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Bioenergy and its use to mitigate the climate impact of aviation

by

Mark Douglas Staples

Submitted to the Institute for Data, Systems, and Society on December 16, 2016
in partial fulfdlment of the requirements for the degree of

Doctor of Philosophy in Engineering Systems

Abstract

The use of modern bioenergy presents an opportunity to mitigate CO2 emissions

contributing to anthropogenic climate change by offsetting fossil fuel use, and the work

presented in this thesis contributes to the literature on bioenergy and climate change
mitigation in three areas.

First, this thesis quantifies the maximum potential reduction in global lifecycle greenhouse

gas (GHG) emissions from the use of bioenergy to offset demand for fossil fuel-derived
electricity, heat and liquid fuels in 2050. The findings indicate that bioenergy could reduce

annual emissions from these end-uses by a maximum of 4.9-38.7 Gt CO2 e, or 9-68%. The

range of results reflects different assumptions defining potential bioenergy availability, and
fossil fuel demand that could by offset by bioenergy, in 2050. In general, assumptions

leading to greater calculated bioenergy availability, and fossil fuel demand, correspond to

larger reductions in anthropogenic GHG emissions. In addition, offsetting fossil fuel-fired
electricity and heat with bioenergy is found to be 1.6-3.9 times more effective for emissions
mitigation than offsetting fossil fuel-derived liquid fuel, on average. At the same time, liquid

fuels make up 18-49% of global final bioenergy in the scenarios considered for 2050,
demonstrating that a mix of bioenergy end-uses maximizes lifecycle emissions reductions.

The analysis also finds that GHG emissions reductions are maximized by limiting
deployment of total available primary bioenergy to 29-91%, showing that lifecycle emissions

including land use change (LUC) are a constraint on the usefulness of bioenergy for
mitigating global climate change.

Next, this thesis quantifies the environmental and economic performance of fermentation
and advanced fermentation (AF) technologies for the production of renewable middle

distillate (MD) fuels, including jet and diesel, in terms of lifecycle GHG emissions and
minimum selling price (MSP). The attributional lifecycle GHG emissions of AF MD derived
from sugarcane, corn grain and switchgrass are found to range from -27.0 to 19.7, 47.5 to
117.5, and 11.7 to 89.8 gCO 2e/MJMD, respectively, compared to 90.0 gCO'c/MJMD for

conventional petroleum-derived MD. These results are most sensitive to the co-product

allocation method used, the efficiency and utility requirements of feedstock-to-fuel
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conversion, and the co-generation technology employed. The MSP of MD fuel produced

from sugarcane, corn grain and switchgrass AF is also calculated as a range from 0.61 to

2.63, 0.84 to 3.65, and 1.09 to 6.30 USD20l 2 /literMD. For comparison, the price of MD fuel

was 0.80 USD 2O 2/literMD when this analysis was initially carried out in 2013, and was $0.38

USD2O 2/literMD at the time of writing. This analysis demonstrates that improvements in

overall feedstock-to-fuel conversion efficiency, for example from more efficient sugar

extraction, enzymatic hydrolysis, or metabolic conversion processes, could lead to reductions

in both the lifecycle GHG emissions and MSP of AF MD fuels.

The final contribution of this thesis is a dynamic cost-benefit assessment (CBA) of a policy

of large-scale alternative jet (AJ) fuel adoption, in terms of the societal climate damages and

fuel production costs attributable to aviation. A system dynamics model is developed to

capture time- and path-dependence of the environmental and economic performance of AJ

technologies, as well as potential non-linearities and feedbacks associated with their

adoption. The analysis finds that the large-scale use of AJ could result in a reduction in the

net present value (NPV) of the societal costs of aviation, in terms of climate damages and

fuel costs. However, even for the most promising feedstock-to-fuel production pathways

considered, a net reduction in the societal costs of aviation has a probability of less than 50%

if the initial societal opportunity cost of AJ feedstock exceeds 140 USD 2 015 /tfeedstock, or if land

use change (LUC) emissions associated with incremental feedstock demand exceed 4.2

tC2/inc. feedstock* These results highlight the potential importance of waste- and residue-derived

AJ for reducing the societal costs of aviation, as these feedstocks represent a lower risk of

LUC emissions and potentially lower societal opportunity costs than commodity crops.
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1. Introduction

According to the Intergovernmental Panel on Climate Change (IPCC), "warming of the climate

system is unequivocal, " and anthropogenic greenhouse gas (GHG) emissions are "extremely likely

to have been the dominant cause of the observed warming" [1]. Carbon dioxide (CO2) emissions are of

particular importance, as increased atmospheric CO 2 concentrations account for

approximately two thirds of radiative forcing contributing to climate change [2].

Furthermore, CO 2 emissions from fossil fuel combustion and other industrial processes

make up approximately 60% of total anthropogenic GHG emissions since the pre-industrial

era [1]. If unmitigated, climate change will have '"evere, pervasive, and irreversible impacts for people

and ecosystems," including increased frequency and intensity of extreme weather events, ocean

acidification, and sea-level rise [1]. Therefore, reducing CO 2 emissions from fossil fuel

combustion is crucial for abating the adverse impacts of global climate change on society.

This thesis focuses on a means of mitigating fossil fuel CO 2 emissions that has historical

precedent: the use of biomass to satisfy energy demand. As shown in Figure 1, biomass and

charcoal constituted >90% of fuel consumption up until approximately 1700 Current Era

(CE), and the dominance of fossil fuels as a source of primary energy source is a relatively

new development on the timescale of human history.
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Figure 1: Approximate shares of global fuel consumption, adapted from Smil (2004) [3]. BCE stand for Before

Current Era.

Traditionally, biomass has been used as a fuel for cooking, heating, and small-scale

manufacturing. However, this thesis concerns the use of modern bioenergy for industrial-

scale electricity and heat generation, and the production of liquid transportation fuels,

particularly for use in aviation. CO2 emissions from the combustion of biomass and biomass-

derived fuels are biogenic, meaning that carbon in the fuel comes from atmospheric CO2

recently sequestered during photosynthesis. As a result, bioenergy combustion does not add

geologically sequestered carbon to the terrestrial biosphere-atmosphere carbon cycle in the

same manner as fossil fuels. In addition to this CO, emissions benefit, the use of modern

bioenergy is motivated by regionally- and context-dependent factors, including: the desire for

domestically-sourced, secure, and diverse energy systems; the promotion of rural economic

development; and the renewable nature of biomass resources [4,5].

This thesis quantifies the environmental and economic impacts of mitigating CO2

combustion emissions from fossil fuels with the use of bioenergy, with an emphasis on
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biomass-derived fuels suitable for use in aviation, and in doing so contributes to the field of

environmental and economic technology assessment.

Key contributions

The first contribution of this thesis is to quantify the maximum potential reduction in

anthropogenic GHG emissions from the use of bioenergy to offset demand for fossil fuels,

accounting for lifecycle and land use change (LUC) emissions. The results show that

bioenergy could mitigate GHG emissions from fossil fuel-derived electricity, heat and liquid

transportation fuels by 9-68% in 2050, but that this potential is constrained by the lifecycle

and LUC emissions attributable to bioenergy, as well as the lifecycle emissions of the fossil

fuel it is offsetting. As a result, only 29-91% of available primary bioenergy is deployed in

order to maximize emissions reductions. The range of scenario results calculated in this

analysis show that the magnitude of anthropogenic GHG emission mitigation is a function

of the potential availability of bioenergy resources, and the demand for fossil fuels that

bioenergy could offset in 2050. In addition, although offsetting fossil fuel-fired electricity

and heat with bioenergy is found to be more effective for GHG emissions mitigation on

average, the results demonstrate that a mix of bioenergy end-uses, including liquid

transportation fuels, is required to maximize to global GHG emissions reductions.

The second contribution is to quantify the lifecycle GHG emissions and minimum selling

price (MSP) of renewable middle distillate (MD) fuels from fermentation and advanced

fermentation (AF) production technologies. This thesis demonstrates that AF MD fuels

could offer a reduction in attributional lifecycle GHG emission of 30-86%, but that this

environmental benefit comes at a cost of production that is approximately 2-5 times the cost

of conventional petroleum-derived MD fuels. This thesis also quantifies the influence of key

technology choices and parameters, such as feedstock type, target platform molecule, and

enzymatic and metabolic efficiencies, in order to identify opportunities for reductions in the

lifecycle GHG emissions and production costs of AF MD fuels. This analysis shows that

both the lifecycle GHG emissions and production costs of AF MD fuels can be reduced

through increases in overall feedstock-to-fuel conversion efficiency.

14



Finally, this thesis presents a dynamic cost-benefit assessment (CBA) of a policy of large-

scale adoption of alternative jet (AJ) fuel by quantifying the societal impact in terms of

climate damages and fuel production costs. The findings show that large-scale AJ adoption

could reduce the costs of aviation to society, but that this is contingent on a number of

parameters. The lifecycle GHG emissions and production cost characteristics of the AJ

feedstock-to-fuel pathway of interest, the societal opportunity cost of feedstock, the LUC

emissions associated with incremental feedstock demand, and the assumed societal discount

rate, are all found to drive the balance of the societal costs and benefits of a policy of large-

scale AJ adoption. The results show that a net reduction in the climate damages and fuel

production costs of aviation has a probability of less than 50% unless the initial societal

opportunity cost of AJ feedstock is below 140 USDOl5 /tfedesock, and LUC emissions

associated with incremental feedstock demand are less than 4.2 tCO 2/tinc. feedstock. These results

demonstrate that minimizing the risk of LUC emissions, and the societal opportunity costs

of feedstock, maximizes the probability of a reduction in the societal climate and fuel

production costs of aviation. The use of AJ derived from waste and residue feedstocks is

identified an opportunity to achieve both of these objectives.

Thesis organization

The remainder of this thesis is organized as follows: Chapter 2 quantifies the limits of global

bioenergy resources to mitigate fossil fuel GHG emissions; Chapter 3 presents a lifecycle

and techno-economic analysis of AF production technologies; and Chapter 4 presents a

dynamic CBA of large-scale AJ adoption. Chapters 2, 3 and 4 are each organized by

Motivation and context, Methods and materials, Results and discussion, and Summary

sections. Chapter 5 summarizes the conclusions of this thesis, and briefly discusses areas for

future work.
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2. The limits of bioenergy for mitigating global lifecycle

greenhouse gas emissions from fossil fuels

Motivation and context

The use of bioenergy, in the form of biomass or biomass-derived fuels, represents an

opportunity to reduce anthropogenic greenhouse gas (GHG) emissions from fossil fuels.

This is due to the biogenic nature of combustion CO 2 emissions from bioenergy that, in

contrast to fossil fuels, do not represent an addition of CO 2 to the terrestrial biosphere-

atmosphere carbon cycle.

However, there are also GHG emissions associated with the cultivation, transportation, and

conversion of bioenergy to final energy products, and lifecycle analysis (LCA) is a method

that has been employed to quantify these emissions. For example, the Greenhouse Gases,

Regulated Emissions, and Energy Use in Transportation (GREET) model, among others,

has been used to quantify the lifecycle 100-year global warming potential (GWPIOO) CO 2 -

equivalent (CO 2 e) emissions attributable to biomass-derived transportation fuels [6-12],

electricity, heat and other energy carriers [12-14], as well as their fossil fuel analogs. In

addition, consequential LCA has been used to estimate the aggregate change in emissions to

the environment due to specific policies or actions by employing partial- and general-

equilibrium economic models of the market-mediated impacts of bioenergy use. A number

of studies have demonstrated the importance of consequential lifecycle emissions associated

with the large-scale adoption of bioenergy, specifically the contribution of CO 2 emissions

from land use change (LUC) [15-17]. LUC emissions occur when a parcel of land is used in a

different way than it had been used previously, resulting in a one-time change in the quantity

of carbon stored in the soil and biomass on that land. For example, the conversion of

natural grassland in the US to cropland for corn cultivation results in a reduction of the soil

and biomass carbon stock of the land of approximately 37 Mge/ha [18], and this carbon is
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emitted to the atmosphere as CO 2 through biomass burning or microbial decomposition

[19,20].

A large body of work has also quantified the size of the global bioenergy resource. Early

studies focused on estimating the land area available for cultivation and future biomass

productivity, finding that many hundreds of exajoules of primary bioenergy are potentially

available annually [21,22]. Subsequent studies have quantified bioenergy potentials that are

cost-effective, avoid competition with food or feed production, or limit the environmental

impacts of large-scale adoption [23-25]. Generally, these additional considerations result in

lower estimates of primary bioenergy potential, on the order of approximately 100 EJ/yr.

Despite these advances, significant uncertainties remain in the literature regarding the

determinants of global bioenergy availability. For example, a recent review of 90 studies

indicates that by mid-century bioenergy crops, forestry, residues, and wastes could satisfy

~100-600 EJ of annual global primary energy demand, where the broad range of results are

driven primarily by assumptions regarding future demand for food, agricultural productivity

gains, and the availability of land for energy crop cultivation [26]. For context, the

International Energy Agency (IEA) estimates that global demand for primary energy will be

between 681 and 929 EJ/yr by 2050 [27] Although this continues to be an active area of

research, no peer-reviewed analysis to date has quantified the potential for bioenergy to

contribute to anthropogenic GHG emissions reductions, accounting for both the limits of

bioenergy availability and lifecycle GHG emissions including LUC.

This chapter presents a model of future land availability, areal bioenergy yields, and lifecycle

emissions including LUC, with the aim of establishing the relationship between global

availability of bioenergy and the potential for GHG emissions reductions. The hypothesis

behind this analysis is that the use of bioenergy for GHG emissions mitigation is constrained

not only by growth in biomass productivity and the availability of land for energy crop

cultivation in the future, as has been established in the literature [26], but also by the lifecycle

emissions of final energy derived from biomass relative to the fossil fuels that bioenergy

would replace. This hypothesis is tested by quantifying the maximum achievable reductions

in lifecycle GHG emissions in 2050 from the allocation and deployment of bioenergy
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resources to offset fossil fuels. The findings represent an estimate of the limits of the GHG

mitigation potential of bioenergy, and of the degree to which bioenergy can contribute to

climate stabilization goals by mid-century.

Methods and materials

In order to quantify the potential for bioenergy to mitigate lifecycle GHG emissions from

fossil fuels, there are four major components to the analysis presented here: the availability

of primary bioenergy; the availability of final energy carriers derived from primary bioenergy

and the associated lifecycle GHG emissions; fossil fuel final energy that could potentially be

offset by bioenergy and the associated lifecycle GHG emissions, and; the allocation of

bioenergy resources amongst competing end-uses to maximize GHG emissions reductions.

Primary bioenergy availability

Energy crops

The potential availability of energy crops in 2050 is quantified by using data from three

sources: Food and Agriculture Organization of the United Nations, Statistics Division

(FAOSTAT) data is used to project average energy crop yields in future years based on

empirical data [28]; maximum agro-climatically attainable yields from the Global Agro-

ecological Zones model (GAEZ) are scaled to reflect geo-spatial heterogeneity in crop yields,

and to provide a theoretical upper bound on areal yields of above ground biomass [29]; and

the Land Use Harmonization (LUH) database is used to estimate land availability for energy

crop cultivation in 2050 [30].

An example of the yield projection method is shown in Figure 2 for soybean oil in the

countries of the Organization for Economic Co-operation and Development (OECD).

FAOSTAT empirical yield data is collected for five world regions [28]: the Middle East &

Africa (MAF); Latin America (LAM); Asia, excluding the Middle East, Japan and Former
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Soviet States (ASIA); OECD countries, and; the reforming economies of Eastern Europe

and the Former Soviet Union (REF). The yield data is then extrapolated in each world

region under three different linear yield growth rate assumptions, corresponding to: the same

rate as the slowest world region from 1995-2015; the same rate as the fastest world region

from 1995-2015; and the same rate as the region of interest from 1995-2015. The

extrapolated areal yields are limited on the high end by maximum agro-climatically attainable

average yields in the region of interest from the GAEZ model [29], as can be seen for the

high growth rate case in Figure 2. This procedure is repeated for 8 crop types in each world

region. The resulting average yield projections are used to scale geo-spatially resolved data

from the GAEZ model, in order to reflect location-specific heterogeneity in crop yields.

1000

* MAF
900

* LAM
Maximum agro-climaticallyA ASIA attainable average yield in OECD

800 x OECD Fastest 20-year linear growth

x REF rate among world regions

xx xg x,

700 
4%rtfo fo

600 ....

Soy oil yield E X
[kg oil/ha] 500 x x X E E

x * 0 *

400 ME 0 Slowest 20-year linear growth
rate among world regions

300 a

200

100

0
1990 2000 2010 2020 2030 2040 2050

Year

Figure 2: Extrapolation of soybean oil yields to 2050 in OECD countries.

The availability of arable land for energy crop cultivation is estimated based on LUH data,

which describes projected 2050 land use patterns at 0.50 resolution in terms of five

categories: cropland, pastureland, urban land, primary land and secondary land [30]. This

analysis assumes the priority of land requirements for food and feed production, human

19



development, and eco-system protection in 2050, meaning that all land areas projected for

these uses are assumed apriori to be unavailable for energy crop cultivation.

100 cm soil and biomass carbon stock data developed for Global Trade Analysis Project

(GTAP) Agro-ecological Zones Emissions Factor (AEZ-EF) database is used to account for

emissions from LUC to establish energy crops on forestland and pastureland [31]. LUC

emissions factors are calculated in tco 2/ha for the conversion of forested or pastureland to

the cultivation of C3 crops (e.g. soybean, rapeseed, jatropha, cassava, sugarbeet, reed canary

grass), C4 crops (e.g. switchgrass, corn grain, sorghum, miscanthus), palm oil, or sugarcane.

Combining the areal yield, land availability, and LUC emissions data described above results

in a database of energy crop production potential and the associated LUC emissions in 2050

from starchy, sugary, vegetable oil and lignocellulosic energy crops, globally resolved at

0.083'. Note that, although this analysis does not explicitly consider primary bioenergy

availability from forestry (other than residues), the potential availability of bioenergy from

the establishment of energy crop cultivation (including lignocellulosic crops) on forestlands

is included.

Residue and waste feedstocks

Primary bioenergy from crop residues is calculated from the potential availability of energy

crops, as described above, coupled with a range of food crop production projections that

reflect the Shared Socio-economic Pathways (SSP) from the Intergovernmental Panel on

Climate Change (IPCC) [32]. Residue to primary crop ratios are estimated from Lal (2005),

and a range of net residue availability of 14.0% to 47.5% is assumed [33-36].

The availability of primary energy from forestry residues is quantified from estimates of

industrial roundwood and woodfuel production in 2050 [37], combined with estimates of the

net availability of logging and wood processing residues that range from 8.0% to 35.5% and

1.0% to 26.3%, respectively [36-38].
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The availability of waste fats, oils and greases (FOG) is estimated from livestock production

projections scaled to the SSP scenarios [39], together with a range of estimates of livestock

species-specific net waste FOG availability [40-42].

Scenario definition for primary bioenergy availability

In order to capture variability in the underlying assumptions, three scenarios (low, mid, and

high) are defined for the availability of primary bioenergy in 2050. The parameter

assumptions that correspond to the three scenario definitions can be found in Table 1.

Table 1: Parameter definition for 2050 primary bioenergy availability scenarios

Low Mid High

Energy crop Low Mid High
yield growth

2050 land use scenario RCP 8.5 RCP 6.0 RCP 4.5
from LUH database

Energy crops
Pastureland 0.0% 10.0% 20.0%
availability %

Agro-climatic SI > 70 SI > 55 SI > 40
suitability threshold [IIASA 2012] [IIASA 2012] [IIASA 2012]

Socio-economic scenario
from SSP database

Residue & waste

SSP3 SSP4 SSP5

Net crop residue 14.0% 28.9% 47.5%
availability

Net forest residue Logging: 8.0% Logging: 19.8% Logging: 35.5%
availability Processing: 1.0% Processing: 8 .1% Processing: 26.3%

Net waste FOGs
availability 30.0% 50.0% 70.0%

Further detailed information about the methods and data used to model 2050 primary

bioenergy availability, as well as derivation of the parameters and assumptions defined in

Table 1, can be found in Appendix A.
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Final bioenergy availability and associated lifecycle GHG emissions

The availability of final energy derived from biomass, and the associated lifecycle GHG

emissions per unit of final energy, is calculated by considering four potential end-uses for

bioenergy: biomass combustion for electricity generation; biomass combustion for heat

generation; production of renewable liquid fuels interchangeable with light distillate

petroleum-derived fuels (such as ethanol or renewable gasoline); and production of

renewable liquid fuels interchangeable with middle and heavy distillate petroleum-derived

fuels (such as renewable diesel). It is important to note that biomass resources could also be

allocated to end-uses beyond those studied here in order to mitigate GHG emissions, such

as bio-chemicals or the use of plant-based foods to offset demand for livestock production.

However, this analysis focuses on these four end uses because energy-related emissions

currently make up approximately 68% of total annual anthropogenic GHG emissions [43].

In order to capture these different feedstock end-uses, 35 representative biomass-to-final

energy carrier pathways are modeled. The conversion efficiencies, attributional lifecycle

GHG emissions factors, and energy allocation factors for LUC emissions associated with

each conversion pathway, are derived from the GREET1 2015 database. Lifecycle GHG

emissions factors are reported in grams of GWP100 CO 2e per MJ of final energy, according to

IPCC AR5 [44]. This data is given in Table 2.

Because this analysis is carried out for 2050, and the infrastructure required to produce the

calculated quantities of final bioenergy would need to be newly constructed, the highest

efficiency feedstock-to-final energy conversion factors in the GREET1 2015 database are

assumed. In the case of bio-heat and bio-electricity generation, these are industrial boiler and

integrated gasification combined cycle (IGCC) technologies, with thermal efficiencies of

80% and 45%, respectively. The allocation ratios reported in Table 2 correspond to an

assumption of energy allocation at all steps of the LCA. Note here that the lifecycle GHG

emissions factors listed in Table 2 do not include LUC emissions associated with the

establishment of energy crop cultivation on pastureland and forestland, and that LUC

emissions are accounted for in a subsequent step using the GTAP AEZ-EF database [28].
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Table 2: Feedstock-to-final energy conversion factors, LUC allocation ratios and attributional lifecycle GHGs.

Final fossil Final energy
carrier offset carrier Feedstock

Feedstock-to-final Feedstock-to-final Energy allocation Attrib. LCA GHG of
energy conversion energy conversion Feedatock factor for LUC final energy carrier

technology [MrJ.mi_ /kgf.1.] units emissions [gCO2e/MJ5 .~...,]
Source

Soybean 42.1% 31.5

Rapeseed 68.7% 39.1
Hydroprocessed esters 39.6 Oil

Jatropha and fatty acids (HEFA) 70.2% 38.8

GREET1 2015

Palm oil 92.9% 23.7
Middle & heavy Renewable
distillate fuels diesel

Swltchgrass 8.4 8.9

Miscanthus Fischer-Tropsch
gasification and 8.9 Dry biomass 100.0% 6.6

Reed canary synthesis Derived from miscanthus
grass renewable diesel

Agricultural 10.1 5.5 GREETi 2015
residue

Corn grain 4.Corn grain (15.5% mst.) 40.9
9.3 GREET1 2015

Grain Sorghum grain 60.9% 50.4
sorghum (12.4% mst.)

Cassava Fermentation 3.Cassava root Derived from com grain ethanol
(59.7% mst.) on the basis of starch content

Sugarane 1.7 Wet sugarcane GREET1 2015
(50% mst.)

82.7% 24.5
Sugarbeet root Derived from sugarcane ethanol

EtH Sugarbeet 2.4 (75% mst.) on the basis of sugar content

Switchgrass 7.5 17.7

GREET1 2015

Miscanthus
Enzymatic hydrolysis 8.0 Dry biomass 90.8% 11.9

Reed canary and fermentation Derived from miscanthus
grass renewable ethanol

Agricultural 9.0 9.2 GREET1 2015
Light distillate residue

fuels
Soybean 42.1% 29.3

Rapeseed 68.7% 35.9

3atropha 36.6 oil 70.2% 35.5

Palm oil 92.9% 17.7 GREETI 2015

Renewable Fischer-Tropsch
gasoline Waste FOG gasification and 34.4

synthesis

Switchgrass 8.3 8.8

Miscanthus 100.0%
8.9 Dry biomass 6.5

Reed canary Derived from miscanthus
grass renewable gasoline

Agricultural 10.0 5.5 GREET 2015
residue

Switchgrass 16.8 11.2

GREET1 2015

Miscanthus
Fossil fuel-fired Bio-fired Industrial boiler 17.8 Dry biomass 100% 7.3

heat heat Reed canary (17=80%) Derived from miscanthus-fired
grass heat generation

Agricultural 17.1 13.8 GREET1 2015
residue

Fossil fuel-fired Bio-fired
electricity electricity

Switchgrass

Miscanthus

Reed canary
grass

Agricultural
residue

Forestry
residue

Integrated gasification
combined cyce (IGCC)

(q1=45%)

7.6

8.0

7.7

9.1

Dry biomass 100%

27.5

18.7

18.8

12.8

GREET1 2015

Derived from miscanthus-fired
electricity generation

GREET1 2015
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Fossil fuel-derived final energy and associated lifecycle emissions

The GHG emissions mitigation potential of bioenergy depends upon the quantity and

lifecycle emissions of the fossil fuels that it could offset. Therefore, 2050 projected demands

for fossil fuel-derived transportation fuels, electricity, and heat are taken from the 2DS, 4DS

and 6DS scenarios of the 2014 International Energy Agency Energy Technology

Perspectives (IEA ETP) report and database [27]. These scenarios reflect three possible

futures for the global energy system in 2050, resulting in projected mean global temperature

changes of 2'C, 4'C and 6*C by 2100. In addition, a distribution of the lifecycle GHG

emissions associated with each of the end uses is estimated in order to reflect the global

distribution of fossil fuel-to-final energy pathways with differing lifecycle GHG emissions.

Crude oil-derived transportation fuels

The proportion of crude oil from conventional (including natural gas liquids for the

purposes of lifecycle GHG emissions) and unconventional sources (oil sands and tight oil

for the purposes of lifecycle GHG emissions) is estimated from the IEA World Energy

Outlook (2014) [45]. The resulting demand for light, middle, and heavy distillate fuels, and

the crude oil mix is shown in Table 3.

Table 3: Summary of 2050 petroleum-derived light- and middle & heavy distillate final energy demand, and crude

oil mix.

Mean global temperature Global light distillate fuel Global middle & heavy distillate Proportion of crude oil Proportion of crude oil
change by 2100 final energy demand fuel final energy demand from conv. sources from unconv. sources
[IEA ETP 2014] [EJI/yr] [EJ/yr] [%] [0/]

20C 14.3 28.6 89.1% 10.9%

40C 60.6 54.7 83.9% 16.1%

60C 74.8 60.1 82.7% 17.3%

A truncated triangular distribution of emissions factors is fit to the 2050 projections for

global final energy demand for transportation fuels. The maximum and minimum emissions

factors for light- and middle- & heavy-distillate fuels are defined by the values for gasoline

and diesel derived from Canadian oil sands and conventional crude production, respectively,
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from GREET1 2015, and the average value is the weighted average of the unconventional

and conventional values, defined by the proportions shown in Table 3 [44]. The resulting

distribution parameters are shown in Table 4.

Table 4: Triangular distribution parameters for light- and middle- & heavy-distillate transportation fuel final

energy demand in 2050.

Mean global temperature Light distillate fuel Middle & heavy distillate fuel

change by 2100 [gCO2e/MJLD] [gCO 2e/MJMD]

[IEA ETP 2014] Min Max Peak Min Max Peak

20C 97.6 91.2

40C 95.2 117.0 98.7 88.9 109.9 92.3

60C 99.0 92.6

Fossil fuel-fired electricity

2050 demand for combustion-generated electricity, and the proportions of electricity

generated from coal, oil and natural gas, is estimated from the IEA ETP temperature change

scenarios [27], and global average thermal efficiency of electricity generation is estimated for

each fuel by dividing final energy demand by primary energy demand in each scenario.

Average thermal efficiency is used to estimate the average lifecycle GHG emissions factor of

electricity generated from each fuel source, and the lowest and highest efficiency

technologies for that fuel source define the maximum and minimum emissions factors from

GREET1 2015 [44]. These parameters are used to fit a truncated triangular distribution of

emissions factors to the 2050 projections for global final energy demand from coal, oil and

natural gas-fired electricity generation. This data is given in Table 5, broken out by scenario

and fuel source.
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Table 5: Summary of 2050 fossil fuel-fired electricity demand and triangular distribution parameters.

Mean global
temperature change

by 2100
[lEA ETP 2014]

Final energy
electricity demand

[EJ/yr]

Average thermal
efficiency

[%/]

LCA emissions factor
[gCO 2e/MJ.e]

Min Max Average

Note

2*C 16.8 38.4% 282.0

Coal 40C 44.5 41.7% 240.2 284.4 261.1 Min - IGCCMax - steam cycle

60 C 71.3 39.8% 272.8

20C 0.4 40.0%

Oil 40C 0.9 40.0% 249.0 292.9 249.0 Mi - ICEMax - oil-fired gas turbine

60C 1.6 40.0%

20C

40 C

60C

21.3

44.8

52.8

50.5%

53.0%

53.1%

162.6

119.1 228.4 151.1

150.7

Mxn - IGCC
Max - NG-fired ICE

Fossil fuel-fired heat

2050 demand for combustion-generated heat, and the proportional mix of fossil fuels, is also

defined by the IEA ETP temperature change scenarios [27]. A range of lifecycle GHG

emissions factors for each fossil fuel is estimated from GREET1 2015, and is used to fit a

truncated triangular distribution of emissions factors to the 2050 projections for global final

energy demand from coal, oil and natural gas-fired heat generation, given in Table 6.

Table 6: Summary of 2050 fossil fuel-fired heat demand and triangular distribution parameters.

Mean global
temperature

change by 2100
[lEA ETP 2014]

20C

40C

60C

Final energy
heat demand

[EJ/yr]

37.4

49.1

54.6

LCA emissions factor
[gCO 2e/MJh.atl

Min Max Average

95.0 107.3 101.2

20C 22.7

Oil 40C 33.3 81.1 107.0 94.2

60C 38.8

20C

40C

60C

73.4

87.2

94.3

56.5 78.7 67.6

Note

Average defined by fuel
combustion in an
industrial boiler
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The data shown above demonstrates that the 6C scenario from the IEA ETP (2014)

corresponds to the greatest projected demand, and the 2'C scenario corresponds to the

lowest projected demand for fossil fuels. Therefore, for the remainder of this Chapter, the

IEA ETP (2014) scenarios are referred to as low, mid and high fossil fuel demand scenarios

[27].

Maximization of GHG emissions mitigation

In cases where multiple energy crop types could potentially be grown on the same parcel of

land, and those different primary bioenergy carriers could be used for different end uses, the

feedstock and conversion pathway that results in the greatest annual reduction in GHG

emissions is selected. This accounts for the lifecycle GHG and LUC emissions associated

with the bioenergy pathway, as well as the lifecycle GHG emissions of the unit of fossil fuel

energy that would be offset. For a given original land use type k in each 0.0830 grid cell g,

the maximum reduction in GHG emissions Rn(k,g) via bioenergy pathway n is defined by

Equation 1.

Equation 1: Maximization of GHG emissions reduction from offsetting fossil fuels with bioenergy.

Rn(k, g) = max [LCfossi(n) -y(n) - c(n) -a(k)] - [(LCbio(n) -y(n) -c(n) - a(k)) + (w(n) -LUC(k) - a(k)
n E [N] m Al

where

Rn(k,g) = max. GHG emissions reduction on land type k (pasture or forestland) in cell g [gCO2e/yr]

( veg. oil to ren. gas or diesel
[N] = sugary or starchy crop to EtOH, ren. gas or dies ; set of 35 bioenergy pathways

(lignocell. crop to elec, heat, EtOH, ren. gas or dies.)

LCfossii(n) = attrib. LC emissions from fossil fuel analog to bioenergy pathway n [gCO2e/MJfinal energy]

LCbio(n) = attrib. LC emissions from bioenergy pathway n [gCO2e/MJfinal energy]

y(n) = grid cell specific areal yield of bioenergy crop n [kgcrop/ha/yr]

c(n) = conversion efficiency of bioenergy crop n to final energy [MJfinal energy/kgcrop]

a(k) = grid cell specific area available for bioenergy crop cultivation on land type k [ha]

w(n) = energy allocation factor of feedstock emissions to final energy carrier [%]
LUC(k) = grid cell specific LUC emissions from conv. of land type k to bioenergy cultivation [gCO2/ha]

m = LUC emissions amortization period [yr]
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The primary energy, final energy, and specific lifecycle GHG emissions per unit of final

energy (including LUC emissions), corresponding to bioenergy pathway n that maximizes

GHG reductions, is calculated for each land use type k, in each grid cell g. Similarly, each

waste and residue feedstock type (for which there are no k, y(n), a(k), <O(n), LUC(k) or m

parameters) is allocated to the conversion pathway that results in the greatest annual

reduction in GHG emissions from offsetting fossil fuel use, using a simplified version of the

above Rk(k,g) formula.

Energy allocation is used at all stages of the LCA, and LUC emissions are amortized evenly

over a 30-year period with no discounting (parameter m) [46]. Results are also calculated

assuming a 20-year amortization period to demonstrate the sensitivity of results to this

particular assumption. [47]. The feedstock-to-fuel specific value of parameters LCbi.(n), c(n)

and 0(n) are defined in Table 2.

The maximization routine shown in Equation 1 is performed iteratively, beginning with the

highest values of LCfoSi(n) from the distributions defined in the previous section, and

decreasing as greater final bioenergy deployment corresponds to lower lifecycle GHG

emissions fossil fuel final energy remaining to be offset. This is done in increments of 5

EJ/yr of final bioenergy, requiring between 7 and 73 iterations to achieve convergence in all

scenarios.

The resulting maximum GHG emissions reduction of final bioenergy allocation and

deployment RO, is calculated by summing all positive values of Rk(k,g) over all land types k

and grid cells g, given by Equation 2.
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Equation 2: Maximum reduction in GHG emissions from offsetting fossil fuels with bioenergy.

where

Rtot

[G]

[K]

for

Rn(k, g)

RtOt =- Rn (k, g),
gE[G] kE[K]

= total max. GHG emissions reduction from final bioenergy [gCO2e/yr]

= set of all grid cells

= trestand set of all original land use types

> 0.

Payback period

Payback period is defined as the time required for the difference in attributional lifecycle

GHG emissions (excluding LUC emissions) between bioenergy pathway n and the fossil fuel

analog to make up for a one-time pulse of LUC emissions. This metric is also calculated for

the results presented below, and is given by Equation 3.

Equation 3: LUC emissions payback period.

PBnk) = w(n) - LUC(k) - a(k)

- [LCfOssij(n) -y(n) - c(n) - a(k)] - [LCbio(n) - y(n) - c(n) - a(k)]'

where

PBn(k) payback period for bioenergy pathway n on land type k [yr].

The methods and materials described above are also depicted schematically in Figure 44 in

Appendix A, in order to augment the written description.

Results and discussion

Primary bioenergy availability and land requirements

Table 7 shows the calculated values for primary bioenergy and required land area for three

scenarios in 2050: low, mid and high bioenergy availability. The results show a range of 112-

794 EJ/yr of primary bioenergy, requiring 634-2807 Mha of land for biomass cultivation.

For context, global oilseed and maize harvested areas were 291 Mha and 186 Mha,
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respectively, and total global arable agricultural land area was 1408 Mha, in 2013 [48]. These

results are consistent with the recent meta-analysis of studies that seek to quantify the

potential size of the global bioenergy resource by Slade, Bauen & Gross (2014), and the low

and mid scenario results shown here are within the envelope of estimates defined by those

authors as ' Iausible" (between 100 EJ/yr requiring <500Mha land area, and 600 EJ/yr

requiring >1500 Mha land area) [26].

Table 7: Results of 2050 primary bioenergy scenarios.

Bioenergy availability scenario Low Mid High

Primary Land Primary Land Primary Land
energy [Mha] energy [Mha] energy [Mha]
[EJ/yr] [EJ/yr] [EJ/yr]

Vegetable oil energy crops 17 216 43 500 32 688

Sugary & starchy energy crops 33 204 60 498 100 802

Lignocellulosic energy crops 43 214 210 664 561 1317

Energy crop subtotal 93 634 312 1662 693 2807

Agricultural residues 15 - 46 - 81 -

Forestry residues 4 - 9 - 19 -

Waste fats, oils & greases (FOG) 1 - 1 - 1 -

Residue & waste subtotal 19 - 56 - 101 -

Total 112 634 368 1662 794 2807

The results in Table 7 are also disaggregated by energy crop, and residue and waste

feedstocks. The land areas required for energy crop cultivation imply average areal biomass

yields that are congruent with the literature (8.1-13.7 oven dry tonnes (odt)/ha, assuming a

lower heating value (LHV) of 18 GJ/odt) [26]. The calculated availability of primary

bioenergy from residue and waste is 19-101 EJ/yr, which also agrees with previous analyses:

Daioglou et al. (2015) projected global residue availability of 48 EJ/yr by 2050, and reported

estimates of 20-86 EJ/yr from similar peer-reviewed studies [49].

In order to identify the parameters driving variability between the low, mid, and high

scenarios, a sensitivity analysis of primary bioenergy availability is carried out, shown in

Figure 3. The three variables contributing to the greatest variation from the mid scenario
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results are: the minimum threshold for agro-climatic suitability of lands for energy crop

cultivation; growth in energy crop yields; and the assumed 2050 land use scenario.

Agro-climatic
suitability threshold

Energy crop yield growth

2050 land use scenario
from LUH database

Crop residue
availability

Pastureland
availability

Forestry residue &
waste FOG availability

200 250 300 350 400 450 500

2050 constrained primary bioenergy potential [EJ/yr]

Figure 3: Sensitivity analysis of primary bioenergy availability scenarios. The baseline results correspond to the

mid scenario, and the bars represent the change in results due to change in an individual parameter as defined for

the low and high scenarios in Table 1.

Bioenergy allocation and deployment to maximize GHG emissions
reductions

Based on the primary bioenergy results above, curves of final bioenergy availability are

established for the four competing end-uses (middle and heavy distillate fuels; light distillate

fuels; heat; and electricity), versus their specific lifecycle GHG emissions including location-

and pathway-specific LUC emissions. This is done according to the maximization routine

described in Equation 1, whereby each unit of available primary bioenergy is allocated

amongst these four mutually exclusive end-uses in order to maximize total annual GHG

emissions reductions compared to fossil fuels. The resulting curves of final bioenergy
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availability and specific lifecycle GHG emissions are shown in Figure 4, broken out by

middle and heavy distillate fuels, light distillate fuels, heat, and electricity, for each of the

three bioenergy availability scenarios.

The curves consist of discrete units of available final bioenergy, rank-ordered from lowest to

highest specific lifecycle GHG emissions (gCO2e/MJm, enegy), with lifecycle GHG emissions

per unit of final bioenergy monotonically increasing with greater final bioenergy deployment.

The four uses of final bioenergy shown in Figure 4 (middle and heavy distillate fuels; light

distillate fuels; heat; and electricity) have non-LUC lifecycle GHG emissions ranging from

5.5-39.1, 5.5-50.4, 7.3-13.8, and 12.8-27.5 gCO 2 e/MJaI energy, respectively. The share of

lifecycle GHG emissions above these values corresponds to the contribution of LUC

emissions for a given unit of biomass-derived final energy, and therefore LUC accounts for a

greater proportion of total lifecycle emissions from final bioenergy moving to the right along

the colored curves. The horizontal sections of the curves reflect final energy derived from

residue and waste feedstocks, for which specific lifecycle GHG emissions are constant

because there are no associated LUC emissions.

The final bioenergy results are compared to three scenarios of projected 2050 global demand

for combustion-generated electricity and heat and liquid transportation fuels, derived from

fossil fuels, shown in black and adapted from the IEA ETP temperature change scenarios

[27]. These curves are rank-ordered in terms of decreasing specific lifecycle GHG emissions,

with emissions per unit of fossil fuel-derived final energy monotonically decreasing with

greater deployment of bioenergy to offset fossil fuel demand.

The results shown in Figure 4 are used to compare the specific lifecycle GHG emissions of

biomass-derived final energy, allocated to maximize GHG emissions reductions, to its fossil

fuel analog at a given level of bioenergy deployment. By doing so, the change in lifecycle

GHG emissions from offsetting the marginal unit of fossil fuel with the marginal unit of

bioenergy can be determined. This implies that, for any given pairing of bioenergy and fossil

fuel curves for each of the end-uses shown in Figure 4, bioenergy deployment beyond the

point of intersection of the two curves represents a net increase in GHG emissions.

Therefore, the level of bioenergy deployment to offset fossil fuel demand that maximizes
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GHG emissions reductions is the point of intersection of the two curves, where the lifecycle

GHG emissions of the bioenergy and fossil fuel pathways are equivalent.
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Figure 4: Availability and specific lifecycle GHG emissions of final bioenergy compared to fossil fuel-derived final

energy demand and emissions in 2050, allocated to maximize GHG emissions reductions. Panel a shows

biomass-derived (magenta) and petroleum-derived (black) middle and heavy distillate (M&HD) liquid fuels.

Panel b shows biomass-derived (blue) and petroleum-derived (black) light distillate (LD) liquid fuels. Panel c

shows biomass-derived heat final energy (red), compared to coal-, oil-, and natural gas-derived heat (black).

Panel d shows biomass-derived electricity (green), compared to for coal-, oil-, and natural gas-derived electricity

(black). The colored bioenergy curves in each panel correspond to the three bioenergy availability scenarios, and

the black fossil fuel curves correspond to the three fossil fuel demand scenarios (low, mid and high

corresponding to 2*C, 4*C and 6 0C temperature change scenarios from EA ETP, respectively [27]).
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Figure 5 shows final bioenergy deployment plotted against cumulative mitigation of GHG

emissions, calculated as the integrated area between the curves from Figure 4. The results are

disaggregated by bioenergy end-use, and the curves for each end-use are stacked in order to

indicate the total final bioenergy deployment associated with the maximum reduction in

GHG emissions across all four end-uses. These results are calculated for all nine

combinations of bioenergy and fossil fuel curves (shown in Table 8), and three scenarios are

shown in Figure 5 to represent a broad range of the final bioenergy deployment (57-460

EJ/yr), and maximum GHG emissions reduction (4.9-38.7 GtC0 2,/yr) results. The results of

the mid bioenergy availability and fossil fuel demand scenario combination indicate final

bioenergy deployment of 192 EJ/yr, leading to maximized GHG emissions reductions of

17.2 GtC02,/yr. The three scenarios correspond to 88, 273 and 721 EJ/yr of primary

bioenergy deployment in the low, mid and high bioenergy availability scenarios.

40 - High bioenergy availability & fossil fuel demand

35 -

030 --

-E20 -Mid bioenergy availability & fossil fuel demand
U

2 5 - O

U Biofuel offsetting middle & heavy distillate fossil fuels

E

U)

10 - . Biofuel offsetting light distillate fossil fuels

U Low bioenergy availability 0 Bio-heat offsetting fossil fuel-fired heat
5 - & fossil fuel demand

- Bio-electricity offsetting fossil fuel-fired electricity
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Final energy derived from biomass [EJ/yr]

Figure 5: Deployment of biomass-derived final energy versus cumulative GHG emissions mitigation. The

maximum of each curve represents the level of final bioenergy deployment for the indicated final energy end-use

that maximizes GHG emissions reductions. The dashed lines denote the combination of the low bioenergy

availability and fossil fuel demand scenarios, the solid lines denote the combination of the mid bioenergy

availability and fossil fuel demand scenarios, and the dash-dot lines denote the combination of the high

bioenergy availability and fossil fuel demand scenarios.
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Table 8 shows tabular results for all nine scenario combinations, compared to total primary

bioenergy availability, global final energy demand for combustion-generated electricity and

heat, and liquid transportation fuels, and the total associated lifecycle GHG emissions if this

demand were to be satisfied completely with fossil fuels. This comparison indicates that

bioenergy allocated and deployed to maximize GHG emissions reductions could satisfy 10-

97% of projected 2050 final energy demand for fossil fuel-derived electricity, heat, and liquid

fuels, leading to a reduction in GHG emissions from these sources of 9-68%. This coincides

with deployment of 29-91% of the total available primary bioenergy reported in Table 7. In

the mid bioenergy availability and fossil fuel demand scenario combination, final bioenergy

deployment is 47% of final energy demand for electricity, heat, and liquid fuels, requiring

74% of available primary bioenergy, and resulting in a maximized reduction of 36% of

lifecycle GHG emissions.
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Table 8: Bioenergy allocation and deployment to maximize GHG emissions reductions. Primary bioenergy availability, final bioenergy deployment, and the

reduction in lifecycle (LC) GHG emissions are compared against 2050 final energy demand for combustion-generated electricity and heat, and liquid

transportation fuels from fossil fuels, and the associated LC GHG emissions.

2050 scenario

Global demand for
Fossil fuel fossil fuel elec.,
demand heat, and liquid
scenario transp. fuels

[EJ/yr]

LC GHG
emissions

from fossil
fuels

[Gtco2e/yr]

Primary
bioenergy

avail.

[EJ/yr] I[

Primary energy

Propoortion
Total of total

avail.

EJ/yr] [%]

Bioenergy allocation & deployment

Final energy

Elec. Heat fuels

[EJ/yr]

M&HD
fuels Total

Offset of
final energy

demand

[%]

Elec.

Maximum GHG emissions reduction

LD M&HD Reduction
Heat fuels fuels Total in LC GHG

emissions

[Gtco2./yr] [%]

Low 112 88 79% 20 12 20 5 57 22% 3.6 0.2 0.7 0.4 4.9 18%

Low 253 26.8 Mid 368 239 65% 35 121 25 8 188 74% 5.8 5.9 1.1 0.4 13.3 49%

High 794 230 29% 23 134 25 14 195 77% 5.5 8.8 1.3 0.7 16.4 61%

Low 112 90 80% 26 0 25 0 51 12% 4.0 0.0 1.2 0.0 5.2 11%

Mid 412 47.1 Mid 368 273 74% 55 93 37 7 192 47% 10.9 4.5 1.6 0.2 17.2 36%

1 High 794 613 77% 90 170 54 88 401 97% 15.6 11.1 2.1 3.3 32.2 68%

High 483 59.6

Low

Mid

112

368

High 794

89

286

721

79%

78%

91%

26

75

0

62

24

37

1

7

50

181

125 188 55 92 460

10%

37%

95%

4.4

15.8

22.8

0.0

2.3

11.8

1.2

1.7

2.2

0.0

0.2

2.0

5.6

19.9

38.7

9%

33%

65%

37



GHG mitigation effectiveness and mix of bioenergy end-uses

In order to compare between the different bioenergy end-uses considered in this analysis,

average GHG mitigation effectiveness is defined as the ratio of maximum GHG emissions

reduction to total final bioenergy deployment. This is shown in Table 9, broken out by all

four bioenergy end-uses, as well as aggregated to biomass-fired electricity and heat, and

liquid biofuels. In the nine scenario combinations, the average GHG mitigation effectiveness

of biomass-fired electricity and heat, and liquid biofuels, range from 0.08-0.17 GtC0 2e/EJ and

0.03-0.05 GtC0 2e/EJ, respectively. The average GHG mitigation effectiveness of biomass-

fired electricity and heat is 1.6-3.9 times higher than that of liquid biofuels across all scenario

combinations. This indicates that, from a GHG mitigation perspective, biomass combustion

to generate electricity or heat is, in aggregate, a more effective end-use for bioenergy

resources than liquid biofuel production. This is in line with previous studies that identify

power and heat generation as a more environmentally beneficial use of scarce biomass

resources than the production of liquid fuels [50-54].

Table 9: Average GHG mitigation effectiveness of bioenergy end-uses in 2050. This is defined as the ratio of

maximum GHG emissions reduction, and total final energy, from biomass-derived electricity, heat, light distillate

(LD) fuels, and middle & heavy distillate (M&HD) fuels. The ratio of effectiveness of electricity and heat to

liquid fuels is shown in the rightmost column.

Fossil fuel Average effectiveness [Gtc02 ./EJ] Ratio of elec.

demand Bioenergy & heat to

scenario availability Elec. Heat Biomass-fired LD M&HD All liquid liquid fuels
s elec. & heat fuels fuels biofuels effectiveness

Low 0.18 0.02 0.12 0.04 0.07 0.04 2.7

Low Mid 0.17 0.05 0.08 0.04 0.05 0.05 1.6

High 0.24 0.07 0.09 0.05 0.05 0.05 1.7

Low 0.16 - 0.16 0.05 0.02 0.05 3.3

Mid Mid 0.20 0.05 0.10 0.04 0.03 0.04 2.5

High 0.17 0.07 0.10 0.04 0.04 0.04 2.7

Low 0.17 - 0.17 0.05 0.02 0.05 3.4

High Mid 0.21 0.04 0.13 0.04 0.03 0.04 3.1

High 0.18 0.06 0.11 0.04 0.02 0.03 3.9
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Despite having a lower average effectiveness of GHG mitigation, however, 18-49% of the

calculated total deployed final bioenergy comes from liquid biofuels in all scenarios

investigated. The reason for this can be observed in Figure 5. The initial marginal

effectiveness (or slopes) of offsetting fossil fuel-fired electricity and heat with bioenergy (the

beginning of the green and red curves) is greater than that of offsetting petroleum-derived

liquid fuels (the beginning of the blue and magenta curves). This indicates that, initially,

biomass-fired electricity and heat production maximizes GHG emission reductions per unit

of final bioenergy. However, as the level of deployment of these bioenergy end-uses

increases along the curves, the marginal effectiveness of offsetting electricity and heat

decreases and eventually becomes equivalent to the initial marginal effectiveness of

offsetting petroleum-derived liquid fuels. Beyond this point a switch occurs between

competing bioenergy end-uses, and using the next unit of final bioenergy to offset

petroleum-derived fuels maximizes GHG emissions reductions. This is because the fossil

fuel-fired electricity and heat with the highest specific lifecycle GHG emissions has already

been offset, and the greatest subsequent reduction in GHG emissions can be achieved by

using liquid biofuels to offset petroleum-derived fuels with relatively high specific lifecycle

GHG emissions.

This finding is particularly relevant for sectors with few technical options beyond the use of

bioenergy to reduce GHG emissions, but where the use of scarce bioenergy resources may

not be justified as the most effective among competing end-uses. One such example is the

aviation industry, for which it is technically infeasible to make use of other forms of

renewable energy or vehicle electrification, and will therefore require the use of energy-dense

liquid fuels (potentially including biomass-derived fuels) for the foreseeable future [55-58].

At the same time, Trivedi et al. (2015) demonstrate that using lignocellulosic feedstocks to

produce drop-in middle distillate fuels (including jet fuel) is less societally beneficial than

alternative bioenergy uses on average [50].

In contrast, this analysis here shows that the allocation and deployment of bioenergy

resources to maximize GHG reductions requires a mix of bioenergy end-uses. Notably, this

mix consists of uses that are not necessarily the most effective, initially or on average,

including drop-in middle distillate fuels such as jet fuel. Note that this analysis has
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considered renewable ethanol, gasoline, and diesel pathways as representative proxies of

liquid biofuel pathways, and that these fuels are not suitable for use in aviation [59].

However, a number of technologies exist to convert biomass to renewable jet fuel, with

feedstock-to-fuel conversion efficiencies and lifecycle GHG emissions comparable to the

pathways that we have considered here [9, 11, 60-65]. These technologies will be the subject

of the subsequent chapters of this thesis.

LUC emissions amortization and payback period

LUC emissions are included in total lifecycle GHG emissions by amortizing evenly over a

30-year time horizon without discounting, consistent with the United States Environmental

Protection Agency (US EPA) approach to treatment of LUC emissions from biofuel

production [46]. To test the sensitivity of the findings to this assumption, results are also

generated for a 20-year amortization period, consistent with the European Union Renewable

Energy Directive [47]. The results indicate that, when assuming a 20-year amortization

period, the maximum GHG emissions reductions are 5-26% smaller than those calculated

when assuming a 30-year amortization period. The full results of this sensitivity are available

in Appendix A.

Alternatively, the payback period can be calculated for LUC emissions associated with a

given unit of final bioenergy. This is shown aggregated for all four end-uses in Figure 3.

LUC is assumed to result in a one-time pulse of CO 2 emissions, and the payback period is

defined as the number of years required for the difference in the attributional lifecycle GHG

emissions of a unit of final bioenergy (excluding LUC emissions) and its fossil fuel analog to

make up for the LUC emissions pulse. The payback period of the last unit of final bioenergy

deployment is shown as a function of cumulative final bioenergy deployment in Figure 3, for

the three scenarios combinations of bioenergy and fossil fuel curves from Figure 2. The

calculated LUC emissions payback increases with increasing bioenergy deployment up to 39,

35 and 31 years for optimal final bioenergy deployment in the low bioenergy availability and

fossil fuel demand, mid bioenergy availability and fossil fuel demand, and high bioenergy

availability and fossil fuel demand scenario combinations, respectively. The end point of

40



each curve represents the level of optimal final bioenergy deployment, and corresponding

payback period, for each scenario combination.

40 - Low bioenergy availability
& fossil fuel demand
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Figure 6: Deployment of biomass-derived final energy versus payback period for LUC emissions. The end point

of each curve in the figure represents the level of final bioenergy deployment that maximizes GHG emissions

reductions for that scenario combination of bioenergy and fossil fuel curves.

Limitations and areas for future work

Several additional factors could impact the results that have been calculated here. For

example, energy crop cultivation is considered only on lands where irrigation is not a

prerequisite for agro-cimatic suitability, and potentially disruptive innovations in biomass

cultivation, such as the intensification of agricultural production using multi- or

intercropping, are not captured in the results presented above [66]. These assumptions could

result in an underestimate of agricultural production at the intensive margin. In order to

quantify the magnitude of the potential for intensification, a sensitivity analysis is carried out

for the three scenarios shown in Figure 5, where the land requirements of bioenergy

cultivation are reduced by 50%. This assumption implies that for each unit of biomass

cultivated on new land brought into agricultural production, a second unit of comes from

intensified production on existing agricultural lands. The result is an increased proportion of

fossil fuel final energy demand offset by bioenergy, from between 22-95% to 48-96% for the
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three scenarios considered. Correspondingly, the range of reductions in LC GHG emissions

from electricity, heat and liquid fuels grows from between 1 8-65 %, to 39 -7 6%. These results

are available in Appendix A. Although this is a simplified example for the purposes of

sensitivity analysis, the results demonstrate the potential importance of intensification for the

GHG emissions mitigation potential of bioenergy.

Industrial aquaculture of feedstocks, such as algae, could represent a large additional source

of primary bioenergy because they are not limited by the availability of land area for

cultivation and the associated GHG emissions impact of LUC. In practice, the production

potential of these feedstocks is constrained by local availability of solar insolation,

concentrated CO2, and water as a growth medium, among other factors [67]. Consideration

of these parameters is beyond the scope of the work presented here, however future work in

this field would benefit from the inclusion of aquaculture feedstocks, focusing on the

lifecycle emissions tradeoffs between total feedstock production potential and appropriate

siting of cultivation facilities.

A lack of regionally specific data for 2050 necessitates a simplified approach for quantifying

the lifecycle GHG emissions of fossil fuel and biomass-derived final energy: this analysis

adopts point estimates of lifecycle emissions to represent 35 biomass feedstock-to-final

energy conversion pathways, and 24 fossil fuel-derived final energy carriers. In reality, the

range of lifecycle GHG emissions of different energy sources exist on a location- and time-

dependent continuum that is not fully represented here. Furthermore, the large-scale use of

emerging feedstock-to-final energy technologies that are not considered in this work could

offer greater opportunities for GHG emissions mitigation, or even net sequestration, such as

electricity generation from biomass coupled with carbon capture and storage (CCS) [68-70].

A more complete global assessment of the GHG mitigation potential of bioenergy could

build upon the work presented here by accounting for technological development, and

regional and temporal heterogeneity in lifecycle GHG emissions, as reliable data becomes

available. In addition, inclusion of the use of bioenergy to offset additional sources of GHG

emissions, such as chemicals manufacturing from fossil fuels, or livestock production, would

improve the analysis presented here.
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There are also economic feedbacks associated with bioenergy deployment and availability

that could be the subject of future research. For example, the valorization of waste and

residues might drive up their commodity prices, such that these feedstocks are no longer

considered wastes and residues. This could influence the allocation of resources, production

patterns, and ultimately feedstock availability. However, the focus of this work is the physical

limits of global GHG emissions reductions from the use of bioenergy, and therefore the

economic impacts and feedbacks described above have not been captured here.

Finally, it is important to note that GWP 100 has been used as the de facto standard for LCA

climate metrics in the past, including in GREET1 2015 and in this analysis. Future work in

this area could benefit from the use of alternative metrics. For example, a metric that reflects

physical impacts, such as global temperature potential (GTP), may be more relevant for

policy-making. In addition, accounting for LUC emissions in the context of LCA requires

comparison of an emissions pulse at time zero to other lifecycle GHG emissions in

subsequent time steps. Therefore, a dynamic metric that reflects the physical processes of

climate change, such as annual radiative forcing (RF) impact, would more accurately account

for the time-dependent emissions profiles of large-scale bioenergy deployment.

Summary

The final bioenergy deployment to maximize GHG emissions reductions calculated in this

analysis represents 10-97% of projected annual demand for combustion-generated electricity

and heat, and liquid transportation fuels in 2050, across the nine scenarios considered. This

corresponds to a reduction in annual lifecycle GHG emissions from these sources of 9 -6 8%,

if this demand were otherwise satisfied with fossil fuels. Each of the scenarios reported here

reflects a different state of the world in 2050 in terms of two distinct but interdependent

domains: the availability and allocation of primary bioenergy resources amongst competing

end uses; and the types and quantities of fossil fuels used to satisfy final energy demand.

These scenarios are defined in order to capture the limits of GHG emissions mitigation

potential from bioenergy under a range of potential future conditions, and therefore there is

not necessarily any predictive or probabilistic meaning to any specific scenario combination
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over the others. In general, the range of results shown here demonstrate that assumptions

corresponding to greater availability of bioenergy resources (such as the availability of arable

land, and projected growth in crop yields), and greater fossil fuel demand in 2050, leads to

higher calculated maximum GHG emissions reductions.

It is also important to highlight that this analysis minimizes GHG emissions by assuming

that the next available unit of bioenergy is used for the lowest lifecycle GHG emissions

intensity end-use, and to offset the unit of fossil fuel energy with the highest remaining

lifecycle GHG emissions intensity. This implies a frictionless matching of final bioenergy

supply to the fossil fuel use that will result in the greatest reduction in GHG emissions

globally, without incurring additional GHG emissions from transportation or transmission.

This is a simplifying assumption, and therefore the results should be interpreted as an upper

bound on GHG mitigation potential via the uses of bioenergy considered here to 2050. In

reality, decisions about bioenergy resource allocation, fossil fuel use, and land use planning

are not made solely on the basis of GHG emissions. Practical limitations that are not

represented here, such as existing investments in fossil fuel resources and infrastructure, the

challenges of biomass transportation logistics, path dependency of energy and environmental

policy, economic considerations, and other factors, will guide decisions about bioenergy

deployment and the sources of energy it will replace or offset in the future. These factors are

beyond the scope of this analysis; however, they represent additional constraints on

bioenergy adoption, and on the potential reductions in GHG emissions that have been

calculated here.

In summary, this chapter quantifies the allocation and deployment of bioenergy resources to

maximize reductions in GHG emissions from fossil fuel-fired electricity and heat, and

petroleum-derived liquid transportation fuels, to 2050. The findings provide evidence for the

hypothesis that GHG emissions mitigation via the use of bioenergy is constrained not only

by the availability of biomass, as considered in previous assessments of bioenergy potential,

but also by the lifecycle GHG emissions of final bioenergy when LUC is taken into account:

the analysis finds that GHG emissions reductions are maximized when deployment is limited

to 2 9 -9 1% of total primary bioenergy availability, where the range of results is defined

primarily by the potential availability of bioenergy resources, and the fossil fuel energy
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demand that bioenergy could be used to offset in 2050. In addition, the results show that

while biomass-fired electricity and heat generation are, on average, more effective means of

GHG mitigation than the production of biomass-derived liquid fuels, the allocation and

deployment of global bioenergy resources that maximizes total GHG emissions reductions

requires a mix of end-uses, including biomass-derived transportation fuels. This is of

particular interest for the subsequent Chapters of this thesis, which concern the use of

alternative fuels for aviation derived from biomass and other non-petroleum feedstocks.

The work contained in this Chapter has been published in Nature Energy, with co-authors

Robert Malina and Steven Barrett.

Staples, M.D., Malina, R. & Barrett, S.R.H. (2017). The limits of bioenergy for mitigating

global life-cycle greenhouse gas emissions from fossil fuels. Nature Energy. DOI:

10.1 038/nenergy.2016.202
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3. Lifecycle greenhouse gas emissions and minimum selling

price of renewable jet and diesel fuel from fermentation and

advanced fermentation production technologies

Motivation and context

Transportation is an energy and greenhouse gas (GHG) intense activity, which

predominately relies on the use of fossil fuels: in 2014 the transportation sector accounted

for approximately 121 EJ, or 21%, of global annual primary energy demand and 23% of

global CO 2 emissions from fossil fuel combustion [71].

In order to address the climate change impact of transportation, as well as the sector's

dependence on non-renewable sources of energy, a number of jurisdictions have enacted

policies that encourage the production and use of liquid fuels derived from biomass. For

example, in the United States (US) the Renewable Fuels Standard 2 (RFS2) mandates the use

of 36 billion gallons of renewable transportation fuels per year, approximately 9% of current

US liquid fuel consumption, by 2022 [72,73], and in the European Union (EU) the

Renewable Energy Directive requires that 10% of all transport fuels come from renewable

sources such as biofuels [47]. Together, these two jurisdictions account for 62% of global

biofuel production [74]. To date, the vast majority of fuels produced under these policies

have been ethanol and fatty acid methyl ester (FAME) biodiesel, to be blended with

petroleum-derived gasoline and diesel for use in conventional internal combustion and

compression-ignition engines, respectively. Of the total renewable fuel volumes reported

under RFS2 in 2015, 87% was ethanol and 9% was biodiesel [75].

Within the transportation sector, commercial aviation accounts for approximately 2.0% of

global annual primary energy demand and 2.6% of CO 2 emissions from fossil fuels [71,76].

Although it is currently a relatively small contributor, Owen, Lee & Lim (2010) estimate that

aviation's share of global CO 2 emissions could grow to 4.2% by 2050 [77]. This is in part
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because aviation is growing more quickly than other sectors of the economy. For example,

average annual growth in global GDP was 2.9% from 2004-2015 [78], whereas annual

average growth in aviation revenue-passenger kilometers was 6.5% over the same period

[79].

The use of renewable alternatives to petroleum-derived fuels is of particular interest for

aviation because other means of reducing reliance on fossil fuels and mitigating CO 2

emissions, especially in the face of increasing aviation activity, are limited. Operational

efficiency gains are incremental in nature, offering only marginal emissions reductions during

the unavoidable takeoff, cruise and landing stages of flight. And while airframe and engine

technology improvements have resulted in consistent reductions in specific fuel

consumption over the past two decades of approximately 1.9% per year, this rate of

improvement has been insufficient to offset absolute growth in aviation activity.

Furthermore, the acceleration of airframe and engine technology improvements is limited by

long development and certification cycles for new aircraft, and the long service lives (25-30

years) of the existing stock of aircraft [55-57,80]. In contrast, renewable alternative jet fuels

could potentially offer large, near-term reductions in the climate impact of aviation by virtue

of their biogenic CO 2 combustion emissions, and compatibility with existing aircraft and

infrastructure. As a result, the International Civil Aviation Organization (ICAO), the

intergovernmental body that develops international standards and practices for aviation, has

identified alternative jet fuels as one of a "basket of measures" to mitigate the climate impact

of aviation [81].

Jet A and Jet A-1 fuels adhering to ASTM specification D1655 currently make up ~99% of

aviation fuel burn [82,83], however this demand cannot be offset by existing biofuel

production because these fuels are not suitable for use in aviation. Blending of ethanol with

jet fuel results in higher vapor pressure and an increased risk of fire or explosion, and the use

of biodiesel for aviation is limited by its poor thermal stability and high freezing point

[59,84]. Therefore, in order to be compatible with the existing fleet of turbojet and

turboprop aircraft, and fuel transportation and refueling infrastructure, alternative jet fuels

must have chemical properties similar petroleum-derived jet fuel. These are referred to as

"drop-in" fuels.
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One class of technologies for the production of renewable drop-in middle distillate (MD)

fuels, including jet and diesel fuel, involves the micro organic metabolism, or fermentation,

of biomass-derived sugars. Typically, polymer sugars are extracted from a biomass feedstock

and decomposed to monomer sugars using mechanical, chemical or biological means. The

monomer sugars are then metabolized by a microorganism to produce an energy carrying

platform chemical, which is chemically upgraded to a drop-in MD fuel or blend-stock

specification. This class of production technologies is referred to as fermentation and

advanced fermentation (AF). AF production technologies make up a subset of techniques

for the valorization of biomass resources, which are defined by ElMekawy et al. (2013, 2014)

as submerged fermentation (SmF) and anaerobic fermentation (AnF) [85,86].

A number of private corporations are in varied stages of commercialization of technologies

that could be categorized as AF, such as TerraVia, Inc. (formerly Solazyme), Amyris, Inc.,

Byogy Renewables, Inc., and Gevo, Inc. As of the writing of this thesis, two of these

technologies have received ASTM certification for use in turbine engines under D7566:

synthesized iso-paraffinic (SIP) fuel such as that produced by Amyris, and alcohol-to-jet

(ATJ) fuel such as that produced by Gevo and Byogy [87]. Despite commercial and

regulatory interest in AF technologies, the environmental and economic feasibility of AF

MD fuel has not been comprehensively addressed in the literature. Therefore, the aim of this

Chapter is to quantify the lifecycle GHG emissions and minimum selling price (MSP) of AF

MD fuel, in order to assess their feasibility relative to conventional petroleum-derived MD

fuel.

AF MD fuels have not yet been produced at commercial or industrial scale because

significant technical challenges remain to be resolved. These include: variable feedstock

composition and quality; the recalcitrance of lignocellulosic biomass; and the efficiency and

costs of sugar extraction, hydrolysis and fermentation processes [86,88]. As a result of these

remaining challenges, it is not yet known empirically how these technologies will develop

and perform commercially. In order to capture the spectrum of potential outcomes, a wide

range of feedstock-to-fuel conversion technology parameters are considered here. Sugarcane,

corn grain and switchgrass feedstocks, as well as a number of feedstock-to-intermediate
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chemical-to-fuel conversion pathways, are examined to estimate the mass and energy

balances associated with n' plant, commercial-scale production of AF MD fuels.

The resulting mass and energy balances are used in conjunction with the Greenhouse Gases

Regulated Emissions, and Energy Use in Transportation (GREET) model (.NET

vl.0.0.8377), developed by Argonne National Laboratory, to calculate their attributional

lifecycle GHG emissions of the fuels produced. In addition, the material balances of AF MD

fuel production are used together with petroleum industry heuristics and empirical biofuel

industry data, in a discounted cash flow rate of return (DCFROR) model, to calculate the

MSP of AF MD fuels. Sensitivity analysis is carried out on the lifecycle GHG emissions and

MSP results in order to quantify the importance of critical engineering parameters. The

results of this study are used to characterize the potential for AF MD fuels to reduce the

lifecycle GHG emissions compared to petroleum-derived diesel and jet fuel, and to evaluate

their economic viability.

Methods and materials

Lifecycle GHG emissions

The methodological challenges associated with the calculation of the lifecycle GHG

emissions of renewable fuels are addressed extensively in the literature. For example,

Limayem & Ricke (2012) and Singh et al. (2013,2010) identify the major issues as functional

unit definition, system boundary definition, spatial and temporal variability, data availability

and quality, and co-product allocation [88-90].

This analysis employs a lifecycle analysis (LCA) methodology for GHG emissions

quantification consistent with Stratton et al. (2011), which uses a functional unit of grams of

100-year global warming potential (GWP100) C02-equivalent (CO2e) emissions per

megajoule of total MD fuel, including jet and diesel fuel [9]. The system boundary of interest

includes biomass feedstock cultivation, recovery and transportation; feedstock-to-fuel

conversion; transportation and distribution of finished MD; and MD fuel combustion. Low,
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baseline and high lifecycle GHG emissions scenarios are defined in order to capture spatial,

temporal and data quality variability. This is achieved by identifying key parameters affecting

lifecycle GHG emissions, and then combining a survey of the academic and technical

literature with the engineering judgment of the author. In particular, a broad range of AF

feedstock-to-fuel conversion pathways are considered. The assumptions that result in the

low, baseline and high attributional lifecycle GHG scenarios are summarized in Table 10,

and these assumptions are discussed in detail in the following sections.

The resulting calculated mass and energy balances are then integrated into the GREET

model (.NET vl.0.0.8377) in order to quantify the lifecycle GHG emissions attributable to

MD fuel products. In order to allocate emissions among fuel and non-fuel co-products,

market-based allocation is used. This means that at the point where the fuel-destined

product stream is physically separated from the non-fuel stream, emissions are allocated

amongst the process streams in proportion to their contributions to total product market

value [91,92]. Market-based allocation is used in this analysis in order to assign emissions to

diverse co-products in proportion to a measure of their relative societal values (where market

price is used as a proxy for societal value). The analysis also quantifies the sensitivity of the

findings to the emissions accounting method that is chosen by recalculating selected results

using the displacement method, also known as system expansion [93]. This is done because

although the issue has been discussed extensively, the appropriate choice of allocation

method remains largely unresolved in the literature [94,95]. In all cases, emissions are further

allocated amongst all finished fuel products according to their relative energy contents [91].
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Table 10: Scenario definition for low, baseline and high lifecycle GHG emission cases. Data sources are listed for each step of the feedstock-to-fuel conversion

pathway.

Pathway Case Pretreatment
Saccharification efficiency Target platform molecule, theor. Metabolic efficiency

(% of theor. max. from max. mass conversion efficiency (%/a of theor. max.)
polymer to monomer sugar) of sugars to platform molecules

Extraction
/purification
technology

Upgrading to drop-in fuel

State-of-the-art milling EtOH, 51% Distillation Dehydration, oligomerization Gasification
Low (Lobo et al. 2007, 100% (from stoich., 90% C6 sugars (Mei 2006, MnTAP 2008) and hydroprocessing rleiec=27% , iset=24

%
Dias et al. 2009) Dugar & Stephanopoulos 2011) (Byogy 2012) (Murphy & McKeogh 2004)

Sugarcane Conventional milling Fatty acids, 34% Centrifugation 66% of hydroprocessing Incineration

AF Base (Lobo et al. 2007, 97.50% (US PAP 2013, 85% C6 sugars (Vasudevan et al. 2012) requirements rldc=15% , rlheat=43%
Dias et al. 2009) Dugar & Stephanopoulos 2011) (Pearlson et al. 2013) (Murphy & McKeogh 2004)

Conventional milling TAG, 31% Hexane 100% of hydroprocessing Incineration
High (Lobo et al. 2007, 95% ( 201 80% C6 sugars Heane requirements nic=

15
% , 9heat=43%

Dias et al. 2009) (Pearlson et al. 2013) (Murphy & McKeogh 2004)

Dry milling Alkanes, 34% KOH steam extraction 33% of hydroprocessing
Low (Wang et al. 1999, Mei 2006, 100% (US PAP 2013, 90% C6 sugars and centrifugation requirements

Mueller 2008) Dugar & Stephanopoulos 2011) (Vaswani 2009) (Pearlson et al. 2013)

Corn grain Dry milling Fatty acids, 34% Centrifugation 66% of hydroprocessing
AF Base (Mei 2006, 97.50% (US PAP 2013, 85% C6 sugars Vasudevan et al. 2012) requirements n/a

Kwiatkowski et al. 2006) Dugar & Stephanopoulos 2011) (Pearlson et al. 2013)

Dry milling iBuOH, 41% Distillation Dehydration, oligomerization
High (Mei 2006, Shapouri et al. 2002, 95% (from stoich., 80% C6 sugars Mei 2006, MnTAP 2008) and hydroprocessing

Phillips et al. 2007) Dugar & Stephanopoulos 2011) (Gevo 2012)

Dilute acid
Low (Wyman et al. 2005)

Switchgrass Base Dilute alkali
AF (Kumar & Murthy 2011)

High Aq. ammonia
(Tao et al. 2011)

n/a

(Saccharification efficiency is
included in pretreatment

references, in the form of raw
feedstock to sugar monomers)

EtOH, 51%
(from stoich.,

Dugar & Stephanopoulos 2011)

90% C6 sugars Distillation Dehydration, oligomerization

70% C5 sugars (Mei 2006, MnTAP 2008) and hydroprocessing
(Byogy 2012)

Gasification

eiec=
27

% , rlheat=24%

(Murphy & McKeogh 2004)

Fatty acids, 34% 85% C6 sugars Centrifugation 66% of hydroprocessing Incineration
(US PAPs2013, 60% CS sugars (Vasudevan et al 2012) requirements f1=3)

0
(M , rhoat=

43
M 

0 
)

Dugar & Stephanopoulos 2011) 6%Csuas (sdenetl.21) (Pearlson et al. 2013) (Murphy & McKeogh 2004)

iBuOH, 41%
(from stoich.,

Dugar & Stephanopoulos 2011)

80% 6 sgars Disillaion Dehydration, oligomerization80% C6 sugars Distillation and hydroprocessing
50% CS sugars (Mel 2006, MnTAP 2008) (Gevo 2012)

Incineration
n6,=15% , nheat=

43

(Murphy & McKeogh 2004)
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Sugarcane feedstock pretreatment

In order to extract sucrose from raw sugarcane, the feedstock is cleaned, chopped, shredded

and crushed, and the resulting juice is concentrated and sterilized. The mass and energy

balances of these processes are calculated based on Lobo et al. (2007) [96], which compares

conventional and optimized milling technologies, and Dias et al. (2009) [97]. The lower

heating value (LHV) of the bagasse remaining after juice extraction (7.54 MJ/kg, 50%

moisture content) is taken from Ensinas et al. (2007) [98]. This analysis considers

incineration and gasification technologies for the co-generation of heat and power from

biomass co-products (sugarcane bagasse in this case) to meet the utility requirements of the

bio-refinery, using LHV-to-process heat and electricity conversion efficiencies estimated

from Murphy & McKeogh [98].

Corn grain feedstock pretreatment

Starch is typically extracted from corn grain using the dry mill process (approximately 90%

of corn ethanol plants in the US use dry milling, as opposed to wet milling [99]), during

which corn kernels are fed to electric-powered hammermills that grind corn into a flour. The

corn flour is liquefied by slurrying with process water and is exposed to high pressure steam

to break down starches and kill bacteria. The starch extraction efficiency, utility

requirements, and co-production of distiller dry grains and solubles (DDGS) from the corn

grain milling and liquefaction processes are estimated from Wang et al (1999), Mei (2006),

Shapouri et al. (2002), Mueller (2008), Kwiatkowski et al. (2006) and Philips et al. (2007).

[100-105]

Switchgrass feedstock pretreatment

Finally, a number of emerging biological, thermal and chemical pretreatment technologies to

extract polymeric sugars from lignocellulosic biomass are considered in this analysis,

including dilute acid, ammonia fiber explosion (AFEX), aqueous ammonia, hot water, dilute
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alkali and steam explosion. The achievable yields of cellulose and hemicellulose from

switchgrass were estimated from Kumar & Murthy (2011), Tao et al. (2011), and Wyman et

al. (2005) [106-108], and utility requirements were estimated from Aden et al. (2001),

Humbird et al. (2011) and Kumar & Murthy (2011) [106,109,110]. It is assumed that the

biomass remaining after sugar extraction and fermentation is co-fired to meet the utility

requirements of the bio-refinery, with a LHV of 10.50 MJ/kg (50% moisture content)

[98,111,112].

Simultaneous saccharification and fermentation

Following extraction from sugarcane, corn grain and switchgrass, respectively, sugars in the

form of sucrose, starch and 5-carbon and 6-carbon sugar oligomers must be broken down to

monomeric sugars via the process of saccharification. Conversion of sugars to glucose and

fructose (from sucrose, starch and 6-carbon oligomers), and xylose (from 5-carbon

oligomers) is achieved using enzymatic hydrolysis, with assumed efficiencies approaching the

theoretical maximum.

Conversion of glucose, fructose and xylose to drop-in MD fuel is possible via a number of

fermentation technologies, and we consider metabolism to five distinct platform molecules:

triacylglycerides (TAGs), fatty acids, alkanes, iso-butanol (iBuOH) and ethanol (EtOH). The

microorganism used for metabolism defines both the species of platform molecule and the

mass conversion efficiency of monomeric sugar to that molecule. A range of monomer

sugar-to-platform molecule mass conversion efficiencies, as a percentage of theoretical

maximum mass yield, is considered here. The theoretical maximum mass conversion

efficiencies of monomer sugars to TAGs, fatty acids and alkanes are estimated to be 31%,

42% and 34%, respectively, based on stoichiometry, and patent applications for

microorganisms engineered for this purpose [113-116]. The theoretical maximum mass

conversion efficiencies of monomer sugars to iso-butanol and ethanol are derived from the

stoichiometry to be 41% and 51%, respectively, assuming the products of metabolism are

alcohols, carbon dioxide and water. A review of the metabolic conversion of monomer
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sugars to these and other platform molecules is given by Dugar & Stephanopoulos (2011)

[116].

This analysis assumes simultaneous saccharification and fermentation, meaning that

enzymatic hydrolysis and micro-organic metabolism occur simultaneously in the same bio-

reactor. The utility requirements of pumping and continuous aeration and agitation required

during these process operations are calculated from Najafpour (2007) and Couper et al.

(2012), under an assumption of a batch fed bio-reactor with a total residence time of 96

hours [117-118].

Platform molecule extraction and purification

Upon completion of the saccharification and fermentation processes, the target platform

molecule species must be separated and purified from the fermentation beer. This analysis

considers three technologies for the separation and purification of TAGs, fatty acids and

alkanes. Centrifugation may be employed to take advantage of the difference in the density

of the platform molecule and the other components of the fermentation beer, and the utility

requirements for the operation of centrifugal pumps are estimated from Vasudevan et al

(2012) [119]. The utility requirements of hexane solvent extraction, which is used for

extraction of vegetable oils from seed feedstocks in the production of biodiesel, are

estimated based on data from Sheehan et al. (1998) [120]. Potassium hydroxide (KOH)

steam lysing, followed by centrifugation, may be required if the platform molecule is not

directly secreted, but is produced intra-cellularly, and the utility requirements for KOH

steam lysing and centrifugation are estimated from Vaswani (2009) [121].

This analysis assumes that ethanol and iso-butanol separation and purification is achieved via

distillation, taking advantage of the lower boiling point of alcohols compared to the other

components of the fermentation beer. The utility requirements of distillation are estimated

from Mei and ethanol industry data [101,122].
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Uvvradine to dron-in fuel

Finally, the separated and purified platform molecules are upgraded to a drop-in MD fuel

product slate. For TAGs, fatty acids and alkanes, the mass conversion efficiency and utility

requirements of upgrading platform molecules to MD fuel are based on the hydroprocessed

esters and fatty acids (HEFA) process from Pearlson et al. (2013) [65]. The authors describe

three steps by which soybean oil (composed primarily of TAGs) is upgraded to drop-in MD

fuel: de-propenation to cleave the glycerin backbone from the TAG molecule; de-

oxygenation to remove oxygen and saturate double bonds; and isomerization and catalytic

cracking to refine straight chain alkanes to the desired carbon chain length distribution. It is

assumed that the TAG product of micro-organic metabolism has a chemical composition

similar to soybean oil (primarily carbon chain lengths of C18) [123], and that the HEFA

process described in Pearlson et al. (2013) is an appropriate estimate of the energy and utility

requirements of upgrading. Furthermore, because fatty acids do not contain a glycerin

backbone, and alkanes do not contain a glycerin backbone, oxygen or double bonds, it is

assumed that the utility requirements for upgrading of those platform molecules are

approximately 66% and 33% of the Pearlson et al. (2013) estimates for the HEFA process,

respectively. Note that micro-organic metabolism resulting in a carbon chain length

distribution closer to MD fuel (for example, via algae or cyanobacteria synthesis to C10-C14)

could increase fuel yield and reduce the upgrading effort required [115].

In order to upgrade ethanol and iso-butanol platform molecules to drop-in MD, it is

assumed that three unit processes are required: dehydration to remove the hydroxyl

functional group; oligomerization to produce longer chain alkanes; and hydroprocessing to

the desired carbon chain length distribution. The mass conversion efficiencies and utility

requirements of these processes are estimated based on a range of estimates provided by

Byogy and Gevo, two companies working to commercialize this technology [124,125].
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Minimum selling price

The MSP of MD fuels produced using AF technology is calculated by adapting the

DCFROR model from Pearlson et al. (2013) [65]. The baseline facility size is 4000 barrels

per day (bpd), and it is assumed that the 20-year plant is built using 20% equity financing and

a 10-year loan with 5.5% interest. MSP is calculated assuming an internal rate of return of

15%, income taxes of 40% and 2% inflation per year. The DCFROR model is solved under

these assumptions to find the MSP of all fuel products, such that the AF facility has a net

present value (NPV) of zero. All prices are expressed in USD 2012.

Capital cost estimation

Ethanol facility capital costs from the literature are normalized to a dollars-per-unit-mass-

feedstock-processed basis, in order to estimate pre-processing and fermenter capital costs

for AF facilities. For sugarcane AF, a range of 20 to 30 USD 2012/kg of raw sugarcane milling

and fermenter capacity is calculated from APEC-WG (2010) and Goldemberg (2008),

respectively [126,127]. A range of 55 to 95 USD 2012/kg of corn grain dry milling and

fermenter capacity is estimated from Urbanchuk (2010) and Wallace et al. (2005),

respectively, for corn grain AF [128,129]. Finally, for switchgrass AF, a range of 115 to 215

USD 2012/kg of switchgrass pretreatment and fermenter capacity is estimated from Bain

(2007) and Wallace et al. (2005) [129,130].

The additional capital costs for upgrading of TAGs, fatty acids or alkanes to drop-in MD are

calculated from equipment cost estimates by Pearlson et al. (2013) [65]. The additional

capital costs of the dehydration, oligomerization and hydroprocessing equipment, required

to upgrade iso-butanol and ethanol to drop-in MD, is determined based on input from

commercial operators Byogy and Gevo [124,125].
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Ooeratin- cost and commodity Drice estimation

Fixed operating costs, including insurance, local taxes, maintenance, miscellaneous material

and labor are estimated as a function of capital cost using heuristics from the petroleum

refining industry from Handwerk & Gary [131].

Variable operating costs are based on utility, processing chemical and feedstock prices. Low,

baseline and high natural gas prices are estimated using a 5-year average from 2008 to 2012,

2 standard deviations, as 1.20, 5.84 and 10.49 USD 2OI2/GJ, from EIA historical data [132].

It is assumed that electric power and water prices are 0.07 USD 2012/kWh and 0.09

USD20 12/m 3, respectively. Enzyme, yeast and processing chemical costs are estimated for

sugarcane [133], corn grain [133], and switchgrass [105] on a per kilogram feedstock basis.

Sugarcane prices are based on a 5-year average of historic sugar commodity prices 2

standard deviations [134], and an assumed yield of 1 kg of sugar from 10 kg of raw

sugarcane [135], as 20.74, 45.67 and 70.59 USD2012/t of sugarcane. Corn grain prices are

estimated using a 5-year average of historic commodity prices, 2 standard deviations, as

3.16, 6.17 and 9.18 USD 012/ bushel [136]. Switchgrass prices, based on 50 USD 012 per short

ton, 50% to mirror variation in the other feedstock types, are estimated as 28.67, 57.33 and

86.00 USD2012/t [137]. Finally, the relative values of the fuel products were estimated from 5-

year averages of spot prices [138], where gasoline prices are used as a surrogate for naphtha.

Note that this is a simplifying assumption, and that naphtha can be directly blended with

gasoline only in limited volumes due to its low octane.

Results and discussion

The data sources described above are used to model the mass and energy balances for the

AF MD fuel production process. This data is shown in Table 11, and is used in conjunction

with GREET (.NET v1.0.0.8377) and the DCFROR model described above to calculate the

lifecycle GHG emissions and MSP of AF MD fuels.
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Table 11: Mass and energy balances for the low, baseline and high AF MD production processes considered in this analysis.

Process inputs

Make-up Electric Natural Feedstock
water power gas

[103 m3/yr] [GWh/yr] [TJ/yr] [kt/yr]

Enzyme, yeast and
preprocessing
chemical costs

[1000 $/yr]

DDGS
co-production

[kt/yr]

Products

Electric power Heavy Light
co-production oil ends

[GWh/yr]

Naphtha Jet Diesel Total fuel
production

[103 m
3/yr]

Low 2641 0 443 4379 3028 0 644 0 0 0 378 0 378
Sugarcane Base 2275 0 673 3979 2751 0 205 0 23 5 33 171 233

High 1619 0 632 2264 1566 0 99 0 19 10 60 28 116

Low 643 189 2254 1603 15202 519 0 0 0 0 378 0 378

Corn grain Base 941 137 2529 1074 10185 348 0 0 23 5 33 171 233

High 966 139 2666 789 7484 256 0 5 0 21 73 18 116

1679 0 774 1538 74570 0 111 0 0 0 378 0 378

Base 1051 125 673 1455 70535 0 0 0 23 5 33 171 233

1067 233 253 1662 80587 0 0 5 0 21 73 18 116
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Lifecycle GHG emissions

The range of results for the lifecycle GHG emissions of sugarcane, corn grain and

switchgrass AF MD are shown in Figure 7a, broken out by two different methods of dealing

with non-fuel co-products of the AF fuel production process: market based allocation and

displacement. Figure la demonstrates that, although these renewable MD production

pathways have the potential to reduce attributional lifecycle GHG emissions from the

conventional MD baseline of 90 gCO 2 e/MJMD (low and high estimates of 82.8 and 112.5

gCO 2e/MJMD, respectively) [9], there is significant variability in the calculated results.

Variability in AF technology performance, which is determined in part by design decisions

regarding the fuel production technology, affects the feedstock-to-fuel conversion efficiency

and utility requirements. Furthermore, the co-product allocation methodology employed

contributes to a range of results between -27.0 and 19.7, 47.5 and 117.5, and 11.7 and 89.8

gCO 2e/MJMD for sugarcane, corn grain and switchgrass AF, respectively. Note here that all

results in this Chapter are expressed per unit of MD fuel, which includes both the diesel and

jet fuel fractions of the total fuel product slate.

Figure 7b and shows baseline results for each pathway and emissions allocation method,

disaggregated by the feedstock cultivation, feedstock transportation, fuel production, and

fuel transportation and distribution steps. The fuel combustion CO 2 emissions are offset by

a biomass credit, due to the biogenic nature of the feedstock. Under the assumption of the

displacement method, co-product credits also act to offset emissions in other steps of the

fuel production lifecycle. These co-products are excess electricity generation in the case of

sugarcane and switchgrass AF, and DDGS used for animal feed in the case of corn grain AF.

The data for the low, baseline and high scenarios under an assumption of market-based

allocation is also given in Table 12.
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Figure 7: a) Range of lifecycle GHG emissions results under market-based allocation and displacement methods

for dealing with emissions burdens to non-fuel co-products. Note that the whisker reflect variability, not

probabilistic uncertainty, in the results. b) Baseline lifecycle GHG emissions, broken out by lifecycle step under

market-based allocation and displacement methods for dealing with emissions burdens to non-fuel co-products.
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Table 12: Low, baseline and high scenario results, broken out by lifecycle step assuming market-based allocation.

Offsetting biomass carbon credits and CO 2 combustion emissions, as shown in Figure 7, are not shown here.

Feedstock Feedstock Feedstock to platform Platform chemical to Fuel Total
cultivation T&D chemical conversion drop-in fuel upgrading T&D

Low 3.1 0.6 0.0 2.5 0.5 6.8

Sugarcane AF Base 4.9 1.0 0.0 6.2 0.5 12.7

High 5.9 1.1 0.0 12.1 0.5 19.7

Low 26.2 1.9 13.3 5.6 0.5 47.6

Corn grain AF Base 28.9 2.1 15.6 15.4 0.5 62.6

High 45.0 3.3 26.9 41.7 0.5 117.5

Low 11.1 1.3 1.8 2.6 0.5 17.3

Switchgrass AF Base 17.6 2.1 10.9 6.2 0.5 37.4

High 39.7 4.7 40.2 4.6 0.5 89.8

The results in Figure 7b and Table 12 show that, compared to feedstock and fuel

transportation and distribution, the feedstock cultivation, feedstock conversion to platform

chemical, and platform chemical upgrading steps of the lifecycle are the major contributors

to overall lifecycle GHG emissions of AF MD fuels These steps account for at least 83% of

total lifecycle GHG emissions in all of the scenarios considered.

The difference in feedstock cultivation emissions between the pathways is largely due to

N2 0 emissions from fertilizer application. For example, under the baseline market-based

allocation case, 1.3 (27%), 15.5 (54%) and 9.8 (56%) gCO 2e/MJMD of feedstock cultivation

emissions are attributable to nitrogen fertilizer application for sugarcane, corn grain and

switchgrass cultivation, respectively. This analysis assumes the default N 2 0 emissions factors

associated with sugarcane, corn grain and switchgrass cultivation from GREET (.NET

vi.0.0.8377).

In contrast, the difference in fuel production emissions between pathways is largely due to

their requirements for external utilities for production processes. For example, no external

utilities are required for sugarcane AF fuel production, whereas 0.020 kWh,ec and 0.27 MJNG,

and 0.018 kWheiec are required per MJ of corn grain and switchgrass AF fuel production,

respectively, to meet the calculated process power and heat requirements. The difference in

utility requirements between pathways is due to the co-generation of heat and power from
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excess biomass in the sugarcane and switchgrass AF pathways. For example, power and heat

co-generation from sugarcane bagasse combustion following sucrose extraction provides

enough fuel for co-generation, such that the process power and heat requirements of

sugarcane AF fuel production are satisfied and 0.029 kWhiec of excess electricity is exported

to the grid per MJ of MD production. Similarly, the combustion of lignin and other biomass

residues from switchgrass following sugar extraction provides process heat and power that

partially offsets the utility requirements calculated for AF fuel production, however some

additional external electricity must be imported to satisfy process requirements. Note here

that the values discussed above do not include natural gas for steam-methane reforming to

meet the hydrogen requirements of hydroprocessing, although these additional requirements

are included in the final GHG results.

In order to further understand the drivers of variability within and between the feedstock-to-

fuel production pathways shown in Figure 7, a sensitivity analysis is carried out. The results

of this sensitivity analysis are shown in Figure 8, highlighting the five parameters for each

pathway that yield the largest change in results when varied in isolation.

For sugarcane AF, use of the displacement method instead of market-based allocation

results in a negative lifecycle GHG footprint because the excess electricity exported to the

grid generates a carbon credit, assumed to be equivalent to US grid-average transported

electricity with a GHG intensity of 670.0 gCO 2e/kWh from GREET.

In comparison to the other feedstock types, the corn grain AF results are more sensitive to

the type of platform molecule that is a product of fermentation. This is because all of the

utilities required for corn grain AF fuel production must be imported from the grid, while

the utility requirements of the sugarcane and switchgrass pathways are at least partially offset

by heat and power co-generation. The overall feedstock-to-fuel conversion efficiency of MD

fuel production via an iso-butanol platform molecule is lower than via fatty acid, which

results in feedstock requirements that are 12% greater than in the baseline case. This

additional feedstock quantity results in greater GHG emissions at each of the upstream

feedstock and fuel production steps of the lifecycle.
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Figure 8: Sensitivity analysis of assumptions driving the lifecycle GHG emissions results for AF production

technologies. The five assumptions leading to the largest change in results for each pathway are displayed,

including both the methodological decision of market-based emissions allocation versus displacement, and

parameters that define the mass and energy balances associated with AF MD fuel production.
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The switchgrass AF pathway is most sensitive to the efficiency of monomer C5 and C6 sugar

extraction from switchgrass. This is a reflection of the large range of values that are explored

for this parameter, because this facet of lignocellulosic biofuel production technology that is

still uncertain and has not yet been proven at commercial scale [88,90]. In addition, assuming

gasification technology for excess biomass combustion reduces the lifecycle GHG footprint

of switchgrass AF because the increased efficiency of electricity generation is enough to shift

switchgrass AF fuel production from an electricity importing, to an electricity exporting

process.

Land use change emissions

The potential contribution of land use change (LUC) emissions to lifecycle GHG emission is

also quantified here for AF MD fuels. Direct LUC occurs when land is converted from its

original use to cultivation of biomass feedstock, causing a one-time change in the soil and

biomass carbon stock of the land. Indirect LUC occurs when biomass feedstock cultivation

in one location changes land use patterns in some other location as a results of a change in

market conditions, such as commodity prices. This analysis does not attempt to quantify the

emissions associated with indirect LUC, however a number of peer-reviewed studies have

quantified the size of this environmental impact on the lifecycle GHG emissions of ethanol

and biodiesel, including Searchinger et al. (2008), Hertel et al. (2010), Plevin et al. (2010) and

Lapola et al. (2010) [15-17,139].

This analysis calculates the potential lifecycle GHG emissions impact of direct LUC

attributable to AF MD fuel production on previously uncultivated land using the carbon

debt scenarios described in Fargione et al. (2008) [18]. Biomass yields for sugarcane and corn

grain are estimated from the US National Agricultural Statistics Service (NASS), and for

switchgrass from Wullschleger et al. (2010) [140,141]. The scenario results for all three AF

feedstocks are shown in Table 13, assuming market-based allocation. The values are

calculated based on the assumption that direct LUC emissions are amortized evenly over a

30-year period, in line with the US Environmental Protection Agency's method for dealing

with emissions from LUC [46].
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Table 13: Potential contribution of direct LUC to lifecycle GHG emission of AF MD production pathways.

Original LUC carbon debt Biomass Biomass to AF MD 30-year amortized Lifecycle GHG emissions

land use [MgCO 2/ha] yield (alloc. factors incl) LUC carbon debt including direct LUC
[Mg/ha] [kg..eed/MJMD] [gCO 2/MJfue 1 ] [gCO2/MJMD]

Low 83.3 0.31 20.2 27.0
Sugarcane Base Cerrado 165 75.7 0.49 35.4 48.1

AF wooded
High 68.0 0.58 46.7 66.4

Low 11.3 0.10 38.4 86.0
Corn grain C entral

AF Base grassland 134 9.4 0.11
High 7.4 0.17 100.7 218.2

Low
Switchgrass Base Abandoned 6

AF Base cropland
High

18.8 0.12 1.3 18.6

12.9 0.19 2.9 40.3

7 0.43 12.2 102.0

The results shown in Table 13 indicate that direct LUC emissions could significantly increase

the lifecycle GHG emissions of AF MD fuels. For example, the baseline lifecycle GHG

emissions of sugarcane, corn grain and switchgrass AF increase by 278%, 82%, and 8%,

respectively, from their baseline no-LUC results when direct LUC is included. In the case of

corn grain AF, the additional GHG emissions from direct LUC are sufficient to push the

lifecycle GHG emissions of this fuel pathway above the conventional MD baseline of 90.0

gCO2 e/MJMD'

Although the land use conversions assumed in this calculation are possible for each of the

individual feedstock-to-fuel pathways considered, direct LUC emissions burdens are highly

dependent upon the specific scenario in which the feedstock is grown, and should be

evaluated as such.

Minimum selling price

The MSP results for AF MD are shown in Figure 9, broken out by the contributions of

capital, feedstock operating, and non-feedstock operating production costs. Low, baseline

and high results range from 0.61 to 2.63, 0.84 to 3.65, and 1.09 to 6.30 USD2O 2/literMD for

sugarcane, corn grain and switchgrass AF, respectively. Tabular data is also available in
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Appendix B. Only the low scenario for sugarcane AF MSP is below the 2013 US gate price

for conventional fuels of $0.80/literD.

For reference, Figure 9 shows the US gate price of MD fuels of approximately 0.80

USD2Ol9/literMD, from October 2013 when this analysis was originally carried out [142]. Note

that, as of the writing of this thesis in November 2016, US gate prices for MD fuel have

fallen to approximately $0.38 USD2O 2/literMD. However, because the electricity, natural gas,

and other liquid fuel prices used in the calculation of MSP were based on historical averages

up to 2013, the 2013 MD fuel price is retained in the figures presented here for the sake of

internal consistency. Furthermore, there is substantial uncertainty around the drivers of

conventional MD fuel price, even in the short term. For example, the US EIA projects that

the price of crude oil will be between 57 and 146 USD 201 /bbl in 2020 [143].

MD fuel gate price
-$0.80/liter

LL Low

Baseline 1.56 *CapEx
czo

___High__.__ Feedstock OpEx

Non-feedstock OpEx

wL Low 0.84

C
C Baseline 1.75

S.) High 3.65

Low 1.09

Ca
L Baseline 2.30

mL High 6.30

0 1 2 3 4 5 6 7
$/literMO

Figure 9: Low, baseline and high MSP of sugarcane, corn grain and switchgrass AF, broken out by the

contributions of capital cost (CapEx), feedstock operating costs (feedstock OpEx), and non-feedstock operating

costs (non-feedstock OpEx). These results are compared to a conventional MD fuel gate price of $0.80

USD20n2/iterMn from late 2013 when this analysis was originally carried out. MD fuel gate prices at the time of

writing this thesis are approximately $0.38 USD20n/literMD-
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Figure 9 demonstrates that there is significant variability in the MSP of each of the AF fuel

pathways, and that feedstock costs are the greatest contributor to variability in the MSP of

sugarcane and corn grain AF. In contrast, capital costs are the largest contributor to

variability in the MSP of switchgrass AF, which reflects the high capital costs of equipment

for cleaning and size reduction, and pretreatment reactors, for lignocellulosic biomass [106].

In order to explore the drivers of variability within AF pathways, a sensitivity analysis of

MSP to feedstock-to-fuel conversion efficiency, feedstock costs, capital costs and facility size

is carried out. The results are shown in Figure 10.

The results in Figure 10 are consistent with the observation from Figure 9, that feedstock

costs contribute to greater variability in MSP for the sugarcane and corn grain AF pathways,

and that capital costs contribute to greater variability in MSP for the switchgrass AF

pathway. In addition, the findings indicate that MSP of AF MD derived from all three

feedstocks is particularly sensitive to feedstock-to-fuel conversion efficiency, and especially

in the case of switchgrass. Similar to the results for lifecycle GHG emissions, this is in part

because lignocellulosic pretreatment and co-fermentation of glucose, fructose and xylose has

not yet been proven at the commercial scale. The wide range of parameters considered here

is intended to capture variability in the way in which AF fuel production technology could be

implemented at commercial scale.
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Figure 10: MSP sensitivity analysis. The variability due to feedstock-to-fuel conversion efficiency, capital costs

and facility size is quantified for each pathway.

Limitations and areas for future work

Future work in this area could build on the analysis presented in this Chapter in a number of

ways. First, the scope of technologies defined as fermentation and advanced fermentation

(AF) considered in this analysis is broad, encompassing sugars derived from three disparate

feedstock types and micro-organic metabolism to five different target platform molecules.

This is a methodological choice made at the outset in order to characterize the

environmental and economic performance of an entire class of MD fuel production
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technologies, and to quantify the differences between various technology choices within that

technology class. However, future research could involve higher-resolution assessment of

more specifically defined fuel production processes within the AF class of technologies. For

example, synthesized iso-paraffinic (SIP) fuels (via farnesene) and alcohol-to-jet (ATJ) fuels

(via C2 to C5 alcohols) are the only pathways that fit the AF definition and are certified

under D7566 for use in aircraft turbine engines [87]. More detailed chemical process

modeling of these specific conversion pathways, and the feedstocks actually used for fuel

production, would provide a more precise estimate of lifecycle GHG emissions and MSP of

the fuels likely to be used, and therefore better inform policy regarding these fuels.

Furthermore, as these technologies advance towards commercial-scale production, empirical

data should be used to verify the mass and energy balances calculated here and in subsequent

work.

In order to deal with variability and uncertainty in key assumptions and input parameters a

scenario-based approach is used here to establish upper- and lower-bounds on lifecycle

GHG emissions and MSP. However, this makes it difficult to draw conclusions about the

relative likelihood of different outcomes within the range of results. Therefore, this work

could be built upon by quantifying uncertainty associated with the results. Stochastic Monte

Carlo analysis has been used to quantify uncertainty in LCA and TEA studies of ethanol and

biodiesel [144-147], as well as in research that has leveraged components of the work

presented here for assessment of drop-in MD fuel technologies [148,149]. Uncertainty

quantification is especially informative when using TEA to assess the impact of policies on

economic viability, as there is a financial value associated with risk that is not captured when

using a deterministic approach.

This analysis also demonstrates that lifecycle GHG emissions of AF MD fuels are sensitive

to the potential contribution of LUC emissions, and that direct LUC could negate the GHG

benefit of AF fuels relative to petroleum-derived MD. The LUC emissions factors used here

are illustrative only, however the quantification of direct and indirect LUC emissions

attributable to biomass-derived fuels is an active area of research in the field of economic

modeling. A holistic evaluation of the environmental feasibility of AF production

technologies should include these additional climate impacts, as well as non-climate impacts

69



such as: water use and availability for feedstock and biofuel production [150]; the impacts of

feedstock cultivation on soil nutrient removal and contaminated water runoff [151]; and

non-GHG climate impacts [152].

Summary

The work presented in this Chapter is the first peer-reviewed study of the environmental and

economic feasibility of AF technologies for producing renewable drop-in MD fuels,

including jet and diesel fuel. The results show that, although the LCA results are highly

variable, AF MD production 'technologies offer the potential for a reduction in GHG

emissions compared to conventional MD fuels. Under the baseline assumptions sugarcane,

corn grain and switchgrass AF provide attributional lifecycle GHG emissions reductions of

86%, 30% and 58% from conventional MD, respectively. Furthermore, lifecycle GHG

emissions can be minimized by feedstock and technology decisions. For example, sugarcane

and switchgrass AF have relatively lower lifecycle GHG emissions than corn grain AF, and

the emissions for both pathways may be further reduced via the co-generation of process

heat and power from excess biomass, especially using more efficient technologies such as

gasification instead of incineration. Lifecycle GHG emissions may also be reduced for all of

the pathways by increasing overall feedstock-to-fuel conversion efficiency. This can be

achieved by increasing monomer sugar yields from the feedstock, increasing efficiency of

platform molecule separation processes, and by increasing the efficiency of micro-organic

metabolism of sugars to the target platform molecule.

This analysis also demonstrates that LUC emissions are a key determinant of the lifecycle

GHG emissions of AF technologies, however these results are highly dependent upon the

situation in which the feedstock is cultivated. For example, if AF MD feedstock is grown on

land that had not previously been cultivated, this analysis finds that inclusion of direct LUC

emissions could increase the lifecycle GHG footprint of sugarcane, corn grain and

switchgrass AF by 279%, 82% and 8%, respectively, under baseline assumptions.

Conversely, if the feedstock is grown on land that was already being used for cultivation of

that crop, there are no direct LUC emissions attributable to the fuel. Therefore, direct LUC
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emissions should be evaluated specific to the situation in which the feedstock is being

produced. Indirect LUC emissions should be evaluated in the context of larger-scale biofuel

production goals or policies, and are beyond the scope of this work.

The MSP of AF MD fuels is also found to be highly variable, however only the low scenario

for sugarcane AF has an MSP below the 2013 baseline price for petroleum-derived MD fuels

of 0.80 USD 2O2/literMD. This indicates that commercial-scale AF MD production is likely to

come at a cost premium to petroleum-derived fuels. The MSP results are most sensitive to

assumptions regarding the overall feedstock-to- fuel conversion efficiency, feedstock costs,

and capital costs of AF production technologies. One interesting opportunity for reducing

the capital costs of AF MD fuels is to retrofit existing ethanol production facilities instead of

constructing new greenfield facilities. For example, if feedstock pre-processing and

fermenter capital costs could be reduced by 50% by retro-fitting existing facilities, the

baseline MSP for sugarcane, corn grain and switchgrass AF would go down to 1.30, 1.55 and

1.64 USD2Ol2/literMD, respectively. As mentioned above, feedstock-to-fuel conversion

efficiency could be improved by increasing sugar extraction and metabolic yields, and this is

especially intriguing because if feedstock-to-fuel conversion efficiency is maximized, both

lifecycle GHG emissions and MSP would be reduced.

In addition to the technical and commodity price aspects captured in the sensitivity analysis,

the feasibility of AF technologies is subject to the prevailing economic and policy conditions

and should be considered with regard to these factors. For example, under US RFS2

advanced biofuel producers generate renewable identification numbers (RINs) that would be

worth approximately 0.27 $ per literMD [153], which could significantly improve the

economic viability of AF MD fuels. Alternatively, a policy that monetizes the potential

reduction in lifecycle GHG emissions that AF fuels provide compared to petroleum-derived

fuels, such as a carbon tax or cap-and-trade scheme, would also positively affect these

technologies' economic viability.

In summary, this Chapter demonstrates that jet and diesel fuels produced from sugarcane,

corn grain and switchgrass using AF technologies have the potential to reduce lifecycle

GHG emissions compared to petroleum-derived fuels, but that this environmental benefit
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likely comes at a production cost premium. In addition, this analysis finds that the

environmental and economic performance of AF MD fuels depends upon decisions

regarding technology selection, as well as the successful technical and commercial

development of these technologies. A number of challenges remain on this front including:

variability in feedstock composition and quality; sugar extraction from recalcitrant

lignocellulosic materials; hydrolysis efficiency; enzyme separation and re-use; feedstock pre-

processing costs; metabolic efficiencies of fermenting microorganisms, especially of 5-

carbon sugars; and facility integration [85,88,151]. This analysis quantifies the impact of these

aspects using sensitivity analysis, and indicates that addressing these challenges will be critical

for the environmental and economic feasibility of AF jet and diesel fuels.

The work contained in this Chapter is published in Energy & Environmental Science with co-

authors Robert Malina, Hakan Olcay, Matthew Pearlson, James Hileman, Adam Boies and

Steven Barrett.

Staples, M.D., Malina, R., Olcay, H., Pearlson, M.N., Hileman, J.I., Boies, A. & Barrett,
S.R.H. (2014). Lifecycle greenhouse gas footprint and minimum selling price of renewable
diesel and jet fuel from fermentation and advanced fermentation production technologies.
Energy & Environmental Science, 7, 1545-1554. DOI: 10.1039/c3ee43655A
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4. Dynamic cost-benefit assessment of alternative jet fuels

Motivation and context

In Chapter 3, lifecycle analysis (LCA) and techno-economic analysis (TEA) methods are

used to quantify the environmental and economic performance of drop-in middle distillate

(MD) fuels, including jet fuel, from fermentation and advanced fermentation (AF)

production technologies. The analysis finds that, under baseline assumptions, AF MD fuels

offer potential reductions in attributional lifecycle greenhouse gas (GHG) emissions of 30%

to 86% compared to conventional petroleum-derived fuels, but that the cost of producing

AF fuel is approximately 2-5 times the gate price of conventional MD. These results

highlight a trade-off between the potential climate benefit, and fuel cost premium, of using

AF jet fuel for aviation. This Chapter quantifies the potential time-evolution of this trade-

off, expanded to a scope of diverse alternative jet (AJ) feedstock-to-fuel pathways.

Anticipated growth in crude oil and conventional jet (CJ) fuel prices could decrease the

relative cost premium of AJ [153], and the societal benefits of GHG emissions mitigation are

expected to grow in future years as physical and economic systems become more stressed by

climate change [155]. In addition learning-by-doing, also referred to as learning curve effects,

could contribute to a reduction in the production costs of AJ as experience with the

technologies accumulates, as has been empirically observed in the analogous corn ethanol

[156,157], sugarcane ethanol [158,159] and vegetable oil biodiesel industries [160,161].

Insofar as learning-by-doing contributes to improvements in efficiency and a reduction in

process input requirements, the lifecycle environmental impact of AJ fuel production may

also improve over time. All of these time-dependent factors indicate that the climate

damages mitigated by replacing CJ with AJ may exceed the additional cost premium of

producing AJ at some point in the future, even if that is not the case today.

Therefore, the aim of this Chapter is to test the hypothesis that the societal benefits of a

policy of large-scale AJ adoption outweigh the societal costs, in terms of the climate damages
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and fuel production costs attributable to aviation, when changes over time are taken into

account. A system dynamics approach is used to capture the time- and path-dependence of

the societal climate and fuel production costs of AJ and CJ outlined above, as well as

potential non-linearities and feedbacks associated with large-scale adoption of AJ fuels.

These include the impacts of AJ feedstock demand on agricultural commodity prices and

ultimately AJ production costs, the potential for CO 2 emissions from land use change

(LUC), and the impact of fuel price on commercial aviation demand. The results of this cost-

benefit assessment (CBA) identify the AJ production pathway characteristics that drive the

balance of costs and benefits to society, in terms of climate damages and fuel production

costs, attributable to aviation.

Methods and materials

The work presented in Chapter 3 represents just one contribution to a large engineering

literature that uses LCA and TEA methods to characterize the performance of specific AJ

technologies. Therefore, the first step in this analysis is to augment previous LCA and TEA

work in order to consistently compare between disparate feedstock-to-fuel production

pathways.

Bann et al. (2017) is used as the starting point for the TEA side of the analysis [148]. The

authors use a stochastic discounted cash flow rate of return (DCFROR) model to compare

the minimum selling price (MSP) of ten feedstock-to-fuel pathways under consistent

financial assumptions. These pathways include eight feedstocks (soybean oil, tallow, yellow

grease, corn grain, sugarcane, herbaceous biomass, woody biomass and municipal solid waste

(MSW)) and six fuel production technologies (hydroprocessed esters & fatty acids (HEFA),

advanced fermentation (AF), hydrothermal liquefaction (HTL), aqueous phase processing

(APP), Fischer-Tropsch (FT) and fast pyrolysis (FP)).

Next, the lifecycle GHG emissions associated with these production pathways are assessed

by drawing on the existing literature: Stratton et al. (2011, 2010) for vegetable oil HEFA and

lignocellulosic FT [9,162]; Seber et al. (2013) for tallow and yellow grease HEFA [63]; Staples
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et al. (2014) and Trivedi et al. (2015) for sugarcane, corn grain and lignocellulosic AF [11,50];

Olcay et al. (2013) for lignocellulosic APP [163]; Suresh (2016) for MSW FT [149], and;

GREET1 2015 for lignocellulosic pyrolysis [44]. The LCA results for these pathways are re-

calculated using energy allocation at all stages of the lifecycle, and 100-year global warming

potential CO2 equivalents, including climate carbon feedbacks, from the Intergovernmental

Panel on Climate Change Fifth Assessment Report (IPCC AR5) (34 gCO 2e/gCH4 and 298

gCO2e/gN2O) to enable comparison across studies [1]. Energy-based emissions allocation is

selected to distribute emissions burdens amongst fuel and non-fuel products by a meaningful

measure of their usefulness (in contrast to mass-based allocation), while remaining robust to

temporal and spatial variation in commodity prices and emissions factors (in contrast to

market-based allocation and the displacement method, respectively).

A comparison of the pathways represented by Bann et al. (2017) and the identified LCA

studies reveals an imperfect matching of the harmonized TEA and LCA data [148].

However, for the purposes of this analysis, a number of simplifying assumptions are made in

order to maximize the scope of technologies that are characterized in terms of lifecycle

GHG emissions and MSP. These assumptions and the pathways covered are summarized in

Table 14.
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Table 14: Feedstock-to-fuel pathway scope, data sources, and simplifying assumptions.

Feedstock TEA data source LCA data source

Soybean oil Bann et al. (2017)
Rapeseed oil Stratton et al. (2011)

Palm oil Assumed equivalent to soybean oil HEFA pathway from GREETI 2015
HEFA Bann et al. (2017)*

Jatropha oil
Tallow

Yellow grease Bann et al. (2017) Seber et al. (2014)

Sugarcane
Corn grain Bann et al. (2017)

AF Herbaceous lignocellulosic crop Trivedi et al. (2015)

Agricultural residue Assumed equivalent to herbaceous lignocellulosic crop
AF pathway from Bann et al. (2017)*

Herbaceous lignocellulosic crop
Agricultural residue Assumed equivalent to MSW FT pathway, plus additional Stratton et al. (2011)

FT Woody lignocellulosic crop feedstock cost and minus revenue from scrap, from GREET1 2015FT Wood lignoellulosc crop Bann et al. (2017)*GRE125

Forestry residue
MSW Bann et al. (2017) Suresh (2016)

Agricultural residue Bann et al. (2017)
FP Assumed equivalenet to reneable diesel

FP Forestry residue Assumed equivalent to agricultural residue FP pathway pyrolysis pathway in GREETi 2015t
from Bann et al. (2017)*

APP Woody lignocellulosic crop Bann et al. (2017) Olcay et al. (2013)
Forestry residue

HTL Woody lignocellulosic crop
Forestry residue

*Denotes simplfying assumption for TEA data coverage
tDenotes simplifying assumption for LCA data coverage

Bann et al. (2017) Assumed equivalent to analogous FT
pathways in GREETI 2015t

The TEA and LCA data for these pathways, calculated using consistent financial, emissions

allocation and climate metric assumptions for the purposes of cross-comparison, are

summarized in Figure 11. The nominal lifecycle GHG emissions value in each study of

interest (the mid or mean value for LCA data from the literature, and the default value for

LCA data from GREET1 2015 [44]) for each AJ pathway is normalized against lifecycle

GHG emissions from conventional petroleum-derived jet (CJ) fuel of 88.3 gCO 2e/MJ on

the x-axis [162]. Note that this value differs from the result reported by Stratton et al. (2010)

due to the use of updated values for GWP,00 including climate-carbon feedbacks. The y-axis

shows the cost premium of AJ over CJ, calculated from the mean MSP of AJ minus the 3-

year average of CJ, 0.56 USD2015/liter [142].
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Figure 11: TEA and LCA data for AJ production technologies, using consistent assumptions. Monetized avoided

climate damages are plotted as a function of the reduction in lifecycle emissions compared to CJ, a mean value

from APMT-Impacts Climate for an emissions year of 2020, shown in black.

In order to compare between the disparate metrics of cost and environmental performance

shown in Figure 11, the monetized avoided climate damages of a reduction in lifecycle GHG

emissions is plotted. This curve is generated using the Aviation environmental Portfolio

Management Tool v23 (APMT)-Impacts Climate [164]. APMT probabilistically quantifies

the net present value (NPV) of changes in global societal welfare, calculated on the basis of

the change in mean surface temperature of the Earth as a result of net radiative forcing of

GHG emissions attributable to aviation [165-168]. The curve in Figure 11 depicts the change

in mean NPV, divided by total fuel burn volume for an emissions year of 2020, as a function

of percentage reduction in lifecycle emissions from CJ including well-to-pump (WTP) CO2 ,

CH4 and N 20, and combustion CO 2 emissions. The curve is calculated assuming a societal

discount rate of 2%, Representative Concentration Pathway (RCP) 4.5, and Shared Socio-

economic Pathway (SSP) 1.
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The TEA and LCA data presented in Figure 11 indicate that, across all of the AJ production

pathways considered, there is potential for a reduction in lifecycle GHG emissions.

However, this climate benefit comes at a fuel cost premium compared to CJ, demonstrating

that the climate-cost trade-off identified in Chapter 3 is not unique to AF technologies.

Furthermore, all of the examined AJ pathways lie above and to the right of the curve from

APMT, which indicates that the cost premium of AJ compared to recent CJ market prices is

greater than the monetized NPV of the climate benefit for an emissions year of 2020.

Figure 11 is useful for a static assessment of the climate benefit and production cost trade-

off associated with AJ technologies, however it fails to capture how this trade-off may

evolve over time, as well as how the private costs of fuel production presented here can be

used in a CBA regarding costs to society. Therefore, the next step in this analysis is to

quantify the potential impact of learning-by-doing on the lifecycle GHG emission and

production costs of AJ technologies.

Private and societal costs of AJ production

The stochastic DCFROR model developed by Bann et al. (2017) is used to calculate the

MSP of AJ fuel for the pathway scope outlined in Table 14 [148]. MSP is broken out for

each feedstock-to-fuel pathway by the mean contributions of capital cost, fixed operating

cost, feedstock and non-feedstock variable operating costs, income tax, and revenue from

non-MD fuel and co-products. Mean annual feedstock input and fuel yield quantities are also

calculated.

These parameters are generated for two cases for each pathway: capital and fixed operating

costs and fuel yield deterministically set to the mode value of the parameter distributions;

and capital and fixed operating costs deterministically set to the minimum value, and fuel

yield set to the maximum value in their distributions [148]. The first case is calculated to

represent the nth plant MSP of commercial scale fuel production, and the second case is

calculated to represent the minimum achievable MSP of commercial scale fuel production,

taking into account the potential for learning-by-doing, or learning curve effects, as
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discussed above. The mean feedstock requirements, capital and non-feedstock operating

costs, non-MD fuel revenue, and proportion of total fuel yield (on an energy basis) that is

MD, are reported in

Table 15. Private MSP can be calculated from these parameters as a function of feedstock

price, as shown in Equation 4.

Table 15: nth plant and minimum mean contributions to AJ private MSP, adapted from Bann et al. (2017) [148].

Feedstock requirements are reported in the following units for each of the feedstocks: oil or waste grease for

HEFA pathways; 15.5% moisture content corn grain; 50% moisture content sugarcane stalk; dry biomass for

lignocellulosic pathways; and preprocessed and dried MSW.

Feedstock Capital
requirement, f costs, CapEx

Non-feedstock Non-MD fuel MD proportion of
operating costs, OpEx revenue, R total fuel yield

technology [tfd/tmDj [USD 2015/tMD] [USD201s/tMD] [USD2ojs/tMD] [/]

Soybean, rapeseed, nth 1.31 244 277 84 91.5%
palm &jatropha oil minimum 1.25 232 249 84

HEFA Tallow nth 1.31 244 277 84 91.5%
minimum 1.25 232 249 84

nth 1.31 244 277 84
Yellow grease 91.5%

minimum 1.25 232 249 84

nth 4.99 706 454 424
Corn grain 90.8%

minimum 3.82 671 408 408

nth 2.64 805 311 199
AF Sugarcane 90.8%

minimum 1.89 765 268 193

Herbaceous biomass nth 10.29 1638 1145 90 90.8%& agricultural residue minimum 6.63 1462 970 90

Herbaceous n 7.74 1155 564 180 89.1%lignocellulosic crop minimum 6.99 1113 488 177

Woody lignocellulosic nth 7.36 1155 564 180 89.1%crop minimum 6.65 1113 488 177

nth 7.83 1155 564 180
FT Agricultural residue 89.1%

minimum 7.08 1113 488 177

nth 6.67 1155 564 180
Forestry residue 89.1%

minimum 6.03 1113 488 177

nth 3.80 1155 564 311
MSW 89.1%

minimum 3.54 1113 488 306

nth 9.33 1479 1388 1967
FP Herbaceous biomass 48.4%

minimum 8.29 1314 1201 1941

nth 7.36 1691 1209 869
APP Woody biomass nt 7.6191298980.2%

minimum 6.99 1606 1121 845

nth 13.46 2958 1684 2317

minimum 13.13 2886 1560 2299
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Equation 4: Private MSP.

MSPpriv = f -Pfeed + CapEx + OpEx - R

where

MSPpriv = private minimum selling price [USD2015/tMD]

f = feedstock requirement [tfeed/tMD]

Pfeed = feedstock price [USD2015/tMD]

CapEx = capital costs [USD201s/tMD]

OpEx = non-feedstock operating costs [USD2015/tMD]

R = non-MD fuel revenue [USD2015/tMDJ

The private MSP for a feedstock-to-fuel pathway, calculated using Equation 4, represents the

price that a private fuel producer would need to receive in order to break even on its MD

fuel products, including AJ. However, the cost-benefit approach of this analysis is ultimately

concerned with AJ fuel production costs to society (as opposed to the costs to the fuel

purchaser) in terms of scarce resources such as land, labor and capital. Therefore, in order to

better reflect societal costs, MSP is also calculated by removing the components of

production cost that reflect monetary transfers (between producers, consumers, or the

government), with no corresponding use of scarce resources. Specifically, the 15% private

profit margin assumed for the calculation of private MSP is reduced to 3.2%, an estimate of

the societal opportunity cost of capital based on long-term treasury bond rates from the US

Office of Management and Budget [169], and the income tax rate is reduced from 16.9% to

0%. The market prices of other resources associated with fuel production are assumed to

reflect their shadow prices - the societal opportunity costs (in the case of inputs, such as

feedstock and utilities) and the utility derived from consumption (in the case of outputs,

such as non-MD fuel products and non-fuel co-products) [170].

Mean societal MSP is calculated using the stochastic DCFROR model for the n ' plant and

minimum cases. These results are compared to the analogous data points for private MSP in

order to estimate a linear relationship between private and societal AJ production costs, as

shown in Table 16.
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Table 16: Estimated linear relationship between private and societal MSP.

Fuel
production
technology

Feedstock
Societal minimum selling price,
MSPsc, as a function of MSPpriv

[USD2O1s/tMD]

Soybean, rapeseed, 0.943(MSPpriv) - 69.84
palm & jatropha oil

HEFA
Tallow 0.924(MSPpriv) - 54.27

Yellow grease 0.897(MSPpriv) - 38.12

Corn grain 0.805(MSPpriv) - 53.30

AF Sugarcane 0.814(MSPpriv) - 190.48

Herbaceous biomass 0.723(MSPpriv) - 154.41
& agricultural residue

Lignocellulosic 0.723(MSPpriv) - 154.41

MSW 0.754(MSPpriv) - 415.12

FP Herbaceous biomass 0.730(MSPpriv) - 524.10

APP Woody biomass 0.676(MSPpriv) - 297.37

HTL Woody biomass 0.732(MSPpriv)- 1103.66

Societal costs of CJ production

The societal costs of CJ production are calculated using the method presented in Withers et

al. (2014) [171]. Crude oil producers' and refiners' profit margins are estimated, as a function

of retail fuel prices, to be between 26-33% and 7-11%, respectively [172], and the corporate

tax rate on these profits is assumed to be 16.9% [173]. The societal cost of crude oil is

calculated by subtracting the estimated profit margin, and income tax on that profit, from

the market price of crude oil. The societal cost of refining is calculated by subtracting

refinery profits and taxes from the differential between crude oil and distillate fuel prices.

3.2% is added back on top of both components to capture the societal opportunity cost of

capital, and the sum of the two reflects an estimate of societal CJ production cost [169].

Lifecycle emissions of AJ and CJ

The lifecycle emissions of the AJ production technologies of interest are characterized based

on existing studies, as outlined in Table 14, updated to use energy allocation at all stages of
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the lifecycle, and 100-year GWP CO 2e values from IPCC AR5. The nominal value in each

study of interest (the mid or mean value in the case of values from the literature, and the

default value in the case of GREET1 2015) is assumed to represent the lifecycle emissions of

n plant commercial AJ production.

The LCA results for these pathways are augmented to quantify the potential for reductions

in lifecycle emissions from learning-by-doing, as discussed above, by accounting for the

potential impact of improvements in agricultural productivity and process efficiencies.

Improvements in agricultural productivity

Lifecycle emissions from feedstock production are modeled as a function of input quantity,

such as nutrient application or diesel fuel, per unit of feedstock product. Therefore, in order

to assess changes in lifecycle emissions from this step both agricultural yields and agricultural

inputs per unit area must be considered.

The potential for increases in the agricultural yields of soybean, rapeseed, palm oil, corn

grain and sugarcane are modeled in the same manner as described in the Energy crops

section of Chapter 2. FAOSTAT historical yield data are collected for the crops and

applicable world regions of the existing LCA studies. The upper-bound potential for yield

improvement is defined by a linear increase of 1.5% of 2013 yields out to 2050, where yields

are limited to agro-climatically attainable rainfed yields under advanced input levels from the

GAEZ model [28,29]. Historical yields are not available for jatropha and switchgrass, so the

potential yield improvements for these crops are estimated from Jongschaap et al. (2007) and

English et al. (2010), respectively [174,175].

Areal nutrient application rates and farming energy inputs corresponding to improved yields

in future years are estimated from a number of sources for soybean [176-181], rapeseed

[44,176,177,179,182], oil palm [176,177,179,183-185], jatropha [9,176,177,185-187], corn

grain [44,176-179], sugarcane [176,177,188], switchgrass [176,177,189-191], agricultural

residues [44,176,177,191] and forestry residues [176,177,192].
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The potential yield and areal agricultural input data are combined, and the resultant

minimum estimates of agricultural inputs per unit of feedstock production, as well as values

that define the nt plant cases, are shown in Table 17.

Improvements in fuel production process efficiency

Lifecycle emissions of AJ production may also come down over time as fuel production

processes become more efficient and require fewer feedstock and utility inputs. Therefore,

the potential for improvements in total fuel yield per unit of feedstock input are estimated

based on the highest yield reported in the LCA literature for each pathway, corresponding to

the minimum MSP case reported in

Table 15. In addition, potential improvements in vegetable oil extraction rates specific to the

HEFA pathways are estimated from the literature for soybean (10%) [193], rapeseed (15%)

[194], oil palm (15%) [195], and jatropha (15%) [195]. The resulting conversion efficiencies

of raw feedstock to total liquid fuel, in terms of LHV, are reported in Table 18.
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Table 17: Agricultural inputs considered in the nth plant and minimum cases for calculating lifecycle emissions.

Feedstock

Soybean

Input

N

P

K

Diesel

Natural gas

Liquefied petroleum gas

Gasoline

Electricity

Unit

g/bu

g/bu

g/bu

btu/bu

btu/bu

btu/bu

btu/bu

btu/bu

49.9

207

344

10683

1354

418

3711

552

minimum

17.5

64

119

3092

557

131

1343

200

N kg/tonne 54.7 40.7

P kg/tonne 15.3 5.3
Rapeseed

K kg/tonne 2.9 5.0

Diesel mmbtu/tonne 0.5 0.6

N kg/short ton 9.5 3.7

Palm P kg/short ton 0.0 2.2

K kg/short ton 0.0 6.7

Diesel btu/short ton 207692 207692

N g/kg 36.6 31.8

P g/kg 14.0 12.6

K g/kg 40.2 31.3

Diesel btu/kg 1420 1420

N g/bu 423 276

P g/bu 146 95.2

K g/bu 151 98.8

Diesel btu/bu 4727 2649

Natural gas btu/bu 1297 1041

Liquefied petroleum gas btu/bu 1720 1034

Gasoline btu/bu 1412 989

Electricity btu/bu 451 309

N g/tonne 800 541

P g/tonne 300 203

K g/tonne 1000 676

Diesel btu/tonne 36385 37840

Sugarcane Natural gas btu/tonne 20425 16340

Liquefied petroleum gas btu/tonne 17860 10716

Gasoline btu/tonne 11685 8180

Electricity btu/tonne 8550 5985

N g/short ton 8298 4220

P g/short ton 114 69.5

Switchgrass K g/short ton 227 139

Diesel btu/short ton 187451 65360

Electricity btu/short ton 14544 10180

N kg/short ton 8.0 6.6

P kg/short ton 2.3 2.4
Corn stover

K kg/short ton 13.6 12.3

Diesel btu/short ton 285604 150800

Forest residue Diesel btu/short ton 132180 109158
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Table 18: Overall efficiency (LHV) of feedstock to total liquid fuel conversion in the nth plant and minimum

cases. Feedstock LHV is calculated on the basis of raw feedstock, before feedstock extraction in the case of

vegetable oils.

Fuel
production
technology

Feedstock n th minimum

Soybean 40.1% 46.5%

Rapeseed 66.2% 80.1%

Palm 60.3% 73.0%
HEFA

Jatropha 62.6% 75.7%

Tallow
93.4% 98.3%

Yellow grease

Sugarcane 10.2% 14.3%

AF Corn grain 40.4% 52.7%

Herbaceous lignocellulosic crop 25.7% 40.0%

Agricultural residue

Herbaceous lignocellulosic crop

Agricultural residue
48.0%/ 52.0%

FT Woody lignocellulosic crop

Forestry residue

MSW 59.0% 63.2%

FP Agricultural residue 54.1% 60.9%
Forestry residue

APP Woody lignocellulosic crop 38.8% 40.9%
Forestry residue

Woody lignocellulosic crop

Forestry residue
43.8% 44.7%

The resultant lifecycle GHG emissions for the nt plant and minimum cases, taking into

account reductions in agricultural inputs and improvements in fuel production efficiencies,

are presented in Table 19. Petroleum-derived CJ fuel is also reported for comparison.
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Table 19: Resultant lifecycle GHG emissions for nth plant and minimum cases in [gCO2e/MJ].

Feedstock nth minimum Note

Soybean 38.8 30.7

Rapeseed 50.5 37.5

Palm 37.5 23.6
HEFA

Jatropha 49.3 40.3

Tallow 31.5 27.4

Yellow grease 20.5 17.9

Sugarcane 11.2 3.7

AF Corn grain 53.9 31.0

Herbaceous lignocellulosic crop 38.4 13.2

Agricultural residue 36.4 18.2

Herbaceous lignocellulosic crop 15.5 7.9

Agricultural residue 14.0 11.0

Woody lignocellulosic crop 9.6 4.9

FT Forestry residue 7.8 7.0

Potential reduction in lifecycle emissions is partially due to a 25%

MSW 35.3 26.4 greater credit for the replaced waste management strategy. This
could be achieved by strategically deploying FT MSW technologies
where no landfill gas recovery is taking place.

FP Agricultural residue 61.1 51.6 Calculated based on pyrolysis diesel pathways in GREETI 2015
Forestry residue 26.5 22.1

Woody lignocellulosic crop 35.8 29.2 In absence of access to the LCA model for this pathway, the
APP -minimum reported lifecycle emissions value from Olcay et al.

Forestry residue 37.7 27.1 (2013) defines the 'minimum' case.

Woody lignocellulosic crop 9.6 4.9 In the absence of LCA data for these pathways, they are assumed
HTL -equivalent to the analagous FT pathways in terms of lifecycle GHG

Forestry residue 7.8 7.0 emissions.

Petroleum-derived CJ fuel 88.3

Time-evolution of AJ lifecycle GHG
costs

emissions and societal production

Figure 12 provides a summary of the potential change in AJ technologies' lifecycle GHG

emissions and societal production costs over time, relative to CJ, accounting for: potential

reductions from learning-by-doing; the increased societal benefit of CO 2 mitigation in an

emissions year of 2050 from APMT; and a 140% increase in CJ prices by 2050 based on the

reference case of the 2015 Annual Energy Outlook [154]. These intermediate results provide

support for the hypothesis that the societal benefits of GHG mitigation from AJ could

outweigh the fuel cost premium compared to CJ in the future, as many of the AJ feedstock-

to-fuel pathways fall below and to the left of the monetized climate benefit from APMT.
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Furthermore, the societal costs of producing AJ could potentially drop below those of CJ

(resulting in a negative premium on the y-axis) for a number of pathways by 2050. A

comparison of the results shown in Figure 11 and Figure 12 highlight the time-dependent

nature of AJ technologies' environmental and economic characteristics, relative to CJ. This

comparison also implies path-dependence, because the improvements in AJ characteristics

from learning-by-doing, represented in Figure 12, are a function of accumulated experience

with the specific technology. If no fuel is produced, there is no mechanism to move down

the learning curve and towards the minimum case lifecycle GHG emissions and societal

production costs that are represented here.

3.00 -Msoy

A Rapeseed

* Palm oil
HEFA

xJatropha oil

*OTallow

2.00 - .Yellow grease

MSugarcane

AF A Cor grain
4 Ugnocell. crop

Premium over Lu Agric. residue
conventional jet 1.00 -- LUgnocell. crop (herbac.)

[USD2015 liter] X Ugnocell. crop (woody)

FT X Agric. residue

* Forestry residue

0.00 -F Ag. residueFPIXx Forestry residue

Woody crop + *Woody residue
Fischer-Tropsch (FT) MSW Fischer-Tropsch (FT) MWoody crop

-L [A 0Woody residue

-1.00 Forestry residue fast pyrolysis (FP) [ T woody crop
0.00 0.25 0.50 0.75 1.00

Lifecycle GHG emissions
(normalized to conventional jet) [dmnl.]

Figure 12: TEA and LCA results using consistent assumptions, including the potential for reductions in the

production cost and lifecycle GHG emissions of AJ production from learning-by-doing. In addition, the y-axis

represents the difference in the societal cost of fuel AJ production in the minimum case, and the societal cost of

CJ projected to 2050. The monetized avoided climate damages are plotted as a function of the reduction in

lifecycle emissions compared to conventional jet fuel, a mean value from APMT-Impacts Climate for an

emissions year of 2050.
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The results in Figure 12 are used to identify three pathways for further investigation: short-

rotation woody crop FT, MSW FT, and forestry residue FP. These pathways are selected

because all three lie on or near the Pareto frontier of maximum reduction in lifecycle GHG

emissions and minimum production cost premium compared to CJ, meaning it is more likely

for these pathways that the societal benefits of AJ adoption outweigh the costs. In addition,

the three feedstock types associated with the selected pathways have distinct characteristics:

short-rotation woody crops are produced via commercial or industrial agriculture, forestry

residues are the byproducts of the existing forestry industry, and MSW is a waste product

that, in many cases, is currently disposed of in landfills.

System dynamics model

The adoption of AJ derived from woody crop FT, MSW FT and forestry residue FP is

modeled using a system dynamics approach. System dynamics is the technique of modeling

systems "characteri.ed by interdependence, mutual interaction, information feedback, and circular causality"

including "complex social, managerial, economic or ecological" structures as "a system of coupled,

nonlinear, first-order differential (or integral) equations" [196]. This method has been used to provide

insight in applications as diverse as developing strategies to combat the spread of diabetes, to

the dynamics of the cold war arms race [197], and has been particularly useful to assess the

dynamics of adoption of new energy technologies [198-200], including advanced biofuels

[201,202].

System dynamics is employed here in order to capture the time- and path-dependence, and

non-linearities and feedbacks, of large-scale AJ adoption, and the resulting impacts on the

societal climate change and fuel production costs of commercial aviation. The following

sections describe key elements of the model.

Learning-by-doing

The formulation developed by Vimmerstedt et al. (2015) and Newes et al. (2011) for learning

curves of advanced biofuels technologies is adopted here [202,203], as shown in Equation 5.
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Equation 5: Learning-by-doing for advanced biofuels.

1 -(1PR

(L*\ n2
M=) 1(_(1-MO) -E for E > L*

MO otherwise

L* = max{L, Eo}

m mearly (1 - M) + mminimum * M

where

M = degree of maturity, e (0,1)

Mo = initial maturity, e (0,1)

L = min. experience required for learning, units of cumulative production

L* = effective min. experience required for learning, units of cumulative production

E = cumulative experience, units of cumulative production

Eo = initial cumulative experience, units of production

PR = progress ratio, percentage of maturity gap, (1-M), remaining after each doubling of

cumulative production

mearly = MSP or LCA characteristic of interest, nth plant

mminimum = MSP or LCA characteristic of interest, minimum

m = MSP or LCA characteristic of interest

This formulation is more meaningful than the single factor learning curve, traditionally used

to model learning-by-doing of energy technologies [204,205], because a single factor learning

curve implicitly has an asymptote of zero. By using Equation 5, however, the parameter m

asymptotically approaches the minimum case value, which is defined by physical or practical

limits on the degree to which that characteristic may improve over time.

The degree of maturity of feedstock requirements (p), non-feedstock operating costs (OpEx),

non-MD fuel revenue (R), and lifecycle GHG emissions, are modeled as a function of

cumulative production of MD fuels. In contrast, the maturity of the capital cost

characteristic (CapEx) is modeled as a function of the cumulative number of facilities

constructed, meaning that there are two parallel learning processes modeled. The n * plant

value of each MSP or LCA characteristic is assumed to correspond to initial maturity, M, of
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50%, which is then used to calculate eay. Initial cumulative experience, E,, is assumed to be

zero. A progress ratio (PR) of 90 % is assumed based on a review of empirical studies of

learning-by-doing for biofuel production, meaning that 90% of the gap between m and

mm mmremains after each doubling of cumulative production [156-161].

The minimum cumulative volume of MD fuel production required for learning-by-doing to

take place is assumed to be 6.4 million metric tonnes of MD, equivalent to the annual

production of approximately 30 medium-sized (5000 bpd) bio-refineries. Similarly, the

minimum cumulative number of MD fuel production facilities required for learning-by-

doing to begin taking place for CapEx is assumed to be 30. These values of L were selected

for the two learning processes to reflect an established commercial drop-in MD fuel

production industry, where the next unit of production (in terms of fuel volume or

production facility) could be considered "n". As a point of comparison, approximately 30

ethanol production facilities were in operation in the US by the mid-1980s, at which point

reductions in industrial processing costs had been empirically observed [157].

Recall that the assumed initial maturity of these technologies is 50%, corresponding to the

n plant cases for both lifecycle GHG emission and production costs. This means that AJ

production technologies are assumed to have the characteristics of n* plant facilities until

learning curve effects begin to accumulate, and that the lifecycle GHG emissions and

production costs of these technologies leading up to nt plant or commercial-scale

production are not fully captured here.

Demand elasticity of price of agricultural commodities

An increase in feedstock demand for policy-mandated biofuel production (such as the

scenarios investigated here) may lead to increases in feedstock price and, ceteris paibus, an

increase in biofuel production costs. For example, Roberts & Schlenker (2013) estimate that

a 5% increase in demand for agricultural production (in terms of caloric value) for biofuel

feedstock under the US Renewable Fuels Standard 2 (RFS2) resulted in a 2 0% increase in

commodity prices [206]. This feedback mechanism on the production costs of AJ is modeled
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as a function of global projected agricultural production [39], and the demand elasticity of

price of agricultural commodities [206].

LUC emissions

Increased demand for feedstock may also lead to changes in agricultural land use patterns. A

number of studies have demonstrated that the resulting changes in the carbon stock of the

soil and biomass on that land may negate the lifecycle benefit of biofuels relative to

petroleum derived fuels [15-18,139].

This analysis draws on a review of partial- and general-equilibrium modeling studies to

capture the potential impact of LUC emissions attributable to increased demand for

lignocellulosic feedstock [207]. The results from Ahlgren & Di Lucia (2014) are used to

calculate that between 0.7 and 19.5 tC0 2 LUC emissions occur per tonne of incremental

annual demand for cultivated lignocellulosic feedstock (tmc feed. Calculation of this value

assumes an ethanol yield of 90 gal/short tonnefeed, and an allocation ratio of 9% of LUC

emissions to non-fuel products, as per GREET1 2015 [44].

Price elasticity of demand for aviation

Winchester et al. (2015) indicates that the mandated use of high-cost AJ may result in a

reduction in demand for aviation services, and a corresponding emissions benefit that

exceeds the lifecycle emissions benefit of AJ compared to CJ [208]. Therefore, this analysis

accounts for the relationship between fuel prices and demand for aviation services as a

function of two economic variables from the literature. The elasticity of the price of aviation

with respect to fuel price is estimated to range between 0.105 and 0.46 [209,210], and the

elasticity of air transport demand with respect to the price of aviation is estimated to range

between -0.9 and -0.4 [209,211]. The product of the two provides an estimate of the

elasticity of air transport demand with respect to fuel price, ranging from -0.042 to -0.414.

91



Simtlified causal loon diagram of system dynamics model

The feedback structure of the resulting system dynamics model is depicted in Figure 13,

consisting of two reinforcing loops and two balancing loops. The two reinforcing loops

operate through the private cost of AJ, '/J private cost", which is decomposed into capital

cost, feedstock operating costs and non-feedstock operating costs of aviation biofuel

production ('AJ CapEx", 'AJfeedstock OpEx", and 'AJ non-feedstock OpEx", respectively).

As more aviation biofuel production facilities come into production, there is an

accumulation of experience with facility construction ('Maturity ofAJfaciliy construction"). This

decreases capital expenses and thereby decreases private costs of AJ ('AJprivate cost'). Ceteris

paribus, a decrease in the costs of AJ relative to CJ would increase demand for jet fuel and AJ

specifically ('Totaljetfuel demand", 'Target AJproduction volume'), which would increase the 'AJ

production volume shortfall" (defined as the discrepancy between the desired and actual

availability of AJ. In response to a larger value of 'AJ production volume shortfall", more AJ

facilities will be constructed and brought into production, with a delay for construction time.

This reinforcing loop is represented as R1 in Figure 13.

More AJ production facilities ('AJ production facilities') lead to an increase in the annual

production volumes of AJ ('Annual AJ production'). Production of AJ results in an

accumulation of experience and an increasing maturity of commercial AJ production

technology ('Maturity of AJ production process'). Greater maturity leads to more efficient

production, resulting in decreased feedstock requirements ("Specificfeedstock requirements') and

therefore feedstock operating costs ('AJfeedstock OpEx'), as well as decreased non-feedstock

operating costs ('AJ non-feedstock OpEx'). This leads to lower 'AJ private costs", and the

remainder of this second reinforcing loop (R2) is completed along the same path as R1, as

shown in Figure 13.

A higher quantity of 'AJ production facilities" leads to an increase in 'Annualfeedstock demand",

which increases 'Feedstock cost". This increases 'AJ feedstock OpEx" and 'AJ private cost". An

increase in the costs of AJ relative to CJ fuel would decrease demand for AJ ('Target AJ

production volume'). This would decrease 'AJ production volume shortfall" and decrease the

number of new AJ production facilities ('AJ production facilities'). This first balancing loop is
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labeled as B1 in Figure 13. The second balancing loop (B2) reflects that as more 'AJ

production facilities" increase annual production ('Annual AJ production') and decreases the

discrepancy between desired and actual availability of aviation biofuel ('AJproduction volume

shortfall").

In addition to the feedback loops described above, the system dynamics model captures

non-linearities associated with GHG emissions from LUC (as a function of incremental

changes in 'Annualfeedstock demand") and changes in "Total jet fuel demand" (as a function of

"AJ private cost", "CJ private cost", and 'Elasticity of aviation demand WRTfuelprice').
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Figure 13: Simplified causal loop diagram of the system dynamics model.
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Monetized climate impacts

The probability distribution functions (PDFs) of societal NPV of climate damages from

C0 2, CH4 and N20 WTP and combustion CO2 emissions are estimated as a function of

societal discount rate and emissions year from APMT, assuming RCP4.5 and SSP1 in all

cases. The PDFs of societal NPV of climate damages from non-CO 2 combustion impacts of

CJ and AJ are calculated from APMT as well, also as a function of societal discount rate and

emissions year. These distributions are used to monetize the climate damages from aviation

for use in the CBA.

Commodity prices and conventional jet fuel demand

The annual prices of CJ and AJ feedstock, and global demand for conventional jet fuel, are

each modeled here as a stochastic differential process in time, S, known as Geometric

Brownian Motion, of the general form shown in Equation 6 [212].

Equation 6: Geometric Brownian Motion.

dS = -Stdt + - -StdW

where

P = percentage drift

a = percentage volatility

Wt = standard normal random variable

The starting point for commodity prices, annual percentage volatility, and annual percentage

drift parameters are estimated for business-as-usual (BAU) CJ demand [76,213] and CJ

market price [142,143] from historical data. The starting point commodity prices for

delivered lignocellulosic and MSW feedstocks are derived from the literature [214,149], and

historical market prices for first generation biofuel feedstocks are used to estimate their

annual percentage price drift and volatility [215-220].
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Simulation setup and parameter definition

The system dynamics model defined by the relationships described above is built using

Vensim DSSP software, v6.4b. Commercial aviation fuel burn is simulated from 2015 to

2050, and the model returns the difference in annual climate damages and fuel production

costs between the policy case and the BAU, no policy case.

For each feedstock-to-fuel pathway of interest, this analysis considers a policy where AJ

replacement of CJ begins at 0% in 2020, and ramps up to 10% replacement by 2035. AJ

production continues to grow from 2035 to 2050 to maintain 10% of total jet fuel demand.

2020 was selected as the policy start year because AJ currently makes up a negligibly small

fraction of total commercial aviation fuel burn, and commercial scale AJ production facilities

require a design, permitting and construction lead-time of approximately three years [65].

Therefore very little replacement of CJ with AJ will occur before this time. In addition, 2020

coincides with the starting point of ICAO's aspirational goal of carbon-neutral growth,

facilitated by a global market-based measure under which alternative jet fuels will be eligible

to count towards airlines' emissions reduction obligations [81].

10% replacement by 2035 would require 55 million tonnes of AJ production annually, or

approximately 450 medium-sized (5000 bpd) AJ production facilities worldwide if 50% of

total fuel production is drop-in jet fuel. This number drops to approximately 270 facilities if

it is assumed that 85% of total fuel products are either drop-in jet or diesel to be blended

with CJ up to 10% [221]. In contrast, annual production of first-generation biofuels (ethanol

and biodiesel) is approximately 100 million tonnes [74]. This means that, without taking

production capacity away from its current uses, 10% replacement of CJ would require

approximately doubling global biofuel production capacity by 2035. Therefore, this level of

replacement was selected because it is large enough to have an appreciable impact on the

climate damages of aviation without exceeding the order of magnitude of historical

precedent.

96

... ...........



A paired Monte Carlo approach, using 10000 runs, quantifies uncertainty in the resulting

annual climate damages and fuel production cost estimates. The definition of key

parameters, and their probability distributions, is contained in Table 20.

Table 20: Parameter and probability distribution function definition for system dynamics simulation.

Parameter Value Units Distribution Source Note

Initial, 2015 274 [1o6 tjet/yr] Uniform (min, max) ICAO (2013)[16(270,279)
CJ

demand Volatility 2.55% [%/yr] Point value US EIA (2016a) Std dev. of annua percentage change in jet fuel
Drift 3.50% [%/yr] Point value ICAO (2013)

Initial, 2015 574.94 [USD 2015/tjet] Point value US EIA (2016b)

Volatility 27.10% [%/yr] Point value US EIA (2016b) Std. dev. of annual percentage change in jet fuel
C3 price demand, 1991-2012

Drift 3.14% [%/yr] Triangular (mn, max) US EIA (2015)(0.83%, 4.65%)

Initial, 2020
80.00 [USD201s/tfeM] Uniform (mn, max) US DOE (2016) Delivered feedstock costs

Initial, 2020 (60, 100)
forestry residue

Initial, 2020 0.00 [USD2zis/trfeo] Point value Suresh (2016)Feedstock MSW
price -Std. dev. of annual percentage change in first

Volatility 21.90% [%/yr] Point value generation biofuel feedstock prices (palm, rapeseed,
soybean, corn grain, sorghum, sugarcane), 1991-2015

Index Mundi (2016a-f)
Annual percentage change in first generation biofuel

Drift 1.73% [%/yr] Uform (m, m53) feedstock prices (palm, rapeseed, soybean, corn
grain, sorghum, sugarcane), 1991-2015

Specific LUC emissions 7 [tco2/tfdl Uniform (mi , max) Ahlgren & Di Lucia (2014)factor ' [tstoj] (0.7, 19.5)Ahge&DiLca(04

Demand elasticity of 4 dmnl. Uniform (mi, max) Roberts & Schlenker (2013)feedstock price (2, 5)

Fuel price elasticity of -0.62 dmnl. Triangular (min, max) Wadud (2015), IATA (2008),
aviation demand (-0.042,-0.414) Koopmans & Lieshout (2016)

Pror Fuel poduction 90% Triangular Chen & Khanna (2012), Hettinga et al. (2009),
ratio Facility [%] (80%, 95%) van den Wall Bake (2009), Goldemberg et al.

construction (2004), Berghout (2008), Nogueira et al. (2016)

The result of the model runs is the 2020 NPV of the difference between the policy and no

policy cases, in terms of climate damages and fuel production costs to society, discounted

according to the selected societal discount rate.

Results and discussion

The results for the three AJ production pathways are shown in Figure 14. These are broken

out in a stepwise manner to illustrate the contribution of different impacts on the change in

NPV of societal climate damages and fuel production costs of aviation, over the modeled

assessment period of 2015-2050. First, starting from the left of each panel in Figure 14, there

is a reduction in the climate damages of aviation from WTP GHG and combustion CO2
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emissions (first column, labeled as lifecycle CJ emissions), and non-CO2 combustion

emissions (second column) from petroleum-derived conventional jet (CJ) fuel. This is due to

the replacement of CJ with alternative jet (AJ) fuel. This reduction in climate damages is

partially offset by the WTP GHG, combustion CO2, and non-CO2 e emissions from AJ

(third and fourth columns). For the woody crop FT pathway, LUC CO 2 emissions

attributable to AJ further offset the reduction in climate damages from replacing CJ with AJ

(fifth column). The first blue column shows the mean value of Monte Carlo results for the

net change in climate damages. The second and third columns from the right show the

change in the societal fuel production costs, broken out by the reduction in the costs for CJ

production that is offset, and increase in costs for AJ production. The rightmost column

shows the mean change in the total NPV of societal climate damages and fuel production

costs, as well as the 95% confidence interval (CI).
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Figure 14: Change in NPV of societal climate and fuel production costs of aviation, 2015-2050. The 95% CI is

shown only for net results. Forestry residue FP and MSW FT 2.5th percentiles are at -3.2 and -5.6 trillion USD 2015 ,

respectively, but are not shown for practical representation of the results.

A comparison of the results shown in Figure 14 illustrates the unique characteristics of the

three AJ production pathways examined. For the woody crop FT pathway, emissions from

LUC offset 90% of the lifecycle and non-CO2 combustion emissions benefit of replacing CJ

with AJ. In addition, the NPV of societal fuel production costs of woody crop FT AJ is

calculated to be 66% greater than the CJ that it is replacing. The net result is a mean increase

in NPV of 0.60 trillion USD 01 ,, which is equivalent to a 4.2% increase in the NPV of

societal climate damages and fuel production costs under the no policy, no AJ adoption case.
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In contrast, because the FP pathway is assumed to use forestry residue feedstocks that do

not carry the risk of changes in land use patterns attributable to AJ production, the reduction

in climate damages from replacing CJ with AJ is not undermined by LUC emissions. In

addition, the societal resource costs of forestry residue FP AJ is calculated to be only 15%

greater than the CJ that it is replacing. This is in part because, although the FT and FP

pathways have similar characteristics in terms of the capital and operating expenses of fuel

production, the FP process is estimated to have potential for greater total fuel yield than

lignocellulosic FT (60.9% compared to 52.0% feedstock-to-fuel LHV efficiency, respectively,

as shown in Table 18), and therefore requires less feedstock per unit of AJ production. The

combination of these two factors results in a net decrease of 0.20 trillion USD 20 15 of the

mean NPV of societal climate damages and fuel production costs of aviation, equivalent to a

1.4% decrease compared to the no AJ policy case.

Similar to the forestry residue FP pathway, MSW FT makes use of a feedstock for which

there is assumed to be no risk of emissions from LUC.1 In addition, because the baseline

assumption is that MSW is a no-cost waste feedstock, the societal cost of CJ production

eventually exceeds that of MSW FT. As a result, the societal NPV of the fuel production

cost of MSW FT is 38% less than the CJ that it is replacing. In net, the MSW FT pathway

results in a decrease of 0.77 trillion USD 2015 of the mean NPV of societal climate damages

and fuel production costs, equivalent to a 5.4% decrease from the no AJ policy case.

Sensitivity analysis

A sensitivity analysis is carried out in order to quantify the impact of key parameters on the

results, as shown in Figure 15. The findings are reported as the probability of a net reduction

in the NPV of societal climate damages and fuel production costs, compared to the no AJ

1 The LCA study used to characterize emissions for the MSW FT pathway does account for changes in GHG emissions due

to a change in the waste management strategy of an MSW feedstock, such as landfill gas emissions [149]. However, in this

thesis LUC emissions refers to CO 2 emissions resulting from a change in the soil and biomass carbon stock of land used for

feedstock cultivation and recovery, and therefore does not apply to the changes in landfill gas emissions that are otherwise

captured in the LCA of the MSW FT pathway.
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policy case, calculated on the basis of 10000 Monte Carlo runs. For all three of the pathways

the societal discount rate, annual average growth rate of CJ price, fuel price elasticity of

aviation demand, and initial feedstock price, were varied in isolation. In addition, the

demand elasticity of feedstock price, annual average growth rate of feedstock price, and LUC

emissions factor, were varied in isolation for the woody crop FT and forestry residue FP

pathways. The grey dashed line indicates a 50% probability that there is a net reduction in

the NPV of societal climate damages and fuel production costs for a given scenario.
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Figure 15: Sensitivity of change in NPV of societal climate damages and fuel production costs of aviation to individual parameters, 2015-2050. The results shown

correspond to the proportion of total Monte Carlo runs that result in a decrease in the NPV of aviation.
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Figure 15 indicates that the results across the three pathways are particularly sensitive to

assumptions regarding the societal discount rate, fuel price elasticity of aviation demand,

feedstock price (in terms of both initial price and annual average growth rate), and LUC

emissions factor. In general, a lower societal discount rate results in a higher probability of a

reduction in NPV, and vice versa. This is because, with a decreasing discount rate, the

present value of avoided climate damages increases more quickly than the present value of

the societal costs of fuel production.

In addition, the probability of a reduction in NPV increases with a higher assumed fuel price

elasticity of aviation demand. This is because the societal cost of fuel production is positively

correlated with the private costs of AJ and CJ. As the fuel price elasticity of demand

increases, there is less jet fuel demand in Monte Carlo runs where fuel price (the weighted

average of the private costs of AJ and CJ) is high and more jet fuel demand in runs where

fuel price is low, which results in a decrease in the mean societal cost of fuel production

across all 10000 iterations.

The probability of a reduction in NPV also increases if the societal cost of AJ production

decreases relative to CJ (due to lower annual average feedstock price growth, initial feedstock

price, or demand elasticity of feedstock price; or higher annual average CJ price growth), and

vice versa. Finally, the probability of a reduction in NPV also has an inverse relationship

with the LUC emissions factor associated with incremental feedstock demand.

Tradespace analysis

In order to further illustrate the interdependence and influence of the key parameters

identified in Figure 15 on the probability of a reduction in NPV, a tradespace analysis is

carried out. The parameters selected for this analysis are the societal discount rate, initial

feedstock price, and the LUC emissions factor. The societal discount rate is of particular

interest, and is included in both tradespace analyses of the other variables, because it

represents a subjective analytical choice rather than a measurable parameter. The initial

feedstock price and LUC emission factor parameters are included because they represent
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characteristics that differentiate the findings between the three pathways considered: Figure

14 shows a mean reduction in NPV for the forestry residue FP and MSW FT pathways in

part because it is assumed there is no risk of LUC emissions; and MSW FT has the greatest

mean reduction in NPV in part because of the assumption of a no-cost feedstock.

The results in Figure 16 show the tradespace of societal discount rate, initial feedstock cost

and the probability of a reduction in NPV. The dashed line indicates the contour of a 50%

probability, and the assumptions corresponding to the baseline case shown in Figure 1 are

highlighted on the figure. In all three cases a net reduction in NPV is more likely than not to

the left of the contour line.
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Figure 16: Probability of a reduction in the NPV of societal climate and fuel production cost of aviation, 2015-

2050. Results are generated using the baseline assumptions outlined above, and varying the assumed societal

discount rate and initial feedstock cost. The dashed contour indicates a 50% probability of a reduction in NPV,

and the x indicates the baseline assumptions from the results shown in Figure 14.
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In the woody crop FT case, a probability greater than 50% only occurs when the societal

discount rate is less than 1%. The contour moves to the right as the initial feedstock cost

increases because, at very low discount rates, the increased societal value of mitigated GHG

emissions, combined with the reduction in total jet fuel demand due to the high cost of AJ

fuel (and corresponding reduction in climate damages, fuel production costs, and

proportional share of LUC emissions) outweighs the increased societal unit cost of AJ

production.

For forestry residue FP and MSW FT, there is a large parameter space to the bottom left

where the probability of a reduction in NPV is greater than 50%. In both cases, the

sensitivity of the probability of a reduction in NPV to changes in the initial feedstock price

increases with the societal discount rate. At discount rates greater than approximately 3.7%,

the probability of the MSW FT pathway resulting in a net reduction in NPV drops below

50% regardless of the initial feedstock price. This is because, at higher discount rates, the

additional societal cost of producing AJ in the first few years outweighs the present value of

the avoided climate damages. At equivalent initial feedstock prices, for example 50

USD2Ol 5 /tfeed, the probability of a net reduction in NPV is greater for forestry residue FP than

the MSW FT pathway. This is because the FP pathway is characterized by higher total fuel

yield per unit feedstock, and higher non-MD fuel revenue per unit of fuel production, which

partially offsets the societal production cost premium of AJ fuel produced using FP

technology.

The results in Figure 17 show the tradespace of the societal discount rate, LUC emissions

factor and the probability of a reduction in NPV. Results are shown for the forestry residue

FP pathway because it is possible that this pathway could make use of a short rotation

woody crop or some other lignocellulosic feedstock that could result in LUC emissions.

Results are not shown for the MSW FT pathway because the use of an MSW feedstock is

unlikely to result in a change in soil and biomass carbon stocks.
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Figure 17: Probability of reduction in the NPV of societal climate and fuel production costs of aviation, 2015-2050.

Results are generated using the baseline assumptions outlined above, and varying the assumed societal discount

rate and assumed LUC emissions factor. The dashed contour indicates a 50% probability of a reduction in NPV,

and the x indicates the baseline assumptions from the results shown in Figure 14.

As indicated in Figure 17, the probability of a net reduction in NPV is greater than 50% only

in the bottom left corner of the parameter space for both fuel pathways. If the LUC

emissions factor is greater than 10 or 6.2 tC 0 2/tinc feed in the woody crop FT and forestry

residue FP cases, respectively, there is no discount rate at which the probability of a

reduction in NPV is greater than 50%. For the woody crop FT pathway, the probability of a

reduction in NPV does not exceed 50% independent of the LUC emissions factor at a

societal discount rate above 1.5%.

107



Limitations and areas for future work

The analysis presented in this Chapter could potentially be expanded upon in a number

ways, as discussed below.

Additional environmental and economic costs and benefits to society

The scope of the analysis presented here is limited to lifecycle GHG emissions, LUC

emissions and the production costs of AJ relative to CJ because these are the characteristics

that have both motivated and inhibited interest in the use of AJ production technologies for

aviation. However, a more comprehensive CBA of AJ adoption would include additional

environmental, economic, and societal impacts.

For example, this analysis does not consider the air quality impacts of low-sulfur and -

aromatic content AJ [223,224], the lifecycle water footprint of fuel production [150], or the

climate impacts of surface albedo change due to LUC [225]. In addition, the current work

does not account for the impacts of economic diversification and development from the

establishment of a new AJ production industry, particularly in rural and feedstock-growing

regions [226,227], or the country-specific energy security benefits of reducing reliance on

fossil fuels [228]. Future work in this area could quantify the societal costs and benefits from

these and other environmental and economic impacts of AJ, as they are identified, in order

to compare them to results in this thesis.

Societal opportunity cost of scarce resources and system boundary expansion

In order to capture the societal cost of scarce resource inputs required for AJ production,

such as biomass feedstock, this analysis assumes that the market price of a commodity is

representative of its societal opportunity cost, or shadow price [170]. In effect, this

assumption implies that the market price of a commodity is a valuation of the best, foregone
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alternative use of that scarce resource outside of the system boundary of interest, which in

this case is the global commercial aviation sector.

If the system boundary of interest is expanded beyond aviation, however, the societal

opportunity cost should also include the foregone societal benefit of using scarce resources

to mitigate environmental externalities. For example, the market price of biomass does not

reflect the potential to mitigate climate damages from electricity generation by co-firing of

biomass with coal, but if the system boundary of interest includes sectors beyond aviation

this foregone environmental benefit should be added to the market price of biomass to

better reflect its societal opportunity cost. Assuming a thermal boiler efficiency of 38%, and

specific GHG emissions of 248 gCO2/MJ and 0 gCO2/MJ from coal and biomass-fired

electricity generation, respectively, 1 tforestry residue could offset 1.89 tco2 [44]. At a societal

discount rate of 2% and an emissions year of 2020 in APMT, the avoided monetized climate

damages have a mean NPV of 131.38 USD2OI 5 /tforestqy residue. If this foregone environmental

benefit were added to the initial feedstock costs considered for the results shown in Figure

16, there would be a significant decrease in the probability of a net reduction in NPV.

Similarly, if the system boundary is expanded beyond the aviation sector, the societal

opportunity cost of capital resources should also include the foregone societal benefit of

their use to mitigate environmental externalities in other sectors. One measure of this

environmental opportunity cost is the price of CO2 emissions offsets. Assuming an offset

price of 10 USD2015/tC 0 2 [229], a societal discount rate of 2% and an emissions year of 2020

in APMT, each dollar used to produce AJ has an environmental opportunity cost with mean

NPV of 6.94 USD2015- In effect, if the societal opportunity cost of using scarce capital

resources to produce AJ includes the foregone climate benefit of purchasing CO2 offsets, the

total societal opportunity cost of capital is approximately 8 times the currency value.

It should be noted that these examples are selected for illustrative purposes only, and that

the societal opportunity cost of scarce resource inputs is contingent upon both the system

boundary of interest, and the alternative uses of those resources that are actually available.

For instance, the foregone environmental benefits calculated above are dependent on the

possibility of using that biomass to offset coal-fired electricity generation, and the availability
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and effectiveness of CO 2 offsets. In any case, these system boundary issues, and accurate

evaluation of societal shadow prices for scarce resources, is an area for future research that is

applicable to environmental CBA beyond the context of aviation, or large-scale AJ adoption.

Summary

This Chapter presents a dynamic CBA that quantifies the societal costs and benefits of

aviation, in terms of climate damages and fuel production costs, under a policy of large-scale

AJ adoption. This is achieved by parameterizing the performance of a diversity of AJ

feedstock-to-fuel production pathways on the basis of their lifecycle GHG emissions,

production costs and feedstock requirements, quantifying the potential for time- and path-

dependent improvement in these technologies relative to CJ, and accounting for the

feedbacks and non-linearities of large-scale adoption using a system dynamics approach. The

results quantify the degree to which the different attributes of AJ production technologies

drive the balance of the climate change benefits and fuel production costs of large-scale

adoption, from a societal perspective. In particular, the findings highlight the importance of

two specific characteristics of AJ production technologies.

First, this analysis finds that the probability of a reduction in NPV of the societal costs of

aviation is sensitive to the societal opportunity cost of AJ feedstock. This is shown in Figure

16, where market price is used as a proxy for societal opportunity cost. If the societal

opportunity cost of feedstock is lower because the societal benefits of using it for some

other purpose are lower, ceteris paribus, the probability of net reduction in NPV will be

greater. This points toward the potential importance of residue and waste feedstocks for

minimizing the societal production costs of AJ. Unlike agricultural commodities that are

already traded and provide a clear benefit to society in the form of food and animal feed

(such as cereal, sugar or vegetable oil crops), uncollected residues and wastes do not

currently provide a traded societal benefit. This implies that the societal opportunity cost of

using these feedstocks for AJ production is potentially lower than agricultural commodities.

In some cases, there may even be a negative societal opportunity cost associated with the use

of residue and waste feedstocks. For example, the use of MSW for AJ production could
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reduce the costs incurred for landfilling that would otherwise have to take place to dispose

of the waste [222]. Therefore, in order to maximize reductions in the societal climate and

fuel production costs of aviation, large-scale AJ adoption should make use of feedstocks

with lower societal opportunity costs, including wastes and residues.

Second, this Chapter illustrates that LUC emissions can negate the lifecycle emissions benefit

of AJ relative to CJ. This is exacerbated by the fact that LUC emissions are more likely to

occur at the beginning of a policy of AJ adoption, as fuel production is ramping up and

incremental increases in feedstock demand are the largest. As a result, the climate damages

from LUC emissions are subject to less discounting than the potential reductions in climate

damages from lifecycle emissions in later years. This is the case even for the FP pathway

(assuming the use of a land-based lignocellulosic crop feedstock), which is the most

promising pathway considered in this analysis based on the results shown in Figure 12: a

LUC emissions factor of 6.2 tCO2/tic. feed or greater pushes the probability of a net reduction

in NPV below 50% at any societal discount rate. This sensitivity to LUC emissions is only

further heightened for the other AJ pathways characterized in this Chapter, due to smaller

lifecycle GHG emissions benefits, or larger societal production cost premiums compared to

CJ. Furthermore, LUC emissions factors may be even greater for AJ pathways that rely on

non-lignocellulosic feedstocks, such as sugarcane, wheat, or vegetable oil crops [207]. These

findings suggests that, if even a modest risk of LUC emissions is present for a particular

feedstock-to-fuel pathway, a reduction in net NPV is only likely if the AJ pathway has

characteristics similar to, or better than, the forestry residue FP pathway assessed here, and

the societal discount rate is sufficiently low. This is a very limited target design space for AJ

technologies. Therefore, large-scale AJ adoption should make use of feedstocks that do not

carry a risk of either direct or market-mediated indirect LUC emissions in order to maximize

the probability of reductions in the societal climate and fuel production costs of aviation.

Residue and waste feedstocks also represent an opportunity on this front, as their

production does not require arable land area to the same degree as cultivated energy crops.

In addition to the societal opportunity costs and potential LUC emissions of AJ feedstocks,

the importance of which are demonstrated by the analysis here, further environmental and

economic aspects of large-scale AJ production need to be considered for a holistic
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assessment of these technologies. Many of these potential impacts are a function of the scale

of production that would be required to significantly reduce the climate impact of

commercial aviation.

For example, ramping up global AJ production to offset 10% of CJ demand by 2035

(assuming green diesel can be blended with CJ up to 10%), with a corresponding reduction

of 5-9% in the lifecycle CO 2 emissions of aviation, would require the commissioning of

approximately 18 new AJ production facilities each and every year from 2020 to 2035.

Assuming that the feedstock used to produce this fuel was a lignocellulosic energy crop with

yields of 10 t/ha, it would require -40 Mha of arable land area for cultivation, or ~3% of

current global arable land area [28]. Reallocating the use of existing croplands, expanding

cropland area into uncultivated areas, intensifying production on existing croplands, or even

the harvesting of agricultural residues to satisfy this additional biomass demand, could have

significant implications for matters of societal importance, such as biodiversity [230], soil

quality and nutrient retention [34,35,231], water quality [151] and food prices [232,233].

These impacts are not considered in this CBA, although they represent additional limitations

on the design space of an AJ feedstock-to-fuel pathway for which the societal benefits

outweigh the costs.

Finally, the results shown in Figure 15, Figure 16 and Figure 17 indicate that the societal

climate and fuel production costs of aviation are dependent on the societal discount rate. At

low discount rates, the economic damages from climate change experienced by future

generations are more highly valued. Therefore, even modest reductions in the GHG

emissions have a societal value that outweighs the additional costs of fuel AJ production. On

the other hand, at high discount rates the economic damages from climate change have a

lower societal value. Therefore, the reduction in GHG emissions must be larger in

magnitude, or the cost premium of AJ fuels must be smaller, for a net reduction in the

societal NPV of climate and fuel production costs of aviation. In both cases the findings of

this Chapter illustrate that the selection of discount rate, which reflects the value that society

places on the economic welfare of future generations, is a key driver of the balance of

societal climate and fuel production costs of a policy of large-scale AJ adoption.
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5. Conclusions

The purpose of this thesis is to enhance the field of environmental and economic technology

assessment for policy, with a focus on bioenergy as an alternative to fossil fuels and the use

of alternative fuels for commercial aviation. This final chapter summarizes the contributions

and findings of the work presented above, and briefly discusses areas for future research in

this field.

Contributions and findings

The first part of this thesis quantifies the global potential for bioenergy resources to reduce

anthropogenic greenhouse gas (GHG) emissions from fossil fuels. A maximum of 4.9-38.7

Gtc 2c, or 9-68%, of annual global lifecycle GHG emissions from fossil fuel heat, electricity,

and transportation fuels could be mitigated by the use of bioenergy by 2050. The range of

results reported in this analysis reflects nine different scenarios, which define the potential

availability of bioenergy resources and projected demand for fossil fuels that could be offset

by bioenergy in 2050. The findings demonstrate that greater availability of bioenergy

resources (due to greater availability of arable land and higher projected agricultural yields on

those lands), and greater demand for fossil fuels, both lead to larger calculated potential for

bioenergy to contribute to GHG emissions mitigation.

In addition to the constraints on biomass availability that have been well established in the

literature, including arable land area and agricultural yields, this work demonstrates that the

maximum mitigation potential is further limited by the lifecycle GHG and LUC emissions of

bioenergy, and the lifecycle GHG emissions of the fossil fuels it could be used to offset.

Maximizing reductions in lifecycle GHG emissions requires limiting deployment of global

primary bioenergy resources to 29-91% of what is potentially available for use. In addition,

going beyond the calculated point of bioenergy deployment that maximizes GHG emissions

reductions could result in offsetting the next unit of fossil fuel energy with a unit of
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bioenergy that has higher lifecycle GHG and LUC emissions, and therefore contributes to a

net increase in anthropogenic GHG emissions.

Significantly, the results of this work show that offsetting demand for fossil fuel-fired heat

and electricity is 1.6-3.9 times more effective for emissions mitigation than offsetting

demand for fossil fuel-derived liquid fuels when considering the use of global bioenergy

resources to maximize GHG emissions reductions. Despite this, liquid fuels make up

between 18-49% of total final bioenergy in the nine scenarios considered. Therefore,

maximizing lifecycle GHG emissions reductions from the use of bioenergy requires a mix of

end-uses, including biomass-derived transportation fuels.

This finding is especially relevant for the aviation industry. By mid-century, aviation's

contribution to annual anthropogenic CO 2 emissions is expected to grow to approximately

4% [77]. The long development and certification timelines for new aircraft and engine

technologies, in addition to slow fleet turnover, mean that commercial aviation will remain

dependent on energy-dense liquid fuels in the coming decades [55-57,80]. Drop-in AJ fuels

derived from biomass, with chemical properties similar to petroleum-derived convention jet

(CJ) fuels, are a promising near-term technology option to reduce the climate impact of

aviation because of the biogenic nature of their combustion CO 2 emissions, and because

they are compatible with the existing fleet of aircraft.

The second contribution of this thesis is to characterize a class of technologies used for AJ

production, referred to as fermentation and advanced fermentation (AF), in terms of their

lifecycle GHG emissions and costs of production. This is carried out using the methods of

lifecycle and techno-economic analysis (LCA and TEA), and is the first assessment of this

emerging class of technologies. Because AF fuel production does not yet exist at the

commercial or industrial-scale, empirical data are unavailable for these processes. Therefore,

this analysis draws upon data from chemical process models developed for ethanol and

biodiesel production, petroleum refinery design literature, and primary science on engineered

microorganisms for advanced biofuel production, in order to quantify the mass and energy

balances associated with AF production. The results show that middle distillate (MD) fuels

produced via AF, including jet and diesel, could reduce lifecycle GHG emissions by 30-86%,
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but that the cost of producing AF fuels is approximately 2-5 times the price of conventional

MD.

In addition to uncertainty about the how these technologies will develop and perform at

commercial-scale, much of the variability in findings is driven by technology choices. For

example, AF MD fuels derived from sugarcane, via an ethanol platform molecule, have

lower lifecycle GHG emissions and minimum selling price (MSP) than the other feedstock-

to-fuel pathways investigated. Therefore, the impact of key parameters on the environmental

and economic performance of AF MD fuels is quantified in this thesis. The results identify

metabolic efficiency (in part defined by the selection of platform molecule), the efficiency of

platform molecule separation and upgrading processes, and the efficiency of process

electricity and heat co-generation as key drivers of AF MD lifecycle GHG emissions and

MSP. Higher overall feedstock-to-fuel conversion efficiency, as a function of each of the

process steps described above, is shown to result in reductions in both lifecycle GHG

emissions and MSP. Furthermore, the MSP of the sugarcane and corn grain AF MD

pathways are shown to be particularly sensitive to feedstock cost, whereas the MSP of

switchgrass AF MD is more sensitive to capital cost. The results of this analysis can be used

to inform technology decisions and areas for future research that could improve the

performance of AF MD fuels relative to conventional MD in the future.

The third contribution of this thesis is to quantify the societal costs and benefits of a policy

of large-scale AJ adoption, in terms of the climate damages and fuel production costs

attributable to aviation. A diversity of feedstock-to-fuel AJ production pathways are

characterized in terms of their lifecycle GHG emissions and costs, both to the fuel

purchaser, and to society in terms of scarce land, labor and capital resources required for

production. The results show that, across all of the technologies considered, there is a

tradeoff between the potential climate benefit and incremental production cost of AJ relative

to CJ. In addition, this analysis quantifies the degree to which this climate-cost trade-off may

evolve over time due to learning-by-doing of nascent AJ production technologies, increases

in the costs of CJ fuels, and the increasing societal value of GHG emissions mitigation. In

order to account for the time- and path-dependent characteristics of AJ technologies, as well

as potential environmental and economic non-linearities and feedbacks associated with large-

115



scale deployment, a cost-benefit assessment (CBA) is carried out using a system dynamics

approach.

This work demonstrates that the balance of societal costs and benefits of a policy of large-

scale AJ adoption is sensitive to the characteristics of the feedstock-to-fuel pathway under

consideration. In particular, the analysis highlights the potential importance of low societal

opportunity cost and low LUC risk feedstocks for maximizing the probability of a net

reduction in the NPV of societal climate and fuel production costs of aviation. For example,

even when considering the Pareto frontier of AJ pathways that minimize lifecycle GHG

emissions and production cost premium compared to CJ, high societal opportunity cost

feedstocks (initial feedstock cost _ 140 USD 2 015 /tfeedstock, or high LUC emissions (LUC

emissions > 4.2 tco2 /tinc. feedstock), could reduce the probability of a reduction in the societal

climate and fuel production costs of aviation to below 50%. Therefore, the findings

emphasize the potential importance of AJ derived from low LUC risk and low societal

opportunity cost feedstocks, specifically wastes and residues, as a means to minimize the

costs of aviation to society.

In summary, this thesis finds that lifecycle GHG and LUC emissions are a binding constraint

on the potential for bioenergy to contribute to global GHG emissions reductions.

Furthermore, maximizing the anthropogenic climate change mitigation potential of

bioenergy requires using these resources to offset demand for a mix of fossil fuel end-uses,

including liquid transportation fuels. Next, this work demonstrates that biomass-derived AF

MD fuels could reduce the lifecycle GHG emissions of fuel for road transportation and

commercial aviation by 30-86%, but that this environmental benefit comes a production cost

2-5 times greater than petroleum-derived fuels. Finally, this thesis concludes with a CBA of

large-scale AJ adoption for the commercial aviation industry. The results indicate that

whether such a policy results in a net increase or decrease of costs to society depends on the

subjective selection of a discount rate for the analysis, and the characteristics of the

feedstock-to-fuel pathway of interest. In particular, AJ fuels derived from low LUC risk and

low societal opportunity cost feedstocks, such as wastes and residues, are identified as the

production pathways most likely to result in a reduction of the climate and fuel production

costs of aviation to society.
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Future work

This thesis points to a number of areas of interest for future research on the topics of

bioenergy and AJ technologies, and also more generally for technology assessment with the

goal of informing policy making.

The analysis presented here, as well as previous work to assess the environmental impacts of

bioenergy including AJ production technologies [9,12], has used GWPO as the climate

metric of choice. This is a methodological decision made almost by default in many LCA

studies, although its consequences for the conclusions may be significant when non-CO2

GHG emissions are associated with the technology of interest [234]. In addition, LUC

emissions are often dealt with by simply amortizing a pulse of emissions over the duration of

a project or policy period, and CO2 uptake from biomass growth is usually assumed to occur

simultaneous to bioenergy combustion such that there is no net CO, climate impact. These

simplifying assumptions associated with the timing of CO2 fluxes in the atmosphere may

misrepresent the physical reality and climate change impacts of interest, depending on the

scope and purpose of the study [235]. Therefore, future assessment of bioenergy and AJ

technologies should carefully consider the goals of the analysis, and select a climate metric

and simplifying assumptions that capture the physical processes sufficiently to answer the

research question at hand.

This work is focused on quantifying the climate and production cost characteristics of

bioenergy and AJ production technologies. However, additional environmental, economic,

and societal impacts of bioenergy technologies should be included in a holistic assessment of

their feasibility from a societal perspective, including potential impacts on air, water, and soil

quality, land use patterns, commodity prices, and energy security [34,35,151,230-233]. Future

research should aim to better characterize the performance to bioenergy technologies with

respect to these non-climate impacts at the scale of process engineering, but also at the scale

of economy-wide impacts when assessing potential policy options.

In order to better inform policy making, the technology assessment techniques employed

here would benefit from improved methods of quantifying societal value. For example,
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discount rate is identified as a key determinant of the probability of a net reduction in the

societal climate and fuel production costs of large-scale AJ adoption, however the selection

of this value is a subjective choice that leads to ambiguity in the conclusions that can be

drawn from the analysis. A stronger theoretical basis for evaluating societal costs and

benefits in future years would help to resolve this issue. In addition, the analysis presented

here relies on the use of market prices as a proxy for the societal opportunity costs, or

shadow prices, of scarce commodities. An improved measure of the societal value of

commodity resources would improve the accuracy of future research building on this thesis.

Pursuit of these future research directions is especially important for AJ technologies,

because airlines will be able to use AJ to meet their emissions reduction obligations under

ICAO's Global Market-based Measure [81]. This means there will additional financial

incentive for deployment of AJ production. This thesis, and subsequent work to quantify the

environmental and economic impacts of AJ use, will help to inform more societally

beneficial development of these technologies.
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Appendix A

Energy crops

Yield projection methods and data sources

The areal yield of cultivated energy crops depends upon plant characteristics, agricultural

practices and the agro-cimatic conditions where the cultivation is taking place. In order to

take these aspects into account, this analysis draws upon data from the Global Agro-

ecological Zones (GAEZ) model, and empirical yield data from the statistics division of

FAQ (FAOSTAT). 4 categories of cultivated energy crops are represented with 12 specific

crop types:

Starchy crops: maize grain, sorghum grain and cassava

Sugary crops: sugarcane and sugar beet

Vegetable oil crops: soybean, rapeseed, jatropha and oil palm

Lignocellulosic crops: switchgrass, miscanthus and reed canary grass

Historical average yield data for 8 of these crops (soybean, rapeseed, oil palm, maize grain,

sorghum grain, cassava, sugarcane and sugar beet) is collected from FAOSTAT data for 5

world regions: and is extrapolated to 2050 under three different assumptions as described in

Chapter 2. The result is 3 projections of average areal yields in each of the world regions, for

the 8 crops of interest.

The spatial heterogeneity of energy crop yields is captured by scaling regionally-averaged

GAEZ data on maximum agro-climatically attainable yields, which is available globally at a

0.083' resolution, to match the estimates of 2050 yields extrapolated from historical

FAOSTAT data. The GAEZ data is generated for "advanced" inputs levels, which reflects

market-oriented farming that is fully mechanized, using high-yielding varieties and the

optimum application of nutrients and pesticides [236]. This assumption is made because
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economic development by 2050 could mean that advanced farming techniques are applied in

all regions of the world. In addition, we assume rainfed cultivation so that potential yields are

not over-estimated in the face of competition for scarce fresh water resources in the future.

These data are generated for the 2050 Hadley climate projections, on all land that is assigned

a suitability index of "good" or better for the crop of interest in the GAEZ model.

In order to reflect the concept of yield plateaus [237], we limit the extrapolated 2050 yields in

each region by the maximum agro-climatically attainable average yields from the GAEZ

model. In cases where the historical yields exceed the advanced-input rainfed agro-

climatically attainable yields from GAEZ (e.g. in the case of sugar beet), the maximum

historical yields are assumed to represent the maximum attainable average yield. In the case

of oil palm cultivation in OECD and REF, and sugarcane and cassava cultivation in REF,

there is no historical data, and therefore scaling factors are derived from those calculated for

other world regions. The extrapolated 2050 yields for 8 crops, in the regions for which

historical data exist, are shown in the Yield projection section below.

No historical yield data is available from FAOSTAT for the 4 remaining crops (jatropha,

switchgrass, miscanthus and reed canary grass), as they have not been grown at commercial

scale to date. In this case, GAEZ yield data for these crops is scaled such that average yields

reflect the range of anticipated yields from these crops in the literature. In the case of

jatropha that is 1.4-2.0 tonnesil/ha [183,238], and for herbaceous lignocellulosic crops that is

10.5-24.0 tonnesdm/ha [36].

The scaling factors that are applied to the maximum agro-climatically attainable yields,

obtained from GAEZ, to reflect the average yields in 2050 extrapolated from FAOSTAT

historical data are shown in Table 21.
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Table 21: Scaling factors, applied to GAEZ data, in order to reflect 2050 yield estimates.

Soy oil Rapeseed .atropha Oil paim
oil oil

aize Sorghum Sugarcane Sugarbeet Cassava Switchgrass Miscanthus R ss
grain grain canarygrass

Low 0.31 0.59 0.41 0.17 0.25 0.12 0.63 2.58 0.35 0.45 0.44 0.92

MAF Mid 0.51 1.00 0.50 0.17 0.25 0.16 0.63 2.58 0.51 0.73 0.72 1.51

High 0.71 1.00 0.59 0.26 0.48 0.42 0.94 2.66 0.96 1.02 1.00 2.11

Low 0.63 0.58 0.41 0.64 0.43 0.40 0.77 1.80 0.46 0.45 0.44 0.92

LAM Mid 0.87 0.58 0.50 0.74 0.66 0.54 1.00 1.80 0.54 0.73 0.72 1.51

High 1.00 1.00 0.59 0.74 0.66 0.72 1.00 1.80 1.00 1.02 1.00 2.11

Low 0.39 0.60 0.41 0.68 0.59 0.15 0.80 1.91 0.81 0.45 0.44 0.92

ASIA Mid 0.39 0.87 0.50 0.72 0.78 0.16 0.92 2.00 1.00 0.73 0.72 1.51

High 0.88 1.00 0.59 0.77 0.87 0.53 1.00 2.00 1.00 1.02 1.00 2.11

Low 0.68 0.76 0.41 0,66 1.00 0.51 0.74 1.90 0.24 0.45 0.44 0.92

OECD Mid 0.85 1.00 0.50 0.73 1.00 0.51 0.74 1.90 0.24 0.73 0.72 1.51

High 1.00 1.00 0.59 0.76 1.00 0.89 1.00 1.90 0.88 1.02 1.00 2.11

Low 0.47 0.65 0.41 0.66 0.75 0.36 0.74 1.59 0.46 0.45 0.44 0.92

REF Mid 0.94 0.78 0.50 0.73 1.00 0.77 0.82 1.80 0.57 0.73 0.72 1.51

High 0.94 1.00 0.59 0.76 1.00 0.77 0.99 1.80 0.96 1.02 1.00 2.11

Regions where historical yields are greater than agro-climatically attainable rainfed, advanced input yields predicted by GAEZ. In this case, historically obtained yields were
assumed to remain constant until 2050.

Regions where insufficient historical data exist to calculate scaling factors, therefore they are estimated from values obtained for other regions.

Crops for which no historical data exist. Scaling factors are based on the yields predicted in the literature: Jongschaap et al. (2007) and Aachten (2008) for jatropha, Searle
& Malins (2014) for lignocellulosic energy crops
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World region country groupings

Table 22: World region country groupings.

MAF
Algeria
Angola
Bahrain
Benin

Botswana
Burkina Faso

Burundi
Cameroon

Cape Verde
Central African Republic

Chad
Comoros
Congo

Cote d'Ivoire
Democratic Republic of the Congo

Djibouti
Egypt

Equatorial Guinea
Eritrea

Ethiopia
Gabon
Gambia
Ghana
Guinea

Guinea-Bissau
Iran (Islamic Republic of)

Iraq
Israel

Jordan
Kenya
Kuwait

Lebanon
Lesotho
Liberia

Libyan Arab Jamahiriya

Madagascar
Malawi

Mali
Mauritania
Mauritius
Mayotte
Morocco

Mozambique
Namibia

Niger
Nigeria
Oman

Palestinian Territories
Qatar

Reunion
Rwanda

Saudi Arabia
Senegal

Sierra Leone
Somalia

South Africa
South Sudan

Sudan
Swaziland

Syrian Arab Republic
Togo

Tunisia
Uganda

United Arab Emirates
United Republic of Tanzania

Western Sahara
Yemen
Zambia

Zimbabwe

LAM
Argentina

Aruba
Bahamas
Barbados

Belize
Bolivia (Plurinational State of)

Brazil
Chile

Colombia
Costa Rica

Cuba
Dominican Republic

Ecuador
El Salvador

French Guiana
Grenada

Guadeloupe
Guatemala

Guyana
Haiti

Honduras
Jamaica

Martinique
Mexico

Nicaragua
Panama

Paraguay
Peru

Suriname
Trinidad and Tobago

United States Virgin Islands
Uruguay

Venezuela (Bolivarian Republic of)

ASIA

Afghanistan
Bangladesh

Bhutan
Brunei Darussalam

Cambodia
Hong Kong SAR

China
Macao SAR

Democratic People's Republic of Korea
Fiji

French Polynesia
India

Indonesia
Lao People's Democratic Republic

Malaysia
Maldives

Micronesia (Fed. States of)
Mongolia
Myanmar

Nepal
New Caledonia

Pakistan
Papua New Guinea

Philippines
Republic of Korea

Samoa
Singapore

Solomon Islands
Sri Lanka
Taiwan

Thailand
Timor-Leste

Vanuatu
Viet Nam

OECD
AustraliaAustralia
Austria
Belgium
Canada

Cyprus
Denmark
Finland
France

Germany

Greece

Greenland
Guam

Iceland
Ireland
Italy

Japan
Luxembourg

Malta
Netherlands
New Zealand

Norway

Portugal
Puerto Rico

Spain
Svalbard and Jan Mayen Islands

Sweden
Switzerland

Turkey
United Kingdom

United States of America

REF
Albania
Armenia

Azerbaijan
Belarus

Bosnia and Herzegovina
Bulgaria
Croatia

Czech Republic
Estonia
Georgia
Hungary

Kazakhstan
Kyrgyzstan

Latvia
Lithuania

Montenegro
Poland

Republic of Moldova
Romania

Russian Federation
Serbia

Slovakia
Slovenia

Tajikistan
The former Yugoslav Republic of Macedonia

Turkmenistan
Ukraine

Uzbekistan
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Yield projection data
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Figure 18: Low soybean oil yield extrapolation to 2050.
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Figure 19: Mid soybean oil yield extrapolation to 2050.

123

A ASIA XOECD XREF

mx x x1  -

xm M
mm U
XE

*MAF ELAM AASIA XOECD XREF

mxx

x E0 ** MEx M

x&X + + +

ME + X



1000

900 -

800

700 -

600

Soy oil yield
[kg oil/ha] 500

400

300

200

100

1990 2000 2010 2020 2030 2040 2050

Year

Figure 20: High soybean oil yield extrapolation to 2050.
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Figure 21: Low rapeseed oil yield extrapolation to 2050.
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Figure 22: Mid rapeseed oil yield extrapolation to 2050.
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Figure 23: High rapeseed oil yield extrapolation to 2050.
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Figure 24: Low palm oil yield extrapolation to 2050.
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Figure 25: Mid palm oil yield extrapolation to 2050.
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Figure 26: High palm oil yield extrapolation to 2050.
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Figure 27: Low maize grain yield extrapolation to 2050.
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Figure 28: Mid maize grain yield extrapolation to 2050.
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Figure 29: High maize grain yield extrapolation to 2050.
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Figure 30: Low sorghum grain yield extrapolation to 2050.
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Figure 31: Mid sorghum grain yield extrapolation to 2050.
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Figure 32: High sorghum grain yield extrapolation to 2050.
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Figure 33: Low sugarcane yield extrapolation to 2050.
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Figure 34: Mid sugarcane yield extrapolation to 2050.
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Figure 35: High sugarcane yield extrapolation to 2050.
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Figure 36: Low sugar beet yield extrapolation to 2050.
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Figure 37: Mid sugar beet yield extrapolation to 2050.
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Figure 38: High sugar beet yield extrapolation to 2050.
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Figure 39: Low cassava yield extrapolation to 2050.
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Figure 40: Mid cassava yield extrapolation to 2050.
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Figure 41: High cassava yield extrapolation to 2050.
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Land availability for energy crop cultivation

The Land Use Harmonization (LUH) database is leveraged to assess potential land

availability in 2050 [239] Hurtt et al. (2011). The LUH database is a compilation of the

outputs of the Integrated Assessment Models (IAM) used to develop the Representative

Concentration Pathways (RCP) for IPCC AR5. 2050 global land use is described in terms of

five categories at a resolution of 0.50 x 0.50: cropland, pastureland, urban land, primary land

and secondary land. Primary land is defined as land undisturbed by human activities since

1700AD. Secondary land is defined as land previously disturbed by human activities since

1700AD and in the process of recovery. The total global land areas under each of the

categories, and key references for the four RCPs, are shown in Table 23 [240-244].

Table 23: Breakdown of land use types and key references in 2050 RCP land use scenarios.

IAM Cropland Pastureland Urban land Primary land Secondary land
(RCP) [Mha] [Mha] [Mha] [Mha] [Mha] Key reference

(RCP 2 1775 3127 51 3641 3335 van Vuuren et al. (2011)

GCAM 1184 2745 51 3862 4086 Thomson et al. (2010)
(RCP 4.5) Thomson et al. (2011)

(RC 6.0) 1525 2369 119 3755 4161 Masui et al. (2011)

MESSAGE 1597 3459 117 3366 3389 Riahi et al. (2011)(RCP 8.5)

This analysis assumes the primacy of land requirements for food and feed production,

human development, and eco-system protection in 2050, meaning that land areas projected

for these uses are assumed to be unavailable for energy crop cultivation. Therefore, it is

assumed a priori that cropland and urban land areas from the LUH data are unavailable for

energy crop cultivation. An exception applies where the IAMs used to develop the RCP

LUH scenarios include an endogenous estimation of primary energy from energy crops in

2050. In order to avoid the inconsistency of building off of land use data that already

accounts for energy crop cultivation, the cropland assumed to be used for energy crop

cultivation in the IAMs (specifically in IMAGE (RCP 2.6) and GCAM (RCP 4.5)) is assumed

to be available for energy crop cultivation in this analysis. The percentage of total cropland

used for energy crop cultivation in the IAMs is 13.4% in IMAGE (RCP 2.6) and 15.4% in

GCAM (RCP 4.5).
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The potential availability of excess pastureland for energy crop cultivation is evaluated under

3 assumptions: 0%, 10% and 2 0% availability. Ceterisparibus, if livestock production is not to

be affected by energy crop cultivation, this assumption implies increased average grazing

intensity. Therefore, the impact on grazing intensity of using pastureland for energy crop

cultivation is quantified here. Global ruminant livestock production estimates for 2050 are

taken from Alexandratos & Bruinsma (2012), which assumes 2 .1% annual GDP growth

from 2006, and a global population of 9.1 billion in 2050 [39]. This data is scaled to reflect

analogous ruminant livestock production estimates for 2050 under the IPCC AR5 shared

socio-economic pathways (SSP) on the basis of Tropical Livestock Units (TLU) per capita as

a function of GDP per capita. The implied linear relationship between regional GDP per

capita, and regional livestock production per capita, is shown graphically in Figure 42.
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Figure 42: Relationship between GDP and livestock production per capita, in 2006 and 2050, from Alexandratos &

Bruinsma (2012). For each world region the left data point is representative of 2006, and the right data point is

representative of 2050.

Using the derived relationship between wealth, population and ruminant livestock

production; the AR5 SSP projections for GDP and population in 2050; and the pastureland

estimates from the 4 RCP scenarios, the resulting grazing intensity is calculated assuming

0%, 10% and 20% pastureland availability for energy crop cultivation, shown in Table 24.
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Table 24: Global average implied grazing intensity under RCP 2050 LUH scenarios, AR5 SSPs, and pastureland

availability assumptions [TLU/ha].

RCP6 RCP3 RCP5 RCP9

SSP1 SSP2 SSP3 SSP4 SSP5 SSP1 SSP2 SSP3 SSP4 SSP5 SSP1 SSP2 SSP3 SSP4 SSP5 SSP1 SSP2 SSP3 SSP4 SSP5

0% 1.73 1.65 1.60 1.62 1.95 1.31 1.25 1.21 1.23 1.48 1.49 1.43 1.38 1.40 1.68 1.18 1.13 1.10 1.11 1.33

10% 1.92 1.84 1.78 1.80 2.16 1.45 1.39 1.35 1.37 1.64 1.65 1.59 1.53 1.56 1.87 1.31 1.26 1.22 1.24 1.48

20% 2.16 2.07 2.00 2.03 2.43 1.63 1.57 1.51 1.54 1.84 1.86 1.78 1.73 1.75 2.10 1.48 1.42 1.37 1.39 1.67

This analysis also assumes that land areas protected for biodiversity, conservation, and other

ecosystems benefits are unavailable for conversion to cultivation of energy crops. The World

Database of Protected Areas (WDPA) is used to exclude Ramsar Convention wetlands,

World Heritage Convention areas, UNESCO-MAB biosphere reserves, ASEAN heritage

lands, Natura2000 lands and nationally protected lands [245].

Finally, the agro-climatic suitability of land for energy crop cultivation is quantified in terms

of a crop-specific suitability index (0 < SI < 100), calculated by the GAEZ model under the

assumption of advanced-input, rainfed crop cultivation. Land areas that are below a

minimum suitability threshold, defined as a suitability of "medium", "good" or "high" (SI >

40, 55 or 70, respectively) are excluded for energy crop cultivation, depending on the

calculated scenario. Minimum suitability thresholds of "medium", "good" and "high" are

associated with the high, mid, and low bioenergy availability scenarios.

Residue and waste feedstocks

Crop residues

The availability of bioenergy from crop residues is estimated based on food and energy crop

production. Alexandratos & Bruinsma (2012) provide a projection of the mix of food crop

categories to be produced in 2050 (see table 4.12 of that reference), however this projection

is made only for a single set of GDP and population growth assumptions [39]. This data is

used to establish the relationship between GDP per capita and caloric intake per capita,
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shown in Figure 43, in order to map region-specific food and feed crop production

projections to the AR5 SSP scenarios [32]. These are added to the energy crop production

from this analysis, to estimate total crop production from which crop residues could be

generated.

Caloric intake
[kcal/cap./day]

4000

3500 -

3000

2500 -

2000 -

1500

1000

500

0 10000 20000 30000 40000 50000 60000

GDP/cap. (2005 USD]

Figure 43: Relationship between GDP per capita and caloric intake per capita, in 2006 and 2050, from

Alexandratos & Bruinsma (2012). For each world region the left data point is representative of 2006, and the right

data point is representative of 2050.

Subsequently, Lal (2005) is used to estimate the ratio of residue to primary crop production,

shown in Table 25 [33].

Table 25: Residue to primary crop ratio, adapted from Lal (2005).

Crop Ratio of dry residue
to primary crop

Wheat

Rice (paddy)

Maize

Pulses

Barley

Sorghum

Millet

Rape seed

Groundnuts

Sunflower

Sugarcane

1.5

1.5

1

1

1.5

1.5

1.5

1.5

1

1

0.25
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In order to be consistent with the analysis approach of primacy of land use for other uses

mentioned above, a residue removal rate that does not adversely impact global food or feed

availability via soil degradation is assumed. The percentage of crop residues that can be

removed without causing erosion or soil carbon and nutrient loss depends on many factors,

such as climatic region, type of soil, topography of the land, and type of crop. One existing

aggregated value from the academic literature indicates that up to 33% of crop residues may

be removed without causing erosion or soil carbon and nutrient loss, however recent work

indicates that the maximum sustainable removal rate may be up to 75% if certain

management practices, such as cover cropping, are used [34,35]. This analysis assumes three

removal rate scenarios of 20%, 35% and 50%, globally.

In addition, agricultural residues that would be used for other purposes, such as fodder and

bedding for livestock, cultivation of fungi, or other horticultural uses, are not considered

available in our analysis. Searle & Malins (2013) estimate that these agricultural uses could

account for 5-30% of total available residues, therefore we assume that 70-95% of removed

residues are available for bioenergy uses [36]. Three scenarios for net crop residue availability

are shown in Table 26.

Table 26: Net residue availability scenarios.

Residue removal Residues not used Net residue
rate for other purposes availability

Low 20.0% 70.0% 14.0%

Mid 35.0% 82.5% 28.9%

High 50.0% 95.0% 47.5%

Forestry residues

The availability of residues from logging and wood processing is based on the potential

supply of industrial roundwood and woodfuel in 2050 from plantations, non-forest trees,

and forests previously disturbed by human activity. This corresponds to ecological potential as

defined by Smeets & Faaij (2007), shown in Table 27 [37].
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Table 27: 2050 supply of harvested wood, adapted from Smeets & Faaij (2007).

Plantations Non-forest trees Previously disturbed forests Total
[EJ/yr] [EJ/yr] [EJ/yr] [EJ/yr]

Industrial roundwood 9.8 - 16.5 26.3

Woodfuel 2.9 12.5 4.8 20.2

Total 12.7 12.5 21.3 46.5

The availability of wood logging residues from plantations and forests is calculated on the

basis of the residue fraction of the harvested wood, and the recoverable fraction of the

residue fraction. The residue fraction is assumed to range between 71% and 32% [36,37],

and the recoverable fraction is assumed to range between 50% and 25% [37]. The availability

of wood processing residues is calculated on the basis of the residue fraction of the

processed wood, the recoverable fraction of the residue fraction, and the fraction of

recoverable residues unused for other purposes. The residue fraction is assumed to range

between 70% and 3 0% [37], the recoverable fraction is assumed to range between 7 5% and

3 3% [37], and the fraction unused for other purposes is assumed to range between 50% and

10% [38].

Table 28: Available fraction of forestry residues.

Logging residues

Residue Recoverable Net available
fraction fraction fraction

Processing residues

Residue Recoverable Fraction unused Net available
fraction fraction for other purposes fraction

Low 32% 25% 8.0% 30% 33% 10% 1.0%

Mid 52% 38% 19.3% 50% 54% 30% 8.1%

High 71% 50% 35.5% 70% 75% 50% 26.3%

Only available from plantations and forests Only available from industrial roundwood

Combining the estimates of 2050 forestry supply and available residue fractions, three

scenarios defined for the availability of forestry residues in 2050, shown in Table 29.
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Table 29: Net availability of forestry residues in 2050.

Logging residues
[EJ/yr]

2.7

6.6

12.1

The availability of waste fats, oils and greases (FOG) is estimated based on the generation of

tallow and animal fats from livestock slaughtering and processing. 2050 livestock production

is estimated using Alexandratos & Bruinsma (2012) projections, scaled to the AR5 SSP

scenarios in the manner described in the above section on pastureland availability. Tallow

extraction and rendered tallow fractions are estimated from the sources shown in Table 30

[40-42]. In addition, this analysis assumes 30-70% of potentially available waste FOG cannot

be considered due to their use in the oleo-chemical and animal feed production industries.

Table 30: Available fraction of waste FOG from livestock slaughtering and processing.

Cattle Sheep Pigs Poultry Sources

By-product fraction 27.5% 17.0% 4.0% 29.1% Jayathilak et al. (2012)

Rendered tallow fraction 27.8% 24.0% 24.0% 20.3% Lopez et al. (2010)
from byproducts Niederl et al. (2006)

Fraction unused for oleochemical 30-70%
and feed production

Low

Mid

High

2.3%

3.8%

5.4%

1.2%

2.0%

2.9%

0.3%

0.5%

0.7%

1.8%

3.0%

4.1%
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Total
[EJ/yr]

0.3

2.1

6.9
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Schematic representation of modeling approach
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Figure 44: A schematic representation of the modeling approach for this analysis. The red items represent data

inputs from the indicated sources; blue rectangles represent calculated intermediate results; the green box

represents final results; the black arrows represent flows of data and information; and the dashed arrow represents

the iterative step in the analysis required to maximize the calculated reductions in GHG emissions.
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Results for a 20-year LUC emissions amortization period
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Figure 45: Availability and specific lifecycle GHG emissions of final bioenergy compared to fossil fuel-derived

final energy demand and emissions in 2050, allocated to maximize GHG emissions reductions. Panel a shows

biomass-derived (magenta) and petroleum-derived (black) middle and heavy distillate (M&HD) liquid fuels.

Panel b shows biomass-derived (blue) and petroleum-derived (black) light distillate (LD) liquid fuels. Panel c

shows biomass-derived heat final energy (red), compared to coal-, oil-, and natural gas-derived heat (black).

Panel d shows biomass-derived electricity (green), compared to for coal-, oil-, and natural gas-derived electricity

(black). The colored bioenergy curves in each panel correspond to the three bioenergy availability scenarios, and

the black fossil fuel curves correspond to the three fossil fuel demand scenarios (low, mid and high

corresponding to 2*C, 4*C and 6*C temperature change scenarios from IEA ETP, respectively [27]). The

bioenergy availability curves shown here use a 20-year LUC emissions amortization period, as opposed to the 30-

year LUC emissions amortization period used in Figure 4.
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Figure 46: Deployment of biomass-derived final energy versus cumulative GHG emissions mitigation. The

maximum of each curve represents the level of final bioenergy deployment for the indicated final energy end-use

that maximizes GHG emissions reductions. The dashed lines denote the combination of the low bioenergy

availability and fossil fuel demand scenarios, the solid lines denote the combination of the mid bioenergy

availability and fossil fuel demand scenarios, and the dash-dot lines denote the combination of the high

bioenergy availability and fossil fuel demand scenarios. The results shown here use a 20-year LUC emissions

amortization period, as opposed to the 30-year LUC emissions amortization period used in Figure 5.
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Table 31: Bioenergy allocation and deployment to maximize GHG emissions reductions. Primary bioenergy availability, final bioenergy deployment, and the reduction in

LC GHG emissions are compared against 2050 final energy demand for combustion-generated electricity and heat, and liquid transportation fuels from fossil fuels, and

the associated LC GHG emissions. The results shown here use a 20-year LUC emissions amortization period, as opposed to the 30-year LUC emissions amortization

period used in Table 8.

2050 scenario

Global demand for
fossil fuel elec.,
heat, and liquid
transp. fuels

[EJ/yr]

LC GHG
emissions
from fossil

fuels

[Gtco2e/yr]

Primary
bioenergy

avail.

[F./yr] I

Primary energy

Propoortion
Total of total

avail.

[E3/yr] [%]

Elec. Heat LD M&HD
fuels fuels

[EJ/yr]

Total
Offset of

final energy
demand

[0/]

Elec.

Maximum GHG emissions reduction

LD M&HD Reduction
Heat fuels fuels Total in LC GHG

emissions

[Gtco2e/yr] [0/]

Low 112 60 53% 17.2 0.0 12.2 5.2 35 14% 2.9 0.0 0.5 0.4 3.8 14%

Low 253 26.8 Mid 368 191 52% 27.7 90.3 24.7 5.8 148 59% 5.4 4.5 0.8 0.4 11.0 41%

High 794 229 29% 23.0 133.7 24.7 9.8 191 75% 5.5 8.3 1.2 0.6 15.6 58%

Low 112 68 60% 19.8 0.0 18.6 0.5 39 9% 3.0 0.0 0.9 0.0 3.9 8%

Mid 412 47.1 Mid 368 236 64% 51.1 78.6 28.1 5.9 164 40% 9.9 2.7 1.1 0.2 14.0 30%

High 794 546 69% 89.9 169.7 40.6 63.9 364 88% 14.9 10.3 1.5 1.3 28.0 59%

483 59.6

Low

Mid

112

368

High 794

72

250

553

65%

68%

70%

21.8

75.0

125.0

0.0 18.7

39.3 28.2

187.6 40.8

0.5

6.1

18.6

41

149

372

8%

31%

77%

3.2

14.1

21.3

0.0

0.9

10.5

1.0

1.1

1.5

0.0

0.2

0.6

4.1

16.3

33.9

7%

27%

57%
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Table 32: Average GHG mitigation effectiveness of bioenergy end-uses in 2050. This is defined as the ratio of

maximum GHG emissions reduction, and total final energy, from biomass-derived electricity, heat, light distillate

(LD) fuels, and middle & heavy distillate (M&HD) fuels. The ratio of effectiveness of electricity and heat to

liquid fuels is shown in the rightmost column. The results shown here use a 20-year LUC emissions amortization

period, as opposed to the 30-year LUC emissions amortization period assumed to generate the results in Table 9.

Average effectiveness [Gtc. 2,/EJ]

Elec. Heat Biomass-fired
elec. & heat

LD
fuels

M&HD
fuels

Ratio of elec.
& heat to

All liquid liquid fuels
biofuels effectiveness

Low 0.17 - 0.17 0.04 0.07 0.05 3.6

Low Mid 0.19 0.05 0.08 0.03 0.07 0.04 2.1

High 0.24 0.06 0.09 0.05 0.06 0.05 1.7

Low 0.15 - 0.15 0.05 0.01 0.05 3.1

Mid Mid 0.19 0.03 0.10 0.04 0.04 0.04 2.5

High 0.17 0.06 0.10 0.04 0.02 0.03 3.6

Low 0.15 - 0.15 0.05 0.01 0.05 2.9

High Mid 0.19 0.02 0.13 0.04 0.04 0.04 3.3

High 0.17 0.06 0.10 0.04 0.03 0.04 2.9
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Low bioenergy availability
25 - & fossil fuel demand Mid bioenergy availability

& fossil fuel demand High bioenergy availability
& fossil fuel demand
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Figure 47: Deployment of biomass-derived final energy versus payback period for LUC emissions. The end point

of each curve in the figure represents the level of final bioenergy deployment that maximizes GHG emissions

reductions for that scenario combination of bioenergy and fossil fuel curves. The results shown here were

generated assuming a 20-year LUC emissions amortization period, as opposed to the 30-year LUC emissions

amortization period assumed to generate the results in Figure 6.
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Results assuming 50% land req. for expansion of agricultural production
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Figure 48: Availability and specific lifecycle GHG emissions of final bioenergy compared to fossil fuel-derived

final energy demand and emissions in 2050, allocated to maximize GHG emissions reductions. Panel a shows

biomass-derived (magenta) and petroleum-derived (black) middle and heavy distillate (M&HD) liquid fuels.

Panel b shows biomass-derived (blue) and petroleum-derived (black) light distillate (LD) liquid fuels. Panel c

shows biomass-derived heat final energy (red), compared to coal-, oil-, and natural gas-derived heat (black).

Panel d shows biomass-derived electricity (green), compared to for coal-, oil-, and natural gas-derived electricity

(black). The colored bioenergy curves in each panel correspond to the three bioenergy availability scenarios, and

the black fossil fuel curves correspond to the three fossil fuel demand scenarios (low, mid and high

corresponding to 2*C, 4*C and 6*C temperature change scenarios from IEA ETP, respectively [271). The

bioenergy availability curves shown here assume biomass land area requirements that are 50% of those in the

results shown in Figure 4, in order to quantify the sensitivity of the results to the potential for intensification of

agricultural production.
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Figure 49: Deployment of biomass-derived final energy versus cumulative GHG emissions mitigation. The

maximum of each curve represents the level of final bioenergy deployment for the indicated final energy end-use

that maximizes GHG emissions reductions. The dashed lines denote the combination of the low bioenergy

availability and fossil fuel demand scenarios, the solid lines denote the combination of the mid bioenergy

availability and fossil fuel demand scenarios, and the dash-dot lines denote the combination of the high

bioenergy availability and fossil fuel demand scenarios. The results shown here assume biomass land area

requirements that are 50% of those in the results shown in Figure 5, in order to quantify the sensitivity of the

results to the potential for intensification of agricultural production.

Table 33: Bioenergy allocation and deployment to maximize GHG emissions reductions. Primary bioenergy

availability, final bioenergy deployment, and the reduction in LC GHG emissions are compared against 2050 final

energy demand for combustion-generated electricity and heat, and liquid transportation fuels from fossil fuels,

and the associated LC GHG emissions. The results shown here assume biomass land area requirements that are

50% of those in the results shown in Table 8, in order to quantify the sensitivity of the results to the potential for

intensification of agricultural production.

LC GHG emissions Final energy Maximum GHG emissions reduction
Global demand for fossil fuel elec., from fossil fuels Total Offset of final Toul Reduction In LC

heat, and liquid transp. fuels energy demand GHG emissions

Scenario [EJ/yr] [Gtco2./Yr] [E/yr] [%] [Gtco2/yr] [%]
Low bioenergy availability 253 26.8 121 48% 10.5 39%and ossli fue, demand
Mid bioenergy availability
and fossil fuel demand

High bloenergy availability
and fossil fuel demand

412 47.1 394 96% 31.3 66%

483 59.6 459 95% 45.3 76%
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Appendix B

Table 34: MSP results broken out by capital cost (CapEx), feedstock operating costs (feedstock OpEx) and non-

feedstock operating costs (non-feedstock OpEx). All values in USD20o2/literMD

CapEx Feedstock OpEx Non-feedstock OpEx

Low 0.28 0.21 0.12 0.61
Sugarcane Base 0.52 0.80 0.24 1.56AF

High 0.75 1.49 0.38 2.63

Low 0.24 0.43 0.17 0.84
Corn grain Base 0.39 1.06 0.30 1.75AF

High 0.70 2.30 0.65 3.65

Switchgrass
AF

Low

Base

High

0.56

1.10

3.00

0.12

0.38

1.24

0.42

0.82

2.06

1.09

2.30

6.30
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