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Abstract

The increasing interest of the scientific community, and especially machine learning, on
non-convex problems, has made non-convex optimization one of the most important and
challenging areas of our days. Despite of this increasing interest too little is known from a
theoretical point of view. The main reason for this is that the existing and well understood
techniques used for the analysis of convex optimization problem are not applicable or mean-
ingful in the non-convex case. The purpose of this thesis is to make a step in the direction
of investigating a rich enough toolbox, to be able to analyze non-convex optimization.

Contraction maps and Banach's Fixed Point Theorem are very important tools for bound-
ing the running time of a big class of iterative algorithms used to solve non-convex problems.
But when we use the natural distance metric, of the spaces that we are working on, the
applicability of Banach's Fixed Point Theorem becomes limited. The reason is that only few
functions have the contraction property with the natural metrics. We explore how generally
we can apply Banach's fixed point theorem to establish the convergence of iterative meth-
ods when pairing it with carefully designed metrics. Our first result is a strong converse of
Banach's theorem, showing that it is a universal analysis tool for establishing uniqueness of
fixed points and convergence of iterative maps to a unique solution.

We next consider the computational complexity of Banach's fixed point theorem. Making
the proof of our converse theorem constructive, we show that computing Banach's fixed
point theorem is CLS-complete, answering a question left open in the work of Daskalakis
and Papadimitriou [23].

Finally, we turn to applications proving global convergence guarantees for one of the most
celebrated inference algorithms in Statistics, the EM algorithm. Proposed in the 70's [26],
the EM algorithm is an iterative method for maximum likelihood estimation whose behavior
has vastly remained elusive. We show that it converges to the true optimum for balanced
mixtures of two Gaussians.

Thesis Supervisor: Constantinos Daskalakis
Title: Associate Professor EECS
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Chapter 1

Introduction

The field of optimization is concerned with solving the problem:

maxo(x)
XED

In this general version of the problem, without any restriction on the domain D and on

V' it is very easy to show that this problem is very difficult to solve [7]. This suggests that

it is unavoidable to make some assumptions. A most helpful assumption that we can make

is D to be a convex set and 0 to be a convex function. In this case the problem is called

convex optimization problem. There is a very long line of work investigating and analyzing

algorithms that solve convex optimization problems [9]. But in a lot of areas of science,

the optimization problems that arise are not convex. This creates the area of non-convex

optimization. In contrast with convex optimization, there is no general theory and tools for

analyzing and finding theoretically proven algorithms for solving the non-convex problems.

Actually, most of the techniques that we know are heuristic and sometimes we cannot even

prove that they converge to local optima.

Non-convex optimization lies at the heart of some exciting recent developments in ma-

chine learning, optimization, statistics and signal processing. Deep networks, Bayesian in-

ference, matrix and tensor factorization and dynamical systems are some representative

examples where non-convex methods constitute efficient - and, in many cases, even more ac-

curate - alternatives to convex ones. However, unlike convex optimization, these non-convex
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approaches often lack theoretical justification.

The above facts have triggered attempts in providing answers to when and why non-

convex methods perform well in practice in the hope that it might provide a new algorithmic

paradigm for designing faster and better algorithms.

A diverse set of approaches have been devised to solve non-convex problems in a variety

of approaches. They range from simple local search approaches such as gradient descent

and alternating minimization to more involved frameworks such as simulated annealing,

continuation method, convex hierarchies, Bayesian optimization, branch and bound, and so

on. Moreover, for solving special classes of non-convex problems there are efficient methods

such as quasi convex optimization, star convex optimization, submodular optimization.

The goal of this master thesis is to prove the generality of a technique in analyzing

the performance of iterative heuristic algorithms. This technique is based on the notion of

contraction maps and Banach's Fixed Point Theorem. We approach this proof of generality

both from a pure mathematical point of view and from a complexity theoretic point of view.

In the second part of the thesis, inspired by the results of the previous part, we analyze

a very well known heuristic algorithm for a non-convex problem, the EM algorithm. EM

algorithm, is defined to solve a very important and generally non-convex problem, namely

the maximum-likelihood maximization problem. We prove a positive result, analyzing EM for

a paradigmatic case of finding the centers of a mixture of two Gaussians. This performance

of EM even in this restricted case was an open problem since the definition of EM at 1977

[26].

1.1 Solution of a Non-Convex Optimization as a Fixed

Point and the Basic Iterative Method

Working on a domain D, the abstract goal of a huge class of algorithms is to find a point

x* E D with some desired properties. In many cases these properties might be difficult to

express. Sometimes even given a solution x* there is no obvious way to verify that this is

actually a solution. A common way to overcome these difficulties, is to express the solutions

as fixed points of an easily described function. More formally we can define a function
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f : D D such that the solution point x* E D satisfies f(x*) = x*. This way of expressing

solutions is very common in a lot of scientific areas, e.g. equilibria in games [46], solutions

of differential equations [14], a huge class of numerical methods [42].

Because of the importance of such a representation, a lot of interesting and important

questions arise. Given a function f : D -+ D: is there any fixed point? is there a procedure

that converges to this fixed point?

The first question, can be handled from important theorems in the field of topology called

Fixed Point Theorems. Some of the most known once are : Brouwer's Fixed Point Theorem,

Tikhonov's Fixed Point Theorem, Kakutani's Fixed Point Theorem and others [30].

The second question, while seemingly more difficult, has a very simple and intuitive can-

didate solution. If f has a fixed point and under some regularity conditions, like continuity,

we can define the following sequence of point

where the starting point x0 can be picked arbitrarily. If (xn) converges to a point fz then

lim Xn+1 = lim f(Xn) = lim Xn+1 = f limxn) -> z = f(z)n-+co n-4oo n-+oo (n-co

This observation means that a candidate procedure for computing such a fixed point is

to iteratively apply the function f starting from an arbitrary point x0 . If this procedure

converges we have the wanted fixed point x*.

So one last question that we have to answer is whether this sequence (Xn) actually con-

verges. One of the most known techniques to prove that (xn) converges is to find a potential

function 0. Usually a potential function, or Lyapunov function, is a lower bounded, real

valued function that decreases with every application of f. More formally # : D - R+ and

0(f(x)) < O(x). If we provide such a function and under some regularity conditions we can

make sure that the sequence (xn) converges and provides us with an algorithm that finds a

fixed point of f. We will refer to this method of computing fixed points as the Basic Iterative

Method.

17



1.1.1 An Algorithmic Point of View

The main performance guarantee of an algorithm is its running time. Therefore the first

question that arises from a computer science perspective is: what is the running time of

computing a fixed point and more specifically of the Basic Iterative Method?

We have seen that the potential function gives a general way of proving that the Basic

Iterative Method converges. Moreover in the theory of dynamical systems there is a cele-

brated result called Conley's Decomposition Theorem [15]. One consequence of this work

is that if a continuous analog of the Basic Iterative Method converges then there exist a

potential function that can prove it. Therefore looking for potential functions in order to

prove convergence does not restrict our power for proving convergence, because if there exists

any argument to prove so there also exists a potential function argument.

But potential functions cannot tell us anything about the running time of the Basic

Iterative Method. So one the main question that we would like to answer in this thesis is:

is there a general way to upper and lower bound the running time of the Basic Iterative

Method?

In the next sections we present our proposed direction for answering both the problems

of lower and upper bounding the running time. Also in the last session we explain some

important instantiations of the Basic Iterative Method that we don't know how to analyse

and we hope we can get an answer after developing these general techniques.

1.2 Contraction Maps - Banach's Fixed Point Theorem

One of the main Fixed Point Theorems that we haven't mentioned yet is Banach's Fixed

Point Theorem [5].

Informal Theorem (Banach's Fixed Point Theorem). If there is a distance metric function

d, such that (D, d) is a complete metric space and f is a contraction map with contraction

constant c E (0,1) with respect to d, then f has a unique fixed point x* and the convergence

rate of the Basic Iterative Method with respect to d is c'.

The last sentence in the statement of the theorem implies that after n iterations of the

Basic Iterative Method the distance of x, from x* decreases by factor cn, i.e. d(xn, x*) <

18



c'd(xo, x*). There is a very nice algorithmic implication of this result. If we are only

interested to find a point that is only E-close with respect to d to x* then the Basic Iterative

Method will finish after loge E steps.

This theorem therefore provides a way to prove all of: existence of fixed point, uniqueness

of fixed point, convergence of Basic Iterative Method and most importantly bounds the

running time of the Basic Iterative Method.

The applications of this theorem are very important and distributed in a lot different

subjects. One of the most celebrated ones is to prove the existence of a unique solution to

differential equations through Picard's Theorem and also for bounding the running time of

numerical methods that solve these differential equations [14], [42].

But how general can this contraction map argument be? Is there a sort of converse

theorem like there is for the potential function argument?

The answer for most of the implications of Banach's Fixed Point Theorem is yes! There

are converses of Banach's Fixed Point Theorems which prove the following [8].

Informal Theorem (Bessaga's Converse Fixed Point Theorem). If f has a unique fixed

point then for every constant c E (0,1) there exists a distance metric function d, such that

(D, d,) is a complete metric space and f is a contraction map with contraction constant c

with respect to d,.

The implication of this converse theorem is that if we want to prove existence and unique-

ness of fixed points of f and convergence of the Basic Iterative Method then Banach's Fixed

Point Theorem is the most general way to do it. This also proves that when we have only

one fixed point x*, there exists a potential function of the form #(x) = dc(x, x*) where dc is

a distance metric function that makes (D, d,) complete metric space.

But what are the actual implications for the complexity of computing a fixed point? The

problem with the running time implications of the theorem, is that after loge E steps of the

Basic Iterative Method we just have de(x,, x*) < E. But it is not clear what is the natural

meaning of d,. It might not have any relation to the metric that we are interested in, i.e.

the metric d for which we want a point x such that d(x, x*) E. So this Converse Theorem

cannot prove us the generality of the contraction mapping theorem for the analysis of the
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running time of Basic Iterative method.

So our starting point instead of just the function f and the domain D should also be the

complete distance metric function d that we are interested in. One step in this direction has

been done by Meyers [441.

Informal Theorem (Meyers's Converse Fixed Point Theorem). If (D, d) is a complete

metric space, D is compact, f has a unique fixed point and the Basic Iterative Method

converges then for any c E (0,1) there exists a distance metric function d, equivalent with d

such that (D, d,) is a complete metric space and f is a contraction map according to d,.

The basic improvement in this theorem is that, instead of an arbitrary metric, it provides

a metric equivalent with the metric that we started with. In order to do so Meyers's Converse

Fixed Point Theorem has to assume that the Basic Iterative Method converges therefore we

have to already have a proof of that in order to use it. Although this is a good step in

the direction it is not enough in order to bound the number of steps needed by the Basic

Iterative Method in order to get d(xn, x*) < F.

Our basic goal for this section is to close this gap under the assumptions of Meyers's

Converse Fixed Points Theorem. The basic observation that we have is that in order for

a fixed point x* to be stable there exists, usually, an open neighborhood of x* of radius

6 > 0 where f is a contraction according to d. This allows us to define d, = d around this

neighborhood. For the rest of the space we extend d, in a way such that the contraction

mapping condition is satisfied. This extension is inspired by the techniques that have been

used for proving the mentioned Converse Fixed Point Theorems. After succeeding that we

will have the guarantee that for any E < J the condition dc(xn, x*) e implies d(xn, x*) < e.

This will let us prove the generality of Banach's Fixed Point Theorem for upper bounding

the running time of the Basic Iterative Method in a statement like the following

Informal Theorem. Let (D, d) be a complete metric space and f : D -+ D be a self-made

that has a unique fixed point x* and every x converges to it. Then for any c E (0,1) there

exists a complete distance metric de, such that f is a contraction with constant c with respect

to d,. Additionally, closeness of an arbitrary point x to x* with respect to d, implies closeness

of x to x* with respect to d.
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1.3 Computational Complexity of Fixed Points

Thus far we have discussed fixed point theorems, iterative methods, and the role of potential

functions in establishing their convergence. We have also seen their interplay in Banach's

fixed point theorem. In this section, we explore how the computational complexity of fixed

points, potential function arguments and Banach's theorem are related. This question was

one of the main motivations for a long line of research work starting with the papers of

Johnson, Papadimitriou, Yannakakis [37] and Papadimitriou [481. These papers define re-

spectively the complexity class PLS, capturing the complexity of computing local optima

of a given potential function q, and the class PPAD, capturing the complexity of finding a

fixed point of a continuous function f. Daskalakis and Papadimitriou [23] define the class

CLS which relates to these classes as follows:

1. PLS [37]: when # satisfies some continuity condition

2. PPAD [481: when f satisfies some continuity condition

3. CLS [23]: when both # and f satisfy some continuity condition

A main problem that has been left open in the work of [23] is which of these classes

captures the complexity of computing a fixed point whose existence is guaranteed by Banach's

Fixed Point Theorem. We will refer to this problem as BANACH. More precisely in [23] they

have shown that BANACH E CLS but it was left open whether BANACH is complete for

CLS.

Our main idea for solving this problem is to adjust the proofs of the Converse Fixed Point

Theorems appropriately so that the procedure that constructs d, becomes computationally

efficient. This would be a reduction that shows the completeness of BANACH for CLS.

Obviously one bottleneck here is that Banach's Fixed Point Theorem guarantees the existence

of a unique fixed point whereas general CLS allows multiple fixed points to exist. We

were able to overcome this difficulty by accepting as solutions points that don't satisfy the

contraction property. This way we can also have a nice correspondence between the promise

class that promises the existence of only one fixed point and the promise class that BANACH

defines and guarantees the validity of the contraction map condition.
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1.4 Runtime Analysis of EM Algorithm

In the field of algorithms for inference one of the most important problems, is finding the

hypothesis that maximizes the likelihood from a predefined set of hypotheses. The problem

of directly maximizing such an objective might be too difficult. Even to verify the optimality

of the solution is not a trivial problem in this case. The only obvious way to solve it might

be the brute force algorithm.

In [26], the authors follow the direction that we described in the Introduction defining a

function f whose set fixed points includes the solutions to the maximum likelihood problem.

More precisely if x* is the hypothesis, from the set of hypothesis D, that maximizes the

likelihood function then f(x*) = x*. This function f is called the EM Iteration and the

Basic Iterative Method of the EM Iteration is called EM algorithm 1 2. Since then, the

EM algorithm became the main tool for computing the solution to the maximum likelihood

problem with very good practical guarantees and running times.

Despite its practical importance, too little is known theoretically about the convergence

of the algorithm. For example it is known that when the likelihood is a unimodular function

then the EM algorithm converges [57J. Under some other conditions the convergence of EM

algorithm is also understood [59]. Although a little has been known about the convergence

of the EM algorithm, only recently did some results appear about the running time of the

EM algorithm. These results apply only to some restricted cases which are nevertheless the

paradigmatic applications of the EM algorithm.

In this part of our work, we provide general unconditional guarantees about the perfor-

mance of the EM algorithm based on the techniques and the intuition that we developed

in the work described in the previous sections. This achievement would is a great step in

analyzing algorithms that use the Basic Iterative Method. This kind of algorithms are very

common in the area of Machine Learning and EM is a very important and paradigmatic

'The name EM comes from the fact that f is a back to back application of an Expectation and a
Maximization operators.

2Notice that there are fixed points which do not correspond to maximum likelihood solutions. Nevertheless
in a lot of important instantiations, the region of attraction of these dummy fixed points is limited, as it has
been observed in practice. Therefore choosing only a few random starting points we can be almost sure that
we have found the appropriate region of attraction.
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one. This analysis of this case of the EM algorithm, we hope that will help in the theoretical

analysis of other important algorithms in machine learning.

1.4.1 Mixture of Two Gaussians with Known Covariance Matrices

Let us assume that we are getting samples from a mixture of two Gaussians in n dimensions

and we know their covariance matrices. We would like to recover the means of the two

Gaussians, that is to find the hypothesis about the means that maximizes the likelihood

function. This is a well studied problem and although there is a growing number of theoretical

guarantees to solve this problem [17], [38], [21], [51], in practice the most useful technique

is to run the EM algorithm. Although the model is very restricted and the EM iteration

has a nice form in this case, still too little is known about the theoretical performance of

EM algorithm in this case. Very recently Balakrishnan, Wainwright and Yu [3j and Yang,

Balakrishnan and Wainwright [601 were the first to find a way to prove that there is an ball

B around the correct hypothesis x* such that if xO E B then the EM algorithm converges to

the correct solution and also with very good convergence rate.

Based on the intuition we have from what we explained at Section 2, we find a way to

analyze EM algorithm when applied to the mixture of two Gaussians case. This way we

provide the first unconditional theoretical guarantees for EM applied to the mixture of two

Gaussians.
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Chapter 2

Notation and Preliminaries

We start this chapter by defining the notation that we will use for the rest of the thesis.

Then we also give and explain the basic definitions that span the basic concepts of topological

spaces, metric spaces, continuity and computational complexity theory. While giving these

basic definitions we also state and prove some basic results of the literature that we are going

to use later.
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2.0.2 Basic Notation and Definitions

- R set of real numbers.

- R+ set of non-negative real numbers.

- R n n-dimensional Euclidean space.

- R"xf the space of real valued n x n matrices.

- AT the transpose of the real matrix A.

- N set of natural numbers.

- N1  set of natural numbers except 0.

- A \ B all the set A apart from the members that belong to B too.

- Ac the complement of the set A.

f [n] n times composition f with it self, i.e. f... f
n times

- I
-1H1

- Int(S)

- Clos(S)

- diamd [W]

- B(x, r)

- B(x, r)

-S*

fP norm of a vector in R".

Mahalanobis distance norm.

set of equivalence classes of the equivalence relation - on a set D.

interior of the set S.

closure of the set S.

diameter of the set W with respect to the distance metric d.

open ball around x of diameter r.

closed ball around x of diameter r.

Kleene star of a set S.

Table 2.1: Basic Notation

A real valued function g : D2 -+ R is called symmetric if g(x, y) = g(y, x) and anti-symmetric

if g(X, y) = -g(y, x).

2.1 Set Theoretic Definitions

For this section we assume the reader is familiar with the basic set theoretic definitions.

Based on those we define the notion equivalence relation and equivalence classes and we
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define and explain the Axiom of Choice.

2.1.1 Equivalence Relations

A relation R on a set X is a subset of X x X. An equivalence relation is a relation R that

satisfies the following three properties

Reflexivity for all x E X, (x, x) EE R.

Symmetry for all x, y E X, (x, y) E R 4> (y, x) E R.

Transitivity for all x, y, z E X, (x, y) E R and (y, z) E R => (x, z) E R.

If ~ is an equivalence relation on X and x E X, the set Ex = {y I y E S and x ~ y} is

called the equivalence class of x with respect to ~. The set of all the equivalence classes of

X for ~ is

X1 ={Ex I x C X}

2.1.2 Axiom of Choice

The importance of the Axiom of Choice to a huge range of pure mathematics can be indicated

by the following sentence of an introduction to the Axiom of Choice from the Stanford

Encyclopedia of Philosophy.

The principle of set theory known as the Axiom of Choice has been hailed

as "probably the most interesting and, in spite of its late appearance, the most

discussed axiom of mathematics, second only to Euclid's axiom of parallels which

was introduced more than two thousand years ago".

Axiom of Choice. If A is a family of nonempty sets, then there is a function f with domain

A such that f(a) E a for every a E A. Such a function f is called a choice function for A.

Axiom of Choice is known to be equivalent with a lot of very well known theorems,

lemmas or principles. Some of them are: Zorn's Lemma, Well-ordering principle, Tychonoff's

theorem and more. One such equivalent theorem is the Bessaga's theorem that we present,

prove and explain in Chapter 3.
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2.2 Topological and Metric Spaces

In this section we give the basic definitions and properties of topological and metric spaces

that we are going to use in Chapter 3, when discussing about the converses of Banach's

Fixed Point Theorem. Throughout this section we are working on a domain set D which is

an arbitrary set. The material of this chapter is based on the notes by [411.

2.2.1 Topological Spaces

We first give the definition of a topology and then based on this we define topological spaces.

Definition 1. Let E be a set and T a collection of subsets of E with the following properties.

(a) The empty set 0 E r and the space D E r.

(b) If Ua CTfor all a E A then UaEAUa ET.

(c) If Uj G -Ffor all1 j nEN, then nl> Uj E T.

Then we say that T is a topology on D and that (X, T) is a topological space.

Example. If D is a set and T = {0, D}, then T is a topology. We call {0, D} the indiscrete

topology on D. The reason of the name will become clear when we will define the discrete

metric and its induced topology.

If (D, T) is a topological space we define the notion of open set by calling the members of

T open sets. Now a subset C of D is called closed if E) \ C is an open set, i.e. belongs to T.

Definition 2. Let (D, T) and (X, T) be topological spaces. A function f : D -+ X is said to

be continuous if and only if f -1 (U) is open in D whenever U is open in Y.

Remark. We could start with closed sets the basic notion and then define topology, topo-

logical spaces and continuity with respect to collections of closed sets, instead of open sets.

The two types of definitions are completely equivalent and for historical reasons the definition

based on open sets is the normal one.
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2.2.2 Interior and Closure

Definition 3. Let (D, T) be a topological space and A a subset of D. We write

Int(A)=U{U E T I U C Al (2.1)

Clos(a) = n{Uclosed I A C U} (2.2)

and we call Clos(A) the closure of A and Int(A) the interior of A.

We now give some useful, basic lemmas without proof. A proof of those can be found in

[41].

Lemma 1. (a) Int(A) = {x E A I 3U E T with x E U C A}.

(b) Int(A) is the unique V E T such that V C A and if W E T and V C W C A, then

V = W. In other words, Int(A) is the largest open set contained in A.

Lemma 2. (a) Clos(A) = {x E Dj VU e 7with x E U, we have U n A # 0}.

(b) Clos(A) is the unique closed set V such that A C V and if W is closed and A C W C V,

then V = W. In other words, Clos(A) is the smallest closed set containing in A.

2.2.3 Metric Spaces

For the definition of metric spaces the most important is the definition of a distance metric

function.

Definition 4. Let D be a set and d: D2 -+ R a function with the following properties:

(i) d(x, y) > 0 for all x, y E Domain.

(ii) d(x, y) = 0 if and only if x = y.

(iii) d(x, y) = d(y, x) for all x, y E Domain.

(iv) d(x, y) <; d(x, z) + d(z, x) for all x, y, z E Domain. This is called triangle inequality.

Then we say that d is a metric on D and (D, d) is a metric space.

Definition 5. The diameter of a set W C D according to the metric d is defined as

diamd [W] = max x, y E Wd(x, y)
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A metric space (D, d) is called bounded if diamd [D] is finite.

Definition 6. If D is a set and we define ds : E2 -+ R by

ds(x, y) 0 x=y

1 X # y

then ds is called the discrete metric on D.

Remark. It is very easy to see that discrete metric is indeed a metric, that is satisfies the

conditions of Definition 4.

Now we can define the notion of continuity.

Definition 7. Let (D, d) and (X, d') be metric spaces. A function f : D -+ X is called

continuous if, given x E D and E > 0, we can find a 6(x, e) such that

d'(f(x), f (y)) < - whenever d(x, y) < 6(x, E)

Definition 8. Let (D, d) be a metric space. We say that a subset E C D is open in D if,

whenever e E E, we can find a 6 > 0 (depending on e) such that

x E E whenever d(x, e) < 6

The next lemma connects the definition of open sets according to some metric with the

definition of open sets in a topological space.

Lemma 3. If (D, d) is a metric space, then the collection of open sets forms a topology.

Example. If (D, d) is a metric space with the discrete metric, show that the induced

topology consists of all the subsets of D.

We define the open ball of radius r around x to be B(x, r) = {y E Dd(x, y) < r}.
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2.2.4 Closed Sets for Metric Spaces

Definition 9. Consider a sequence (xn) in a metric space (D, d). If x E D and, given E > 0,

we can find an integer N E N1 (depending maybe on e such that

d(xn,x) < Efor all n > N

then we say that x, -+ x as n -+ oc and that x is the limit of the sequence (xn).

Remark. It is easy to see that if a sequence has a limit then this limit is unique.

Definition 10. Let (D, d) be a metric space. A set G C D is said to be closed if, whenever

xn E G and x,, -+ x then x E G.

Now that we have the notion of convergence of a sequence we can give the definition of

compactness.

Lemma 4. Let (D, d) be a metric space and A a subset of D. Then Clos(A) consists of all

those x E D such that we can find (xn) with xnE A with d(xn, x) + 0.

Definition 11. A subset G of a metric space (D, d) is called compact if G is closed and

every sequence in G has a convergent subsequence.

A metric space (D, d) is called compact if D is compact and locally compact if for any

x E D, x has a neighborhood that is compact.

We define the closed ball of radius r around x to be B(x, r) = {y E D Id(x, y) < r}.

One of the most important and exiting applications of the definitions of metric spaces

and continuity is the following fixed point theorem by Brouwer.

Theorem 1. Let S C Rn be convex and compact. If T : S -+ S is continuous, then there

exists a fixed point, i.e., there exists x* E S such that
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2.2.5 Complete Metric Spaces

We present the notion of complete metric spaces starting from the definition Cauchy se-

quences.

Definition 12. If (D, d) is a metric space, we say that a sequence (xn) in D is Cauchy

sequence (or d- Cauchy sequence if the distance metric is not clear from the context) if, given

E > 0, we can find N(E) E N1 with

d(xn, xm) < E whenever nm > N(E)

Definition 13. A metric space (D, d) is complete if every Cauchy sequence converges.

Definition 14. Two metrics d, d' of the same set D are called topologically equivalent (or

just equivalent) if for every sequence (x,) in D, (xn) is d-Cauchy sequence if and only if it

is d'-Cauchy sequence.

2.2.6 Lipschitz Continuity

Definition 15. Let (D, d) and (X, d') be metric spaces. A function f : D --+ X is Lipschitz

continuous (or d-Lipschitz continuous if the distance metric is not clear from the context) if

there exists a positive constant A E R+ such that for all x, y E D

d'(f(x), f(y)) Ad(x, y)

Lemma 5. If a function f : D - X is Lipschitz continuous then it is continuous.

Definition 16. Let (D, d) and (X, d') be metric spaces. A function f : D - X is contraction

(or d-contraction if the distance metric is not clear from the context) if there exists a positive

constant 1 > c E R+ such that for all x, y C D

d'(f(x), f(y)) < cd(x, y)

Definition 17. Let (D, d) and (X, d') be metric spaces. A function f : D - X is non-

expansion (or d-non-expansion if the distance metric is not clear from the context) if for all
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x,y E D

d'(f(x), f(y)) <; d(x, y)

Definition 18. Let (D, d) and (X, d') be metric spaces. A function f : D -+ X is a similarity

(or a d-similarity if the distance metric is not clear from the context) if there exists a positive

constant 1 > c E R+ such that for all x, y E D

d'(f(x), f (y)) = cd(x, y)
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Chapter 3

Converse Banach Fixed Point Theorems

In this chapter we state prove and analyze the existing inverses of the Banach's Fixed Point

Theorems. We focus on the applications of these theorems on the analysis of the running

time of the Basic Iterative Method. Finally we prove an inverse theorem that has richer

meaning from an algorithmic point of view.

For this chapter we will assume that the domain D admits a topology r according to

which the function f : D D is continuous.

3.1 Banach's Fixed Point Theorem

Before presenting the inverses we state and prove the original Banach Fixed Point Theorem.

The following presentation and proofs follow [16].

Theorem 2 (Banach's Fixed Point Theorem). If there is a distance metric function d, such

that (D, d) is a complete metric space and f is a contraction map according to d, i. e.

d(f(x), f(y)) c - d(x, y) with c < 1 (3.1)

then f has a unique fixed point x* and the convergence rate of the Basic Iterative Method

with respect to d is c'.

Proof. First lets assume that there exist two different fixed points, x 1 , x 2 . Then by (3.1) we

have

d(f (x1), f (X2)) :5 cd(x1, X2) -* d(x1, X2) < d(x1, X2)
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which gives a contradiction.

Now we let x, be the sequence produced by the Basic Iterative Method on f starting

from x0 . We have that

d(x,,, x,,-) c - d(x, ,Xfl2) < C2 -d(X,, 2 , Xn- 3 ) - <. n c d(xi, xo)

Therefore the distance between x, and Xn- decreases an n increases. Using this property

we can prove that (xn) is a Cauchy sequence.

Let N > n we get by triangle inequality

d(xN, Xn) d(xN, xN-1)- + d(Xn+ n(3.2)

< cNd(x1 , x0 ) + cN-ld(x1 , xo) +... + C&d(x1 , x0) (3.3)

< _ d(xi, xo) (3.4)
1 - C

Therefore for any E > 0 we can pick M such that cM/(1 - c) < E and then the Cauchy

property holds for any n, N > M. Since (xn) is a Cauchy sequence we and the D is complete

we have that (xn) converges. Let x* be the limit of (xn), that is x* = limna,0 Xn.

Now from the previous chapter we know that 5 every Lipschitz continuous function is

also continuous. Therefore f is continuous by (3.1). So

Xn+1= f(xn) => lim Xn+1 = f ( lim xn) = x' = f (x*)
n4oo n-+co

Therefore x* is the unique fixed point of f and the Basic Iterative Method converges to

this fixed point.

One interesting generalization of Banach's Fixed Point theorem is one given by Edelstein

[28]. This generalization will become useful to get some counter examples later when we

present the Converse Theorems. Also the techniques used in the proof are very useful for

the rest of this thesis.
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Theorem 3. Let (D, d) be a compact metric space. If f : D -+ D satisfies

d(f(x), f(y)) < d(x, y) for x # y E D

then f has a unique fixed point in D and the fixed point can be found as the limit of f [nI(xo)

as n -4 oc for any x0 E D.

Proof. To show f has at most one fixed point in D, suppose f has two fixed points a # b.

Then d(a, b) = d(f(a), f(b)) < d(a, b). This is impossible, so a = b.

To prove that f has actually a fixed point, we will look at the function D --+ [0, oc) given

by x - d(x, f(x). This measures the distance between each point and its f-value. A fixed

point of f is where this function takes the value zero.

Since D is compact, the function d(x, f(x)) takes in D its minimum value: there is an

a E D such that d(a, f(a)) < d(x, f(x)) for all x E D. We will show by contradiction that a

is a fixed point for f. If f(a) # a then the hypothesis about f in the theorem says

d(f(a), f(f(a))) < d(a, f(a))

which contradicts the minimality of d(a, f(a)) among all numbers d(x, f(x)). So f(a) = a.

Finally, we show for any xo E D that the sequence xn = f[n] (x 0) converges to a as n -+ oc.

This can't be done as in the proof of the Banach's Fixed Point Theorem since we don't have

the contraction constant to help us out. Instead we will exploit compactness.

If for some k > 0 we have Xk = 1 then Xk+1 = f(Xk) = f(a) = a, and more generally

Xn = a for all n > k, so X -+ a since the terms of the sequence equal a for all large n. Now

we may assume instead that x, # a for all n. Then

0 < d(xn+l, a) = d(f(xn), f(a)) < d(x,, a),

so the sequence of numbers d(xn, a) is decreasing and positive. Thus it has a limit

f = limn, d(xn, a) > 0. We will show f = 0. By compactness of X, the sequence {xn}

has a convergent subsequence xni, say xni -+ y E D. The function f is continuous, so

f(xni) -+ f(y), which says xni+1 - f(y) as i -+ oc. Since d(xn, a) -+ f as n -+ oo,
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d(xa1, a) -+ f and d(xn1+i, a) -+ f as i -+ oo. Since the metric, d(x, a) -+ d(y, a) and

d(xn1 1 , a) = d(f(Xni), a) -+ d(f(y), a). Having already shown these limits are f,

d(y, a) = f = d(f(y), a) = d(f(y), f(a))

If y = a the d(f(y), f(a)) < d(y, a), but this contradicts the previous equation. So y = a,

which means f = d(y, a) = 0. That shows d(xn, a) -+ 0 as n -+ oc. l

3.2 Bessaga's Converse Fixed Point Theorem

In this section we give the first result that tries to capture the generality of the Banach's

Fixed Point Theorem. This result is due to Bessaga [8] and was first published in 1959.

There are at least four different proofs of this result. The first one, due to Bessaga 181, uses

a special form of the Axiom of Choice. This original version is not long, however, some

statements are left to the reader for verifying.

The second proof, from Deimling's book [25] is a special case of that given by Wong [56],
and it uses the Kuratowski-Zorn Lemma. In fact, Wong extended Bessaga's theorem to a

finite family of commuting maps.

The third proof, due to Janos 1361, is based on combinatorial techniques with a use of

Ramsey's theorem. Actually, the existence of a separable metric is shown here (under the

assumption that D has at most continuum many elements), though this metric need not be

complete.

The last one, to the best of our knowledge, is due to Jachymski [35] and provides a nice

direct connection with the existence of a potential function that decreases sufficiently at

every step. Also, this proof enables us to get rid of the use of the Axiom of Choice when the

metric space D is bounded and provides conditions under which f is a similarity.

We first state and prove a simple version of the theorem and we provide the first proof

given by Bessaga in a simplified way. Then, we present the proof given by Jachymski and

comment on the connection with the existence of a potential function. Finally we focus on

the bounded case and the proof that is independent of the Axiom of Choice.
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3.2.1 First Statement of Bassaga's Theorem

Formally, in the paper f81 Bessaga proved the following.

Theorem 4 (Bessaga's Converse Fixed Point Theorem). Let D # 0 be an arbitrary set,

f : D - D and c E (0,1). Then, if for all n E N, f [n] has a unique fixed point x* E D, then

there is a complete metric d for D such that d(f (x), f (y)) < c - d(x, y) for all x, y E D.

This proof of Bessaga's theorem is the one found on the blog "Bubbles Bad; Ripples

Good", in an article with title "Bessaga's converse to the contraction mapping theorem" by

Willie Wong.

Proof. First we define an equivalence relation on D. We say x - y if there exists positive

integers p, q E N such that f[p](x) = f[q](y). If x ~ y we define

p(x, y) = min{p + q I f " (x) = f q] (y)} and

((x, y) = f(P)(x) where p is the value that attains p(x, y)

We also define

O-(x, y) = p(x, (x, y)) - p(y, (x, y))

It is easy to prove that p is symmetric and o- antisymmetric.

Now, by the axiom of choice, there exists a choice function that chooses for each equiv-

alence class of D/ - a representative, this extends to a function h : D -+ D by setting the

same value to all the members of the same equivalence class. We can now define a function

A: X -+ Z by

A(x) = u(h(x),x)

We are now in a position to define our distance function d. Let K = 1/c.

If x ~ y, we define

d(x, y) = K-(x) + K-A(Y) - K . K-A(xy))
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If x 6 x*, we define

d(x, x*) = K-(x)

If x 96 y and neither x, y is x*, we define

d(x, y) = d(x, x*) + d(y, x*)

By the definition of d we can see that it is symmetric and non-negative. It is also easy

to check that d(x, y) = 0 ==> x ~ y and x = y = (x, y).

Triangle inequality involves a little bit more work, but most cases are immediately obvious

except when x ~ y ~ z. Here we need to check that

K - K-\(Y) - K -K-A(xY)) - K -K-A('(Yz)) > -K -K-A((x,z))

Suppose f [P(x) = f[qlj(y) and f[q21(y) = f[r](z). Without loss of generality we can

take qi q2. Then we have that f [P](x) = f[r+1-q2](z). This shows that A( (x,z)) <

min(A( (x, y)), A( (y, z))). And this proves the inequality above.

Finally it is easy to see that any Cauchy sequence either is eventually constant, or must

converge to x* : if x 76 y we have that

1
d(x, y) > 2-min(A(x),A(y))-1 > -(d(x, ) + d(y, ())4

and this shows that d is a complete metric. Now, it remains to verify that f is a con-

traction. Noting that A(f(x)) = A(x) + 1 and (f(x), f(y)) = (x, y) we see easily that f is

a contraction with Lipschitz constant 1/K = c. E

3.2.2 Correspondence with Potential Function and Applications

In this section we present the work of Jachymski on a more simple proof of the Bessaga's

theorem that also provides a connection with the existence of a potential function that

decreases by a constant factor after every iteration of f. We start with the definition of

Schr6der functional inequality, that captures this behaviour of the potential function.

Definition 19. We say that the function (potential) $ : D -+ R+ satisfies the Schrdder
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functional inequality for f : D D with constant c E (0,1) if,

#(f(x)) 5 c - (x) (3.5)

The following lemma proves that the existence of a potential function # that satisfies the

Schr6der functional inequality implies the existence of a complete metric d for which f is a

contraction map.

Lemma 6. Let f D -+ D and c E (0, 1). The following statements are equivalent:

z. there exists a complete metric d for D such that

d(f(x), f(y)) < c -d(x, y) for all x, y E D

ii. there exists a function # : D -> R+ such that 0- 1 ({0}) is a singleton and the Schrdder

functional inequality (3.5) holds.

The forward direction of the lemma is easy to see and explain while gives a proof that

a potential of the form O(x) = d(x, x*) always exists. The inverse direction is not that

simple and is surprising because the intuition suggests that a complete metric has much

more structure than a simple potential function.

Proof. i. ==>. ii. By the Banach's Fixed Point Theorem f has a fixed point x* and we

can easily see that the potential function O(x) = d(x, x*) satisfies the Schr6der functional

inequality (3.5).

ii. =- i. Define d by d(x, y) = O(x) + #(y) if x # y and d(x, x) = 0. It is easily seen

that d is a metric for D and by (3.5) f is a contraction with respect to d. To see this we

verify that the conditions of Definition 4 are satisfied.

(i). Since O(x) > 0 obviously d(x, y) > 0.

(ii). If x , y then at least one of them is not equal to x* = #-1({0}), let x = x*. Obviously

then #(x) > 0 and therefore d(x, y) # 0. The case x = y is captured by the definition of d.

(iii). Obvious by the definition.
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(iv). Since #(z) > 0 we have

d(x, y) = O(x) + #(y) <; #(x) + 0(y) + 2 -O(z) = d(x, z) + d(z, y)

Finally we have to prove that the metric space (D, d) is complete. Let (x,) be a Cauchy

sequence. We may assume that the set {x, : n E N} is infinite, otherwise (xn) contains a

constant subsequence and then (xn). Then there is a subsequence (xk,) of distinct elements

so that

d(Xkn, Xkm) = #(xkn) +#$(Xk.) for n h m

Now since (xv) is a Cauchy sequence we know that d(Xk,, Xkm) -4 0 as n goes to +o and

m remains to the same distance from n. Therefore since #(-) > 0 we also get that #(Xkn) -+ 0

as n goes to infinity. But by the assumption of ii. we have that O(z) = 0 only for a unique

z E D. Therefore d(Xk,, z) = #(xk,) which means that d(Xkn, z) -÷ 0 and so (x,) converges

to z. 0

The above lemma can be used in order to prove the Bessaga's theorem as stated before.

3.2.3 Necessary and Sufficient Conditions for Similarity

Given the conditions of the Bessaga's Theorem and that f is injective we can prove not

only that f is a contraction with respect to some complete metric of D but also that it is a

similarity.

Theorem 5. Let f : D -+ D and c E (0,1). The following statements are equivalent.

(a) f is injective and f has a unique periodic point,

(b) f is an c-similarity with respect to some complete metric d.

One interesting question is what happens when the function f does not have any fixed

points. Surprisingly enough there is a version of Lemma 6 that captures the case where f

has no fixed point which we present next. Obviously if a function has more that one fixed

point then any contraction or similarity conditions are impossible. To see this assume that

x*, x are fixed points of f. Then d(f(x*), f(x*)) = d(x*, x*) and so the Lipschitz constant

of f cannot be anything less than one.
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Lemma 7. Let f : D -÷ D and c E (0,1). The following statements are equivalent:

z. f has no periotic points

ii. the Schr6der equation 0(f (x)) = c - O(x) has solution D$: V - (0, oc)

This lemma proves the following two theorems on the existence of metrics that make f

contraction or similarity.

Theorem 6. Let D = 0 be an arbitrary set, f : D -+ D and c E (0, 1). Then if f n] has at

most one fixed point for every n E N, then there exists a metric d such that d(f(x), f(y)) <

c - d(x, y) for all x, y E D.

Observe, that this theorem does not guarantee that the topological space (D, d) is com-

plete. Therefore the natural meaning of d is very limited. But without the hypothesis that

there is actually a fixed point we couldn't hope for something stronger since then the appli-

cation of Banach's fixed point theorem would actually prove the existence of a fixed point.

This cannot be true since there are functions without any fixed point. For example for D = R

the function f(x) = x + 1. This theorem proves that even those function can be viewed as

contraction maps!

Similarly we take a result on similarity

Theorem 7. Let f : D -+ D and c E (0, 1). The following statements are equivalent.

(a) f is injective and f has no periodic points,

(b) f is an c-similarity with respect to some metric d for D.

To prove this last theorem we use exactly the same proof we used for Theorem 6 and we

replace the inequality with equality.

3.2.4 Avoiding Axiom of Choice

The proofs of Bessaga's theorem are all based on the Axiom of Choice. In his initial work

Bessaga proved that this is unavoidable, since Bessaga's Theorem is equivalent to some

version of the Axiom of Choice. In this section we show how we can escape the use of Axiom

of Choice by putting some restrictions on the domain. More specifically we are going to

assume that the domain is bounded. This analysis is based on the paper of Jachymski [351.
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Theorem 8. Let f : D D and c E (0,1). The following statements are equivalent.

(a) the intersection AnEN f[n] ( is a singleton,

(b) the Schruder inequality (3.5) has a bounded solution # D - R+ such that #-1({O}) is

a singleton.

(c) there exists a complete and bounded metric d for D such that f is contraction with

constant c with respect to d.

Proof. (a) ==> (b). Let fnEN f [](D) = {x*}. For x : x* define

n(x) = sup {n I x E f nI(D)}
nEN1

Since the sequence (f[n] (D)) is decreasing, condition (a) implies that n(x) is finite. Define

the function q as follows

q(x*) =0 , (x) = cn(x) for x # z

Clearly # is bounded and #- 1({0}) = {z}. Fix an x C D. If f(x) = x* then (3.5) holds.

So let f(x) y x*. Then n(f(x)) > n(x) + 1 and hence

#(f (x)) = cn(f(x) < cn(x)+l = a#(x)

Thus (b) holds.

(b) -> (c). This can be proved by repeating the proof of Lemma 6.

(c) -> (a). Direct application of the Banach Fixed Point Theorem. 0

3.2.5 An non-intuitive application of Bessaga's Theorem

The initial version of the Bessaga's Theorem does not have any conditions on the convergence

of f to the unique fixed point. This means that even if the fixed point is unstable the theorem

guarantees the existence of a complete metric that makes the function f contraction.

For example lets take f(x) = 2x. This function is defined on the domain D = R and

has only one fixed point at x =0. It is obvious that this fixed point is an unstable one,
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since the Basic Iterative Method for f goes exponentially fast to infinity, i.e. f[n] = 2"x.

But Bessaga's theorem suggests that R admit a complete metric that makes f contraction!

Then by applying the Banach's Fixed Point Theorem we get that (f[n]) converges to this

fixed point according to this metric! In order to understand how this can happen, in this

section we construct a metric d that has this properties. Bessaga's theorem only guarantees

the existence of such a metric d.

One very good starting point when looking for a metric that satisfies some properties is to

compute a natural metric of the space that we are working on after applying some arbitrary

function to the arguments. Formally let d be a natural metric for a domain D, then we define

the new metric d'(x, y) = d(h(x), h(y)) where h : D -+ D is an injective function. Once h is

injective is easy to see that d' defines a metric on D.

For our case with D = R and f(x) = 2x we can see that we want h to be a decreasing

function. Therefore we pick h(x) = 1/x for x 5 0 and h(0) = 0. Then we get that

1 1 _ 1 1 _1

d'(f(x), f (y)) = Ih(2x) - h(2y)I d'(x, y)
2x 2y 2 x y 2

Therefore f is a contraction with constant 1/2 with respect to the metric d'.

3.3 Meyers's Converse Fixed Point Theorems

As we have seen in the last part of the previous section, the guaranteed by Bessaga's theorem

distance metric, that makes a function f contraction might not have clear natural meaning.

It might not have any relation to the topology of the domain D. It is this natural metric d,

that produces the correct topology, that we would be interested in. In this metric d finding

a point x such that d(x, x*) < E has some meaning. So Bessaga's Theorem cannot prove us

the generality of the contraction mapping theorem for the analysis of the running time of

Basic Iterative method, as described in the introductory chapter.

So our starting point instead of just the function f and the domain D should also be

the complete distance metric function d that we are interested in. One step towards this

direction has been done by Meyers [44, 43] and this work we are presenting in this section.

Theorem 9 (First Meyers's Converse Fixed Point Theorem). If (D, d) is a complete metric
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space, D is locally compact and the following hold:

1. f has a unique fixed point x*

2. for every x C D, the sequence (f [n](x)) converges to x* with respect to d

then for any c E (0,1) there exists a distance metric function d, topologically equivalent with

d such that (D, d,) is a complete metric space and

dc(f(x), f(y)) < c - dc(x, y) for all x, y E D

This theorem has a very important improvement compared to Bessaga's one. The dis-

tance metric d, that it produces is topologically equivalent with the initial given metric d.

This means that dc and d produce the same topology and therefore they capture the same

basic structural properties of the space D.

The second interesting result of Meyers's describes one different aspect, which is the local

to global contraction. More precisely suppose that we have a distance metric that makes f
contraction only when x, y are close enough. The question how can we get a metric that

makes f globally a contraction map? This question is what this second theorem by Meyer

tries to capture. We first give the definition of local contraction and then we state the

theorem by Meyers's.

Definition 20. Let (D, d) be a complete metric space. A function f : D -+ D is a local

contraction if there exist real-valued functions p(x), c(x), with bt(x) > 0 and 0 < c(x) < 1,

such that whenever y, z are in the ball

B(x, p(x)) = {u | d(x) p(x)}

it follows that

d(f(y), f(z)) c(x)d(y, z)

Theorem 10 (Second Meyers's Converse Fixed Point Theorem). If (D, d) is a complete

metric space, D is locally compact and f is a local contraction then there exists a distance

metric function d' topologically equivalent with d such that (D, d') is a complete metric space
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and

d'(f(x), f(y)) c - d'(x, y) for some c E (0, 1)

The proofs of the above results are very interesting and innovative. We choose not to

present them here because we follow the path of these proofs in the next chapter where we

present one more precise Converse Fixed Point Theorem.

3.4 A New Converse to Banach's Fixed Point Theorem

In this section we present our basic result and improvement on the converses of Banach's

Fixed Point Theorem. To proceed we see that the basic improvement of Meyers's theorem is

that, instead of an arbitrary metric, it provides a metric equivalent with the metric that we

started with. Although this is a good step, it is not enough in order to bound the number

of steps needed by the Basic Iterative Method in order to get d(xa, x*) E.

Our result in this section closes this gap under the assumptions of Meyers's Converse

Fixed Points Theorem. The main technical idea is that there is a way to change the proof

of Meyers's Theorem such that we can get a distance metric d, with the property dc(x, y) >

d(x, y) everywhere except maybe from the region d(x, x*) < e. This implies that if we

guarantee that dc(xa, x*) < E then d(xr, x*) < E.

We start by proving the result and then we discuss on the implication and the corollaries

that we can get based on this.

Theorem 11. If (D, d) is a complete metric space, D is locally compact and the following

hold :

1. f has a unique fixed point x*

2. for every x E D, the sequence (f [n](x)) converges to x* with respect to d

then for any c E (0,1) and any E > 0 there exists a distance metric function dc topologically

equivalent with d such that (D, d,) is a complete metric space and

dc(f(x), f(y)) c -d,(x, y) for all x, y E D (3.6a)

dc(x, y) E ==> x E B(x*, 2E) or y C B(x*, 2E) (3.6b)
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Proof. The construction of d, starts with an open neighborhood of x* with some desired

properties. In order to satisfy (3.6b), this open neighborhood W must have diamd [W] < E.

Lemma 8. There exists an open neighborhood W of x* such that We first prove that there

exists an open neighborhood W of x* such that

f1 "](W) -+ {x*} (3.7a)

f(W) c W (3.7b)

diamd [W] < E (3.7c)

Proof. We start by showing (3.7a) for an open neighborhood U of x* with diamd [U] < e.

Let C = {x : d(x, x*) K E}. Observe that since D is locally compact and complete the

set C is a compact neighborhood of x*. We define U = Int(C), an open neighborhood of

x*. Consider any other open neighborhood V of x*. For each x E C, there exists by the

hypothesis 2. of the theorem, a smallest n(x) such that f [](x) E V for all n > n(x). We

need only to show that

n(V) = sup n(x)
xEC

is finite. For the sake of contradiction we assume its not, then C contains a sequence

(xi) such that n(xi) > i, and since C is compact, we may assume xi -+ y for some y E C. If

this is not the case then we can take any converging subsequence of (xi) and will satisfy the

same properties. The desired contradiction follows by observing that n(y) < 00 and that by

continuity of f it holds that n(x) < n(y) + 1 for all x in some neighborhood of y. Therefore

there exist an open neighborhood U such that f[n](U) -+ {x*}.

Now starting from U we prove the existence of W. For this, we will prove that there

exists an open neighborhood W of x* such that f(W) C W and W C U. The latter implies

f[n](W) -÷ {x*} and diamd [W] < e.

Since f[M(U) -- {x*}, there is an integer k such that flk](U) C U. Let

k-1

W = n fH-jI(U) c U
j=0
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Then for x E W we have, for 1 < j < k - 1, x E f I](U) and thus f(x) E fK(3 1)] (U).

Moreover x E U, so that f[k](X) E f[k](U) C U and thus f(x) E f -(k-1)](U). Hence x E W

implies f(x) E W, which was to be shown. U

We now proceed to the main line of the proof. The construction follows three steps:

I. construction of a metric dM, topologically equivalent to d, with respect to which f is

non-expanding.

II. given dM we proceed with the construction of a function pc with all the desired prop-

erties except maybe from the triangle inequality.

III. given pc we construct the final wanted metric d, by defining the pc-geodesic distance.

I. Construction of dm

We set

dm(x, y) = max{d(f[ n](x), fn] (y))}
nEN

The fact that this maximum is finite can be proved using the condition 2. of the theorem.

Indeed, since d(f["](x), x*) -+ 0 and d(f "](y), x*) - 0, for any 6 > 0 there is a number N E N

such that d(f[n(x), x*) < 6 and d(fn](y), x*) 5 6 for all n > N. Now if let 6 = d(x, y)

we get that maxn;>N{d(fIn(X), f[fl](y)) < d(x, y) and therefore maxnENjd(fn(X), f In](y))

maxO<fn<N{d(f[I](x), f fl](y)). Hence the maximum has a finite value.

Observe now that by definition the following is obvious

dm (f (x), f (y)) < dm (x, y)

Therefore it only remains to prove that this function satisfies the properties of a distance

metric function. The positive definiteness and symmetry of dM follow from the corresponding

properties of d. The fact that dM(x, y) # 0 for x # y follows from the fact that d(x, y) 5

dm(x, y), which follows directly from the definition of dM since f[0I(x) = x. It remains to

prove the triangle inequality.

For the triangle inequality we observe by the definition of dM that there exists n E N
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such that

dM(x, y) = d(f["l(x), ff(z)) (3.8)

d(f["](x), f l(y)) + d(f["](y), f["n(x)) K (3.9)

Sdm(x, y) + dM(y, z) (3.10)

Thus dM is indeed a metric, which must be shown to be topologically equivalent to d.

From the inequality d(x, y) < dM(x, y) it follows that any dM-convergent sequence is also

d-convergent, with the same limit point. To prove the implication in the opposite direction,

note that (3.7a) implies the existence for each rj > 0 of an N such that

diamd [fn]"(W)] < E for n > N

For each x E D, it follows from 2. that

v(x) = min {n} (3.11)
nEN,f Il (x)EW

is finite. Since f is continuous, there is an 6 > 0 so small that d(x, y) < 6 implies

f[v(x)](y) E W and d(f UL (x), f DI(y)) < 6 for 0 < j < N + v(x) (3.12)

By (b) f[n+N+v(x)](X) E f[n+N](W) and f[n+N+v(x)](Y) E f[n+N](W) for all n > 0, so that

the (3.12) implies

d(f U](x), f i](y)) < S for j > N + v(x)

Thus d(x, y) < 6 implies dM(x, y) :5 r. This shows that a sequence which is d-convergent

to x is also dM-convergent to x, completing the proof of topological equivalence. Finally

since d and dM are topologically equivalent and d is complete for D it follows that dm is also

complete for D.

II. Construction of pc

We begin by defining Kn to be the closure of f"(W) for n > 0, and K(_.) = f[--" (KO), so
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that (3.7a) implies

K -+ {x*} as n -+ oo (3.13)

For x E Ko \ {x*}, set

n(x) = max{n} 0
xeKn

finiteness is assured by (3.13). Let also n(x*) = oc, and for x E D \ KO set

n(x) - min {m} = max{n} <0
f 1m](x)GKo xEK,

which must exists by condition 2. Letting also K(x, y) = min{rn(x), n(y)}, we define Pc

to be

Pc(x, y) = c(x')d(x, y)

We can now prove that Pc satisfies all the distance metric requirements except maybe

triangle inequality. Positive definiteness and symmetry is obvious. Also since dM is a distance

metric and K(x, y) > 0 is finite at every point except from K(x*, x*), we get that pc(x, y) =

0 <-> x = y. Now from the non-expansion property of f with respect to dN and from the

fact that n(f(x)) n(x) + 1 we get that

pC(f(x), f(y)) <; c -Pc(X, y) (3.14)

and this concludes the proof of this step.

III. Construction of d,

In this last step what we do is that we assign the distance between two points to be

the length of the shortest path that connects these two points, with the lengths computed

according to Pc. Then the distance satisfies the triangle inequality because of the shortest

path property.

Formally, denote by Sxy the set of chains sxy = (x = xo, x, .... , xm = y) from x to y with

associated lengths Le(sxy) = E', pc(xi, xi- 1). We define

d,(x, y) = inf{L,(sxy) I sXy E Sz,} (3.15)
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We will prove that d, is the desired metric.

That f is a contraction with constant c with respect to d, follows by applying (3.14) to

the links [xi_ 1, xi] of any chain sxy. Clearly d, is symmetric and dc(x, x) = 0. The triangle

law holds since following a sxy with a syz yields a sxz. It remains to show positive definite.

Consider any x # x* and y # x and assume n(x) n(y) without loss of generality. If

y = x*, any chain sxy either lies in D \ K(y) l, or has a last link which leaves Kn(,)+, so

that

d,(x, y) > c( ) minIdM(x, y), dM(x, Kn(y)+1)} > 0 (3.16)

The remaining case, y = x* is covered by

dc(x, y) > c"(x)dM(x, Kn(x) l) > 0 (3.17)

Thus d, is a distance metric. We now have to prove that d, is equivalent to dM.

Let B, = D\f -"](U) for v > 0, so that the definition of v(x) (3.11) implies dM(x, Bv(x)) >

0 and n(x) > v(x). For any x 5 x"*, if y obeys

dM(x, y) < 6(x) = min{dNI(x, Kn(x)+1), dM(x, Bv(x))} (3.18)

then n(x) > -v(x), so that (3.15) and (3.16), the latter with x and y interchanged, imply

cn(x)dM(x, y) d,(x, y) p,(x, y) <_ c-"(x)dM(x, y) (3.19)

Choose k(x) > max{0, n(x)} such that z E Kk(x) implies dM(z, x*) < d,(x, x*)/2. Then

dc(x, Kk(x)) > dc(x, x*)/2, so that if y obeys

dc(x, y) < dc(x, x*)/2 (3.20)

then only chains disjoint from Kk(x) need enter (3.15), implying

dc(x, y) > ck(x)dM(x, y) (3.21)
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In particular, if

dc(x, y) < min{dc(x, x*)/2, ck(x)6(X)}

then with (3.20) and (3.21) this implies (3.18) and hence (3.19) applies. Thus d,(x,, x) -+

0 whenever dM(xn, x) -4 0.

Now if x = x*, note first that if dM(x*, y) < dM(x*, BO), then

dc(x*, y) < pc(x*, y) < dmi(x*, y) (3.22)

Second, for any r1 > 0, (3.7a) guarantees an N(r/) > 0 such that dM(x*, z) < 1/2 for all

z E KN(.). Then dmI(x*, y) > rj implies that dM(y, KN(,))) > q/2 and thus that

dc (x *, y) > dce(KN (,), y) > c N(q) T/

Hence dc (x, x*) -+ 0 if and only if dm (x, x*) -4 0.

To show that dM-completeness is preserved, assume that (Xn) is a dc-Cauchy sequence

and that (X, dm) is complete. If (x,) does not converge to x* then since d, and dM are

equivalent, for some N E nats and all sufficiently large n, n(xn) < N.

Now exactly as above choose k((xn)) = P > max0, N such that z E Kk((2,)) implies

dz(x*,.z) <inf dc(xi, *) R
ieN 2 2

then since (xn) is a Cauchy sequence there is an i E N1 such that

dc (xp, XP+j) < -

for all p > i, and using (3.21) with k(x) = P, we have

c 1 de(xp, xp+j) > dM(xp, xP+j)

so that (xn) is a dm-Cauchy sequence. Therefore since (D, dM) is complete, the topological

space (D, dc) is complete too.
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The final step is to prove (3.6b). Let A = diamd [1(x*, 2E)] and without loss of generality

d(x, x*) d(y, x*).

If either dm(x, x*) < E or dM(y, x*) K E then we are done since as we have seen in the

construction of dM, dM(x, y) > d(x, y), thus either d(x, x*) E or d(y, x*) e and (3.6b) is

satisfied. So we may assume that d(x, x*) > E and d(y, x*) > E. Therefore x, y E D \ Ko and

which translates to n(x), n(y) < 0. So using the same argument as when we derived (3.16)

but with Ko instead of Ka(y) i we get

d,(x, y) > min{dm(x, y), dm(x, Ko)} (3.23)

Now we consider two cases according to the value of dM(x, Ko). If dM(x, Ko) > e then

d,(x, y) < E =-> d(x, y) e < A

Otherwise if dM(x, Ko) < E then d(x, Ko) < 6 and by triangle inequality d(x, x*) 26.

By our assumption for the relative position of x and y we also get d(y, x*) 2e and therefore

x, y E B(x*, 2E). Thus, d(x, y) diamd [f(x*, 2E)].

3.4.1 Corollaries of the Converse Fixed Point Theorem

The main disadvantage of the result presented in the previous section is that the metric d, is

not the same for all E > 0 but it depends on E. Besides this disadvantage this new Converse

Theorem has some very interesting corollaries. The first one, it that we can now express

with respect to d, the number of f iterations in order to get close to the fixed point x*.

Corollary 1. Under the assumptions of Theorem 11, starting from a point xo E D, the

Basic Iterative Method finds the fixed point with additive error E after

log(de(xo, f (xo))) + log(2/E)

log(1/c)

iterations.

Proof. We choose d, that satisfies the Theorem 11 with parameters c, E/2. Let also (xn), the

sequence produced by the Basic Iterative Method. Then we have that since f is a contraction
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with respect to d,

dc(xn, xn+1) < cnd,(Xo, Xi)

If we ensure that dc(xn, Xn+1) E/2 then according to Theorem 11 d(X1 , x*) < E or

d(Xn+i, X*) E. So we need

n E log(dc(xo, x1 )) + log(2/E)
c d,(xo, x1) < - <-> n ;>

2 log(1/c)

The above corollary only describes for a fixed e how many steps we need to get into a

ball of radius E from the fixed point. If we want to have the same kind of argument for any

6 > 0 we have to make additional assumptions on f. If for example f is a contraction with

respect to d locally for x, y E B(x*, E) in an then we get the following result.

Corollary 2. Under the assumptions of Theorem 11, and the assumption that there exists

0 < c < 1, E > 0 such that

d(f(x), f(y)) < cd(x, y) for all x, y E B(x*, E)

then starting from a point xO E D, the Basic Iterative Method finds the fixed point with

additive error 6 > 0 after

log(dc(xo, f(xo))) + log(1/6) + 1

log(1/c)

iterations.

Proof. Using the same idea as in the previous Corollary we get that after

log(dc(xo, f(xo))) + log(2/E)

log(1/c)

iterations we will have d(xn, x*) < E. Now since from now on f is a contraction with

respect to d we will have

dc(Xn+m, X*) c"dc(Xn, X*)
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Therefore for d(xn+m, x*) < 6 we have

- log(1/E) + log(1/6)
log(1/c)

So in total we need n + m iterations and we have the number of iterations that the

corollary says.

3.5 Application to Computation of Eigenvectors

In this section we show how we can apply the ideas of this chapter to the analysis of very

famous iterative algorithm for computing eigenvalues and eigenvectors, namely the power

method. We start with the definition of the power method and we proceed on the investiga-

tion of a metric d(., -) that makes the power method contraction. For the introductory part

we follow the survey of [47].

3.5.1 Introduction to Power Method

Let A E R"'". Recall that if q is an eigenvector for A with eigenvalue A, then Aq = Aq, and

in general, Ak = Akq for all k C N. This observation is the foundation of the power iteration

method.

Suppose that the set {qj } of unit eigenvectors of A forms a basis of R" , and has cor-

responding set of real eigenvalues {Ai} such that 1A11 > IA21 > ... > IAni. Let vo be an

arbitrary initial vector, not perpendicular to qi, with Ilvoll = 1. We can write vo as a linear

combination of the eigenvectors of A for some c 1 ... , cn E R we have that

vo = c1q1 + C2q2 + - - - + Con

and since we assumed that vo is not perpendicular to qi we have that ci $ 0.

Now

Avo = c1,Aq1 + c2A 2 q2 + --- + cAnqn
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and therefore

Avk = c1 Alqi + c2 A 2q2 +-- + cnAnq

= A k ciqi+ C2 A2k 2 + - - -n +kc qn

Since the eigenvalues are assumed to be real, distinct, and ordered by decreasing magni-

tude, it follows that

lim i k=0
k- oo (A,)

So, as k increases, Akvo approaches c1Akqi, and thus for large values,

Akv 0
AkvoI-+ q1 as k -s oo

||AkVOJJ

The power iteration method is simple and elegant, but suffers some major drawbacks.

The method only returns a single eigenvector estimate, and it is always the one corresponding

to the eigenvalue of largest magnitude. In addition, convergence is only guaranteed if the

eigenvalues are distinct-in particular, the two eigenvalues of largest absolute value must

have distinct magnitudes. The rate of convergence primarily depends upon the ratio of these

magnitudes, so if the two largest eigenvalues have similar sizes, then the convergence will be

slow.

In spite of its drawbacks, the power method is still used in some applications, since it

works well on large, sparse matrices when only a single eigenvector is needed. However, there

are other methods that overcome the difficulties of the power iteration method.

The main problem that we answer in the next section is: what is the exact tradeoff

between the number of iterations and the error that we get?

3.5.2 Power Method as Contraction Map

We define the following metric with respect to two vectors v = (v 1 ,. . . , vn)T and u =

(U 1,. . . )T

di (v, u) = Vj U

j=2 1 U
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it is then easy to see the following

Lemma 9. The power method is a contraction with respect to d1 , with contraction constant

c = A2/Al.

Proof. Let f be the iteration of the power method, we have that

di(f(v), f(u))= Aj _ AUj _ A v < E L u
E vi Aui A, vi uU -A1j=2 j=2~u i l A j=2

di(f(v), f(u)) A di(v, u)

Therefore the lemma holds. E

But as in the discussions that we had in the previous chapters, di is not a metric that

we care for. Such a metric is the norm of the space |11-1. We also observe that we can

without loss of generality assume that |Ivoll, = 1 since we can do a normalization at each

step. Among the vector with unit fi norm the only fixed point obviously is the (1, 0, .. . , 0)T.

Now let's con cider the case where after k iterations di(u = Vk, ei) e, then we have

U = |uy| I <EJuil I <E
j=2 j=2

But since lull1 = 1 and since ui > 0 without loss of generality we also get

1 - uil E

Therefore

lu - eill = 1 - ulZ+ luI < 2e
j=2

This is what we wanted that proves the following theorem.

Theorem 12. The power method is a contraction with respect to d1 , with contraction con-

stant c = A2/Al. Furthermore for any e > 0 and any u E R' such that l|ull1 we have

that

di1(u, el) < E =>|u - el11| < 2E
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The same way we got the Corollaries in the previous section we can get the following

Corollary

Corollary 3. Starting from a vector vo not perpendicular to q1 , the power method finds a

vector u, such that IIu - e1| E after

log(di(vo, ei)) + log(2/E)

log(Al/A2 )

iterations.

59



60



Chapter 4

Computational Complexity of

Computing Fixed Point of Contraction

Maps

The purpose of this chapter is to capture the computational complexity of computing fixed

points, the existence of which is guaranteed by Banach's Fixed Point Theorem (Theorem 2).

We first present an introduction to the tools that have been developed in the area of

computational complexity in order to capture the computational complexity of computing

fixed points starting with the works of Johnson Yannakakis, Papadimitriou and Daskalakis.

We define, explain and prove the basic properties of the following complexity classes:

" PLS [37]: when # satisfies some continuity condition

" PPAD [48]: when f satisfies some continuity condition

* CLS [23]: when both # and f satisfy some continuity condition

The main result of this chapter is :

BANACH is CLS - complete

We show how the ideas from the previous chapter can be used in order to prove this

result. We finish the chapter with a discussion about future directions and problems in this
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area.

4.1 The PLS Complexity Class

The complexity class PLS first appeared in the seminal paper of Johnson, Papadimitriou

and Yannakakis at 1988 [371. The motivation is to capture the complexity of computing a

local optimum according to some objective or potential function #$: D -+ R+. According to

the authors:

One of the few general approaches to difficult combinatorial optimization

problems that has met with empirical success is local (or neighborhood) search.

In a typical combinatorial optimization problem, each instance is associated with

a finite set of feasible solutions, each feasible solution has a cost, and the goal is to

find a solution of minimum (or maximum) cost. In order to derive a local search

algorithm for such a problem, one superimposes on it a neighborhood structure

that specifies a "neighborhood" for each solution, that is, a set of solutions that

are, in some sense "close" to that solution. For example, in the traveling salesman

problem (TSP), a classical neighborhood is to assign to each tour the set of tours

that differ from it in just two edges (this is called the 2-change neighborhood).

In the graph partitioning problem (given a graph with 2n vertices and weights on

the edges, partition the vertices into two sets of n vertices such that the sum of

the weights of the edges going from one set to the other is minimized) a reasonable

neighborhood would be the so-called "swap" neighborhood: Two partitions are

neighbors if one can be obtained from the other by swapping two vertices.

Given a combinatorial optimization problem with a superimposed neighbor-

hood structure, the local search heuristic operates as follows. Starting from an

independently obtained initial solution, we repeatedly replace the current solu-

tion by a neighboring solution of better value, until no such neighboring solution

exists, at which point we have identified a solution that is "locally optimal." Typ-

ically, we repeat this procedure for as many randomly chosen initial solutions as

is computationally feasible and adopt the best local optimum found. Variants of

this methodology have been applied to dozens of problems, often with impressive
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success.

The importance and the success of this complexity class is based on the fact that a lot

of important and useful in practice local search techniques can be proved to be complete for

this class. The first one, that already appeared in [37] is the one based on the Kernighan-Lin

neighborhood structure for the graph partitioning problem [401.

In this section we will give the formal definition of PLS and then prove that the problem

of computing a fixed point given a potential function is complete for this class. This provides

a new formulation of PLS, first appeared in the work of Daskalakis, Papadimitriou [23]. This

formulation will become very useful latter when we define the CLS class and argue about

its relation with the NONMETRICBANACH problem.

4.1.1 Formal Definition and Basic Properties

General NP search problems and TFNP

In general a search problem L consists of the following ingredients:

(I) a set DL of instances, which can be taken to be a polynomial-time recognizable subset

of {0, 1}*. That is, there exists a polynomial time computable characteristic function

R: {0, 1}* -+ {0, 1} such that R(x) = 1 4 x E DL.

(II) for each instance x, we have a finite set FL(x) of solutions, which are considered also

as strings in {0, 1}* that have without loss of generality all with the same polynomially

bounded length p(IxI).

(III) a polynomial time relation RL : {0, 1}* x {0, 1}* - {0, 1}. That could take value 1

only when computed to RL(x, y) with x E DL, y E FL(x).

The answer to an instance x of a search problem L is given (I), (II) and (III) to provide a

y E FL(x) such that RL(X, y) = 1.

The above description captures all the search problems in NP and defines that class

FNP. The class of total search problems TFNP can be defined given the promise that there

exists at least one y E FL(x) such that RL(X, y) = 1.

The PLS Complexity Class

If additionally to these a search problem L also satisfies the properties
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(Al) for each solution s E FL(x) we have a non-negative integer cost CL(s, x) E N that is

computed in polynomial time.

(A2) for each solution s E FL(x) we have a subset N(s, x) 9 FL(x) called the neighborhood

of s.

(A3) there exists a polynomial-time algorithm AL such that given x E DL produces a par-

ticular standard solution AL(x) E FL(x).

(A4) there exists a polynomial-time algorithm CL such that given x E DL and a solution

s E FL(x), has two possible types of output, depending on s. If there is any solution

s' E N(s, x) with better cost than that for s (i.e., such that cL(s', x) < c(s, x)) CL

produces such a solution. Otherwise it reports that no such solution exists and hence

that s is locally optimal.

(A5) the result of RL(X, s) is 1 if and only if s is locally optimal.

The first observation is that the properties (A) guarantee the existence of a polynomial

local search algorithm to find a solution to the search problem L. We call this algorithm

standard local search algorithm. The steps of this algorithm are the following

1. Given x, use AL, to produce a starting solution s.

2. Repeat until locally optimal:

" Apply algorithm CL to x and s.

* If CL, yields a better cost neighbor s' of s, set s <- s'.

Note that this algorithm seems to be the only thing one can do in order to find a locally

optimal solution. If this was the case then the problem would be NP-hard. That is, given

L, if instead of an arbitrary locally optimal solution one wants to compute the exact result

of the above algorithm then the problem is NP-hard as shown in the next result proven in

[371.

Theorem 13. There is a PLS problem L whose computing the final state of the standard

local search in NP-hard.

So at this point one could ask what's the difference between NP and PLS?

The difference, comes from the fact that PLS is asking for a local optimal and not for

the specific one. This local optima could be found not by using the standard local search
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algorithm, but by structurally trying to find a local optima using the white box access to the

algorithms AL and CL. Is the difficulty of that problem that the PLS class tries to capture.

So one interesting question is if NP-hardness can still capture the complexity of this

easier problem. Here comes another result, also appeared in the paper by Johnson [37].

Theorem 14. If any search problem L in TFNP is NP-hard, then NP = coNP

Proof. If L is NP-hard, then by definition there is an algorithm A for an NP-complete

problem N such that calls an algorithm for L as a subroutine and takes polynomial time (if

the time spent executing the subroutine is ignored). But the existence of such an algorithm

implies that we can verify that x is a no-instance for N in nondeterministic polynomial time:

simply guess a computation of A on input x, including the inputs and outputs of the calls to

the subroutine for L. The validity of the computation of A outside of the subroutines can be

checked in polynomial time because A is deterministic; the validity of the subroutine outputs

can be verified using the polynomial-time algorithm RL, (whose existence is implied by the

fact that L is in TFNP) to check whether the output is really an answer for this input.

Thus the set of no-instances of N is in NP, i.e., N E coNP. Since N was NP-complete, this

implies that NP = coNP.

This result suggests that for any problem in TFNP is unlike to be NP-hard. At least

based on the strong belief of the computer scientists that NP # coNP.

One interesting result in the work of [37], in that the following problem is PLS-complete.

Definition 21. For the LOCALOPT problem we are given the following:

(P1) a boolean circuit that computes a function f.

(PI2) a boolean circuit that computes a function - potential p.

and we ask for one of the following:

(P01) a binary string x C {0, 1}* such that p(f(x)) > p(x).

Theorem 15. LOCALOPT is PLS-complete.

4.1.2 Reductions Among Search Problems

We now explain what a reduction means for search problems. We define the notion of PLS-

reducibility which naturally extends to all the search problems and to other search classes.
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We say that a problem L in PLS is PLS-reducible to another, K, if there are polynomial-

time computable functions f and g such that: f maps instances x of L to instances f(x) of

K, g maps (solution of f(x), x) pairs to solutions of x. Finally for all instances x of L, if s

is a local optimum for instance f(x) of K, then g(s, x) is a local optimum for x. Note that

this notion of reduction has the standard desirable properties.

4.1.3 Characterization of PLS in terms of Fixed Point Computing

In this section we define a fixed point computing problem and prove that is PLS-complete.

This gives a new characterization of PLS that we are going to use latter on. The material

of this section comes from the work of Daskalakis and Papadimitriou [231.

Our discussion from now on focuses on functions from continuous domains to continuous

domains, and we shall represent these functions in terms of arithmetic circuits with operations

+, - , ', max, min, and >, the latter defined as > (x, y) = 1 if x > y and 0 otherwise; rational

constants are also allowed. The result of the arithmetic circuits has to be able to be computed

in polynomial time by a Turing Machine. The outputs of arithmetic circuits can be restricted

in [0, 1] by redefining the arithmetic gates to output 0 or 1 when the true output is negative

or greater than one, respectively.

We now define the REAL LOCALOPT problem that we will prove it is PLS complete.

Definition 22. For the REAL LOCALOPT problem we are given the following:

(P11) an arithmetic circuit that computes a function f : [0, 1]3 _+ [0, 1]1.

(PI2) an arithmetic circuit that computes a function - potential p : [0,1]3 _+ [0,1].

(P13) a rational number E > 0.

(PI4) a rational number A > 0.

and we ask for one of the following:

(P01) a point x E [0, 1]3 such that p(f (x)) > p(x) - E.

(PO2) two points x, x' violating the A-Lipschitz continuity of p, i.e. |p(x) - p(x')I > A x - x'|.

The first thing to notice is that REAL LOCALOPT is a total search problem, i.e. belongs

to TFNP. Indeed, starting at an arbitrary point x E [0, 1]3, we can just follow the chain

x, f(x), f(f(x)), . . . for p(x)/ steps, as long as a step result in a more than e decrease of the
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value of p. Then the existence of a point satisfying (PO1) is guaranteed because p(.) > 0.

Also notice the running time p(x)/E is not polynomial in the input size but pseudo-polynomial

instead.

Theorem 16. REAL LOCALOPT is PLS-complete.

Proof. We will see that any problem in PLS can be reduced to REAL LOCALOPT, by em-

bedding the solution space in small cubelets of [0, 1]3. At the centers of the cubelets the

values of f and p are defined so that they capture the neighborhood function and cost func-

tion of the original problem. Then p is extended to the rest of the cube continuously by

interpolation. We can see that f need not be continuous and we extended carefully so that

no new solutions are introduced.

More precisely, for a given instance (f, p) of LOCALOPT, our instance (f', p', A, E) of

REAL LoCALOPT satisfies the property that, for all x, y, z, y', z' E [0, 1] , p'(x, y, z) =

p'(x, y', z') and f'(x, y, z) = f'(x, y', z') in other words only the value of x is important

in determining the values of p' and f'. Now, for every n-bit string s, if x(s) E .... ,2n - 1}

is the number corresponding to s, we define p'(x(s) . 2-, y, z) = p(s) . 2-, for all y, z E [0, 1]

and f'(x(s) - 2-", y, z) = (x(f(s)) - 2-n" y, z), for all y, z C [0, 1]. To extend f' and p' to the

rest of the cube we do the following: p' is extended simply by linear interpolation. We have

to be a bit more careful in how we extend f' to the rest of the cube, so that we do not intro-

duce spurious solutions. For all i E {0, ... ,2n - 2}, if p'(i - 2~-n y, z) < p'((i + 1) - 2-n, y, z),

we set f'(i . 2- + t. (i + 1)2-n, y, z) to be equal to f'(i2-", y, z), for all t, y, z E [0, 1], while

if P'(i - 2-", y,z) > p'((i + 1) - 2-, y, Z), we set we set f'(i - 2-" + t- (i + 1)2--n IY, Z) to be

equal to f'((i + 1)2-n y, z) for all t, y, z E [0, 1]. Exceptionally, for x > 1 - 2-n", we define

f'(x, y, z) = f'(1 - 2-n, y, z), for all y, z C [0, 1]. Finally, we choose E = 0 and A = 2n, so

that p is guaranteed to be A-Lipschitz continuous. It is easy to verify that any solution to

the REAL LOCALOPT instance that we just created can be mapped to a solution of the PLS

instance (f, p) that we departed from.

We point out next that REAL LOCALOPT is in PLS, by showing a reduction in the

opposite direction, from real-valued to discrete. Suppose we are given an instance of

REAL LOCALOPT defined by a four-tuple (f, p, E, A). We describe how to reduce this instance
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to an instance (f' p') of LOCALOPT. For a choice of n that makes 2-,/3 sufficiently small

with respect to E and A, we identify the n-bit strings that are inputs to f' and p' with the

points of the 3-dimensional unit cube whose coordinates are integer multiples of 2 -n/3. The

value of p' on an n-bit string x is then defined to be equal to the value of p on x (viewed as

a point in the cube). Similarly, the value of f' on an n-bit string x is defined by rounding

each coordinate of f(x) down to the closest multiple of 2-n/3. Suppose now that we have

found a solution to LOCALOPT, that is an n-bit string x such that p'(f'(x)) p'(x). Notice

that f(x) and f'(x) are within 2-n/3 to each other in the f, norm. Hence, it should be that

11p(f(x)) - p(f'(x)) 11 < A . 2-n/3 (assuming that A is the purported Lipschitz constant of

p in the t, norm). If this is not the case, we have found a violation of the Lipschitzness of

p. Otherwise, we obtain from the above that p(f(x)) > p(x) - A2-' 3 , where we used that

p(x) = p'(x) and p(f(x)) = p'(f(x)). If n is chosen large enough so that E > A - 2-n/3, x is

a solution to REAL LOCALOPT. In the above argument we assumed that A is the Lipschitz

constant of f in the Lo norm, but this is not important for the argument to go through. L

4.2 The PPAD Complexity Class

The complexity class PPAD first appeared in the seminal paper of Papadimitriou at 1994

[481. The motivation is to capture the complexity of computing a fixed point whose existence

is guaranteed by the Brouwers Fixed Point Theorem. This was shown to be hard if we only

have black box access to the circuit that computes the values of f, by [32]. According to the

author:

In [37] the authors defined a broad and natural subclass of TFNP, namely

PLS (for polynomial local search). For a problem L in PLS we wish to find a

solution such that no neighbor has better cost. Thus, totality for functions in

PLS is established by invoking the following lemma:

Every finite directed acyctic graph has a sink.

The dag for invoking the lemma is the graph whose adjacency lists are the

NL(x, s), with arcs leading to nodes with no better cL omitted. In other words, we

68



can view NL and CL as an implicit syntactic way for specifying an exponentially

large dag. Class PLS contains a host of problems that are not known to be in FP

(the difficulty is, of course, that the dag may have exponential depth). Several

important problems are now known to be PLS-complete, including computing

a local optimum in the Lin-Kernighan heuristic for the TSP and computing a

stable configuration in Hopfield neural nets [37].

Like PLS, each of our new complexity classes can be seen as based on a

graph-theoretic lemma. Perhaps the most basic one is the parity argument:

Any finite graph has an even number of odd - degree nodes.

This last graph theoretic lemma is the basis for the definition of a class called PPA for

polynomial parity argument. An interesting whose complexity seems to be captured by PPA

is the Smith's theorem [53]. Which describes a procedure to find an alternative Hamilton

path given an initial Hamilton path. Although the relation of Smith's theorem with PPA

is clear, is not yet known if the corresponding computational problem is PPA-complete or

not.

We will concentrate to the directed version of PPA which based on the following graph-

theoretic lemma.

Any directed graph with total degree at most two,

has an even number of degree one nodes.

We call this class PPAD which stands for polynomial parity argument directed. In contrast

with PPA, for PPAD there are a lot of interesting and important computational problems

that are known to be PPAD-complete. The first two, SPERNER, BROUWER came from

the first publication of PPAD at 1992 and are closely related. A third very important one

is the NASH problem, which describes the complexity of computing a Nash Equilibrium in

polymatrix games. In the seminal work of Daskalakis, Goldberg and Papadimitriou [201 they

proved that NASH is PPAD-complete.
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Our interest in this class comes from the fact that BROUWER is complete for this class. As

we will see later BROUWER is very closely related with the REAL LOCALOPT problem that

characterizes the PLS class. We proceed with a formal definition of PPAD and BROUWER

and we state some important properties of them.

4.2.1 Formal Definition and Basic Properties

As in the case of PLS a problem L in PPAD satisfies (I), (II) and (III) and additionally

satisfies the following

(B1) the string 0 ... 0 belongs to FL (x).

(B2) there exists polynomial time algorithm PL, called predecessor, that for any solution s

returns another solution s'.

(B3) there exists polynomial time algorithm SL, called successor, that for any solution s

returns another solution s' 0 ... 0.

(B4) the result of RL(X, s) is equal to 1 if and only if

" s 0.. .0 and

* PL(SL(s)) $ s or SL(PL(s)) = s.

From a first reading its not clear why this definition captures the graph-theoretic lemma

that we started from. The situation becomes more clear if we define the underline graph

GL (x) as follows:

" the vertex set of GL(x) is FL(x),

* an edge (s, s') belongs to GL(x) if and only if PL(SL(s)) = s and SL (PL(s)) = s.

The reason for this way of definition of the class is that this definition, as well as the

definition of PLS, is a syntactic definition and not a semantic one. The existence of a syntac-

tic definition is very important since it enables the possibility of finding complete problems

for the class. We remind the reader that a semantic class unlikely has a complete problem

because of the Rice's Theorem [50]. This theorem states that any non-trivial property of a

Turing machine is undecidable and therefore there is no hope that we can check if a given

machine has the property or not.
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As in the case of PLS, if instead of an arbitrary node of degree one, we ask for the node

of degree one that appears in the other end of the path that starts from 0... 0 then this

problem is much harder. Namely in this case is PSPACE-hard.

Theorem 17. There exists a problem L E PPAD such that computing be the end of the

directed path in GL starting from 0 . . 0 is PSPACE-hard.

4.2.2 Characterization of PPAD in terms of

Fixed Point Computing

In this section we define a fixed point computing problem and prove that is PPAD-complete.

This gives a new characterization of PPAD that we are going to use latter on. The material

of this section comes from the work of Papadimitriou [48]. We are going to use again the

notion of arithmetic circuits as defined in the previous section.

Definition 23. For the BROUWER problem we are given the following:

(BI1) an arithmetic circuit that computes a function f : [0, 1]' -+ [0, 1]3.

(BI2) a rational number E > 0.

(BIS) a rational number A > 0.

and we ask for one of the following:

(B01) a point x c [0, 1]3 such that If (x) - xI < e.

(B02) two points x, x' E [0, 1]3 violating the A-Lipschitz continuity of f, i. e.

If (x) - f (x')jI > Aix - x'I.

It was proven in 148] that the BROUWER problem is PPAD-complete. Thus, BROUWER

gives an alternative definition of PPAD.

Theorem 18. BROUWER is PPAD-complete.

For the proof of the above theorem we refer to initial paper by Papadimitriou [48].

Looking at PLS and PPAD this way, as close relatives so to speak, is particularly helpful

when one considers the class PLS n PPAD.
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4.2.3 The Class PLS n PPAD

Unlike the complexity class NP n CONP, the class PLS n PPAD can be defined syntactically.

Therefore is has a complete problem, namely the EITHER FIXED POINT problem.

Definition 24. For the EITHER FIXED POINT problem we are given the following:

(EII) an arithmetic circuit that computes a function f [0, 1] 3 [0, 1]3.

(EI2) an arithmetic circuit that computes a function g: [0, 1]3 [0, 1]3.

(EIS) an arithmetic circuit that computes a function - potential p : [0,1]3 -+ [0,1].

(EI4) a rational number E > 0.

(EI5) a rational number A > 0.

and we ask for one of the following:

(EO1) a point x E [0, 1]3 such that If(x) - xI < e.

(E02) a point x E [0, 1]3 such that p(g(x)) > p(x) - E.

(EO3) two points x, x' E [0, 1]3 violating the A-Lipschitz continuity of f, i.e.

If(x) - f(x')I > Aix - x'j.

(E04) two points x, x' violating the A-Lipschitz continuity of p, i.e. jp(x) - p(x') I > Aix - x'I.

It has been proved in the work of Daskalakis and Papadimitrou [23] that this problem is

PLS n PPAD-complete.

Theorem 19. EITHER FIXED POINT is PLS n PPAD-complete.

Proof. The problem is clearly in both PLS and PPAD, because it can be reduced to

both REAL LOCALOPT and BROUWER. To show completeness, consider any problem C

in PPAD n PLS. Since BROUWER is PPAD-complete and C is in PPAD, there is a reduc-

tion such that, given an instance x of C, produces an instance f(x) of BROUWER of A, such

that from any solution of f(x) we can recover a solution of C. Similarly, there is a reduction

g from C to REAL LOCALOPT. Therefore, going from x to (f(x), g(x)) is a reduction from

C to EITHER FIXED POINT. E-

Now we are ready to define a main class that we will consider in this chapter and belong

to the intersection of PLS and PPAD, namely CLS.
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4.3 The CLS Complexity Class

From the definition of EITHER FIXED POINT, we can see that there should be an interesting

subproblem where the functions f and g in the definition of EITHER FIXED POINT problem

are the same. In this class the existence of a solution is guaranteed both by the continuity

of f and the Brouwer's Fixed Point theorem and by the continuity of p and the guaranteed

local optimum. We also observe that because of the continuity of p if we have a point such

that If(x) - x| I E then we also get that Ip(f(x)) - p(x) I Ae. Therefore a fixed point of

f satisfies also the local optimum of p requirement. For this reason we don't need to keep

the (EO1) possibility for the output but we can only ask for a point x that satisfies (E02).

This gives us the definition of the CONTINUOUS LOCALOPT problem.

Definition 25. For the CONTINUOUs LOCALOPT problem we are given the following:

(CI) an arithmetic circuit that computes a function f : [0,1]3 -+ [0,1]3.

(CI2) an arithmetic circuit that computes a function - potential p : [0,1] 3 -+ [0,1].

(013) a rational number E > 0.

(CI) a rational number A > 0.

and we ask for one of the following:

(C01) a point x E [0, 1]3 such that p(f (x)) > p(x) - E.

(CO2) two points x, x' E [0, 1]3 violating the A-Lipschitz continuity of f, i.e.

If (x) - f (x')I > Ax - x'|.

(CO3) two points x, x' violating the A-Lipschitz continuity of p, i.e. jp(x) - p(x')I > Aix - x'|.

We are now ready to define the CLS class.

Definition 26. The complexity class CLS is the set of search problems that can be reduced

to the CONTINUOUS LOCALOPT problem.

The main observation about CLS is that it is a subset of PLS n PPAD. The proof of

this just formalizes the argument that we present in the beginning of the section.

Theorem 20. CLS C PLS n PPAD.
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Proof. The fact that CONTINUOUS LOCALOPT is in PLS follows from the fact that it is a

special case of REAL LOCALOPT.

To show that it is also in PPAD, we provide a reduction to BROUWER. We reduce an

instance (f,p, A, E) of CONTINuous LOCALOPT to an instance (f, A, E/A) of BROUWER. If

on this instance BROUWER returns a pair of points violating f's Lipschitz continuity, we

return this pair of points as a witness of this violation. Otherwise, BROUWER returns a

point x such that

If Wx) XI N

In this case, we check whether

p(f (x)) - p(x) I < A 5 E

if this is not the case then we return x, f(x) as witness of violation of p's Lipschitz

continuity. Otherwise we have that

p(f(x)) p(x) - E

which again is a solution to CONTINUOUs LOCALOPT. l

The importance of CLS comes from the fact that a lot of interesting problem belong to

it. We give here a list of these problems without the proofs.

- Approximate Fix point of a Contraction Map (CONSTRACTION MAP). We are

given a function f : [0, 1]' -4 [0, 1]' and some constant c with the promise that f is

contracting with constant c with respect to 11 - lip norm. We seek an approximate fix

point of this function, or a violation of contraction.

- Linear Complementarity Problem for P-matrices. In this problem we are given

an n x n matrix M and a vector q, and we seek two vectors x, y with positive entries

such that

y=Mx+q, (x,y)=0

- Finding a stationary point of a polynomial.
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'-4 Simple Stochastic Games.

- Nash equilibrium in network coordination games.

9 Nash equilibrium in congestion games.

+ Nash equilibrium in implicit congestion games.

Surprisingly, very recently a line of work appeared that bases the hardness of CLS on

some cryptographic assumptions [341. The reason this is a surprising result is that these

classes were defined to capture the complexity of computing fixed points and this connection

to cryptography looks very strange and interesting!

4.4 Banach's Fixed Point is Complete for CLS

We can see that the CONSTRACTION MAP problem is very closely related with the discussion

we had in the previous chapter about the Banach fixed point theorem. The only restriction

is the fact that instead of an arbitrary metric function it assume the contraction property

with respect to one of the C, norms.

In this section we consider the general problem of computing a fixed point whose existence

is guaranteed by the Banach's fixed point theorem. In order to capture the aspect of an

arbitrary metric space we have to somehow provide as input the distance metric with respect

to which the input function is a contraction map. We do so by providing the distance metric

as an arithmetic circuit.

With these in mind and given the definition of a distance metric (Definition 4) we define

the following problem that we call NONMETRICBANACH.

Definition 27. For the NONMETRICBANACH problem we are given the following:

(Ia) an arithmetic circuit that computes a function

f : [0, 1]3 _+ [0, 1]3

(Ib) an arithmetic circuit that computes a distance metric function

d : [0, 1]3 X [0, 1]3 -+ R

(Ic) a rational numbers e > 0, A > 0, 1 > c > 0.

and we ask for one of the following:

(Qa) a point x E [0, 1]3 such that d(x, f(x)) < E.
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(Ob) two points x, x' c [0, 1]3 violating the contraction

d(f(x), f(x')) > c -d(x, x')

(Oc) two points x,x' E [0, 1]3 violating the A-Lipschitz

If (x) - f (x')I > Aix - x'I.

(Od) two points x, x' E [0,1]3 violating the A-Lipschitz

Id(x, f (x)) - d(x', f(x'))I > AIx - x'|.

property with constant c, Z. e.

continuity of f, i.e.

continuity of d(x, f(x)), i.e.

We are now ready to prove the first statement of this chapter.

Theorem 21. The NONMETRICBANACH problem is CLS-complete. In particular,

NONMETRICBANACH is a total search problem.

Proof. We will first show that NONMETRICBANACH belongs to CLS. Starting from an

instance

(f, d, e, A, c) we create the following instance

f'(x) = f (x)

p(x) = d(x, f(x))

'= (1 - c) - E

A' / A

Now we have to show that any result of the CONTINUOus LOCALOPT with input

(f, p, E', A) will give us a result of NONMETRICBANACH with input (f, d, E, A, c).

(CO1) =- If d(f(x), f (f(x))) > c -d(x, f(x)) then (x, f(x)) satisfies (Ob) and therefore is

a solution to NONMETRICBANACH. Otherwise

p(f (x)) ;> p(x) - E' => d(f (x), f(f (x)))

c - d(x, f (x)) > d(f (x), f (f (x)))

c -d(x, f(x))

(1 - c) -d(x, f (x))

d(x, f(x))

>K

>K

d(x, f(x)) - E' ->

d(x, f(x)) - E' ->

d(x, f(x)) - (1 - c) - E

(1 -c) - E -
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Therefore x satisfies (0a) and therefore is a solution of NONMETRICBANACH.

(CG2) = (Gc).

(CG3) -> (Od).

This means that any solution to CONTINUOUS LOCALOPT at the instance (f' , P, ' A')

can produce a solution to the instance (f, d, E, A, c) of the NONMETRICBANACH problem.

Therefore NONMETRICBANACH E CLS.

Now we are going to show the opposite direction and reduce CONTINUOUS LOCALOPT

to NONMETRICBANACH. Starting from an instance (f, p, e, A) of CONTINUOUS LOCALOPT

we define for any x, y E [0, 1]31

,(x, y) = mn {P(X) P(y)

We also remind the reader the definition of the discrete metric (Definition 6)

ds(x, y) = 1 if x # y and ds(x, x) = 0

Based on these definitions we create the following instance of NONMETRICBANACH

f'(x) = f ()

d(x, y) = cK(X Y)ds(x, y)

, I
C

A' max A, C-1/EA (/)

C= 1 - 0.16

As in the previous reduction we have to show that any result of the NONMETRIcBANACH

with input

(f, d, E', A, c) will give us a result of CONTINUOUS LOCALOPT with input (f, p, E, A).

(Ga) >== If p(f(x)) > p(x) then x satisfies (CG1) and therefore gives us a solution of

CONTINUOUS LOCALOPT. Otherwise we can see that r,(x, f(x)) = -p(x)/c and x $ f(x)
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so

d(x, f (x)) < E' =>- c-9 - <'

-> X log(1/c) log(E')

=P(x) E log(F')
-log(1/c)

->p(x) < e

now p(f(x)) > 0 > p(x) - E and so x satisfies (COI) and therefore gives us a solution of

CONTINUOUS LOCALOPT.

(Ob) ==> As in the previous case we may assume that p(f(x)) p(x) - E and that

p(f(y)) p(y) - E. This implies the following

p(f(x)) _ p(x) (4.1)

PY 1y)<PY (4.2)E E

Also without loss of generality we can assume that p(x) > p(y). If also p(f(x)) > p(f(y))

then K(x, y) = -p(x)/6 and i,(f(x), f(y)) = -p(f(x))/E. Therefore

P(-) (f (x))
d(x, y) = c-C d(f(x), f (y)) =c-

But because of (4.1) we have that if (0b) is satisfied then

d(f(x),f(y)) =c-P( > cc =cd(x, y)

This implies that

p(f(x)) p(x)> -
(f(x)) > PX fW)>p(X) - E

E 6

Therefore x satisfies (CO1) and therefore gives us a solution of CONTINUOUS LOCALOPT.

Now similarly if p(f(y)) > p(f(x)) then p(f(y)) > p(x) - e. But by our assumption that
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p(x) > p(y) we get p(f(y)) > p(y) - e. Therefore y satisfies (COI) and therefore gives us a

solution of CONTINUOUS LOCALOPT.

(Gc) -= (CG2).

(Gd) -> We will analyze the function h(x) = c-x when x E [0, 1/IE. By the mean value

theorem we have that the Lipschitz constant eh of h is less that maxe[o,1/,] h'(x). But

h'(x) = (e-xlnc)' = ln(1/c)-x

But because c < 1 we have that

max h'(x) = c- /ln(1/c)
xE[0,1/e]

As before if K(x, f(x)) 5 x then p(f(x)) > p(x) and therefore x is a solution to

CONTINuous LOCALOPT and the same for is true for y. Therefore d(x, f(x)) = c-P(x)/*

and d(y, f(y)) = c-P(Y)/E. We have

Id(x, f(x)) - d(y, f(y))I =c-P(')/E - c-P(Y)/E max h'(x)
(xE[O,1/E] E E

c-P()/F - c-P(Y)/" < c-1/jln(l/c) -p(y)i

Now if ip(x) - p(y)I > A~x - yj then x, y satisfy (CG3) and we have a solution for

CONTINUOUS LOCALOPT. So Ip(x) - p(y)i Aix - yi and from the last inequality we have

that

Id(x, f(x)) - d(y, f(y))I < C1/A n(l/c) x - y

But this contradicts with (Gd) since

A' = max A, c-1/EA (/)

Finally it is easy to see that the arithmetic circuit that we used for the reduction can

be computed in polynomial time by a Turing Machine. The only function that needs for

explanation is that of d. The reason is the term cK(',Y). Since c < 1 we need to bound the
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size of c-",Y. We observe that c-'(,y) < c-1/E = (1 - 0.1E) 1/e < e10 . Therefore the size of

c-'/' is bounded and can be computed in polynomial time.

The fact that NONMETRICBANACH is total comes easily from the fact that

NONMETRICBANACH E CLS.

Notice that the function d in the definition of NONMETRICBANACH does not satisfy the

properties of a distance metric function. But in order to be able to describe exactly the

application of Banach it's important to also have d to be a distance metric. It would be

even more exciting if d was a complete metric for our space which is [0, 1] 3. In order to

satisfy this conditions, surprisingly, we don't need to include these properties of d in the

NONMETRICBANACH problem. Instead we can put them in a semantic way and still the

problem will be complete for CLS.

We start with the semantic version of the NONMETRICBANACH problem but with also

the distance metric and the completeness assumptions.

Definition 28. The problem BANACH has the same input and output with the problem

NONMETRICBANACH, but we have also the promise that d satisfies the properties of a dis-

tance metric function (Definition 4) 1 and also ([0, 1]3, d) is a complete metric space.

Theorem 22. The BANACH problem is CLS-complete.

Proof. Obviously because of Theorem 21, BANACH belongs to CLS.

For the opposite direction, we use the same reduction as in the proof of Theorem 21.

We then prove that d satisfies the desired properties. We remind that we used the following

1

(i) for all x, x' E [0, 1]3, d(x, x') > 0.
(ii) for all x, x' E [0, 1]3, x : x' # d(x, x') # 0.

(iii) for all x, x' E [0, 1]3, d(x, x') = d(x', X).
(iv) for all x, y, z E [0, 1]3, d(x, y) > d(x, z) + d(z, y).
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instance of BANACH for the reduction

f'(x) = f (x)

d(x, y) = cK(x"Y)ds(x, y)

A' = max A, c 1 Aln(1/c)

We first prove that d is a distance metric.

(i) Obvious from the definition of d.

(ii) If x # y then ds(x, y) > 0. Also always cI,(xy) >

ds(x, x) = 0 we also have d(x, x) = 0.

(iii) It is obvious from the definition of K that K(X, y)

metric, the same is true for the ds and thus for d.

(iv) Without loss of generality we assume that p(x) ;

p(x) > p(y) > p(z) then we have d(x, y) = c-P(x)/,

therefore obviously d(x, y) d(x, z) + d(z, y).

0, therefore d(x, y) > 0. Now since

= K(y, x) and since ds is a distance

o(y). We consider the following cases

d(x, z) - c-P(x)/e, d(z, y) = c-P(Y)/E

p(x) > p(z) >

therefore

p(y) then we have d(x, y) = c-P(X)/,

obviously d(x, y) < d(x, z) + d(z, y).

d(x, z) = c-P(x)/, d(z, y) =

p(z) > p(x) > p(y) then we have d(x, y) = c-P(x)/6 d(x, z) = c-P(z)/e, d(z, y) =

therefore obviously triangle inequality is equivalent with

log(1/c) < P(Z) log(1/c) + log 2

which holds because of the assumption that p(z) > p(x).

Finally we will show the completeness of ([0, 1]', d). We first observe that for all x # y,

d(x, y) > 1, this comes from the fact that c < 1 and so c-P(x)/E > 1.
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Now let (xn) be a Cauchy sequence then V6 > 0, 3N E N such that Vn, m > N,

d(Xn, Xm) < 6. We set 6 = 1/2 then there exists N E N such that Vn, m > N, d(xn, Xm) <

1/2. But from the previous observation this implies d(Xn, Xm) = 0 and since d defines a

metric we get x, = xm. Therefore (Xn) is constant for all n > N and obviously converges.

This means that every Cauchy sequence converges and so ([0, 1]3, d) is a complete metric

space.
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Chapter 5

Runtime Analysis of EM for Mixtures of

Two Gaussians with known Covariances

In this chapter, we provide global convergence guarantees for the expectation-maximization

(EM) algorithm applied to mixtures of two Gaussians with known covariance matrices. We

show that EM converges geometrically to the correct mean vectors, and provide simple,

closed-form expressions for the convergence rate. As a simple illustration, we show that

in one dimension ten steps of the EM algorithm initialized at +00 result in less than 1%

error estimation of the means. This chapter is based on the of work of Daskalakis, Tzamos,

Zampetakis [241.

5.1 Introduction to EM

The Expectation-Maximization (EM) algorithm [27, 57, 49] is one of the most widely used

heuristics for maximizing likelihood in statistical models with latent variables. Consider

a probability distribution pA sampling (X, Z), where X is a vector of observable random

variables, Z a vector of non-observable random variables and A E A a vector of parameters.

Given independent samples x 1 ,... , x, of the observed random variables, the goal of maxi-

mum likelihood estimation is to select A E A maximizing the log-likelihood of the samples,

namely EZ log px(xi). Unfortunately, computing p.(xi) involves summing p\(Xi, zi) over all

possible values of zi, which commonly results in a log-likelihood function that is non-convex

with respect to A and therefore hard to optimize. In this context, the EM algorithm proposes
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the following heuristic:

" Start with an initial guess AM of the parameters.

" For all t > 0, until convergence:

- (E-Step) For each sample i, compute the posterior

Qt)(Z) := pAt(Z = zIX = xi)

- (M-Step) Set

A(t+l) : argmax Q M (z) log A(XiZ)

L Z Z)

Intuitively, the E-step of the algorithm uses the current guess of the parameters, A(t,

to form beliefs, Q t), about the state of the (non-observable) Z variables for each sample i.

Then the M-step uses the new beliefs about the state of Z for each sample to maximize with

respect to A a lower bound on EZ log p.(xi). Indeed, by the concavity of the log function,

the objective function used in the M-step of the algorithm is a lower bound on the true log-

likelihood for all values of A, and it equals the true log-likelihood for A = A(t. From these

observations, it follows that the above alternating procedure improves the true log-likelihood

until convergence.

Indeed we can view EM as an alternating maximization problem of the function

D(Q, A) = Q)(z) log PA(Xi, z) - (z) log Qj (z)
Q (z)

For the M-step it is obvious that

At+ :=arg max D(Q, A)

It is also not difficult to verify that

A(t+l := arg max D(Q, A)
Q
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Finally we observe that the log-likelihood is equal to D(Q(t+l), At). Therefore the likeli-

hood at every step increases.

Despite its wide use and practical significance, little is known about whether and under

what conditions EM converges to the true maximum likelihood estimator. A few works

establish local convergence of the algorithm to stationary points of the log-likelihood func-

tion 157, 54, 131, and even fewer local convergence to the MLE [49, 4]. Besides local conver-

gence to the MLE, it is also known that badly initialized EM may settle far from the MLE

both in parameter and in likelihood distance [57].

The lack of theoretical understanding of the convergence properties of EM is intimately

related to the non-convex nature of the optimization it performs. Our paper aims to illumi-

nate why EM works well in practice and develop techniques for understanding its behavior.

We do so by analyzing one of the most basic and natural, yet still challenging, statistical

models EM may be applied to, namely balanced mixtures of two multi-dimensional Gaus-

sians with equal and known covariance matrices. In particular, the family of parameterized

density functions we will be considering are:

P142 (x) = 0.5 - K(x; p1, E) + 0.5 - A(x; I2, E),

where E is a known covariance matrix, (Pi, P2) are unknown parameters, and .A(p, E; x)

represents the Gaussian density with mean t and covariance matrix E, i.e.

1
K(x; p, E) = I exp (-0.5(x - P)T E 1 (X - t

V/2ir det E

To elucidate the optimization nature of the algorithm and avoid analytical distractions

arising in the finite sample regime, it has been standard practice in the literature of theoretical

analyses of EM to consider the "population version" of the algorithm, where the EM iterations

are performed assuming access to infinitely many samples from a distribution p,,. 2 as above.

With infinitely many samples, we can identify the mean, Wt1A2, of 2, and re-parametrize
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the density around the mean as follows:

p,,(x) = 0.5 -AF(x; yt, E) + 0.5 -./(x; -s, E). (5.1)

We will study the convergence of EM when we perform iterations with respect to the

parameter yt of p,(x) in (5.1). Starting with an initial guess A 0) for the unknown mean

vector p, the t-th iteration of EM amounts to the following update:

A(t+l) = M(At) t) A P(t) * (5.2)

where we have compacted both the E- and M-step of EM into one update.

To illuminate the EM update formula, we take expectations with respect to x ~ pA

because we are studying the population version of EM, where we assume access to infinitely

many samples from p,,. For each sample x, the ratio O.5K(x;\(t) 'E is our belief, at step t,

that x was sampled from the first Gaussian component of p,,, namely the one for which our

current estimate of its mean vector is A(t). (The complementary probability is our present

belief that x was sampled from the other Gaussian component.) Given these beliefs for all

vectors x, the update (5.2) is the result of the M-step of EM. Intuitively, our next guess

A(t+l) for the mean vector of the first Gaussian component is a weighted combination over

all samples x ~ p, where the weight of every x is our belief that it came from the first

Gaussian component.

Our main result is the following:

Informal Theorem. Whenever the initial guess A 0) is not equidistant to yt and -it, EM

converges geometrically to either ty or -it, with convergence rate that improves as t -+ oc.

We provide a simple, closed form expression of the convergence rate as a function of A ( and

A.

A formal statement is provided as Theorem 24 in Section 5.4. We start with the proof

of the single-dimensional version, presented as Theorem 23 in Section 5.3. As a simple

illustration of our result, we show in Section 5.5 that, in one dimension, when our original
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guess A(') = +o and the signal-to-noise ratio p/o- = 1, 10 steps of the EM algorithm result

in 1% error.

Despite the simplicity of the case we consider, no global convergence results were known

prior to our work. Balakrishnan, Wainwright and Yu [4] studied the same setting proving

only local convergence, i.e. convergence only when the initial guess is close to the true pa-

rameters. In this work, we study the problem under arbitrary starting points and completely

characterize the fixed points of EM. We show that other than a measure-zero subset of the

space, any initialization of the EM algorithm converges in a few steps to the true parameters

of the Gaussians and provide explicit bounds on the convergence rate. To achieve this, we

follow an orthogonal approach to [4]: Instead of trying to directly compute the number of

steps required to reach convergence for a specific instance of the problem, we study the sen-

sitivity of the EM iteration as the instance varies. This enables us to relate the behavior of

EM on all instances of the Gaussian mixture problem and gain a handle on the convergence

rate of EM on all instances at once.

5.1.1 Related Work on Learning Mixtures of Gaussians

We have already outlined the literature on the Expectation-Maximization algorithm. Sev-

eral results study its local convergence properties and there are known cases where badly

initialized EM fails to converge. See above.

There is also a large body of literature on learning mixtures of Gaussians. A long line

of work initiated by Dasgupta [18, 2, 55, 1, 39, 19, 12, 10, 11] provides rigorous guaran-

tees on recovering the parameters of Gaussians in a mixture under separability assumptions,

while later work [38, 45, 6] has established guarantees under minimal information theoretic

assumptions. More recent work [31] provides tight bounds on the number of samples nec-

essary to recover the parameters of the Gaussians as well as improved algorithms, while

another strand of the literature studies proper learning with improved running times and

sample sizes [52, 22]. Finally, there has been work on methods exploiting general position

assumptions or performing smoothed analysis [33, 29].

In practice, the most common algorithm for learning mixtures of Gaussians is the Ex-

pectation - Maximization algorithm, with the practical experience that it performs well in a
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broad range of scenarios despite the lack of theoretical guarantees. In recent work, Balakr-

ishnan, Wainwright and Yu [4] studied the convergence of EM in the case of an equal-weight

mixture of two Gaussians with the same and known covariance matrix, showing local conver-

gence guarantees. In particular, they show that when EM is initialized close enough to the

actual parameters, then it converges. In this work, we revisit the same setting considered

by [41 but establish global convergence guarantees. We show that, for any initialization of

the parameters, the EM algorithm converges geometrically to the true parameters. We also

provide a simple and explicit formula for the rate of convergence. Concurrent and indepen-

dent work by Xu, Hsu and Maleki [58] has also provided global and geometric convergence

guarantees for the same setting, as well as a slightly more general setting where the mean of

the mixture. is unknown, but they do not provide explicit convergence rates.

5.2 Preliminary Observations

In this section we illustrate some simple properties of the EM update (5.2) and simplify the

formula. First, it is easy to see that plugging in the values A E {-p, 0, pt} into M(A, pt)

results into

M(-, A) = -P ;M(0, ) = 0 ; M(, t) = t. (5.3)

In particular, for all ji, these values are certainly fixed points of the EM iteration. Next, we

rewrite M(A, ji) as follows:

1 E 0.5K(x;A,E) ] + !E 0.5K(x;A,E)X
M (A, () 't ) [ (X) 2 ( (X) J

1 0.5K(x;,E) 1 05A(x A,E)
ILPx(X)i + 2 BXJ( (X)

It is easy to observe that by symmetry this simplifies to

______________________ _Af(x; A, E) - K(x; -A, )
M(A, p) = AE+ ,] = Ex~(,E) N[A(x; A, E) + Al(x; -A, E)

2 EX~(/,,E) _Lj(X;AE)+!Ar(x;-A,E)]
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Simplifying common terms in the density functions .A(x; A, E), we get that

exp (ATzE-X) - exp

exp (ATlx) + exp
(-A TE-x)

(-ATE-lx)
X]

We thus get the following expression for the EM iteration

M(A, 1) = Ex~g(/,E) [tanh(A T E- 1x)x]. (5.4)

5.3 Single-dimensional Convergence

In the single dimensional case the EM algorithm takes the following form according to (5.4).

(AWt x) x] (5.5)

Observe that the function M(A, p) is increasing with respect to A.

derivative of M with respect to A is

9M (Ay) = E~x-(,,a2) tanh'

Indeed the partial

A(t)x x 2 -(012 )/ 012J

which is strictly greater than zero since the tanh' function is strictly positive.

We will show next that the fixed points we identified at (5.3) are the only fixed points

of M(-, p). When initialized with A 0 ) > 0 (resp. A( 0 ) < 0), the EM algorithm converges to

1t > 0 (resp. to -p < 0). The point A = 0 is an unstable fixed point.

Theorem 23. In the single dimensional case, when A('), [ > 0, the parameters A() satisfy

where (jt) = exp -

Moreover )( is a decreasing function of t.

Proof. For simplicity we will use A for A(), A' for A(t+') and we will assume that X ~ .A(0, .2).
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By a simple change of variables we can see that

M(A, M) = E [tanh A(X + y)(x
02(X

The main idea is to use the Mean Value Theorem with respect to the second coordinate

of the function M on the interval [A, p].

M(A, p) - M(A, A) _ M(A, y)
p - A ay

with E (A, p)

But we know that M(A, A) = A and M(A, p) = A' and therefore we get

A'-A> min
tE[A,p]

aM(A, y) ( A
ay _ (-A)

which is equivalent to

IA'-i< (
- M(A, y)

- min IA-pl
E[Ap] Dy _

where we have used the fact that A' < p which is comes from the fact that M(A, P) is

increasing with respect to A and that M(p, it) = p.

The only thing that remains to complete our proof is to prove a lower bound of the partial

derivative of M with respect to p.

&M(A, y)

ay y=
=E -

101
(X+ ) +tanh

The first term is non-negative, Lemma 10. The second term is at least 1 -exp -min(CX)-

Lemma 11 and the theorem follows.

Lemma 10. Let a, 3 > 0 and X ~ A(a, o 2) then E [tanh' (3X/O. 2 ) X] > 0.

Proof.

tanh'QO y exp (yCe)2)dy

90
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A(X +
02

E Itanh'
(/X~

Ou2J)
X]

,A(X + )
tanh' ( 2
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But now we can see that since tanh' is an even function and since for any y > 0 we have

exp ( (a)) > exp (- Y-a) then

- tanh' fYy exp (y- a)2 dy 1 [ tanh' y exp dy9~2}ex - 2a72 jdY 7,1 j92 e 2a2 J

which means that E [tanh' (#X/U2 ) X] > 0. El

Lemma 11. Let a, > 0 and X ~ N(a, 0.2) then E [tanh (3X/. 2)] I - exp [_ a

Proof. Note that E [tanh (3X/O. 2 )] is increasing as a function of / as its derivative with

respect to 3 is positive by Lemma 10. It thus suffices to show that E [tanh (OX/U 2)] >

1- exp [-a] when /3 a. We have that

E [1 - tanh (#X/0.2)] = E 2 + E
] E exp(20X/0.2) + 1 ~- .exp( X/o.2)

(oo exp( X-)2 exp _ - +0)21o-2 dx e=p2 
00 exp dx

-__ exp(Ox/O.2) 2i- f x 2.2 d

=<exp ( exp -

which completes the proof.

5.4 Multi-dimensional Convergence

In the multidimensional case, the EM algorithm takes the form of (5.4). In this case, we will

quantify our approximation guarantees using the Mahalanobis distance ||11 between vectors

with respect to matrix E, defined as follows:

lix - y11E = 0/(x - y) T E-1(x - y).

We will show that the fixed points identified in (5.3) are the only fixed points of M(-, A).

When initialized with A 0) such that |A(0) - p1K < IA(0) + jill. (resp. -"A(O) _ >

|A(0) + p9j.), the EM algorithm converges to i (resp. to -M). The algorithm converges to

A = 0 when initialized with |A(0J - p I = I I ) + p . In particular,
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Theorem 24. Whenever IA(0) - IIr < IIA(O) + it , i.e. the initial guess is closer to yt

than -ft, the estimates A(t) of the EM algorithm satisfy

where r(t) = exp
min (A(t),TE-1A(t), IT E-1A(t))

Moreover, r,(t) is a decreasing function of t. The symmetric things hold when || A 0 - p|| >

0A() + tl. When the initial guess is equidistant to yt and -py, then A(t) = 0 for all t > 0.

Proof. For simplicity we will use A for A(t), A' for A(t+l).

By applying the following change of variables A +- E- 1/ 2 A and p j- E-1/2t we may

assume that E = I where I is the identity matrix. Therefore the iteration of EM becomes

M(A, p) = Ex~r(uI) [tanh( (A, x))x] = Ex~g(oj) [tanh((A, x) + (A, t.))(x + ti)]

Let A be the unit vector in the direction of A, A' be the unit vector that belongs to the

plane of p, A and is perpendicular to A, and let {vi = A, v2 = A', v3, ..., vd} be a basis of

Rd. We have:

(vi, A') = E,~g(o,I) [tanh((A, x) + (A, p))((vi, x) + (vi, p))] (5.6)

Since the Normal distribution is rotation invariant we can equivalently write:

(Vi, A\') = Q-',-Xd"-A/(0,1) [tanh((A,ZECj vj) + (A' .)) ((Vi, EOz!JvJ) + (Vi, W)

which simplifies to

(vi, A') = E1,...,a-A(o,1) [tanh(a1 IA II + (A, p))(ai + (vi, p))] =

Ea1 ~-(o,1 ) [tanh(a 1|Ail + (A, 1z)) - (E, 2 ,...,ad ~(O,1) [at] + (vi, p))]

We now consider different cases for i to further simplify Equation (5.7).

- When i = 1, we have that (A, A') = Ey~N(o,1) [tanh(IIAII (y + (A, M))) (Y
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This is equivalent with an iteration of EM in one dimension and thus from Theorem

23 we get that

j(AI) - (A, A')I ,K(A, p) - (A, A) (5.8)

where

min((A, A), (A, p))2
2

exp min((, A), (A p))2
2 (A, A)

- When i = 2, Ea2,. ,ad~(O,1) [a] + (vi, M) = (Ap) and thus

(A', A') = (A', A)Ey~A(, 1) [tanh(IIAll (y + (A, I)))

Let K as defined before and using Lemma 11 we get that

(A'I,1tt) > (,,A/) > (1- K) (kA'IA)

- When i > 3, Ea2,. .,adA(O,1) [ai] + (vi, p) = 0 and thus (vi, A') = 0.

We can now bound the distance of A' from p:

||A' -Al|= Z (vi, A' - 2

(5.8),(5.9) 2(AA - )2 + K2 (A',A - )2 < K IA - All

We now have to prove that this convergence rate K decreases as the iterations in-

crease. This is implied by the following lemmas which show that min((A, A), (A, p))

min((A', A'), (A', i))

Lemma 12. If ||Al| > (i, A) then (A,t) I|A'1| and (, A) 5 (k', p).

Proof. The analysis above implies that A' can be written in the form A' = a - A + / '

where (, A) 5 a < IIAIl and 0 < 3 5 (AL, A). It is easy to see that the first inequality
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holds since IIA'j a > (A, t). For the second, we write (A', 1 ) as:

(', 0 (A, ) +(AA, )(A , tp) = , == (A, tt) - 2 ( , L) > (A, p
||A11||Vla2 + M2 + 2 }1+ ( 2)2

where we used the fact that > which follows by the bounds on a and 0

Lemma 13. If |tAll (A,1p) then ||All IIA' (A', A).

Proof. We have that A' = a A + /3- A', where IAll a < (A, p) and 0 < / ( ,p).

We also have (A', I) = a(A, I) + /(AL, p) a2 +>2 2  a2  2 so the lemma

follows. E

Finally substituting back in the basis that we started before changing coordinates to

make the covariance matrix identity we get the result as stated at the theorem. El

5.5 An Illustration of the Speed of Convergence

Using our results in the previous sections we can calculate explicit speeds of convergence

of EM to its fixed points. In this section, we present some results with this flavor. For

simplicity, we focus on the single dimensional case, but our calculations easily extend to the

multidimensional case.

Let us consider a mixture of two single-dimensional Gaussians whose signal-to-noise ratio

r7 = P/o- is equal to 1. There is nothing special about the value of 1, except that it is a

difficult case to consider since the Gaussian components are not separated, as shown in

Figure 5-1. When the SNR is larger, the numbers presented below still hold and in reality

the convergence is even faster. When the SNR is even smaller than one, the numbers change,

but gracefully, and they can be calculated in a similar fashion.

We will also assume a completely agnostic initialization of EM, setting A 0) -+ +oO.1 To

analyze the speed of convergence of EM to its fixed point y, we first make the observation

that in one step we already get to AM1 < p + -. To see this we can plug A 0) - oc into

'In the multi-dimensional setting, this would correspond to a very large magnitude AM chosen in a

random direction.
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Figure 5-1: The density of }K(x; 1, 1) + }Af(x; -1,1).

equation (5.5) to get:

V) = ExAK(jjt'i2) [sign(x)x] = Ex,,( 2) [lxI]

which equals the mean of the Folded Normal Distribution. A well-known bound for this

mean is p + -. Therefore the distance from the true mean after one step is V) - pI < 0.

Now, using Theorem 23, we conclude that in all subsequent steps the distance to p shrinks

by a factor of at least e+1/2. This means that, if we want to estimate p to within additive

error 1%a, then we need to run EM for at most 2 - In 100 steps. That is, 10 iterations of the

EM algorithm suffice to get to within error 1% even when our initial guess of the mean is

infinitely away from the true value!

In Figure 5-2 we illustrate the speed of convergence of EM as implied by Theorem 24 in

multiple dimensions. The plot was generated for a Gaussian mixture with ft = (2 2) and

E = I, but the behavior illustrated in this figure is generic (up to a transformation of the

space by E-). As implied by Theorem 24, the rate of convergence depends on the distance

of A(t) from the origin 0 and the angle (A(t), tz). The figure shows the directions of the EM

updates for every point, and the factor by which the distance to the fixed point decays, with

deeper colors corresponding to faster decays. There are three fixed points. Any point that

is equidistant from p and -ti is updated to 0 in one step and stays there thereafter. Points

that are closer to ti are pushed towards yt, while points that are closer to -ti are pushed

towards -pi.
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Figure 5-2: Illustration of the Speed of Convergence of EM in Multiple

by Theorem 24.

Dimensions as Implied
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Chapter 6

Conclusions

This thesis is inspired by the increasing recent interest of artificial intelligence and machine

learning to the non-convex optimization. Despite this increasing interest, from a theoretical

point of view only few thing are known. The reason is that usually the non-convex opti-

mization problems are NP-hard. This prevents the theoretical worst-case analysis of any

algorithm that aims to solve these problems without any additional assumption. For this

reason the theoretical tools for analyzing the performance of these algorithms is very limited.

In this thesis we aim to contribute on creating such a toolbox to attack this kind of problems.

We start by exploiting the generality and power of the well known contraction mapping

technique. To this direction we get the following two results presented in Chapter 3 and

Chapter 4 respectively:

" we prove a converse to the Banach's Fixed Point Theorem. This converse theorem

suggests that any running time analysis of an iterative algorithm, can also be done

using the contraction map principle. The basic idea that enables this converse to

exists, is that anyone that wants to apply Banach's Fixed Point Theorem has the

power of designing its own distance metric for which the iteration is a contraction

map. Therefore contraction maps is a much more general tool than one could think.

As a proof of this concept we give a contraction mapping argument to bound the

running time of the power method for computing eigenvectors of a square matrix.

" we formulate Banach's Fixed Point Theorem in a concrete computational search prob-
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lem that lives in the TFNP class. We show that the computational complexity of

Banach's Theorem is completely captured by the CLS class. This result is important

in two ways. It is another evidence of the generality and the power of Banach's The-

orem and it also gives a non-trivial complete problem for CLS, a question that it was

left open in the work of Papadimitriou and Daskalakis [23].

In the second part of this thesis we consider on the most powerful and widely used

algorithm in machine learning and in science in general, the celebrated Expectation - Max-

imization (EM) algorithm. The theoretical analysis of EM algorithm has been a problem

left open for a lot of year since its definition by [26J. We are doing a big step towards this

direction by giving the first global analysis of EM when applied to mixtures of two Gaus-

sians. We also believe that the techniques used for this analysis contribute to the toolbox of

analyzing algorithms for non-convex optimization problems.

6.1 Future Directions

A lot of open problems and future directions arise when finishing this work. We will refer

here to a couple of those.

" it the complexity theoretic area, one interesting and important open problem is if the

Banach's Fixed Point Theorem is complete for CLS even in the case where the distance

metric function is not an input but it is the natural 11.1, of [0, 1]3.

" for the analysis of the EM algorithm, a lot of open problems are very interesting.

A first obvious one is how general can the techniques become, in order to prove the

convergence and the optimality of EM algorithm in other more general settings than

the mixture of two Gaussians.

An other interesting question arises in the cases that we already know that EM gets

trapped in local optima. For these cases the theoretical analysis of EM could suggest

appropriate initialization such that this bad behaviour disappears. This would be very

interesting even. from a practical point of view and would indicate the importance of

having a theoretical analysis for the machine learning algorithms.
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Finally beyond the specific problems that we mentioned the general goal of analyzing

heuristic or local search algorithms in machine learning is very important and attracts more

and more interest from the scientific community. In this direction the continuing development

of a good toolbox to attack these problems has high value and is something that will increase

our understanding and abilities to control the recent breakthroughs in the broader area of

artificial intelligence.
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