on the two hypotheses. Recalling the continuity of the trace oper-

ator, Hypothesis 1 implies that there exist C(Vbk, T), C(Vbk, y) > 0 such that

iUllifin 1IT C(Vbk, T)IuIlvbk, IIUIIIy C(Vbk, y)IuIIvbk, Vu E Vbk.

Combining the latter with Hypothesis 2, since g = A(g) ]ri., we find that

C(Vbk, 1r 2 11911 : II 9)IlVbk ! IIA T,Vbk) 1191I

This implies that we can endow T with the inner product (g, g')r = (A(g), A(g'))Vbk.

Next result motivates the previous hypotheses.

Proposition 5.3.4. Let Hypotheses 1 and 2 hold. Then, the operator A is compact from T

to Y.

Proof. We must show that given the sequence {gn}n C T, ||gn||lT 5 C, then the sequence

{A(gn)}n admits a strongly convergent subsequence in Y. Recalling that A E (T, Vbk),

the sequence {A(gn)}n is bounded in Vbk. Then, due to Banach Alaoglu theorem (see,

e.g., [192, Theorem 6.121), there exists a subsequence {A(gnm)}m that converges weakly to
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1 E Vbk. Recalling the definition of weak convergence, and recalling that for any 0 C ))bk

gbk(., E (Vbk)', we have that

0 =gbk (A(gnm), gbk (i, o)0  V C Vobk.

This implies that ft= A(urin). Then, exploiting (5.3.7), we find that for any Q* C Qbk,

dist (0*, in) > 0,

- (gnm)|Hs(Q*) C(QbkQ*)fVi - A(gnm) H8-1(Qbk).

Since Vbk = Hs(Qbk) is compactly embedded in Hs-1(Qbk) (see, e.g., [181, Theorem 1.3.51),

we have that |11 - A(gnm)11H-1(Qbk) -* 0 as m -+ oc.

In order to complete the proof, we must distinguish two cases. If Q C Rd, then thesis

follows by substituting Q* = Q and observing that i - A(gnm)11Hs(Q) = - A(gnmY-

On the other hand, if Q C RC , thesis follows by considering Q* such that Q C OQ* and

then invoking the continuity of the trace operator from Hs(Q*) to Hs-1/2(Q). E

Exploiting Proposition 5.3.4, given a particular bk model, we can assess whether or not

the reduced space based on the transfer eigenmodes is optimal by verifying Hypotheses 1

and 2. We observe that Hypothesis 1 depends only on the geometry and can be trivially

checked. On the other hand, Hypothesis 2 depends on the particular differential operator

and should be checked separately. Typically, the hardest condition to verify is inequality

(5.3.7), known as Caccioppoli's inequality. In Appendix C, we show that the differential

operators associated with (i) linear damped elastodynamics, (ii) Stokes flow, (iii) advection-

diffusion-reaction equation, and (iv) Helmholtz equation satisfy this inequality.

5.3.3 The case pbk # {If}

Exploiting the connection with Hierarchical Approximate Proper Orthogonal Decomposi-

tion, we can show the following Proposition. We refer to [108, Corollary 3.5] for the proof.

We observe that the result does not address whether or not our construction is optimal and

in which sense; this is the subject of ongoing research.

Proposition 5.3.5. Let {gi, ggin} c T be an orthonormal basis of Tgi.. Let us define

Nef = "N+1 An for i = 1,--, ntrain, where A ' n 1 are the transfer eigenvalues
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associated with (5.2.4). Let us further define EPOD = Entrain APOD, where {APOD} Nntrain
hu i J* N n iy

are the POD eigertvalues. Then, if E* > 0 and w E (0, 1) satisfy

te,i 1 - W2

EN < Z 1,... ,lntrain;
ntrain - 1

P V_
N -n ,I -Vntrain

the following holds

1 in M train

nntrain S I A(;) A(gn; Y ) (e*) 2. (5.3.8b)

n=1 i=1

Furthermore, the number of POD modes associated with {A(gpaj)} ,n required to obtain the

accuracy 1 =E* is greater or equal than N:

N < min {N' E {1, ... , ntrain* in} : dN,({A(gn; Pi)}. ,) < ', (5.3.8c)

where d is introduced in Definition 5.3.2.

5.4 Numerical results

5.4.1 Application to a two-dimensional acoustic problem

Problem definition

We consider the following model problem:

-(1 + Ei)AUt rue(p) _ t2Utrue,() = f in Qpb;

on OQpb \ F;49utrue(L) = 0

utrue (A) = gtrue

(5.4.1)

on F;

where E = 10-4, f(x) = 10exp( - 1 ((xi + 0.75)2 + (x 2 - 1.5)2)), 0- = 0.2, Qpb -

(-1, 3) x (0, 3) \ Qcut, Qcut = (-0.75, -0.5) x (0,1), F = {-1} x (0, 3). In all numerical

simulations, we consider gtrue = gA(x2) = sin(rkx 2) for k = 1, 2, 3 and we consider different

choices of p. We then consider the domain of interest Q = (2, 3)2.
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We consider the bk domain Qbk - (0, 3)2 and the bk model

-(1 + ei)Aubk(p) _ 2Ubk() - 0 in Qbk;

au bk(p) - 0 on 0Qbk \ Fin;

u bk (m) = g on Fi"-

(5.4.2)

where Fin = {0} x (0, 3). We observe that for f lQbk = 0 and for any gtrue E H1 / 2 (F) in

(5.4.1) we have that the true field belongs to the bk manifold associated with (5.4.2), that

is U E 4 bk Ubk Ug (/,t) / E pbk, g T -= H 1 / 2 (rin)}. Provided that the

effect of the source term in Qbk is limited, we expect that the true field is close to the bk

manifold Mbk. Figure 5-1(a) shows the geometry.

Computations are based on a P4 FE discretization with APb = 12289 degrees of freedom

in Qpb, gbk = 9409 degrees of freedom in Qbk, and K = 1089 degrees of freedom in Q.

Figure 5-2 shows the field utrue(p) for different gtrue and p. Figure 5-3 shows the variations

in IIutrue(Ip)IIH1(Qpb) as a function of p for gtrue = gi; note that there are ten resonances in

the parameter range pbk _ [2,4].

F

Figure 5-1: Application to

Qpb Qbk

F in

a two-dimensional acoustic problem: computational domain.

The case pbk = {ft}

We first introduce the transfer eigenproblem and the transfer eigenspace. We consider

Y = H 1 (Q) endowed with the inner product (u, v)y = fa Vu - VV + ut dx; we consider

Vbk = H 1 (Qbk) endowed with the inner product (u, v)Vbk = fabk Vu- VV + ut dx; and we

consider T = H 1/2(Fin) endowed with the inner product (u, v)T = (E(u), E(v))Vbk, where
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Utrue (A)

Application to a two-dimensional acoustic problem: visualization of the true field
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A

Figure 5-3: Application to a two-dimensional acoustic problem: behavior of |jubk(i)jH1(abk) with

I (g = gi).

E T -+ Vbk is defined as the solution to the following PDE:

-AE(g) + E(g) = 0 in Qbk, aE(g) = 0 on 4Qbk \ fi"; E(g) = g- onF".

Finally, we consider a Min = 20-dimensional discretization of the input space T based on

Legendre polynomials.

Figure 5-4(a) shows the behavior of with N for three different values of p, while
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Figure 5-4(b) shows the behavior of the relative H1 best-fit error

t|utrue(g) - true

El = max N (5.4.3)
k=1,2,3 I|utrue

where utrue(p) is the solution to (5.4.1) for gtrue = . We observe that X > Eg: this

N+ 1 rl i N*

can be explained by recalling Proposition 5.3.2, and observing that the source term f in

(5.4.1) is negligible far from x* = (-0.75, 1.5). We also observe that the transfer eigenvalues

increase as [L increases: this is in good agreement with the discussion in section 5.1.2 for the

semi-infinite wave-guide.

10- 100

-5- 5
10100

10-10 --- :TIM 10-10 -. p =2

=6--p =6

0 2 4 6 8 0 2 4 6 8
N N

(a) (b)

Figure 5-4: Application to a two-dimensional acoustic problem: transfer eigenproblem. Behavior

of (Figure (a)), and of the H1 best-fit error (5.4.3) (Figure (b)), for three values of p

(Ain = 20).

Figure 5-5 shows the performance of the data assimilation procedure. We here apply

PBDW based on Gaussian functionals (rGauss = 0.1), with observation centers selected

based on SGreedy-plus algorithm (tol = 0.2) and U = Y. To assess performance, we both

consider L2 and H1 maximum relative error over the three choices of the Dirichlet datum

gk(X2) = sin(7rkX 2 ), k = 1, 2,3. By comparing Figures 5-5(a) and (b) with Figure 5-4(b),

we observe that, for sufficiently large M, the state estimation error is of the same order as

||utrue - YyN utrueIly: this is in agreement with the a priori result shown in Chapter 3. We

further observe that convergence with M due to the secondary approximation provided by

the update space is slow: the estimated convergence rate in L 2 norm is roughly M-1 for all

values of N considered' we address this issue in Chapter 6.

'In more detail, E'I" el M-10 for N = 1, 3, Emax M1 for N = 5,6,7.

131



10

10-

101

* N=1
N=3

=5
+N= .

0 N 6

100 101 102
M

(a) L 2

Figure 5-5: Application to a two-dimensional
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acoustic problem: behavior of the relative L 2 and

The case pbk }

We first study the behavior of the eigenvalues associated with the application of Algorithm

5.2.1. We here set ntrain = 11 and i = 20, and we consider different values of N. Figure

5-6(a) shows the behavior of the transfer eigenvalues AdA for different values of P E [2,4],

while Figure 5-6(b) shows the behavior of the POD eigenvalues APOD for different choices of

N. We observe exponential convergence of the POD eigenvalues. We further observe that

POD eigenvalues are weakly affected by the value N: this means that only the first few

transfer eigenmodes contribute to the final background ZN.

100

10~10

0 2 4 6 8 10
N

(a)

-- N

N
-_N
N
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=2
=4
=8
= 16

0 10 20 30 40
N

(b)

Figure 5-6: Application to a two-dimensional acoustic problem: application of Algorithm 5.2.1.
Figure (a): behavior of the transfer eigenvalues Adjrn for different values of pL E [2, 4]. Figure (b):
behavior of the POD eigenvalues AOD for different choices of N (ntrain = 11, Ain = 20).

Figure 5-7 shows the performance of the data assimilation procedure. As in the pre-

vious example, we here apply PBDW based on Gaussian functionals (rGauss = 0.1), with

observation centers selected based on SGreedy-plus algorithm (tol = 0.2) and U = Y. To
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assess performance, we consider H 1 maximum relative error over the three choices of the

Dirichlet datum gk(x2) = sin(7rkx2 ), k = 1, 2, 3, and ntest = 5 different values of p in Pbk

To interpret results, we also report the behavior of the relative H1 best-fit error. We observe

that our procedure is able to generate an extremely accurate background space for the bk

manifold Mbk.
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M

(b) H'

102

Figure 5-7: Application to a two-dimensional acoustic problem: data assimilation results. Figure
(a): behavior of the H1 best-fit error with N. Figure (b): behavior of the PBDW relative H' error
with M. (ntrain = 11, .Nin = 20, ntest = 5).

5.4.2 Application to a three-dimensional acoustic problem

We now consider the three-dimensional model problem:

-(1 + ci)

anUg(p) m

Ug(p) = g

,U g(,L) - pL2Ug(tL) = 0 in qpb = Qbk.

0 on a~pb \ Fin;

on IF";

wherec = 10- 4, pb = (-1.5, 1.5) x (0, 3) x (0, 3)\"cut, Qcut = (-0.5,0.5) x (0.25,0.5) x (0, 1),

Fin = (-1.5, 1.5) x {0} x (0, 3), and we choose Q = (--1.5, 1.5) x (2, 3) x (2, 3). Figure 5-8

shows the geometry. In this example, we consider the bk manifold Mbk = Ubk(1)kIQ

Ug(IL)IQ : E pbk = [2,4], g E T = H1/ 2 (Pin)}; for simplicity, we consider Qpb - Qbk, and
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we consider utrue = ug(p) with

X1 cos(X2) k = 1;

9 = gk(iX3) -- (Xi - X3) log(1 + (Xi + X3)2) k = 2;

sin(37rxlX3) k = 3.

Computations are based on a P3 FE discretization with .Vbk = 50389 degrees of freedom

in Qbk, and K = 6253 degrees of freedom in Q. Figure 5-9 shows the solution to (5.4.4)

for g = gk, k = 1, 2, 3, and p = 4. Figure 5-10 shows the variations in utrue(pIt IH1(bk) as

a function of p for g gi; note that there are several resonances in the parameter range

considered.

3

2.5 ibk Q -- - - -Q - - - -

2 Obk
15 n X3 X3

cut
05 Qcut

2 2
1 . 2 Xi

(a) (b) (c)

Figure 5-8: Application to a three-dimensional acoustic problem: bk and extracted domains.

The case pbk _ jpj

We first introduce the transfer eigenproblem and the transfer eigenspace. We consider

Y = H-(Q), Vbk = H1(Qbk), and T = H1/ 2 (Fin), each of them endowed with the same inner

products considered in section 5.4.1. We further discretize T through a 6 by 6 tensorized

Legendre polynomial expansion (Ain = 36).

Figure 5-11(a) shows the behavior of with N for three different values of p, while

Figure 5-11(b) shows the behavior of the relative H1 best-fit error EY' defined in (5.4.3).

We observe that eigenvalues decay exponentially with a rate that strongly depends on the

wave number p. We further observe that, for the choices of g considered, only a subset

of modes actively contribute to reduce the best-fit error. Interestingly, the same pattern

is also empirically observed in [204, Figure 6.4]. We recall that (cf. Figure 5-10) there

are several resonances close to p = 4 and p = 6, and, due to (approximate) symmetry,
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Figure 5-10: Application to a three-dimensional acoustic problem:
with p ( g = gi).

behavior of |urue(A) H (Qbk)

many quasi-multiple eigenvalues: the former explains the slow convergence of the transfer

eigenvalues; the latter explains the staircase convergence of the best-fit error (essentially,

we must go through various symmetries which provide roughly the same eigenvalue before

finally arriving at the modal structure relevant to our particular solution).

The case pbk 7 pj

We first study the behavior of the eigenvalues associated with the application of Algorithm

5.2.1. We here set ntrain = 8 and AiL = 36, and we consider several values of N. Figure
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Figure 5-11: Application to a three-dimensional acoustic problem: transfer eigenproblem. Behavior

of A " (Figure (a)), and of the H1 relative best-fit error for three values of M (Pin = 36).

5-12(a) shows the behavior of the transfer eigenvalues Ani for different values of p E [2,4],

while Figure 5-12(b) shows the behavior of the POD eigenvalues AnOD for different choices

of N. As in the previous case, we observe exponential convergence of the POD eigenvalues.
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Figure 5-12: Application to a three-dimensional acoustic problem: application of Algorithm 5.2.1.
Figure (a): behavior of the transfer eigenvalues AA- for different values of p C [2,4]. Figure (b):
behavior of the POD eigenvalues APOD for different choices of N (ntrain = 8, /in = 36).

Figure 5-13 shows the performance of the data assimilation procedure. As in the pre-

vious example, we here apply PBDW based on Gaussian functionals (rGauss = 0.1), with

observation centers selected based on SGreedy-plus algorithm (tol = 0.2) and U = Y. To

assess performance, we consider H1 maximum relative error over the three choices of the

Dirichlet datum gk(x2) = sin(rkx2 ), k = 1, 2, 3, and ntiest = 5 different values of A in Pbk.

To interpret results, we also report the behavior of the H1 best-fit error. We observe that,

as N increases, the background accurately represents the elements of the bk manifolds.
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Figure 5-13: Application to a three-dimensional acoustic problem: data assimilation results. Figure
(a): behavior of the H' best-fit error with N. Figure (b): behavior of the PBDW relative H' error
with M. (ntrain = 8, Ai,, = 36, ntest = 5).

5.5 Conclusions

In this chapter, we presented a model reduction procedure for the construction of local

approximation spaces associated with parametric manifolds. This procedure is then em-

ployed to generate background spaces {ZN}N for localised state estimation in the PBDW

framework. The key elements of the technique are the transfer eigenproblem to manage

uncertainty in the boundary conditions, and a POD to manage uncertainty in the model

parameters. As explained in section 5.1, in developing our technique, we intended, but we

did not assume, that the localised solution manifold Mbk is reducible.

Theoretical and numerical results were presented to demonstrate the effectivity of our

approach. If the uncertainty is confined to the boundary conditions of the PDE model, we

proved that our approach is optimal in the sense of Kolmogorov for a wide class of linear

inf-sup stable elliptic operators. In addition, numerical results for two acoustic problems

demonstrated that, for moderate wave numbers, it is possible to generate accurate local

approximation spaces even in presence of high-dimensional uncertainty at the boundaries of

the domain.

We finally highlight that our procedure relies on the assumption that the underlined

PDE model is linear and elliptic. Extensions of the procedure to nonlinear problems do not

appear to be straightforward.
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Chapter 6

The PBDW approach for noisy

measurements

We here discuss the PBDW formulation for pointwise noisy measurements. We introduce

the M experimental observations YM = {yi,... , yM} such that

Ym = Utrue(X obs) + Em, m = 1, ... , M. (6.0.1)

Here, el,..., Em are unknown disturbances caused by either systematic error in the data

acquisition system or experimental random noise, while XM = { xo } denote the

M distinct observation centers contained in the domain of interest Q c Rd associated with

the measurements YM. Then, given the background space ZN C C(Q) and the Hilbert space

(Ul, -), the PBDW state estimate u* associated with the dataset Dm = {(xOMs, Ym)}M=1

is the solution to the minimization statement:

(z*,r/) = arg min IrI 2 + S b (z(ms) + (Xmbs) _ 2
TC (z,'q)EZNX x M M ( X

which corresponds to (2.1.5) for fo = 6Xas, and rbs = Yi, m = 1, ... , M.

We provide an outline of the chapter. In section 6.1, we introduce the key elements

of the theory of Reproducing Kernel Hilbert Spaces (RKHS), and we comment on their

application to our framework. We then present a priori (section 6.2) and a posteriori

(section 6.3) error analyses for the L2 state estimation error, and we discuss an adaptive

strategy to improve performance (section 6.4). Finally, we present numerical results for a
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synthetic model problem, and for the experimental thermal patch configuration.

6.1 Reproducing Kernel Hilbert Spaces for PBDW

6.1.1 Theoretical background

Reproducing Kernel Hilbert Spaces (RKHS) are ubiquitous in several fields of applied mathe-

matics and engineering. The notion of Reproducing Kernel was first introduced by Stanislaw

Zaremba in 1907, and then systematically studied by Aronszajn in 1950 ([5]). Since then,

RKHS have become central in the modern theory of learning for regression and pattern

recognition ([201, 199]), scattered data approximation ([41, 2301), and meshless methods for

solving PDEs ([19]). General introductions of the theory of RKHS are provided in Berlinet,

Thomas-Agnan (129]), and Wendland ([230]). We shall here present a brief overview of the

main definitions and central results from the perspective of scattered data approximation.

An Hilbert space (U,1 -11) is a RKHS if the point evaluation functionals are continuous,

i.e. J, E U' for all x E Q. This is equivalent (cf. [230, Theorem 10.2]) to assume that

there exists a function K : Q x Q -* R such that (i) K(., x) C U for all x E Q, and (ii)

(K(., x), f) = f(x). for all x E Q and f E U. The function K is called Reproducing Kernel.

With some abuse, in what follows, we use notation Kx = K(., x). We observe that Kx is

simply the Riesz element associated with the point evaluation functional Jr, Kx = Ru6o.

A function K : Q x Q -- R is a symmetric positive definite (SPD) kernel if (i) K(x, y) =

K(y, x) for all x, y E Q, and (ii) for any set of N distinct points in Q, {xobs},N i C Q, the

matrix K E RN,N defined as K b, = K(xabsoxs) is positive definite. It is easy to verify

that if U is a RKHS such that point evaluation functionals are linearly independent then

the corresponding reproducing kernel is SPD (cf. [230, Theorem 10.41). The converse is also

true: given the SPD kernel K there exists a RKHS for which K is the reproducing kernel,

which is referred to as native space of K. The latter result is known as Moore-Aronszajn

theorem and was first proved in [5].

Given the SPD kernel K,. it is important to characterize the regularity of the correspond-

ing native space U = U(K). Next Theorem and the subsequent corollary address this point.

Given the function f E L2 (Rd), we denote by f the corresponding Fourier transform.

Theorem 6.1.1. ([230, Theorem 10.121) Suppose that (D E C(Rd) n L'((Rd) is a real-valued

function such that K : Q x Q -+ R defined as K(x, y) = (1(x - y) is a SPD kernel. Then,
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the real space

= f E L2(Rd) n C(Rd): f L2(Rd (6.1.1a)

endowed with the inner product

(f,g) 1 f )(W) dw (6.1.1b)
(27r)d/2 fR d 4 (W)

is the native space of K.

Corollary 6.1.2. ([230, Corollary 10.13]) Suppose that 4 G C(Rd) n L1(Rd) satisfies

ci(1 + IIwI)~, < 12(w) c2(11+ )-s (P(), w E + 2, (6.1.2)

for some c 1 , c 2 > 0 and s > d/2. Let us further suppose that K(x, y) = 4(x - y) is a SPD

kernel. Then, the native space associated with K coincides with the Sobolev space HS(R d).

An important class of kernels, which is employed in the numerical simulations, is given

by the compactly supported radial basis functions of minimal degree (csRBFs), also known

as Wendland functions. This class of kernels was first proposed by Wendland in [229, and

is defined as KX (x, y) = d, k (-Y X - Y112) where x = [k, -y] and

Jd,k (r) P(r) )0 r ; (6.1.3a)
0 r >1.

The polynomial Pd,k has the following form for k = 0, 1 and for all d:

Pd,k(r) (I r)edk k=0 (6.1-3b)
(I - r)ldk+ ((fd,k + 1)r + 1) k = 1

and fd,k = [ + k + 1. We observe that it is possible to generalize (6.1.3b) to the more

general case k E N; we refer to [230, Table 9.1] for the explicit formulas.

Next result clarifies the connection between csRBF and Sobolev spaces. We refer to [230,

Theorem 10.351 for the proof.

Theorem 6.1.3. Let us consider the compactly supported RBF KX, K (x, y) = qOd,ky(||x -

Y112), introduced in (6.1.3). Let Q = R d, and let either one of these conditions hold: (i)
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d > 3, k > 0, or (ii) d > 1, k > 0. Then, the native space for KX is the Sobolev space

H(d+1)/2+k (Rd)

We observe that by restricting ourselves to csRBF kernels, the choice of the inner product

reduces to the choice of the parameters x = [k, -y]: the parameter k determines the Sobolev

regularity of the native space, while the constant 7 influences the characteristic length-scale

of the elements of the update space. Recalling the scaling property of Fourier transform and

(6.1.1), for fixed k we find that the Kernel K,(x, y) = #d,k(711x - Y112) induces the inner

product

(f, (W)W= dw,
(, g)-y = (27r)d/2 Ld (w(w)

where -1 is the Fourier transform of <1(x) = #d,k(Ix 12). We observe that as y decreases, we

penalize more and more high-frequency modes.

6.1.2 PBDW for pointwise measurements with explicit kernels

Algorithm 6.1.1 PBDW approach for pointwise measurements. Offline-online computa-

tional procedure

Offline stage

1: Choose a family of kernels (e.g. (6.1.3))

2: Generate the background ZN C U

3: (If possible) Select the observation centers Xobs .... os E

4: Compute the matrix L (2.3.1)

Onine stage

1: Acquire the measurements yi, ... , YM

2: Choose the parameters of the kernel and the regularizer weight ( (cf. section 6.4)

3: Assemble the matrix (2.3.2b) and solve the linear system (2.3.2b)

4: (If needed) Evaluate the state using (2.3.2a).

The duality between RKHS and SPD kernels has important implications for our discussion.

In Chapters 3, 4 and 5 we first proposed an inner product (., -) and then we appealed

to a FE discretization to compute the Riesz representations of the observation functionals
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(cf. Algorithm 2.4.1, Chapter 2). For pointwise measurements, we might first propose an

explicit SPD kernel, and then appeal to Moore-Aronszajn theorem to recover the variational

formulation. This prevents us from having to solve M FE problems to build the update space

UM. In addition, since K is known explicitly, we can efficiently adapt the characteristic

length-scale of the elements of the update space during the online stage. As discussed in

Chapter 3, this might be extremely important for sufficiently large values of M.

Algorithm 6.1.1 summarises the computational procedure. We observe that during the

online stage we should first select the parameters of the kernel. We discuss how to practically

select these parameters in section 6.4. We further observe that, although we can compute

the solution to (2.3.2b), the matrix Z (2.3.1) is not in general computable. As a consequence,

we cannot estimate the inf-sup constant #N,M (2.2.2). Therefore, we cannot directly apply

the SGreedy-plus algorithm described in Chapter 3 to select the observation centers.

6.2 A priori error analysis for pointwise noisy measurements

We present a priori estimates for the L 2 (Q) state-estimation error IIutrue _UIIL 2 (Q). We state

upfront that in this section we assume that ZN C U. The importance of the error analysis

is twofold. First, it motivates our formulation from a theoretical viewpoint. Second, it

provides insights about the role of the different pieces of our formulation: the regularization

parameter , the background space ZN, the kernel K and the centers XM.

In order to derive error bounds for the L2 (Q) state-estimation error I|utrue - uIIL2(Q),

we must first introduce assumptions on our dataset DM. To our knowledge, three different

scenarios have been considered so far.

1. Random-design regression: the pairs {(xMs, Ym)}M" 1 are drawn independently from a

joint unknown distribution p(x,Y). In this case, the objective of learning is to estimate

the conditional expectation E[YIX = x].

2. Fixed-design regression: the centers XM = {xibs os} are fixed (non-random)

points in Q, while the responses YM = {ym}M1 satisfy ym = true obs) + Em, where

utrue : Q -+ R is the deterministic field of interest and E,... , EM are independent

identically distributed (i.i.d.) random variables with zero mean and variance o2, Em ~

(0, 02).
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3. Scattered data approximation: both centers XM and responses YM are non-random,

and we assume that there exists some unknown 6 > 0 such that ym - utrue (obs I 6

for all m = 1, .. .,I M.

The first scenario has been extensively studied in the statistical learning literature (see, e.g.,

[174, 221]). We refer to [99] for a complete review of the error bounds available. The second

scenario has also been studied in statistics; we refer to the survey [91] for further details

about a specific class of kernels. Finally, the third scenario has been studied in approximation

theory and radial basis functions (see, e.g., [230]). From the modeling perspective, the first

scenario refers to the case in which we do not have control on the observation centers, the

second scenario addresses the problem of random error in the measurements, and the third

scenario addresses the problem of systematic deterministic error. In this thesis, we provide

error bounds for the second and the third scenarios.

6.2.1 Preliminaries

In view of the proofs of the error bounds, we introduce a regularized formulation of the

APBDW statement proposed in this work: given A > 0, > 0, find u* E U such that

U = arg min J (u) : (IAlu ,N +mb) _ ym ) (6.2.1)
UM=1

where the seminorm 11 - A,N is defined as

t|w|A,N = AII1zNw Nw (6.2.2)

We observe that for any A > 0, the function 11 - IA,N is a norm equivalent to 1 -. We also

observe that for A = 0, problem (6.2.1) corresponds to (2.2.7).

Next Proposition summarizes a number of properties of problem (6.2.1).

Proposition 6.2.1. Let 3 N,M > 0. Then, the following hold.

1. For any A > 0, the solution to (6.2.1) exists and is unique. Furthermore, if we introduce

* z* = lzNu,*, we have that 77* E span{fz K and *

span{zN Kombs IM=

2. For any > 0, the solution u* converges to the solution u* to (2.2.7) when A -+ 0+.
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3. For any A > 0, the following bounds hold:

HUtrue _ JIA,N < 2 true IIA,N + , (6.2.3a)lAN 2A

and

lue _ ,*Il (xu) V + t - lutruelA,) , (6.2-3b)

where lluIlf2(xN ) m m obs))2.

We prove each statement separately.

Proof. (statement 1) For any A > 0, u - lIU1,N is strictly convex, while u - VM(u) is

convex. This implies that for any ( > 0 the objective function JAx,(u) = (lall ,N + M(u)

is strictly convex. Therefore, existence and uniqueness of the solution to (6.2.1) follow from

[74, Theorem 3, Chapter 8.21. We observe that x E -N -ZNKX + flZ KX, is

the Riesz representer associated with 6x in (A11, IF- IA,N)- We have indeed that for all v E U

and x E Q

(xANV)A,N = -(HZNKx, v) + (1 iK , v) =(KHZNV + FZ V) = (KX, V) v(X)

Exploiting the representer theorem (see, e.g., [230, Theorem 16.11), we have that u* E

span{ }m 1. As a result, we have that C* E span{Hz N M 1, and z* E span{fl N} S

for any A > 0. E

Proof. (statement 2) Let {Aj} be a real sequence such that A2 -+ 0+. Exploiting the first

statement of Proposition 6.2.1, we have that sequences {I* , {z*\}j belong to finite

dimensional spaces that do not depend on A. Furthermore, applying Lemma 2.2.2, it is

possible to verify that they are uniformly bounded for all j. Therefore, applying Bolzano-

Weierstrass theorem, the sequence {u = * + admits a strongly convergent

subsequence {u4
k}k to E U.

We now show that U = u*. We first observe that

J ,(u* ,,) = Ak ||Zik,, +l? ikj + U* (u,(xs 2 
+ JC (U), k + oc.

m=1<C
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We further observe that for any Ak > 0

JAk,(ujC,) <; JQ,(u*), k = 1,2, ... ,

and by taking the limit on both sides, we obtain

J(l) (u)

Since u* is the unique minimizer of (2.2.7), we must have u* = ^g. Furthermore, by the

same argument, u* is the only limit point of the sequence; therefore, the entire sequence

converges to ^g. Thesis follows. E

Proof. (statement 3) For A > 0, 11 - I|A,N is a norm for U; therefore, estimates (6.2.3a) and

(6.2.3b) follow directly from [129, Corollary 4.3] and [129, Lemma 4.51. The extension to

A = 0 follows by observing that u*, converges to u* when A -+ 0+ (cf. statement 2). E

Given the observation centers XM, and the background space ZN, we define the constant

CN,XM as

|lllL2 (G)
CNXM := SUP ll 1z 1l

2  (6.2.4)
' uuh2,r IIL12 + hd JIU1||2e

where hxM is the fill distance defined as

hxm = sup min lx - obs2. (6.2.5)
XG m=1,...,M

We anticipate that the constant CN,XM enters in the upper bounds for the state-estimation

error. Next Lemma shows a bound for CN,XM that depends on the constant CN,M introduced

in (2.2.10).

Lemma 6.2.1. Let Q be a Lipschitz domain and let U be the Sobolev space HT (Q) with

r > d/2. Let us assume that the inf-sup constant /N,M defined in (2.2.2) is strictly positive

and hxM < 1. Then, the constant CN,xm defined in (6.2.4) is bounded by

1
N, XM - min{cN,M, 1 - h 2 d}C (6.2.6)
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where CN,M is defined in (2.2.10) and C depends on the domain Q and on (., -).

Proof. Let us define the constant

supUIL2 (Q)
CXM h2, 11U112 + 12kM fUI2 (XM)

Recalling [129, Theorem 4.8], CxM is bounded from above by a constant C that does not

depend on M.

Since /N,M > 0, recalling Lemma 2.2.2, we have that

IIrZu 2 + I2(xM) CN,MIUII

where CN,M > 0 is given by the expression in (2.2.10). Then, we observe that

h2,7-IIFIuIIZ 2 + h d JIUI 2 ( = h2[ (IIlhJZkU12 + IUI2(XNI)) + (hM - h) |IUie2(x)

> CN,Mh M Hl 2  - hmd)f 2 IlU I)

> min(CN,M, 1 - h[ (hXM + hkM fl2 (XM)

As a result,

llli2(Q) < (SUP L2 (Q)
CNXM = SUP 2- sup122 IU1 dJU12h2-dsup hy IIzU1| 2 + hkMl f I2(xM) ucU hM 2  d 2(xM)/ min{CN,M, 1 -

<C

Thesis follows. El

Exploiting the definition of CN,M (2.2.10), we find that CN,xM is asymptotically bounded

as M -+ oc for fixed N; on the other hand, the dependence on N heavily depends on

the background ZN. Practical estimates of CN,xM require the solution to a a generalized

eigenproblemi, which involves the matrix Z in (2.3.1); this requires that the basis (1, ... ,(N

satisfies ( = k a,kKe (-) for some {an,k}k and {n,k} C Q, n = 1, ... , N.

'We refer to [103] for a discussion on the use of meshless methods based on csRBF for the solution to
eigenproblems.
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6.2.2 An a priori error bound for scattered data approximation

We state the main result of this section.

Proposition 6.2.2. Let Q be a Lipschitz domain and let U be the Sobolev space H(Q) with

-r > d/2. Let /N,M in (2.2.2) be strictly positive. Let us further assume that measurements

are of the form ym = utrue(X obs) + Em with IemI < 6 form = 1, ... , M.

Then, if utrue E U, the following holds:

HUtrue-uj2() CN,X 21IIU-UtrueI + 2 1)2 + hdMM (6 2 |]Utrue

(6.2.7)

where CN,XM is defined in (6.2.4), and hx, is defined in (6.2.5).

Proof. The proof replicates the argument of [129, Theorem 4.11]. Recalling the definition

of CN,XM, we have

Ilutrue _ UgIIL2() CN,XM M true - t4)11 2 + h M true - U*11 M)

Then, using (6.2.3a) and (6.2.3b), we obtain

HUtrueuj|2( ) CN,XM 2 z utrue 112 +hM (6+

which is the thesis. El

Remark 6.2.1. For quasi-uniform grids, hxM ~ M- 1 d, for M -+ oC, the right-hand side

reduces to

Ilutrue - u I1L2(9) < 0 (I 1zk utrue 1l2 h2M ( 1+ )2 + 62 (1 +A)2 )

ll |UzkLutrue
A =N

By minimizing with respect to A, we obtain that the asymptotically optimal choice of
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is

/ ) 2/3
11= Z 2/3u~ i h U4/3- (6.2.9a)

For this choice of the hyper-parameter, we obtain:

HU true - U IL2(o) < 0 (IIZU true i12/3 h 23 64/3 + 62 M -+ 00. (6.2.9b)

We observe that for any finite 6 > 0, we do not expect convergence in a L2 sense. We also

observe that the optimal value of is directly proportional to 6, inversely proportional to the

background best-fit error |rIzIIutrue|| and decreases as M increases.

Remark 6.2.2. In the case of perfect measurements, estimate (6.2.7) reduces to

Iutrue - u*2(-) < ICN,X zgUtrue 11 2 16h 2,r + hIxM1 ) . (6.2.10)

We can decouple the right-hand side of (6.2.10), as the product of two terms: (i) CN,XM IIZL utrue 2,

and (ii) 16h2, + hkdM. Recalling that CN,XM is asymptotically independent of M (cf.

Lemma 6.2.1 and (2.2.10)), we find that the first contribution is independent of the number

of measurements M; on the other hand, the second contribution is independent of the back-

ground ZN. We thus observe a multiplicative effect between M convergence (associated with

the update) and N convergence (associated with the deduced background). We note, however,

that while the M term is guaranteed to decrease as M increases, in general it is not possible

to guarantee that CN,XM IIzwutrue 2 is monotonic decreasing with N. We investigate such
N

multiplicative effect of the approach in the numerical results.

6.2.3 A priori error bounds for fixed-design regression

In view of the presentation of the main result, we define the matrix A E RN+M,N+M

A [ Ml+K Li (6.2.11a)
LT 0
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associated with the linear system (2.3.2b). Then, we introduce E E RN+M,N+M

0

0

Finally, we introduce M E R N+M,N+M such that

Mi'i := 1 (x) (x) dx, Oi W) = {Kxobs

(i-M

(6.2.11 c)

i = M + 1,

We further decompose the datum yM as

true
YMYM=+E,

true true bs true obs
S= -C ... , CM],

and we define Eaug = [E, 0] C RM+N. We observe that V(Eaug) = a.2E, where E is defined in

(6.2.11). Then, we introduce the solution u*" to (2.2.7) for yM = ytrue and the vectors

of coefficients u*, u*,c=O E RM+N

[ *,U-=O

associated with u* and u*'"-

We can now state the error bound.

Proposition 6.2.3. Let Q be a Lipschitz domain and let U be the Sobolev space HT (Q) with

r > d/2. Let /N,M in (2.2.2) be strictly positive. Then, if utrue E U, the following holds:

E [| 1utrue - U |L2() < 1CN,Xm 16h 2T

trace (A A1 MAC 1 E). Furthermo

+ M )II- utrue 12 +

re, if Utrue E ZN, we have

2a 2 T, (6.2.12)

E [iutrue - U*1 2 ( _) o 2 Ta. (6.2.13)

Proof. We observe that

HU - I*'=|12( ) = (u* - u*=O)T M (u* - u*'o=O) = ET g (A-' M A-) Eaug.
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Then, applying [183, Theorem C, Chapter 14.4], we find

E[|U* - U * HL|2(n01 = or2 trace (A- MA- 1 E) . (6.2.14)

We now distinguish two cases. If utrue C ZN, then u* Y0 = utrue and (6.2.14) implies

(6.2.13). On the other hand, if utru ZN thesis follows by observing that

E - UtrueII12 (] ; 2 1|true - U,0=012(G) + 21E | -- ugI=|2(0

and then combining estimates (6.2.10) and (6.2.14). E

We observe that (6.2.12) can be easily extended to correlated noise by appropriately

modifying the matrix E. We further observe that, unlike in the previous case, it is not

evident how to provide explicit estimates for the optimal value of . However, since 'T is

computable, in the case of perfect model, we can estimate numerically the optimal value of

a priori. We investigate this aspect in the numerical section.

6.3 A posteriori error analysis for pointwise noisy measure-

ments

Next result provides the identity of interest.

Proposition 6.3.1. Let {xbs} I be drawn independently from an uniform distribution

over Q. Let yj = utrue(Xobs) + 6j + ej, where e1, ... ej are i.i.d. random variables such that

Ej ~ (0, or) and 6 1,... 6 j are deterministic unknown disturbances. Let us further assume

that {xobs},1 and {ej} i are independent random sequences.

Then, we have that the mean squared error

MSEyi - U* (X os 2 (6.3.1)
j=1

satisfies

E[MSEj] = Ernean + i+ - 6 Utrue(X) - ug(x) dx) (6.3.2)
jQJJ
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where E ean is defined as follows:

Enean 1 Utrue 2 dx. (6.3.3)

Proof. To simplify notation, we introduce the random sequence {ej = r

We observe that el,..., ej are i.i.d. and E[e?] = I I I Utrue _ uI11)2 2 . Then, exploiting

linearity of the expected value operator and the fact that {xqbs}f 1 and {ei}J i are inde-

pendent, we find

E[MSEj] = Ee] +E ]6 j E[e].
j=1 j=1

Thesis follows. E

We observe that MSEj = E(J,tv = 0) where E is the error estimator defined in

Chapter 4.3.1 for t(-, x, v = 0) = 6,. As discussed in Chapter 4, in absence of systematic

noise (63 0), identity (6.3.2) reduces to

E[MSEj] = Enean +0.2. (6.3.4)

Estimate (6.3.4) shows that for random noise (6j - 0) the mean squared error (6.3.1) can be

used to asymptotically bound the squared L2 (Q) error. Furthermore, since o2 is independent

of the state estimate, minimizing the mean squared error is equivalent to minimize the L 2(Q)

error. The latter observation motivates the adaptive strategy presented in section 6.4.

6.4 Adaptivity

As observed in the previous sections, our procedure depends on a fair amount of design

choices, which include the choice of a number of hyper-parameters and the choice of the

observation centers and background space ZN. In section 6.4.1, we discuss how to exploit

the error analysis to perform some design choices a priori. Then, in section 6.4.2, we discuss

the adaptive strategy used to tune the parameters of the formulation after having acquired

data.
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6.4.1 A priori considerations

We recall that the PBDW state estimate u* is given by

u* := argmin aIHZu2+f + U(X bs) - Ym (6.4.1)
M=1

where ZN = span{(TN 1. We observe that the formulation depends on the regularization

parameter (, the sensor locations XM = {Xmbs}M 1 and the choice of the reproducing kernel

K associated with (U, 1 - 11).

The hyper-parameter > 0 controls the amount of regularization introduced: for = 0,

the solution to (6.4.1) interpolates exactly the data while for -+ 00, the solution to (6.4.1)

converges to the least-squares solution. Our error analysis shows that the choice of strongly

depends on the noise variance a2 and on the maximum systematic error 6 and also on the

accuracy of the model |l|Z Uztrue|f; in some applications, noise level can be estimated from

reanalysis, on the other hand, it is extremely difficult to estimate IUziUtrue| a priori.

Since in this work we employ csRBF kernels, the choice of the kernel K reduces to the

choice of the hyper-parameters k and y in Kx(x, y) = 0d,k(yIjX - Y112), where #d,k is defined

in (6.1.3). As stated in Proposition 6.1.3, the parameter k determines the Sobolev regularity

of the RKHS. Recalling estimate (6.2.9) and Proposition 6.1.3, the optimal value of k should

minimise I|lziutrue h(d+l)/ 2+k: it is thus extremely problem-dependent. The parameter y

regulates the length scale of the kernel functions. In our experience, for small values of

M, the choice of -y weakly influences the results; we can thus pick -y a priori such that the

kernel functions {Kxbs}m share the same length scale with the elements of ZN. On the

other hand, for larger values of M, the choice of -y significantly influences the performance

of the method and it must be adapted using data. We remark that by changing k and -y we

effectively modify the inner product (., -) and thus the penalization term 11 - |1 in (6.4.1).

If we neglect the effect of the sensor locations on the stability constant CN,XM, the

error analysis suggests to choose the observation centers to minimize the fill distance hXM

in (6.2.5). For N ~ M, sensor location might influence significantly the value of CN,X-

As a result, it might be worth to choose the observation centers to maximize CN,XM for

any given M. In Chapter 3, we presented a Greedy strategy (cf. Algorithm 3.2.1) for the

selection of the observation centers that tries to maximize the inf-sup constant #N,M defined
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in (2.2.2) in a Greedy manner. In this respect, we observe that calculations of /N,M (and

also CN,xM) involve computation of the matrix Z in (2.3.1). As observed in section 6.2.1,

computation of accurate approximations of the matrix Z for general background spaces is

unfeasible. Extension of Algorithm 3.2.1 to pointwise measurements is the topic of ongoing

research.

In our numerical simulations, we choose adaptively the regularization parameter and

the kernel parameter -y, while we pick k a priori, and we simply consider equispaced obser-

vation centers. We remark that equispaced observation centers prevent us from considering

N ~ M. In the next section, we present the algorithm used to perform online adaptation.

We note that our adaptation procedure could be also applied to automatically select the

hyper-parameter k.

6.4.2 Adaptive procedure

In the Statistical Learning literature, several approaches have been presented to tune the

design parameters of reguralized regression formulations; we refer to [104, Chapter 71 and

to 11281 for a thorough overview. The adaptive strategy depends on the size of the dataset,

which in our context corresponds to the amount of available transducers. If we denote by L

the number of available transducers and by DL = {(Xobs IW)IL 1 the corresponding dataset,

for large values of L, the holdout method is the most widely used approach. On the other

hand, for small values of L, K-fold cross-validation is typically employed. In the remainder

of this section, we briefly review these techniques and we discuss their application to our

problem.

The holdout method partitions the dataset DL into the two mutually exclusive subsets

= {(ombs, Ym)M=1 and Di = {(xbs, yj . Given the finite dimensional search space

jhyper for ( , -y), we generate the state estimate u* based on the training set and then we

compute the mean squared error over the validation set

MSEj( , y) = (Yj - u (Xzbs)), (6.4.2)

j=1

for each ((, ) in Sjhyper Finally, we choose the state estimate associated with the choice

of ((, ) that minimizes MSEj( ,7) over 5 jhyper Recalling Proposition 6.3.1, if {xgbs} 3

are drawn from an uniform distribution over Q and the disturbances are homoscedastic,
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this choice of the hyper-parameters asymptotically minimizes the L 2 state-estimation error.

This result holds independently of the strategy employed to compute the state estimate and

thus independently of the strategy employed to select the training observation centers. As

discussed in Chapter 4, if u* is an accurate description of the true field utrue, MSEj rapidly

converges to its expected value. Therefore, the number J of measurements that should be

reserved for validation is modest.

Cross-validation is based on the partition of the dataset DL into r equal-sized subsamples

(folds) {Dk)I 1. Of the /-. folds, a single fold is retained for testing and the remaining r, - 1

folds are used for training. The procedure is then repeated r, times with each of the K folds

used once as the validation dataset. In the limit L = r,, the procedure is known as Leave-

One-Out Cross-Validation (LOOCV). We observe that, even for moderate L, /,-fold Cross-

Validation can be quite expensive if s ~ L. For this reason, generalized cross-validation

strategies, which focus on computing computationally inexpensive approximations of the

error indicator, have been developed. We refer to [104, Chapter 7.10] and to the references

therein for further details.

In this paper, we exclusively employ holdout validation and we refer to a future work

for the application of more advanced cross-validation strategies. Motivated by the previous

discussion, in this work, we here choose the validation sensors by sampling uniformly over

6.5 Numerical results

6.5.1 Application to a synthetic two-dimensional acoustic problem

We first consider the two-dimensional acoustic problem introduced in Chapter 3.3. To

assess the performance, we introduce the relative L 2 error averaged over IPbk - ntrain

fields associated with different choices of the parameter p:

E *g(ntrain) := .IU true .) - U*(P)flL2(Q (6.5.1)
avg ntrain E I ue ( I IL2 (Q)

In all our numerical tests, we consider noisy observations with additive Gaussian noise:

iid
yE = UtrUe() + Ef, e 'Z~' K(0, , a) (6.5.2)
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As in Chapter 3.3, we build the background spaces {ZN}N using the weak-Greedy algorithm.

We employ csRBF with k = 1; recalling Proposition 6.1.3, this corresponds to U = H2.5 (R 2 ).

6.5.2 Results of the data assimilation procedure (noise-free case)

We first visualize the PBDW state estimates for two distinct choices of utrue. We consider

p = 6.6, and we consider utrue = ug-o(p) and Utrue = ug=o([u); PBDW state estimates

are based on the background ZN=5 and on M = 25 equispaced measurements. We rely on

holdout validation (J = 12) to choose the value of the hyper-parameters , -y. Figure 6-1

shows (the real part of) the true state, the PBDW state estimate u*, the deduced background

z* and the update q*. As observed in Chapter 3 (cf. Figure 3-6), for utrue = ug=o(p) the

update 74 is negligible; the reason is that the true state is well-approximated by its projection

over ZN. On the other hand, for utrue = ug=j(p) we observe that the update is appreciable,

and plays a significant role in improving the accuracy of the state estimate u*. These results

strenghten the interpretation of the components of the PBDW state estimate provided in

Chapter 2: z* addresses the parametric uncertainty in the model, while r* accomodates

non-parametric uncertainty.
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0 0 0.25 20.6 -03 06L -03 0 3 0 61
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-0. L - 055
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Figure 6-1: Application to a two-dimensional acoustic problem: visualization of the PBDW state
estimates for N =5, M =25, J =12 (perfect measurements). The states in Figures (a) and (e)
correspond to yAt 6.6.

Figure 6-2 shows the convergence of Er*g with N for fixed M and noise-free measure-

ments. We compute E[*.% using (6.5.1) based on ntrain = 20 fields. We observe that conver-
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gence with N is in good qualitative agreement with the behavior of the best-fit error

1 H true(G) - flzN,L2 Utrue ( L2()
N -ntrain bk I true (P)IL2(Q)

train

where HzN,L2 is the projection operator with respect to the L 2 inner product. If Utrue E Mbk,

we observe fast convergence with N; on the other hand, if utrue Mbk, we reach a strictly

positive plateau.

100 100 100
-M=9 -M = 9

M = 25 -.-M = 25
2 10.2 102. M = 64 02- M = 64.

110'
C 0

10' 10 104

-- perfect model
1--imperfect model1

2 4 6 8 2 4 6 8 10 2 4 6 8 10
N N N

(a) L 2 -best fit (b) g = 0 (c) g = j

Figure 6-2: Application to a two-dimensional acoustic problem: convergence of Eel with N for
fixed M for perfect (g = 0) and imperfect (g = g) model. Figure (a) shows the L2-best-fit error.

Figure 6-3 shows the convergence with M for fixed N and noise-free measurements. We

assess performance by computing Ereg in (6.5.1) averaged over ntrain = 20 fields. We observe

that, with the exception of N = 5 for perfect model, the rate of convergence with M weakly

depends on the value of N: in this test, we observe Elei ~ M- with s E [1.3,1.5] for all

cases considered. This empirically confirms the multiplicative effect between N convergence

and M convergence observed in Remark 6.2.2. A possible explanation for the contrasting

results for the case (N = 5, g = 0) is due to discretization effects: since in this case the error

Utrue - z* is highly oscillatory, the adaptive procedure selects large value of the parameter

y that are not well-resolved by the Finite Element mesh used to estimate the norms and to

compute the true solution.

6.5.3 Comparison with H'-PBDW

We now wish to compare the approach presented in this chapter with the original PBDW

approach discussed in Chapter 3. We refer to the former as adaptive PBDW (A-PBDW) and

to the latter as H'-PBDW. For N = 5, we compare the behavior of the averaged L2 -relative

error Erel (6.5.1) for ntrain = 10 different fields. We consider both the case of perfect model
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Figure 6-3: Application to a two-dimensional acoustic problem: convergence of E"' with M for
avgfixed N for perfect (g = 0) and imperfect (g = g) model (I = M/2). Estimated convergence rates

for perfect model: -1.48 (N = 1), -1.30 (N = 3), and -1.00 (N = 5). Estimated convergence rates
for imperfect model: -1.46 (N = 1), -1.32 (N = 3), and -1.32 (N = 5).

and the case of imperfect model. For H'-PBDW we consider Gaussian functionals with

standard deviations rGauss = 0.01 and rGauss = 0.02. In all cases, we consider the same

set of training points chosen based on the SGreedy-plus algorithm presented in Chapter

3. We remark that for A-PBDW we use pointwise measurements, while for H1 -PBDW

measurements are evaluations of the Gaussian functionals.

Figure 6-4 shows the results 2 . We observe that A-PBDW significantly outperforms Hl-

PBDW. The difference becomes even more evident if we consider a smaller value of rGauss-

6.5.4 Interpretation of the hyper-parameters -y and

We investigate the connection between the optimal value of and the signal-to-noise ratio.

In Figure 6-5, we compute the mean squared error over the validation set for the estimation

of the state associated with the parameter p = 5.8. We consider M = 225 and we compute

the mean squared error based on J = 110 measurements. We both consider the case of

perfect model ( g = 0), and the case of imperfect model (g = ). For this test, we employ

the background ZN=5. We observe that the optimal depends on model error and on noise

level. In more detail, we observe that for g = 0, the adaptive procedure selects large values

of regardless of the noise level, while for g = it selects ~ 10-7 for o- = 0.05 and

;z~ 10-5 for o- = 0.4. Therefore, the optimal increases as noise increases, and decreases as

2 We note that, as a result of validation, A-PBDW requires 3/2M measurements, while H'-PBDW only
requires M measurements. We argue, however, that the use of J = M/2 measurements is unnecessary for
noise-free observations. In addition, we might significantly reduce the gap by resorting to more advanced
cross-validation strategies.
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Figure 6-4: Application to a two-dimensional acoustic problem: convergence of E with M for
fixed N for adaptive PBDW (A-PBDW) and for H'-PBDW (N = 5, y = 1).

best-fit error increases. The latter empirical observation is in good agreement with (6.2.9a),

although the latter has been rigorously shown only for systematic noise.

In Figure 6-6, we investigate the influence of the kernel parameter y. We study the

behavior of Edg with M associated with ntrain = 10 different values of the parameter A, for

the five-dimensional background ZN=5 and for two different search spaces jhyPer: in more

detail, in the first case we seek y in {0.1, 0.5, 1}, and in the second case we choose -y in

{ 3, 3.5, 4}. Since we consider perfect measurements, results are not sensitive to the choice of

(. We observe that in the perfect-model case (Figure 6-6(a)) large values of y significantly

improve performance; on the other hand, in the imperfect model case (Figure 6-6(b)), the

first choice of jhyper leads to more accurate results for all values of M considered. This can

be explained by observing that y has to match the length-scale of the field Utrue - *, and

strongly depends on the distance between observations (and thus M). This test motivates

the importance of adapting the value of -y. We remark that adaptation in -y relies on the

availability of explicit expressions for the Riesz elements K,,.
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Figure 6-5: Application to a two-dimensional acoustic problem: interpretation of . Results
correspond to utrue = ug(p = 5.8). (M = 225, J = 112, N = 5).
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Figure 6-6: Application to a two-dimensional acoustic problem: interpretation of y (N = 5, o 0).

6.5.5 Noisy measurements

We first study the behavior of the constant T introduced in (6.2.12). Figures 6-7(a) and

(b) show the behavior of T' for equispaced measurements with respect to the value of and

for two values of 7. We observe that T' is monotonic decreasing in and reaches a lower

bound for -+ oc. Figure 6-7(c) shows the behavior of mine T with respect to the number

of measurements: minC T' is independent of 7 and converges to 0 with rate M- 1.

Figure 6-8 shows performance in presence of noise. As in the previous tests, we assess

performance by computing Erd in (6.5.1) for ntrain = 1 ( = 6.6); to take into account
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Figure 6-7: Application to a two-dimensional acoustic problem: To. Figures (a) and (b): behavior
of To' with for -y = 0.1 and y = 2. Figure (c): behavior of mine T' with M for several values of Y.

randomness in the results, we average over 24 realizations of the random noise. We consider

the background ZN=5. In the case of perfect model, the estimated convergence rate in the

noisy case is roughly M- 0 .5 for all values of standard deviations a considered: this is in

agreement with the results shown in Figure 6-7(c) and with the mathematical analysis. On

the other hand, in the case of imperfect model, the estimated convergence rate in the noisy

case is roughly M-0.4 . Interestingly, also in this case, the convergence rate weakly depends

on o.

100 100

1 = 0.1 - 0.1
--a= 0.2 -- a=0.2

10- or1.4lo

10 102 10 102
M M

(a) g=O,N=5 (b)g.=j,N=5

Figure 6-8: Application to a two-dimensional acoustic problem: convergence with M for fixed N for
perfect (g = 0) and imperfect (g = ) model in presence of homoscedastic Gaussian noise. Estimated
convergence rates for perfect model: -0.5114 (o = 0.1), -0.5091 (a = 0.2), -0.5297 (a = 0.4), and
-0.4641 (a = 1). Estimated convergence rates for imperfect model: -0.4759 (a = 0.1), -0.3235

(a = 0.2), -0.4155 (a = 0.4), and -0.4443 (a = 1).

6.5.6 Application to the thermal patch experiment

We apply our procedure to the thermal patch configuration. For this test, we interpret pixel-

wise measurements as pointwise evaluations associated with the center of the pixel. As in the

previous test, we perform holdout validation for and -y with J = M/2. We assess perfor-
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mance by computing the relative mean squared error MSErei - gobs_ 2 2 obs2

based on the full-field information. Figure 6-9 shows the convergence of MSErel with M for

three values of N.

We observe that, while including the first snapshot leads to a substantial improvement

in the performances, considering N > 1 does not lead to any substantial improvement. We

further observe that for M ~ 100 we reach the estimated noise level

11 0.50C
est A L2()

s uobs IL2(Q)

As M increases, MSErel becomes significantly lower than 0,2s: this can be explained by

observing that for large values of M the amount of pixels used for learning (training plus

validation) is not negligible compared to the entire dataset. For M = 100, the amount of

pixels used for learning is 150, which is 8% of the total number of pixels. This introduces a

bias in our calculation of the relative MSE, MSEre.

100
--- N = 0

2 . N 2

10-4

10-6 2 3
101 10 10

M

Figure 6-9: Application to the thermal patch experiment: convergence of the relative mean squared

error MSEre with M for fixed N.

6.6 Conclusions

In this chapter, we extended the PBDW formulation to pointwise noisy measurements. The

extension relies on an adaptive procedure that properly takes into account the noise level,

and the characteristic length-scale of the difference utrue - z*. Adaptation in the value

of allows us to properly weight the trust in the bk model with respect to the trust in

the experimental measurements. The use of explicit kernels allows us to perform online

adaptation to tune the characteristic length-scale of the update functions. We presented
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a priori and a posteriori error estimates for the L 2 state-estimation error to motivate the

approach from a theoretical standpoint.

We also presented several numerical results to illustrate the different elements of the

formulation. In more detail, numerical experiments demonstrated (i) a multiplicative effect

between N convergence (associated with the primary approximation provided by the back-

ground ZN) and M convergence (associated with the secondary approximation provided by

the update Um), (ii) the practical importance of adapting the shape of the Riesz representers

based on data, (iii) L 2 convergence of the PBDW estimate to the true state even for noisy

measurements, and (iv) the improvement in the convergence rate with M with respect to

the H1 -PBDW formulation considered in the previous chapters.
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Part II

Simulation-Based Classification
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Chapter 7

The microtruss problem

In this chapter, the first one of the second part of the thesis, we introduce the damage identi-

fication problem considered in this work: the microtruss problem. This physical companion

experiment will serve to illustrate and motivate the definitions given in Chapter 1.3.2, and

the computational approach proposed in Chapter 8. We first introduce the experimental

apparatus and procedure (section 7.1); then, following the general paradigm proposed in

[781 and outlined in Chapter 1.4.2, we provide an actionable definition of damage (section

7.2), we describe the data acquisition system, and we introduce the experimental outputs

(section 7.3). In section 7.4, we propose a parametrized mathematical model for the struc-

ture of interest which shall serve to estimate the experimental outputs, and we introduce a

mathematical description of the space of system configurations. In section 7.5, we formalize

the problem of feature extraction and we present the choice of the features for the microtruss

problem, and in section 7.6, we state the classification problem and we summarize all the

key definitions.

7.1 Experimental apparatus

We consider the acrylic microtruss system shown in Figure 7-1. The microtruss consists of

a 4 by 4 lattice of blocks of size fblock X block, eb1ock = 0.25[in], linked together by horizontal

and vertical joints of size Ljoint x hjoint, Ljoint = 1[in] and hjoint = 0.015[in]. The depth of

the microtruss is equal to dmtruss = 1[in]. We state upfront that the actual geometry of the

microtruss is to be considered uncertain due to the (3d-printing) manufacturing process.

For this reason, the values reported above should be interpreted as nominal, and we shall
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refer to the configuration described above as the nominal geometry. We resort to cartesian

coordinates; since the geometry is independent of the third dimension, we use notation

Xdim = Ljoint x = Ljoint x 1 el + Ljoint X2e 2  Ljoint X 1

22

to indicate a physical point in the microtruss; here el and e2 are the canonical unit vectors,

and Ljoint = 1[in] is the non-dimensionalization constant. In what follows we exclusively

refer to non-dimensional quantities unless otherwise indicated. We refer to the blocks using

the matrix notation (i, j), i, j = 1, ... ,4: the i-index corresponds to the x1 position and is

ordered from left to right in Figure 7-1(b); the j-index corresponds to the x2 position and

is ordered from bottom to top in Figure 7-1(b).

Our goal is to detect the presence of added mass on top of block (1, 4) and of block

(4,4). More precisely, we wish to distinguish between K = 4 states of damage: no added

mass (y = 1), added mass on top of block (1, 4) (y = 2), added mass on top of block (4, 4)

(y = 3), added mass on top of both block (1, 4) and block (4,4) (y = 4). Note that state 1

shall correspond to no damage, and states 2, 3, and 4 shall correspond to different damage

configurations. We refer to the case of no added mass as the undamaged case. Figure 7-

1(c) shows the detail of the added mass on top of block (1, 4) for a particular experimental

configuration. Added mass is of the same material as the microtruss system.

Mblack MN(4,4)

3.5

2.5

- 2-
damage

1-0

0,5 Shaker
(11 ttachment

0 1 2 3 4

(a) (b) (c)

Figure 7-1: Microtruss experiment. Figure (a): experimental apparatus. Figure (b): schematic of
undamaged configuration at rest. Figure (c): detail of the added mass on top of block (1, 4).
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7.2 Definition of damage

In view of the definition of damage, we first introduce the non-dimensional ratios

SL := 1+ Veft SR := I + Vright (7.2.1)
VnOM VnOM

where Vnom = h fblock dmtruss, h = j(dblock - hjoint), is a nominal volume, Vieft is the volume

of the added mass on top of block (1, 4), and Vright is the volume of the added mass on top of

block (4,4). We observe that the ratios in (7.2.1) do not rely on any model of the structure.

We can now introduce the function fdam : [1, 2]2 - {1, 2, 3, 4} such that

1 SL, SR < 1.5,

fidamL I2 SL > 1.5, SR < 1.5,
a(sL, SR) (7.2.2)

3 sL < 1.5, SR > 1.5,

4 SL, SR > 1.5.

The function fdam reflects our actionable definition of damage for the structure of interest;

given the system configuration described by the pair (sL, SR), y - fdam(SL, SR) denotes the

corresponding state of damage. For this reason, we refer to fdam as the damage function.

From an engineering perspective, equation (7.2.2) implies that system configurations should

be classified as damaged only if the added mass is "substantial", in our case of volume larger

than 0.5VOm ~ 0.37. 10-3[in 3 ]. We remark that, from a practical perspective, the proper

choice of the threshold is extremely important and should be related to appropriate safety

factors ([242]). In section 7.6 we shall provide a general form for the damage function in

terms of the system configuration.

7.3 Data acquisition and experimental outputs

We rely on a camera to acquire measurements of the X2 displacement of the 16 respective

centers of the blocks as a function of time t associated with Qf different time-harmonic

inputs. The camera is carefully calibrated to permit its use for precise measurement. A

stroboscope flashing at the 10 Hz frame rate of the camera "freezes" the oscillation of the

blocks to yield crisp images suitable for subsequent processing. Frequencies of excitation are

offset by 0.1 Hz from integer values to ensure that each set of 100 consecutively captured im-
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ages corresponds to 100 equally spaced instants in a single period of oscillation. Excitations

are imposed by a linear voice coil actuator attached to the joint between blocks (2, 1) and

(3, 1); Figure 7-1(b) highlights in red the region of the microtruss attached to the actuator.

A linear flexure bearing is used to ensure that the excitation is imposed almost exclusively

in the X2 direction.

We introduce the system configuration C associated with the particular specimen con-

sidered; we defer the formal definition of C to section 7.4. Then, we denote by {f} c

: = [20, 80] [Hz] the input frequencies and we denote by {q7p (t, fq; C)}"__ the raw time

signal for the x2-displacement obtained experimentally for the block (i, j) and the frequency

f Finally, we introduce the fitted amplitude {Ai(f ; C)}J,q and phase { (fq; C)} ,i,q

such that'

qix(t, f;C) ~A. (fq; C) cos (27rf ti + oXP(fq;C)) , i,j = 1, ..., 4, = 1, ..., L.

(7.3.1)

It is convenient to rescale amplitudes and phases as follows:

Ae(fx;C) := "; " . X(f;) C (fq; C) = O (fq; C) -#02,1(fq; C), (7.3.2)

for Anom = 0.25. Figure 7-2 demonstrates the accuracy of the time-harmonic fit for the

blocks (1, 4) and (4,4) in absence of added masses. In section 7.4, we describe how we shall

estimate {AP (fq; C)} and {q#xP (fq; C) } based on simulations.

7.4 Mathematical model for the experimental outputs

We first provide a mathematical description of the nominal geometry at rest. With this in

mind, we introduce the disjoint domains Q1 , Q2, Q3 C , i1 U N 2 U K 3 = Q. The subdomain

Q2 is associated with the region of block (1, 4) subject to potential damage; similarly, the

subdomain Q3 is associated with the region of block (4,4), while Q1 denotes the remainder

of the microtruss. We then recall the geometric parameters SL, SR E [1, 2] in (7.2.1) such

that (sL - 1) Vnom and (SR - 1) Vnom correspond to the volume of the added masses on top

'Amplitudes and phases are estimated using the Matlab function f it ([150]), which relies on Levenberg-
Marquardt algorithm.
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Figure 7-2: Microtruss experiment. Time-harmonic x2-displacement of blocks (1, 4) and (4,4) in
absence of added masses. The shaker input is displacement: Adim cos(27rft)e 2 , Adim = 0.02[in],
f = 35 [Hz].

of blocks (1, 4) and (4,4), respectively. Assuming that the depth of the blocks is uniformly

equal to dmtruss and the width of the block is uniformly equal to fblock, then we have that

(sL - 1) h and (SR - 1) h equal the thickness of the added masses on top of (1, 4) and (4,4),

respectively. Figure 7-3 shows blocks (1, 4) and (4,4) and provides a graphical depiction of

the previous definitions. In what follows, we introduce s := (SL, SR) and we denote by G

the domain Qs = Q1 U Q2(sL) U 03(SR).

s h Q 2 ( SL) Q3(SR) SR h
SL41 L - - ------------

h Q

(a) block (1, 4) (b) block (4,4)

Figure 7-3: Microtruss experiment. Parametrization of blocks (1, 4) and (4,4).

We can now introduce the mathematical model of the displacement field in strong form.

With this in mind, we introduce the Young's modulus E[Pa], the Poisson's ratio v, the

density p[kg/m 3 ], and the non-dimensional Rayleigh-damping coefficients a, 3. For acrylic,

density and Poisson's ratio are well-characterized in the literature 2 : we therefore set

p = 1180 [kg/m3 ], v = 0.35.

2 See, e.g., [102, Chapter 3.6.2] for the Poisson's ratio and the webpage pubchem.ncbi.nlm.nih.gov for
the density.
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On the other hand, we consider oz, /, E as uncertain parameters. We assume that the

(non-dimensional) displacement field associated with the microtruss system is of the form

Ubk(X, t) - RJiUbk(x) eiwft} where wf = 27rf and ubk : Qs -+ C2 satisfies (in a distribu-

tional sense) the following linear two-dimensional (plane strain) elastodynamics model with

Rayleigh damping:

-pL 0 Wt 2 Ubk + iWf Cdamp bk ) + ( ubk) = 0 in Qs,

ubk _ Udir on pdir (7.4. 1a)

-(ubk) - n = 0 on aQ, \ Fdir,

where fdir refers to the shaker attachment, o(ubk) is the stress tensor, and n is the outward

normal. Here, the Dirichlet data is

u= Cd ir , (7.4. 1b)

the damping operator is

Cd amp (v) -pLjoint v + 1L (v), (7.4. 1c)

and finally the elasticity operator L(v) = div(-(v)) is

12(v) = div sym (Vv) + div(v)]I[, (7.4. 1d)
SI + V (1 + v)(1 - 2v)

where If is the 2 by 2 identity matrix. Recalling the definition of the experimental outputs

in (7.3.2), it is easy to verify that the constant cdir does not influence the outputs. For this

reason, we arbitrarily set cdir 1.

We now introduce the anticipated configuration yi as

A= [a, 3, E, sL, SRI E pbk C R5. (7.4.2)

We observe that the solution ubk to (7.4.1) depends on the input frequency f and on /,

which we shall emphasize in the notation ubk = Ubk(f;ip). We further observe that the
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pair (SL, sR) is directly related to the definition of damage in (7.6.1), while the triplet

(a, 3, E) collects material properties that are difficult to estimate exactly. We thus refer to

a, 3, E as "nuisance variables". It is important to identify an appropriate domain for these

variables: too restricted a domain may confuse normal variations in the nuisance variables as

distinctions between different states, too expansive a domain may artificially conflate classes

and thus degrade classifier performance. We postpone the definition of the configuration set

pbk to the end of this section.

We observe that our mathematical model does not include some factors that may affect

the experimental outputs. More in detail, we do not take into account potential inaccu-

racies in the manufacturing process, which lead to extremely high-dimensional geometric

uncertainties, or to inhomogeneities in the material properties. Furthermore, we do not

prescribe a stochastic model for experimental noise. In anticipation of the development of a

rigorous mathematical formulation of the inference problem, we introduce an additional set

of parameters E V C RD, here referred to as hidden, such that the pair (At, ) completely

identifies a system configuration:

C := (t, ) E pexp :- pbk X V. (7.4.3)

Our bk model corresponds to = 0.

Given the anticipated configuration yt E pbk, we define the bk representation of the

experimental outputs A P and 0$'T as follows:

A (f; ) := ;;)nom om = 0.25, (7.4.4)
2u (X2,1; f; P)

and

q5k(f; ) := arg (u X,,; f; )- arg (x2 ,i; f; )) , (7.4.5)

where xj denotes the center of the mass (i, j) and arg(c) denotes the phase of the complex

number c. As stated before, the bk outputs considered do not depend on the value of

cdir in (7.4.1b). Provided that the linear model (7.4.1) captures accurately the physical
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phenomenon and the influence of the hidden parameter is limited, we expect that

A7 (f;,)~ Agyf y), (f;' ( ) ~ 0(; )

for all f E 1f, p E pbk and i,j= 1,...,4.

7.4.1 Finite Element model

We resort to a FE discretization to estimate the bk outputs. In all our numerical simulations,

we appeal to a P4 FE discretization with ne = 528 elements, and 14670 degrees of freedom.

We observe that experimental outputs involve pointwise evaluations of the displacement field.

We do not implement any adaptive strategy to control pointwise error in the finite element

solution; we refer to the literature (see, e.g., [178]) for actionable methods to estimate and

control pointwise errors in FE approximations of elliptic problems

The use of high-order elements prevents the onset of shear-locking effects. It is indeed

well-known that P1 (and even P2) elements might fail to appropriately represent the correct

solution due to the poor approximation properties of linear (or quadratic) basis functions.

We refer to the Finite Element literature for a thorough discussion about this issue (see

[113] and [10, 9, 133]). Figure 7-4 empirically demonstrates this issue. We consider two FE

triangulations with ne = 528 and ne = 1296 triangular elements, and we consider different

FE discretizations of order one to five. Figures 7-4(a) and (c) show the behavior of AT(-, P)

as a function of the frequency f for p = [5 -10-4, 10-4, 2.8 -10 9 , 1, 1]; similarly, Figures 7-4(b)

and (d) show the behavior of Obk (-, /t) as a function of the frequency f for the same value

of p. We observe that the P1 discretization fails to capture the resonance, while the P2

discretization significantly overestimates the resonance frequency, especially for the coarser

grid. On the other hand, for the P4 discretization, the FE error is negligible. For this reason,

we base our results on the latter discretization.

7.4.2 Choice of the anticipated configuration set pbk

Recalling the interpretation of the parameters, we set upper bounds for SL, SR based on

the maximum added mass to be detected, while we choose a confidence region for a, /, E

based on textbook values and on a single preliminary experiment for the undamaged case

(i.e., sL = SR = 1). To take into account experimental noise, we perform three independent
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of different FE discretizations for output evalua-

trials of the experiment. In more detail, we choose pbk such that for all frequencies and all

realizations we obtain

(7.4.6a)min A (fq; A) < AX7 (f q; ,,eP,exP) < max A (fq; [),
EElooz3 pEEoo

and

(7.4.6b)min 4$k (fq; ,) < #ep (fq; ,,xp , xP) < max 0k (f q; /),
/E100 ZpEioo

where o100= {(m, /3O, Em, 1, 1)}M c pbk is based on uniform random samples. Following

this criterion, we choose

pbk := [0.25 -10-3, 0.8- -10-3] X [0.05- 10-3, 0.2.-10-3] X [2.65 -109, 2.85 -109] x [1,1 2] 2.747

Figure 7-5 shows a comparison between experimental and synthetic displacement amplitudes

of block (1, 1) for this single system configuration with no added masses. In Figure 7-
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5(a), we report mingIEE1 0 A0 k(fq; A), maxes 0 Abk(fq; p), and the amplitude measured

experimentally for each of the three trials. Similarly, in Figure 7-5(b), we report miniZE"El

O (f q; L), maxEs1 0 Ok l(fq; p) and the phase measured experimentally for each trial. We

observe that our choice (7.4.7) satisfies the constraints (7.4.6).

15 ---- --- nA 4

-min Amin

10 -+-max A -- max Ok

2

5

0 0
20 40 60 80 20 40 60 80

f (Hz) f (Hz)

(a) (b)

Figure 7-5: Microtruss experiment; choice of the parameter space. Comparison between experi-
mental results and synthetic results in absence of added masses.

7.5 The problem of feature extraction

7.5.1 Problem definition

We formalize the problem of feature extraction for the microtruss system: given the experi-

mental outputs {A"(fe; pi, ()}~ and {4P(fq;y, () }i,j,q, determine the set of Q features

Zexp such that

Z exp([, ) = { (f;, q )}ij,q, { P(ff; p, )}ij,q) , (7.5.1)

where T : R -32f IRQ. We observe that, by construction, experimental features depend

on the system configuration C = (,,). Appropriate features should be sensitive to the

expected damage, and insensitive to noise. In the next section, we propose a particular

choice of F motivated by a physical reasoning for our system and damage classes. We defer

automated identification of features from experimental outputs to a subsequent work.

Exploiting the bk representations of the experimental outputs provided in section 7.4,

we can define the bk features as

Zbk = F (fAt(f q; )}ijq Iq5j(fq; I )}i,j,q) . (7.5.2)
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We observe that, without loss of generality, we can rewrite the experimental features as

Z exp(,, ) = Zbk (P) + 6z(p, ), V (/, ) E pexP; (7.5.3)

we can then interpret zbk(y) as nominal features associated with the configuration C = (p, ),
and 6z (p, ) as a perturbation. The norm 11 6z(P, )112 reflects the magnitude of the model

error for a given configuration. We anticipate that (7.5.3) will help us draw a connection

between our formulation and Robust Optimization (RO) statements for classification.

7.5.2 Choice of the features for the microtruss problem

Given the frequencies {fq} ,Qf we introduce the set of features

bk k ( 1;P) k (~fAbkf;p z(p) = ; ) . .. z , (f = (7.5.4)
1 Abk(f;)

Feature zk(; b) measures the asymmetry of the structure between left and right corners.

From symmetry arguments it is easy to verify that

1
Z1 aQzSLSR) zbk(f; a, #, E, sR, sL)

which implies that by exploiting this feature we should be able to discriminate between the

three classes K = {1, 4}, = {2}, r, = {3}. We here use the term "class" to refer to any

subset of the states of damage, , C {1, ... , 4}.

We then introduce the set of features

Abk (f; p) + Ab (fzbk(/t) =zbk ; p), zbk (fQf t) , zbk(f;ji) = ' . (7.5.5)
2k/ -Z2 [ / ...Z2~ 'j - AZ2(f;1p) + Ab(f; p)

It is easy to verify that the amplitudes {Abj}, are monotically decreasing in a, # (i.e.,

increases in damping reduce the amplitude of the masses' displacements) and also in SL, SR

(i.e., increases in the total mass reduce the amplitude). However, while variations in a, /

affect all masses, variations in SL, SR should be mostly confined to the left and right masses

(i.e., masses (1, j) and (4, j) for j = 1, ... ,4). Therefore, the ratio Zk(;p) should reduce

the effect of damping on our feature without affecting the effect of SL, SR, thereby improving

discrimination between , = {1} and , = {4}.
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Figure 7-6: Microtruss experiment; discrimination capabilities of the features. Figures (a) and
(b): behavior of {mqbk(r)}q and {stdi'bk(i)}q for the three classes K = {11,4, , = {2}, r, = {3},
and comparison with the experimental data. Figures (c) and (d): behavior of {mqbkQ )}q and
{std ,k(K)}q for the two classes r, = {1} and r, = {4}, and comparison with the experimental data.
For each experimental configuration, we report results of three independent realizations.

We now demonstrate the effectiveness of our choice of the features for the problem at

hand. With this in mind, we introduce a finite-dimensional discretization Pkai of pbk f

cardinality Intini = rirain = 104 . Given the frequencies f I. . Q, f f, Qf = 16, we define

the in-class mean and standard deviations:

mf,bk bk 1train pk

bk~f; ) (7.5.6a)

and

std' 'k(r-) -pbk
train

k
li E'~p (b

zbk(fq; L) - mRbk 2,
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where f = 1, 2, and Pki(r) = { E pk. fdam(P) E r,}, and K C {1, 2, 3, 4}. We further

consider experimentally the five different nominal system configurations corresponding to

(i) SL = SR = 1, (ii) SL = 1, SR = 2.06, (iii) SL = 1, SR = 1.53, (iv) SL = SR = 2.06, and

(v) SL SR = 1.53. For each configuration, we perform three independent trials for a total

of 15 experimental datapoints. Figures 7-6 show the behavior of {miq'k(i)}q for f = 1, 2.

For f = 1, we consider classes , = {1, 4}, , = {2} and r, = {3}; for f = 2, we only consider

r ={1} and , = {4}. To take into account the variability of the features due to changes in

bk
pt, we report error bars corresponding to twice the in-class standard deviation Stdq' (K). We

further report experimental observations from the appropriate class to show the agreement

between bk and experimental features.

7.6 Inference stage

We summarise key quantities introduced in the previous sections. We first define the antic-

ipated configuration set pbk C RE, and we denote by p a generic element of the set. The

parameter yi encodes our bk representation of a system configuration and the space pbk con-

tains the bk anticipation of each system configuration that can occur during the operations

(online stage). We further introduce the hidden parameter E V C RD such that the pair

C = (p, ) C pexp -pbk x V uniquely identifies the observed experimental outputs during

the online stage. Then, we introduce the damage function fdam . pbk a {1, ... , K} such

that

fdam(A= [a, , E, SL, SRI) = fdam(SL, SR), (7-6-1)

where fdam is defined in (7.2.2). As already mentioned in section 7.4, the actual value of

the model parameters a, /, E does not influence the state of damage. We further introduce

the bk and experimental features zbk . pbk -+ RQ and zexP - Pexp -+ RQ, respectively.

In view of the classification statement, we introduce the (unknown) probability density

function (pdf) over V, p : V - R+, such that

P( E A) = j 1A((')p(') d', Ac V, (7.6.2)

where LA is the indicator function associated to the set A. We use notation E ,[-] to
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indicate expected values with respect to the measure induced by p . We further denote by

L(0,1) the 0-1 loss:

L(0,1)(y, t) = { t' (7.6.3)

Finally, we define the weight wbk, Wbk : pbk 4 R+, such that

jbk wbk(p) dp = 1. (7.6.4)

We postpone interpretation and actionable definition of the weight wbk until the end of this

section.

We now introduce two classification problem statements.

Monitoring problem: given the damage function fdam : pbk a {1,... , K}, and the

experimental features zexP : pexP -+ RQ, find the classifier gOPt : RQ - {1, ... , K} that

minimizes the experimental risk:

inf R exp W ( -) = J _bk I ([,C1) (g(zexP(p, )) f dam 1 bk(p) dp
g measurable k(7.6.5)

= f (0 1)(g g(zexP ( , f dam(A)) Wbk() pC ( ) dp d,
Jpexp

where pC : V -÷ R+ is defined in (7.6.2), L(0,1) in (7.6.3), and wbk : pbk -+ R+ in (7.6.4).

Bk monitoring problem: given the damage function fdam : pbk _+ {1,... , K}, and the

bk features zbk : pbk -+ RQ, find the classifier gopt,bk : RQ - {1, . . , K} that minimizes the

bk risk:

inf R bk(g) _ j g(,)(g(zbk(tL)), fdam(t)) Wbk(p) dp. (7.6.6)
g measurable jPbk

where L(o,1) is defined in (7.6.3), and wbk : pbk -+ R+ (7.6.4).

We interpret the bk monitoring problem as a surrogate for the (actual, physical) mon-

itoring problem. We observe that while the monitoring statement relies on experimental

observations and depends on unknown quantities (the hidden parameter and the corre-

sponding pdf pC), the bk statement is entirely synthetic (except of course implicitly through

the definition of pbk as described in the previous section) and thus can be tackled even in
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the absence of experimental observations. At this stage of the discussion, we have not yet

discussed how the solution to (7.6.6) is related to the optimal solution to (7.6.5). This clearly

depends on the magnitude of the perturbations 6z in (7.5.3). In Chapter 8, we illustrate

the connection between these two problems, and we also discuss the well-posedness of the

mathematical statements.

We now interpret the function wbk in (7.6.5) and (7.6.6). In our framework, the weight

wbk reflects the importance (assigned by the user) of classifying correctly a given configura-

tion and is not related to the (unknown) likelihood that the bk configuration p is observed

during the online stage. This observation implies that the bk risk Rbk(g) should be in-

terpreted as a user-defined measure of the misclassification error rather than an expected

loss.

We introduce our choice of the weight wbk for the microtruss problem. We consider the

weight

wbk) (4k(E) w (sL, sR), (7.6.7a)

where wbk, bk, wbk correspond to constant weights and

100 (SL, SR) E Si [1, 1.05]2;

10 (sL, SR) E S 2  [1.5, 2] x [1, 1.05];
wP)i(sL, sR) =<(7.6.7b)

10 (sL, sR) E S3 [1, 1.05] x [1.5,2];

1 (sL, SR) E S4 [1.5, 2]2.

We choose constants such that fPbk wbk (p) dp = 1. We observe that each of S 1 , ... , S4 are

assigned equal weight.

Some comments are in order. Our choice of wbk in (7.6.7b) implies that we target our

SHM classifier to detect added masses in the range [1.5, 2]h, and to avoid "false damaged"

predictions if SL, SR < 1.05. In view of the probabilistic interpretation of the problem

statement and of the numerical procedure, we observe that our choices of w k, w k IWk

correspond to the assumption that a, 13, E are independent uniformly-distributed random
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variables such that

a ~ Uniform([0.25. 10-3, 0.8 .10-3]

# ~ Uniform([0.05. 10-3, 0.2- 10-3]), (7.6.8a)

E - Uniform([2.65 .10 9 , 2.85 109]).

On the other hand, our choice of wbk corresponds to assume that the random pair (sL, SR)

can be written as a mixture of independent uniform distributions over Si, ... , S4:

4

(sL,SR) = 1 - (,1) (S, k)) Ek, Ek ~ Uniform(Sk), S - Uniform({1, 2,3,4}).
k=1

(7.6.8b)

We shall later formally identify wbk with a probability density. Table 7.1 summarizes the

definitions and provides links to their instantiations for the microtruss problem.

Table 7.1: Simulation-Based Classification: main definitions

symbol name microtruss definition

M E pbk anticipated configuration (set) (7.4.2) - (7.4.7)

(p, ) E pexp configuration (set) (7.4.3)

fdam : jPbk {1, ... , K} damage function (7.6.1)

Z"exP : pexp - Q experimental features (7.5.1)

zbk . pbk - IR bk features (7.5.2)

w bk .Pbk-- R+ bk weight (7.6.7)

Before concluding, we state another definition, and an important remark.

Definition 7.6.1. Let us define the partition of the configuration set {pbk(k)} 1 as

Pbk(k) := {p E pbk: fdam(t) = k}, k = 1,..., K.

Then, we define the type-k error of a classifier g as

(7.6.9)
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similarly, we can define the bk-type-k error as

Rbk(g; k) : = ( )(g(zbk(,)), k) wbk(y) dp. (7.6.10)

If K = 2, provided that y = 1 is the null hypothesis, our definition of type-k error coincides

with the standard type I and type II errors in Hypothesis Testing.

It is straightforward to verify that

K K

R bk(g) = Rbk (g; k), R exp(g) = Rexp (g; k).
k=1 k=1

We observe that if we define the bk confusion matrix Cbk(g) E RK,K associated with the

classifier g such that

Cbk, (g) = jk(k) (O)(g(zbk (p)), k') wbk () dbt,

then, the bk type-k error is the sum of the off-diagonal terms of Cbk(g):

Rbk(g, k) = Ci,(g).
k'#k

An analogous discussion applies to the type-k error. We further observe that the choice of

wbk regulates the importance of the different types of error. More specifically, for each k,

we can interpret the quantity

P bk . _f bk(y) dp (7.6.11)
p bk (k)

as a measure of the importance of classifying correctly configurations of class k. For the

microtruss problem, we have

Pibk-...- Pbk_4 4

This implies that it is equally important to classify correctly configurations of all four classes.

Remark 7.6.1. (The perspective of Robust Optimization) Adopting the interpretation

of bk and experimental features provided after equation (7.5.3), we can view (7.6.6) as the

nominal problem, and (7.6.5) as the perturbed problem. This discussion shows the connec-
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tion between our formulation and Robust Optimization (RO) statements for classification.

To stress this, we observe that we can restate the experimental risk in (7.6.5) as follows:

Rexp(g) = Jpbk E [L(0,1) (g(Zbk(A) + 6Z), fdam p)) wbk(p) dl, (7.6.12)

where the probability distribution Ps,, is given by

Psz,/(A) = j A(JZ(A, )) p ( ) <, (7.6.13)

and is defined over (a suitable o--algebra of) RQ. We rigorously show (7.6.12) in Chapter

8.2.

7.7 Conclusions

In this chapter, we introduced a mathematical framework for the problem of damage identi-

fication. This provides the foundations for the development of our computational procedure.

For purposes of clarity, we introduced our formulation through the vehicle of a particular

example, a microtruss; in parallel we provided the abstraction applicable to a broad range

of problems.

The microtruss problem corresponds to a four-way classification problem. We defined

the presence of added masses as the damage to be detected, and we identified two potential

locations where damage may occur. We thus argue that this problem, despite its simplicity,

exemplifies a typical SHM Level 2 task (i.e. detection and localisation); for this reason, in

the next chapters we consider this problem to validate our numerical approach.

The discussion for the microtruss problem also showed that the quantity of interest

only depends on a subset of the full parameter vector p, namely the parameters SL, SR-

The presence of "nuisance variables" in the model complicates the classification task, and

motivates the development of feature-extraction techniques to limit their effect. In Chapter

9, we demonstrate that the choice of the features in section 7.5.2 is well-suited to limit the

effect of nuisance variables.
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Chapter 8

Simulation-Based Classification:

methodology and analysis

In this chapter, we introduce Simulation-Based Classification (SBC). The approach is de-

signed to tackle inverse problems for discrete-valued quantities of interest associated with

systems governed by (parametrized) PDEs. We first present the computational procedure,

and we clarify the role of model reduction (section 8.1); then we study the existence and

uniqueness of the solution to the bk monitoring problem (7.6.6), and we comment on the

consistency of our numerical procedure (section 8.2). Finally, we propose an error bound

that clarifies the influence of model error on classification performance (section 8.3).

8.1 Computational approach

8.1.1 Simulation-based classification

In view of the development of the computational approach, we define the probability measure

on pbk Pbk such that

Pwbk(A) = J A(P') Wbk(p') d', A C pbk. (8.1.1)
jpbk

Then, we denote by p a random vector distributed according to Pbk, A- Pebk.

We formalize our strategy to generate the classifier g. We generate M independent

samples Mi ... , Pm from Pwbk, and we generate the dataset Db := {(zbk,m, ym)} =1 where

Zbk,m = Zbk(/I), ym fdam([tm). Then, we employ a supervised learning algorithm that
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takes as input the dataset Dbk and returns the classifier g*.

Several techniques are available to generate independent samples from an arbitrary prob-

ability density function wbk. We refer to [189, Chapter 2] and to [81, Chapter 3] for further

details. Here, we resort to identities (7.6.8) to generate samples of the configuration p.

A supervised learning (SL) algorithm for classification can be interpreted as a procedure

that takes as input a dataset Dbk c RQ x {1, ... , K} and returns a classifier g* : RQ -

f1, ...,I K}:

[g*] = SL-algorithm (E)b. (8.1.2)

Several different algorithms of the form (8.1.2) have been proposed in the literature; we

refer to [104, 120, 157] for a thorough introduction to supervised learning algorithms for

regression and classification. In our numerical examples, we apply five different state-of-the-

art techniques to the classification problem considered in this work.

Algorithm 8.1.1 summarizes the computational procedure to approximate the solution

to the bk monitoring problem: both the Offline stage described above, and the Online stage

in which, given experimental features, we wish to classify our system.

Algorithm 8.1.1 Simulation-Based Classification for SHM.
Offline stage

iid

1: Generate P1 := {p, ... , p} c pk p Pbk

2: Generate the dataset Db := {(zbkm, ym)}M 1 where zbk,m = zbkim), ym fdam(pm).

3: Employ the learning algorithm (8.1.2) to generate the classifier g*.

Online stage

1: Collect the experimental measurements and extract the features zexP.

2: Return the label g*(zexP)

We observe that, unlike in model-based approaches, our procedure directly addresses

the task of interest - the estimation of the state of damage - and does not - either

implicitly or explicitly - provide estimates for the actual value of p. We claim that the

estimation problem for p is (unnecessarily) much more general than the original classification

problem of interest, and in particular the former will typically be ill-posed. For instance, the
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application of model-based approaches to the microtruss problem requires the estimate of the

full vector /t, which includes both quantities related to damage (the geometric parameters

SL, SR) but also nuisance variables (the material properties a, 3, E) of no direct interest

to the engineering task at hand. For more realistic problems with many more parameters

the nuisance variables can easily number in the hundreds and often without any evident

correlations.

Another distinguishing feature of Simulation-Based Classification is related to the possi-

bility of incorporating information related to model error without the need for fully charac-

terizing the configuration C = (p, ). We can indeed include estimates of the perturbation

Jz to inform the learning procedure. The process of including data uncertainties at training

stage is usually referred to as robustification. We shall consider this in future work.

8.1.2 Application of pMOR

As already mentioned in Chapter 1.4.2, classification performances strongly depend on the

size M of the dataset. Since each datapoint involves the solution to several PDEs (in our

case Qf, one for each frequency), the offline computational burden is extremely large. This

explains the importance of model order reduction.

We briefly discuss the application of pMOR in the context of Simulation-Based Classi-

fication. During a preprocessing stage (typically denoted the offline stage), we generate a

Reduced Order Model (ROM) jbk bk(f; A) such that we may form bk() zbk (A

for all p E pbk. Then, for each parameter ,t,. . ., jM, we estimate zbk (pm) using the ROM

zbk (Am). We observe that if M is sufficiently large and computing zbk([1m) is significantly

less expensive than computing zbk(m), then we can amortize and indeed neglect the cost

of the preprocessing stage.

Algorithm 8.1.2 summarizes the computational procedure. Note that both the offline

stage and the online stage of the pMOR procedure are effected in the offline stage of the

classification algorithm. In Chapter 9, we discuss the application of the particular pMOR

technique, the Reduced Basis method, adopted in this work to tackle the microtruss problem.
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Algorithm 8.1.2 Simulation-Based Classification for SHM with pMOR.
Offline stage

iid

1: Generate p1 : ... .,M pbk 1 m Pwbk

2: a. MOR: construct the Reduced Order Model;

b. MOR: use the ROM to generate the dataset Dbk := {(bk(pm), fdamQIm))}M 1

3: Employ the learning algorithm (8.1.2) to generate the classifier g*.

Online stage

1: Collect the experimental measurements and extract the features zexP.

2: Return the label gM(zexP )

8.2 Mathematical analysis

8.2.1 Probabilistic interpretation of the monitoring problems

We shall now introduce a probabilistic interpretation of the monitoring problems. This will

help us develop and analyze our computational approach. With this in mind, we first recall

the definition of Pbk in (8.1.1),

Pwbk(A) = J A(0') W[bk(l) dI', A c pbk,
pbk

and we define the probability measure on pexp, P,p such that

P)(A x B) = A(II) [B(Z) wbk(p)p (') dp'd(', A c pbI, B C V. (8.2.1)

Recalling (7.6.4) and (7.6.2), it is easy to verify that PWbk is a probability measfire over

pbk, and pe/Pe, is a probability measure over pexP. As in section 8.1, we denote here by P

a random vector distributed according to Pebk, /I Pwbk; similarly, we denote by (p, ) a

random pair distributed according to P').

Recalling the definitions of the bk features zbk : pbk -+ RQ and of the damage function

fdam . pbk + {1, ... , K}, we define the random pair

(Zbk, Y) := (zbk(t), jdam(,)), f- Pwbk
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We further denote by P(Zbk,y) the corresponding image probability distribution defined over

RQ x {1, ... , K}:

P(ZbkY)(A x {k}) = (zbkfdam)-1(Ax{k}) bkp

where (zbk, fdam)1 (A x {k}) := {p E pbk : (zbk(p), fdam(,)) E A x {k}} is the pre-image

of A x {k}. We observe that P(Zbk,y) is uniquely identified by the weight wbk, the bk features

zbk and by the damage function f darn Similarly, we can define the random pair

(ZeXP, y) (Z.- /1 P ) fdam pexp

and the corresponding image probability distribution P(Zexpy).

Recalling the change of variable formula, we can restate the two problem statements

proposed in Chapter 7.6. In more detail, the monitoring problem (7.6.5) can be restated as

follows

g pt - arg inf RexP(g) = E(Zexp,Y)P(Zexpy) [(,1) (g(Zexp), Y)1 (8.2.2)
g measurable ,

while the bk monitoring problem can be restated as follows:

gopt,bk = arg inf Rbk(g) = E(Zbk ,Y'P(Zbk y (0,1) (g(Zbk), . (8.2.3)
g measurable (y)

Problem statements (8.2.2) and (8.2.3) are well-suited for the analysis. We can indeed

rigorously address the following questions.

Existence and uniqueness of the solutions to (8.2.2) and (8.2.3): we can determine

sufficient conditions under which the solutions to (8.2.2) and (8.2.3) (and thus to (7.6.5) and

(7.6.6)) exist and are unique. We present a formal result in the next section.

Unified statistical interpretation of model error: from the learning perspective,

random experimental error and systematic error due to model inadequacy introduce a shift

of the statistical properties of the predictors (features). This shows the connection with the

notion of concept drift ([232, 218]) and dataset shift ([153]) studied in machine learning.

It is possible to show that this shift can be completely characterized by the probability

distribution of 6z. We present the precise result in the next section.
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Consistency of SBC: if pi,*.., P Mare independent identically distributed (iid) sam-
iid

pies from Pwbk, At Pwk, then the dataset 'DjM consists of M independent samples from

the joint distribution P(Zbk,y). This has two important implications. First, for a wide class

of classifiers (e.g., kernel methods, [210] ), we can exploit standard results in learning theory

to study the consistency of the classifier g* for the best-knowledge monitoring problem,

that is (see, e.g., [220])

p lim Rbk(g*) = inf Rbk(g),
M-+oo g measurable

where plim denotes the limit in probability. Second, we can formalize questions related to

the Design Of Experiment (DOE) such as frequency selection and sensor placement in a

rigorous mathematical fashion, as (grouped-) variable selection problems. In this work, we

do not address the connection between DOE and variable selection, which is the topic of

ongoing research.

8.2.2 Technical results

We present two technical results that complete the discussion started in section 8.2.1. First,

we discuss existence and uniqueness of solutions to the monitoring problems and indeed we

develop an explicit - through not readily evaluated - expression for gopt,bk. Second, we

clarify the relationship between the probability measures P(Zexp,y) and P(Zbk,y). For the

sake of clarity, we recap the definition of Pebk in (8.1.1),

Pwbk(A) j IA(AI) wbk(t') dp', A c pbk,
fPbk

and of P,) in (8.2.1),

P(1',) (A x B) = j IA(A) ( p p(') dp' <' A c Ipb, Bc V.

We assume here that PWbk and P,) are Borel-measurable, that is they are defined on all

open sets of pbk and pexP, respectively. A sufficient condition for which Pbk and pexP are

Borel-measurable is that wbk E L1 (pbk) and p E L' (V). We further recall the random pair

(Zbk, Y) := (zbk(P), fdam(A))I t Pbk,
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with probability distribution P(Zbky), and

(Zexp, Iy) --- x (tt' )' f dam pexp

with probability distribution P(ZexP,Y).

Next Lemma shows that if zbk and zexP are continuous, fdam is Borel-measurable, and

Pwbk and pexp are Borel-measurable, then P(Zbk,Y) and P(ZexpY) are also Borel-measurable.

Lemma 8.2.1. Suppose that

1. the probability measures Pbk in (8.1.1) and p<*2 in (8.2.1) are Borel-measurable;

2. the bk features zbk - pbk -- RQ and the experimental features zexP - PexP -+ RQ are

continuous;

3. the discrete function fdam . pbk _ {1, ... , K} is Borel-measurable.

Then, the probability measures P(Zbky) and P(ZexP,y) are Borel-measurable on Q x

{1, ... , K}.

Proof. We only prove that P(Zbky) is Borel-measurable. The proof of the measurability of

P(ZexP,y) is analogous. Let A C R be an open set and let k E {1,... , K}. We must show

that P(Zbk,y) (A x {k}) is well-defined. By construction, we have that

P(Zbk,y)(A x {k}) = f/Zbk,y)-1(Ax{k}) wbk(tt) dp.

As a result, we must show that

(Zbk, y)-1 (A x {k}) = {E E pbk : zbk(A) E A, fdamQp) k}

= (zbk) (A) n (fdam) 1 (k)

is a Borel set. Since zbk is continuous and A is open, (zbk)- 1 (A) is also open. On the other

hand, by assumption, (f dam) 1 (k) is Borel. Thesis follows by recalling that the intersection

of Borel sets is also Borel. E

Next Proposition addresses the problem of existence and uniqueness of the solution to

(7.6.6). An analogous discussion applies also to the monitoring problem (7.6.5).
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Proposition 8.2.1. The optimal solution gOptbk to (7.6.6) is given by

gopt,bk(z) = arg max P(Zbk,y)(Y = kIZbk Z). (8.2.4)
k=1,...,K

Here, P(Zbk,y)(Y = kI Zbk = z) denotes the conditional probability of the event {Y = k}

given {Zbk = z}.

Furthermore, if there exists e > 0 such that

PZbk (P(Zbk,Y) (Y gopt,bk(z)IZbk = Z) max P(Zbk,y)(Y = klZbk=Z)+ =1,
k 4gopt,bk (Z)

(8.2.5)

then any solution g to (7.6.6) satisfies gopt,bk(z) = g(z) for PZbk-almost every z E RQ.

Proof. We first show that (8.2.4) is measurable. Recalling [67, Theorem A.24 page 586], since

P(ZbkY) is Borel-measurable, if we denote by PZbk the corresponding marginal distribution,

there exists for PZbk- almost-every z E RQ and for k = 1, . . . , K a measurable function

bk : RQ -+ R such that bk(z) = P(Zbk,y)(Y - kjZbk - z). Recalling that the pointwise

maximum of measurable functions is also measurable, this implies that, under the hypotheses

of Lemma 8.2.1, the function gopt,bk in (8.2.4) is measurable.

We now observe that

Rbk(g) R x{1.K} L(0 ,1)(g(z),y) dP(Zbk,y)(Z), y) = fRQ Zkg(z) P(Zbk,y)(Y = klZbk z)) dPZbk (z)

S 1- fRQ P(Zbk,y)(Y = g(Z)IZbk z)) dPZbk (Z)

> 1 - fRQ maxk P(Zbk,y) - kIZbk = z)) dPZbk(Z) = Rbk (gopt,bk).

Since gopt,bk is measurable, this implies that gOpt,bk is a solution to (7.6.6).

Let g be a classifier such that Rbk(gopt,bk) = Rbk(g). Using the same reasoning as before,

it is possible to verify that

Rbk(g) = Rbk(gopt,bk) + t(ZbkY)Y ptbk (Z)IZbk = P(Zbky)( = g(Z)Zbk = Z)) dPzbk (Z).
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Recalling (8.2.5), we find

Rbk(g) ;> R bkgoPtbk) + E L(,1) (g (z) gopt,bk(z)) d PZbk (z).

Then, we must have

JRQ
L(o)(g(z), g opt,bk(z)) d Pzbk (z) = 0,

which implies that g(z) = gopt,bk(z) for Pzbk-almost every z E RQ. E

In view of the proof of a formula that relates the probability measures P(ZexP,y) and

P(zbk,y), we recall the probability distribution Pz,j defined in (7.6.13):

Psz, (A)= IV

We observe that since p E L1(V) and 6z(p, -) is continuous Pz,p is a Borel measure (cf.

Lemma 8.2.1). We further introduce notation

A - v := {w - v : w EA, VACRQ, vER D

Next Proposition contains the key result.

Proposition 8.2.2. Given the Borel set A c RQ and k C {1,..., K}, the following identity

holds:

P(Zexpy)(A X {k}) =
fPbk(k)

Pozp (A - zbk(p)) wbk(y) dpt

where Pbk(k) is defined in Definition 7.6.1, wbk is defined in (7.6.4), and P,,, is defined in

(7.6.13).

Proof. Exploiting (7.6.13), we find

jPbk X V

- Ipbk(k) (fV

IA (Z bk() + z(A, )) I{k} (f dam wbk(P)p ( ) dp d

d) wbk(p) dp

bzAA- Zbk(At)) Wbk (p) dpt.

r-

191

(8.2.6)

P(ZexP,y)(A X {k}) =

I A(6Z (A, )) p ( ) d .

1 A-Zbk (p) (6Z (/1, )) p (0)

-
JPbk 
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Before concluding, we derive (7.6.12). Assuming that p E L1 (V) and 6z : pexP -+ RQ is

continuous, we find

RexP(g) L(0,1)(g(zbk(P) + 6z(A, i)), fdam(/L))P ( ) d wbk(p) dp

E 

pbk E [i, 1) (g(zbk(P) + 6z (, )), fdam( ()) wbk(P), dp jbk E6z~p6 z, 1 [(0o') (g(zbk (P) + Z) fdamQ))I wbk(/) dlu,

which is (7.6.12). Here, in the first equality we employed the definition of expectation with

respect to a probability measure, while in the second step we employed the change of variable

formula.

8.3 Error analysis

8.3.1 Main result

We first present two definitions.

Definition 8.3.1. Given the classifier g :RQ - {1,..., K}, we define the k-acceptance

region

Z(g, k) := {z E Rc : g(z) = k}, (8.3.1)

where k = 1,..., K.

Definition 8.3.2. Given the classifier g : RQ -+ {0, 1} and the constant e > 0, we define

the E-uncertainty indicator Ebk as

Ebk 0 if BE(zbk((p)) cc Z(g, k), for some (unique) k E {1, ... ,K};

1 otherwise;

(8.3.2)

where BE(z) is the Q-dimensional ball of radius f centered in z E RQ, and Z(g, k) is defined

in (8.3.1).

The c-uncertainty indicator Ebk is equal to zero if zbk(p) is sufficiently far from the
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separating hyper-planes associated with the classifier g. Furthermore, Ebk is monotonic

increasing in e, and Ebk(g, e = 0, p) = 0 unless zbk(p) lies on a separating hyper-plane.

Therefore, it can be interpreted as a measure of local robustness to data uncertainties. We

further observe that Ebk(g, e, ) = 0 if and only if

g(zbk(A)) = g(zbk(t,) + 6z) V6z E B6(0).

Recalling the definition of 0 - 1 loss, we thus find

C (,1) (g(Zbk(p)), g(zbk(t) + 6z)) < Ebk(g, e, [1) V 6z E B(O). (8.3.3)

We formally relate the c-uncertainty indicator (8.3.2) to other measures of local robust-

ness that have been proposed in the literature. Given the parameter p E pbk and the

classifier g, we define

rbk(/, g) inf |z1 - zbk(P) 112, (8.3.4)
zCZ*(g,g(Zbkgpg

where Z*(g, k) Uk' k Z(g, k') and Z(g, k') is defined in (8.3.1). It is possible to show

that we can rewrite the c-uncertainty indicator Ebk as

0 if rbk(, g) > E;
E bk (g, E, P)

1 otherwise.

The quantity rbk(i', g) in (8.3.4) is known as stability radius, and it is widely used in control

theory ([109]), and optimization ([2441) as measure of local robustness. It can be shown (see

[205]) that the stability radius is also an instance of Wald's maximin model ([227]), which

is employed in statistics and decision theory.

We now present the main result of this section.

Proposition 8.3.1. Let the classifier g :R - {1,R.. . , K} and the damage function fdam

,pbk - {I, ... , K} be measurable functions. Let us further define ebk > 0 as

6bk := 11 6 ZIILO(Pexp;RQ), 6zZ,(p, 0 p ZXP(A, ) - Zbk (,). (8.3.5)
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Then, the following hold:

RexP(g) < Rbk(g) + jbk

ReXP(g; k) Rbk(g; k) + /Pbk(k)

Ebk(g, bk A) wbk (p) d U : R'(g, Ebk)

Ebk (g 7bk wbk((p) du =: R e3~(g, bk k),

for k = 1, ... , K and for any choice of p : V - R+ in (7.6.5).

Proof. We show only (8.3.6), as the proof of (8.3.7) is analogous. Applying the triangle

inequality, we find

RexP(g) < J exp

=(I)

L(0,1) (g(Zbk (A)), g (Zexp p, Wbk (A) pC ( ) dp d<+ Jpexp

Then, recalling the definition of wbk in (7.6.4), we observe that

(I) = L(o'l)(g(zbk(p)), fdamQ/)) wbk(A) jp (i ) d dpu = Rbk(g)

On the other hand, recalling (8.3.3), we find

(II) < jbk E bk(g, bk, A) wbk(At) f p () d dp = jbk Ebk(g, bk, A) Wbk(At) dp.

Thesis follows. El

Our error analysis clarifies that the online performance of a classifier g depend on two

distinct factors: (i) the bk risk Rbk(g), and (ii) the integral involving the c-uncertainty

indicator Ebk. The bk risk Rbk(g) accounts for the nominal performance of the classifier;

the integral involving Ebk accounts for the robustness of g to data uncertainties and depends

on the roughness of the separating hyperplane(s). As observed in section 8.2, traditional

machine learning algorithms aim to minimise the nominal risk (here Rbk(g)). If model error
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'C(0, ) (g (Zbk (A) fdam /_) bk f)p dy <(



is moderate, estimate (8.3.6) shows that minimising the nominal risk leads to accurate online

performance. On the other hand, if model error is sufficiently large, then this choice does

not necessarily lead to accurate decision rules for the online stage.

Before concluding this section, we state a remark.

Remark 8.3.1. (The separable case) We discuss the special case in which configuration

classes are separable and the classifier g separates them over pbk, that is

Rbk(g) = 0.

In this case, provided that the model error is sufficiently small, we can guarantee perfect

separation even in presence of model error. Let us define the quantity

Jk = inf inf IIzbk () - z112-
,IEPbk:g(zbk(p))=k zEZ*(g,k)

where Z*(g, k) = Uk'k Z(g, k') and Z(g, k') is defined in (8.3.1). Then, if ebk < mink 6k,

we find that

Ebk(gebk,t) =0, V ( Epbk

and exploiting Proposition 8.3.1 we find that

RexP(g) = 0;

this implies that the classifier g is a solution to problem (7.6.5).

8.3.2 Model bias and experimental risk

We now wish to relate model bias to classification performance for a special case. This will

provide insights about the connection between the modelling stage and the inference stage.

Let us assume that experimental features can be written as1

z xp 0 (Uexp(,

where uexP(,) E- U is the system state associated with (p, ), U = U(Q) is a suitable

Hilbert space defined over a domain Q c Rd, and J is a linear continuous functional over U,

'We consider here the case of static data to not deal with the dependence on frequency.
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E E U', with continuity constant CF. Let us further assume that the bk features are given

by

zbk(p) bk~p)),

where ubk(At) is the solution to the variational problem

G bk (ubk (P); P1) = f p) in U'.

Here, we assume that Gbk(.; P) is an inf-sup stable linear operator with stability constant

I3bk(p) and f(p) E U' for any p E pbk. If we define the model bias fbiaS pexp -, U' as

fbias(/_, G) :Gbk Uexp% f V -/tj E *px

we obtain

6|z(Y, ()I|2 =F(UexP( ) - Ubk(P))112 < bkGL) bi7a I

which implies that

II sp 6Z (A, I2 SP CF Ijfbias(A, )IjU,_ (8.3.8)
Ebk sup 2 sup GFk bias

(p,) Epexp EPxp obkr

Combining estimates (8.3.8) with (8.3.6), we obtain that the performance of our monitoring

system depends on four distinct factors: (i) the nominal performance through the bk risk

Rbk(g), (ii) the robustness of g to data uncertainties throught the E-uncertainty indicator

Ebk, (iii) the stability of the PDE through the stability constant /bk(At), and (iv) the un-

certainty in the model through the bias fbis. We observe that a direct consequence of

estimates (8.3.6) and (8.3.8) is the accomodation of the inevitable, even if small, departure

of the physical system from our idealization. However, we observe that (8.3.8) is not fully

actionable since Ifbias(p, ') I Iu, is typically unknown.

8.4 Conclusions

We presented a Simulation-Based Classification approach for Structural Health Monitoring;

the approach takes advantage of recent advances in parametrized Model Order Reduction to
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inexpensively form quasi-exhaustive synthetic training datasets based on a bk parametrized

mathematical model. We further presented a mathematical analysis, which motivates the

problem formulation introduced in Chapter 7 and shows that, for proper choices of the

supervised-learning procedure for classification, the classification rule obtained based on

SBC approaches the optimal bk risk in the limit M -+ oc. Finally, we presented an a

priori error analysis that links nominal performance (associated with the bk risk Rbk(.)),

to experimental performance (associated with the experimental risk RexP(.)). We observed

that, if estimates for the error in feature evaluations are available at training stage, we can

exploit our error analysis to inform the machine-learning procedure.
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Chapter 9

Application to the microtruss

problem

We discuss the application of the Simulation-Based approach presented in Chapter 8 to the

microtruss problem. We first present the strategy used to generate the classifier (section

9.1), we describe the application of the RB method to speed up the calculations (section 9.2),

and we present the classification results (section 9.3). Finally, in section 9.4, we compare

our technique with two model-based approaches.

9.1 Computation of the classifier

Exploiting the reasoning of Chapter 7.5.2, we now introduce the classifier used in the nu-

merical tests: given the set of features z1 xp

* Level 1: distinguish between {1, 4}, {2} and {3} based on z'xP;

* Level 2: if Level 1 returns {1, 4}, distinguish between {1} and {4} based on z P .

We observe that the first layer corresponds to a threeway classification problem, while

the second layer corresponds to a binary problem. From a practical perspective, our proposal

requires the training of two classifiers: a threeway classifier for the first level and a binary

classifier for the second level. We can thus interpret a classifier g as the pair g = (gi, g2)

where gi : R~f -+ {0, 2, 3}, 92 : RQf -4 {1, 4}, and 0 is the label associated to {1, 4} for the

first level.
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In view of the presentation of the numerical results, we define the level-i and level-2 bk

risks:

Rbklevel 1 (g) = pbk
(9.1.1a)

and

Rbklevel2() pk 1 k

where pjk pk + in(7),)wher Pik 4 are defined in (7.6.11), e

fdam() 

0

2

3

if f dam(II) E 14},

if fdam(L) = 2,

if fdam(L) = 3.

We observe that 0 < Rbk,level 1 (g), Rbk,level 2 (g) K 1. Similar definitions can be given for

level-i and level-2 experimental risks Rexp,Ievel 2 (g) and Rexp,level 2 (g)

9.2 Reduced-Basis Approximation

In this section, we discuss how we reduce the computational burden associated with the

construction of the dataset Dbk for the microtruss system. More specifically, we wish to

speed up computations of the map

(fI p) -+ A3(f p

in the limit of many queries using the Reduced Basis (RB) method. With this in mind, we

first present the weak formulation of the bk model (section 9.2.1), then we present the RB

approximation (section 9.2.2), and finally we provide numerical results to demonstrate the

effectiveness of the RB approach (section 9.2.3).

9.2.1 Parametrized microtruss model

We first introduce the weak statement associated with the time-harmonic asymptotic solu-

tion to (7.4.1) in the configuration-dependent domain Qs: given the frequency f, and the
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L(0'1) (g, (Zbk [t),fdam p) bk (p) d ,

C(0,) (92 (Zbk (A)Ifdam () bk (/-) dp, (9.1.1b)



bk configuration p = [a, 3, E, SL, SR], find ubk(f; P) E U, := H1 (Q8 ; C 2) such that

(1 + iwf/3 ) E b, (ubk(f; P), v) + (-W + iwf a) pL 2mQ, (ubk(f; p), v) = 0.
(9.2. 1a)

ubk (f; L)Irdir = udir

for all v E Us,o = Ho rdir (Qs; C 2 ), where wf = 27rf,

mQ,(U, v) = u - o dx, (9.2. 1b)

and

f 1 1
bo, (u, v) = sym(Vu) : sym(Vv) + div(u) div(v) dx. (9.2.1c)

,1 + V (I + v)(1 - 2v)

Here, refers to the complex conjugate.

We then introduce a geometric mapping between a parameter-independent domain Qref

and the configuration-dependent domain Q5 . With this in mind, we introduce the reference

domain Qref Qref U Qref U Qref such that Qref - 1, Qref = Q2(SL = 1), Qre 3(sR 1),

and we define the affine map

x if x E ref

T: Qref x [1, 2]2 _ Qs, T(x, sL, sS) = xie + sLx2e2 if x E Qref (9.2.2){2
x1e1 + SRX2e2 if x E Qref,

where {ei, e 2 } is the canonical basis. By tedious but straightforward calculations, we find

that, for any u, v E H 1(Qs; C 2),

10

(1 + iwf) E b,, (u, v) + (-wf + iwf a)m2, (u, v) = Eq(f; p) a4(i3) (9.2.3)
q=1

where i (x) = u(T(x, s)), b(x) = v(T(x, s)), and the parameter-dependent coefficients

{ 0 I and the parameter-independent bilinear forms {aq0 1 are reported in Appendix D.

Then, we introduce the lift ulift E H1(Qref; C2) such that uft = 0 outside Q1 , uft(xi,) = 0

for all i, j = 1,...,4, and ulift Irir = Udir; we observe that uift(T- 1(x, SL, SR)) does not

depend on the values of SL and SR.

We can now introduce the parametrized best-knowledge model for the lifted field in
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the reference configuration and we relate the solution to the experimental measurements.

Given a frequency f and bk configuration it in Pfk, we seek the solution 'bk .

ubk(T(., s), f; At) - O E Uo = He jdir (Qref; 02) to the following variational problem

a(,bk(f; A), v; f, P) = fe(v; f, p), Vv E Uo, (9.2.4a)

where

10 10
a(w, v; f, t) = Oq(f, p) aq(w, v), f(v; f, t) = - q(f, p) a'(uft, v), (9.2.4b)

q=1 q=1

and

(f,) E pbk . EXpbk. (9.2.4c)

Recalling the definition of the map T (such that T- 1(z,, sL, SR) = xij for all SL, SR), and

the definition of u's, we finally find

A (f; t) = Anom Ik(Xj; f, P) (9.2.5)
U2 k(x2 ,1; f, At)|

where i, j = 1,..., 4, and (f,Ap) Epbk Since u k j; ft) k ..(Xj;fAt) +Ulift (xi)

U2k(xij; f, p), (9.2.4)-(9.2.5) is equivalent to (7.4.4).

In view of the application of the RB method, we define the norm for Uo

lu|ll := Ereb%,ref(uu) + pL 2mref (u, u), (9.2.6)

where Eref = 2.8 - 10 9 [Pa], and moref (-, -) and bQref(-,-) are defined in (9.2.1b) and (9.2.1c),

respectively. We further define the dual norm of the residual

R(u; f,t) := sup va(u, v; f, p) - (v; f, p). (9.2.-7)
vE~o ||V||

Finally, we introduce the FE discretization Z4"' of the space Uo based on P4 polynomials

and A = 14670 degrees of freedom (cf. Chapter 7.4.1). We denote by byk(f; At) E Uf the

FE approximation of the solution to (9.2.4).
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9.2.2 Application of the Reduced Basis (RB) method

The key idea of RB is to restrict trial and test spaces in (9.2.4) to a low-dimensional

space WN C Uo with N < . For a given pair (f, A), we define the RB approximation

b (f; A) E WN of bk(f; p) as the solution to the N-dimensional variational problem:

a(Nr(f; p), v; f, p) = (v; f, p), Vv E WN. (9.2.8a)

The RB outputs are then evaluated as

Abkf )=Anom (b i , -- h

I (t X2,1;f'11) 2

i, j = 1, ... , 4, (f, A) E pbk, which yields features (see (7.5.4) and (7.5.5)):

AZbk (f; p)
S - j 'k2fl;A. ) 4 . k.f.,f tA , bk(f ;1) = ' (9 .2.8c)

and

Z'ibk(f ; )+ Zibk (f;)
ib[ _ bk( 1. Pbk (fQf,. bk(f; A) = ' ' . (9.2.8d)2Z2k ~ *~2\ 2 Ab(f;p) + Ak(f; p)

We generate the space WN based on snapshots from the bk manifold Myr = {n(f; A)

(f, A) E pk}. More precisely, we consider a Lagrange ([1751) approximation space WN

as the span of N snapshots {4b(fn; tn)} 1N , where {(fn, n)}N_1 are selected based on

the residual-based weak-Greedy algorithm (cf. Algorithm 2.1.1): given {(f", n)}N 1 set

(f N, AN) equal to

(f N N) :- arg max N-1(f,) := N-
(fp)ePYtrain

where pbk is a suitably finite-dimensional discretization of pbk of cardinality p-abk =

f ,train f 'f,train

ntrain. We recall that this procedure allows us to identify quasi-optimal reduced spaces WN

relative to the Kolmogorov gold standard (see 132] and [56, section 8]).

To reduce the computational cost in the limit of many queries, we pursue an offline/online

strategy. During the offline stage (step 2.a in Algorithm 8.1.2), we construct the space

203



WN, and we assemble and store suitable parameter-independent quantities related to the

construction of the linear system (9.2.8) in terms of the offline expansion (9.2.4b). Then,

during the online stage (step 2.b in Algorithm 8.1.2), we compute the coefficients of the RB

solution associated with a suitable basis of WN, and we evaluate the outputs of interest and

subsequently features; the operation count (for a given (f, p)) depends only on N. The offline

stage is performed once and is parameter-independent, while the online stage is repeated for

each value of (f, p): since the cost of a single online evaluation is significantly less expensive

than the corresponding FE evaluation, we can easily amortize the offline computational cost

in the limit of many queries.

9.2.3 Numerical results

Figure 9-1(a) shows the convergence of Ab 1 (f N, N) of the weak-Greedy algorithm (ntrain =

103). We observe that convergence is not monotonic with N: this is to be expected since

the problem is not coercive and we consider only Galerkin projection; monotonicity could be

guaranteed by appealing to the minimum residual formulation ([144]). We further observe

that for N > 15 the residual stagnates: this is due to round-off errors in residual evalu-

ation; potential strategies to address this issue are proposed in [45, 42]. Nevertheless, we

observe that for N > 15 we already obtain a sufficient 106 reduction in the residual value.

Furthermore, Figures 9-1(b)-(c) show that for N = 20 the RB error prediction in feature

evaluation is negligible if compared with intra-class differences. In what follows, we may

thus effectively equate g an N

Finally, we comment on the computational cost. We consider here a P4 FE discretization

(K = 14670) and a RB reduced model based on N = 20 snapshots. Simulations are

performed on a Mac OS-X Intel Core i7 2.8GHz, RAM 16GB. The RB offline cost is roughly

24s, while the cost of a single input-output evaluation is roughly

0.18s for FE, 4.4 - 10- 3s for RB.

Assuming that each datapoint zbk(A) is based on Qf frequencies, our RB approach is com-

putationally advantageous if 24s + 4.4 -10- 3s x MQf < 0.18s x MQf, or

MQf > 180.
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Since we consider M % 104 , Qf ; 10, the cost of the offline stage is negligible. We also

observe that in three space dimensions the RB advantage will further increase.

106 1.6 . 1.4 =

1.2 RB(SL=sR=1)

10
4  -- FE (SL = SR = 1.5)

1.2-1 RB (SL = S = 1.5)

1.220.8

10 2 0.6--10
*FE (sL R = 0.4

100 0.8 R B (SLS = 1) SS 0.4
10 0 - - ~ - FE (8L = SR -15)0.

*__ _ _.__ _ RB (SL = 1, sR 15)
0 5 10 15 20 20 30 40 50 60 70 80 20 30 40 50 60 70 80

f (Hz) f (Hz) f (Hz)

(a) (b) (c)

Figure 9-1: Microtruss experiment: RB Approximation. Figure (a): convergence of the weak-
Greedy. Figures (b) and (c): comparison between FE and RB feature predictions for a = 5. 10- 4 ,

o 
= 10-4, E = 2.8 -10' and three different choices of the geometric parameters.

9.3 Classification results

We consider five distinct classifiers for both levels : one-vs-all Support Vector Machine

with Gaussian kernels (ova-SVM,[184, 61, 58]), decision trees ([38]), r, = 5-nearest neighbor

(kNN, [104, Chapter 13]), artificial neural network with 10 hidden layers (ANN, [34]), and

nearest-mean classifier (NMC). We recall that NMC assigns to observations the label of the

class of training samples whose centroid m(k) is closest to observations in a suitable norm.

Two standard NMC procedures, which correspond to two different choices of the norm, are

Q
g(z) := arg min (zq - mbk(k)) 2, (9.3.1)

k E{1,.KqK1

and

(Q - bk k)2
g(z) := arg min k (9.3.2)

k E{1,...,K} stdbk g
q=1 tq(k)

where mbk(k), stdbk(k) are sample mean and sample standard deviations of the training

samples of the class n = {k} as defined in (7.5.6a) and (7.5.6b). We standardize data' for

the second level, whereas we do not standardize data for the first level: due to the small

'We recall that standardization of data implies that we train the classifier based on the modified features
ZMbk

Zq = where mbk, stdqk are respectively the sample mean and the sample standard deviation of the
q

training set for all classes.
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variations of z, far from resonance, standardization of z, increases sensitivity to model error.

For NMC, we apply (9.3.1) for the first level and (9.3.2) for the second level.

We appeal to off-the-shelf Matlab implementations ([150]) of ova-SVM, decision trees,

kNN and ANN. More precisely, we rely on f itcsvm for binary SVM, f itctree for decision

trees, f itknn for kNN and train for ANN. We refer to the Matlab documentation and to

the above-mentioned references for further details.

In order to assess performance on experimental data, we consider experimentally the five

different nominal system configurations introduced in section 7.5.2. For each configuration,

we consider three independent trials for a total of 15 experimental datapoints. We remark

that these experimental datapoints do not include the datapoint employed to estimate Pk.

We first study performance on synthetic data. More specifically, we study the dependence

of the bk risk on the number M of training points. We generate a dataset with Ntrai_ = 104

datapoints corresponding to the following 9 frequencies:

{fq4} 1= {20.1, 25.1, 30.1, 35.1,40.1,45.1,65.1,70.1, 75.1}.

We choose to not consider frequencies close to resonance since the noise is higher. Then, we

consider M datapoints for training and Ntrain - M datapoints for estimating the bk risk.

In order to account for the effects of partition, we average results over 100 random splits of

the dataset.

10-11

** .

102 --- ova-SVM *
- decision tree *

kNN
* ANN

10-3 
NMC

10 102 103 104

(a)

Figure 9-2: Microtruss experiment: behavior of the overall (both levels) bk risk Rbk(g*) with M
for five different Machine Learning algorithms.

Figure 9-2 shows the behavior of the bk risk Rbk(g* ) with M for the above mentioned

classifiers. We observe that performance strongly depends on the amount of training data;
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this demonstrates empirically the importance of pMOR in the generation of sufficiently large

datasets. We further observe that, unlike the other classifiers, performance of NMC does

not improve as M increases; this is to be expected since NMC is not in general consistent.

We now study performance for real experimental data. Towards this end, we consider

a dataset Dbk with Ntrain = 10 4 datapoints based on the same 9 frequencies considered

for the previous test. We reserve M = 7 - 10 3 datapoints for training and validation, and

3. 10 3 for testing. As for the previous test, we average results over 100 random splits of the

dataset. For this test, we report estimates of the synthetic and experimental risks separately

for first and second level (see (9.1.1)).

Table 9.1: Classification performances, R'levell(g) and R.,Ievel 2 (g), for different learning algorithms
for 100 random permutations of learning and test synthetic datasets

Level 1
bk-risk R bk,leve 1 (g) exp risk (5 x 3) RexPjlevel 1 (g)

ova-SVM 0.0012 0.0107
decision tree 0.0007 0.0533
kNN (k = 5) 0.0013 0
ANN (10 layers) 0.0006 0.5773
NMC 0.0161 0

Level 2
bk-risk Rbk,level 2 (g) exp risk (3 x 3) Rexp,level 2 (g)

ova-SVM 0.0096 0.3333
decision tree 0.0013 0.6667
kNN (k = 5) 0.0079 0
ANN (10 layers) 0.0017 0.5773
NMC 0.1044 0

Table 9.1 shows results for both levels and for both synthetic and real data. We observe

that kNN and NMC succeed in classifying all the experimental data, while decision trees

and Neural Networks perform extremely poorly on experimental data. This demonstrates

empirically that SVM, ANN and decision trees are more sensitive to data uncertainty than

kNN and NMC. We further observe that, among the choices considered in this work, kNN

is the only option that guarantees accurate synthetic and experimental performances.

Before concluding, we apply the five classification algorithms considered in the previous

test to the four-way classification task based on the outputs {Agj(fq)} ,j,q (i.e., Q = 144

predictors, single-level classification). For this test, we reserve M = 7 - 103 datapoints for

learning, and 3. 10 3 datapoints for testing; furthermore, we average results over 40 random
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splits of the datasets. Table 9.2 shows the results for both standardized and unstandardized

data. We observe that classifiers built on the full dataset of outputs {A;,j (fq) }ij,q are

significantly more sensitive to data perturbations. This explains the poor performance on

real data.

Table 9.2: Classification performances for four-way classification based on the bk (or experimental)
outputs {Aij(fq)}i,j,q. Bk and exp risks, Rbk(g) and ReXP(g) for different learning algorithms for
40 random permutations of learning and test synthetic datasets.

(a) with standardization

bk-risk Rbk(g) exp risk (5 x 3) ReXP(g)

ova-SVM 0 0.6000
decision tree 0.0018 0.6422

kNN (k = 5) 0.0003 0.8000
ANN (10 layers) 0.0003 0.8000
NMC 0.0921 0.6000

(b) no standardization

bk-risk Rbk(g) exp risk (5 x 3) RexP(g)
ova-SVM 0.0213 0.2000
decision tree 0.0016 0.6400

kNN (k = 5) 0.0141 0.0133
ANN (10 layers) 0 0.4889
NMC 0.2453 0.5978

9.4 Two model-based approaches for the microtruss problem

9.4.1 Formulation of the inverse problem

As explained in the introduction, in the model-based approach we first must solve an inverse

problem for the full parameter vector p, and then return the label Q = fdam(A*) where IL* is

the estimate of the anticipated configuration. In this section, we appeal to a deterministic

approach to tackle the inverse problem. Given the features z*, z* E RNf, we consider two

different minimization statements:

(9.4.1)'= arg min z*-ziko')|$ + I|z -zbkII 2I2 2
PEpbk
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and

A* = arg min -Hz* - z1k(p)I + I|zi - zhk(p)II|, (9.4.2)
ttceuk 1 Sk

where k = {t = [a, 0, E, SL, SRI E pbk : (SL, SR) E Sk}, and S1,..., S4 are the regions

defined in (7.6.7). We remark that in both approaches we estimate both the quantities di-

rectly related to our definition of damage (the geometric quantities SL, SR), and the nuisance

variables (the material properties E, a, 3).

We resort to an off-the-shelf Matlab optimizer to solve (9.4.1) and (9.4.2). In more

detail, we resort to fmincon, and we consider both on an interior-point algorithm (see, e.g.,

[43]), and a sequential quadratic programming (SQP, see e.g. [35J) method for non-convex

optimization. The gradient of the objective function is estimated through finite difference.

We appeal to the RB approximation described in this chapter to reduce the computational

burden. For (9.4.1), we consider four different initial conditions - one for each region

Si, ... , S 4 . On the other hand, we decompose (9.4.2) into the four distinct problems

A*2,k = arg min 14z* - zbk(A)I1 + I*z - zbk(/t)I11, k = 1,..., 4,
pESk

and then we define p*,2 as follows:

A*' 2 = arg min 11- z k(/t)I1 + 11z -- zbk(/t)I11.
9 {*,2,kl Z

9.4.2 Numerical results

Table 9.3 shows the unnormalized confusion matrices for synthetic (M = 40) and experi-

mental (M = 5 . 3) data. We observe that both approaches classify correctly all synthetic

datapoints, but they fail to discriminate between the states y = 1 and y = 4 for real data.

The reason is the presence of non-parametric error in the mathematical model. As observed

in Chapter 8.1, this should not be surprising: the estimate of the full vector At is a much more

general problem than the estimate of the state of damage fdam(A), and thus is more likely

to be ill-posed (see [220, Chapter 1.9]). We observe that it could be reasonably contended

that the inability to discriminate y = 1 and y = 4 is due to the lack of any regularization

relative to At (apart from the constraint At E pbk). However, although we could certainly
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include a prior relative to the anticipated physical problems, we cannot in good faith include

any prior information on the geometric parameters directly related to damage.

As regards the computational cost, a typical solve for a single initial condition requires

roughly 100 - 150 iterations and 800 - 1000 evaluations of the objective (7200 - 9000 PDE

solves) for the interior-point algorithm, and 30 - 50 iterations and 300 - 500 evaluations of

the objective for SQP. For more challenging problems with several parameters the required

number of iterations and also the number of required restarts would be much larger. For

this reason, despite more advanced model reduction techniques as well as more careful

implementations might speed up calculations, we envision that the approach is not well-

suited for real-time calculations.

Table 9.3: Confusion matrices for the model-based approaches (9.4.1) and (9.4.2) for synthetic and
real data. Results reported are based on the interior-point algorithm.

(a) Strategy (9.4.1) (b) Strategy (9.4.2)

Synthetic data

y=1 y=2 y=3 y=4
y=l 11 0 0 0
y=2 0 9 0 0
y=3 0 0 11 0
y=4 0 0 0 9

(c) Strategy (9.4.1)

Real data
y=1 y=2 y=3 y=4

= 0 2 0 1
y=2 0 0 0 0
y=3 0 0 6 0
Q=4 0 0 0 6

Synthetic data
y=l y=2 y=3 y=4

y=l 11 0 0 0
y=2 0 9 0 0
y=3 0 0 11 0
y=4 0 0 0 9

(d) Strategy (9.4.2)

Real data
y=l y= 2  y=3 y=4

= 3 0 0 0
y=2 0 0 0 0
y=3 0 0 6 0
y=4 6 0 0 0

9.5 Conclusions

We applied the Simulation-Based approach presented in Chapter 8 to the microtruss prob-

lem. We introduced physically-informed features, which are tailored to the particular states

of damage we wish to detect, and a Reduced Basis approximation, which dramatically re-

duces the offline computational cost. We applied five different machine learning algorithms,

at least one of which performs very well on both synthetic and real (experimental) data.

We further discussed the application of two model-based approaches to the same classi-

fication problem. Numerical results show that, although both model-based approaches are
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accurate for synthetic data, they are not able to discriminate between the state y = 1 and

the state y = 4 for experimental data. This empirically shows that both these model-based

approaches are more sensitive to model error than the simulation-based technique discussed

in this thesis. Furthermore, they are not well-suited for the real-time framework due to the

large amount of PDE solves required online.
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Chapter 10

Conclusions

10.1 Summary and conclusions

This thesis presents work toward the development of efficient model reduction strategies

for Data Assimilation (DA) for systems modeled by PDEs. We specifically focused on two

DA tasks: state estimation for stationary problems, and damage identification for SHM

applications.

In Part I of the present thesis, we developed and analysed the Parametrized-Background

Data-Weak (PBDW) approach to the problem of steady-state variational data assimilation

(state estimation). The approach was originally proposed by Maday et al. in [142] for perfect

measurements and is characterized by the following characteristics.

" Projection-by-data: in PBDW the mathematical model is only used to generate the

background space ZN. This feature simplifies the implementation, and provides flexi-

bility regarding the choice of the domain of interest Q and the choice of the ambient

space U.

" Variational formulation: PBDW relies on a variational formulation. This feature

provides a suitable framework for the analysis, and also for properly addressing tasks

related to the design of experiments (e.g. sensor placement).

" Background and update spaces: PBDW state estimate is the sum of two components:

the former, the deduced background z*, is informed by the experimental observations,

through the background space ZN, and addresses the uncertainty in the parameters

of the model; the latter, the update rj*, is informed by the experimental observations,
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through the space of Riesz representers UM, and addresses the deficiencies of the bk

model.

In this work, we provided three contributions to the original PBDW formulation.

" A posteriori error analysis (Chapter 4): we proposed an experimental procedure based

on Monte Carlo sampling of observation functionals that provides confidence intervals

for the L 2 error in state and the error in L2 outputs. Although the error estimation

procedure was primarily designed to certify the accuracy of a given state estimate, it

can also be applied to other DA assimilation tasks: (i) the prediction of L 2 outputs,

(ii) the data-driven empirical enrichment of the PBDW background space ZN based

on unmodeled physics identified through a set of preliminary (offline) DA results, and

(iii) the adaptive selection of the PBDW tunable parameters.

" Localised state estimation (Chapter 5): we proposed a model reduction approach for

the construction of local approximation spaces over a domain Q strictly contained

in the domain Qbk in which the PDE model (and thus the corresponding solution

manifold) is properly defined. We presented a thorough mathematical analysis to

prove the optimality (in the sense of Kolmogorov) of our construction, and we also

presented several numerical results to show its effectiveness.

" State estimation based on pointwise noisy measurements (Chapter 6): we extended

the PBDW formulation to pointwise noisy measurements. By exploiting the theory of

RKHS, we considered spaces U for which the Riesz representers {Kxm}m associated

with the observation functionals {.rm}m are explicitly known. We demonstrated that

explicit expressions for the representers greatly improve the flexibility of the approach,

and also guarantee faster convergence with respect to the number of measurements M

than in the approach presented in [142, 143]. The extension relies on an adaptive

procedure - guided by the error estimator developed in Chapter 4 - that takes into

account the noise, model accuracy, and the characteristic length-scale of the difference

Utrue - z*. In particular, adaptation in the value of allows us to properly weight

the trust in the bk model with respect to the trust in the experimental measurements.

We presented a priori error estimates to motivate the approach from a theoretical

standpoint, and several numerical examples to illustrate the different elements of the

methodology.
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In Part II, we proposed a Simulation-Based approach for classification, and we dis-

cussed its application to a Structural Health Monitoring problem, the microtruss problem.

Simulation-Based approaches exploit (i) synthetic results obtained by repeated solution of a

parametrized mathematical model for different values of the parameters (corresponding to

different configurations), and (ii) supervised-learning algorithms to generate a classifier that

monitors the damage state of the system. In this thesis, we exploited recent advances in

parametric Model Order Reduction to reduce the computational burden associated with the

construction of the offline training dataset, we proposed a mathematical formulation which

integrates the PDE model within the classification framework, and we derived an error bound

which clarifies the influence of model error on classification performance. We finally applied

our technique to the microtruss problem: for certain choices of the classifiers we were able

to predict the correct state of damage associated with experimental configurations.

10.2 Future work

During the course of this work, we have identified several areas of future research. For

purposes of presentation, we shall distinguish between state estimation and damage identi-

fication.

10.2.1 State estimation

Generalization of the PBDW formulation

In section 2.1.1, we found that we can rewrite the partial-spline model for a rank-N back-

ground, un1 n(p)(n(), as (cf. (2.1.4)):

(pa marg min I12 1 M (o ( N (n + to fobs
(iq)EPbkxU M __

and we can then define the corresponding state estimate u* = n + 7 It is

straightforward to verify that the state estimate u* equals f1 = EN_1 q, + n, where

M ( NN 2

( ,n) =arg min xU |I|I 2 + S y n E nj+ to -obs
(01,j)E 1 NX xu 171 M mn=1 n=1

215



and DN = f[01(0), - -- , N(P) : t E pbk.

In this thesis, we substituted 4N with the full space RN to obtain the PBDW formulation

(2.1.5). Although this greatly simplifies the implementation, and also the analysis, it might

lead to an excessive loss of information, especially when N ~ M. If we denote by P E pbk

the centroid of pbk and we normalize the basis (1,... , (N, we typically observe

max Iq1(p) - #1(p)I >> max 102(P) - 02()I > ...
[LEpbk PiEPbk

By considering 4DN = RN, we completely discard this information.

Based on the previous discussion, we might consider more stringent relaxations (DN C

RN. Clearly, the choice of ( N should be a compromise between (i) proximity of (N to (N,

and (ii) computational complexity associated with the corresponding optimization problem

to solve. In this respect, in [33], the authors proposed a generalization of the PBDW in

this direction, which corresponds to the solution to a suitable recovery problem of the form

described in Chapter 2.2.2.

Localised state estimation with nonlinear models

In Chapter 5, we presented a computational approach to construct local approximation

spaces associated with potentially high-dimensional solution manifolds. The procedure -

based on the solution to a transfer eigenproblem - and the analysis relied on the assumption

that the underlined PDE model was linear. Extending the computational procedure and,

even more ambitiously, the analysis to nonlinear problems would increase significantly the

range of applications to which the technique can be applied.

Selection of the observation centers for pointwise measurements

In Chapter 3, we presented a strategy (cf. Algorithm 3.2.1) for the selection of transducers'

locations for the noise-free PBDW formulation based on the maximization of the inf-sup

constant /N,M. Numerical results demonstrated the importance of properly chosing the

observation centers for N ~_ M. In Chapter 6, we observed that if we rely on explicit

kernels we cannot in general compute the inf-sup constant /N,M; as a result, we cannot

apply Algorithm 3.2.1 for the selection of the observation centers.

For this reason, we aim to design strategies for the selection of the observation centers
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that address both stability and approximation that do not involve the calculation of the inf-

sup constant fN,M. In this respect, we wish to combine the Greedy procedure presented in

Algorithm 3.2.1 with techniques developed in the kernel methods' literature for collocation

methods for PDEs ([111, 198]) and scattered data approximation ([156, section 3.1.11, [237]).

10.2.2 Damage identification

High-dimensional damage description: PR-scRBE

A prerequisite for good classifier performance is a sufficiently rich description of undamaged

and damaged states. Absent such a complete description (i) a classifier will certainly not

be able to discriminate between different states of damage (not represented in the offline

training dataset), and (ii) we may not be able to identify features which can discriminate

between undamaged and damaged states.

For practical engineering systems - such as airframes, shiploaders, bridges, offshore

platforms - accurate parametrizations should take into account variations in material

properties, geometry, boundary conditions, and also topology; this clearly leads to very

high-dimensional parameter domains. The dimensionality of the parameter domain pre-

cludes application of the classical Reduced Basis approach employed in this thesis: we are

confronted with the well-known curse of dimensionality. However, we might appeal to a

more ambitious parametrized Model Order Reduction approach: the Port-Reduced static-

condensation Reduced-Basis-Element (PR-scRBE, [171, 72, 203]) method. PR-scRBE com-

bines Component Model Synthesis (CMS) technique [116, 11]- as regards components and

ports - and the Reduced Basis (RB) method - as regards bubbles and in particular para-

metric treatment.

The PR-scRBE method, like the simpler classical RB approach, consists of two stages:

a pMOR offline stage, and a pMOR online stage. During the offline stage, we construct

a library of parametrized and interoperable archetype components. Each archetype com-

ponent represents a specific geometric form, for instance a beam or a fin, and may fea-

ture various ports of different types; in addition, all components of a library share the

same parametrized mathematical component (e.g., Helmholtz acoustics, Helmholtz elasto-

dynamics, heat-transfer). During the online stage, we synthesize any parametrized bk model,

for given bk model parameter p E pbk, as an assembly of instantiated archetype compo-
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nents. We then appeal to the RB method to reduce the degrees of freedom in the interior of

each component, and we appeal to port-reduction approaches to reduce the degrees of free-

dom at the interfaces (ports) between components. The combination of these two reduction

techniques leads to a dramatic decrease of the total number of degrees of freedom compared

to the high-fidelity model, and thus leads to dramatic computational speed-ups.

For many engineering systems of interest for SHM applications, the description of dam-

aged and undamaged system configurations in terms of components is particularly favorable.

We have indeed that many of the systems described above are naturally described by an as-

sembly of, possibly parametrized, building blocks; in addition, damage generation is a local

phenomenon, and thus can be effectively described at the component-level. For this reason,

we envision that the use of PR-scRBE might enable us to tackle more realistic engineering

problems.

Automatic feature identification

As shown in the numerical results of Chapter 9, appropriate choice of features is absolutely

crucial for classification. In particular, features which are sensitive to the anticipated damage

but relatively insensitive to nuisance variables and measurement noise greatly simplify the

classification task and ultimately improve the robustness and hence performance of the

deployed classifier. Furthermore, we may view feature identification, or "extraction" -

which includes both sensor placement and frequency selection, and perhaps also actuator

considerations - within the broader context of Design of Experiment (DOE).

In this thesis, given the experimental outputs {A.P(fq) }ij,q, we proposed the features

z ) [zj(fl; -)]Qi, z'(-) = [z'(f1; .)]Q defined in (7.5.4) - (7.5.5). Numerical results

demonstrate that our choices are well-suited to discriminate between the undamaged state

and damaged states. The relations (7.5.4) - (7.5.5) are identified by inspection of bk model

predictions, preliminary experimental studies (prior to the offline stage of the classification

procedure), and physical arguments informed by the classical disciplines of elasticity and

dynamics.

As future work, we wish to develop computational techniques for automatic, or at least

semi-automatic, feature extraction. These methods promise not only more effective classi-

fiers but also more effective deployment; for example, in the microtruss context, we may be

able to reduce the number of sensors as well as the number of shaker excitation frequencies.
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We envision that automatic feature extraction techniques can greatly benefit from recent

advances in Robust Optimization (RO, [20, 30]) and Mixed Integer Optimization (MIO,

[31]). Since RO and MIO techniques are directly informed by the target risk Rbk(.), we

might design feature that are "optimal" with respect to our stated objectives as reflected in

wbk. We might also consider feature extraction by (grouped-)variable selection techniques

developed in the DOE literature (see [121], [36, Section 7.5], [179]) for regression analysis.

Impulsive and ambient loading

We have until this point largely taken the source and nature of excitation as given. We can

expand our choices to perhaps better discriminate and to more effectively deploy.

For our microtruss problem, we resort to a shaker to apply a known displacement at

prescribed frequencies. Shakers provide a high signal-to-noise ratio and furthermore can

excite a broad range of modal frequencies. However, shakers are cumbersome and expensive

to install and particularly difficult to apply in situ. Furthermore, shakers are not practicable

if we wish to continually monitor structures in the field.

Impact hammers represent an important alternative to shakers for SHM actuation in

particular as regards installation and operation. From a mathematical standpoint hammer

excitation can be interpreted as an impulse in the time domain; the Laplace transform

connects the frequency and time domain. An example of impulsive SHM is Acoustic Pulse

Reflectometry (APR, [4, 2001): a microphone measures the reflections of an acoustic pulse in

a pipeline to deduce damage "scatterers" such as holes or obstructions; similar concepts may

be applied more generally within the elastodynamics context. Quite apart from practical

considerations, these impulsive - effectively, time-of-flight - protocols would appear to

offer very good sensitivity to damage; "feature extraction" concepts can then be applied to

optimize sensor and actuator location and also sampling strategies.

It is also of interest to consider not just active systems in which we provide forced and

controlled (say, hammer) input excitations, but also passive systems - "output-only" meth-

ods - which rely on ambient loading as naturally arises in operation of the deployed system

([79, Chapter 4.11],[651). The latter are of course ideal as regards installation and mainte-

nance in real structures in the field. The SHM literature proposes a variety of approaches for

passive systems: in particular we cite Operational Modal Analysis (OMA, [6]) which iden-

tifies modal properties of structures from ambient vibration data; representative examples
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of OMA techniques include peak-picking ([146]), Frequency Domain Decomposition (FDD,

[39]), and Time Domain Decomposition (TDD, 1125]).

Integration of our pMOR Simulation Based Classification approach to SHM with time-

domain analysis and impulsive excitation, and ambient or operational load conditions rep-

resents a very promising area of future research.
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Appendix A

A posteriori error estimation:

analysis of the finite-v error

In this Appendix, we present a thorough analysis of the finite-v error in both L 2 functionals

and L 2 error. In more detail, we rigorously demonstrate that finite-v error is a balance

between transducer resolution and regularity of the spatial field. In section A.1, we present

a number of definitions, and an useful lemma. Then, in section A.2, we present the proofs

of the two main results presented in Chapter 4.

A. 1 Preliminaries

We first introduce the convolutional kernel

(A.1.1a)C (d) (
d,V (r) = vd V'

where C(d) is a normalization constant such that

R dd,v(IX - YI) dx = 1,
VXy c R

and w : R+ -+ R+ is a positive function such that

W(p) = 0, Vp > 1.

(A.1.1b)

(A.1.1c)
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Given Wd,,, we can introduce the function gd: R+ -+ R+ such that

C(d) [1/r 1 /I \
gd(r) := --- s ds, (A.1.2)

rd-1 j d 1 kS}

and the constant

00O i/p

CW(p, d) = (A(d) ] (gd(r))Prd-1 dr) , (A.1.3)

where A(1) = 2, A(2) = 27r, A(3) = 47r is related to the dimension.

Next Lemma shows that C(p, d) is finite if p < d-I and w(r) ~ r-' as r -+0+ for some

a < d.

Lemma A.1.1. Let p < A and let wd,v be the kernel defined in (A.1.1). Then, if w(r)

r-a as r -4 0+ for some a < d, the constant C,(p,d) in (A.1.3) is finite.

Proof. Let us consider the function

/r) 1/r W - ds\yd f r 08d+1

Applying change-of-variables formula, and recalling (A.1.1c), we find

d (r) =Jf sd-lw(s) ds if s < 1;

0 otherwise.

Since w(r) ~ r-a as r -+ 0+ for a < d, d is bounded for any r > 0.

We now consider the integral

00 1
(Cw(p, d))' = A(d)] (gd(r)) r d- dr = A(d) ] IId(r)]P r(d- 1)( 1 -P) dr.

Since yd is finite for r + 0+, Cw(p, d) is finite if and only if (d - 1)(1 - p) > -1, which

implies p < d- . Thesis follows.

Previous definitions are motivated by Lemma A.1.2.

Lemma A.1.2. Let E W1G(QGobs), where Qobs c Rd and q E (d, oo], and let Wdv be a

convolutational kernel. Let us further recall the definition of v-neighborhood of Q Q, = {x C

Rd : dist(Q, x) < V}.
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Then, if , cc Qobs, the following estimate holds:

IITv() - OlIL (Q) Cw(p, d)VI-dj4||V0Lq (Q, ), (A.1.4)

where Cw(p, d) is defined in (A.1.3) and Fv( )(x)= fgpbs wd,v(|x - yj) (y) dy.

Proof. Since E C(Qobs) (see, e.g., [181, Theorem 1.3.51), we must show that lFT( )(x) -

S(x)l I C (p, d)v -d/q |V0Lq(Qobs) for all x E Q. With no loss of generality, we assume

E C(QObs); the generalization to ( E W1"1 can be performed using a density argument.

We omit this passage.

Let us take t E Q. Since Q, CC Qobs, we have that z + Bv(O) C Qobs. Then, referring

to the Fubini theorem and the Cauchy-Schwartz and H6lder inequalities, we can estimate

- c(t) as

1 av(Ix - z1) (x) dx -(_t),

+ y) Y

V (( + Y) y

V (t + Y) -I
- IB3V ()= 11,(;-

(A.1.1b),

- l/v) ( flO dt)

dx)
C(d) x -

vd

dx,

dt

Cvd +w(ly/tv)V ((+y) -ydy dt
vdtd+1l

C~)w(IyI/tv)V (4 v+y) *ydyl dt
idtd+1

( l v(d)o ztd~l W(Iyl/tv)

I 1 vIYI C (d)
jyd 0 sd~

-d-I gd(lyl/v) dy

dt) dy,

ds) dy,

1

(Fubini theorem),

(t(X - ) = y, tdd = dy),

(W(p) = 0, Vp ;> 1),

(Fubini theorem)

(tv/Ily = s)

(H61der).
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We finally observe that:

IIgd(I -|/v)IILP(Rd)

= (A(d) f (gd(r))Prdl- dr)1 P Vd/p-d+l = C, (p,d) vd/p-d+l.

Thesis follows.

A.2 Error bounds for the finite-v error

We now wish to apply Lemma A.1.2 to show error bounds for the finite-v error in output

functionals and in L2 error. For convenience, we report the statements already presented in

Chapter 4.

Proposition A.2.1. Let Wdy, be a convolutional kernel of the form (A.1.1) such that w(r) ~

r-' for some a < d. Then, if Q, cc Qobs, the following hold.

0 If e G W1,(Qobs), q G (d,oo], then

(A.2.1a)IEi - E7I : C(p, d)VI-/qIQ1/2||(I|L2(Q) IeIIL()

* If ( C W'q(Q), q E (d, oo], e c L (Qobs), then

|EL- Ef| Cw(p, d) C1(Q,Qobs p V1-d/q| IL2() IW1,q(Q)
(A.2. 1b)

+C2(Q7 , bs)V e- I L- (Q,) I (I OWl,q(Q).-

Proof. Estimate (A.2.1a) follows by applying Lemma A.1.2 and the Cauchy-Schwartz in-

equality.

We now show (A.2.1b).

ext E Wl'(Qobs) such that

Since Q, cc Qobs, recalling [1, Theorem 5.24], there exists

Cext (A.2.2)

Then, we introduce .F : L2 (Q,) L 2 (Q,) such that

JV(w) = Wd,v(IX - yl)w(y) dy.
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We observe that for all w E L'(Q,), we have

lTv(w)(x) j
1 W 1 oO(Qv) Vx (E Qv \ Q.

It follows from (A.2.3) and (A.2.4) that

fQ ( (y) T.(e)(y) dy = f (ext(y) (I wd,(lx - yl)e(x) dx) dy - f (ext(y) Tu(e)(y) dy

- fQ e(x) T.('e t)(x) dx + f, 2\Q (e(y) fv((ext)(y) - Fv(e)(y) (ext (y)) dy.

Then,

Ej- e(x) (((x) - Fy((ext)(x)) dx +

(I)

(e(y) u(( ext )(y) -

(II)

Applying Lemma A.1.2 to (ext, recalling (A.2.2) and using the Cauchy-Schwartz inequality,

we obtain

I(I)l < C,(p, d) C1(Q, Gobs)V-dj, 11e 1L2(Q) 11(11W1,q(Q).

On the other hand, observing that for every E L'(Qobs) we have that

I (x) dx <

we find that

(II)| I 2C(Q)vle (ext ||ILo (Q,) < C2 (Q, Qob,)V Ieft v Loo( 11UCW1,q(Q)-

Thesis follows. D

Proposition A.2.2. Let e E W1'q(Qobs), where Qobs c Rd and q E (d, oo]. Let Wd,, be a

convolutional kernel of the form (A.1.1) such that w(r) ~ r-- for some o < d. Then, if

Qv cc Qobs, the following estimate holds:

A" (,) < Cw (p, d) V/j _Q1v'-d/q ||VehqL(QV). (A.2.5)
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Prbof. Using the inverse triangle inequality, and (A.1.4), we find

IE'(v) - El = IIIeIIL2(Q) - 1ITV (e)11L2(Q)1 lie - J7V(e) 1L2(Q),

ED
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Appendix B

A posteriori error estimation:

extension to heteroscedastic noise

B.1 Main result

We study the extension of the discussion of Chapter 4 to the case of heteroscedastic random

noise. Specifically, we consider the following set of assumptions.

" H1 { _1 is a sequence of J i.i.d. random variables such that Xj ~ Uniform(Q).

* H2 { _ is a sequence of independent random variables such that E[Ej] = 0, V[ej]

SE [0, B], and

sup E[jl3] < 00, sup E[ej 14] < OC.
j j

" H3 Xi and ej are independent of each other i, j = 1, ... , J.

We observe that the extension to heteroscedastic noise does not affect our discussion

about the finite-v error; thus, in what follows, we only focus on finite-J and finite-noise

error. For simplicity, we only consider the case of L2 (Q) functionals; the same ideas can also

be applied to the estimation of the L2 (Q) error.

We state the main result of this appendix.

Theorem B.1.1. Let {Fj}_' and {Gj}7 be two random sequences such that

1. F1 , F 2 , ... are i.i.d. random variables such that E[Fj] = PF, V([1F] = U, E[|Fj|3I] < oc;
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2. G1, G2 , ... are independent random variables such that E[Gj] = 0, V[Gj] = ? c

['Min , Qmax], sup E[IGj 3] < oc and sup E[IGj14] < oc;

3. E[F Gj] = 0, sup E[IF|G?] < o0, supj E[Fj|Gj1] < oo for j, j' = 1,2.

Then, if we define Y = Fj + G and the sample mean and variance

yJ := Yj
j=1

00
-2 1~
ey j = -

j=1
(B.1.1)

the confidence region

C(oe = V - Z1 a/2
YJ ax in + 1 2  YJ +Umax

(B.1.2)

satisfies lim inf j P (IF E Cj(a)) > 1 - a, for any 6 > 0.

Theorem B.1.1 can be applied to the estimation of E(v) by considering

Fj = F(e)(Xj) ((Xj) IQ1, Gj = ej ( (Xj) IQI

and assuming that {Xj_1 and {e}>j satisfy HI, H2, H3. We observe that the random

variables Y are observable - realizations of {Y,} are {er}j; while we have that ax =

E B Band ,i = E(o B with E=, ( I2E[((X1) 2

The remainder of this Appendix is organized as follows. In section B.2, we present four

preliminary results. Then, in section B.3, we present the proof of Theorem B.1.1.

B.2 Preliminaries

Definition B.2.1. We say that the random sequence {Z}3 converges in probability towards

the random variable Z if for all 6 > 0:

lim P(Z, - ZI > 6) = 0.
j-+00

We denote convergence in probability by plimj Zj = Z.
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Lemma B.2.1. Let {Zj}j be a sequence of random variables such that sup E[Z?] < o,

and E[ZZ3 ] = 0 if iy# j. Then,

p lim Zzj = 0. (B.2.2)
j=1

Lemma B.2.1 is a consequence of Chebyshev's inequality (see, e.g., [119, Chapter 5,Corol-

lary 5.2]). We refer to Ref. [119, Exercise 20.1] for a guided proof.

Lemma B.2.2. Let {Zj}j be a random sequence of independent random variables such that

E[Zj] = pj, V[Zj] = 01?, with Pmin [ Ai [Lmax and - < &2 < oc. Then, for every 6 > 0

lim P (min - 6
J- 00

Proof. We observe that

(Z - Yu + Amax) =

(Z3 - Pi + ttmin) =

Z' <
1 .

Z >

Z3 + Amax;
1 1

j + p1min;

j=1

where Z = Z - p .

We observe that the random sequence {Zj'}j satisfies the hypotheses of Lemma B.2.1.

Then, thesis follows from (B.2.2). l

Lemma B.2.3. Let { }j, {'Jg}j be two random sequences such that

i plim Cb - 'j = 0;

ii there exists a, 0 > 0 such that for all 6 > 0, limj P(a - 6 < j + 6) = 1.

Then, for every 6 > 0,

lim P(a - 6 < 4b <,3 + 6) = 1.
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j=1

(B.2.4a)

(B.2.4b)



Proof. Let us introduce the events

Aj3,:= {w: I'Iv(w) - xIj(w)l K j6},

Ej,3 := {w : Tj(w) C [a - 6/2, 0 + 6/2]},

where 6 > 0.

Using hypothesis (i), for any given 6' > 0, there exists J* such that for all J > J*:

6' > P(I-j(w) - 'Ij(w)I > 6/2) = 1 - P('14j(w) - xIj(w)l < 6/2) = 1 - P(Aj,).

Using the total probability theorem, we find

P(Aj,3 ) = P(Aj, f EJb) + P(Ajs n Ec,3 ).

We observe that

P(AJ,6 n Ej,6 ) = P ((Ti - 6/2< oij < 'j + 6/2) n (a - 6/2 < TJj < + 6/2))

< P(a-6< 4Dj / +6).

On the other hand, we have that P(Aj,6 n E16 ) P(E'1), and then

6' > 1 - P(a - 6 < (D j + 6) - P(Ecj).

Recalling hypothesis (ii), we have that P(EJ6 ) - 0 as J -4 oo for every 6 > 0. This implies

that there exists J* such that for all J > J** P(E'1 ) < 6'; as a result, for J > max(J*, J**),

we obtain

P(a- 6 <4j +6) >1-26'.

Since 6' can be chosen arbitrary small, thesis follows. D

We now exploit the previous lemmas to prove an important limit in probability.

Proposition B.2.1. Let {Fj}3 and {Gj}3 satisfy the hypotheses of Theorem B.1.1, and let

sey,j be defined in (B.1.1). Then, for any 6 > 0, we have that

lim P (-Oax+ + Sej _min + s+ey+6) = 1.
J

(B.2.5)
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Proof. Let us define

2 2 2 1J =F SJ, J =F - s F,J + G
j=1

where sel, = j(F - Fj) 2, Fj = _ Fj. Recalling that plimj s = 4and

then applying Lemma B.2.2, it is straightforward to verify that

lim P (i> - 6 the other ha n, we-o6 r t haaxt
=1

for any 6 > 0. On the other hand, we observe that

(Iji-IK = = ()

=JI)

where 0i = -1  G.

We study the limits of (I), (II) and (III) separately. Since the random variables Zj =

F G are independent and Zj satisfy the hypotheses of Lemma B.2.1, we find that

p lim (I) = 0,

Furthermore, applying [119, Theorem 17.5 and exploiting the fact that p limj Gj = 0

(consequence of Lemma B.2.1), we find that

p lim (II) =(?7)2 = 0.

Finally, we observe that we can write (III) as follows: (III) = - E _ Z, with Zj = Fj G3.

Recalling the third hypothesis of Theorem B.1.1, we observe that

E [Z] = E[Fj Gj] = ZE[F Gj] = 0
j'=1
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and also sup E[Z ] < oc. Then, applying again Lemma B.2.1, we conclude that

P lim (111) = 0.
J

By combining the three different pieces, we obtain

p lim (4Dj - TIJ) = p lim (I) + p lim (II) + p lim (III)
J1 J J

= 0.

Thesis then follows by applying Lemma B.2.3.

B.3 Application of Lyapunov Central Limit Theorem

We first verify that the random sequence {Yj :F + Gi}gi satisfies the hypotheses of

Lyapunov Central Limit Theorem (see, e.g., [119, Theorem 21.2]). We have indeed that

E[Y] =IE[Fj] + E[Gj] = AF;

E[Y2 ] E[FJ] + E[G?] + 2E[FjGj] = -2+ /t + ? < o0;

E[IYj 3 < E[IFj1 3] + E[Gj1 3] + 3E[FjI2 lGjI] + 3E[lFj IIGj 2] < o0.

(B.3.1a)

(B.3. 1b)

(B.3. 1c)

Applying Lyapunov Central Limit Theorem to the random sequence {Y} j, we obtain

1 -t 1 t
Cjh()- la2 Yj + S! h

F V/ij Z--a /21

where (Sh)2 = Z _1V[Yj= ] = 1 + is a (1 - a) asymptotic confidence interval

for pF. Exploiting Proposition B.2.1, we find

lim P ((Sth)2 < idj + Oax - )i 1

and thus limj P(Cth(y) C Cj(a)) = 1. As a result, we obtain that

lim inf P (AF E CJ(a)) > liminf P E Cth(a)
J J A

Thesis follows.
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Appendix C

Caccioppoli inequalities for some

elliptic PDEs

In this appendix, we prove Caccioppoli inequalities for the solution to a number of elliptic

problems. Caccioppoli inequalities represent the basic tool to prove regularity results for

elliptic boundary value problems. We refer to the book of Giaquinta and Martinazzi [93] for

further details.

This appendix is organized as follows. In section C.1, we introduce some preliminaries.

Then, in section C.2, we first consider the case of harmonic equations (Laplace's equation)

and we observe that the same strategy can be easily extended to advection-diffusion-reaction,

Helmholtz's equations and to linear elastodynamics. Finally, in section C.3, we study the

problem of Stokes.

C.1 Preliminaries

We first present some definitions and general hypotheses. We denote by ubk E Vbk -

H1 (Qbk) the solution to the variational problem:

G(ubk, v) = 0 Vv E VObk ukIrin = j

where Vbk := E Vbk : v =ri. = 0}, g E T = H1 / 2 (pin). In what follows, we assume that

Fin is an open subset of DQbk and that Qbk is a Lipschitz domain. We further introduce

Q c Qbk c Rd such that 6 := dist(p, in") > 0.
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The objective of this appendix is to show that

1ILb||2(Q) < k 1L2(Qbk), Vg E T. (C.1. 1)

We recall that (C.1.1) guarantees that the space generated by the transfer eigenmodes is

optimal in the sense of Kolmogorov (see Chapter 5).

We further introduce quantities that will be used to prove estimates of the form (C.1.1).

First, we introduce the t-neighborhood of Q in Qbk:

Qt := {x E Qbk : dist(x, i) < t}. (C.1.2)

We observe that Qt C Qt, if t < t'. Then, we introduce qt,s c Cl(Rd) such that

_ f1 in r
0 < qt,s(X) 1, qt,s(x) = (C.1.3)

0 in Qbk \ Qs

where t < s. We observe that we can choose t,, such that

C
|Vqt,.s(X) 112 < , (C. 1.4)

S - t,

where C might depend on Q. We further observe that if s < 6, t,,I]in = 0.

Before concluding, we comment on the notation adopted. In this appendix, we employ

bold letters to indicate vector-valued functions. Furthermore, we denote by 11 112 the Eu-

clidean norm in Cd with the understanding that if v is complex 1lvI12 = v V . Similarly,

we denote by 11 -|1F the Frobenius norm in Cdd. We state upfront that, in what follows, we

denote by C a positive constant that uniquely depends on Q, Qbk.

C.2 Laplace's equation and simple extensions

We first study the Laplace's equation. Next theorem coincides with [93, Theorem 4.1].

Proposition C.2.1. Let ubk E Vbk be the solution to

.

.fkVu bk -Vvdx = 0, VV (E Vbk, Ubk ~ (C. 2.1)
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where g E T. Then, given the Lipschitz domain Q C Qbk, 6 : dist (, '1 ) > 0, we find

4 IIVubkfIl d C(0Q)
g 2 dx < 62

Proof. Let us consider v = u 2, with 0 < t < s < 6. By substituting in (C.2.1), we find

bk g 2It,dx= -2jbk
(mtsVU bk) )( kV,ts)

Then, applying Cauchy-Schwartz inequality,

1/2

11,Ubk 11 712dx < 2 (J2bk g 2 ks dx) (fbk

1/2

By dividing both sides by (f bk IIVU 2 ,s dx)1 / 2 and then squaring both sides of the

equation, we find

/bkIIV~~4kII~
2 sdx < 4 (Uk)~ 2I V2?t, SI11 dx.jbk g2t ,bk 2

Finally, if we set t = 0 and s = 6, recalling (C.1.3)-(C.1.4), we find that yl,s= 1 in Q and

IIVt,s(X)112 2 for all x E Qbk. As a result, we find

11 Vubk 
d 

g 2dx< J bk
VUk 82 , dx < 4g 2 

t - jbk .Lbk(bk)2 dx.

Thesis follows. E

Some comments are in order. First, we observe that with the same proof we can generalize

the result as

4nSVuk dx C () Lbk (Ubk - A) 2 dx, A E R.

Second, we observe that we do not require that Q cc Qbk, but only that 6 > 0, that is, we

require that Fr" is well-separated from Q.

We now extend the result to a wider class of PDEs.

Proposition C.2.2. Let ubk G Vbk be the solution tog

V VU bk. (bVu bk) bk v dx = 0 Sv E VObk ubkjr = g, (C.2.3)
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J2bk 
2 dx. (C.2.2)

Lbk

4o

fbk

Ub) 2 11,,t,s 8 2 dx < 4C
9 2 - 2



where v, b, c E L1 (Qbk). We assume that v(x) > Vrin > 0 and that b, c guarantees the

existence and uniqueness of the solution ubk for any choice of g C T.

Then, the following holds:

f 1 (1_2 _( _ _k)

u dx < ICIILOO(2bk) 62 9 L2(Obk). (C.2.4)
jo Vmin

We observe that Proposition C.2.2 includes advection-diffusion-reaction and Helmholtz's

equations as special cases. We also observe that with analogous proof we can consider more

general boundary conditions on open subsets of a~bk \ pin that are well-separated from Q.

For example, if we consider the problem

febk v k . Vv + (b. Vubk) v + cubk v dx + fr, hukvd-= , hukvd- VvE Vbk

u bkjr = g

estimate (C.2.4) still holds provided that we substitute 6 with

= min (dist(a, Vn), dist(Q, r'))

We now consider the case of linear elastodynamics. Although the proof follows the exact

same ideas of the proof of Proposition C.2.1, we report the proof.

Proposition C.2.3. Let ubk E Vbk be the solution tog

f 2bk 2psym(Vubk) : sym(Vv) + A div (ubk) div (ubk) dx - A(w) f2bk U1 bk -Vdx = 0 V v E VObk,

u bkIrin = g

(C.2.5)

where g C T and A(w) = - L I (p, A) are the Lam6 elastic moduli and (oz, 3) are the

Rayleigh-damping coefficients. Then, we have

IIVukL2 () 1 (2orn (A(w)I + C(p+ A)) IUbk IL2(Q) (C.2.6a)
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where C1,rn > 0 is defined as

f= min ' 2pjjsym(Vw)|jj + A Idiv (w)12 dx

w E H (Q) IIVW11 2

and

IIVwIIL2(Q) j Vw)112 dx..

Proof. We define r/ = 77o,6. Then, we introduce

B(u bk q) j = 2p Isym(Vu bk)|0 + Aldiv(ubk)12 2 dx.

We observe that

2p| 1sym(Vu bk)112 + Aldiv(u bk) 2 dx ;> Corn |iV Ubk 11L2(), (C.2.7)

and Ckorn > 0 due to Korn's inequality (see, e.g., [112]).

By substituting v = ugbk2 in (C.2.5), we find

B(ubk,r7 ) = A(w) fjbk bk112 7
2 dx + fbk (V2-psym(Vubk>)) (2 2-/Vy 0( u) dx

+ febk (V2rdiv(ubk)) (Vr Ugk) dx.

Applying Cauchy-Schwartz and Young's inequality at the right hand side, we find

B(ubk, r) : <A(w)j ujbkI2 + B(ubk,?l) + - (p + A)
2c6

Substituting e =, we find

B(ug k, ) < 2 (IA(w)I + C(P +62

Thesis follows by combining (C.2.7) and (C.2.8).
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(C.2.6b)

(C.2.6c)

(C.2.8)

ED

bkuh' r) >

|jUbak||2(n .

A)ub L2(Qbk).



C.3 Stokes' problem

We now study the extension to Stokes problem: find (ugk, p E Vbk x Lo2bk) such that

Ifabk VIk : Vv - p(div(v) dx = 0

f 2 q (div(ubk) dx 0

Vv E Vbk

Vq E L2(Q) (C.3.1)

U bk

The proof here reported follows the same argument of Kang in [124].

We first present two lemmas.

Lemma C.3.1. ([89, Theorem II13.1, page 171]) Let Q' be a Lipschitz domain. Let f E

L 2 (Q') such that fo, f dx = 0. Then, there exists w E Ho(Q') such that

div(w) = f, IV WIIL2(Q) CjIfIIL2(Q),

where C depends on Q', but does not depend on f.

Lemma C.3.2. ([92, Lemma 3.1, page 161]) Let f : (To,T1) '-+ R+, f C L' (o,T1), To > 0.

Suppose that

f(t) < (A(s - t)--a + B) + Of(s)

for all :! t < s < r1 and for A, B, a,0 > 0, 6 < 1.

Then, we have

f(t) < C (A(s - t)--" + B),

for all TO < t < s T T1, and C = C(a,0) > 0.

We now present an interesting estimate for the pressure.

Proposition C.3.1. Let Q, qbk be Lipschitz domains. Let p E L'(Qbk) be the solution to

(C.3.1). Then, for every 0 < r < s < 6, the following estimate holds:

f Cj gd, (s -r) 2 IlUbku I dx.
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Proof. If we substitute v = ubkrt,s in (C.3.1) 1 , we find

gV u Fk ,s dx
= - bkt,Vubk (Uk 0 Vrlt,,) dx -I- p ntS(Vrt,s - u k) dx.

We observe that

,t,sVuk ( & 0 Vr7t,s) 2"1V ug bk 2 k 2 2

where C > 0 depends only on the dimension d. Then, observing that |IVrt,sI12 > 0 only in

Qs \ Qt and exploiting Cauchy-Schwartz inequality, we obtain

?72'IIVUgkIIdx < C
!&bk

We now introduce r7r,t, r < t < s.

HO (Qt) such that

J Ubk II2 IIV?7t,SII2 dx + (Pr/ts) 2 dx. (C.3.3)

Recalling Lemma C.3.1 we further introduce w E

div(w) = Pr72 - pr/,2t,

where P7rt denotes the mean of prt over Qt. We observe that w E Vbk. Then, recalling

that p c L 2(Qbk) and exploiting (C.3.1) 1 , we find

bk P(Pr/,t) dx = pbk (pt - prt) dx = p div(w) dx = fot Vu bk : Vw dxg

Then, applying Cauchy Schwartz inequality and recalling that I|VwIIL2(Qt) CIIPT1t IL2(Q,),

we find

fbk
r,4pt 9FI , - , t gF12 ,2 t dx =+ ,IIVUbkII2 dx + Ce 4 rq4tdx <~ IIVUbkII dx+ CE jP2 772 tdx,

where in the second identity we used the fact that r,,t < 1. By choosing c = -, we find

4 P2 dx < p2 r dx < C IIVubIIdx.
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/ bk

(C.3.4)

f t

IIVWI L2(Qt) < CII?2 pr/L2(Q&)
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Combining (C.3.3) and (C.3.4), we find

Cfa, IIV ubkII dx

(C.3.3)
_s-t2 fa IIuk|IIdx + C f\Qo, p2 dx

< (s-r)2 f" H|ubk||2dx + C fa n, p2 dx

If we sum C f", p2 dx on both sides, we find

P2 dx < |/Ubk|| dx + fp2 dx.
(s - r)2  g 2 C+ I

Applying Lemma C.3.2 with f(r) = f p2 dx, we finally obtain (C.3.2). E

We can now show Caccioppoli inequality.

Proposition C.3.2. Let Q, Qbk be Lipschitz domains. Then, for any g G T, we have that

IVUbk I2gI FuI~ dx < 3- (C.3.5)
1/Qbk gkII dx.

Proof. Let 7 = 70,6/2. Then, by substituting in (C.3.3),

IV ubkII2Fdx < C tuIkI 2 IVqt,SI12 dx +

<(C/6) 2

(prt,s)
2 dx.

If now we apply Proposition C.3.1 with r = 3/2 and s = 6, we find

IV uk112dx <
g F - 6 /2

IIUbkII2dx +

EThesis follows.
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Appendix D

Parametric-affine expansion for the

microtruss problem

Below, we report the parameter-dependent coefficients { _ and the parameter-independent

bilinear forms {a })0_1 associated with the microtruss problem considered in this work.

eq(f, [ = [a, 3, E, sL, SR]) =

(1 + iwf#)E

(-W2 + iwf a)pL2

(1 + iwf/3 )sL E

(1 + iWf13)E

(1 + iwf/3 )sL E

q = 1,

q = 2,

q = 3,

q = 4,

q = 5,

(-W + iwf a)pL2 SL

(1 + iwf/3)SR E

(1 + iwf3) E

(1 + iwf3)s- 1 E

(-W + iwf a)pL2sR

(D.0. 1a)

and

boref (u, v)

MT 1 ref (u, v)

fref (1 + v)(1 2v)
On 1 09y 1

ax1 09X 1
1

+ 2(1 +v)
092 OV2 dx
0i31 i dx

q=1

q = 2, (D.0.1b)

q = 3,
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q = 6,

q = 7,

q = 8,

q 9,

q = 10,

aq(u, v) =



v

j2ref (1 + v)(1-- 2v)

fref (1+ v)(1- 2v)

1 - v
2(1 + v)(1 - 2v)

v

(1 + v)(1 - 2v)

1 - v

(1+ v)(1 - 2v)

( OuI 0v2Ox 1 Ox 2

OU2 OV2
0X2 09X2

Oui O9vI
Ox1 xi +

( Oul V2+
Ox1 Ox2

9U 2 Ov 2

9x2 Ox2

U2 O9VI

1 09

2(1+ v) a

+
1 (Ou1 0v 2

2(1 + v) k09x 2 Oxi

Ou2 Ov1'
+ I dx

4X1 Ox2 )

U
1 v1 dx

X2 Ox 2

1 O9U2
2(1 + v) Ox1

OU2 
Vi +Ox2Oaxl J

0v2

Ox1 dx

1

2(1 + v)
O0u 1V2

(0X2 Ox1

O'u2 vi'
+ I dx

Ox 1 0x2)
1 0u1 0v 1 dx

2(1 + v) Ox 2 Ox2

(D.0. 1c)
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aq(u,v) = <

m-ref (u, v)
2

]oref

foref
4 ref

mQref (u, v)

q =4,

q 5,

q = 6,

q = 7,

q =8,

q = 9,

q = 10,



Bibliography

[1] R A Adams and J JF Fournier. Sobolev spaces, volume 140. Academic press, 2003.

[2] F Albrecht, B Haasdonk, S Kaulmann, and M Ohlberger. The localized reduced basis
multiscale method. In Proceedings of the Conference Algoritmy, pages 393-403, 2015.

[3] BO Almroth, P Stern, and FA Brogan. Automatic choice of global shape functions in
structural analysis. AIAA Journal, 16(5):525-528, 1978.

[4] N Amir, 0 Barzelay, A Yefet, and T Pechter. Condenser tube examination using
acoustic pulse reflectometry. Journal of Engineering for Gas Turbines and Power,
132(1):014501, 2010.

151 N Aronszajn. Theory of reproducing kernels. Transactions of the American mathe-
matical society, pages 337-404, 1950.

16] S K Au, F-L Zhang, and Y-C Ni. Bayesian operational modal analysis: theory, com-
putation, practice. Computers & Structures, 126:3-14, 2013.

[7] I Babuska, U Banerjee, and J E Osborn. Generalized finite element methods -
main ideas, results and perspective. International Journal of Computational Methods,
1(01):67-103, 2004.

[8] I Babuska and R Lipton. Optimal local approximation spaces for generalized finite
element methods with application to multiscale problems. Multiscale Modeling &
Simulation, 9(1):373-406, 2011.

191 I Babuska and M Suri. Locking effects in the finite element approximation of elasticity
problems. Numerische Mathematik, 62(1):439-463, 1992.

110] I Babuska and M Suri. On locking and robustness in the finite element method. SIAM
Journal on Numerical Analysis, 29(5):1261-1293, 1992.

[11] M CC Bampton and R R Craig, Jr. Coupling of substructures for dynamic analyses.
AIAA Journal, 6(7):1313-1319, 1968.

[12] M Barrault, Y Maday, N C Nguyen, and A T Patera. An empirical interpolation
method: application to efficient reduced-basis discretization of partial differential equa-
tions. Comptes Rendus Mathematique, 339(9):667-672, 2004.

[13] A Barth, C Schwab, and N Zollinger. Multi-level monte carlo finite element method
for elliptic pdes with stochastic coefficients. Numerische Mathematik, 119(1):123-161,
2011.

243



[14] A Basudhar and S Missoum. Adaptive explicit decision functions for probabilistic

design and optimization using support vector machines. Computers & Structures,
86(19):1904-1917, 2008.

[151 A Basudhar and S Missoum. A sampling-based approach for probabilistic design

with random fields. Computer Methods in Applied Mechanics and Engineering,
198(47):3647-3655, 2009.

[16] A Basudhar and S Missoum. An improved adaptive sampling scheme for the construc-

tion of explicit boundaries. Structural and Multidisciplinary Optimization, 42(4):517-

529, 2010.

[17] A Basudhar, S Missoum, and A H Sanchez. Limit state function identification us-

ing support vector machines for discontinuous responses and disjoint failure domains.

Probabilistic Engineering Mechanics, 23(1):1-11, 2008.

[18] K. J. Bathe. Finite element procedures. Prentice Hall, 1996.

[19] T Belytschko, Y Krongauz, D Organ, M Fleming, and P Krysl. Meshless methods:

an overview and recent developments. Computer methods in applied mechanics and

engineering, 139(1):3-47, 1996.

[20] A Ben-Tal, L El Ghaoui, and A Nemirovski. Robust optimization. Princeton University

Press, 2009.

[21] 0 Benedettini, TS Baines, HW Lightfoot, and RM Greenough. State-of-the-art in

integrated vehicle health management. Proceedings of the Institution of Mechanical

Engineers, Part G: Journal of Aerospace Engineering, 223(2):157-170, 2009.

[221 L Bengtsson, M Ghil, and E Kdll6n. Dynamic meteorology: data assimilation methods,
volume 36. Springer, 1981.

[23] P Benner, S Gugercin, and K Willcox. A survey of projection-based model reduction

methods for parametric dynamical systems. SIAM review, 57(4):483-531, 2015.

[24] A F Bennett. Inverse modeling of the ocean and atmosphere. Cambridge University

Press, 2002.

[25] AF Bennett. Array design by inverse methods. Progress in oceanography, 15(2):129-
156, 1985.

[26] AF Bennett and PC McIntosh. Open ocean modeling as an inverse problem: tidal

theory. Journal of Physical Oceanography, 12(10):1004-1018, 1982.

[27] M Benzi, G H Golub, and J Liesen. Numerical solution of saddle point problems. Acta
numerica, 14(1):1-137, 2005.

[28] G Berkooz, P Holmes, and J L Lumley. The proper orthogonal decomposition in the

analysis of turbulent flows. Annual review of fluid mechanics, 25(1):539-575, 1993.

[29] A Berlinet and C Thomas-Agnan. Reproducing kernel Hilbert spaces in probability and

statistics, volume 3. Kluwer Academic Boston, 2004.

244



[301 D Bertsimas, D B Brown, and C Caramanis. Theory and applications of robust
optimization. SIAM review, 53(3):464-501, 2011.

1311 D Bertsimas and R Weismantel. Optimization over integers, volume 13. Dynamic
Ideas Belmont, 2005.

[321 P Binev, A Cohen, W Dahmen, R DeVore, G Petrova, and P Wojtaszczyk. Con-
vergence rates for greedy algorithms in reduced basis methods. SIAM Journal on
Mathematical Analysis, 43(3):1457-1472, 2011.

[33] P Binev, A Cohen, W Dahmen, R DeVore, G Petrova, and P Wojtaszczyk. Data
assimilation in reduced modeling. arXiv preprint arXiv:1506.04770, 2015.

[34] C M Bishop. Neural networks for pattern recognition. Oxford university press, 1995.

[351 P T Boggs and J W Tolle. Sequential quadratic programming. Acta numerica, 4:1-51,
1995.

136] S Boyd and L Vandenberghe. Convex optimization. Cambridge university press, 2004.

[371 A M Bratseth. Statistical interpolation by means of successive corrections. Tellus A,
38(5):439-447, 1986.

[38] L Breiman, J Friedman, C J Stone, and R A Olshen. Classification and regression
trees. CRC press, 1984.

[39] R Brincker, L Zhang, and P Andersen. Modal identification from ambient responses
using frequency domain decomposition. In Proc. of the 18th International Modal Anal-
ysis Conference (IMAC), San Antonio, Texas, 2000.

[40] A Buffa, Y Maday, A T Patera, C Prud homme, and G Turinici. A priori conver-
gence of the greedy algorithm for the parametrized reduced basis method. ESAIM:
Mathematical Modelling and Numerical Analysis, 46(03):595-603, 2012.

[41] M D Buhmann. Radial basis functions. Acta Numerica 2000, 9:1-38, 2000.

[42] A Buhr, C Engwer, M Ohlberger, and S Rave. A numerically stable a posteriori
error estimator for reduced basis approximations of elliptic equations. arXiv preprint
arXiv:1407.8005, 2014.

[43] R H Byrd, M E Hribar, and J Nocedal. An interior point algorithm for large-scale
nonlinear programming. SIAM Journal on Optimization, 9(4):877-900, 1999.

[44] Y Cao, J Zhu, I M Navon, and Z Luo. A reduced-order approach to four-dimensional
variational data assimilation using proper orthogonal decomposition. International
Journal for Numerical Methods in Fluids, 53(10):1571-1583, 2007.

[45] F Casenave, A Ern, and T Lelievre. Accurate and online-efficient evaluation of the a
posteriori error bound in the reduced basis method. ESAIM: Mathematical Modelling
and Numerical Analysis, 48(01):207-229, 2014.

[461 P Cawley and RD Adams. The location of defects in structures from measurements of
natural frequencies. The Journal of Strain Analysis for Engineering Design, 14(2):49-
57, 1979.

245



[471 G Chardon, A Cohen, and L Daudet. Sampling and reconstruction of solutions to the

helmholtz equation. arXiv preprint arXiv:1301.0237, 2013.

[48] S Chaturantabut and D C Sorensen. Nonlinear model reduction via discrete empirical

interpolation. SIAM Journal on Scientific Computing, 32(5):2737-2764, 2010.

[49] W Chen, Y Xiong, K-L Tsui, and S Wang. A design-driven validation approach using
bayesian prediction models. Journal of Mechanical Design, 130(2):021101, 2008.

[50] S H Cheung, T A Oliver, E E Prudencio, S Prudhomme, and R D Moser. Bayesian

uncertainty analysis with applications to turbulence modeling. Reliability Engineering

& System Safety, 96(9):1137-1149, 2011.

[51] V. Chew. Confidence, prediction, and tolerance regions for the multivariate normal
distribution. Journal of the American Statistical Association, 61(315):605-617, 1966.

[521 F Chinesta and E Cueto. PGD-based modeling of materials, structures and processes.

Springer, 2014.

[53] F Chinesta, A Huerta, G Rozza, and K Willcox. Model order reduction: a survey.
2016.

[54] F Chinesta, P Ladeveze, and E Cueto. A short review on model order reduction
based on proper generalized decomposition. Archives of Computational Methods in

Engineering, 18(4):395-404, 2011.

[551 0 A Chkrebtii, D A Campbell, M A Girolami, and B Calderhead. Bayesian uncertainty

quantification for differential equations. arXiv preprint arXiv:1306.2365, 2013.

[56] A Cohen and R DeVore. Approximation of high-dimensional parametric pdes. Acta

Numerica, 24:1-159, 2015.

[57] AIAA Standards Committee et al. Aiaa guide for the verification and validation of
computational fluid dynamics simuations (g-077-1998), 1998.

[58] C Cortes and V N Vapnik. Support-vector networks. Machine learning, 20(3):273-297,
1995.

[591 P Courtier, J-N Th6paut, and A Hollingsworth. A strategy for operational imple-

mentation of 4d-var, using an incremental approach. Quarterly Journal of the Royal

Meteorological Society, 120(519):1367-1387, 1994.

[60] G P Cressman. An operational objective analysis system. Monthly Weather Review,
87(10):367-374, 1959.

[61] N Cristianini and J Shawe-Taylor. An introduction to support vector machines and

other kernel-based learning methods. Cambridge university press, 2000.

[62] N N Cuong. Reduced-basis approximations and a posteriori error bounds for nonaffine

and nonlinear partial differential equations: Application to inverse analysis. PhD
thesis, Citeseer, 2005.

[63] R Daley. Atmospheric data analysis. Number 2. Cambridge university press, 1993.

246

IMM."" RIM Imp"MMIN INNI I, " "M



[64] B Dawson. Vibration condition monitoring techniques for rotating machinery. The
shock and vibration digest, 8(12):3, 1976.

[65] A Deraemaeker, E Reynders, G De Roeck, and J Kullaa. Vibration-based structural
health monitoring using output-only measurements under changing environment. Me-
chanical systems and signal processing, 22(1):34-56, 2008.

[661 R DeVore, G Petrova, and P Wojtaszczyk. Greedy algorithms for reduced bases in
banach spaces. Constructive Approximation, 37(3):455-466, 2013.

[67] L Devroye, L Gy6rfi, and G Lugosi. A probabilistic theory of pattern recognition,
volume 31. Springer Science & Business Media, 2013.

[68] S S Dhillon and K Chakrabarty. Sensor placement for effective coverage and surveil-
lance in distributed sensor networks. In Wireless Communications and Networking,
2003. WCNC 2003. 2003 IEEE, volume 3, pages 1609-1614. IEEE, 2003.

[69] T J DiCiccio and B Efron. Bootstrap confidence intervals. Statistical science, pages
189-212, 1996.

[70] F Dimet and 0 Talagrand. Variational algorithms for analysis and assimilation of
meteorological observations: theoretical aspects. Tellus A, 38(2):97-110, 1986.

[71] B Efron. Better bootstrap confidence intervals. Journal of the American statistical
Association, 82(397):171-185, 1987.

[72] J L Eftang and A T Patera. Port reduction in parametrized component static con-
densation: approximation and a posteriori error estimation. International Journal for
Numerical Methods in Engineering, 96(5):269-302, 2013.

[73] A Eliassen. Provisional report on calculation of spatial covariance and autocorrelation
of the pressure field. Technidal report, 1954. Report no 5.

[74] L.C. Evans. Partial Differential Equations. Graduate studies in mathematics. Ameri-
can Mathematical Society, 1998.

[75] R Everson and L Sirovich. Karhunen-loeve procedure for gappy data. JOSA A,
12(8):1657-1664, 1995.

[76] T Evgeniou, M Pontil, and T Poggio. Regularization networks and support vector
machines. Advances in computational mathematics, 13(1):1-50, 2000.

[77] W Fan and P Qiao. Vibration-based damage identification methods: a review and
comparative study. Structural Health Monitoring, 10(1):83-111, 2011.

[78] C R Farrar, S W Doebling, and D A Nix. Vibration-based structural damage identi-
fication. Philosophical Transactions of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 359(1778):131-149, 2001.

[79] C R Farrar and K Worden. Structural health monitoring: a machine learning perspec-
tive. John Wiley & Sons, 2012.

247



[80] JP Fink and WC Rheinboldt. On the error behavior of the reduced basis technique for

nonlinear finite element approximations. ZAMM-Journal of Applied Mathematics and

Mechanics/Zeitschrift fir Angewandte Mathematik und Mechanik, 63(1):21-28, 1983.

[81] George Fishman. Monte Carlo: concepts, algorithms, and applications. Springer Sci-
ence & Business Media, 2013.

[82] RL Fox and H Miura. An approximate analysis technique for design calculations.
AIAA Journal, 9(1):177-179, 1971.

[83] G Franceschini and S Macchietto. Model-based design of experiments for parameter
precision: State of the art. Chemical Engineering Science, 63(19):4846-4872, 2008.

[84] M Frangos, Y Marzouk, K Willcox, and B van Bloemen Waanders. Surrogate and
reduced-order modeling: A comparison of approaches for large-scale statistical inverse
problems. Large-Scale Inverse Problems and Quantification of Uncertainty, 123149,
2010.

[85] M Friswell and J E Mottershead. Finite element model updating in structural dynamics,
volume 38. Springer Science & Business Media, 1995.

[86] M I Friswell. Damage identification using inverse methods. Philosophical Transactions

of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
365(1851):393-410, 2007.

[87] M I Friswell, J E Mottershead, and H Ahmadian. Finite-element model updating us-
ing experimental test data: parametrization and regularization. Philosophical Trans-

actions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 359(1778):169-186, 2001.

[88] D Galbally, K Fidkowski, K Willcox, and 0 Ghattas. Nonlinear model reduction for
uncertainty quantification in large-scale inverse problems. 2009.

[89] G P Galdi. An introduction to the mathematical theory of the Navier-Stokes equations:
Steady-state problems. Springer Science & Business Media, 2011.

[90] L. S. Gandin. Objective analysis of meteorological fields. Israel Program for Scientific

Translations, page 242, 1965.

[91] T Gasser and H G Muller. Kernel estimation of regression functions. In Smoothing

techniques for curve estimation, pages 23-68. Springer, 1979.

[92] M Giaquinta. Multiple integrals in the calculus of variations and nonlinear elliptic
systems. Number 105. Princeton University Press, 1983.

[93] M Giaquinta and L Martinazzi. An introduction to the regularity theory for elliptic
systems, harmonic maps and minimal graphs. Springer Science & Business Media,
2013.

194] M B Giles. Multilevel monte carlo path simulation. Operations Research, 56(3):607-
617, 2008.

[95] M B Giles. Multilevel monte carlo methods. Acta Numerica, 24:259, 2015.

248

11- ........... ...... ...... ...... .. -Wim



[96] C I Goldstein. A finite element method for solving helmholtz type equations in waveg-
uides and other unbounded domains. Mathematics of Computation, 39(160):309-324,
1982.

[97] M A Grepl, Y Maday, N C Nguyen, and A T Patera. Efficient reduced-basis treat-
ment of nonaffine and nonlinear partial differential equations. ESAIM: Mathematical
Modelling and Numerical Analysis, 41(3):575-605, 2007.

[98] M D Gunzburger. Finite element methods for viscous incompressible flows: a guide to
theory, practice, and algorithms. Academic Press, San Diego, 1989.

[99] L Gy6rfi, M Kohler, A Krzyzak, and H Walk. A distribution-free theory of nonpara-
metric regression. Springer Science & Business Media, 2006.

[100] B Haasdonk. Convergence rates of the pod-greedy method. ESAIM: Mathematical
Modelling and Numerical Analysis, 47(03):859-873, 2013.

[101] B Haasdonk and M Ohlberger. Reduced basis method for finite volume approxima-
tions of parametrized linear evolution equations. ESAIM: Mathematical Modelling and
Numerical Analysis-Moddisation Mathimatique et Analyse Numirique, 42(2):277-302,
2008.

[102] H G Harris and G Sabnis. Structural modeling and experimental techniques. CRC
press, 1999.

[103] EE Hart, SJ Cox, K Djidjeli, and VO Kubytskyi. Solving an eigenvalue problem with
a periodic domain using radial basis functions. Engineering analysis with boundary
elements, 33(2):258-262, 2009.

[104] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning, vol-
ume 2. Springer, 2009.

[105] J C Helton. Uncertainty and sensitivity analysis techniques for use in performance
assessment for radioactive waste disposal. Reliability Engineering & System Safety,
42(2):327-367, 1993.

[106] J S Hesthaven, G Rozza, and B Stamm. Certified reduced basis methods for
parametrized partial differential equations. SpringerBriefs in Mathematics, 2015.

[1071 J S Hesthaven and T Warburton. Nodal high-order methods on unstructured grids:
I. time-domain solution of maxwell's equations. Journal of Computational Physics,
181(1):186-221, 2002.

[108] C Himpe, T Leibner, and Rave S. Hierarchical approximate proper orthogonal decom-
position. arXiv preprint arXiv:160705210, 2016.

[109] D Hinrichsen and A J Pritchard. Stability radii of linear systems. Systems & Control
Letters, 7(1):1-10, 1986.

[110] K C Hoang, BC Khoo, GR Liu, N C Nguyen, and A T Patera. Rapid identification
of material properties of the interface tissue in dental implant systems using reduced
basis method. Inverse Problems in Science and Engineering, 21(8):1310-1334, 2013.

249



[1111 YC Hon, R Schaback, and X Zhou. An adaptive greedy algorithm for solving large
rbf collocation problems. Numerical Algorithms, 32(1):13-25, 2003.

[112] C 0 Horgan. Korn's inequalities and their applications in continuum mechanics. SIAM

review, 37(4):491-511, 1995.

[1131 T JR Hughes. The finite element method: linear static and dynamic finite element
analysis. Courier Corporation, 2012.

[1141 J E Hurtado. An examination of methods for approximating implicit limit state func-
tions from the viewpoint of statistical learning theory. Structural Safety, 26(3):271-293,
2004.

[115] J E Hurtado and D A Alvarez. Classification approach for reliability analysis with
stochastic finite-element modeling. Journal of Structural Engineering, 129(8):1141-
1149, 2003.

[116] W C Hurty. Dynamic analysis of structural systems using component modes. AIAA

journal, 3(4):678-685, 1965.

[1171 L Iapichino, A Quarteroni, and G Rozza. A reduced basis hybrid method for the
coupling of parametrized domains represented by fluidic networks. Computer Methods
in Applied Mechanics and Engineering, 221:63-82, 2012.

[118] K Ito and SS Ravindran. A reduced-order method for simulation and control of fluid
flows. Journal of computational physics, 143(2):403-425, 1998.

[119] J. Jacod and P. E Protter. Probability essentials. Springer, 2003.

[120] G James, D Witten, T Hastie, and R Tibshirani. An introduction to statistical learning.
Springer, 2013.

[121] S Joshi and S Boyd. Sensor selection via convex optimization. Signal Processing, IEEE
Transactions on, 57(2):451-462, 2009.

[122] M Kahlbacher and S Volkwein. Galerkin proper orthogonal decomposition methods
for parameter dependent elliptic systems. Discussiones Mathematicae, Differential
Inclusions, Control and Optimization, 27(1):95-117, 2007.

[1231 R E Kalman. A new approach to linear filtering and prediction problems. Journal of
Fluids Engineering, 82(1):35-45, 1960.

[124] K Kang. On regularity of stationary stokes and navier-stokes equations near boundary.
Journal of Mathematical Fluid Mechanics, 6(1):78-101, 2004.

[125] V M Karbhari and F Ansari. Structural health monitoring of civil infrastructure sys-
tems. Elsevier, 2009.

[1261 S Kaulmann, M Ohlberger, and B Haasdonk. A new local reduced basis discontinuous
galerkin approach for heterogeneous multiscale problems. Comptes Rendus Mathema-
tique, 349(23):1233-1238, 2011.

[127] G Kimeldorf and G Wahba. Some results on tchebycheffian spline functions. Journal
of mathematical analysis and applications, 33(1):82-95, 1971.

250

L. _ _. . 2 4, , 1 11 1 1 1 1 . . . .



[128] R Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In Ijcai, volume 14, pages 1137-1145, 1995.

[129] J Krebs, AK Louis, and H Wendland. Sobolev error estimates and a priori parameter

selection for semi-discrete tikhonov regularization. Journal of Inverse and Ill-Posed

Problems, 17(9):845-869, 2009.

[130] K Kunisch and S Volkwein. Galerkin proper orthogonal decomposition methods for a

general equation in fluid dynamics. SIAM Journal on Numerical analysis, 40(2):492-

515, 2002.

[1311 T Lassila, A Manzoni, A Quarteroni, and G Rozza. A reduced computational and

geometrical framework for inverse problems in hemodynamics. International journal

for numerical methods in biomedical engineering, 29(7):741-776, 2013.

[1321 M Lecerf, D Allaire, and K Willcox. Methodology for dynamic data-driven online

flight capability estimation. AIAA Journal, 53(10):3073-3087, 2015.

[133] L Li. Discretization of the timoshenko beam problem by thep and theh-p versions of

the finite element method. Numerische Mathematik, 57(1):413-420, 1990.

[134] Z Li and IM Navon. Optimality of variational data assimilation and its relationship

with the kalman filter and smoother. Quarterly Journal of the Royal Meteorological

Society, 127(572):661-683, 2001.

[1351 C Lieberman, K Willcox, and 0 Ghattas. Parameter and state model reduction

for large-scale statistical inverse problems. SIAM Journal on Scientific Computing,
32(5):2523-2542, 2010.

[136] J. S. Lim. Two-dimensional signal and image processing. Prentice Hall, 1990.

[137] GR Liu, Khin Zaw, and YY Wang. Rapid inverse parameter estimation using reduced-

basis approximation with asymptotic error estimation. Computer Methods in Applied

Mechanics and Engineering, 197(45):3898-3910, 2008.

[138] A C Lorenc. Analysis methods for numerical weather prediction. Royal Meteorological

Society, Quarterly Journal, 112:1177-1194, 1986.

[139] AC Lorenc. A global three-dimensional multivariate statistical interpolation scheme.
Monthly Weather Review, 109(4):701-721, 1981.

[140] Y Maday and 0 Mula. A generalized empirical interpolation method: Application of

reduced basis techniques to data assimilation. In Analysis and Numerics of Partial

Differential Equations, pages 221-235. Springer, 2013.

[1411 Y Maday, 0 Mula, AT Patera, and M Yano. The generalized empirical interpolation

method: stability theory on hilbert spaces with an application to the stokes equation.

Computer Methods in Applied Mechanics and Engineering, 287:310-334, 2015.

[142] Y Maday, A T Patera, J D Penn, and M Yano. A parameterized-background data-

weak approach to variational data assimilation: formulation, analysis, and application

to acoustics. International Journal for Numerical Methods in Engineering, 2014.

251



[1431 Y Maday, A T Patera, J D Penn, and M Yano. PBDW state estimation: Noisy obser-
vations; configuration-adaptive background spaces; physical interpretations. ESAIM:
Proceedings and Surveys, 50:144-168, 2015.

[144] Y Maday, A T Patera, and D V Rovas. A blackbox reduced-basis output bound method

for noncoercive linear problems. in Studies in Mathematics and its Applications, D.
Cioranescu and J. L. Lions, eds., Elsevier Science B. V, pages 533-569, 2001.

[145] Y Maday and E M Ronquist. A reduced-basis element method. Journal of scientific
computing, 17(1-4):447-459, 2002.

[146] N M M Maia and J M M e Silva. Theoretical and experimental modal analysis. Research

Studies Press, 1997.

[147] L Mainini and K Willcox. Surrogate modeling approach to support real-time structural

assessment and decision making. AIAA Journal, 53(6):1612-1626, 2015.

[148] S C Malik and S Arora. Mathematical analysis. New Age International, 1992.

[149] G Matheron. Principles of geostatistics. Economic geology, 58(8):1246-1266, 1963.

[150] MATLAB. version 8.5 (R2015a). The MathWorks Inc., Natick, Massachusetts, 2015.

[151] J M Melenk and I Babuska. The partition of unity finite element method: basic

theory and applications. Computer methods in applied mechanics and engineering,
139(1):289-314, 1996.

[152] C A Micchelli and T J Rivlin. A survey of optimal recovery. Springer, 1977.

[153] J G Moreno-Torres, T Raeder, R Alaiz-RodriGuez, N V Chawla, and F Herrera. A
unifying view on dataset shift in classification. Pattern Recognition, 45(1):521-530,
2012.

[154] J E Mottershead, M Link, and M I Friswell. The sensitivity method in finite element
model updating: a tutorial. Mechanical systems and signal processing, 25(7):2275-
2296, 2011.

[155] Z P Mourelatos, R Kuczera, and M Latcha. An efficient monte carlo reliability analysis

using global and local metamodels. In Proceedings of 11th AIAA/ISSMO multidisci-

plinary analysis and optimization conference, September, Portsmouth, VA, 2006.

[156] S Muller. Complexity and stability of kernel-based reconstructions. PhD thesis, Disser-

tation, Georg-August-Universitttingen, Institut fr Numerische und Angewandte Math-

ematik, Lotzestrasse 16-18, D-37083 Gttingen, 2009.

[157] K P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[158] F Naets, J Croes, and W Desmet. An online coupled state/input/parameter estima-

tion approach for structural dynamics. Computer Methods in Applied Mechanics and

Engineering,.283:1167-1188, 2015.

[159] D A Nagy. Modal representation of geometrically nonlinear behavior by the finite

element method. Computers & Structures, 10(4):683-688, 1979.

252

- F I" .1m .- ,--..'-..1..- 1 1 -- ' ' -11. ' I"'.." I I. 1.. 1. 1., 1 "pop""



[1601 F J Narcowich and J D Ward. Norms of inverses and condition numbers for matrices
associated with scattered data. Journal of Approximation Theory, 64(1):69-94, 1991.

[161] L. W. T. Ng and K. E. Wilcox. Multifidelity approaches for optimization under uncer-
tainty. International Journal for Numerical Methods Engineering, 100:746-772, 2014.

[162] A K Noor and J M Peters. Reduced basis technique for nonlinear analysis of structures.
Aiaa journal, 18(4):455-462, 1980.

[163] W L Oberkampf and T G Trucano. Verification and validation in computational fluid
dynamics. Progress in Aerospace Sciences, 38(3):209-272, 2002.

[164] T A Oliver, N Malaya, R Ulerich, and R D Moser. Estimating uncertainties in statis-
tics computed from direct numerical simulation. Physics of Fluids (1994-present),
26(3):035101, 2014.

[165] T A Oliver and R D Moser. Bayesian uncertainty quantification applied to rans
turbulence models. In Journal of Physics: Conference Series, volume 318, page 042032.
IOP Publishing, 2011.

[1661 E M Ortiz, G J Clark, A Babbar, J L Vian, V L Syrmos, and M M Arita. Multi source
data integration for aircraft health management. In Aerospace Conference, 2008 IEEE,
pages 1-12. IEEE, 2008.

[167] S H Owen and M S Daskin. Strategic facility location: A review. European Journal
of Operational Research, 111(3):423-447, 1998.

[168] A T Patera and G Rozza. Reduced basis approximation and a posteriori error esti-
mation for parametrized partial differential equations, 2007.

[169] A Paul-Dubois-Taine and D Amsallem. An adaptive and efficient greedy procedure
for the optimal training of parametric reduced-order models. International Journal
for Numerical Methods in Engineering, 102(5):1262-1292, 2015.

[170] J S Peterson. The reduced basis method for incompressible viscous flow calculations.
SIAM Journal on Scientific and Statistical Computing, 10(4):777-786, 1989.

[171] D B Phuong Huynh, D J Knezevic, and A T Patera. A static condensation reduced
basis element method: approximation and a posteriori error estimation. ESAIM:
Mathematical Modelling and Numerical Analysis, 47(01):213-251, 2013.

[1721 A Pinkus. N-widths in Approximation Theory. Springer Science & Business Media,
1985.

[173] R Pinnau. Model reduction via proper orthogonal decomposition. In Model Order
Reduction: Theory, Research Aspects and Applications, pages 95-109. Springer, 2008.

[174] T Poggio and CR Shelton. On the mathematical foundations of learning. American
Mathematical Society, 39(1):1-49, 2002.

[175] TA Porsching. Estimation of the error in the reduced basis method solution of non-
linear equations. Mathematics of Computation, 45(172):487-496, 1985.

253



[176] C Prud'homme, D V Rovas, K Veroy, L Machiels, Y Maday, A T Patera, and
G Turinici. Reliable real-time solution of parametrized partial differential equations:

Reduced-basis output bound methods. Journal of Fluids Engineering, 124(1):70-80,
2002.

[177] C Prud'homme, D V Rovas, K Veroy, and A T Patera. A mathematical and compu-
tational framework for reliable real-time solution of parametrized partial differential

equations. ESAIM: Mathematical Modelling and Numerical Analysis, 36(05):747-771,
2002.

[1781 S Prudhomme and J T Oden. On goal-oriented error estimation for elliptic problems:

application to the control of pointwise errors. Computer Methods in Applied Mechanics

and Engineering, 176(1):313-331, 1999.

[179] F Pukelsheim. Optimal design of experiments, volume 50. siam, 1993.

[180] A Quarteroni, A Manzoni, and F Negri. Reduced Basis Methods for Partial Differential

Equations: An Introduction, volume 92. Springer, 2015.

[181] A Quarteroni and A Valli. Numerical approximation of partial differential equations,
volume 23. Springer Science & Business Media, 2008.

[182] C E Rasmussen. Gaussian processes for machine learning. 2006.

[1831 J Rice. Mathematical statistics and data analysis. Nelson Education, 2006.

[1841 R Rifkin and A Klautau. In defense of one-vs-all classification. The Journal of Machine

Learning Research, 5:101-141, 2004.

[1851 J. W.M. Rogers and C. Plett. Radio frequency integrated circuit design. Artech House,
2010.

[1861 D J Rosenkrantz, R E Stearns, and P M Lewis, II. An analysis of several heuristics
for the traveling salesman problem. SIAM journal on computing, 6(3):563-581, 1977.

[187] H Rowaihy, S Eswaran, M Johnson, D Verma, A Bar-Noy, T Brown, and T La Porta. A
survey of sensor selection schemes in wireless sensor networks. In Defense and Security

Symposium, pages 65621A-65621A. International Society for Optics and Photonics,
2007.

[188] G Rozza, DB P Huynh, and A T Patera. Reduced basis approximation and a posteriori
error estimation for affinely parametrized elliptic coercive partial differential equations.

Archives of Computational Methods in Engineering, 15(3):229-275, 2008.

[1891 R Y Rubinstein and D P Kroese. Simulation and the Monte Carlo method, volume

707. John Wiley & Sons, 2007.

[1901 A Rytter. Vibration Based Inspection of Civil Engineering Structures. PhD thesis, Ph.
D. dissertation, 1993.

[1911 OS Salawu. Detection of structural damage through changes in frequency: a review.
Engineering structures, 19(9):718-723, 1997.

254



[192] S Salsa. Partial differential equations in action: from modelling to theory. Springer
Science & Business Media, 2008.

[193] M Sanayei and 0 Onipede. Damage assessment of structures using static test data.
AIAA journal, 29(7):1174-1179, 1991.

[194] M Sanayei and M J Saletnik. Parameter estimation of structures from static strain
measurements. i: Formulation. Journal of Structural Engineering, 122(5):555-562,
1996.

[195] M Sanayei and M J Saletnik. Parameter estimation of structures from static strain
measurements. ii: Error sensitivity analysis. Journal of structural Engineering,
122(5):563-572, 1996.

[196] R G Sargent. Verification and validation of simulation models. In Proceedings of the
37th conference on Winter simulation, pages 130-143. winter simulation conference,
2005.

[197] R Schaback. Error estimates and condition numbers for radial basis function interpo-
lation. Advances in Computational Mathematics, 3(3):251-264, 1995.

11981 R Schaback and H Wendland. Adaptive greedy techniques for approximate solution
of large rbf systems. Numerical Algorithms, 24(3):239-254, 2000.

[199] B Sch6lkopf and A J Smola. Learning with kernels: support vector machines, regular-
ization, optimization, and beyond. MIT press, 2002.

[200] DB Sharp and DM Campbell. Leak detection in pipes using acoustic pulse reflectom-
etry. Acta Acustica united with Acustica, 83(3):560-566, 1997.

[201] J Shawe-Taylor and N Cristianini. Kernel methods for pattern analysis. Cambridge
university press, 2004.

[2021 L Sirovich. Turbulence and the dynamics of coherent structures. part i: Coherent
structures. Quarterly of applied mathematics, 45(3):561-571, 1987.

[203] K Smetana. A new certification framework for the port reduced static condensation
reduced basis element method. Computer Methods in Applied Mechanics and Engi-
neering, 283:352-383, 2015.

[204] K Smetana and A T Patera. Optimal local approximation spaces for component-
based static condensation procedures. Technical report, MIT, 2015. submitted to
SIAM Journal on Scientific Computing.

[205] M Sniedovich. A bird's view of info-gap decision theory. The Journal of Risk Finance,
11(3):268-283, 2010.

[206] W Staszewski, C Boller, and G R Tomlinson. Health monitoring of aerospace struc-
tures: smart sensor technologies and signal processing. John Wiley & Sons, 2004.

[207] R *tefAnescu and I M Navon. Pod/deim nonlinear model order reduction of an adi
implicit shallow water equations model. Journal of Computational Physics, 237:95-
114, 2013.

255



[208] R *tefanescu, A Sandu, and I M Navon. Pod/deim reduced-order strategies for efficient
four dimensional variational data assimilation. Journal of Computational Physics,
295:569-595, 2015.

[209] M L Stein. Interpolation of spatial data: some theory for kriging. Springer Science &
Business Media, 2012.

[210] I Steinwart. Consistency of support vector machines and other regularized kernel
classifiers. Information Theory, IEEE Transactions on, 51(1):128-142, 2005.

[211] A M Stuart. Inverse problems: a bayesian perspective. Acta Numerica, 19:451-559,
2010.

[212] T Taddei. An adaptive parametrized-background data-weak approach to variational
data assimilation. Technical report, MIT, 2016. submitted to Mathematical Modeling
and Numerical Analysis (March 2016).

[213] T Taddei, J D Penn, and Patera A T. Experimental a posteriori error estimation
by monte carlo sampling of observation functionals. Technical report, MIT, 2016.
submitted to International Journal for Numerical Methods in Engineering (August
2016).

[214] T Taddei, J D Penn, M Yano, and A T Patera. Simulation-based classification; a
model-order-reduction approach for structural health monitoring. Archives of Com-

putational Methods in Engineering, pages 1-23, 2016.

[215] T Taddei, S Perotto, and A Quarteroni. Reduced basis techniques for nonlinear conser-
vation laws. ESAIM: Mathematical Modelling and Numerical Analysis, 49(3):787-814,
2015.

[216] 0 Talagrand. Assimilation of observations, an introduction. Journal meteorological
society of Japan Series 2, 75:81-99, 1997.

[2171 H J Thiebaux and MA Pedder. Spatial objective analysis with applications in atmo-
spheric science. London: Academic Press, 1987, 1, 1987.

[2181 A Tsymbal. The problem of concept drift: definitions and related work. Computer
Science Department, Trinity College Dublin, 106, 2004.

1219] K Urban and A T Patera. A new error bound for reduced basis approximation of
parabolic partial differential equations. Comptes Rendus Mathematique, 350(3):203-
207, 2012.

[2201 V N Vapnik. Statistical learning theory, volume 1. Wiley New York, 1998.

[221] V N Vapnik. The nature of statistical learning theory. Springer Science & Business
Media, 2013.

[222] PTM Vermeulen and AW Heemink. Model-reduced variational data assimilation.

Monthly weather review, 134(10):2888-2899, 2006.

256



[2231 K Veroy, C Prud'homme, D V Rovas, and A T Patera. A posteriori error bounds for
reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial
differential equations. In Proceedings of the 16th AIAA computational fluid dynamics
conference, volume 3847, pages 23-26, 2003.

[224] F Vidal-Codina, N C Nguyen, M B Giles, and J Peraire. A model and variance reduc-
tion method for computing statistical outputs of stochastic elliptic partial differential
equations. Journal of Computational Physics, 297:700-720, 2015.

[225] G Wahba. Improper priors, spline smoothing and the problem of guarding against
model errors in regression. Journal of the Royal Statistical Society. Series B (Method-
ological), pages 364-372, 1978.

1226] G Wahba. Spline models for observational data, volume 59. Siam, 1990.

[227] A Wald. Statistical decision functions which minimize the maximum risk. Annals of
Mathematics, pages 265-280, 1945.

[228] L Wasserman. All of statistics: a concise course in statistical inference. Springer
Science & Business Media, 2013.

[229] H Wendland. Piecewise polynomial, positive definite and compactly supported radial
functions of minimal degree. Advances in computational Mathematics, 4(1):389-396,
1995.

12301 H Wendland. Scattered data approximation, volume 17. Cambridge university press,
2004.

[231] H Wenzel. Health monitoring of bridges. John Wiley & Sons, 2008.

[232] G Widmer and M Kubat. Learning in the presence of concept drift and hidden con-
texts. Machine learning, 23(1):69-101, 1996.

[233] C R K Wikle and L M Berliner. A bayesian tutorial for data assimilation. Physica D:
Nonlinear Phenomena, 230(1):1-16, 2007.

[234] K Willcox. Unsteady flow sensing and estimation via the gappy proper orthogonal
decomposition. Computers & fluids, 35(2):208-226, 2006.

[235] E G Williams. Fourier acoustics: sound radiation and nearfield acoustical holography.
Academic press, 1999.

[236] S Willis. Olm: A hands-on approach. In ICAF 2009, Bridging the Gap between Theory
and Operational Practice, pages 1199-1214. Springer, 2009.

[237] D Wirtz and B Haasdonk. A vectorial kernel orthogonal greedy algorithm. Proceedings
of D WCAA12, 6:83-100, 2013.

[238] K Worden and JM Dulieu-Barton. Damage identification in systems and structures.
Int. J. Struct. Health Monit, 3:85-98, 2004.

[239] D Xiao, F Fang, A G Buchan, C C Pain, I M Navon, J Du, and G Hu. Non-linear
model reduction for the navier-stokes equations using residual deim method. Journal
of Computational Physics, 263:1-18, 2014.

257



[240] M Yano. A space-time petrov-galerkin certified reduced basis method: Application to

the boussinesq equations. SIAM Journal on Scientific Computing, 36(1):A232-A266,
2014.

[241] M Yano. Private communication. June 2015.

[242] W C Young and R G Budynas. Roark's formulas for stress and strain, volume 7.
McGraw-Hill New York, 2002.

[2431 C Zang and M Imregun. Structural damage detection using artificial neural networks
and measured frf data reduced via principal component projection. Journal of Sound
and Vibration, 242(5):813-827, 2001.

[244] S Zlobec. Characterizing optimality in mathematical programming models. Acta
Applicandae Mathematica, 12(2):113-180, 1988.

258

1.10 MOIR E0111 win 11




