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Abstract

Image classification is a classical computer vision problem with many potential appli-
cations. As greatly increasing amounts of image and video are stored in computers,
it becomes more difficult for human to categorize, store, and retrieve quickly for a
particular scene or video clips. This project attempt to ease the process of sorting
various scene into indoor or outdoor categories. We hope that the methodology we

developed can also applied to more general sense of image classification problems.
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Chapter 1

Introduction

Most of the information accessed everyday by millions of users is in the form of video,
audio, pictures, or text. Except for text, that in many cases is accessible in a machine
readable form, in all the other cases the problem of classifying, parsing or indexing
this information is still a task performed by human operators, and it is mostly done
using text information. Whiie the value and the amount of the information available
on-line is in principle immense, it is in practice limited by the limited amount of
human resources that can process it. As the image databases are rapidly growing in
size, the labor involved with sorting, indexing and classifying images by hand can be
extremely costly. Searching a large database of unlabeled images for an image of a
certain type or containing a certain pattern is still a very challenging task to automate,
and the number of research groups around the world and private companies investing
efforts in research topics of this type is growing.

In this thesis we take a concrete problem which has been proposed to us by
Eastman Kodak Company: to classify images into indoor and outdoor categories.
We have been provided by Eastman Kodak with a databases of several hundreds of
color images of indoor and outdoor scenes, and our goal is, given a new image, that
does not belong to the database, to decide whether it is an indoor or an outdoor scene.
This can be seen as one of the many steps of an indexing process, that can be used,
for example, to retrieve pictures with certain characteristics. Once we know that an

image is outdoor, for instance, we could apply similar techniques to the ones presented



in this thesis to decide whether the image contains a coastal scene or an alpine scene,
or whether it contains people or not. One of the goal of this thesis is to investigate
the use of global properties of the image, such as, color and texture information, for
scene classification. The use of multiple cues poses a number of problems, one which
being the problem of how to combine different classifiers, built using different input
representations. As we will see in this thesis, this problem does not have just one
solution, and in this work we will investigate two possible approaches. We hope,
however, that the methodology we developed can also applied to a wider class of
image classification problems.

Many applications in the field of image classification or scene analysis have been
developed. These applications are mostly in the computer vision technologies. There
are image recognition systems developed to diagnose patients in the medical environ-
ments. There are also computer vision system to analyse landscape and to identify
weapons and nuclear warhead for military purposes. Recently, auto-pilot cars or
driver’s assistant systems have been tested in a lot of research laboratories. Many of
these approaches are based on the computation of some statistical properties of the
images, such a color histogram, that are approximately invariant across one class. So,
for example, the amount of “blue” in the upper portion of an image could be assumed
to be more or less invariant in all the pictures that contain sky, and could be used
as one of many cues in an indexing process. Color is only one the many cues that
can be used for indexing purposes, and it has been used successfully , for example in
the work of described in [31] and [32]. Texture orientation is another potentially very
useful cue as shown in [33] and [34]. Both color and texture orientation cues produce
very positive result. In this project, we attempt to combine the two approaches in
a sensible way in order to achieve better performance in scene analysis and thereby
sorting the images correctly.

Among other projects in this area we can mention the MIT Media Lab Photobook
[2], the Image and Advanced Television Lahoratory of Columbia University (5], the
CANDID Project, Los Alamos National Laboratory (3], the Jacob Project at the
University of Palermo, Italy [4], Virage Incorporated [7], the QBIC project at IBM’s



Almaden Research Center [6], the Image Science Group, Communications Technology
Lab., at the Swiss Federal Institute of Technology [8], the Institute of Systems Science
at the National University of Singapore, [1].

1.1 Overview

This thesis contains 6 chapters. In chapter 2 we describe our approach to scene
classification, which is based on the use on multiple classifiers, that use color or
texture information either independently or in a combined fashion. In chapter 3
we describe the classification techniques that we use in this thesis, that is the K-
nearest neighbor method and the Support Vector Machines. We also describe two
ways to linearly combine different classifiers in order to obtain a new classifier, whose
performance are expected to be better than the best of the individual classifiers. In
chapter 4 we present some prcliminary data analysis, that motivated the choice of a
non-trivial representations for the images in the texture feature space. In chapter 5
we discuss the experimental results. We present results for several different classifiers
and for their linear combinations. In chapter 6 we draw some conclusions and present

future work.



Chapter 2

Approach

As described earlier, there are many cues that we can use to classify images. In this
thesis, we considered only two kinds of cues, color and texture orientation, that have
been proved to be good descriptors of images in the past[35, 33], and that extract
both spatial (i.e.. texture) and spectral (i.e.. color) attributes separately from a color
image. In this thesis, we used a color histogram technique similar to the one used
by Swain and Ballard [35] in order to represent the color information, and use the
work on dominant orientation detection by Gorkani and Picard [33] for our texture
representation. Our work is similar in spirit to the color/texture classifier developed
by Tan and Kittler [31], that uses a parallel system to extract textural and color
attributes separately in order to remove highly correlated information. The system
for classifying a given image into indoor and outdoor categories is shown in Figure 2.

The input images are in PPM format, and their size is eithef 256x384 or 384x256.
Each pixel of the image is represented by a red, green, and blue component, which
has a value between 0 to 255. The input image will be processed into 2 different
formats before feeding into the dominant orientation detector and the color histogram
module. The dominant orientation detector requires the input images to be in grey-
scale and the color histogram module requires the input images to be in L, C1, and
C2 representation. Detail description of the modules and the image formats will be
discussed in the following section.

After passing through the dominant orientation detector, the texture feature vec-
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Figure 2-1: The Indoor/Outdoor Classifier

tor, a vector with 16 components, is produced. In parallel, the color histogram
module, produces the color feature vector which is a vector with 34 components.
The classifier of this system contains a database of 400+ images. Their color
feature vectors and the texture feature vectors were precomputed and stored. The
Classifier uses Nearest-Neighbor [38], K-Nearest Neighbor, the Support Vector Ma-
chine [27], and the Boosting Algorithm [19, 20, 26] to classify the input image into
indoor or outdoor categories. Detail description of the classifier and the classification

algorithms will be discussed later.

2.1 Color Information

Color information has long been used as a recognition cue, and it is potentially ex-
tremely useful in variety of tasks. One reason for its importance is that it is a local
surface property that is view invariant and largely independent of resolution [35]. In
this thesis we used color histogram to be our color representation.

A color histogram is obtained by mapping the colors in the image array to a
discrete color space containing n colors on a given color axes. A color histogram HM
is a vector (hy,hs,...,h,) in a n-dimensional vector space, where each element h;
represents the number of pixels of color j in the image M. All images have been
scaled to contain the same number of pixels N before histogram. These histograms

are the feature vectors to be stored as the index of the image database. In the next
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section we describe in details how each image in the database has been represented

by mean of a color histogram.

2.1.1 Color Histogram
Color Axes and the Problem of Color Constancy

The effectiveness of the color histogram algorithm depends very heavily of the inten-
sity and color of the scene illumination. This problem is related to the well known
problem of color constancy, and comes from the fact that what is measured by the
camera (for example the R, G, and B values) depends both on the color properties
of the physical surfaces and the illumination of the scene. Therefore, changing the
illumination will change the appearance of the colors in the image. While humans
can be very good at discounting the illumination component, in machine vision this
problem has been not fully solved yet, although many solution have been proposed.

In this thesis we are interested in using very simple and fast pre-processing tech-
niques, that can be applied to a wide range of images, and therefore we cannot afford
to use any of the available color constancy algorithms. However, it is well known that
a certain degree of color constancy can be usually achieved by an appropriate choice
of the color space.

The choice of the “best” color space is a problem that attracted a lot of attention
in the machine vision community. Conventional color spaces [39] were defined either
for colorimetry, such as the CIE tristimulus values and the CIE(x,y) chromaticity
diagram, or for perceptual comparison and graphic arts, such as the Munsell system,
the Natural Color System, and the Optical Society of America System. Although
theses color systems provide good specifications of color information, they are not
necessary suitable for machine vision and image processing applications [29)].

In this thesis we adopted the physics-based color encoding model developed by
Hsien-Che Lee at Kodak Inc. [29]. This model is based on the human visual systems,
and provides a physical explanation of the similarity between the eigenvector color

representation and the human opponent-color encoding. There are four ideas behind
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this effective color encoding:

1. An ideal sensor response function should match the signal statistics. The inte-

gral log-normal curve is chosen for this reason.

2. The color signals should be decomposed into one lightness component that
represents the overall log intensity variation across all color channels, and two
chroma components that represent the relative intensity variation between color

channels.

3. The chroma components should be insensitive to change in surface orientation

and illumination gradient.

4. One of the chroma components should be oriented along the direction of natural

daylight variations.

This particular model is used because it presented a fairly simple transformation
from the original color axes (RGB). We are particular concerned about the simplicity
of the algorithm because we would like to be able to classify the images in a speedy
manner. In additional, this model can also achieve illumination invariance which
improve the effectiveness of the color histogram indexing algorithm.

Lee [29] skowed that a “good” color space can be obtained by a 45° rotation of
the RGB space. The new color variables are named L, C1, and C2, and are defined

below:

L = (log R + log G + log B)
V3
(log R — log B)
Cl =
V2
09 = (log R — 2log G + log B)

V6

The L component of this new color vector represents the illumination, leaving the

other 2 components to represent the chromatic information. Therefore, a simple way
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to achieve a certain degree of color constancy consist in encoding the color with the

C1 and C2 components, disregarding the L variable.

The Histogram Space

After choosing the color axes, we need to define the histogram space H. Since all the
images were scaled to contain the same number N of pixels, the histogram space H

is the following subset of an n-dimensional vector space:

H o= {(hi, by oha) | B 20 (1S5 <), Yohi=N)
i=1
where each element h; represents the number of pixels of color j in the image that
has to be encoded. Since the space of colors is clearly huge, some quantization is in
order. We used the K-means clustering algorithm [24] in order to find a “reasonable”
number of prototypical colors, that would represent well the color of the images in
our database. We applied the K-means algorithm to our database of 400+ images
in the (C1, C2) color space, and obtained 34 clusters. The center of the clusters are
the “prototypical” colors, and have been used as histogram bins. Each color image

is therefore represented by a vector of 34 elements, each element representing the

number of pixels whose color belongs to a certain color cluster.

2.2 Texture Information

2.2.1 Dominant Orientation Detection

Texture information has been used extensively in computer vision, for recognition
and discrimination purposes. In this work we concentrate on one specific kind of
texture information, that is the texture dominant orientation. We believe that the
distribution of the texture orientation in an image can be used to discriminate between
outdoor and indoor image. This kind of feature has been already successfully used by
Gorkani and Picard [33] to distinguish “city/suburb” scenes from “country” scenes.

The basic idea in their work is that the city scenes have strong vertical a::d horizontal
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orientation since there is more man-made structure in a city/suburb scene, e.g. car,
road, sign posts, buildings, windows, etc. We expect a similar phenomenon to be
at least partially true for indoor/outdoor classification, e.g. we expect to see more
regular patterns, with well-defined orientations, in indoor scenes than in outdoor
scenes.

A number of approaches have been proposed to estimate texture orientation [23,
21, 22]). Most of them use estimates computed on the basis of the outputs of several
directional filters applied to each pixel in the image. In this thesis we follow the
approach of Gorkani and Picard [33] to extract texture dominant orientation. Unlike
other approaches, they base their technique on the steerable pyramid of Freeman
and Adelson [36] and therefore use information extracted at different scales. One
interesting aspect of their technique is that they estimate some of the parameters of
the technique by trying to match the behavior of their algorithm with the behavior
of 40 human subjects. Interestingly enough, the parameters estimated in this way
applied to different classes of problems with little or no modification.

In this work we applied their algorithm, which is described in details in [33], to
- estimate texture orientation in different portions of the image. More precisely, we
divided each image I’ in 16 sub-images of equal size, and for each of the sub-images
we used Gorkani and Picard’s algorithm to derive two number: the direction of the
dominant orientation and its strength. Each image is therefore represented as a 32-

dimensional vector:

r= (01'7 'ljv 0%1543 'aO{GvS{G) (2'1)

where Og and S,’; are respectively the orientation and the strength of the p-th sub-
im-,ze in image I’. In chapter 4 we will argue that a more compact representation
can be used, and in this thesis we will actually work with the one proposed in that
chapter. However representation (2.1) leaves space to many different choices, and a
priori information on the spatial distribution of texture orientation could be used if

conjunction with it. For example, if the upper portions of the image is mostly blue
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and has very little texture, with no strong dominant orientations, it is very likely
to contain sky, and therefore to be outdoor. If the upper portion were blue, but it
contained some strong vertical and horizontal lines it is more likely to be an indoor
scene, in which the ceiling happens to be blue and doors and windows generate strong

dominant orientations.

2.3 Combining Color and Texture Information

Now that we have two different representations for the images in our database, we
are left with the difficult task of combine them in a sensible way. There are two main
approaches we can follow, that we briefly discuss here. The exact implementation

will be discussed in the Chapter 5.

2.3.1 Single classifier with color and texture

An obvious solution consists in combining the color and texture representation in one
single vector and train one classifiers using this input representation. There are some

potential drawbacks of this technique:

1. The database is quite small, of the order of 400 images. This means that we
should try to work in the least number of dimensions possible. Combining color
and texture representation increases largely the number of variables involved,
and therefore the number of examples needed in order to achieve a certain
accuracy. It could be the case that the amount of information gained in using
the combined representation is lost because of the increased complexity of the

problem due to the larger number of variables.

2. If we combine color and texture information in one large vector we have to
deal with the fact that the components of the vector have now different units of
measurements. We already have this problem in the texture representation, that
combines orientation and strength in the same vector. Of course, a sphering

of the data could be performed, but having a large number of variables with
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so few data points could lead to large errors. Therefore, methods based on the
computation of distances, like nearest neighbors or Radial Basis Functions, are
not easy to use in this representation. Techniques like polynomial classifiers
are likely to be less sensitive to this problem. In the next section we will show
how to use the method of Support Vectors to train a polynomial classifier that

combines texture and color information.

2.3.2 Combination of color and texture based classifiers

An alternative to the idea of combining color and texture information in one single
feature vector is to train two different classifiers and then combine the output of those.
The problem of combining the output of different classifiers has received renewed
attention in the last few years, and there is no easy solution. In this thesis we have
the opportunity of dealing with ciassifier which differ in more than one sense. In fact
we could choose on specific classifier, say nearest neighbor, and use it in the color and
texture representation in order to obtain two different classifiers. But we can also
train N different classifiers, using both color and texture information, and obtain 2N
new classifiers. We will explore this approach in this thesis, where we will combine
two different classifiers, nearest neighbors and Support Vector Machines, each trained
separately using the color and texture representation.

There are many ways to combine different classifiers, and we will review some of
them in the next chapter. Here we briefly describe the main issues arising with this
problem. We discuss the case in which we actually have function estimators rather
than classifiers, because it makes the discussion a little simpler, but conceptually
there are no differences. Let ¢;(x),. .., #n(X) be n estimators for the same function.
A common approach consists in taking a linear combination of them, and build a

classifier of the form:

$(x) = Xj: Aidi(x) (2.2)

A number of techniques of this type have been proposed, and they differ in several

16




aspects:

1. the choice of the classifiers ¢;. In techniques like “bagging” [16] the classifiers
¢ are all of the same kind (say Radial Basis Functions with k centers), while in
techniques like “stacked regression” they must be different (MLP, RBF, nearest
neighbor ...). In other techniques, like “boosting” [26}, it does not matter what

the choice of the ¢; is.

o

the classifiers ¢; can be trained either on the same data set, or on different
ones. In techniques like “stacked regression” the data set is unchanged, while

the essence of “boosting’ and “bagging” is in changing the data set.
g gging ging

A compelling reason for which combining different classifiers should lead to a classifier
that perform better than the best of the single ones has not been given yet. If the
estimators ¢; are unbiased, we can think of them as random variables whose average
value is the “true” function. If the ¢; were all independent we could expect that
taking a “weighted average”, like in eq. (2.2), will reduce the variance, and therefore
lead to an improvement in the generalization performances. But in practical cases
the estimators ¢; will be far from being independent, and taking a linear combination
could lead to a decrease of performances, rather than to an increase.

An alternative to the choice of eq. (2.2) is the following way of combining the ¢;:

n

é(x) = Z]: Ai(x)pi(x) (2.3)
The interpretation of a model of this type is the following: each of the estimators
#)i(x) is fairly simple, but it is an “expert” in a certain region of the input space,
where the function J; is significantly different from zero. The model (2.3) is therefore
a smooth combination of experts, that assigns high confidence to one, or few, experts
at a time, depending on the location of the input. This idea, that has been studied
in a number of papers [10], is certainly interesting, but is also has some drawbacks.

In particular, since the functions \; have to be learned from the examples as well as

the “experts” ¢, it is not clear whether there is enough information to do that or
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whether it would be a better idea to train just one, more complex, classifier rather
than many simple ones.

Although convincing theoretical results that prove the validity of these approaches
over standard techniques are still missing, there is now enough experimental evidence
that techniques of type (2.2) or (2.3) can be very useful in practice, and we will

experiment with two of these, that we will describe in more details in the next chapter.
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Chapter 3

Classification Techniques

3.1 Nearest Neighbor

One of the oldest and simplest classification techniques is the nearest neighbor rule [9].
This decision rule assigns to an unclassified sample point the class label of the nearest
point in a set of previously classified points [38]. This rule is based on the assumption
that observations which are close together (in some appropriate metric) will have
the same classification, or at least will have almost the same posterior probability
distributions on their respective classifications. The nearest-neighbor rule is known
to be sub-optimal, in the sense that its use will always lead to an error rate that is
greater than the minimum possible, that is the Bayes rate. However, very well known
results [38] showed that, when the number of samples is unlimited, the error rate is
never worse than twice the Bayes rate. In fact, if P, is the error rate on n samples,

and if we define

P =lim P,

n—oo

then it can be shown that, in the case of binary classification,

Pr<P<LP(2-P")
where P* is the Bayes error rate.

19



Of course, this result is only asymptotic, and should be taken with extreme care.
However, the nearest neighbor decision rule has been proven to be effective in a
number of cases, and the pattern recognition community has taken renovated interest
in techniques of this type. Moreover, the nearest neighbor method can be used as a
general indicator of the performances of other, more sophisticated techniques. In this
thesis we decided to use the nearest neighbors rule, which is a very simple technique,
and the Support Vector Machine, which is a far more sophisticated classifier, in
order to explore the spectrum of the possible classification techniques. It is worth
mentioning that Lipman and Yang are building a VLSI chip [11] that retrieves the &
closest points in a large data base (up to 107 points in 256 dimensions).

A crucial choice in the nearest neighbor technique is the choice of the distance func-
tion. In this thesis we deal we a data set of images that is very often ambigous or can
contain outliers, that is scenes that are classified as indoor but are actually outdoor
or vice versa. For this reason the use of the standard Euclidean norm to compute
the distance is probably not a very good choice, since it is well known not to lead to
robust estimators [25]. A more stable measure of distance, less sensitive to outliers, is
known to be the L; norm, which is the one we adopt in this work. If f and g are two
d-dimensional feature vectors corresponding to two images, we therefore compute the

distance as

1 1<
dp,(f,8) = SIf - glle, = EZ |fi — gil
1=1

where f = (f1,...,fs) and g = (¢1,.-.,94)-

3.2 K-Nearest Neighbor

The nearest neighbor rule can often be unstable and sensitive to outliers. A simple
extension is the k-nearest neighbor rule, that consists in assigning to an unclassified
point the class label that is most heavily represented among its k nearest neighbor.
(k is odd to avoid ties). In the limit of a large number of data points, it can be

shown that a large value of k will lead to consistent improvements over the standard
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nearest neighbor rule. However, for finite sample size, there is a trade off between the
optimal value of & and the size of the data set. For small values of k an improvement
can be usually obtained over the case k& = 1, but when k is very large the size of
the neighbor spanned by the k closest points becomes comparable to the size of the
data set, and therefore the k-nearest neighbor rule will tend to classify points with
the label of the most represented class in the data set, loosing its significance. In this

thesis, we chosen k = 3.

3.3 Support Vector Machine

The Support Vector (SV) algorithm is a new and very promising classification tech-
nique due to Vapnik and his group at AT&T Bell Labs (Boser, Guyon and Vapnik,
1992; Cortes and Vapnik, 1995; Vapnik, 1995). The algorithm can be seen as a new
training technique for polynomial, RBF or MLP classifiers. Vapnik and his group
demonstrated excellent performances of this technique on an image classification task
in the OCR domain. This technique is very new, and it has not been applied to many
concrete problems yet. The only other application we are aware of is to the problem
of detecting faces in images [30], where the SVM machine is used to classify between
face and non-face patterns. While this technique seems very promising, it is still not
clear what is the class of problems on which it performs well, and how it compares
with other techniques, In this thesis we will compare it with the k-nearest neighbor
technique, which is a much simpler classifier. We review here some of the key aspects
of SVM machines.

For the case of two-class pattern recognition, the task of learning from eramples

can be formulated in the following way: given a set of functions

{fa:a €A}, fo:RY—{-1,+1}

and a set of examples

(xlayl)s--'s(xhyl)v X, € Rwai € {"‘19+1},
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each one generated from an unknown probability distribution P(x,y), we want to

find a function f,. which provides the smallest possible value for the ezpected risk:

R(e) = [ Ifa(x) - y] dP(x,y).

The set of functions f, could be for example the set of Radial Basis Functions or
MLP with a certain number of nodes, and in that case the set A is the set of weights
of the network. The problem is that R(a) is unknown, since P(x,y) is unknown,
and therefore it cannot be minimized. The usual strategy consists of minimizing a

stochastic approximation of R(«), the so called empirical risk:

4
Remp(a) = %Z Ifa(xi) - yl'l

It is well known, however, that minimizing the empirical risk does not necessarily
mean minimizing the expected risk, especially if the number [ of training examples is
limited. Therefore, the technique of Structural Risk Minimization has been developed
(Vapnik, 1982) to overcome this problem. The technique is based on the fact that for
the above learning problem, for any a € A with a probability of at least 1 — 7, the
following bound holds:

0o 2-l — 10
Rla) < Runs(a) + \I h (log 2 + 11) 1 g(n/4). 31)

where h is the VC-dimension of the set of functions f,, that is a positive integer
that describes the capacity of the learning algorithm (Vapnik, 1982). Equation (3.1)
makes clear that, if the expected risk has to be minimized, both the empirical risk
and the VC-dimension have to be made small, and this statement is usually called
the Structural Risk Minimization principle.

The simplest version of the SV algorithm applies the Structural Risk Minimization
principle to a linear classifier, that is the case in which the set of functions f, is a set

of linear decision surfaces
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fwp =sign(w-x+b). (3.2)

where we set a = (w, b). Notice that if the parameters w and b are scaled by the same
quantity the decision surface (3.2) is unchanged. In order to remove this redundancy,
and to make each linear decision surface to correspond to one unique pair (w, b), we

impose the constraint:

min |w-Xx; +b] =1, (3.3)

1=1,...,

where X;,...,X, are the points in the data set, and call the set of hyperplanes which
satisfy this condition canonical hyperplanes'.

If no further constraints are imposed on the pair (w,b) the VC-dimension of the
canonical hyperplanes is equal to N + 1, that is the total number of free parameters.
However, the VC-dimension can be made arbitrarily small by controlling the norm of
the weight vector w. In fact, assuming that all the points x;,...,X, lie in the unit
N-dimensional sphere, the set {fw, : ]]w|| < A} has a VC-dimension h satisfying the
following bound (Vapnik, 1995):

h < A% (3.4)

Assuming that the data set is linearly separable, the idea of the SV algorithm is
therefore to find, among the canonical hyperplanes that correctly classify the data,
the one with minimum norm ||w||?, because if the norm is small the VC-dimension
is also small. If a pair (w, b) separates the data, then the canonical condition (3.3)

implies that

yiw-x;+b) 21, i1=1,...,L (3.5)

and the SV algorithm consists in minimizing ||w]||?> under the inequality constraint

!Notice that all the linear decision surfaces can be represented by canonical hyperplanes. The
constraint (3.3) acts simply as a “normalization”. An alternative choice could have been to select
b =1, but that would have not generated any interesting result.
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(3.5).
In many practical applications, a separating hyperplane does not exist. To allow for
the possibility of examples violating (3.5), Cortes & Vapnik (1995) introduce slack

variables

£>0, i=1,...,1, (3.6)

to get

yl((wxl)+b)21—£li 2=1,.,I (37)

In this case, the SV algorithm consists in minimizing:

{
(w,6) = (W-w)+7) & (3.8)

i=1

subject to the constraints (3.6) and (3.7). According to (3.4), minimizing the first
term amounts to minimizing the VC-dimension of the learning machine, thereby
minimizing the second term of the bound (3.1). The term !_, &, on the other
hand, is an upper bound on the number of misclassifications on the training set
— this controls the empirical risk term in (3.1). For a suitable positive constant
7, this approach therefore constitutes a practical implementation of Structural Risk
Minimization on the given set of functions.

Introducing Lagrange multipliers ¢; and using the Kuhn-Tucker theorem of optimiza-

tion theory one can show that the solution has an expansion

W = zl: Yi; X, (39)

i=1
with nonzero coefficients a; only for the cases where the corresponding example (x;, ;)
precisely meets the constraint (3.7). These x; are called Support Vectors, and (3.9)
is the Support Vector Ezpansion. All the remaining examples x; of the training set
are irrelevant: their constraint (3.7) is satisfied automatically (with £; = 0), and they

do not appear in the support vector expansion. Although the solution w is unique,
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the coefficients a; are not. They can be found by solving the following quadratic

programming problem: maximize

{ {
1
:"(‘V) = E o — 5 E Yiy; oo X, - X5 (3.10)

i=1 t,)=1

subject to

]
0<a;<7v, i=1,...,1, and > ey =0. (3.11)

=1

By linearity of the dot product, the decision function (3.2) can thus be written as

f(x) = sgn (2‘: YioiX - X; + b) . (3.12)

i=1
So far, we have described linear decision surfaces. These are not appropriate for
all tasks. To allow for much more general decision surfaces, one first nonlinearly

transforms the input vectors into a high-dimensional feature space by a map ¢:

X — ¢(X) = (¢1(X), ¢2(X), te ¢n(x)) -

Now the linear algorithm can be used in the feature space, using the features ¢(x).
Maximizing (3.10) then requires the computation of dot products ¢(x)- ¢(x;). Under
certain conditions (Boser, Guyon and Vapnik, 1992; Vapnik, 1995) these expensive
calculations can be reduced significantly, since it is possible to show that there exists

a function K such that

#(x) - p(xi) = K{x,x).

With this form of scalar product, the decision function (3.12) assumes the form:

f(x) =sgn (i yiog K (x,x;) + b) . (3.13)

=1
Therefore, rather than choosing the feature map ¢(x) we only have to choose the the

kernel K. Interestingly enough, some of the choices for the kernel K lead to decision
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Kernel classifier

K(x,x;) = exp(—|lx — x||?) | RBF

K(x,x;) = (x-x)" polynomial of degree k
K(x,x;) = tanh(x-x; — ©) | MLP

Table 3.1:

surfaces that are Radial Basis Functions, Multilayer Perceptron or polynomials, as
shown in table (3.1):

To find the decision function (3.13), we have to maximize

W(a) = Za. — = Z yiy;eia; K (%, %) (3.14)

i=1 ,J—l

under the constraint (3.11). To find the threshold b, one takes into account that due

to (3.7), for support vectors x; for which £; = 0 we have

Zy,a, (%, %) + b=1y;.

=1

This technique has been very successfully tested on an OCR problem at AT&T Bell
Labs. by V. Vapnik and his collaborators. The reason for its success is that rather
than minimizing the usual empirical risk, that is the training error, it minimizes
a bound on the generalization error. Notice that the final decision surface can be
a Radial Basis Functions or a Multilayer Perceptron network, which we know can
usually model very well complex surfaces. The difference between this technique and
the conventional RBF and MLP techniques is the way the paramciers are found, and
their interpretation.

The implementation of a SVM machine is not trivial, because it involves the solution
of a quadratic programming problem, with linear constraints, in a number of variables
equal to the number of data points. In this thesis we used the system developed by E.
Osuna [30] at MIT, that is based on a commercially available software package called
MINOS 5.4. MINOS 5.4 solves nonlinear problems with linear constraints using

Wolfe’s Reduced Gradient algorithm in conjunction with Davidson’s quasi-Newton
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method.

3.4 Linear Combinations of Elementary Classi-
fiers

The idea of combining several different classifiers, trained to solve the same problem,
in order to obtain a classifier which performs better than the single ones, is not a
new one. However, a number of new ideas appeared recently in the literature, and
some of these techniques begin to be used in practice, with very encouraging results
(Breiman, 1993; Drucker, Schapire and Simard, 1993; Freund and Schapire, 1995).

Here we review briefly some of the techniques that have been proposed.

3.4.1 Stacked Regression

Suppose we train k different predictors, such as Radial Basis Functions, Multilayer
Perceptrons, kernel regression, linear models, on the same data set. A common
procedure consists in choosing the “best” model by means of some cross-validation
technique, that is estimating the generalization error for each model and then select-
ing the one corresponding to the best estimate. An alternative, proposed by Breiman
(Breiman, 1993), consists in using the predictors {@,(x)}¥_; to produce a new pre-
dictor, which is a linear combination of the ¢,:

k

$(x) = Z CaPa(x) (3.15)

o=1
In the case in which the problem to solve is a classification task a natural way to
modify eq. (3.15) is simply to threshold it with an Heaviside function. In the tech-
nique proposed by Breiman (1993) the coeflicients ¢, form a convex combination,
and are estimated by cross-validation. The convex combination guarantees that the
generalization error of the new predictor ¢ is a weighted average of the generalization
errors of the single predictors, but this is not enough to guarantee that it will perform

better than the best of them. However, this technique performed well in a number of
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cases.

This technique has a even simpler implementation, in which the linear combi-
nation is simply an average rather than a weighted average. We notice that in the
classification case this simplification is equivalent to take a majority vote of the dif-
ferent classifiers: a point is classified as class 1 if the majority of the classifiers agree
that it is of class 1. While it is not clear why this should work better or worse than the
original stacked regression idea, there is experimental evidence that hints that taking
the average of different classifiers never hurts, and it can lead to improvements. This
is the option that we explore in this thesis, where we will combine classifiers that dif-
fer for the kind of input representation (color/texture) and for architecture (support

vecters versus k-nearest neighbor).

3.4.2 Bagging Predictors

Suppose we have k different data sets of a function:

Dy = {(x2,y")}.,, a=1,...,k,

and let us denote by ¢,(x) the predictors we obtained as the result of training a
certain learning algorithm on the data set D,. An obvious way to combine the

different predictors @, is to take their average:

k
Bx) = 1 3 da(x) (3.16)

It is possible to show (Breiman, 1945) that, in the limit of k going to infinity, the
predictor ¢(x) will lead, on the average, to a generalization error which is smaller than
the average generalization error of the single predictors ¢,(x). The improvement in
the generalization error is measured by the variance of the estimators ¢,(x), that is

by the quantity:

V = ED[d’i] - (ED[¢a])2
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where Ep denotes the average with respect all the data sets of size . This technique
therefore seems to work when the predictors ¢, are unstable, that is when they are very
different when computed on different data sets. Examples of unstable predictors are
neural networks and CART, while an example of stable predictors is nearest neighbor.
In practice, of course, one does not have access to k independent data sets, but this
idea can be still used if the data sets are generated by bootstrapping, that is if they
generated by resampling k times, with replacement, the same data set. While this is
not the only possibility, and other techniques of the type of leave-n-out type could be
used, this seemed to be effective in a number of practical cases (Breiman, 95). Notice

how bagging can be considered as a particular case of stacked regression.
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Chapter 4

Data analysis and pre-processing

techniques

It is often advantageous to apply pre-processing transformations to the input data
before it is presented to a network [14]. Some simple form of pre-processing involve
normalizing the input data. More complex pre-processing involved reduction of the
dimensionality of the input data using principal component analysis. Some prior
knowledge is also incorporated into the input data. This knowledge is some relevant

information which might be used to develop better solution.

4.1 In-class and out-of-class average distances

The nearest neighbor decision rule classifies the test image into the category of its
closest point in the data set. This technique will work well if there is a good margin
between the two classes. In order to get an idea of how well the two classes are
separated we computed the average in-class and out-of-class average distances. Let

x’ denote a point of class j, with probability distribution P;(x’), then we define

di; = E[||lx* — x||]

where E[-] denotes the expectation with respect to the joint probability P(x*)P(x7).
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Class 1 | Class 2 | Average distance | Standard Deviation
Indoor Indoor 963.4371 83.63
Outdoor | Outdoor 1029.55 86.832
Indoor Outdoor 1050.591 86.00

Table 4.1: Average Distance Using Color Feature Vectors

Class 1 | Class 2 | Average distance | Standard Deviation
Indoor | Indoor 33.98 12.95
Outdocr | Outdoor 23.64 9.9
Indoor | Outdoor 24.05 10.39
Table 4.2: Average Distance Using Texture Feature Vectors.

If the out-of-class distance d; ; were much larger than the in-class distances d,
and dy, we knew that the two classes were probably well separated, and we would
expect a technique like nearest neighbor to work well. In table 4.1 and 4.1 we report
the average and standard deviation of the in-class nad out-of-class distances, that
makes clear that the indoor and outdoor images are not so well separated. In the
texture domain there seems to be a larger degree of overlapping (the variances are
much higher), so we will expect that any technique will do worse in the texture

representation than in the color representation.

4.2 Extracting relevant features in texture space

In chapter 2 we discussed the representation of images in texture space. Each image
was divided in 16 subimages and for each subimage two features were extracted: the
dominant orientation and its strength. Therefore each image I’ was represented as a
vector:

’ O{& Sis)

P =(0,5{,04,5,... (4.1)
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Figure 4-1: Histogram of the in-class and out-of-class distances in the color represen-
tation.

Figure 4-2: Histogram of the in-class and out-of-class distances in the texture repre-
sentation.
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Type Average Number of Vertical Lines | Standard Deviation
Indoor 5.04 2.7246
Outdoor 2.73 2.32

Table 4.3: Average Number of Vertical Lines Counted

where Og and S,{ are respectively the orientation and the strength of the p-th subimage
in image 1.

Some preliminary experiments with this kind of representation convinced us that
it was using too many variables, and a more compact representation would have
been more appropriate. Moreover, we wanted to use some a priori knowledge on the
problem, that could be more easily used in a different representation than the one of
eq. (4.1). In the following sections we describe how the texture representation has

been modified from the original of (4.1).

4.2.1 Quantifying vertical structures

Our prior knowledge consists in the fact that indoor environments usually contains
more “strong” vertical lines than outdoor environment. This is due to the fact that
indoor environment contains artifact and artifact tends to have well-defined vertical
lines (e.g. wall, doors, book shelves, furniture, etc.). We purposely did not use
horizontal lines as a cue since they are largely view dependent (i.e. horizontal lines
may look diagonal if looking at a different angle). However, assuming the pictures are
taken in upright position, vertical lines usually remain vertical. Therefore, rather than
using the dominant texture orientation of all the 16 subimages we just compute the
number of of subimages with dominant orientation to be “vertical”, where “vertical”
means with dominant orientation between —5° and +5° (0° is the vertical direction).

As shown in Table 4.3, we indeed observed there are generally more vertical lines
in the indoor environment than in the outdoor environment. It is also evident from
the histogram of figure (4-3) that this quantity has different distributions in indoor

and outdoor scenes, and it is therefore likely to bring relevant information. Therefore,
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Figure 4-3: The distribution of the number of subimages with dominant vertical
orientation in the indoor and outdoor scenes.
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Type Average Strength | Standard Deviation
Indoor 19.48 16.03
Outdoor 13.14 12.37

Table 4.4: Average Strength

the orientation component of the texture feature vectors is reduced from 16 “generic”

dimensions to only one dimension, that we believe to be particularly informative.

4.3 Texture strength and Principal Components
Analysis

The relationship between the strength of a texture of an image and whether that
image represents an indoor or an outdoor scene is not as clear as in the case of
vertical orientation. Indoor scenes have z tendency to have more artifacts, and these
are often associated to strong lines and contours. However it is also true that in many
indoor scenes there are many walls or flat surfaces with very little texture. It appears
that, at least in our database, indoor scenes have an average strength that is higher
than the one in outdoor scenes. However, the difference is very small, as it can be
seen from the high variances reported in table (4.3).

Since the difference in the average strength between indoor and outdoor scenes is
so small, we expect that using 16 numbers to represent strength information, as in
representation (4.1), is not a good approach. We therefore tried to compress some of
the strength information in a lower dimensional vector, using Principal Component
Analysis (PCA).

Principal component analysis (PCA) is a common method from statistics for di-
mension reduction. Linsker (1988) notes that performing principal component analy-
sis is equivalent to maximizing the information content of the output signal in situa-
tions where that has a Gaussian distribution. The aim is to find a set of M orthogonal

vectors in data space that account for as much as possible of the data’s variance.
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Figure 4-4: The 16 eigenvalues of the correlation matrix of the strength feature vectors
ofr indoor and outdoor images.

Projecting the data from their original N-dimensional space onto the M-dimensional
subspace spanned by these vectors then performs a dimensionality reduction that of-
ten retains most of the intrinsic information in the data. Typically M « N, making
the reduced data much easier to handle. Specifically the first principal component is
taken to be along the direction with the maximum variance. The second principal
component is constrained to lie in the subspace perpendicular to the first. Within
that subspace it is taken along the direction with the maximum variance. Then the
third principal component is taken in the maximum variance direction in the subspace
perpendicular to the first two, and so on.

The principal component analysis of the 16 strength features of indoor images
and outdoor images are calculated and plotted in Figure 4-4. The 16 dimensional

strength vectors were first translated in such a way that they had zero mean.
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Class 1 | Class 2 | Average distance | Standard Deviation
Indoor Indoor 36.47 30.43
Outdoor | Outdoor 27.48 26.67
Indoor Outdoor 33.04 29.6

Table 4.5: Average Distance Using New Texture Feature Vectors
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Figure 4-5: Histogram of the in-class and out-of-class distances in the new texture
representation.

From Figure (4-4) it is evident that the first 5 components capture about 60% of the
variance, and this proved to be enough in our experiments. Therefore, in our texture

representation, an image I’ is going to be represented as

I’ = (N;,PS,,...,PSs) (4.2)

where N; is the number of subimages of image I’ with dominant vertical orientation
and PS,,...,PS;s are the first 5 principal components of the 16 dimensional strength

feature vector.

The average distance of these new texture feature vectors is calculated and listed in

Table 4.3.
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Chapter 5

Experiment

In this section we discuss the experiments we performed and report their results. In
all our experiments we used a data base of 192 indoor images and 249 outdoor image.
the test set consisted of 49 indoor images and 51 outdoor images. About 90 % of the
images were provided by Eastman Kodak Company and consisted of random pictures
that they developed for customers, from whom permission to do this research was
granted. The remaining part of the data set was collected from some commercially
available CD ROM and from some public World Wide Web site. All the images are
real life images (i.e. they are not from cartoon or generated by computers), and we

had no control on their quality, that was in many cases quite poor.

5.1 Nearest Neighbor and K-Nearest Neighbor
Experiment

Nearest neighbor is a very simple classification technique, in which the only choice
that has to be made is the distance function to be used. In both the color and texture
cases we used the distance induced by the L; norm, because it is more robust against
noise and outliers than the standard, euclidean L, norm. We remind the reader that

the L; norm of a vector x = (z1,z2,...,z4) is defined as
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lixlle, = Y |zal -
a=1

In the case of texture the image is represented as

I = (N;,PS,,...,PSs)

where N; is the number of subimages of image I’ with dominant vertical orientation
and PS;,..., PSs are the first 5 principal coinponents of the 16 dimensional strength
feature vector. Since the componcnts of this vector have different meanings, a sphering
of the data has been performed before applying the nearest neighbor algorithm.

We did experiments with both the nearest neighbor and the K-nearest neighbor
technique. In the case of K-nearest neighbor, the closest k points are retrieved (with
k odd in order to avoid ties), and then a majority rule is applied. We did experiments
with £ = 3, 5, 7 and run some cross-validation technique to estimate which is the best
value for k, that turned out to be £ = 3.

We first applied the nearest neighbor algorithm to our data base, which is supposed
to give us an idea of the level of performance we can expect also from other techniques.
We performed independent tests, using color or texture information, and the results
are reported in Table (5.1) and (5.2). Notice how the texture representation seems
to carry less information, and how in both cases the classifier has a tendency to
misclassify indoor scenes more often that outdoor scenes. It seems therefore that
there are many indoor scenes that look like outdoor scenes, but not too many outdoor
scenes that can be misclassified as indoor.

A similar scenario appears when we use K-nearest neighbor, with £ = 3. However,
there is a network improvement in the performances, as shown in tables (5.3) and
(5.4).

In order to achieve a better understanding of how well K-nearest neighbor works
we report here also some results on specific images. In particular we consider the

following:

e A typical indoor scene (5-1a);
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Type Number of Misclassified | Total Number of Test Images | % Correct
Indoor 14 49 71.4%
Outdoor 8 51 84.3%
Total 22 100  78.0%

Table 5.1: Nearest Neighbor Experiment on Color Feature Vectors

Type Number of Misclassified | Total Number of Test Images | %Correct
Indoor 20 49 59.2%
Outdoor 8 51 84.3%
Total 28 100 72.0%

Table 5.2: Nearest Neighbor Experiment on Texture Feature Vectors.

Type Number of Misclassified | Total Number of Test Images | % Correct
Indoor 13 49 73.5%
Outdoor 4 51 92.2%
Total 17 100 83.0%

Table 5.3: K-Nearest Neighbor Experiment on Color Feature Vectors, with k£ = 3.

Type Number of Misclassified | Total Number of Test Images | %Correct
Indoor 16 49 67.4%
Outdoor 6 51 88.2%
Total 22 100 78.0%

Table 5.4: K-Nearest Neighbor Experiment on Texture Feature Vectors, with k = 3.
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e An indoor scene that was incorrectly classified using color information but cor-

rectly classified using texture information (5-3a);
e A typical outdoor scene (5-5a);

e An outdoor scene that was incorrectly classified using both color and texture

information (5-7a);

For each of these images we also report in Fig. (5-1b) and (5-1c), (5-3b) and
(5-3c), (5-5b) and (5-5c), (5-7b) and (5-7c), the closest images, respectively in the
color and texture domain. For each of these images we also report, in Figure (5-2)
(5-4) (5-6) (5-8), the plot of the distances of the image from the closest 20 indoor and
outdoor images, using color and texture.

In Figure (5-2), which correspond to the typical indoor scene of Fig. (5-1a),
we notice that both color and texture feature space have a good margin to classify
correctly the scene as indoor: in color space, the first 4 closest images are indoor, and
in the texture space the closest 12 images are indoor.

Figure (5-4) corresponds to the image of Fig. (5-3a), which is an indoor scene that
was incorrectly classified using color information but correctly classified using texture
information. Although this is a typical indoor scene, its color is predominately brown,
which is a typical outdoor color (e.g. wood, soil, etc). The texture classifier was able
to work effectively with this type of indoor scene since this image has well-defined
vertical lines. As shown in Figure (5-4), the texture information provided a quite
confident result, since the first 4 closest images fall in the indoor catagory.

Figure (5-6) corresponds to the image of Fig. (5-5a), which is a typical outdoor
scene. On this scene texture information is the one that has more confidence, since
its closest 14 images are of the same class. In the color space there seem to be more
indoor images with a similar color distribution.

Figure (5-8) corresponds to the image of Fig. (5-5a), which is an example of
outdoor scene which was incorrectly classified both in the color and texture space.
The system often fails on close-up pictures, because they do not provide a lot of

spatial and spectral information. The dominant color in this image is red (the jacket
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on). Both of these features are unfavorable to classifv this image into the outdoor
catagory. For humans it is easy to classify the scene as outdoor. due to the presence
of the tree and of the skv in the background. but this is clearly not enough for our

system.

by B

Figure 5-1: a) A typical indoor scene and the nearest images retrieved using color (b)
and texture (c) information
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Figure 5-2: Plot of the distances of image 5-1(a) from the closest 20 indoor and

outdoor images, using color (left) and texture (right)
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(a)

Figure 5-3: a) An indoor scene which was incorrectly classified using color information
and the nearest images retrieved using color (b) and texture (c) information
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Figure 5-4: Plot of the distances of image 5-3(a) from the closest 20 indoor and
outdoor images, using color (left) and texture (right)
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(b)

Figure 3-3: A tvpical outdoor scene and the nearest images retrieved using color (b)
and texture (c) information
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Figure 5-6: Plot of the distances of image 5-5(a) from the closest 20 indoor and
outdoor images, using color (left) and texture (right)
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Figure 5-7: a) An outdoor scene which was fincorrectly classified using both color
and texture information and the nearest image retrieved using color (b) and texture
(c) information.
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Figure 5-8: Plot of the distances of image 5-7(a) from the closest 20 indoor and
outdoor images, using color (left) and texture (right)
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5.2 Support Vector Machine

In this section we report the results of our experiments with Support Vector Machines.
We considered the same data base used in the previous section, consisting of 192
indoor images and 249 outdoor images, and the same test set, of 49 indoor images
and 51 outdoor images. We used three different representations for the images: color
(36 dimensions), texture (6 dimensions), and the combination of color and texture in
one single feature vector (40 dimensions). We trained the Support Vector Machine
with a polynomial kernel function. There are only 2 free parameters to set in the
Support Vector Machine algorithm: the degree of the polynomial and the constant
~ of equation, which is basically the penalty associated to a misclassified point. We
used some simple cross validation techniques to estimate these two free parameters,
and determined that the best degree for the polynomial is equal to three, and that a
value of v = 500 is satisfactory. We noticed however that the algorithm is not very

sensitive to the choice of the value of v, nor to the degree of the polynomial.

Type Number of Misclassified | Total Number of Test Images | % Correct
Indoor 16 49 67.4%
Outdoor 6 51 88.2%
Total 22 100 78.0 %

Table 5.5: Support Vector Experiment on Color Feature Vectors

Type Number of Misclassified | Total Number of Test Images | % Correct
Indoor 16 49 67.4%
Outdoor 1 51 98.0%
Total 17 100 83.0 %

Table 5.6: Support Vector Experiment on Texture Feature Vectors
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Type Number of Misclassified | Total Number of Test Images | % Correct
Indoor 11 49 77.6%
Outdoor 7 51 86.3%
Total 18 100 82.0 %

Table 5.7: Support Vector Experiment on Both Color and Texture Feature Vectors
5.3 Stacked Classification

In this thesis we implemented the simplest version of stacked regression, that consists
in building a new estimator by taking the average of already trained estimators. In
the case of classification we can think of the classifiers as “experts”, and stacking is
achieved by taking a majority vote among the experts (always in an odd number).
We considered 7 classifiers: the support vector machine trained on texture, color
and their combination, the nearest neighbor on texture and color, and the k-nearest
neighbor on texture and color. The result of our experiment is reported in table
(5.8). Interestingly, tha stacking technique performs much better than the best of
the individual classifiers, achieving a 92% correct classification rate, which is a large
improvement over the 83% achieved by k-nearest neighbor in color space and SVM
in texture space. The reason for this very good result appears to be the fact that the
individual classifiers disagree “often enough”, because if they always agreed we could
not expect any improvement. It seems therefore that they are also fairly statistical
independent. While we find surprising to find statistical independency between clas-
sifiers like nearest neighbor and k-nearest neighbor, it is not surprising that classifiers
based on color and texture are independent, because we do not expect too much

correlation between color and texture.

Type Number of Misclassified | Total Number of Test Images | % Correct
Indoor 7 49 85.7%
Outdoor 1 51 98.0%
Total 8 100 92.0 %

Table 5.8: Stacking Experiment

52



5.4 Bagging Predictors

We tried another way of combining different classifiers, which is the “bagging” tech-
nique proposed by Breiman, and explained in section 3.4.2. Since Breiman reported
that bagging does not work very well for “stable” techniques like nearest neighbor
we applied it to SVM, which is still not yet clear whether is stable or unstable. We
artificially constructed 49 data sets out of our original data set, by resampling with
replacement. Then 49 support vector machines have been trained on these data sets,
and a final classifier has been built ba taking a majority vote of the 49 classifiers. The

results are reported in Table (5.9), for the color, texture and combined representation.

Type Indoor Mis. | Outdoor Mis. | Total Mis | % Correct | % Correct (no Bagging)
Color 14 5 19 81% 78%
Texture 15 3 18 82% 83%
Combined 10 6 18 84% 82%

Table 5.9: Bagging Experiment on Color, Texture and their Combination

It appears that Support Vector Machine with polynomials of degree three is a quite
stable classifier, because bagging only leads to minor improvements in two cases, and
to a degeneration of the performances in one case. We attribute this phenomenon to
the fact that polynomials of degree three lead probably to a model with low variance,
but higher bias, because thay do not model very complex surfaces. Therefore all the
“bagged” version of the support vector machine are very similar to each other, and
highly correlated.

A summary of some of the experiments described in this section is reported in

table (5.10), and will be discussed in the next chapter.
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Classifier Indoor Mis. | Outdoor Mis. | Total Mis | % Correct
NN Color 14 8 22 8%
NN Texture 20 8 28 72%
K-NN Color 13 4 17 83%
K-NN Texture 16 6 22 8%
SV Color 16 6 22 78%
SV Texture 16 1 17 83%
SV Combined 11 7 18 82%
Stacking T 1 8 92%
Bagging on Color 14 5 19 81%
Bagging on Texture 15 3 18 82%
Bagging on Combined 10 6 16 84%

Table 5.10: Summary of the results from all experiments
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Chapter 6

Conclusion

A lot of the existing image database systems used verbal descriptions to perform
retrieval operations. However, this paradigm is inadequate since the majority of
pictorial information in an image cannot be fully captured by text and numbers due
to the essential limitations in expressive power of language [37], and problems like
“find and image that looks like this” cannot be solved within this approach. This
observation is at the basis of this thesis, that was an attempt to derive some more
useful paradigm for image indexing and retrieval. We concentrated on the specific
problem of discriminating indoor scenes from outdoor scenes, but we believe that
the techniques we used can be applied to other classes of problems. In this work
we explored the use of global statistical properties of the image, related to color and
texture information. Below we present some observations that derive from our work,

and that we think will be useful for future work.

e One of the problems encountered in using color information is color constancy.
This problem can be addressed at different levels of complexity. For indexing
purposes one needs to have computationally fast solutions, that require no prior
knowledge on the image. One simple way to achieve a certain degree of color
constancy consists in choosing an appropriate color space, in which one of the
three components takes in account the illumination effects, and therefore can
be discarded. This is the approach we took in this thesis, where we adopted the
(L,C1,C?2) color space proposed by Lee, which is a 45° rotation of the RGB
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color space. Experimenting with similar images taken under different points
of view or illumination we did find that a good degree of color constancy can
be achieved by disregarding the L component. Given the complexity of the
data set, we believe that result obtained with k-nearest neighbor (83% correct
classification) is quite good, and we attribute it to the correct choice of the color

space.

Texture information can be extremely useful but it is often not trivial to decide
what a good representation for this information is. We originally divided every
image in 16 sub-images, and for every sub-image we extracted the dominant
texture orientation and its strength, so that every image was represented by a
34 dimensional vector. Experiments with this representation did not provide
good results, apparently because of too much redundancy in the 34 variables.
We then summarized that information in a 6 dimensional vector, whose first
component is the number of sub-images with dominant vertical orientation,
and the other 5 variables are the first 5 principal components of the strength
features. This representation proved to be much more effective, providing a
result that is as good as the k-nearest neighbor when used in conjunction with
Support Vector Machines. One of the reasons for this improvement is that, with
this choice of the first variable, we are actually embedding some prior knowledge
into the system: we are using what we know about indoor and outdoor scenes
to assert that the presence of vertical lines is a discriminating factor. We believe
that much more can be done on this aspect of the problem, and different kind

of prior knowledge can be used, by an appropriate choice of the variables.

Combining different cues, such color and texture, is a difficult task, Intuitively,
if the cues are statistically independent one would expect that combining them
in an appropriate way, one could get a very small classification error, but it
is not clear what is the best way of doing it. We trained different classifiers,
such as k-nearest neighbor and Support Vector Machines on different input

representations, and combined in a two simple ways. The most effective is a
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voting scheme, which is equivalent to the stacked regression technique proposed
by Breiman. When the voting scheme is applied tc 7 different classifiers, the
combined classifier achieves a 92% correct classification, which is much better
than the best of the single classifiers, that is 83%. The reason for this results
seeme to lie in the fact that these classifiers disagree often enough, and are
fairly independent. We also tried the “bagging” scheme proposed by Breiman,
which is a voting scheme based on training the same classifier on bootstrapped
version of the same database. This scheme led to small improvement in two of
the three cases we tried it on (Support Vector Machines on color, texture and
combined color/texture features). The apparent reason for the small improve-
ment is that the Support Vector Machine provided very similar classifiers on

the bootstrapped data bases, proving to be what Breiman a “stable” technique.

We think that the achieved result, 92% correct classification, is a very good indi-
cation that difficult, real world problems, can be attacked. We have made very simple
use of color and texture cues in this thesis, concentrating on global properties of the
image. We believe that including more prior knowledge, for example on spatial rela-
tionships between color or texture patterns, could lead to great improvements, and
we think it is an interesting direction for future work. We also think that much more
could be done in the combination of different classifiers: simple voting schemes are
not necessarily the best options, and alternative techniques, such as the “boosting”
algorithm recently proposed by Schapire and Freund [26], are worth exploring in the

future.
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