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Abstract

The purpose of this thesis is twofold. First, data analysis methods used extensively in
engineering disciplines are presented and applied to several different types of manufacturing
data. Second, this thesis is intended to help bridge the gap that exists between the data
analysis methods used in engineering and those used today in manufacturing. Time-series
analysis, while rooted heavily in mathematics, is still fundamentally an artform. When to
apply what types analysis to a particular set of data is not always clear. The intrcduc-
tion attempts to organize how a time-ordered data set should be studied in the context
of manufacturing. Some fundamental preprocessing methods are shown to be essential
for meaningful analysis. Since the processes studied in a manufacturing environment are
multivariate, data reduction techniqes, such as principal components, are discussed. Im-
provments are made to the computation of principal components to compensate for the
typically noisy environments encountered. Three important issues that analysis of time-
series data should typically address in an industrial setting are detecting significant changes
in a process over time, assessing the predictability of the data, and simply summarizing
the time-series nature of a process. Each of these are addressed in the context of an actual
manufacturing process. Hybridization of ARMA models with neural networks are shown to
provide improvements in predictive power. Determining when and if a significant change
in a process has occurred is extremely important to a process engineer. These changes
or “surprises” can be identified using predictive models or by using in-quadrature filter-
ing. Fourier analysis is used in unique settings to highlight patterns in a time-series via its
power spectrum. Physical processes encountered in industry are very often characterized
by periodically occurring patterns. An generalized autocorrelator is presented which can
deal with assessing the predictive potential of a set of data which is sampled non-uniformly
in time. In general, an attempt was made in this thesis to compromise between providing
mathematical detail and presenting a wide range of different ideas found to be successful in
practice.
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Chapter 1

Introduction

1.1 Background

The latter half of the 20th century is unique in history because of the way man accesses and
uses information. Before the explosion of the electronics and communication industries in
the last 40 years society was largely preoccupied with the relatively difficult and expensive
task of gathering information. The energy expended in disseminating information was
comparable to the energy needed in collecting it. The advent of powerful computers and
rapid communication has created a new need for ways to organize and understand massive
amounts of duta, which is becoming easier and cheaper to obtain.

In fact, the incredible availability of information has far outpaced man’s ability to digest
it. The incoeasing thickness of newspapers, round the clock new channels, and the world
wide web are all indiczcors of this fact. An interesting phenomenon has arisen. Instead
of collecting data in order to answer specific questions, huge data sets are being used to
actually inspire questions. The recent nnd fascinating topic of data mining for example
uses massive amounts of data and computation power to look for patterns and special
relationships in the data. This type of analysis, unfeasible in the past, has uncovered trends
and idiosyncrasies that leave one wondering what else is there.

While almost every aspect of modern society has the potential for reaping large ben-

13
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efits from all the information available, very few have mastered the techniques to do so.
Some techniques for examining and interpreting data-rich environments in the context of
manufacturing are explored in this paper. In parlicualar, a suite of mathematical tools are
developed which have proven to be very effective in studying the scientific “ypes of data
generated from a manufacturing process. These tools are then applied to actual manufac-
turing data sets to demonstrate their effectiveness in both genefating questions and even

more importantly for answering them.

1.2 Definition of Problem

This thesis will consider how to effectively analyze data in the context of laige-scale man-
ufacturing ,._ocesses. These processes are data-rich in the sense that we have an abundant
amount of information about a particular process under study.

Data, in this thesis, is composed of individual units called variables. Examples might
be temperature, pressure, velocity, density, or viscosity. Together these variables convey
information about the state of a process. There are two principal ways information is
contained in each variable. One way is obvious the other is slightly less obvious. First each
variable contains static information. This information is simply a recorded value. This can
be seen by making a one-dimensional plot of a data vector. Simply place an x for every
data value. Certainly these data values give us insight into the process under study. The
parameter shown in Figure 1.1 shows data that is bifurcated. Sometimes the parameter is
distributed around a mean of about 5 and at other times it is distributed around a mean
of about -1¢ with slightly less variation.

However, in most circumstances variables will also have dynamic information. In other
words, information is contained not only in the value of a variable but also in how that
variable changes over time. This can be seen by expanding the variable to 2 dimensions:
on one dimension is the value of a variable on the other is the ordering of that variable.

Figure 1.2 shows the same variable as shown in Figure 1.1 but now it is plotted as a function
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Figure 1.1: One Dimensional

of time. Data represented as a function of time can be referred to as a signal or as a time-
series. These very simple plots give a basic motivation for studying time-series. Simply

put, Figure 1.2 provides a lot more information about a parameter than does Figure 1.1.

20 ; ! ) ! ;

20 40 60 80 100 120

Figure 1.2: Two Dimensional

So in looking at data we want to consider both its static and dynamic qualities. This
thesis will consider both, but particular emphasis will be on the fundamentally much more
complicated dynamic or time-series analysis of data. A single time-series or signal can
potentially contain many separate pieces of information. A major issue electrical engineers
working in signal processing face is how to extract relevant parts of a signal that is embedded
in other signals and in noise. Now add to this single information rich signsil multiple different
signals and obtain the Lypes of data sets dealt with in this thesis. Recon:iling multiple time-
series with one another and with the underlying process is a formidable problem and the
problem which this paper will address.

A simple problem statement is how to most effectively study the dynamic behavior of a
physical process for which we have a large amount of data. Hopefully the data contains a
large number of meaningful variables. However, it is not necessary to have an understanding

of the mechanism by which the data is generated. We assume that the process under study
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is too complicated or costly to try and model.

1.3 Thesis Outline: Approach to Solving Problem

One of the major goals of this paper is to provide a general framework by which large
multivariate ordered data sets can be systematically analyzed. Figure 1.3 is a flow chart

showing the general approach to be taken in dealing with ordered data sets.

Time-Series Analysis of Manufacturing Data

Pata Onhogonalizstion & Compumec
| remeccuing | gt & i eceniog |—— e
Swatistics

Process S
Sammary Deiection Predicuon
Modify Model
Desocsw Updass

Figure 1.3: Flow Chart

This thesis can be broken up into 2 major parts. In the firsi part a set of powerful tools
will be explained which will be used in the analysis of data. These tools were selected based
primarily on their effectiveness working with actual data not on their novelty. Principal
Component Analysis, for instance, is a commonly used method for linearly transforming a
large multivariate data set into a new set of variables. It has proven to be extremely effective
in digging out the important information in a large multivariate data set. Therefore we use
it. The question is how to combine and modify these tools to yield the most fruitful results.
Once a potent box of tools has been established the second part of this thesis will apply
these tools to actual data sets. These data sets will represent a wide spectrum of possible
data found in practice. The inferences drawn from the analysis in this section are geared

towards manufacturing processes. However, for people wondering if they should read this



1.3 Thesis Outline: Approach to Solving Problem

17

thesis, the general methods discussed should apply to most type of ordered data sets. More
specifically, it should apply particularly well to data that is constrained by an underlying
mechanism which obeys physical laws.

Chapter 2 discusses the importance of preprocessing the data. Some essential prepro-
cessing techniques are discussed with an emphasis being placed on how various methods
influence subsequent analysis.

Chapter 3, Orthogonalization and Data Reduction, is very important when dealing with
large multivariate data sets. The basic idea is how to take a huge set of data and reduce it
into a smaller set which contains the most relevant information. This is relevant in graphical
display of information, for instance. It is also relevant when attempting to train prediction
models. It is just not feasible to work with very large numbers of input variables. Principal
Component Analysis is an extremely effective ways for reducing data. It will be discussed
in some detail.

The second major part of this thesis applies time-series techniques to actual data sets.
Chapter’s 2 and 3 are ways to condition the original raw data and get it into a form that is
most useful for the analysis performed in Part II. The term surprise is defined and shown
to be a very important characteristic to consider in manufacturing processes. A special
filter-family is presented which is useful for noncausally detecting surprises over a wide
range of time scales. Finally, the perhaps most sought after tools involving prediction
are explained. Well organized combinations of ARIMA models and neural networks are
shown to be very effective in predicting a data vector. Both univariate and multivariate
models will be explored. Part II takes this arsenal of tools and applies them to a couple of
manufacturing data sets. The capabilities of the tools will be demonstrated and give the

reader an indication of the types of results to expect.



Chapter 2
Preprocessing

2.1 Introduction

Experience has shown that preprocessing can make or break any subsequent analysis. Very
rarely will just raw data valyes be used when working with large multivariate data sets.
Ultimately the data will be used to train prediction models or as inputs to filters. As a result
it is well worth the time to put forth some real effort to assemble a meaningful collection of
data vectors. What this means will become clearer as the different preprocessing techniques
are discussed. The procedures discussed are transformations, scaling, centering, and variable

encoding.

2.2 Packaging the Data

Before delving into the most important preprocessing methods this brief section will explain
exactly how raw data was prepared or packaged for all subsequent manipulations. Before
any analysis begins the data is placed in a n x p matrix. The p columns correspond to
each variable or parameter from which data is recorded and the n rows correspond to each
observation of a particular variable ordered typically in time. Geometrically the matrix can

be thought of in two important ways. One way is to think of the matrix as a p-dimensional

18
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vector space, V%, where each variable represents a degree of freedom or a unique axis in
this space. This will be called variable space. A variable space representation of data, often
referred to as a scatterplot in two-dimensions, is an excellent way to visualize patterns in
a data set and quickly assess correlations among variables, outliers, linear relationships,
etc. However, in variable space the emphasis is on the individual observations and not on
the variables themselves. This leads to a complementary way of thinking about the n x p
matrix of observations in subject space, S¢. Each column of our matrix locates a point in n-
dimensional space. Where in variable space each row of our matrix is perhaps best thought
of as a point, in subject space each column should be thought of as a vector. These vectors
have two very nice mathematical properties. First, the length of the vector is the variability
of the corresponding variable. And second, the angle between vectors in subject space is
directly related to correlations between variables. Vectors with a small angle between them
are highly correlated whereas uncorrelated variables are at right angles or orthogonal to
one another. To motivate future discussion note here that ma.dy .ana.lysis techniques benefit

from having a set of variables which are orthogonal to one another.

v !

(a) Variable Space, Vi (b) Subject Space, S§°

Figure 2.1: Two Interpretations of 60 x 2 Data Matrix
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2.3 Transformation

Hopefully the data we collect from a process is representative of the actual state of the
process. Transformations can be used to enhance important information or to yield a set
of numbers that have desirable mathematical properties. For instance, a certain variable
may usually be measured at small values every half-hour but every 8 hours a very large
value is recorded. Any prediction model given this data will likely be dominated by the
effect of the large values and the relatively important half-hour variation in the data will
be ignored. In this case some type of compressive mapping function may be useful to move
the large values closer to the majority. This ensures that important information is not
wiped out. Some methods of analysis require that the set of data satisfies some set of
assumptions. If this is not the case a transformation can often be applied so that the data
will satisfy the assumptions. The transformation can be applied to tne transformed data
and, if desired, the results can be back-transformed so that conclusions can be based on the
original units of measurement. Some analysis methods are optimal in a particular way for
normally distributed data, for example. An appropriately selected transformation can map
the original data to values that are more normally distributed. Important transformations
include the log, square root, and inverse transformations. Analytical methods exist for

determining appropriate transformations.
There are a family of univariate power transformations that can be applied to create a
new set of observations that are nearly as normal as possible [6).

» A#£0,
20 = #

Inz A=0and z>0.

This family was slightly modified by Box and Cox to avoid a discontinuity at A = 0:

=2 a#0,
Inz A=Qandz>0.

20 =
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This family is characterized by a parameter that can be calculated by a maximized value
of the logarithm of a normal likelihood function (2.3), after maximizing it with respect to the
population mean and variance parameters. Given a set of n observations the appropriate A

is the one that maxamizes

L =-2 m[% g(zg» 702+ (A-1) g Iz 2.1)
where
9w nooA_
™ = %zzw = %E(”' ; 1). (2.2)

This family of power transformations only works for positive values of z. But this can be
overcome by simply adding a constant to each observation. An alternative way to deal with

negative valued observations is to try odd power roots such as the cube root.

2.4 Scaling

Most of the analytical techniques used in analyzing data take into consideration variation.
Information in a set of data is contained in the variation. The overall variation can be
adjusted by scaling. When using multivariate techniques scaling must be considered in all
cases. Ideally, variables should be scaled so that their variation represents their respective
importance. Lacking better information, variables are usually scaled to equal variance.
Scaling is a critical factor in most nonlinear models. Nonlinear models usually assume
that variables with large variation are more important than variables with small variation.
As a general rule, variables input to a multivariate model should have roughly comparable
variances. There should be a very good reason for scaling data to have significantly different
variances. How the individual vectors comprising a data matrix are scaled is critical in

principal component analysis.
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2.5 Centering

When dealing with iarge multivariate data sets one of the most common things to do is to
automatically center the data, usually about its mean. While this is often a very good pro-
cedure to apply to data some real thought should be made as to whether centering is always
appropriate. Centering appears to be harmless. Mathematically when the joint probabil-
ity distribution for a set of random variables is centered the location of the distribution is
moved but the shape and orientation of the distribution is unaffected. The problem is that
there may be a difference between the observed mean and the true population mean of the
data. In an actual set of data, deviations from the mean may be a significant source of
information. If this'is the case, then centering the data can be deleterious; the information
content of the series is altercd. Models built using the altered data will obviously be ad-
versely affected. The point here is that centering should not be done blindly. Whether or
not to center a set of data is an important decision.

One way to entirely avoid the problem presented in the above discussion is to pick a
value that approximately centers a set of data and always use that value for every center
operation on a particular vector. The objective is just to get data approximately around
zero.

As a general rule centering and scaling will always be applied in some shape or form to
the data in this paper. Neither of these operations alter the type of information contained
in a signal that is critical to analysis. But even more importantly, normalization of data in

some way is essential for good results.

2.6 Variable Encoding

Variables are not always numeric. Some variable may be qualitative or it may describe an
event. For instance, different types of defects at the end-of-line process may be described

qualitatively. Or a product may follow one of several different routes in its assembly. What
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is an effective way to represent defects or production routes? Some practical encoding

methods are as follows:

e To represeat a classification scheme that has some type of implied order relationship
use one less variable than there are classes. Use all -1's to represent the lowest class
and all 1's to represent the highest class. Flip variables from -1 to 1 as the different
classes are traversed. So assuming we have a serious defect, a moderate defect, and a
minor defect, this can be encoded with two variables, d, and d5. d; = -1 and d = -1
represents the minor defect; d, = -1 and d; = 1 represents the moderate defect and

d, = 1, d2 = 1 represents the serious defect.

e To reprwent class information that has no implied order use one variable for each
class. Set the variable corresponding to a particular class equal to 1 and all other
variables equal to zero. So if we have a product coming off an assembly line which
could have taken 4 different routes use 4 variables: z:, z5, 3, 4 and encode route
3, for example, to be z,=0, z,=0, z3=1, £4=0. Do not encode the 4 different routes

using 4 values of one variable.
e To encode a rare event set a variable to one for this event and zero otherwise.

e New variables can be created as flags for special relationships between other variables.
For instance, a multivariable data set may have data points that cluster into several
distinct regions. A new set of variables could be used to flag which region a point is

in.



Chapter 3

Orthogonalization and Data

Reduction

3.1 Introduction

As the title implies, the goal of this chapter is two-fold. First, when dealing with large
multivariate data sets some method of reducing the number of variables is needed. The
prediction models implemented later are trained based on the input data given. Typically
it is not feasible to train the models using a very large number of variables. One simple
approach might be to simply select some small subset of variables and ignore the rest. Some
engineering knowledge could be used to perhaps select a relevant subset of variables. The
technique presented in this cﬁapter, however, demonstrate a way in which information from
all of the variables can be used to some degree in obtaining a reduced set of data. A second
important consideration is orthogonalization. It is preferable to use data variables which
are uncorrelated with one another. In this way variables can be fed to the training models
each of which are unique up te their second moment. Orthogonalization produces a set
of uncorrelated variables. The technique presented in this chapter, Principal Component
Analysis (PCA), orthogonalizes the data and provides a convenient way to reduce the
dimensionality of the data set.

24
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3.2 Principal Component Analysis

Principal Component Analysis exploits relationships among variables. Given a multivariate
data set one can be almost certain that correlations exist among the variables. Intuitively
this can be seen in manufacturing processes by understanding that different variables are
often constrained in some way to obey the laws of physics. If we have taken measurements
on a particular process which include temperature, pressure, viscosity, and velocity there is
likely to be physical relationships. Temperature and pressure are physical variables that are
often related in some way to one another. If measurements were taken of some heated sub-
stance the tempterature is sure to influence the viscosity. The point is that given any large
set of data correlations among variables are sure to exist. If p variables have correlations
among themselves this implies that there is really less than p pieces of information contained
in the variables. PCA is an excellent way to get an indication of the true dimensionality of

a set of variables.

3.2.1 Mathematical and Geometrical Description

Most of the tools presented in this thesis are well rooted in a solid mathematical foundation.
In examing these tools our primary focus will be on extracting their usefulness in practical
application and in developing a working intuition of how they work. A list of excellent re-
frences for more rigorous study of these tools will be provided in the Bibliography. However,
Principal Components will be looked at here in some degree of detail for several reasons.
First, PC’s are immensely useful in many types of multivariate analysis techniques. Second,
the mathematics behind Principal Component is relatively easy to understand and it has
a very nice geometrical interpretation. Third, a method to improve the information con-
taining quality of Principal Components will be presented for which a basic mathematical

prerequisite will be helpful.
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It can be very useful to consider PCA geomet-
rically. Consider again the interpretation of data
as points in a p-dimensional space discussed in Sec-
tion 2.2. A linearly independent set of p variables
X1,X2,X3,...,Xp span a space of p-dimensions. In
this case, due to linear independence, the location
of data points in one dimension give us no indica- Figure 3.1: Correlated Data Points
tion of the location of data points in another dimen-
sion. However, as is almost always the case, correlations exist among variables. This implies
that our data vectors are concentrated more in some directions than in others. Principal
Component Analysis takes advantage of these correlations. To start off with let’s consider

some simple examples in 2-dimensional subject space. Vectors representing the data points

are shown by solid lines and the principal component is the dotted line.

URL)

(a) (b) (c) (d)

Figure 3.2: Some Examples of Principal Components in 5%

In actual data sets not dominated by noise it is very often the case that variability is
concentrated in a relatively small subspace of Sx. PCA takes advantage of correlations
among variables to find a new set of variables (or new vector directions in Sx) which

concentrate their variabiliity into as few dimensions as possible. This new set of variables,
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Uy, Uz, Us, ..., U, is a linear combination of the original variables, X;, X2, X3, ..., Xp:
?k = ol,ﬁ?l + 921,?2 + -0 4 0,,,,3?,, (3.1)

This can be also thought of as a dot product of the original variable matrix, X with an
orthogonal matrix X.
U=Xe (3.2)

The orthogonality condition implies that
0lzk+822k+'"'+q3k=l (3.3)

which will preserve distances.
The matrix © will transform the original data matrix. The following 4 properties con-

strain this transformation process:

1. The vectors Wy span the same space as the original vectors ¥;. In other words no

information is lost in the transformation.

2. The total variability is the same between the two sets of variables
var(U;) + var{Uz) + - - - + var(Up) = var(X,) + var(Xz) + - - - + var(X;) (3.4)
Geometrically this means that the squared lengths are the same:

[T+ |+ + [ W2 = |02+ |22+ 4 [ Hp (3.5)

3. The transformed variables are uncorrelated. Geometrically this implies that the prin-

cipal components are orthogonal as seen in Figure 3.2.

4. Each principal component captures as much of the variability of X; as possible. So
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principal component U, is chesen go that it has the maximum possible variance subject
to the orthogonality constraint of Equation 3.3 (eg. W) is as long as possible). U,
is chosen so that W is as long as possible and subject to the contraint that it be
orthogonal to ). This same pattern is continued until we build up the full set of

Principal Components.

3.2.2 Information Enhanced Principal Components

Principal Components are used extensiveiy in this paper. In many cases, large multivariate
data sets can be reduced down to a significantly smaller set of trunsformed variables which
capture most of the variation in a process. The only petential problem is that variation is
not necessarily equivalent to information. If many of the original variables are mostly noise
this will find its way into some or all of the principal components. The ideas discussed in
Section 2.4 can be applied here in attempt to make variation proportional to infermation
content. This goal can realized if a sigral-to-noise (SNR) is computed.

The SNR is computed usiug spectral techriques. Information in a signal is usually
contained in a certain range of frequencies. Noise is typically represented at every frequency
but there are usually bands of frequency which are only ncise. These are typically found
in flat regions of a spectrum. A ratio between signal and nnise can be estimated using this
spectrum. This is the SNR. Each of the original variablez can be weighted by the SNR.
When the Principal Components are calculated from the weighted data vectors they are
more likely to contain variation that is meaningful.

So to summarize the calculation of the Information-Enhanced Principal Components:

1. Normalize the original data set, X, to zero mean, unit variance, X. Geometrically this
is equivalent to setting the lengths of each variable in subject space to unit length and

setting the origin to zero.
2. Calculate the power spectrum of each variable to estimate the SNR.

3. Weight each column of X by its correspondirg SNR.
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4. Calculate the Principal Components on this adjusted data matrix, X.
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Chapter 4

Web Process

4.1 Introduction

The second part of this thesis applies the tools previously introduced to actual data sets.
The analysis is “blind” to the mechanism generating data. Constraints imposed on mea-
surements due to the underlying physics in manufacturing processes, for instarce, are not
factored into the analysis. Modeling decisions and inferences are made based purly on the
data. Indeed one of the purposes of this thesis is to demonstrate how general techniques can
be applied to a wide range of different processes. As a result, a complete and exhaustive
analysis of the various data sets is not necessary. Each of the processes will be used to
highlight the use of specific tools. Interesting features usually become apparent as the rela-
tionships between multivariate time sequenced data are geometrically and mathematically
explored. Detecting, characterizing and modeling these features are the major goals of the
subsequent analysis techniques.

The Web process will be used to demonstrate methods of time-geries prediction. First,
traditional ARMA models will be used as a benchmark for predictability. The main chal-
lenge in ARMA modeling is selecting the correct model to use. The autocorrelation function
and frequency domain analysis of the time-series to be modeled will be used to facilitate

making this selection. Finding a gopod ARMA model inevitability involves some iterations.

33



34

Web Process

The predicted signal an ARMA model generates along with a shock geries can be used to
suggest new models to try. ARMA models will also be hybridized with Neural Networks
in an attempt to improve results. Multivariate ARMA models involving the use of several
time-series simultaneously, are explored as well. Finally, this chapter will close by consider-
ing pure neural network prediction. The ability of neural networks to fit to nonlinear and

nonstationary processes will represent another method for prediction.

4.2 ARMA Modeling

A univariate parameter, z, from the Web process was selected for the subsequent analysis.
A portion of this parameter is shown in Figure 4.1. Notice a high frequency component
with a period of about 20 samples superposed on a gradual trend upward. The autocorre-
lation function and the power spectral density will help to formalize some of the important

characteristics of the signal, z.

34_
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Figure 4.1: Original Signal

Effective ARMA modeling requires that the signal to be modeled is stationary, or can be
made to look stationary through an appropriate transformation which can then be easily re-
versed to obtain back the original signal. The autocorrelation function, shown in Figure 4.2,
is used to check whether this requirement is satisfied. In most normal cases a stationary

series will drop quite rapidly to zero. In this case, the autocorrelation does drop to zero
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fairly rapidly but it has a very obvious periodic component. Each peak is separated by
about 17 lags sugesting a periodic component in z with a period of 17 samples. Significant
periodic components such as this one need to be removed from the signal.

1 1
0.5
0.5
(v A el
0
-0.5
-0.5 - =1
0 20 40 60 80 0 20 40 60 80
lags lags
(a) Autocorrelation (b) Partial Autocorrelation

Figure 4.2: Time Domain Correlation Analysis

The power spectrum verifies what was learned from the autocorrelation function. A
period of 17 corresponds to a frequency of 1/17 = .0588 which is the highest peak in both
the smoothed spectrum and the maximum entropy spectrum. But there are some other
prominent frequency components in the power spectrum that can’t be easily deduced from
the autocorrelation. There is a peak at about .023. This suggests a periodic component on

the order of 43 samples.
As a first cut at modeling, the signal is differenced to produce, Z. The differencing

operation has the effect of a highpass filter which will kill low frequency terms as well as the
DC constant offset. An ARMA model is trained on the first 1580 points of T + Z,. Training
refers to the process of iteratively refining the ARMA coefficients so as to minimize a given
cost function. The AR terms affect the prediction in a linear manner and can be solved for
explicitly. But solving for the coefficients of the MA terms involves undoing a convolution.
This means the MA terms have a nonlinear influence on the predictions. In addition, MA

parameters interact with AR parameters. As a result the AR and MA parameters must be
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Figure 4.3: Spectral Analysis

optimized together in an iterative fashion. The cost function used in this analysis is the
sum-squared prediction errors. Powell’s method [8] is the algorithm implemented for this
minimization.

The ARMA model selected used 20 lagged AR terms and 3 MA terms. This will be
notated as ARMA(20,3). The training set can be created once the model is specified. For
clarity ARMA(20,3) is a model of the form

z[n] = do+d1z[n—1]+daz[n—2]+- - - + p2oz[n —20]+01€[n— 1]+ - - +03¢[n—3]+¢[n] (4.1)

The model is trained and is validated using z{1581] to £[1640]. A flow chart of this process
is shown in Figure 4.4.

The results of applying the operations shown in the flow chart to the signal, z, is shown
in Figure 4.5 as the ARMA(20,3) line. Figure 4.6 shows a plot of the magnitude of the
residual between the actual signal and the predicted signal. The predicted signal, shown by
the dotted line, tracks the actual signal well but it is offset by a DC component. This is due
to the differencing operation. Results will be improved if the periodicity can be removed.
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Figure 4.4: ARMA Prediction Flow Chart
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Figure 4.5: Prediction With Differencing Only and ARMA(20,3)
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Figure 4.6: Residuals From Above Plot
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The periodicity was removed by using a bandpass filter to filter out a center frequency
of .0588 corresponding to about 17 samples. This signal was then subtracted from the
original signal. An ARMA(20,3) was trained on this result. A neural network was trained
on the periodic band-filtered signal. Then the two were combined to give the result shown

in Figure 4.8. The improvement is dramatic.

_A_I:J B x ...c_l 'l':.lln

Filwer = b ARMA(20.3)

1

Predict
ARMA(20.3)

Croate Train
'I'rf'l“nln' NN(8.Lin)
— Predict
NN(8.Lin)

Figure 4.7: Flow Chart Showing Hybridization of ARMA with Neural Network
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Figure 4.8: Predictions Separating Out Periodic Components

As one final test, the parameter was predicted using purely a neural network. The

results indicate that a combination of neural network and an ARMA model is superior.
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Figure 4.9: Residuals From Above Plot
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Figure 4.10: Flow Chart Using Only Neural Network

4.3 Defect Analysis

The output measurements made on the Web process are multivariate measurements indicat-
ing the size and location of a defect. The subsequent analysis will treat the defect variables
as binary. At a given location or time there either is or ig not a defect.

The ultimate goal, from a manufacturing point of view, is to relate inlying process vari-

ables to defects. However, two aspects of this data set make finding this relationship, if
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Figure 4.11: Predictions Using Neural Network
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Figure 4.12: Residuals From Predictions Using Neural Network

it exists, difficult. The first problem lies in the discrete nature of the defects. Most in-
put/output modelling techniques do not working effectively on analog input signals and
discrete binary output signals. A first order sclution to this problem is to consider cor-
relations among outliers in the process data and defects. One might expect that inlying
variables that deviate substantially from the mean to be responsible for defects in the out-
put. With this particluar data set there were no significant outliers so this type of analysis
is not possible. To generalize a little bit here, a good strategy is to try and find thresh-
olds in the process variables which, when exceeded, result in defects in the output. These

thresholds should be searched for in both a univariate and multivariate sense.

The second problem is more sericus and potentially much more difficult to overcome.
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The issue lies in the time-series nature of the data and manifests itself in two ways. First,
there is not currently any way to precisely match up measurements at one particular point
in the Web line with other points. So, for instance, a temperature measurement on the
Web at one precise location and time cannot be reconciled with an end of line thickness
measurement at the same point on the Web. While this is a real problem that shows up
in many manufacturing process it is one that can be solved by combining appropriate data
with some data crunching. Second, and more problematic, is the transient times between a
variable change and its effect. Some parameters in the Web process may change but take
many minutes or even hours before changes in the Web take place. A process that has
many different variables with widely varying transients can become extremely challenging

to model.

Given these two problems and given the fact that no first order relationships were found
between the input variables and the defects the subsequent analysis focuses on the defects
exclusively. Figure 4.13 shows the distribution of defects. This plot was created by laying
74 Web sheets on top of one another. The vertical axis is the longitudinal position along a
sheet and the horizontal axis is the width across the sheet. The figure shows that a great
many of the defects occur in vertical streaks. In particular a high density of defects cccur
in streaks along the left edge of the sheets. A clear streak also stands out around horizontal
position 20 and two other streaks at around 27 and 28. This relatively simple plot indicates
a great deal about the nature of the defects. It provides important information about where
to look to reduce the number of defects in the process. The remaining defects appear to be
randomly distributed.

In order to study the streaks in more depth, individual streaks are studied for patterns.
The fourier transformn is used to provide a frequ~ncy domain analysis of the defect signals.
Proper analysis requires that the defect: '~ placed on top of a well-structured support. This
means that the time between defect: uceds to be divided up into uniform intervals. In its
original form times are only recorded when a defect occurred. The signals constructed for
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analysis are binary and consists of a value of 1 at ecach time slot that a defect occurred and
a value of 0 if nc defect occurred. These signals are on the crder of 2 million points. To
reiterate, vertical strips from Figure 4.13 are extracted and studied for patterns. Figure 4.14
to figure 4.21 show the defect signals as well as a frequency domain analysis of the signal. A
4096 point fast fourier transform was used in the calculation of the power spectral density.

The frequency domain analysis of the signals show that, except for Figure 4.16, each
of the streaks shown has a periodicity at about 2.4023 Hz. Its harmonic also shows up
at around 4.8 Hz. This value of 2.4023 Hz corresponds to a time of .4163 seconds. If the
velocity of the web is known then this value can be used to estimate the distance between
defects and aid in locating the source of the defect.

Defects that occur periodically are likely to be the result of something other than the
process variables. If this is the case, as it almost surely is here, then the periodic defects
should be removed before performing analysis for determining the relationship between

process parameters and the defects.
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Position of Defects on Web with 74 Rolls Combined
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Figure 4.13: Location of Defects
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Figure 4.14: Defect Occurrences at x=19.7150 and Frequency Analysis

Plot of Longitudinal Defect Occurrences (Kodak Web Process)

0 2000 4000 6000 8000 10000 12000 14000 16000

Time [seconds)
Power Spectrum of Defect Occurrences

T T T T T L] L) T T

0.5 1 1.5 2 25 3 3.5 4 45
Frequency [Hertz]

Figure 4.15: Defect Occurrences at x=1.77502 and Frequency Analysis
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Plot of Longitudinal Defect Occurrences (Kodak Web Process)
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Figure 4.16: Defect Occurrences at x=28.4681 and Frequency Analysis
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Figure 4.17: Defect Occurrences at x=28.4139 and Frequency Analysis
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Figure 4.18: Defect Occurrences at x=1.74792 and Frequency Analysis
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Figure 4.19: Defect Occurrences at x=1.80212 and Frequency Analysis
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Figure 4.20: Defect Occurrences at x=2.01892 and Frequency Analysis
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Figure 4.21: Defect Occurrences at x=1.99182 and Frequency Analysis
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4.4 Multivariate Analysis of Inlying Process Parameters

For completeness, the process parameters are analyzed here. A subset of the fuill data set
consisting of 854 variables is considered. Variables that had zero variation or variables that
were perfectly correlated with one another were removed from the data to produce this

subset.

4.4.1 Time-Series Plots of Principal Components

Figures 4.22 and 4.23 show the first 8 principal components plotted as a function of time.
The first two principal components, indicative of a real physical process, drift slowly over
time. The first 8 principal components are shown to highlight an ....cresting feature of this
data as well as a point out a limitation of principal components. Figure 4.24 show zoomed
in versions of PC3 and PC4. Notice the very obvious periodic nature of the data. While
PC3 and PC4 appear to be similar recall that principal components are uncorrelated with
one another. All of the first 8 principal components have this periodic nature.

Figure 4.24 also shows a plot of the power spectral density principal components 3
through 5. The power spectra are all very similar as the plot indicates. The strong similarity
between the different principal components brings into question whether they are ali truly
representative of different physical phenemona.

If one information carrying signal were modulated onto a carrier signal that drifted in
frequency the result would be muitiple signals that are uncorrelated with one another.

Let
z;(t) = signal » sin(2x f;t) (4.2)

where z;(t) is a column vector.

If f; and f; are integers and f; # f; then:

zi(t) » zj(t) =0, (4.3)
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meaning that z;(t) and z;(t) are uncorrelation with one another.

The implication is that the first 8 principal components in the web process parameters
could in reality be represented by only two pieces of information: (1) the underlying signal
and (2) the modulating signal.

Waeb Proceas: Plot of PCt As a Function of Time
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Figure 4.22: First Four Principal Components of Web Process Variables
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Web Process: Plot of PC5 As a Function of Time
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Figure 4.23: PC5, PC6, PC7 and PC8 of Web Process Variables
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Web Process: Zoomed Plot of PC3 As a Function of Time
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Figure 4.24: Zoomed PC3 and PC4 highlighting similar periodic nature. Bottom plot shows
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4.4.2 Cross Plots of Principal Components

Figures 4.25 and 4.26 shows the same data in principal component space. These are simply
two dimensional views of the multidimensional data space that contain the most variation.
Figure 4.26 shows the principal components plotted with different symbols representing

4 contiguous blocks of time. The process drifts gradually from region to region as time

progresses.

Figure 4.25: Cross Plots of the First 4 Principal Components.
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Figure 4.26: Cross Plots of Principal Components Showing Time Evolution of the Data
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4.5 Discussion

This chapter started off by considering improved methods of prediction. The results suggest
that a combination of linear ARMA modelling techniques hybridized with neural networks
result in lower RMS error over just ARMA modelling. The second section on the Web
Process consider an analysis of the defests. Frequency analysis indicates that there are
periodically occurring patterns in the defects. This is helpful for locating the source of
the defects in the process. In addition, removing these periodically occurring defects is
a logical precursor to further correlation analysis between the process variables and the
defects. Finally, the final section showed a useful way for viewing the time evolution of a
process in mu'tidimensional space. This space can be used to identify the best operating

regions for a process.



Chapter 5

Medical Data

5.1 Introdution

The analysis done in this section is on a set of medical data. In all 8 variables are recorded
on each of 11 patients simultanecusly over a period of months. The methods of analysis
focused on will be data reduction and dealing with unevenly sampled data. This medical

data is a true test of the tools developed so far because it represents a worst case scenario:
e Most of the powerful toois for time-series analysis depend on evenly sampled data.
However, there are widely varying sampling intervals in the data ranging from several
seconds to days.
e The data sets are relatively small with typically only about 60 measuremente.

e The data itself shows signs of being quite noisy.

By using Principal Components and by modifying the way autocorrelations are calcu-
lated the deleterious effects of the above limitations can be mitigated.
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5.2 Dimensionality Reduction

One of the first things that should always be considered about a multivariate data set is how
many important degrees of freedom it contains. Principal Component Analysis shows that
each of the patients data space can be rednuced to 1 or 2 transformed variables that captures
most of the variance. Principal Components take advantage of correlations among variables

resulting in transformed components which are likely to contain significent information.
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Figure 5.1: Variance Captured by Principal Components

Figure 5.1 shows the percentage of variance capture by the first and second principal
components. Figure 5.2 shows that the two dominant eigenfunctions are essentially the
same for all patients. In the top graph of Figure 5.2 the dominant eigenfunction for most of
the patients is simply an average of all the zero-mean variance-normalized parameters which
were measured. The middle figure shows the second eigenvector, for which most patients
respond negatively to variable 1, positively to variable 3, and to a reduced degree for the
other variables. Note that patient D appears to have the first and second eigenfunctions
reversed — that is, the second principal component is roughly an average of all the mea-
surements and the dominant one is roughly the second principal component for the other

patients. Thus, there appears to be some medical significance to these two independent
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First Eigenvector Components Used in Derivation of PC1
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Figure 5.2: Plot of Dominant Eigenvector for Each Patient

aspects of the patient data.

The analysis shown here is on patient “C”. Figure 5.4 for patient C shows several plots
of the principal components. The first plot shows that most of the variance lies in the
mean-value of all the measurements, and that there is no cbvious correlation between any
one principal component and any other; this is typical of all linear jointly Gaussian randomn

processes.
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Figure 5.3: Principal Component i for Patients A, B, and C

5.3 Autocorrelation and Predictability

predictability in the data? and 2) If it is predictable what is the half life of predictability?
(ie. How far into the future can predictions be reliably made?)

Before looking at the results it is important to emphasize the unique and challenging
aspect of this set of data. Samples are taken at highly irregular time intervals ranging form
45 second intervals to times 2 or 3 days apart. Ideally the samples are evenly spaced and
taken at times shorter than the phenomena of interest. Clearly if a patient's condition is

known to be predictable 15 hours in advance but measurements are only taken every 3 days
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Figure 5.4: Principal Components for Patient C

then the ability to formulate a function which accurately predicts a patient’s condition will
be severely limited.

5.3.1 The Generalized Autocorrelator

This section will delve slightly into the technical aspects of the computation of the general-
ized autocorrelation function because it highlights the trade off that must be made between
accuracy and resolution of results over time. The term generalized autocorrelator is used
because it can be used to estimate autocorrlations for discrete data sampled at arbitrary
times. The first step in the computation of the autocerrelation function is to find all pairs
of products, z(t)z(t — ). So for 50 observations there are 1275 unique pairs of points. Now
to find the autocorrelation, R;.(r) = E[z(t)z(t — 7)) these products are averaged over a
box of a certain width in time. So to find R.;,(r = 10) a decision must be made as to
the width over which to average, T. The pairs of products which fall between 10 — T'/2
and 10 + T'/2 are determined and summed. This is then divided by the number of pairs of
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products, z(t)z(t — 7), in this time interval.

A larger time interval over which to estimate R:z(7) will result in a tighter confidence
interval for the result, but it also results in less resolution of R,.(7) over time. So the
time-interval should be big enough to produce small errors but small enough to resclve the
autocorrelation estimate over time. Typically, there should be at least 10 samples per box.
When looking at the autocorrelation plots at the end of this document it is important to
look at the number of samples used in the calculation of R (7) for each r. A smali number
of samples indicates a large possible error in the autocorrelation function. A good example
of this is patient C. The “Number of Samples per Box” plot in Figure 5.5 (bottom plot)
shows small values, followed periodically by relatively large values. At these very small

values we want to ignore the autocorrelation function because the error is potentially large.

Figure 5.4 shows the time evolution of the top three principal components, and it sug-
gests only that there is a drift towards negative values over the last five or ten observations;
other than that, the data is difficult to distinguish from white noise. Figure 5.5 for patient
C shows sample values of the autocorrelation function for various values of time offsets.
The mean-square value for zero offset is indicated by the large black dot at the left side
of the graph. If a baxcar filter with a width of 11.42 hours is used to filter the data in
the top graph, the result shows that the correlation between measurements drops almost
immediately to 50% and then decays slowly with a time constant of approximately 70 hours.
Again, it is important to know that only certain boxes in the time delay domain have enough
samples to be statistically significant; these are indicated by the bottom figure on the page
(for example, the samples at around 24 hours). The implications here ave that the health of
patient C as indicated by the average measure of the eight normalized sense parameters is
predictable only two or three days in advance. The power of predictability is poor because

two or three days correspond to a reduction in correlation coefficient to values below .3.

Predictability for most of these patients is typically on the order of 12 hours. In some

cases data is taken at short time intervals, so it is possible to be more accurate in terms of
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predictability at these short time intervals. In other cases the data is recorded only daily,
and then it is much more difficult to deduce how rapidly predictability is falling.
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Figure 5.5: The Generalized Autocorrelation Function for Patient C
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e Individual patient can be reduced to usually 1 sometimes 2 significant variables which

capture most of the variation. Each patient’s data set originally contains 8 variables.
e Some of the patients indicate a potential predictability around 12 hours.
¢ The remaining patients are predictable to less than 12 hours.

e Many of the patients have autocorrelation values that drop almost immediately to

50% implying high patient variability or noise.

Di .

All of the patient’s data sets could be reduced to at most 2 significant components
in the KLT domain. However individual patients demonstrated significant differences in
predictability. Some of the patients mentioned above have some degree of predictability
while others appear to have very little predictability. It should be noted that for most of
the patients we cannot accurately access the autocorrelation function much below 10 hours.
The only way to increase the resolution here is to get samples at smaller time intervals then
in the present data set.

Various scenarios can be imagined which would adversely affect analysis. If samples are
taken only when the phenemona of interest i3 present then the samples will not represent a
complete picture of a patient’s condition. Or if a measurement is always taken shortly after
treatment then his condition is likely to be dependent on when he took the treatment and
not on natural fluctuations in the patient’c condition.

The results suggest that a slightly more disciplined measurement taking procedure could
yield greatly improved results. Clearly the more often measurements are taken the better.
But for practical purposes, if measurements were taken 2 or 3 times day for a period of 2-3
weeks a solid set of data could be obtained yielding medically valuable information.



Chapter 6

Wafer Data

6.1 Introdution

Monitoring changes from normality is critical in a manufacturing environment. Keeping a
process within a specified set of parameters is essential to reduce variation. Consider plotting
all the parameters of a process in variable space. Under normal operating conditions these
parameters will lie within some multivariate operating region. Often this will show up in
Principal Component space as an elliptical scatter of data. In some cases a plot of one
principal component against another will reveal a distinct clustering characteristic. Data
collected from an assembly line process, for instance, revealed many distinct clusters each
corresponding to distinct positions in the assembly line. In a different data set the reduced
variable space revealed 4 distinct operating regions each corresponding to an assembly route.

So a plot of process parameters in variable space provides a static view of important
operating regions. However, operating characteristics are also strongly dependent on time.
Suppose a process separates into several clusters in variabie space. In this form there is
no way of understanding the dynamic evolution of these variables. For one process a point
might jump randomly from cluster to cluster sequentially in time. Another process may
jump to a cluster and then stay there for a while before moving on to another cluster.
Time-series analysis is needed to unravel the dynamics of a process. In particular, this
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section addresses methods for both detecting important changes in a process and for finding
time patterns which are prevalent in physical phenenoma.

The data set used here was purposely chosen because there i8 no obvious clustering in
variable space. However, a dynamic analysis of the elliptical fuzzball in the plot of PC1

against PC2 reveals a nonstationary process that does change over time.
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Figure 6.1: Plot of the Principal Components



6.2 Surprise Detection

85

time

A a A A r A A A A

(] 100 200 300 400 500 600 700 800 900 1000
time

Figure 6.2: The Principal Components as a Function of Time

6.2 Surprise Detection

Figure 6.2 shows plots of the first 4 principal components as a function of time. A quick
glance suggests that the process does indeed change over time. PC1 has a fairly obvious
changing mean. A little less obvious, but also relevant, is a change in the variance of the

process over time. The last 200 points vary over a wider range than over the range from
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about 200 to 400.

There are many different ways to try and describe changes in a set of data. A special
type of change, called a surprise, will be defined in such a way so as to have a foundation
for analysis. A surprise is behavior that is not predictable from prior data in a multidi-
mensional ordered set. This means that characterization as a surprise is very dependent
on the information before it. Behavior found to be unpredictable with a set of data may
possess behavior that is in fact predicatable given a larger set of data. A simple example is
a periodic square wave; the first jump isn’t predictable but after a few periods have been

geen the jumps are predictable.

6.2.1 In-Quadrature Filtering

In this the in-quadrature filter is used to locate points in a time series where changes are
taking place. The output of the in-quadrature filter has the interpretation of showing the
rate of change of the input to the filter. So fiitered signal peaks are places where a signal
is changing most rapidly over a particular bandwidth. Points of maximal change are often
good indicators of a surprise.

Figure 6.3 shows the first Principal Component passed through a lowpass filter. This
process alone makes the shifts in the signal much more obvious. Compare this filtered signal
with the orignal signal in Figure 6.2. Shown also is the magnitude of the in-quadrature
filtered output. The in-quadrature filter center frequency is .03 with a filter width of .03.
Not only does the in-quadrature output highlight the changes which are visually obvious,
it also accurately locates in time the points of maximal rate of change. So the complex
exponential terms which comprise the frequency domain representation of the series at
the given center frequency and bandwidth are changing most rapidly at the peaks in the
in-quadrature output.

In-quadrature outputs could be checked at higher frequencies as well for surprises. An
output with large magnitude followed by several outputs of low magnitude could indicate a
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Figure 6.3: In-Quadrature Filtered Output

surprise. However, in general, the performance will gradually deteoriate because as higher
frequencies are considered the output is basically just measuring the difference between

adjacent points which are subject to random variation.

6.2.2 Detection Using Prediction

Figure 6.3 gives an indication of the degree to which each point in a series is predictable. For
reference and clarity a lowpass filtered version of the original signal is included. Superposed
on this is the magnitude of a residual series. An ARMA model was trained on the data and a
predicted series was generated by going forward in time. Then the same thing was done on a
flipped version of the original series. These two predicted series, correctly reordered in time,
were then subtracted from one another to produce the residual series plotted. The ARMA
model was trained to predict three points into the future. Points in the residual series, or
shocks, that are relatively large in magnitude represent place where the ARMA model had
difficultly predicting. The plot indicates that there are surprises at around ¢ = 140 and
t = 750. This is consistent with the in-quadrature analysis of Section 6.2.1.

To support these results the exact same analysis as described above was performed on
the series with the first 200 points removed. The purpose is to determine if the first surprise
around ¢ = 140 helps help in the prediction of the surprise around ¢t = 750. The results
produce very similar residual plots. Therefore it can be concluded that the two prominent
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Figure 6.4: Residuals After Prediction

residuals are indeed surprises. The additional information of having the first 200 data points

doesn’t help the prediction model at around ¢ = 750.

6.3 Discussion

This chapter presented two methods for detecting surprises in a process. Flagging points
where the process is rapidly changing by using the in-quadrature filter or flagging points
which are relatively unpredictable by modelling the data using ARMA model are effective
ways of locating a shift in operating characteristics. For detecting surprises which take place
over a long time interval the in-quadrature filter is better to use while surprises that take

place quickly in time will show up very well by using ARMA prediction techniques.



Chapter 7

Conclusions and Suggestions for

Future Work

This thesis presented methods for analyzing time-ordered data sets generated by natural
physical process, especially manufacturing. Principal components analysis is very effective
in reducing large data sets containing many variables and is almost always used as a first step
of analysis. ARMA models combined with neural networks were shown to be very effective
in modelling data even when the data was nonstationary. Accruate predictions into the
future could be made using these models. Residuals generated from ARMA models were
shown to be an effective way to detect surprises in a process. Alternatively, in-quadrature
filters highlight where rapid changes in a process are taking place over certain time scales.
Fourier techniques proved to be useful in summarizing the important characteristics of a
time-series. Even when working with very non-gaussian data, important insights into the

data was gained using frequency domain analysis.

Work could be done in the areas of time-series prediction, surprise detection and effective
methods for summarizing important and relevant characteristics of a time-zeries. Further
work should be done looking at ways to automate the hybridization of ARMA models with
neural networks. How to select the appropriate degrees of freedom to be used in both
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the ARMA model and the neural network are important. A reasonable criterion is to
compare the distribation of the residuals in the training set and the test set; they should
be similar. In the area of surprise detection, methods should be developed for dealing with
multivariate surprises. This is related to looking for multivariate control limits. Often in a
manufacturing process, single univariate parameters are monitored to remain with certain
limits. However, multivariable control limits may be the critical factors for a given process.
Finally, data summary is essential for communication of critical aspects of time-series data.
Manufacturing data sets are usually loaded with periodicities, trends, drifts and patterns.
Lucid time domain and frequency domain methods should be developed to highlight these
attributes. The fast-foldover fourier transform or the waish transform, for instance, could
be explored to deal with the binary data encountered in Chapter 4.

It has been the opinion of many people working with these d  sets that robust linear
or quasi-linear methods are the way to go in terms of analysis techniques. Most manufac-
turing processes are specifically designed to operate in linear operating regions. The relative
simplicity of linear methods and the potential for meaningful interpretation of results make

robust linear methods most attractive for real data analysis.
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