
Creating Interactive Data-Driven Web Applications

by Authoring HTML

by

Lea Verou

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2017

@ Massachusetts Institute of Technology 2017. All rights reserved.

Signature redacted
Author.....................---

Department of Electrical Engineeri an Computer Science

January 31, 2017

Certified by. Signature redacted
David R. Karger

Professor
Thesis Supervisor

Accepted by.Signature redacted
/ OQ rofessor Leslie A. Kolodziejski

Chair, Department Committee on Graduate Theses

MAS9CHUSETT9 INSTITUTE
OF TECHNOLOGY U,

MAR 13 I017

LLIBRARIES

Creating Interactive Data-Driven Web Applications

by Authoring HTML

by

Lea Verou

Submitted to the Department of Electrical Engineering and Computer Science
on January 31, 2017, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Many people can author static web pages with HTML and CSS but find it hard or impossible
to program persistent, interactive web applications. We show that for a broad class of CRUD
(Create, Read, Update, Delete) applications, this gap can be bridged. Mayo extends the declara-
tive syntax of HTML to describe Web applications that manage, store and transform data. Using
Mayo, authors with basic HTML knowledge define complex data schemas implicitly as they de-
sign their HTML layout. They need only add a few attributes and expressions to their HTML
elements to transform their static design into a persistent, data-driven web application whose data
can be edited by direct manipulation of the content in the browser. We evaluated Mavo with 20
users who marked up static designs-some provided by us, some their own creation-to trans-
form them into fully functional web applications. Even users with no programming experience
were able to quickly craft Mayo applications.

Thesis Supervisor: David R. Karger
Title: Professor

3

4

Acknowledgments

This thesis would not have been possible without the help and support of a number of great people,

for which I'm deeply grateful.

To my late mother, Maria Verou for being a source of inspiration and encouragement for the 27

years our lives overlapped. From a young age she inspired me to be creative, to never stop learning,

to be ambitious. This thesis, and Mayo itself, are dedicated to her.

To my uncle Stratis Veros and his lovely wife Maria Brere. You are like second parents to me.

Thank you for enabling me to study here by spending so much of your time taking care of my estate

back in Greece and all the bureaucracy involved.

To my father, Miltiades Komvoutis for teaching me so many things early on in my life.

To my advisor, David Karger. It has been so much fun working with you for the last 2 years. I

have learned so much and achieved things I didn't think I could. I cannot imagine a better mentor.

I'm looking forward to the rest of my time here.

To my co-author and fellow Haystacker Amy Zhang. My first paper and my first user study

would have been immensely more difficult without your help.

To my friend and ex-Haystacker Eirik Bakke for his tremendous help on everything related to

MIT and academia since my first day here. I hope someday day I can help another newbie as much

as you have helped me.

To all my user study participants for their help.

To the Paris Kanellakis family and the Wistron Corporation for funding this work.

5

6

Contents

1 Introduction

1.1 O ur Contribution

2 Background

2.1 Main influences. .

2.1.1 D ido .

2.1.2 Q uilt .

2.1.3 Gneiss .

2.1.4 Relation to Mayo

2.2 Content Management Systems

2.3 Visual application builders

2.4 MVC Frameworks .

2.5 Web Components .

2.6 The Semantic Web and Web Data Extraction

3 Mayo

3.1 Building data-driven CRUD applications

3.1.1 Declarative, HTML-based Syntax

3.1.2 Creating a Mavo application

3.1.3 Storage location

3.1.4 Initialization data

3.1.5 Overriding storage through the URL

3.1.6 Data Definition

7

15

17

21

21

21

21

22

22

23

24

25

25

26

27

27

27

28

28

31

31

31

3.1.7 Data Editing . 32

3.1.8 Customizable Editors . 34

3.1.9 Objects . 35

3.1.10 Collections . 35

3.1.11 Direct Schema Manipulation . 37

3.2 Computation . 37

3.2.1 Expressions . 37

3.2.2 Named References . 39

3.2.3 Multi-valued Expressions . 40

3.2.4 MavoScript vs JavaScript . 40

3.3 Debugging . 40

3.4 Implementation . 43

3.4.1 The Mavo Tree . 43

3.4.2 Expressions . 44

3.4.3 Performance Optimizations . 45

3.4.4 Extensibility . 46

4 User studies 49

4.1 Preparation . 49

4.2 The Structured Study . 52

4.2.1 Study Tasks . 52

4.2.2 Results . 53

4.2.3 Common Mistakes . 54

4.3 Freestyle Study . 57

4.3.1 Study Tasks . 58

4.3.2 Results of Open-Ended Tasks . 58

4.4 General Observations . 59

4.4.1 Overall Reaction to Data Authoring 59

4.4.2 Reaction to Expressions . 60

4.4.3 Debugging Behavior . 61

8

4.4.4 Spreadsheet familiarity and Mayo . 61

4.4.5 Aftermath . 61

5 Discussion 63

5.1 Post-study changes . 63

5.1.1 m v-if . 63

5.1.2 mv-value . 63

5.2 Direct Manipulation of Data Schemas . 65

5.3 Target Users . 65

5.4 Scalability . 66

5.5 Multi-User Applications . 67

5.6 Handling Large Amounts of Data . 68

5.7 Encouraging Semantic Web Best Practices . 68

6 Conclusion 71

6.1 FutureWork . 71

6.1.1 Filtering and Sorting . 72

6.1.2 Dynamic groups and collections . 72

6.1.3 Handling Schema Mutations . 73

9

10

ist of Figures

1-1 A fully-functional To-Do app made with Mayo, shown with its accompanying

code and the starting HTML mockup. 17

3-1 Authentication flow when using Github as a storage backend 30

3-2 Different types of editing widgets for different types ofelements. Clockwise from

the top left: , <meter>, <time>, <a> . 34

3-3 Markup for a Mayo contact manager with example rendering. 36

3-4 The debug tools in action, showing local values and warnings. 42

3-5 The Mavo tree created for the To-Do app shown in Figure 1-1. 44

4-1 User study tasks are shown in the mockups that were given to participants, and

results are broken down by task category. The green arrows point to element

backgrounds, which participants made dynamic via inline styles or class names.

Page elements involved in specific tasks are outlined with color codes shown in

the table. "Make editable" tasks are not shown to prevent clutter. 50

4-2 A sample of Own Address Book applications created by users. 56

4-3 The two solutions . 57

4-4 Mayo apps independently created by participants. Clockwise: Collectible Card

Game, Horse feed management, bug tracker . 62

11

12

ist of ab les

1.1 Number of lines of JavaScript code required to implement a simple to-do list

with four of the most popular JavaScript frameworks. Comments, framework

code, and polyfills are excluded. Statistics from todomvc.com, a popular frame-

work comparison site. 16

3.1 Differences of RDFa syntax and the Mayo data specification syntax 33

3.2 Differences ofJavaScript and MayoScript 41

4.1 User study participants' familiarity with web development languages. 51

4.2 User study participants' familiarity with data technologies 51

4.3 Reported difficulty ratings on a 5-point Likert scale, before and after the study . . 54

4.4 Success rate of simple references. 55

13

14

Chapter I

Introduction

There is a sizeable community of authors creating static web pages with basic HTML and CSS.

While it is difficult to pinpoint the size of this community, it is likely large and growing, evidenced

by the large number and popularity of WYSIWYG and text-based editors and tools for generating

static websites, as well as the number of hosting providers that will only host static webpages (for

example, Github Pages'). The ACM cites knowledge of HTML and CSS to be at the K-12 level

of computer literacy [29].

Far more powerful than static pages are web applications that react dynamically to user actions

and interface with back-end data and computation. Even a basic application like a to-do list needs

to store and recall data from a local or remote source, provide a dynamic interface that supports

creation, deletion, and editing of items, and have presentation varying based on what the user

checks off. Creating such applications currently requires knowledge of JavaScript and/or other

programming languages to provide interaction and to interface with a data management system, as

well as understanding of some form of data representation, such as JSON or a relational database.

There are many frameworks and libraries aiming to simplify creation of such Web applica-

tions. However, all target programmers and still require writing a considerable amount of code.

As shown in Table 1.1, implementing even a simple to-do application similar to the one in Figure

1-1 requires writing hundreds of lines ofJavaScript code, even with the state of the art JavaScript

frameworks. Other JavaScript frameworks are in the same ballpark.

Many people who are comfortable with HTML and CSS do not possess additional program-

'https://pages.github.com/

15

AngularJS 294

Polymer 246

Backbone.js 297

React 421

Vue.js 137

Table 1.1: Number of lines of JavaScript code required to implement a simple to-do list with

four of the most popular JavaScript frameworks. Comments, framework code, and polyfills are

excluded. Statistics from todomvc.com, a popular framework comparison site.

ming skills2 and have little experience articulating data schemas [28]. For these novice web au-

thors, using a CMS (Content Management System) is often seen as their only solution. However,

research indicates that there are high levels of dissatisfaction with CMSs [151. One reason is that

CMSs impose narrow constraints on authors in terms of possible presentation-far narrower than

when editing a standalone HTML and CSS document. When an author wishes to go beyond

these constraints, they are forced to become a programmer learning and modifying server-side

CMS code.

The problem worsens when authors wish to present structured data [6], which CMSs enable

via plugins. The interfaces for these plugins are often specialized for specific types of data (e.g.

publications) and/or do not allow authors to edit data in place on the page; instead they must fill

out forms 3 . This loses the direct manipulation benefits that are a feature of WYSIWYG editors

for unstructured content.

Finally, CMSs provide a heavyweight solution when many authors only need to present and

edit a small amount of data. They require installation, configuration, a database, and a hosting

provider able to run server-side code. For example, out of the over 7,000 CMS templates currently

provided in ThemeForest.net, a repository of web templates, 39% are for portfolio sites, while

another 31% are for small business sites [3].

2We carried out a snowball sample of web designers using a Twitter account followed by 70,000 Web designers

and developers. Of 3,578 respondents, 49% reported little or no programming ability.
3 E.g. https://wordpress.org/plugins/wp-seo-structured-data-schema/

16

Framework SLOC

<body digstore="https://www.dropbox.com/,/tpd@4,iW> Have a Nf<p>My tasks: [couit(done)] done, [count(task)3 total
 Deleted tak Undo

<1i 6 -Multlie>
<input type="checkbox" property="done" />
Do stuff span> Add____k

</Ii>

</body>

Figure 1-1: A fully-functional To-Do app made with Mayo, shown with its accompanying code
and the starting HTML mockup.

1.1 Our Contribution

This paper presents and evaluates a new language called Mavo4 that augments HTML syntax to

empower HTML authors to implicitly define data schemas and add persistence and interactivity.

Simply by adding a few HTML attributes, an author can transform any static HTML document

into a dynamic data management application. Data becomes editable directly in the page, offer-

ing the ability to create, update, and delete data items via a WYSIWYG GUI. Mayo authors never

have to articulate a schema separately from their interface or write data binding code. Instead,

authors add attributes to describe which HTML elements should be editable and how, unwit-

tingly describing their schema by example in the process. With a few attributes, authors quickly

imply complex schemas that would have required multiple tables and foreign keys in a relational

database, without having to think beyond the interface they are creating. As an added benefit,

Mavo's HTML attributes are part of the HTML RDFa standard [31] and thus contribute to

machine-readable data on the Web.

Mayo is inspired by the principle of direct manipulation [30] for the creation of the data model

underlying an application. Instead of crafting a data model and then deciding how to template and

edit it, a Mavo author's manipulation of the visual layout of an application automatically implies

the data model that drives that application. In addition, Mayo does not require the author to create

4 Open source implementation & demos available at http://mavo.io

17

a separate data editing interface. Users simply toggle an edit mode in their browser by clicking an

edit button that Mayo inserts on their webpage. Mayo then adds affordances to WYSIWYG-edit

whatever data is in view, with appropriate editing widgets inferred from the implied types of the

elements marked as data. Mayo can persist data locally or outsource storage to any supported cloud

service, such as Dropbox or Github. Switching between storage backends is a matter of changing

the value of one attribute.

In addition to CRUD functionality, Mayo provides a simple spreadsheet-like expression syn-

tax to place reactive calculations, aggregates, and conditionals on any part of the interface, enabling

novices to create the rich reactive interfaces that are expected from today's web applications.

In contrast to the hundreds of lines of code demanded by the popular frameworks, Figure 1-1

shows how an HTML mockup can be transformed into a fully functioning, high fidelity to-do

application by adding only 5 lines of Mavo HTML.

We conducted a user study with 20 novice web developers in order to test whether they could

use Mayo to turn a static HTML mockup of an application into a fully functional one, both with

HTML we provided and with HTML of their own creation. We found that the majority of users

were easily able to mark up the editable portions of their mockups to create applications with

complex hierarchical schemas.

Our approach constitutes a novel way for end users to transform static webpages to dynamic,

data-backed web applications without programming or explicitly defining a separate data schema.

From one perspective, this makes Mayo the first client-side CMS, where all functionality is config-

urable from within the HTML page. But it offers more.

In line with the vision of HTML as a declarative language for describing content so it can be

presented effectively [25], Mayo extends HTML with a declarative specification of how the data

underlying a presentation is structured and can be edited. Fundamentally a language extension

rather than a system, Mavo is completely portable, with no dependence on any particular web in-

frastructure, and can thus integrate with any web system. Similarly, existing WYSIWYG HTML

editors can be used to author Mayo applications. We offer Mayo as an argument for the benefits of

a future HTML language standard that makes structured data on every page editable, persistent

and transformable via standard HTML, without dependencies.

18

The majority of this work has been previously published in a conference publication with co-

authors Amy Zhang and David Karger [32].

19

20

Chapter 2

Background
This thesis builds upon work from several communities, academic and industrial. This chapter

provides an overview of this prior work.

2.1 Main influences

Mavo combines ideas from three prior systems that addressed the downsides of CMSs: Dido [22],

Quilt [8], and Gneiss [13, 14].

2.1.1 Dido

Dido [22] built on Exhibit [19], extended HTML with language elements that visualized and

stored editable data directly in the browser. This approach allowed a web designer to incorporate

Dido into any web design and made Dido independent of any back-end system.

2.1.2 Quilt

Quilt [8] extended HTML with a language for binding an arbitrary web page to a Google spread-

sheet "back-end", enabling web authors to gain access to lightweight reactive computation and

data management without programming.

21

2.1.3 Gneiss

Gneiss [13, 14] was a web application within which authors could manage and compute over hi-

erarchical data using an extended spreadsheet metaphor, then use a graphical front end to inter-

act with that data. The data could also originate from Web services, facilitating the creation of

mashups.

2.1.4 Relation to Mavo

These three systems introduced powerful ideas: extending HTML to mark editable data in arbi-

trary web pages, spreadsheet-like light computation, a hierarchical data model, and independence

from back-end functionality. But none of these systems provides all of these capabilities simultane-

ously. Dido had no computational capabilities, could not manage hierarchical data, and was never

evaluated. Quilt was dependent on a Google spreadsheet back-end, which left it unable to manage

hierarchical data. Gneiss was a monolithic web application that only allowed the user to construct

web pages from a specific palette. It did not offer any way (much less a language) to associate an

arbitrarily designed web page with the hierarchical data Gneiss was managing, which meant that

a web author faced constraints on their design creativity. Gneiss and Quilt both required users to

design their data separately from their web pages.

Mavo is a language that solves the challenge of combining the distinct positive elements of this

prior work, which are in tension with one another. It defines a simple extension to HTML that

enables an author to add data management and computation to any web page. At the same time,

it provides a lightweight, spreadsheet-like expression language that is expressed and evaluated in

the browser, making Mayo independent of any particular back-end. The editing and expression

language operates on hierarchical data, avoiding this limitation of traditional spreadsheet compu-

tation. While hierarchical data is possible to manage in spreadsheets, it is typically performed in

the same way as with relational data models: Multiple worksheets with foreign key references via

the VLOOKUP() function. Fragmenting hierarchical data to multiple tables is known to be hard for

novices [21].

The combination of these ideas yields a novel system that is particularly well-suited to author-

ing interactive web applications. In Mayo (like Dido), the author focuses entirely on the design of

22

the web page, then annotates that page with markup describing data and computation. The web

page implies the data model, freeing the author of the need to abstractly model the data, manage

a spreadsheet, or describe bindings between the two. At the same time, our expression language

provides lightweight computation (Quilt and Gneiss), even on hierarchical data (Gneiss) with-

out relying on any external services (Dido). Because they are part of the document (Dido), Mayo

expressions can refer directly to data elements elsewhere in the document, instead of requiring a

syntactic detour through references to cells in the associated spreadsheet. Finally, because it is an

HTML language extension (Dido and Quilt), Mavo can be applied to any web page and authored

with any HTML editor, freeing an author from design constraints.

In sum, we believe that the combination of capabilities of Mayo align well with the needs and

the preferred workflow of current web authors. In particular, the independence of the Mavo au-

thoring language from any back-end system (or even from any particular front-end interpreter)

means that Mayo prototypes a future for HTML and the web browser itself, where data interac-

tion becomes as much a basic part of web authoring as paragraphs and colors.

2.2 Content Management Systems

There are many systems that assist novice web developers with building dynamic and data-backed

web applications. The drawback to many of these systems, however, is that they often require using

their own heavyweight authoring and hosting environments, and they provide pre-made plugins or

templates that users can not customize without programming. Examples of such systems include

CMSs such as Wordpress, Drupal, orJoomla.

The growing community around static site generators, such as Jekyll [1] is indicative of the

dissatisfaction with rigid, heavyweight CMSs [6]. However, these require significant technical

expertise to configure, and offer no graphical interfaces for editing data. Furthermore, many uses

of CMSs are merely to enable non-technical users to edit website content, a use case that static site

generators do not accommodate.

Other types of systems for end user web development include WYSIWYG editors such as

CKEditor. These tools are much more lightweight, but also have limited functionality for pre-

23

senting structured data. Newer editors such as Wix.com allow for structured data, but again only

via pre-made snap-in widgets similar to CMSs.

In the previous section, we described three systems-Dido [22], Quilt [8], and Gneiss [13]-

from which we draw key insights. However, this work solves challenges in combining those in-

sights into a single system, incorporates additional ideas, and contributes useful evaluation of the

resulting system. Most importantly, Mayo demonstrates that the often-hierarchical data model

of an application can be incorporated directly into the visual design on which a web author is fo-

cused, making the data modeling task an automatic side effect of the creation of the web design.

Supporting hierarchical schemas is critical because they occur naturally in many data-driven apps

on the web (53% according to [6]). Our evaluation studies users working with such hierarchical

schemas.

2.3 Visual application builders

Visual application builders like app2you [23] and AppForge [37] allow authors to specify the de-

sign of pages by placing drag-and-drop elements into a WYSIWIG-like environment. However,

this approach limits authors to only the building blocks provided by the tools and cannot be used

to transform arbitrary HTML. A followup system, FORWARD [17], is more powerful but re-

quires writing SQL queries within HTML.

Early visual programming languages such as Forms/3 [11] and NoPumpG [36] extend the

spreadsheet paradigm to graphical interfaces and interactive graphics. However, they do not afford

any customization in terms of input UI, and have no concept of a data store. Also, they only target

single-user local web applications and do not address the unique challenges that Web applications

raise.

There has been some work to better present hierarchical data within spreadsheets [14, 4].

However, the flexibility of these presentations is limited and only slightly deviates from a tabu-

lar display.

Additionally, while programmers generally prefer to keep their data schema logic separate from

the presentation definition as evidenced by the number and popularity of MVC frameworks, end

users may not have the same preferences, and may instead be frustrated by the need to think about

24

data in two separate places. Indeed, with a certain category of applications, including most CRUD

applications, how the data is laid out on the page can easily translate to how the data should be

organized. For end users who are seeking to build these sorts of apps, it may be easier to define a

proper schema in tandem with defining the layout.

2.4 MVC Frameworks

In the last decade, many client-side frameworks have been created promising to simplify the cre-

ation of Web applications. Some of them (mainly AngularJS [20] and Vue.js [38]) even offload

functionality to HTML, similarly to Mayo.

However, these frameworks use HTML markup as a convenient shortcut for View specifica-

tion, not as a way to describe the entire application with no additional programming. To create an

application utilizing these frameworks, several software engineering concepts and design patterns

need to be understood (such as MVC) and, as shown in Table 1.1, they still require a nontrivial

amount ofJavaScript to be written in addition to the HTML annotations.

2.5 Web Components

Web Components is a recent Web technology consisting of a set of four W3C and WHATWG

specifications centered around improving the extensibility of HTML:

. Custom HTML Elements [16]

. HTML Imports [18]

. HTML Templates [35]

. Shadow DOM [33]

On the surface, Web Components and Mayo share many goals: both aim to empower HTML

authors to create Web applications. However, in Web Components, HTML is only used to in-

clude, call, and configure existing widgets. Developing said widgets still requires programming.

While this is a step in the right direction, it severely limits what authors can create to components

third-party developers envisioned as useful, not components tailored to their individual use cases.

25

2.6 The Semantic Web and Web Data Extraction

There has been a great deal of work on both encouraging and extracting structured data on the

web [12]. However, automatic scraping techniques often have errors because they must infer struc-

ture from unstructured or poorly structured text and HTML markup. Several efforts have been

made to define syntaxes and schemas, such as RDFa [31] and Microdata [34], for publishing struc-

tured data in web pages to contribute to the Semantic Web and Linked Open Data [9]. However,

novice users have had little incentive to adopt these standards-sharing data rarely provides direct

benefit to them-and find them difficult to learn, potentially contributing to their limited adop-

tion on the web. Mayo contributes to this line of work by using a standards-compliant syntax that

is machine-readable. Authors typically do not care about theoretical purity and are motivated to

add additional markup when they see a tangible benefit. With Mayo, they expend effort because

it makes their static website editable or creates a web application. As a side effect, however, they

enrich the Semantic Web.

Mayo is not the first system to have attempted to increase HTML author motivation for using

Semantic Web technologies. Sync Kit [7] was a client-side caching toolkit which, like Mayo, also

used a Semantic Web technology (Microdata [34]) for marking up its HTML templates. How-

ever, its utility was to improve performance by caching client-side templates, not to enable HTML

authors to create web applications. Its target group was still programmers, as evidenced by the

fact that data was provided to it via SQL queries intermixed with the HTML. In addition, all

computation had to be performed via the SQL query, as the language did not have computation

capabilities.

26

Chapter 3

M avo

A description of the Mayo language follows. We first describe its syntax for data specification,

editing, and storage, then its expression language for lightweight reactive computation.

3.1 Building data-driven CRUD applications

3.1.1 Declarative, HTML-based Syntax

We chose to use HTML elements, attributes, and classes instead of new syntax for Mayo function-

ality because our target authors are already familiar with HTML syntax. Whenever possible, we

reused concepts from other parts of HTML.

Using HTML5 as the base language also means a WYSIWYG editor for Mayo applications

can be easily created by extending any existing WYSIWYG HTML editor. But as discussed pre-

viously, we consider it a key contribution of Mayo that it is a system-independent language. For

example, we expect most Mayo authors to frequently take advantage of the ability to "view source"

and work with arbitrary HTML. View source is an essential methodology for learning and adopt-

ing new elements of web design. It permits authors to copy and tweak others' designs (even

without fully understanding them) without worrying about new or conflicting system dependen-

cies [6]. Source editing is essential to let authors circumvent any limitations imposed by graphical

editing tools. Per [27], we want a low threshold (cost to get started) while allowing users escape

the low ceiling (maximum achievable power) of GUI-based tool builders.

As a result of this design, Mayo templates are endomorphic, annotational, and idempotent [5].

27

The advantage of annotational templates is that they enable the template file to appear as the fin-

ished product with regard to design. Idempotency opens up several possibilities for future perfor-

mance optimizations, such as server-side rendering and client-side caching.

3.1.2 Creating a Mayo application

To enable Mayo functionality on an HTML structure, the author places an mv-app attribute on an

enclosing element. Its (optional) value gives a name to the application. If no value is provided, the

name of the application is taken from the id attribute or automatically generated if no id attribute

is present.

The mv-app attribute does not do anything on its own, but enables all other attributes and

the expression syntax that is described in 3.2. The element that the mv-app attribute is set on will

henceforth be referred to as the Mavo wrapper.

3.1.3 Storage location

Saving the data produced by the application is as simple as setting an mv - storage attribute on that

same element. Its value specifies where the data will be stored, through a URI or keyword. If this

attribute is not used, or no value is provided, or the value is "none", the data is not stored anywhere,

which can be useful for certain types of applications whose purpose is merely to transform transient

data, such as calculators and code generators.

Several types of storage backends are supported out of the box, and are discussed below. There

is also a flexible API for third-party developers to easily add support for additional storage services.

HTML ELEMENT

If the value of the mv-storage attribute is of the form #id, the data is stored as JSON inside the

designated HTML element. Since such DOM changes are not persisted by default, at first glance

this appears to be of limited utility beyond debugging. However, it could be useful in conjunction

with another library that monitors the contents of said element and utilizes them in some way. In

this case, the other library does not need to be aware of Mavo's existence, and the author combin-

28

ing Mayo with that library does not need to understand programming, so it's a good, decoupled,

extension point.

LOCAL STORAGE

If the value of the mv-storage attribute is the local keyword, the data is persisted in the browser's

locaistorage. This is useful for PIM-type applications where one person is editing their personal

data and does not need to share them with others, such as task lists, contact managers, calendars

etc.

GITHUB

Github.com is a popular service for hosting git repositories. If the value of the mv - storage attribute

is a Github URL, the data is persisted in a JSON file on Github. The URL can be less or more

specific. If it points to a specific file (e.g. https://github.com/leaverou/mavo/data.json),

that file is used for storage. If it points to an entire repository, a JSON file with a filename of

[appname] . json is created, and if a repository is also missing from the URL (i.e. it is of the form

http://github.com/[username]), an mv-data repository is created. This allows novices to use

Github for storing data without needing to know what a repository even is, or how to create one:

They only need to sign up for the service, and they instantly have a usable data store.

If the Github storage backend is used, Mayo also takes care of authentication and prompts users

to authenticate before making any edits to the data (or even viewing the data if the repository is

private). Figure 3-1

DROPBOX

Dropbox is a popular file sharing service. If the value of the mv- storage attribute is a Dropbox

"share" URL (a publicly viewable URL users can obtain by clicking on the "Share" button through

Dropbox's UI), that file is used for storing data.

Akin to the Github storage backend, Mavo takes care of authentication to Dropbox before

allowing editing and saving.

Because Dropbox "share" URLs do not follow a predictable format, Mavo cannot create the

29

Figure 3-1: Authentication flow when us-
ing Github as a storage backend. Note that
the data is readable without authenticating

(unless the repository is private), but editing
the data requires logging in.
The Github confirmation (Step 2) would
not be there if the user has ever logged in
to any Github-backed Mayo application be-
fore, since they all share the same OAuth ap-
plication on Github's side.
Therefore, the additional confirmation
from Mayo's authentication server (Step
3) is necessary, otherwise any malicious
JavaScript application could pretend to be
a Mavo application, take advantage of the
automatic login and then corrupt the user's
Github data once it acquires access to the
API.

30

file if it does not exist. Therefore, the author needs to place an empty file in their Dropbox account

and obtain a "share" URL to it before they can start using Mavo to store data.

3.1.4 Initialization data

It is often desirable to start with existing data instead of an empty data store. For this purpose,

we support an mv-init attribute which provides such initialization data. The format of the value

follows the same conventions as for the mv- storage attribute.

Data provided through mv-init is only rendered if the main data store (provided via mv-

storage is empty.

3.1.5 Overriding storage through the URL

It is possible to temporarily override any Mavo application's storage backend via the URL. The

storage URL query string parameter overrides the storage backend of the first Mavo application

in the page, and storage_[mavoId] allows overriding the storage backend of any Mayo application

in the page by referencing its name (mavold).

This enables anyone to use any Mayo application on the Web for storing their own data, in any

location they wish, without the application author having to plan for this use case. For example,

an invoicing system built by one person can be used by anyone for generating their own invoices

by just overriding its storage via the URL. This way, the Mayo application becomes a data editor,

instead of bundling a fixed data source.

3.1.6 Data Definition

A core capability of Mayo is to define and materialize data on a web page. Once Mayo is enabled

on an HTML structure, it looks for elements with property (or itemprop) attributes within that

structure in order to infer the data schema. These elements are henceforth referred to as simply

properties. If the HTML author is aware of semantic Web technologies such as RDFa [311 or

Microdata, these attributes may be already present in their markup. If not, authors are simply

instructed to use a property attribute to "name" their element in order to make it editable and

persistent. An example of this usage can be found in Figure 1-1.

31

When an element becomes a property, it is associated with a data value. This value is automat-

ically loaded from and stored to the specified mv-storage. For many elements (e.g.), the

natural place for this value to be "presented" is in the element's contents. In others, such as

or <a>, the natural place for a value is a "primary" attribute (src and href respectively). These

defaults can be overridden. For example, adding mv-attribute="title" to a property element

means that its data value should be placed in the title attribute.

It is worth noting that since Mayo templates are annotational, the example can be filled with

real data, which makes the template really look like the output, unlike other templating languages

where the template is filled with visible markup. In addition, this example data can easily become

default values, by using the mv-default attribute without a value.

MAvO VS RDFA

As previously mentioned, Mavo's data definition syntax is based on RDFa [31]. However, us-

ability and flexibility were prioritized over strict specification compliance. Therefore, there are

several divergences from RDFa syntax, mainly centered around reducing the amount of metadata

required from the author, detailed in Table ??.

3.1.7 Data Editing

Mayo generates UI (user interface) controls for toggling between reading and editing mode on the

page, as well as saving and reverting to the last saved state (if applicable), as seen at the top of Figure

1-1 and the last screenshot in Figure 3-1. In editing mode, Mayo presents a WX/YSIWYG editing

widget for any property that is not a form control, which appears only when the user shows intent

to interact with it. The generated editing UI depends on the type of the element. For instance, a

<time> element will be edited via a date or time picker, whereas an element will be edited

via a popup that allows specifying a URL or uploading an image (Figure 3-2). The assumed data

type can be overridden by using the datatype attribute (e.g. datatype=" number").

Mayo leverages available semantics to optimize the editing interface. For example, using a

<s pan> to display dates would result in editing via a generic textfield. However, a <time> element

32

RDFa Mayo
The vocab attribute is mandatory

property attributes must have a value

The location (content or primary attribute) of

an element's data is not configurable and de-

pends solely on its type.

Objects are explicitly declared using a typeof

attribute and a type, e.g. typeof= "Person"

The vocab attribute is supported, but is op-

tional

Value-less property attributes are allowed.

Their value is computed by looking in other

identifying attributes, such as class, id, name,

itemprop. This helps prevent duplication and

minimizes the markup required to be added to

existing HTML.

There are extensible defaults for elements that

are selector-based instead of type-based, but

they can also be overridden via mv-attribute.

The typeof attribute is supported but the

value (object type) is optional, since Mayo

does not need it. However, objects are mainly

inferred from the nesting of properties.

Table 3.1: Differences of RDFa syntax and the Mayo data specification syntax

33

RDFa Mavo

13 Ap:2016

Date: 0 Y4

Dish rating:

Imae:
Ihttpvs://avatars-2.Lgithubusercontent.c /-/,9

U

.- .. _

Upload:
Choose File No file chosen

--- Twitter:

TIp: You can also drag & drop or paste the image to be uploaded fp/twiterconvsvp!]s

Figure 3-2: Different types of editing widgets for different types of elements. Clockwise from the
top left: , <meter>, <time>, <a>

is edited with a time or date picker (depending on the format of its datetime attribute). This has

the side effect of incentivizing authors to use semantically appropriate HTML.

3.1.8 Customizable Editors

Mayo is designed to be useful to HTML authors across a wide range of skill levels, including web

design professionals. Thus, the generated editing GUI is fully customizable:

. Any Mayo UI elements can be fully re-skinned using CSS. In addition, authors can provide

their own UI elements by using certain class names (such as class="mv-add-task" for a

custom "Add task" button).

. The way an element is edited can be customized by nesting a form element inside it. For

example, if a property only accepts certain predefined values, authors can express this by

putting a <select> menu inside the element, essentially declaring it as an enum. An al-

ternative to nesting is referencing a form element anywhere in the page via the mv-edit

attribute. Any changes to the linked form element are propagated to the property editors.

This way, authors can have dynamic editing widgets which could even be Mavo apps them-

selves, e.g. a dropdown menu with a list of countries populated from remote data and used

in multiple Mayo apps.

34

April 2016

Mon Tue Wed Thu Fri Sat Sun
28 29 30 31 1 2 3
4 5 5 7 8 9 10
11 [1 14 15 16 17
18 19 20 21 22 23 24

25 26 27 28 29 30 1

3.1.9 Objects

Properties that contain other properties (or that contain a typeof attribute) become grouping

elements or groups, the Mayo equivalent of objects. This permits authors to define multi-level

schemas. For example, an element with a student property can contain other elements with name,

age, and grade properties, indicating that these properties "belong" to the student.

3.1.10 Collections

Adding an mv-multiple attribute to a property element makes it a collection with that element as

the item template. During editing, appropriate controls appear for adding items, deleting items,

or reordering items via drag and drop, as seen for the to-do items in Figure 1-1. Collection items

can themselves be complex HTML structures consisting of multiple data-carrying elements and

even nested collections. This enables the author to visually define schemas with one-to-many re-

lationships.

To author a collection, the author creates one representative example of a collection item; Mayo

uses this as the archetype for any number of collection elements added later. As discussed earlier,

the archetype can contain real data so it resembles actual output and not just a template, and can

also provide default data values for new collection members. For example, Figure 4-2 shows what

the markup for a contact manager application could look like.

The example phone number and email will only be used on the first phone and email of the first

person. Subsequent items added will not use it as a default value, unless we add an mv-default

attribute to it.

It is possible to move items between collections via drag & drop or the keyboard. For this

purpose, there is an mv-accepts attribute whose value is a space-separated list of property names

of collections that are allowed to move items to the current collection. Note that the relationship

is not bi-directional by default; to make it so, both collections would need to have the mv-accepts

attribute, each with the other collection's property name.

35

<div mv-app="contacts" mv-store="local">

<details property="contact" mv-multiple open>

<summary>

<hi>

Lea Verou

MIT CSAIL

</hi>

</summary>

<article property="phoneNumber" mv-multiple>

Mobile

555-123-4567

</article>

<article property="emailAddress" mv-multiple>

Email

leaverou mit.edu

</article>

</details>

</div>

0 CSAIL

MOBILE 555-123-4567

EMAIL leaveiou mltedu

MOBILE (Te ephone)

r -EMAIL (Email)

Figure 3-3: Markup for a Mavo contact manager with example rendering.

36

3.1.11 Direct Schema Manipulation

Our approach to data definition means that end users define their data by defining the way they

want their data to look on the page. This is in contrast to many systems which expect their users to

define their data modelfirst and then map their model into a view. In the spirit of direct manipu-

lation, Mayo users are manipulating their data schema by manipulating the way the data looks. We

believe that our approach is more natural for many designers, permitting them to directly specify

their ultimate goal: data that looks a certain way.

3.2 Computation

The aforementioned three attributes-mv-storage, property, and mv-multiple-are sufficient

for creating any CRUD content-management application with a hierarchical schema and no com-

putation. However, many CRUD applications in the wild benefit from lightweight computation,

such as summing certain values or conditionally showing certain text depending on a data value.

To accommodate these use cases, Mavo includes a simple expression syntax.

3.2.1 Expressions

Expressions are delimited by square brackets ([]) by default and can be placed anywhere inside

the Mayo instance, including in HTML attributes. To avoid triggering unrelated uses of brackets

on individual elements, authors can use the mv-expressions attribute to customize the syntax

or disable expressions altogether. The setting is inherited by descendant elements that lack a mv-

expressions attribute of their own. For example, for the double-brace expressions common in

many templating libraries, authors can use mv-expressions="{{ }}". The starting and ending

tokens could even be the same, for example mv-expressions="$ $" for LATEX-style dollar sign

expressions. To disable expressions, authors can use mv-expressions="none". The value of the

mv-expressions attribute is inherited by descendant elements, therefore its scope is the entire

HTML subtree its element delimits.

In keeping with our goal of leveraging HTML syntax, we also support an HTML-based syn-

37

tax, via the attribute mv-value which follows property semantics about which attribute (if any) its

computation result is placed in. For example, with mv-value, the following examples:

<meter value="[average(rating)]"></meter>

[foo]

can be rewritten as:

<meter mv-value="average(rating)"></meter>

Fallback content

A benefit of this approach is that the initial content of the element with the mv-value attribute

can be used as a fallback in case of errors. The mv-value attribute is explained in more detail in

5.1.2, as it was one of the features we added based on user study findings.

However, this syntax (and all alternative HTML-based syntaxes we explored) has several draw-

backs:

. It is much more verbose than the [expression] microsyntax

. It becomes especially clumsy when the computation result must be placed in an arbitrary

attribute. In that case, it requires using mv-attribute and is still disconnected from the

markup that will actually be modified.

. Since the entire value of the mv-value attribute is considered an expression, concatenation

requires a function call or the & operator. In contrast to that, with the [expression] mi-

crosyntax, the non variable parts of expressions can just be placed next to them, e.g. <p>5 +

5 = [5 + 5]</p> results in 5 + 5 = 10.

The choice of brackets for delineating expressions was based on the observation that non-

programmers often naturally use this syntax when composing form letters, such as email templates.

In addition, many text editors automatically balance brackets.

Our approach to expressions only partially meets the "declarative, direct manipulation" goal

we described in our motivation. It is challenging to specify computation, an abstract process, en-

tirely through direct manipulation. The expression language is similar to that in spreadsheets-

38

fully reactive with no control flow, which nods towards declarative languages. The widespread

adoption of spreadsheets provides evidence that this type of computation is within reach of a large

population. Furthermore, placing the expression in the document, precisely where its value will be

presented, as opposed to referencing values computed in a separate model "elsewhere", fits the spirit

of direct manipulation in specifying the view. During our user study several subjects volunteered

observations that this was effective.

An earlier version of our system used a more spreadsheet-like =(expression) syntax, but we

found from preliminary user studies that few users realized the spreadsheet connection. Users

also found it difficult to determine where an expression terminated due to parentheses being used

inside expressions as well.

3.2.2 Named References

Mavo's expression syntax (MavoScript) resembles a typical spreadsheet formula syntax. However,

instead of referring to cells by grid coordinates, Mayo formulas refer to properties by name. Every

property defined in a Mayo instance becomes a (read-only) variable that can be used in expres-

sions anywhere in the Mayo instance. These named references are necessary since Mayo has no

predefined grid for row/column references. We consider this necessity a virtue. Instead of refer-

encing mysterious row and column coordinates, an expression uses human-understandable prop-

erty names. We believe this will decrease bugs caused by misdirected references. Indeed, many

spreadsheets offer named ranges to provide this benefit of understandable references. For spread-

sheets, perhaps the main benefit of the row-column references is having formulas with "relative

references" (e.g. to adjacent columns) to automatically update as they are copied down into new

rows. But Mavo's automatic duplication of templates in collections means copies are never made

by the user, obviating the need for this benefit.

A range of common mathematical and aggregate functions is predefined. As with spread-

sheets, we also include an if(condition, iftrue, iffalse) function that uses the first ar-

gument to choose between the remaining two values. Finally, for power users, Mavo expressions

can include arbitrary JavaScript, which is executed in a sandbox environment where properties

become read-only variables.

39

3.2.3 Multi-valued Expressions

If a referenced property is inside a collection, then its value in the expression depends on the ex-

pression placement:

1. If the expression is on or inside the same item that contains the referenced property, its value

resolves to the value of the property in (the corresponding copy of) that item.

2. If the expression is outside the mv-multiple element that contains the property, i.e. outside

the collection, it resolves to a list (array) of all values of that property inside the collec-

tion. These lists can be used as arguments to aggregate functions, such as average(age) or

count(visit).

MavoScript also supports array arithmetic: Operations between arrays are applied element-

wise. Operations between arrays and primitives are applied on every array element. For example,

rating > 3 compares every item in rating with 3 and returns an array of booleans that can then

be fed to a count () function. While the exact mechanics of how a count (rating > 3) expression

works might be too complicated for novices to comprehend, the expression itself reads almost like

natural language, something several subjects of our user study remarked on.

3.2.4 MavoScript vs JavaScript

We have already discussed one key difference of MavoScript expressions over JavaScript expres-

sions, namely array arithmetic. However, there are a few more differences, aiming to make the

syntax looser and more understandable to novices (Table 3.2).

3.3 Debugging

Mayo includes debugging tools that show the current application state, as expandable tables inside

each object (Figure 3-4). This is enabled by placing an mv-debug class on any ancestor element or

using a debug URL parameter (i.e. appending ?debug to the URL, or &debug if other query string

parameters are present). The latter enables debug tables on every group of every Mavo app on the

page, whereas the former is more granular and can enable debug mode only on specific groups.

These tables display a lot of useful information about the current state of each object:

40

JavaScript

All strings have to be quoted.

a + b can result in addition or concatenation

depending on the types of the arguments

Using more than 2 logical operators returns

unexpected results. E.g. 3 > 2 > 1 is false

== operator for equality check, = for assign-

ment

&& operator for logical AND

operator for logical OR

if is a control structure

MavoScript

Strings that only consist of letters, numbers,

and underscores do not need quotes, except

to disambiguate them in case they happen to

match a property name.

a + b is always addition, a & b is concatena-

tion

Every operator can have multiple operands, in-

cluding >, so 3 > 2 > 1 has the same result as

in math (true).

= or == operator for equality check, there is no

assignment.

and operator for logical AND

or operator for logical OR

if () is a function. There are no control struc-

tures.

Table 3.2: Differences ofJavaScript and MavoScript

41

V Debug

Figure 3-4: The debug tools in action, showing local values and warnings.

42

. Each property and its current value

. Each expression and its current value. The expression is editable and modifying it results in

the expression being updated in both the debug tools and the application itself in real time

as the user types.

. Warnings about common errors. These include:

- Using mv-multiple without a property attribute

- Using an invalid property name. This could be either a reserved word, or a name that

contains illegal characters.

The third column in the debug table refers to the relevant element. Hovering over that cell will

highlight the element in the application, as shown in Figure 3-4.

3.4 Implementation

Mayo is implemented as a JavaScript library that integrates into a web page to simulate native

support for Mayo syntax. Therefore, all that is needed to be able to use Mayo on a web page is

including Mavo's CSS and JavaScript files in any place in the markup where CSS and JavaScript

files are valid, for example in the <head> section:

<link rel="stylesheet" href="mavo.css"/>

<script src="mavo.js"></script>

3.4.1 The Mayo Tree

After the DOM tree of the page is built (DOMContent Loaded event), Mayo processes any elements

with an mv-app attribute and builds an internal Mavo tree representation of the schema that their

property and mv-multiple attributes outline (Figure 3-5).

The Mayo tree consists of three types of objects: Mavo. Group, Mavo. Collection, and Mavo. Primitive.

All three inherit from the Mavo. Node abstract base class. The root of the Mayo tree is always a group

and corresponds to the Mayo wrapper element (the element with the mv-app attribute).

43

true

"Code furiously"

dJone

false

taskTitle

"Have a life"

Figure 3-5: The Mayo tree created for the To-Do app shown in Figure 1-1.

Any remote data specified in the mv-storage attribute is then fetched asynchronously and

recursively rendered.

3.4.2 Expressions

During the DOM traversal that results in the creation of the Mayo tree, Mayo also inspects every

text and attribute node on the subtree looking for expressions, and builds corresponding objects.

For every expression, a modified JavaScript expressions parser (JSEP [2]) is used to compile Mayo-

Script expressions into JavaScript functions.

Every time the ,data changes, a mavo: datachange event is fired on the related element. This

could occur in the following four cases:

id

propertychange

add

delete

move

Operation

A primitive changed value

An item was added to a collection

An item was deleted from a collec-

tion

A collection item was moved

Event target

The property element

the new item

Collection marker

All items that changed index

Every data change boils down to one or more of these elementary operations. For example,

44

i I

moving items between collections results in one deletion in the source collection and one addition

in the target collection.

These events bubble up the DOM tree, just like every other event. Every time they reach a

grouping element, expressions within that grouping element are re-evaluated iff they depend on

the changed property.

When the data in an object changes-via rendering, editing or expression evaluation--expressions

within it or referring to it are re-evaluated to reflect current values. The execution context is a

JavaScript Proxy. Proxies are a relatively new feature (ECMAScript 2015). They enable the cre-

ation of objects that allow custom code to be executed on any operation (traps), e.g. when getting

or setting a property. This allows Mayo to:

. make MavoScript functions as well asJavaScript's Math functions appear to be global scope

. conditionally fetch descendant or ancestor properties only when needed so that the dot

notation is only needed for disambiguation

" prevent data modification via expressions

" allow for identifiers to be case insensitive

. allow alphanumeric strings to be unquoted

3.4.3 Performance Optimizations

The most costly Mayo operations are those that involve a large number of DOM operations. These

include, but are not limited to, data rendering and expression evaluation. There are a number of

performance optimizations in place to accelerate such operations.

Every time a collection item is created during editing or data rendering, its object in the Mavo

Tree holds a reference to the first item that was ever created in that collection, which it uses as a

template from which it copies property values that do not change across items. Even if the collec-

tion is nested inside other collections (so there are multiple instances of the same collection), all

of its items use the same template. The collection itself uses its first instance as a template. This

allows sharing of certain property values across every collection item without having to recompute

them or fetch them from the DOM.

Expression parsing is also a costly operation, since every single text and attribute node in the

Mayo application must be inspected. However, once the expressions are found in one collection

45

item, they will be in the same place on any other collection item, albeit on a different DOM node.

Therefore, expression objects also store a path from the nearest collection item to the node con-

taining the expression. On new collection items, the element bearing the expression will be dif-

ferent, but the path is the same. This means that new collection items do not have to be traversed

for expressions, all we need to do is resolve these paths to create expression objects for them.

Expression evaluation is disabled during data rendering. Given that expressions are re-evaluated

on every data change and data change events bubble up the DOM tree, rendering would result in

a very large number of expression evaluations, especially on ancestor groups with many deeply

nested descendants. Instead, every expression is re-evaluated after data rendering is done, which is

0(N) on the size of the dataset.

Another costly operation when performed en masse is editing. Editing properties often in-

volves the creation of several elements. On a collection with several items, creating all these el-

ements at once results in the browser becoming unresponsive for about 0.5 - 1 sec, which is sig-

nificantly over the lOOms threshold for instantaneous responses [26]. Instead, these elements are

created when the user interacts with the property, either via clicking, mousing over for longer than

lOOms, or keyboard focus.

3.4.4 Extensibility

Making Mavo extensible has been a priority since the beginning, to enable a plugin ecosystem

to significantly extend its scope in the future. JavaScript facilitates this, due to its higher-order

functions and mutability of objects.

Hooking is used extensively, as a low-level extension point. Hooks work with two methods:

Mavo.hooks.add(name, callback) and Mavo.hooks.run(name, env). The former is used by

plugins to register callbacks at specific points in Mavo code. The latter is used by Mayo to exe-

cute said callbacks. This requires a very good understanding of Mavo's source code by the plugin

developer, but affords maximum extensibility, akin to being able to paste code directly in Mayo's

source. For example, both Expressions and the Mayo debugging tools are implemented as plugins

that utilize hooks and can be removed if not needed, to reduce file size.

In addition to hooks, there are also higher level extensibility points. Certain aspects of Mayo

46

can be extended by merely adding a rule (a property with an object as its value that follows a certain

structure) to certain objects or calling certain functions:

Goal

New element type

New MavoScript function

New MavoScript operator

New storage backend

Object or Function

Mavo. Elements

Mavo. Functions

Mavo.Script .operators

Mavo. Backend. register()

47

48

Chapter 4

User studies

In our evaluation, we examined whether Mavo could be learned and applied by novice web au-

thors to build a variety of applications in a short amount of time. In order to understand both the

usability and flexibility of Mayo, we designed two user studies. For a first STRUCTURED study, we

authored static web page mockups of two representative CRUD applications and then gave users

a series of Mayo authoring tasks that gradually evolved those mockups into complete applications.

This study focused on learnability and usability. For a second FREESTYLE study, before telling users

about Mayo (so that they would not feel constrained by the capabilities of our system), we asked

them to create their own mockup of an address book application. Then, during the study, we asked

them to use Mayo to convert their mockups into functional applications. This study focused on

whether Mayo's capabilities were sufficent to create applications envisioned by users. We carried

out the two user studies using three applications. The applications were designed with hierarchi-

cal data to test users' ability to generate hierarchical data schemas and perform computations on

them.

To facilitate replication of our study, we have published all our study materials online.

4.1 Preparation

We recruited 20 participants (mean age 35.9, SD 10.2; 35% male, 60% female, 5% other) by pub-

lishing a call to participation on social media and local web design meetup groups. Of these, 13 per-

formed only the STRUCTURED study, 3 performed only the FREESTYLE study, and 4 performed

49

Toscano

Rating:~

Should I go to the party?

nipro(s) nicon(s)
Fun wMith rind I hav tns of work to do

Toal- Total 0 'ye.' decisloi(s) anc 0 'no' decisionf)

Task category Example task Example code Med. time Success

Make editable
Foodie: 1, Decisions: 1

* Allow multiple
Foodie: 3, Decisions: 2

0 Simple reference
Foodie: 3, Decisions: 3

* Simple aggregate
Foodie: 3, Decisions: 2

* Multi-block aggregate
Foodie: 1, Decisions: 0

F. Filtered aggregate
Foodie: 1, Decisions: 1

* Conditional
Foodie: 0, Decisions: 1

"Make the restaurant information editable
(name, picture, uri, etc)"

"Make it possible to add more pros and
cons."

"Make the header background dynamic
(same image as the restaurant picture)"

"Make the visit rating dynamic (average of
dish ratings)"

"Make the restaurant rating dynamic
(average of visit ratings)"

"Show a count of good restaurants"

"Show "Yes" if the score is positive, "No" if
it's negative, "Maybe" if it's 0."

<hi property-"name">
Toscano</hi>

<article property-"pro"
data-multiple>

<header style="
background: url([pic])">

[average(dishRating)]

<meter value="
[average(visitRating)]">

[count(rating > 3)] good
restaurants

[iff(score>@, Yes,
iff(score<0, No, Maybe))]

3:00 100%

1:15 100%

0:43 88%

0:55 97.5%

2:00 77.8%

6:10 70.9%

5:28 75%

Figure 4- 1: User study tasks are shown in the mockups that were given to participants, and results
are broken down by task category. The green arrows point to element backgrounds, which par-
ticipants made dynamic via inline styles or class names. Page elements involved in specific tasks
are outlined with color codes shown in the table. "Make editable" tasks are not shown to prevent
clutter.

50

'IIs Mm' gels

Botable Dishles)

HTML CSS JavaScript

Beginner 0 4 13

Intermediate 8 5 6

Advanced 9 6 1

Expert 3 5 0

Table 4.1: User study participants' familiarity with web development languages.

JSON RDFa Microdata Microformats SQL

Never heard of it 0 13 9 10 0

Heard of it 6 6 7 4 5

Can read it 2 0 1 1 3

Can edit it 8 1 2 3 8

Can write it from scratch 4 0 1 1 5

Table 4.2: User study participants' familiarity with data technologies

both. All of our participants marked their HTML skills as intermediate (rich text formatting, ba-

sic form elements, tables) or above. However, most (19/20) described themselves as intermediate

or below in JavaScript (Table 4.1). When they were asked about programming languages in gen-

eral, 13/20 described themselves as beginners or worse in any programming language, while 7/20

considered themselves intermediate or better. In addition, when we asked participants about their

experience with various data concepts, only 4/20 stated they could write JSON, 5/20 could write

SQL, and only 1 could write HTML metadata (RDFa, Microdata, Microformats).

Before either study, we gave each user a tutorial on Mayo, interspersed with practice tasks on a

simple inventory application. This took 45 minutes on average and covered the property attribute

(10 minutes), the mv-multiple attribute (10 minutes), and expressions using the [] syntax, bro-

ken down into how to reference properties and perform computations (5 minutes), aggregates

such as count() (10 minutes), and if () syntax and logic (10 minutes).

51

4.2 The Structured Study

For the STRUCTURED study, we created two applications. 17 subjects were given static HTML

and CSS mockups of one of these applications and were asked to carry out a series of tasks by

editing the HTML. These tasks tested their ability to use different aspects of Mayo, as shown

in Figure 4-1. Eight of these users were given a mockup of a Decisions app, a tool for making

decisions by summing weighted pros and cons. The application also shows a suggested decision

based on the sums of pro and con weights. The other 9 users were given a mockup of a Foodie log,

a restaurant visit tracker that includes dishes eaten on each visit with individual ratings per dish.

The application also computes average ratings for each visit and each restaurant. Both of these

applications have a hierarchical data schema.

Each subject was shown a fully functional version of their respective application (but not its

HTML source) before being given the static HTML template. While a CSS style file was pro-

vided, they did not have to look at it. We provided tasks to the user one at a time, letting them

complete one before revealing the next. Tasks were administered in the same order, and we mea-

sured the time each subject took to complete the task as well as screen recorded their typing. Partic-

ipants were asked to speak aloud their thoughts and confusions as they worked. Researchers were

silent except to alert subjects to spelling mistakes and to explain HTML and CSS concepts-such

as how to set a value on a <meter> tag-if subjects were unaware of them. If subjects spent over

15 minutes on a task but were not close to succeeding, the researchers stepped in to offer hints or

explain the answer, and marked the task as failed.

4.2.1 Study Tasks

In the case of the Decisions app, users had 10 tasks to complete, while for the Foodie log, users

had 12 tasks. The tasks increased in difficulty in order to challenge the users. We grouped the

tasks into 7 categories, where each category tests a particular aspect of Mayo. Example tasks, code

solutions, and the number of tasks in each category per application is in Figure 4-1. As footnoted

earlier, all this task data is available online. A description of each task category follows:

* Make editable Adding property attributes to different HTML tags to make them editable.

52

. Allow multiple Turn an element into a collection, by adding property and mv-multiple.

. Simple reference Display the value of a property somewhere else, via a [propertyName]

expression.

. Simple aggregate Show the result of a simple aggregate calculation, such as the count or

sum of something.

" Multi-block aggregate Aggregate calculation on a dynamic property, such as an average of

counts.

* Filtered aggregate Show how many items satisfy a given condition.

. Conditional Show different text depending on a condition.

4.2.2 Results

In the STRUCTURED studies, before providing the tasks, we showed users the finished application

they were tasked to create and asked them how long they thought it would take them. Of the 17

users, 5 estimated it would take them several hours, 6 estimated days, 3 estimated weeks, and 3

estimated months. Some users said that they would need to learn new skills or that they had no

idea where to start.

After going through the tutorial, 6 users went on to complete all the tasks for their application

with no failures, 1 user had no failures but had to leave before the last task, and 10 users failed at

one or more tasks. A detailed breakdown follows.

Number of failures Number of Subjects

0 7

1 5

2 2

3 3

All failures were concentrated on expression tasks, usually the most difficult ones. The success

rate for basic CRUD functionality was 100%. The 6 users who completed all tasks successfully

took on average 17.3 minutes (Decisions, 10 tasks) and 22.5 minutes (Foodie, 12 tasks) to build

the entire application. Figure 4-1 shows the median time taken and success rate for each category

of task for all 17 users. As can be seen, some task categories were easier for participants to carry out

53

Application Before Mayo After Mayo Difference

Decisions app 2.875 1.375 -1.5

Foodie log 3.667 1.223 -2.445

Table 4.3: Reported difficulty ratings on a 5-point Likert scale, before and after the study

than others. For instance, all participants quickly learned where to place the property and mv-

multiple attributes, taking a median of 3 minutes to make several elements editable via property

and a little over a minute to turn single elements into collections. Almost all participants were

also able to display simple aggregates, such as showing a count of restaurant visits or a decision

score (sum of pro weights - sum of con weights). However, some participants struggled with more

complicated expressions, such as conditionals or multi-block aggregates. We explore some of the

more common issues next.

We asked these 17 participants who built either the Decisions or Foodie app to rate the dif-

ficulty of converting the static page to the fully realized application. They were asked to rate this

twice: once after seeing a demo of the final application but before learning about Mayo, and once

after going through all the tasks with Mayo. On a 5-point Likert scale, the reported difficulty rat-

ing after building the app with Mayo dropped 2.06 points on average from its pre-Mavo rating.

Detailed breakdown of pre- and post-study ratings can be found in Table 4.3.

4.2.3 Common Mistakes

The most prevalent error was putting mv-multiple on the wrong element-usually the parent

container-with 40% of participants stumbling on it at some point. However, as soon as users

saw that they were getting copies of the wrong element, they immediately figured out the issue.

As the user's intent was always clear, a WYSIWYG editor would solve this in the future. Another

similarly common and quick-to-fix mistake was forgetting mv-multiple (25%). None of these

mistakes led to failures on a task.

We noticed that users had a hard time grasping or realizing they could do concatenation. Both

the Decisions and Foodie applications included 3 simple reference tasks. We noticed that the

54

HTML fragment Success

</meter> [rating] 100%

<meter title="Overall rating: [rating]"> 100%

</meter> [weight] 100%

<header style="background: url([pic])"> 77.8%

<1i class="weight-[weight]"> 75%

<1i class="answer-[answer]"> 75%

Table 4.4: Success rate of simple references.

failure rate was significantly higher (20-25% vs 0%) when the variable part was not separated by

whitespace from the static part of the text, as shown in Table 4.4.

Another common mistake was using sum() instead of count() (20% of participants). This

may be because they are thinking of counting in terms of "summing how many items there are", or

that they are more familiar with sum(), due it being far more common than count() in spread-

sheets. Interestingly however, there was no correlation between spreadsheet familiarity and oc-

currence of this mistake. Like the previous mistakes, this was also one that participants typically

were able to resolve by themselves, often after another glance at the table of available functions.

We noticed that some participants frequently copied and pasted expressions when they needed

the same calculation in different places. A DRY (Don't Repeat Yourself) strategy familiar to pro-

grammers would be to create an intermediate variable by surrounding the expression in one place

with a tag (such as or <meta>) that also has a property, so that it can be referenced else-

where. These intermediate properties would reduce clutter and consequently reduce future mis-

takes down the road; they would also make it easier to modify computations globally. This idea

might however be counterintuitive in Mayo as it calls for creating a tag in the HTML that is never

intended to be part of the presentation, conflicting with the idea that one authors the application

by authoring what they want to see.

The STRUCTURED tasks with the lowest success rate (70.9%) were those that required count-

ing with a filter (count (rating > 3)). 25% of participants tried solving these with conditionals,

usually of the form if(rating > 3, count(rating)), which just printed out the number of

55

MOBILE 555-123-4567

EMAIL Ieaverou~mit edu

MOBILE

EMAIL Emnl!)

Figure 4-2: A sample of Own Address Book applications created by users.

ratings, since the condition is true if there is at least one rating larger than 3. Most who succeeded

remembered or (more often) guessed that they could put a conditional inside count and seemed

almost surprised when it worked. Another way of completing this task would be to declare in-

termediate hidden variables computing e.g. rating > 3 inside each restaurant or decision and

then sum or count them outside that scope. Only 10% of participants tried this method, again

suggesting that intermediate variables are a foreign concept to this population.

Most participants found if() to be one of the hardest concepts to grasp. It is indicative that

40% of subjects tried if() when it was not needed, for instance in simple reference tasks. 25%

of users were unable to successfully complete the conditional task, which required two nested

if ()s or three adjacent if () statements, each controlling the appearance of one of the designated

words ("Yes", "Maybe", or "No") (Figure 4-3). The latter strategy was only attempted by 37.5% of

participants.

In post-study discussions, some users mentioned how conditionals reminded them of what

they found hard about programming: " Thats some math and logic which are not my strong points.

Just seeing those ifstatements .. .I did a little bit ofJava and I remember those always screwed me over

in that class. No surprise that that also tripped me up here." Another user reflected on how having

multiple ways of doing something made it more difficult: "It's hard because there are often multiple

56

<I-- Solution 1 --

<span property="answer"

[if(score > 0, Yes, if(score < 0, No, Maybe))]

<!-- Solution 2 -- >

[if(score > 0, Yes)][if(score = 0, Maybe)][if(score < 0, No)]

Figure 4-3: The two solutions

ways of doing something. And knowing which one would be the most efficient and best way to do it

without making a mistake in the process was hardfor me."

4.3 Freestyle Study

Our second FREESTYLE user study involved a third Own Address Book application. During re-

cruitment, subjects were asked to create their own static mock-up of an address book on their own

time prior to meeting us, without being told why. The 7 subjects who complied were assigned to

the FREESTYLE study (3 also did the STRUCTURED study first). During our meeting (and after

the tutorial), they were asked to add Mayo markup to their own mockup to turn it into a working

application.

We added this second study to address several questions. First, we wanted to be sure that our

own HTML was not "optimized" for Mayo. Because users were not aware of Mayo at the time

they created their application, their decisions were not influenced by perceived strengths and lim-

itations of the Mayo approach. We can therefore posit that these mockups reflected their preferred

concept of a contact manager application. Thus, this study served to test whether Mayo is suitable

for animating applications that users actually wanted to create. At the same time, it tested whether

users could effectively use Mayo to animate "normal" HTML that was written without Mayo in

57

mind.

4.3.1 Study Tasks

Before this FREESTYLE study, we provided no specification of how the application should work

or look, except the following basic guidelines:

. Only HTML & CSS should be used, nojavaScript

. If there were lists, they only needed to provide one example in the list

. The mockup needed to contain at least a name, a picture, and a phone number.

Then, during the study session, we asked them to use Mavo to make their mockup fully func-

tional in any way they chose. If the application they envisioned was very simple, after they success-

fully implemented their application, we encouraged them to consider more complex features, as

described in the a section below.

Since what the user worked on depended on their own envisioned implementation, we did not

have explicitly defined tasks throughout. However, we did encourage users to try more advanced

Mavo capabilities by suggesting the following tasks if they ran out of ideas:

1. Allow phone numbers (or emails) to have a label, such as "Home" or "Work" [Make ed-

itable]

2. Allow multiple phone numbers (and/or emails, postal addresses) [Allow multiple]

3. Provide a picture alt text that depends on the person's name (for example, "John Doe's pic-

ture") [Simple reference]

4. Show a total count of people (and/or phone numbers, emails) [Simple aggregate]

5. Show "person" vs "people" in the heading, depending on how many contacts there are.

[Conditional]

4.3.2 Results of Open-Ended Tasks

Of our participants, 7 brought in their own static mockup of an Address Book app and had time

for the FREESTYLE study. We found a variety of implementations of the repeatable contact in-

formation portion. One person used a <table>, with each row representing a different contact.

Three people used , with each contact as a separate list item, and the information about each

58

contact represented inline or as separate <div> elements. Two people chose to only use nested

<div>s, with each contact having their own <div>. Finally, one person chose to create a series of

26 <div>s, each one a letter of the alphabet, with the intended ability to add contacts within each

letter.

When we asked users to use Mayo to improve their mockup in any way, all 7 users chose initially

to use the Mayo syntax to make the fields of the app editable and to support multiple contacts, and

had no trouble doing so. 4 out of 7 chose, of their own accord, to support multiple phone numbers,

emails, or addresses per contact. In all but one case, Mayo was able to accommodate what users

envisioned, as well as our extra tasks. In one case (top left in Figure 4-2), the participant wanted

grouping and sorting functionality, which Mayo does not support. She was still able to convert

her HTML to a web application, but the user had to manually place each contact in the correct

one of 26 distinct "first letter" collections. A sample of Own Address Book applications that users

created are shown in Figure 4-2.

Five more participants brought Contact Manager mockups, but did not have time to animate

them due to participating in the STRUCTURED study first. However, all five mockups were suitable

for Mavo and followed the same patterns already observed in the FREESTYLE study.

4.4 General Observations

We conclude this chapter with some general observations applicable to both studies.

4.4.1 Overall Reaction to Data Authoring

The overall reactions to Mayo ranged from positive to enthusiastic. One user who was a program-

ming beginner but used CMSs on a daily basis, said "Being able to do that...right in the HTML

and not have to fool with.. .a whole other JavaScript file...That is fantastic. I can't say how awesome

that is. I'm like, I want this thing now. Can I have a copy please? Please send me an email once it's

out." Along similar lines, another non-programmer said "When is this going to be available? This is

terrfic. This is exactly the stufI have a hard time with".

Many participants liked the process of editing the HTML as opposed to editing in a separate

file and/or in a separate language. One user said "It seems much more straightforward, everything is

59

right there. You're not referring to some otherfile somewhere else and have tofigure out what connects

with what. It's...almost too easy". Others liked how the Mavo syntax was reminiscent of HTML.

One person said "It didn't seem like a lot of new things had to be learned because naming properties

was just the same as giving classes and ids." Another said "It's very simple. It's as logical as HTML.

You are eliminating one huge step in coding, the need to call the answer at some point, which is really

cool...Everything is where it needs to be, not in a diferentplace".

Other users praised the ability to edit the data from within the browser as opposed to a separate

file or data system. One person said, "I'm convinced it's magic to basically write templating logic and

have it show up and be editable. I think there's a lot less cognitive overhead to direct manipulation on

the page, especiallyfor a non-technical user". This unprompted recognition of direct manipulation

supports our argument that this approach is natural.

4.4.2 Reaction to Expressions

Many participants were enthused about expressions, even those who failed at a few tasks. One

participant said about them: "It's simpler than I expected it to be. My anxiety expects it to be hard,

then I just say 'write what you think' and it turns out to be right. It's very intuitive." Another user,

after learning about filtered aggregates (e.g. count (age > 5)) said "It's so expressive, it tells you

exactly what it's doing!"

Though several subjects struggled with some of the more complicated tasks around expres-

sions, all participants easily got the hang of defining a hierarchical data schema within HTML us-

ing Mayo. Several participants felt that the Mayo attributes of property and mv-multiple were

powerful even without expressions, and mentioned wanting to use these attributes to replicate

functionalities of CMSs that they used. When asked what applications they could see Mayo being

useful for, they had many ideas:

. a color palette app

. a movies-watched log

. a basic blog

. an app for tipping

. surveys (two participants)

. contact forms (two participants)

60

4.4.3 Debugging Behavior

Some participants used the debug table provided to them while others ignored it, instead choosing

to look at the visual presentation of the HTML to see where they went wrong. One user even

commented out loud that they were not going to look at the debug table at all, then proceeded to

fail on a task where a quick glance would have likely prevented this.

A possible explanation is that novices are not used to looking in a separate place for debugging

information. The debug tables were visually and spatially disconnected from the rest of their inter-

face, especially on (visually) larger objects. Another possible explanation is that the information

density of the table is intimidating to novices. A possible future solution for both of these could

be to display values and error messages in a tooltip over the relevant element.

The users who did look at the debug tables found them useful for spotting spelling mistakes,

missing closing braces or quotes, use of wrong property names, and for understanding whether

properties were lists, strings, or numbers. Nobody experimented with editing expressions in the

debug table, and few participants (15%) used the in-browser development tools such as the console

and element inspector.

4.4.4 Spreadsheet familiarity and Mavo

Interestingly, 9/20 of our users stated they used spreadsheets rarely or hardly ever while 11/20 said

they used them frequently or daily, showing a divergence in usage of spreadsheets. And while all

users had used spreadsheets and spreadsheet formulas before, 12/20 had never used the VLOOKUP ()

function necessary to do joins in spreadsheets. There was no observable difference in outcomes

between those familiar with spreadsheets and those not.

4.4.5 Aftermath

To further investigate its appeal, we encouraged participants to try out Mayo on their own time

after the user study. Three of them went on to create Mayo apps, including a collectible card game,

a bug tracker, and a horse feed management application (Figure 4-4). The authors of the first two

applications were programming novices, the latter intermediate.

61

Maggie
.YOUR DECK

44 onocoate Cosees "U"AW--
to--

Tough Ttent Mercurial Manticore Caring Crlosphtn
Mftk a saekad umdik0ydieath1.s PN.p Ib.. ima ickm kd0.cd kmydY.. oudak10caid-ybephaydatimytitm. oppM-ersAnIsybomhit-fils -(N kaats toy"Itmnd Itleadoymusa oetiacnt 7 ot . - It

-. -- 0--

Noodling Newt
W-i t cahoyOud.d .

Tst rn~yChsw ant

mE -

Ig M
Lacrlmatohy Lch

Gmtleeni h1a..holp.um adic e p1,

Mziaudng Mnotaur

10.t.Iepwadbndm.

Gran
Ls quarth%-i"htm'.i

amwapm Proair Unatructiona)

LO5quart En"d(i n tnz

0minsup;eums
a e4opS Pro=im
I nWNp Farrier mala

tam ibot 0"-Vg*Mt

tal" Uatitlegm
Idawhoamhedaheofumvlahtdonnt

Noteabove ismiNmo
(;It

Bug Tracker

Tracking Metrics Track your punch it Items here:

Total kemns: I
The hide checkbox is not configured

boae& 0

Figure 4-4: Mayo apps independently created by participants. Clockwise: Collectible Card
Game, Horse feed management, bug tracker.

62

Chapter 5

Discussion
In this section we discuss various issues brought up in our design and study of the Mayo language.

5.1 Post-study changes

Our user study showed that Mavo's CRUD capabilities can be easily understood and used by

novices, but there is room for improvement on expressions. To rectify this, after the study we

implemented a few markup-based expression conveniences, detailed below.

5.1.1 mv-if

Users struggled with conditionals (if ()) more than anything, possibly due to syntax. To rectify
this, we added support for an mv- if attribute. This attribute is not merely syntactic sugar over

functionality that is already available. Before this attribute, one could only use expressions to con-

ditionally hide an element via inline CSS. The mv-if attribute is semantic, not presentational.

When its value evaluates to false it removes the element from the DOM entirely. If the element

contains properties, their values in expressions become empty, although they are still saved in the

data store. If it is inside a property, its content is removed from the property value.

5.1.2 mv-value

In the user study, we noticed that people often lacked the HTML knowledge necessary to use some

of the more recent HTML elements without assistance, even though Mayo supported them. For

63

example, both user study applications included HTML5 <meter> elements, as inputs in both and

as outputs in the Foodie log application (for the restaurant rating).

When <meter> elements were inputs, the participants didn't struggle: they knew that putting

the property attribute on them makes them editable and did not have to know or care about the

details, such as which attribute was actually being modified.

However, when they were outputs, participants struggled to place the expression in the right

attribute, since they were not familiar with the <meter> element. The mv-value attribute does for

outputs what property does for inputs. It follows exactly the same rules and can be overridden

with the same mv-attribute attribute. With mv-value, this markup:

<meter value="[average(rating)]"></meter>

[foo]

becomes:

<meter mv-value="average(rating)"></meter>

Fallback content

In addition to attribute-agnostic output, mv-value introduces a few other benefits:

" Since the actual data attribute (or element content) does not need to contain the expres-

sion, they may contain fallback content that is shown when the expression produces an

error. With the bracket system syntax, if an expression produces an error, the output is the

expression itself.

. Brackets can be an illegal character in many attributes, e.g. attributes that expect numbers,

including many SVG attributes. While browsers do retain illegal values in attributes, there

are often errors printed out to the browser developer tools, which could be disconcerting for

novices. With mv-value, the expression is in a different attribute, with no such restrictions.

However, mv-value is not without drawbacks. The main drawback is that there can only be

one per element and the expression occupies the entire attribute or element contents. Therefore,

static content is now embedded in the expression instead of the expressions being embedded in

64

static content. This inversion of expressions and output means that more extensive changes to the

previously static markup are required. With the brackets syntax, the variable part of an attribute is

the only part that needs to be edited by the author. However, if the entire attribute is an expression,

the entire attribute needs to be edited, for concatenation. An illustrative example is the following:

<p>The rating is [rating] out of 1001</p>

With mv-value, this would become:

<p mv-value="'The rating is & rating & ' out of 100!'">No data</p>

This is much harder to read and feels closer to programming than the first example. Of course,

a more realistic mv-value solution would be to use an extra element for the variable part:

<p>The rating is ? out of 100!</p>

5.2 Direct Manipulation of Data Schemas

Mavo's approach of designing schmemas by designing the presentation of the data from those

schemas works well because the presentation of data usually reflects its schema. If we have a col-

lection of objects with properties, we generally expect those objects to be shown in a list, with

each object's properties presented inside the space allocated to that object. This is understandable,

as the visual grouping conveys relationship to the viewer. We are simply inverting this process,

arranging for the visual grouping to convey information to the underlying data later. Mavo may

not be suitable for creating presentations that conflict strongly with the underlying data schema,

should such presentations ever be wanted.

5.3 Target Users

Mayo is aimed at a broad population of users. There is no hard limit to what it can do, since its

expressions can also accept arbitrary JavaScript. However, this is not the primary target. Our

65

focus is increasing the power payoff for a given investment of effort/learning that is accessible to

novices. Currently, even small web applications require substantial skill and effort to build. Too

often, designers of essentially static websites are forced to deploy them inside CMSs, only so that

their non-technical clients can update the site content. Mayo frees designers from these CMS

constraints by providing an automatic WYSIWYG content management UI for plain HTML.

Plain CRUD apps only need mv-* attributes "entirely in HTML" without application logic.

For users who want more, expressions add power: lightweight computation for application

logic at a conceptual cost similar to spreadsheets. More complex functions provide more power,

like advanced spreadsheet ones. Our user study traced out this ease/power curve and showed that

most users can work with such expressions.

Although we have focused on Mayo as a tool to support non-programmers, skilled programers

can also benefit from the ability to rapidly build dynamic CRUD interfaces. Even for programmers

Mayo brings some of the benefits of data typing to the construction of the interface: declaring data

types enables the system to provide appropriate input and data management without demanding

that the developer write special purpose code for the typed content.

5.4 Scalability

Because Mayo is implemented as a pure Javascript library and all computation occurs on the client,

serving a Mayo app to any number of users is as easy and scalable as serving static web pages. Scal-

ability issues arise only around access to the data, which may be stored locally or outsourced to

third-party storage providers such as Dropbox.

Mayo is therefore perfectly suited to so-called PersonalInformation Management (PIM) appli-

cations. These applications have a single author and reader, and the amount of data they manage is

generally small. For the ultimate in scalability, the Mayo app web page can be stored ("installed")

on the user's own machine and data stored locally in the user's browser. While this old fashioned

approach sacrifices the access-from-anywhere advantages of cloud-based services, it frees the user

of any dependence on the network. Even when operating in the cloud, PIM-oriented Mayo ap-

plications scale extremely well because each user's data is isolated. Each user's Mavo simply loads

or stores their own small data file, which is the bread-and-butter operation of the popular stor-

66

age services. A peer-to-peer synchronization service for web storage would allow users to manage

information on all their devices while still avoiding dependence on any cloud services.

Mavo is also well suited to "web publishing" applications where an author manages and pub-

lishes a moderate-size hierarchical data model and present it to audiences of any size through views

enriched by computation of scalar and aggregate functions over those items. This large space spans

personal homepages, blogs, portfolios, conference websites, photo albums, color pickers, calcula-

tors, and more. Since only the author edits, these applications scale like the PIM applications for

editing, while on the consumption side any number of consumers are all simply loading the (static)

Mayo application and data file, which again is highly scalable. Conversely, Mavo can be used to su-

percharge web forms that collect information from large numbers of individuals-such as surveys

and contact forms-to adapt dynamically to inputs and perform validation computations.

Mavo is not designed to make social or big data apps that present every user with the results

of complex queries combining many users' data. This social/computational space is important,

but so is the large space of "small data" applications that Mavo can provide. Mayo also does not

persist the results of large complex calculations, instead redoing them every time. Again, this is

an unimportant issue in small-data applications. Even on big-data applications, Mayo may in the

future be a useful component for simplified UI design if powerful back-end servers are used to

filter down and deliver only the small amount of data any given user needs in their UI at a given

time.

5.5 Multi-User Applications

Mayo can already be used to create basic multi-user applications, since many users can simulta-

neously visit a Mavo web page and access the underlying data. But access control needs to be

implemented by the back-end service and is currently quite coarse. For example, Dropbox only

supports read and write access to an entire file. This is adequate for many "small data" applica-

tions. However, back-end services with richer access models exist. For instance, DataHub [10]

provides row-level access control, where each table row is "owned" by a different user. This would

enable apps where users can read others' data but only edit their own. Mayo would need to re-

flect these permissions in the editing UI it generates. Assuming the backend service provides API

67

methods to determine permissions, this would require few modifications to Mayo.

One planned Mayo capability that would be beneficial for multi-user applications is the ability

to combine Mayo instances drawing from different data sources. This would enable uses such as a

blog where the posts are stored in Dropbox and can only be edited by the author, with comments

that are stored in a service that supports row-level access control. Such functionality would also

be very useful for mashups.

Multi-user applications require robust conflict resolution to be able to scale. We plan to sup-

port server-sent events to make bidirectional data flows possible, which, in conjunction with auto-

saving, should reduce conflicts to a minimum that can be resolved via the UI.

5.6 Handling Large Amounts of Data

The existing Mayo backends save all data in a single JSON file. This is convenient for use cases

involving small amounts of data, and allows using any popular file hosting web service as a backend.

However, making multi-user apps possible will create a pressing need for handling larger amounts

of data with Mayo.

Mayo already supports displaying and editing part of the data, and already keeps track of what

data has been modified, to highlight unsaved changes. Therefore, it is easy to implement incremen-

tal saving for web services that support it. Implementing a backend adapter for a cloud database

service (e.g. Firebase), will also allow for fetching partial data. Such backends usually also support

server-sent events, which would enable incremental updates for true bidirectionality.

5.7 Encouraging Semantic Web Best Practices

The Mayo syntax for naming elements is based on a simplified version of RDFa [31] with some

divergences discussed in 3.1.6. As a result, at runtime any Mavo instance becomes valid RDFa that

can be consumed by any program that needs it. Mavo further incentivizes authors to use good

property names by using their identifiers in various places in the generated editing UI: button

labels, tooltips, and input placeholders to name a few.

Lastly, in addition to runtime HTML, whenever people edit a website via Mayo, they are also

68

unwittingly producing machine-readable, structured JSON data. If authors are more savvy with

Linked Data technologies and use proper RDFa in their markup with a vocabulary and specific

types, the JSON produced will also be valid JSON-LD [24].

69

70

Chapter 6

Conclusio
This thesis presented Mayo, a language extension of HTML that helps end users convert static

webpages to fully-fledged web applications capable of managing, storing and transforming struc-

tured data.

Our user studies showed that HTML authors can quickly learn use Mayo attributes to trans-

form static mockups to CRUD applications, and, to a large extent, use Mayo expressions to per-

form dynamic calculations and data transformations on the existing data.

Mayo represents an architectural argument about what the future of Web authoring should

look like. It attempts to make data management and transformation as integral to the Web as

paragraphs and colours. We prototyped Mayo as a JavaScript and CSS library to enable HTML

authors to experiment with it immediately, but we envision a future where its capabilities are im-

plemented natively by Web browsers.

6.1 Future Work

The Mayo language is still in the beginning of its development. It enables programming novices to

do many things they previously were not able to, but there is a lot of room for improvement. In this

section, we explore some of the future research and development directions we plan to explore.

71

6.1.1 Filtering and Sorting

While user study participants were enthusiastic about the potential of building apps with Mayo,

there were also a few requested use cases that Mayo cannot presently accommodate. Sorting,

searching and filtering were recurring themes. Simple filtering and searching is already possible

via expressions and CSS, but not in a straightforward way. We plan to explore more direct ways

to declaratively express these operations. Since Mayo makes collections and properties explicit, it

doesn't take much more syntax to enable sorting and filtering of a collection on certain properties;

however, the more complex question is to develop a sufficiently simple language that can empower

users to fully customize any generated sorting and filtering interfaces beyond simple skinning.

One user wanted to filter a list based on web service data (current temperature). Mayo can

already incorporate data from anyJSON data source, so this will become possible once we support

combining data from multiple Mayo instances on the same page.

6.1.2 Dynamic groups and collections

Currently, collections and groups only exist as part of the data schema and there is no way to display

dynamic collections whose data have been generated by expressions or resolve expressions in an

element based on dynamic data. The ability to define dynamic collections whose data are defined

through expressions and are updated when the expression changes would facilitate many use cases,

including filtering and dual presentations of the same data, such as a list of concerts and a map

displaying their locations.

We are considering two syntax ideas for this functionality:

1. Differentiating the behavior of the mv-value attribute depending on whether the result

of the expression is a primitive, an object, or an array. The benefit of this approach is its

simplicity, as there no new attributes are introduced. The drawback is its unpredictability.

The behavior of any expressions inside the element completely changes depending on the

return type of the expression. Given that most Mayo users do not have any understanding

of data types, this could result in a lot of confusion.

2. Using a new attribute, such as mv-data, and requiring mv-multiple for collections. This is

more explicit and predictable, but requires extending the Mayo language.

72

For example, with dynamic collections, filtering of a collection of people based on their gender

could be implemented as:

<li mv-data="unique(gender)" mv-multiple>

<label>

<input type="checkbox" property="show" checked />

[gender] ([count(person.gender = gender)] people)

</label>

<meta property="filter" mv-value="if(show, gender)" />

<article property="person" mv-multiple

style="display: [if(count(filter = gender) > 0, block, none)]">

</article>

The reason that we are hiding the people with CSS instead if mv- if is that since mv- if affects

expression evaluation, and the filter is dynamic, hiding a gender would cause it to disappear from

the filter items so it would be impossible to make it appear again.

While the usability of this markup could certainly be improved, it does produce a fairly high-

fidelity filter, with a dynamic display of all values and their counts.

6.1.3 Handling Schema Mutations

Mavo's innovation of inferring schema from HTML presentation might be its Achilles' heel. After

Mayo is used to create data, changes to the HTML may result in a mismatch between the schema

of the saved data and the new schema inferred from the HTML, which could lead to data loss.

Currently Mayo handles only the most basic of such changes, such as:

. When properties are added the schema is automatically extended to include them.

. When properties are removed, corresponding data is retained and saved, but not displayed.

This protects a user from data loss if they stop displaying a property then bring it back later.

73

It also enables the creation of multiple Mavo applications operating on different parts of the

same dataset.

. When a singleton is made into a mv-mutiple collection, Mayo converts the single item to

a collection of one item.

. When a collection is made into a singleton (by removing the mv-multiple attribute), the

data is retained so it can be brought back later but anything after the first item is not dis-

played and cannot be edited or referred to in expressions.

. Property names can be changed by specifying property name aliases using the mv-alias

attribute.

More complete handling of schema changes is a key open question for Mayo. Our lab study

did not explore it because we are not sure what migrations will arise in practice. We plan to release

Mayo to the wider public in the coming months and do a field study about how people use it in

the wild to create web applications. This will also help identify the types of migrations that are

most commonly needed.

The enforced bijection between Mayo schema and data schema may also prevent Mayo from

making use of "third party" data that is laid out according to a different schema. We may need to

develop language for describing schema mappings to permit incorporation of such data.

74

Bibliography
[1] Jekyll. https://jekyllrb.com.

[2] JSEP: A tiny JavaScript expression parser. http://jsep.from.so/.

[3] ThemeForest. http://themeforest.net.

[4] Eirik Bakke, David Karger, and Rob Miller. A spreadsheet-based user interface for man-
aging plural relationships in structured data. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI '11, pages 2541-2550, New York, NY, USA,
2011. ACM.

[5] Edward Benson. A data aware web architecture. Master's thesis, Massachusetts Institute of
Technology, 2010.

[6] Edward Benson and David R Karger. End-users publishing structured information on the
web: an observational study of what, why, and how. In Proceedings ofthe 32nd annualACM
conference on Humanfactors in computing systems, pages 1265-1274. ACM, 2014.

[7] Edward Benson, Adam Marcus, David Karger, and Samuel Madden. Sync kit: a persistent
client-side database caching toolkit for data intensive websites. In Proceedings of the 19th
international conference on World wide web, pages 121-130. ACM, 2010.

[8] Edward Benson, Amy X. Zhang, and David R. Karger. Spreadsheet driven web applications.
In Proceedings of the 27th AnnualACM Symposium on User Interface Software and Technol-
ogy, UIST '14, pages 97-106, New York, NY, USA, 2014. ACM.

[9] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientifc american,
284(5):28-37, 2001.

[10] Anant Bhardwaj, Souvik Bhattacherjee, Amit Chavan, Amol Deshpande, Aaron J Elmore,
Samuel Madden, and Aditya G Parameswaran. Datahub: Collaborative data science &
dataset version management at scale. arXiv preprint arXiv:1409.0798, 2014.

[11] Margaret Burnett, John Atwood, Rebecca Walpole Djang, James Reichwein, Herkimer Got-
tfried, and Sherry Yang. Forms/3: A first-order visual language to explore the boundaries of
the spreadsheet paradigm. Journal offunctionalprogramming, 11(02):155-206, 2001.

75

[12] MichaelJ Cafarella, Alon Halevy, and Jayant Madhavan. Structured data on the web. Com-
munications ofthe ACM, 54(2):72-79, 2011.

[13] Kerry Shih-Ping Chang and Brad A. Myers. Creating interactive web data applications with
spreadsheets. In Proceedings of the 27thAnnualACM Symposium on User Interface Software
and Technology, UIST '14, pages 87-96, New York, NY, USA, 2014. ACM.

[14] Kerry Shih-Ping Chang and Brad A Myers. Using and exploring hierarchical data in spread-
sheets. In ACM CHI, 2016.

[15] Ruth Sara Connell. Content management systems: trends in academic libraries. Information
Technology and Libraries (Online), 32(2):42, 2013.

[16] Domenic Denicola. Custom Elements. Technical report. https://www.w3.org/TR/
custom-elements/.

[17] Yupeng Fu, Kian Win Ong, Yannis Papakonstantinou, and Michalis Petropoulos. The sql-
based all-declarative forward web application development framework. In CIDR, pages 69-
78, 2011.

[18] Dimitri Glazkov and Hajime Morrita. HTML Imports. Technical report. https://www.
w3.org/TR/html-imports/.

[19] David F Huynh, David R Karger, and Robert C Miller. Exhibit: lightweight structured data
publishing. In Proceedings of the 16th international conference on World Wide Web, pages
737-746. ACM, 2007.

[20] Google Inc. AngularJS. http://angularjs.org/, 2009.

[21] HV Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian, Yunyao Li, Arnab
Nandi, and Cong Yu. Making database systems usable. In Proceedings of the 2007 ACM
SIGMOD international conference on Management ofdata, pages 13-24. ACM, 2007.

[22] David R Karger, Scott Ostler, and Ryan Lee. The web page as a wysiwyg end-user customiz-
able database-backed information management application. In Proceedings ofthe 22nd an-
nualACMsymposium on User interface software and technology, pages 257-260. ACM, 2009.

[23] Keith Kowalzcykowski, Alin Deutsch, Kian Win Ong, Yannis Papakonstantinou, Kevin Ke-
liang Zhao, and Michalis Petropoulos. Do-it-yourself database-driven web applications. In
Proceedings of the 4th Biennial Conference on Innovative Data Systems Research (CIDR'09).
Citeseer, 2009.

[24] Markus Lanthaler, Gregg Kellogg, and Manu Sporny. JSON-LD 1.0. W3c working draft,
W3C, January 2014. https://www.w3.org/TR/json-ld.

[25] Chris Lilley. Separation of semantic and presentational markup, to the extent possible, is
architecturally sound. Draft TAG finding, W3C, June 2003. https://www.w3.org/2001/
tag/doc/contentPresentation-26.html.

76

[26] Robert B Miller. Response time in man-computer conversational transactions. In Proceed-
ings ofthe December 9-11, 1968,falljoint computer conference, part I, pages 267-277. ACM,
1968.

[27] Brad Myers, Scott E Hudson, and Randy Pausch. Past, present, and future of user interface
software tools. ACM Transactions on Computer-Human Interaction (TOCHI), 7(1):3-28,
2000.

[28] Mary Beth Rosson, Julie Ballin, and Jochen Rode. Who, what, and how: A survey of infor-
mal and professional web developers. In Visual Languages and Human-Centric Computing,
2005 IEEE Symposium on, pages 199-206. IEEE, 2005.

[29] Deborah Seehorn, Stephen Carey, Brian Fuschetto, Irene Lee, Daniel Moix, Dianne
O'Grady-Cunniff, Barbara Boucher Owens, Chris Stephenson, and Anita Verno. Csta k-12
computer science standards: Revised 2011, 2011.

[30] Ben Shneiderman. Direct manipulation: a step beyond programming languages. Sparks of
innovation in human-computer interaction, 17:1993, 1993.

[31] Manu Sporny. W3C HTML+RDFa 1.1 - Second Edition. W3C recommendation, W3C,
March 2015. https://www.w3.org/TR/html-rdfa.

[32] Lea Verou, Amy X Zhang, and David R Karger. Mavo: Creating interactive data-driven
web applications by authoring html. In Proceedings ofthe 29th Annual Symposium on User
Interface Software and Technology, pages 483-496. ACM, 2016.

[33] WHATWG. DOM Living Standard. https://dom.spec.whatwg.org/.

[34] WHATWG. Microdata - HTML Living Standard. https://html.spec.whatwg.org/
multipage/microdata.html.

[35] WHATWG. The template element - HTML Living Standard. https://html.spec.whatwg.
org/multipage/scripting.html#the- template- element.

[36] Nicholas Wilde and Clayton Lewis. Spreadsheet-based interactive graphics: from prototype
to tool. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 153-160. ACM, 1990.

[37] Fan Yang, Nitin Gupta, Chavdar Botev, Elizabeth F Churchill, George Levchenko, and
Jayavel Shanmugasundaram. Wysiwyg development of data driven web applications. Pro-
ceedings ofthe VLDB Endowment, 1(1):163-175, 2008.

[38] Evan You. Vue.js. https://vuejs.org/, 2014.

77

